
Teaching Testing:
A Skills-Based Approach

Cem Kaner, J.D., Ph.D.
Department of Computer Sciences

Florida Institute of Technology

May, 2001
Software Quality Week

2Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Abstract
• Training software testers involves teaching culture, vocabulary, concepts and skills. I

think that many of the commercial seminars (and certification review courses) teach
vocabulary and many concepts quite well. Some of them address cultural issues.
Fewer address skills, but skills development is essential for new testers.

• I've been training testers for 18 years, sometimes personally coaching them,
sometimes teaching a pretty successful commercial seminar, and now teaching
undergraduate and graduate students. Over the past year, I've rethought my
approach to teaching.

• When I studied mathematics, we learned a lot of conceptual material, but we also did
a lot of drill--exercise upon exercise--from the course text and from exercise books
like the Schaum's Outlines. These exercises forced the student to learn how to work
with the concepts, and how to apply them under a wide range of circumstances.

• Working primarily with James Bach, Helene Astier, and Alan Jorgensen, I've been
trying to develop a list of specific skills that testers use in the normal course of their
work, and then develop exercises that will practice them in those skills. I have several
such exercises now and am developing more as I go.

• This session will go through practice exercises in bug reporting, domain testing,
combination testing (all pairs), specification analysis for ambiguity, specification
analysis for holes, and possibly some other areas. The more time we have, the more
techniques we look at. In this session, I'll share course notes, quizzes, exam
questions, and explain how I use them.

3Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Scope
• This workshop is focused on classroom-style teaching,

though much of it will apply to programs involving self-
paced self-study.

• I’ve been involved in classroom-style teaching:
– As a senior tester, conducting classes for my staff (in-house

“Tester College”.)
– As an instructor on the road, teaching 3-day seminars in hotels.
– As a University of California Extension instructor, teaching

courses to working professionals on nights and weekends,
covering my 3-day seminar in some courses and test automation
architecture in others.

– As a traveling test teacher, delivering courses onsite at several
companies.

– As a university professor, teaching senior undergrads and various
graduate students.

4Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Work In Progress

• These slides are far from complete. It feels to me as
though I am at the beginning of skills analysis for
software testing tasks and techniques, not the end.
These slides reflect that early stage:
– They are inconsistent in depth
– The exercises are of varying quality
– The range of exercises per topic varies widely

• I expect to work on this for several years. Your
comments, criticisms, and suggestions would be very
much appreciated. Please write me at
kaner@kaner.com.

5Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Learning Styles

• People learn in different ways. There are several models of
learning styles. Different presentation methods work best for
different styles of learners.

• I’m not up to date on this literature. Back when I was a grad
student in psychology, we talked about
– Visual vs. auditory learners. Visual learners have more success in

lectures if they have a copy of every slide
– Active vs. passive learners. Some people learn better in lecture or

by reading / memorizing. Others learn better through exercises.
– Individual vs. group learners. Some people learn better on their

own, others on project teams.
– Concrete vs. conceptual learners. Some people learn better from

detailed stories, others from the formal presentation of the
underlying principles.

6Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Learning Styles

• I’m still thinking about how to develop a course that works well
with the different styles. (I’m especially interested in this for
building on-line courses that are worth teaching/taking).

• For now, my approach involves:
– Lecture of key material
– Hard copies of every slide
– Many stories with rich detail to support key points
– Several assignments, which can be done by individuals or jointly
– Sample questions that can be studied by individuals or jointly.

• And will soon involve
– Self-study drills
– A library of examples that students can read on their own.

7Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Learning Styles

• There’s nothing magical about the division that I learned, and
several others are more popular in the literature.

• For a useful introduction and discussion of several style
classifications, see R.M. Felder, Matters of Style,
http://www2.ncsu.edu/unity/lockers/users/f/felder/public/Papers/
LS-Prism.htm

• Felder makes the point that the basic lessons for instructional
design end up being pretty similar across the different
classification schemes. The next slides, taken verbatim from his
paper, show his advice to chemistry teachers:

8Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Examples from Felder’s Matter of Style

“Here are some strategies to ensure that your courses present information that
appeals to a range of learning styles. These suggestions are based on the
Felder-Silverman model.

• Teach theoretical material by first presenting phenomena and problems that relate to
the theory (sensing, inductive, global). For example, don't jump directly into free-body
diagrams and force balances on the first day of a statics course. First describe problems
associated with the design of buildings and bridges and artificial limbs, and perhaps give
the students some of those problems and see how far they can go before they get all the
tools for solving them.

• Balance conceptual information (intuitive) with concrete information (sensing).
Intuitors favor conceptual information--theories, mathematical models, and material that
emphasizes fundamental understanding. Sensors prefer concrete information such as
descriptions of physical phenomena, results from real and simulated experiments,
demonstrations, and problem-solving algorithms. For example, when covering concepts
of vapor-liquid equilibria, explain Raoult's and Henry's Law calculations and nonideal
solution behavior, but also explain how these concepts relate to barometric pressure and
the manufacture of carbonated beverages.

9Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Examples from Felder’s Matter of Style

• Make extensive use of sketches, plots, schematics, vector diagrams, computer graphics,
and physical demonstrations (visual) in addition to oral and written explanations and
derivations (verbal) in lectures and readings. For example, show flow charts of the
reaction and transport processes that occur in particle accelerators, test tubes, and
biological cells before presenting the relevant theories, and sketch or demonstrate the
experiments used to validate the theories.

• To illustrate an abstract concept or problem-solving algorithm, use at least one
numerical example (sensing) to supplement the usual algebraic example (intuitive). For
example, when presenting Euler's method for numerical integration, instead of simply
giving the formulas for successive steps, use the algorithm to integrate a simple function
like y = x2 and work out the first few steps on the chalkboard with a hand calculator.

• Use physical analogies and demonstrations to illustrate the magnitudes of calculated
quantities (sensing, global). For example, tell your students to think of 100 microns is
about the thickness of a sheet of paper and to think of a mole as a very large dozen
molecules. Have them pick up a 100 ml. bottle of water and a 100 ml. bottle of mercury
before talking about density.

10Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Examples from Felder’s Matter of Style

• Occasionally give some experimental observations before presenting the general
principle, and have the students (preferably working in groups) see how far they can get
toward inferring the latter (inductive). For example, rather than giving the students
Ohm's or Kirchoff's Law up front and asking them to solve for an unknown, give them
experimental voltage/current/resistance data for several circuits and let them try to
figure out the laws for themselves.

• Provide class time for students to think about the material being presented (reflective)
and for active student participation (active). Occasionally pause during a lecture to
allow time for thinking and formulating questions. Assign "one-minute papers" near the
end of a lecture period, having students write on index cards the lecture's most important
point and the single most pressing unanswered question. Assign brief group problem-
solving exercises in class that require students to work in groups of three or four.

• Encourage or mandate cooperation on homework (every style category). Hundreds of
research studies show that students who participate in cooperative learning experiences
tend to earn better grades, display more enthusiasm for their chosen field, and improve
their chances for graduation in that field relative to their counterparts in more traditional
competitive class settings.

11Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Examples from Felder’s Matter of Style

• Demonstrate the logical flow of individual course topics (sequential), but also point out
connections between the current material and other relevant material in the same
course, in other courses in the same discipline, in other disciplines, and in everyday
experience (global). For example, before discussing cell metabolism chemistry in detail,
describe energy release by glucose oxidation and relate it to energy release by nuclear
fission, electron orbit decay, waterfalls, and combustion in fireplaces, power plant
boilers, and automobiles. Discuss where the energy comes from and where it goes in
each of these processes and how cell metabolism differs. Then consider the
photosynthetic origins of the energy stored in C-H bonds and the conditions under
which the earth's supply of usable energy might run out.”

12Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Blooms Taxonomy Slides

• “Bloom's Taxonomy, created in 1956 by Dr. Benjamin Bloom of
the University of Chicago and his group of educational
psychologists, is a categorization of verbs describing cognitive
skills verbs into six classes (knowledge, comprehension,
application, analysis, synthesis, and evaluation). The classes
are ranked from least complex (knowledge) to most complex
(evaluation) in terms of the level of thinking required for students
to achieve these objectives. In general, critical thinking skills
encompass only the three most complex categories (analysis,
synthesis, and evaluation).”

• (From Michael Bowen’s web page,
http://207.233.105.16/curriculum/bloomtax.htm, to be distributed
in class.)

13Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Testing Training

• It is easy to teach to the first few levels (tests would
have students recall what was taught, define terms,
make simple applications).

• It is much tougher to teach the underlying skills of
testing.

• Putting students through tests, exercises and exams
has been eye- opening in terms of how much they can
learn with personal involvement and how little they get
from traditional lectures.

14Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Where are you training?

• Different constraints for
– Undergraduates
– Working professionals in a hotel room
– Working professionals in a short course onsite
– Working professionals at a many-week extension

course
– Working professionals in a long-term course onsite
– On-line training
– One-on-One coaching

15Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Example of a Task Breakdown

• Bug Reporting
– Reproduce the bug
– Simplify the bug
– Follow-up testing
– Describe the screen
– Describe the sequence
– Determine customer impact
– Determine technical impact

What sub-tasks and skills are involved in
each of these?

16Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Reporting Practice Example

• You will be given a copy of a computer screen.
– Please write a description (all words, no pictures) of

that screen
– When asked, please pass your description to your

partner
– You will receive a description of a different screen

from your partner.
– Please draw the screen that your partner is describing.

17Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Basic Testing Styles

What tasks and skills are involved in each of these?
• Domain testing
• Function testing
• Risk-based testing
• Exploratory testing
• Stress testing
• Specification-based testing
• User testing
• Scenario testing
• Regression testing
• Random testing
• Configuration testing

So, Let’s Start the Analysis
with Domain Testing

19Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Domain Testing
• AKA partitioning, equivalence analysis, boundary analysis
• Fundamental question or goal:

– This confronts the problem that there are too many test cases for
anyone to run. This is a stratified sampling strategy that provides a
rationale for selecting a few test cases from a huge population.

• General approach:
– Divide the set of possible values of a field into subsets, pick values to

represent each subset. Typical values will be at boundaries. More
generally, the goal is to find a “best representative” for each subset,
and to run tests with these representatives.

– Advanced approach: combine tests of several “best representatives”.
Several approaches to choosing optimal small set of combinations.

• Paradigmatic case(s)
– Equivalence analysis of a simple numeric field.
– Printer compatibility testing (multidimensional variable, doesn’t map

to a simple numeric field, but stratified sampling is essential.)

20Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Domain Testing
• Some of the Key Tasks

– Partitioning into equivalence classes
– Discovering best representatives of the sub-classes
– Combining tests of several fields
– Create boundary charts
– Find fields / variables / environmental conditions
– Identify constraints (non-independence) in the relationships among

variables.

21Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Domain Testing
• Some Relevant Skills

– Identify ambiguities in specifications or descriptions of fields
– Find biggest / smallest values of a field
– Discover common and distinguishing characteristics of multi-

dimensional fields, that would justify classifying some values as
“equivalent” to each other and different from other groups of values.

– Standard variable combination methods, such as all-pairs or the
approaches in Jorgensen and Beizer’s books

22Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Domain Testing

• Ideas for Exercises
– Find the biggest / smallest accepted value in a field
– Find the biggest / smallest value that fits in a field
– Partition fields
– Read specifications to determine the actual boundaries
– Create boundary charts for several variables
– Create standard domain testing charts for different types of

variables
– For finding variables, see notes on function testing

Here are a few of the exercises I
actually use:

23Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

An Introductory Exercise

The program reads three integer values from a card. The
three values are interpreted as representing the lengths
of the sides of a triangle. The program prints a message
that states whether the triangle is scalene, isosceles, or
equilateral.

• From Glen Myers, The Art of Software Testing

1. Write a set of test cases that would adequately test this
program.

2. Imagine testing this program “completely.” What proportion
of complete testing does your set of test case represent?

3. Hand it in when you are done.

24Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Myers’ Answer

• Test case for a valid scalene triangle
• Test case for a valid equilateral triangle
• Three test cases for valid isosceles triangles (a=b, b=c,

a=c)
• One, two or three sides has zero value (5 cases)
• One side has a negative
• Sum of two numbers equals the third (e.g. 1,2,3) is

invalid b/c not a triangle (tried with 3 permutations
a+b=c, a+c=b, b+c=a)

• Sum of two numbers is less than the third (e.g. 1,2,4) (3
permutations)

• Non- integer
• Wrong number of values (too many, too few)

25Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Notes on the Exercise

• Several classes of issues were missed by most students. For
example:
– Few students checked whether they were producing valid

triangles. (1,2,3) and (1,2,4) cannot be the lengths of any
triangle.
• Knowledge of the subject matter of the program under

test will enable you to create test cases that are not
directly suggested by the specification. If you lack that
knowledge, you will miss key tests. (This knowledge is
sometimes called “domain knowledge”, not to be
confused with “domain testing.”)

– Few students checked non-numeric values, bad delimiters, or
non-integers.

– The only boundaries tested were at MaxInt or 0.

26Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Notes on the Exercise

• James Bach uses a variation on this simple example to teach
several lessons. He’s probably willing to share his demo
program. Contact him at james@satisfice.com.

• In Bach’s example:
– You actually enter three numbers (a test case) on a client

computer
– All the clients send back student tests to the teacher’s machine,

so James can look at trends
– He can ask for specific tests, like try to find the largest number

the program can accept.
– Remarkably, students don’t test numbers anywhere near as big

as they could. For example, if the input field window is 17
characters wide, some students will type an input 17 characters
long, but few will go wider.

27Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Another Example

• Here is the program’s specification:

1. This program is designed to add two numbers, which you
will enter.

2. Each number should be one or two digits.
3. The program will print the sum. Press Enter after each

number.
4. To start the program, type ADDER.

Before you start testing, do you have any
questions about the spec?

28Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Let’s Brainstorm Some Tests

• Brainstorming Rules:
– The goal is to get lots of ideas. You are brainstorming

together to discover categories of possible tests.
– There are more great ideas out there than you think.
– Don’t criticize others’ contributions.
– Jokes are OK, and are often valuable.
– Work later, alone or in a much smaller group, to eliminate

redundancy, cut bad ideas, and refine and optimize the
specific tests.

– Facilitator and recorder keep their opinions to themselves.

29Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Let’s Brainstorm Some Tests

What? Why?
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________
______________ ________________

30Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Traditional Presentation (Myers)

• One input or output field
– The “valid” values for the field fit within one (1)

easily specified range.
– Valid values: -99 to 99
– Invalid values

value < - 99
value > 99

31Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Myers’ Boundary Table

Variable Valid Case
Equivalence
Classes

Invalid Case
Equivalence
Classes

Boundaries
and Special
Cases

Notes

First
number

-99 to 99 > 99
< -99

99, 100
-99, -100

Second
number

same as first Same as first same

Sum -198 to 198 Are there other
sources of data for
this variable? Ways
to feed it bad data?

32Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Notes on the Traditional Presentation

• In the traditional approach, we analyzed the code from
the point of view of the programmer and the
specification.

• The specification provides us with only one of several
classes of risk. We have to test against a broader set.

• Experts in different subject matters will see different
opportunities for failure, and different classes of cases
that might reveal these failures.

• Thinking outside of the box posed by the explicit design
is at the essence of black box testing.

33Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Expanding the Notion of Equivalence

Consider these cases. Are these paired tests equivalent?
(55+56, 56+57) (57+58, 58+59)
(59+60, 60+61) (61+62, 62+63)
(63+64, 64+65) (65+66, 66+67)
(67+68, 68+69) (69+70, 70+71)

34Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Equivalence Classes and Partitions are Subjective.

Example: The Hockey Game

My working definition of equivalence:

Two test cases are equivalent if you expect the same
result from each.

This is fundamentally subjective. It depends on what you expect. And
what you expect depends on what errors you can anticipate:

Two test cases can only be equivalent by reference
to a specifiable risk.

Two different testers will have different theories about how programs
can fail, and therefore they will come up with different classes.

35Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Another Example

Character ASCII Code
/ 47

lower bound 0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56

upper bound 9 57
: 58
A 65
a 97

36Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Revised Boundary Analysis Table

Note that we’ve dropped the issue of “valid” and “invalid.” This lets us
generalize to partitioning strategies that don’t have the concept of
“valid” -- for example, printer equivalence classes. (For discussion of
device compatibility testing, see Kaner et al., Chapter 8.)

V a r iable E q u i v a l e n c e
C l a s s

A l t e r n a t e
E q u i v a l e n c e
C l a s s

B o u n d a r i e s
a n d S p e c ia l
C a s e s

N o t e s

F i rs t
n u m b e r

-9 9 t o 9 9

d igi ts

> 9 9
< -9 9
n o n -d ig i ts

e x p r e s s i o n s

9 9 , 1 0 0
-9 9 , -1 0 0
/, 0 , 9, :
l e a d i n g s p a c e s
o r 0 s
n u ll en t r y

S e c o n d
n u m b e r

s a m e as f i r s t s a m e a s f i r s t s a m e

S u m -1 9 8 t o 1 9 8
-1 2 7 t o 1 2 7

? ? ?
-1 9 8 t o – 1 2 8
1 2 8 t o 1 9 8

? ? ?
1 2 7 , 1 2 8 , -1 2 7 ,
-1 2 8

A r e t h e r e o t h e r
s o u r c e s o f d a t a f o r
t h i s v a r i a b l e ? W a y s
t o f e e d i t b a d d a t a ?

37Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Additional Basic Exercises
• Send students to common dialog boxes, such as these in MS Word:

– Print dialog
– Page setup dialog
– Font format dialog

• For each dialog
– Identify each field, and for each field

• Name the type of the field (integer, rational, string, etc.)
• List the range of entries that are “valid” for the field
• Partition the field and identify boundary conditions
• List the entries that are almost too extreme and too extreme

for the field
• List a small number of test cases for the field and explain why

the values you have chosen are best representatives of the
sets of values that they were selected from.

• Identify any constraints imposed on this field by other fields

38Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Additional Basic Exercises
• Basic exercises like these can be presented with
solutions. I’m working on developing a series of these.
Imagine giving a student 20 examples of questions like
these, with 20 solutions/comments in the back of the
book.

• There might not be one true solution, but I think we
can give three, one being a typical weak solution, one
being an average acceptable solution, and one being
excellent.

• In some cases, there are alternative good solutions.
• In any case, I think the answers should include
commentary.

39Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specifications and Boundaries

• In general, word puzzles are important exercises. Math
students can often solve equations but have real trouble
identifying the equations when they are embedded in
simple sentences.

40Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specifications and Boundaries

For each of the following, list
– The variable(s) of interest
– The valid and invalid classes
– The boundary value test cases.

1. FoodVan delivers groceries to customers who order food over the Net.
To decide whether to buy more more vans, FV tracks the number of
customers who call for a van. A clerk enters the number of calls into a
database each day. Based on previous experience, the database is set to
challenge (ask, “Are you sure?”) any number greater than 400 calls.

2. FoodVan schedules drivers one day in advance. To be eligible for an
assignment, a driver must have special permission or she must have
driven within 30 days of the shift she will be assigned to.

41Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Ambiguity in Specifications
• Most people have trouble with Question 2 on the previous slide. For

example, what does “within” mean? If today is May 29, what is the
longest-ago date that would qualify them to drive? What if someone
has permission to drive for their first time tomorrow morning--can
they be scheduled for a second shift tomorrow evening?

• For more on ambiguity analysis, see the discussion of spec-based
testing, later.

• Self-study exercises can work with these, but the problem is
discovering what ambiguities are troublesome to the students (and
thinking about how to prompt them). I think that I would deal with
these at two levels:
– First, prompt with questions to get the student to puzzle further through

the problem
– Second, provide answers that describe the ambiguities commonly

spotted by students.

42Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Equivalence Classes: A Broad Concept

The notion of equivalence class is much broader than numeric ranges.
Here are some examples:

– Membership in a common group
• such as employees vs. non-employees. (Note that not all

classes have shared boundaries.)
– Equivalent hardware

• such as compatible modems
– Equivalent event times

• such as before-timeout and after
– Equivalent output events

• perhaps any report will do to answer a simple the question: Will
the program print reports?

– Equivalent operating environments
• such as French & English versions of Windows 3.1

43Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Variables Suited to Equivalence Class Analysis

There are many types of variables, such as:
n input variables
n output variables
n internal variables
n hardware and system software configurations, and
n equipment states.

Any of these can be subject to equivalence class analysis.

Here are some examples:

44Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Variables Suited to Equivalence Class Analysis

§ ranges of numbers
§ character codes
§ how many times something is

done
§ (e.g. shareware limit on

number of uses of a product)
§ (e.g. how many times you can

do it before you run out of
memory)

§ how many names in a mailing
list, records in a database,
variables in a spreadsheet,
bookmarks, abbreviations
§ size of the sum of variables, or

of some other computed value
(think binary and think digits)

§ size of a number that you
enter (number of digits) or
size of a character string

§ size of a concatenated string
§ size of a path specification
§ size of a file name
§ size (in characters) of a

document
§ size of a file (note special

values such as exactly 64K,
exactly 512 bytes, etc.)

§ size of the document on the
page (compared to page
margins) (across different
page margins, page sizes)

45Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Variables Suited to Equivalence Class Analysis

§ size of a document on a page,
in terms of memory
requirements for the page. This
may be in terms of resolution x
page size, but is more complex
if we have compression.
§ equivalent output events (such

as printing documents)
§ amount of available memory (>

128 meg, > 640K, etc.)
§ visual resolution, size of

screen, number of colors
§ operating system version
§ variations within a group of

“compatible” printers, sound
cards, modems, etc.

§ equivalent event times (when
something happens)
§ timing: how long between event

A and event B (and in which
order--races)

• length of time after a timeout
(from JUST before to way after)
-- what events are important?

• speed of data entry (time
between keystrokes, menus,
etc.)

• speed of input--handling of
concurrent events

• number of devices connected /
active

46Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Variables Suited to Equivalence Class Analysis

• system resources consumed
/ available (also, handles,
stack space, etc.)

• date and time
• transitions between

algorithms (optimizations)
(different ways to compute a
function)

• most recent event, first event
• input or output intensity

(voltage)
• speed / extent of voltage

transition (e.g. from very soft
to very loud sound)

47Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Constraints / Interactions Among Variables

Rather than thinking about a single variable with a single range of
values, a variable might have different ranges, such as the day of the
month, in a date:

1-28
1-29
1-30
1-31

We analyze the range of dates by partitioning the month field for the
date into different sets:

{February}, {April, June, September, November}
{Jan, March, May, July, August, October, December}

For testing, you want to pick one of each. There might or might not be
a “boundary” on months. The boundaries on the days, are sometimes
1-28, sometimes 1-29, etc
This is nicely analyzed by Jorgensen: Software Testing--A Craftsman’s
Approach. It works well as a puzzle for students, alone or in groups.

48Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Another example of interaction

• Interaction- thinking is important when we think of an
output variable whose value is based on some input
variables. Here’s an example that gives my students
headaches on tests:
I, J, and K are integers. The program calculates K = I*J.
For this question, consider only cases in which you enter
integer values into I and J. Do an equivalence class
analysis from the point of view of the effects of I and J
(jointly) on the variable K. Identify the boundary tests that
you would run (the values you would enter into I and J) if
– I, J, K are unsigned integers
– I,J, K are signed integers

49Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Interaction example
• K can run from MinInt (smallest integer) to MaxInt.
• For any value of K, there is a set of values of I and J that will yield K

– The set is the null set for impossible values of K
– The set might include only two pairs, such as K = MaxInt, when MaxInt

is prime (7 could be a MaxInt)
• (I,J) ? {(1, MaxInt), (MaxInt, 1)}

– The set might include a huge number of pairs, such as when K is 0:
• (I,J) ? {(0,0), (1, 0), (2, 0), … (MaxInt,0), (0,1),…,(0, MaxInt,1)}

• A set of pairs of values of I and J can be thought of as an equivalence
set (they all yield the same value of K) and so we ask which values of
K are interesting (partition number 1) and then which values of I and J
would produce those K-values, and do a partitioning on the sets of
(I,J) pairs to find best representatives of those.

• As practitioners, we do this type of analysis often, but many of us
probably don’t think very formally about it.

50Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Fuzzy Boundaries

• In theory, the key to partitioning is dividing the space
into mutually exclusive ranges (subsets). Each subset is
an equivalence class. This is nice in theory, but let’s
look at printers.

• Problem:
– There are about 2000 Windows-compatible printers,

plus multiple drivers for each. We can’t test them all.
• But maybe we can form equivalence classes.

• An example from two programs (desktop
publishing and an address book) developed in
1991-92.

51Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Fuzzy Boundaries

• Primary groups of printers at that time:
– HP - Original
– HP - LJ II
– PostScript Level I
– PostScript Level II
– Epson 9-pin, etc.

• LaserJet II compatible printers, huge class (maybe 300
printers, depending on how we define it)

1. Should the class include LJII, LJII+, and LIIP, LJIID-
compatible subclasses?

2. What is the best representative of the class?

52Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Fuzzy Boundaries

• Example: graphic complexity error handling

– HP II original was the weak case.
• Example: special forms

– HP II original was strong in paper-handling. We worked with
printers that were weaker in paper-handling.

• Examples of additional queries for almost-equivalent printers

– Same margins, offsets on new printer as on HP II original?
– Same printable area?
– Same handling of hairlines? (Postscript printers differ.)

• What exercises can we do to support development
of this type of analysis?

53Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Test Matrices and Domain Testing

• Use a test matrix to show/track a series of test cases that are
essentially the same.

– For example, for most input fields, you’ll do a series of the
same tests, checking how the field handles boundaries,
unexpected characters, function keys, etc.

– As another example, for most files, you’ll run essentially the
same tests on file handling.

• The matrix is a concise way of showing the repeating tests.
– Put the objects that you’re testing on the rows.
– Show the tests on the columns.
– Check off the tests that you actually completed in the cells.

54Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Typical Uses of Test Matrices

• You can often re-use a matrix like this across products and
projects.

• You can create matrices like this for a wide range of
problems. Whenever you can specify multiple tests to be
done on one class of object, and you expect to test several
such objects, you can put the multiple tests on the matrix.

• Mark a cell green if you ran the test and the program passed
it.

• Mark the cell red if the program failed and write the bug
number of the bug report for this bug.

• Write (in the cell) the automation number or identifier or file
name if the test case has been automated.

55Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Reusable Test Matrix
Numeric (Integer) Input Field

N
o

th
in

g

L
B

 o
f

va
lu

e

U
B

 o
f

va
lu

e

L
B

 o
f

va
lu

e
-

1

U
B

 o
f

va
lu

e
+

1

0 N
eg

at
iv

e

L
B

 n
u

m
b

er
 o

f
d

ig
its

 o
r

ch
ar

s

U
B

 n
u

m
b

er
 o

f
d

ig
its

 o
r

ch
ar

s

E
m

p
ty

 f
ie

ld
 (

cl
ea

r
th

e
d

ef
au

lt
va

lu
e)

O
u

ts
id

e
o

f U
B

n

u
m

b
er

 o
f

d
ig

it
s

o
r

ch
ar

s

N
o

n
-d

ig
its

This includes only the first few columns of a matrix that I’ve
used commercially, but it gets across the idea.

56Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Homework: File Name Matrix

• Thursday, we’ll illustrate the process of creating test
matrices by brainstorming a specific one.
– File name field
– Windows 95 / 98 / NT / 2000
– Treat the path as a separate issue

• Please spend 15 minutes at home writing a list of file
name tests. Bring your notes with you on Thursday.

57Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Homework: File Name Matrix

You could do this for almost any type of variable. For
example, imagine listing all of the hardware (including
connection, power, etc.) error conditions that could
cause failure of a file save operation.

At this point, though, it is interesting to look at variables
that have values that can be treated as equivalent.
Simpler examples are:
– string fields, numeric (rational numbers), percentages
– date fields, time fields

58Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Matrix Construction Brainstorm

• Take up the assignment with a brainstorming session.
• Expect to spend 1- 1.5 hours if the students are

prepared and 2- 3 hours if they are not.
• Brainstorming Rules:

– Don’t criticize others’ contributions
– Jokes are OK, and are often valuable
– Goal is to get lots of ideas, filter later.
– Recorder and facilitator keep their opinions to

themselves.

59Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Matrix Construction Brainstorm

• Facilitating and Recording Rules:
– Exercise patience: Goal is to get lots of ideas.
– Encourage non-speakers to speak.
– Use multiple colors when recording
– Echo the speaker’s words.
– Record the speaker’s words
– The rule of three 10’s. Silence is OK.
– Switch levels of analysis.
– Some references:

• S. Kaner, Lind, Toldi, Fisk & Berger, Facilitator’s Guide to
Participatory Decision-Making

• Freedman & Weinberg, Handbook of Walkthroughs, Inspections &
Technical Reviews

• Doyle & Straus, How to Make Meetings Work.

60Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Useful Readings
– The Impossibility of Complete Testing at

www.kaner.com/imposs.htm

– Clarke, Hassell, & Richardson: A Close Look at Domain Testing,
IEEE Transactions on Software Engineering, Vol. SE-8, No. 4,
July 1982. A clear presentation of the formal assumptions.

– Ostrand & Balcer: The category-partition method for specifying
and generating functional tests. Communications of the ACM, Vol.
31 (6), pages 676-686, June 1988. An excellent description of
the method, laying it out for the reader step by step.

Analysis of Function Testing

(Let’s work on this one together)

62Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing

• Tag line: “Black box unit testing.”
• Fundamental question or goal

– Test each function thoroughly, one at a time.
• Paradigmatic case(s)

– Spreadsheet, test each item in isolation.
– Database, test each report in isolation

• Strengths
– Thorough analysis of each item tested

• Blind spots
– Misses interactions, misses exploration of the benefits offered by

the program.

63Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Tasks

64Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Tasks

65Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Tasks

66Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Skills

67Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Skills

68Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Skills

69Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Exercises

70Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Exercises

71Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Exercises

72Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Function Testing: Exercises

73Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Some Function Testing Tasks
• Identify the program’s features / commands

– From specifications or the draft user manual
– From walking through the user interface
– From trying commands at the command line
– From searching the program or resource files for

command names
• Identify variables used by the functions and test their

boundaries.
• Identify environmental variables that may constrain the

function under test.
• Use each function in a mainstream way (positive testing)

and push it in as many ways as possible, as hard as
possible.

Risk-Based Testing and
Risk-Based Test Management

75Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing

• Karl Popper, in his famous essay Conjectures and
Refutations, lays out the proposition that a scientific
theory gains credibility by being subjected to (and
passing) harsh tests that are intended to refute the
theory.

• We can gain confidence in a program by testing it
harshly (if it passes the tests).

• Subjecting a program to easy tests doesn’t tell us
much about what will happen to the program in the
field.

• In risk-based testing, we create harsh tests for
vulnerable areas of the program.

76Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing

• Two key dimensions:
– Find errors (risk-based approach to the technical tasks

of testing)
– Manage the process of finding errors (risk-based test

management)

• Let’s start with risk- based testing and proceed later to
risk- based test management.

77Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing: Definitions

Hazard:
A dangerous condition (something that could trigger an
accident)

Risk:
Possibility of suffering loss or harm (probability of an
accident caused by a given hazard).

Accident:
A hazard is encountered, resulting in loss or harm.

78Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

Quality Categories:
– Capability
– Reliability
– Usability
– Performance
– Installability
– Compatibility – Efficiency
– Supportability – Localizability
– Testability – Portability – Maintainability

• Derived from James Bach’s Satisfice Model

Each quality category is a
risk category, as in:
“the risk of unreliability.”

79Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

• New things: newer features may fail.

• New technology: new concepts lead to new mistakes.

• Learning Curve: mistakes due to ignorance.

• Changed things: changes may break old code.

• Late change: rushed decisions, rushed or demoralized
staff lead to mistakes.

• Rushed work: some tasks or projects are chronically
underfunded and all aspects of work quality suffer.

• Tired programmers: long overtime over several weeks
or months yields inefficiencies and errors

• Adapted from James Bach’s lecture notes

80Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

• Other staff issues: alcoholic, mother died, two
programmers who won’t talk to each other (neither will
their code)…

• Just slipping it in: pet feature not on plan may interact
badly with other code.

• N.I.H.: external components can cause problems.

• N.I.B.: (not in budget) Unbudgeted tasks may be done
shoddily.

• Ambiguity: ambiguous descriptions (in specs or other
docs) can lead to incorrect or conflicting
implementations.

• Adapted from James Bach’s lecture notes

81Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

• Conflicting requirements: ambiguity often hides conflict,
result is loss of value for some person.

• Unknown requirements: requirements surface throughout
development. Failure to meet a legitimate requirement is a
failure of quality for that stakeholder.

• Evolving requirements: people realize what they want as
the product develops. Adhering to a start-of-the-project
requirements list may meet contract but fail product. (check
out http//www.agilealliance.org/)

• Complexity: complex code may be buggy.

• Bugginess: features with many known bugs may also have
many unknown bugs.

• Adapted from James Bach’s lecture notes

82Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

• Dependencies: failures may trigger other failures.

• Untestability: risk of slow, inefficient testing.

• Little unit testing: programmers find and fix most of their
own bugs. Shortcutting here is a risk.

• Little system testing so far: untested software may fail.

• Previous reliance on narrow testing strategies: (e.g.
regression, function tests), can yield a backlog of errors
surviving across versions.

• Weak testing tools: if tools don’t exist to help identify /
isolate a class of error (e.g. wild pointers), the error is more
likely to survive to testing and beyond.

• Adapted from James Bach’s lecture notes

83Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risks: Where to look for errors

• Unfixability: risk of not being able to fix a bug.

• Language-typical errors: such as wild pointers in C. See

– Bruce Webster, Pitfalls of Object-Oriented Development

– Michael Daconta et al. Java Pitfalls

• Criticality: severity of failure of very important features.

• Popularity: likelihood or consequence if much used features
fail.

• Market: severity of failure of key differentiating features.

• Bad publicity: a bug may appear in PC Week.

• Liability: being sued.

• Adapted from James Bach’s lecture notes

84Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Patterns as a Source of Risk

• Testing Computer Software lays out a set of 480 common defects. You can
use these or develop your own list.

– Find a defect in the list
– Ask whether the software under test could have this defect
– If it is theoretically possible that the program could have

the defect, ask how you could find the bug if it was there.
– Ask how plausible it is that this bug could be in the

program and how serious the failure would be if it was
there.

– If appropriate, design a test or series of tests for bugs of
this type.

85Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Build Your Own Model of Bug PatternsBuild Your Own Model of Bug Patterns

Too many people start and end with the TCS bug list. It is outdated.
It was outdated the day it was published. And it doesn’t cover the
issues in your system. Building a bug list is an ongoing process that
constantly pays for itself. Here’s an example from Hung Nguyen:
– This problem came up in a client/server system. The system sends the

client a list of names, to allow verification that a name the client enters
is not new.

– Client 1 and 2 both want to enter a name and client 1 and 2 both use the
same new name. Both instances of the name are new relative to their
local compare list and therefore, they are accepted, and we now have
two instances of the same name.

– As we see these, we develop a library of issues. The discovery method is
exploratory, requires sophistication with the underlying technology.

– Capture winning themes for testing in charts or in scripts-on-their-way
to being automated.

86Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Building Bug Patterns

• There are plenty of sources to check for common
failures in the common platforms
– www.bugnet.com
– www.cnet.com
– links from www.winfiles.com
– various mailing lists

87Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing

• Tasks
– Identify risk factors (hazards: ways in which the

program could go wrong)
– For each risk factor, create tests that have power against

it.
– Assess coverage of the testing effort program, given a

set of risk-based tests. Find holes in the testing effort.
– Build lists of bug histories, configuration problems,

tech support requests and obvious customer confusions.
– Evaluate a series of tests to determine what risk they

are testing for and whether more powerful variants can
be created.

88Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing

• Skills
–
–
–
–

89Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing

• Exercises
– Given a list of ways that the program could fail, for

each case:
• Describe two ways to test for that possible failure
• Explain how to make your tests more powerful against

that type of possible failure
• Explain why your test is powerful against that hazard.

– Given a list of test cases
• Identify a hazard that the test case might have power

against
• Explain why this test is powerful against that hazard.

90Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing Exercises
• Take a function in the software under test. Make a

hypothetical change to the product. Do a risk analysis:
– For N (10 to 30) minutes, the students privately list risk factors and

associated tests (ask for 2 tests per factor)
– Break
– Class brainstorm onto flipcharts--list risk factors.
– Pairs project--fill out the charts:

• Students work in pairs to complete their chart
• Each chart has one risk factor as a title
• List tests derived from risk (factor) on body of page
• When a pair is done with its page, they move around the

room, adding notes to other pairs’ pages.

– Paired testing, one chart per pair, test SUT per that risk
factor.

91Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Testing Exercises

• Collect or create some test cases for the software under test.
Make a variety of tests:
– Mainstream tests that use the program in “safe” ways
– Boundary tests
– Scenario tests
– Wandering walks through the program
– Etc.
– If possible, use tests the students have suggested previously.

• For each test, ask:
– How will this test find a defect?
– What kind of defect did the test author probably have in mind?
– What power does this test have against that kind of defect? Is

there a more powerful test? A more powerful suite of tests?

92Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Test Management

• Project risk management involves
– Identification of the different risks to the project (issues that might

cause the project to fail or to fall behind schedule or to cost too
much or to dissatisfy customers or other stakeholders)

– Analysis of the potential costs associated with each risk
– Development of plans and actions to reduce the likelihood of the

risk or the magnitude of the harm
– Continuous assessment or monitoring of the risks (or the actions

taken to manage them)
• Useful material available free at http://seir.sei.cmu.edu
• http://www.coyotevalley.com (Brian Lawrence)
• Good paper by Stale Amland, Risk Based Testing and Metrics,

16th International Conference on Testing Computer Software,
1999.

93Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Driven Testing Cycle

Analyze &
Prioritize
Hazards

Perform
Appropriate

Tests

Report &
Resolve

ProblemsAnalyze
Failures: Reassess

Risks

pre-shippost-ship

Improve
Risk Analysis

Process

95Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Test Management

• Tasks
– List all areas of the program that could require testing
– On a scale of 1-5, assign a probability-of-failure estimate to

each
– On a scale of 1-5, assign a severity-of-failure estimate to each
– For each area, identify the specific ways that the program might

fail and assign probability-of-failure and severity-of-failure
estimates for those

– Prioritize based on estimated risk
– Develop a stop-loss strategy for testing untested or lightly-

tested areas, to check whether there is easy-to-find evidence
that the areas estimated as low risk are not actually low risk.

96Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Risk-Based Test Management

• Skills
–
–
–

• Exercises
–
–

Specification-Driven Testing

98Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specification-Driven Testing

• Tag line:
– “Verify every claim.”

• Fundamental question or goal
– Check the product’s conformance with every statement

in every spec, requirements document, etc.
• Paradigmatic case(s)

– Traceability matrix, tracks test cases associated with
each specification item.

– User documentation testing

99Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specification-Driven Testing

• Strengths
– Critical defense against warranty claims, fraud charges, loss

of credibility with customers.
– Effective for managing scope / expectations of regulatory-

driven testing
– Reduces support costs / customer complaints by ensuring

that no false or misleading representations are made to
customers.

• Blind spots
– Any issues not in the specs or treated badly in the specs

/documentation.

100Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specification

• Tasks
– review specifications for

• Ambiguity
• Adequacy (it covers the issues)
• Correctness (it describes the program)
• Content (not a source of design errors)
• Testability support

– Create traceability matrices
– Document management (spec versions, file comparison

utilities for comparing two spec versions, etc.)
– Participate in review meetings

101Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specification

• Skills
– Understand the level of generality called for when testing a

spec item. For example, imagine a field X:
• We could test a single use of X
• Or we could partition possible values of X and test

boundary values
• Or we could test X in various scenarios
• Which is the right one?

– Ambiguity analysis
• Richard Bender teaches this well. If you can’t take his

course, you can find notes based on his work in
Rodney Wilson’s Software RX: Secrets of
Engineering Quality Software

102Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Specification

• Skills
– Ambiguity analysis

• Another book provides an excellent introduction to the
ways in which statements can be ambiguous and
provides lots of sample exercises: Cecile Cyrul
Spector, Saying One Thing, Meaning Another :
Activities for Clarifying Ambiguous Language

103Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Example: Requirements Questions

• Important to trace from requirements to implications
• Exercise

– Give a list of questions
• Examples are the test documentation requirements

questions (next slides) and the automation
maintainability questions at
(www.kaner.com/pdfs/shelfwar.pdf)

– For each question
• Ask the students to name at least two decisions that

they would make on the basis of the answer to the
question

– Make this a small group exercise, splitting up the questions,
groups fill flipcharts, then bring back to full class.

104Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Test Docs Requirements Questions

• Is test documentation a product or tool?

• Is software quality driven by legal issues or by market forces?

• How quickly is the design changing?

• How quickly does the specification change to reflect design
change?

• Is testing approach oriented toward proving conformance to
specs or nonconformance with customer expectations?

• Does your testing style rely more on already-defined tests or
on exploration?

• Should test docs focus on what to test (objectives) or on how
to test for it (procedures)?

• Should the docs ever control the testing project?

105Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Test Docs Requirements Questions

• If the docs control parts of the testing project, should that control
come early or late in the project?

• Who are the primary readers of these test documents and how
important are they?

• How much traceability do you need? What docs are you tracing
back to and who controls them?

• To what extent should test docs support tracking and reporting of
project status and testing progress?

• How well should docs support delegation of work to new testers?

• What are your assumptions about the skills and knowledge of new
testers?

• Is test doc set a process model, a product model, or a defect
finder?

106Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Test Docs Requirements Questions

• A test suite should provide prevention, detection, and prediction.
Which is the most important for this project?

• How maintainable are the test docs (and their test cases)? And,
how well do they ensure that test changes will follow code
changes?

• Will the test docs help us identify (and revise/restructure in face
of) a permanent shift in the risk profile of the program?

• Are (should) docs (be) automatically created as a byproduct of the
test automation code?

107Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Reviewing a Specification for Completeness

• Reading a spec linearly is not a particularly effective way to read
the document. It’s too easy to overlook key missing issues.

• We don’t have time to walk through this method in this class, but
the general approach that I use is based on James Bach’s
“Satisfice Heuristic Test Strategy Model” at
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf.
– You can assume (not always correctly, but usually) that every

sentence in the spec is meant to convey information.
– The information will probably be about

• the project and how it is structured, funded or timed, or
• about the product (what it is and how it works) or
• about the quality criteria that you should evaluate the

product against.

108Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Reviewing a Specification for Completeness

• Spec Review using the Satisfice Model, continued
– The Satisfice Model lists several examples of project factors,

product elements and quality criteria.
– For a given sentence in the spec, ask whether it is telling you

project, product, or quality-related information. Then ask whether
you are getting the full story. As you do the review, you’ll discover
that project factors are missing (such as deadline dates, location of
key files, etc.) or that you don’t understand / recognize certain
product elements, or that you don’t know how to tell whether the
program will satisfy a given quality criterion.

– Write down these issues. These are primary material for asking the
programmer or product manager about the spec.

Combination Testing

These notes are reminders,
see demonstration in class.

110Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• Imagine a program with 3 variables, V1 has 3 possible
values, V2 has 2 possible values and V3 has 3 possible
values.

• If V1 and V2 and V3 are independent, the number of possible
combinations is 12 (3 x 2 x 2)

• Building a simple combination table:
– Label the columns with the variable names, listing variables in

descending order (of number of possible values)
– Each column (before the last) will have repetition. Suppose that

A, B, and C are in column K of N columns. To determine how
many times (rows in which) to repeat A before creating a row
for B, multiply the number of variable values in columns K+1,
K+2, . . ., N.

111Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• Building an all- pairs combination table:
– Label the columns with the variable names, listing variables in

descending order (of number of possible values)
– If the variable in column 1 has V1 possible values and the

variable in column 2 has V2 possible values, then there will be
at least V1 x V2 rows (draw the table this way but leave a blank
row or two between repetition groups in column 1).

– Fill in the table, one column at a time. The first column repeats
each of its elements V2 times, skips a line, and then starts the
repetition of the next element. For example, if variable 1’s
possible values are A, B, C and V2 is 2, then column 1 would
contain A, A, blank row, B, B, blank row, C, C, blank row.

112Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• Building an all- pairs combination table:
– In the second column, list all the values of the variable, skip the

line, list the values, etc. For example, if variable 2’s possible
values are X,Y, then the table looks like this so far

YC

XC

YB

XB

YA

XA

113Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• Building an all- pairs combination table:
– Each section of the third column (think of AA as

defining a section, BB as defining another, etc.) will
have to contain every value of variable 3. Order the
values such that the variables also make all pairs
with variable 2.

– Suppose variable 2 can be 1,0
– The third section can be filled in either way, and you

might highlight it so that you can reverse it later. The
decision (say 1,0) is arbitrary.

1

0

0

1

YC

XC

YB

XB

YA

XA

114Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• The 4th column went in easily (note that we
started by making sure we hit all pairs of
values of column 4 and column 2, then all
pairs of column 4 and column 3.

• Watch this first attempt on column 5. We
achieve all pairs of GH with columns 1, 2, and
3, but miss it for column 4.

• The most recent arbitrary choice was HG in
the 2nd section. (Once that was determined,
we picked HG for the third in order to pair H
with a 1 in the third column.)

• So we will erase the last choice and try again:

G

H

G

H

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

115Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• We flipped the last arbitrary choice (column 5,
section 2, to GH from HG) and erased section
3. We then fill in section 3 by checking for
missing pairs. GH, GH gives us two XG, XG
pairs, so we flip to HP for the third section and
have a column 2 X with a column 5 H and a
column 2 Y with a column 5 G as needed to
obtain all pairs.

G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

116Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• But when we add the next column, we see that we just can’t
achieve all pairs with 6 values. The first one works up to column
4 but then fails to get pair EJ or FI. The next fails on GJ, HI

I

J

I

J

J

I

G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

I

J

J

I

J

I

G

H

H

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

117Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• When all else fails, add rows. We need one
for GJ and one for HI, so add two rows. In
general, we would need as many rows as
the last column has values.

• The other values in the two rows are
arbitrary, leave them blank and fill them in
as needed when you add new columns. At
the very end, fill the remaining blank ones
with arbitrary values I

J

I

J

I

J

J

I

G

H

H

H

G

G

H

G

E

F

E

F

F

E

0

1

1

0

0

1

YC

XC

YB

XB

YA

XA

118Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Combination Testing

• If a variable is continuous but maps to a number line, partition
and use boundaries as the distinct values under test. If all
variables are continuous, we end up with all pairs of all
boundary tests of all variables. We don’t achieve all triples, all
quadruples, etc.

• If some combinations are of independent interest, add them to
the list of n-tuples to test.
– With the six columns of the example, we reduced 96 tests to 8.

Give a few back (make it 12 or 15 tests) and you still get
enormous reduction.

– Examples of “independent interest” are known (from tech
support) high risk cases, cases that jointly stress memory,
configuration combinations (Var 1 is operating systems, Var 2
is printers, etc.) that are prevalent in the market, etc.

119Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Many Additional Key Testing Tasks

Software architecture (just try doing
a big test automation without doing
good architecture…) (then try again)

Packaging info for tech support

Training staffPredicting errors

ProgrammingTroubleshooting

Systematic explorationUsability testing

EditingBug advocacy

Regression automationStatus reporting

Facilitating and recording meetings
(such as technical reviews)

Designing tests that make failures
obvious

Estimating tasksKeeping lab notes

Creating modelsQuestioning

Here are just a few more to stimulate your thinking:

120Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Many Additional Key Skills or Attributes

• Here are some examples of skills or attributes that I look for
when recruiting testers (obviously, I can’t have all of them in any
one person)

• We can improve some of these.
• In other cases, we might not know how to train for improvement

but we might discover that a specific tester has other strengths
(rather than this one)

121Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Some characteristics of great testers

Effective with
programmers

Effective with test
managers

Effective with senior
testers

Effective with junior
testers

Editor (criticize / improve
printed materials)

Diplomatic

Not very defensive (able
to take criticism)

DecisiveDecision maker (good
judgment)

Customer focused Curious (inquisitive) Credible

CreativeCourageousCopes with difficult
circumstances

Commitment to qualityCommitment to a task (do
what it takes)

Commitment (keep
promises, stick around)

AuthorAuditorAssertive

Artistic (knowledgeably
critique esthetic issues)

Arrogance (usually, less is
better)

Architect

Analytical problem solverAttentive to detailAlert

122Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Some characteristics of great testers

ProgrammerPragmaticPolicy and procedure
developer

Politically perceptivePersuasiveOrganizer and planner

Multi-taskingMentorMeeting manager

Long term thinkerLeadershipInvestigative reader

InterviewerInterpersonally
perceptive

Integrity (honest; keeps
commitments)

Humility Glue (promotes group
cohesiveness)

Goal setting

FlexibleFinds bugs (intuitive
tester)

Financially aware and
sophisticated

Fast abstraction skillsEnergizingEmpowering

Empirical frame of
reference

EmpatheticEffective with non-testing
managers

123Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Some characteristics of great testers

CatalystZealot (Rarely desirable in
large quantities.)

Written communication Warm (makes the human
environment more
pleasant)

Versatile (many abilities)

UI designTolerant of different
development approaches

Tolerant of ambiguity

Team builder Substance abuser (not)Subject matter expert

Strength of characterSpoken communicationSense of humor

Scholarly (collects
information, can back up
or evaluate arguments)

PunctualProtective (stands behind
his staff)

124Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Closing Notes

• Given a group of motivated, bright people who have
appropriate background knowledge and belong to your
testing group or your testing class:
– Only some testers will learn well in lectures
– Only some testers will learn well by being thrown into a

project and being told to figure it out
– Only some testers will learn well from books
– Only some testers will learn well or work well on their own

and some will only learn well or work well on their own
• Build training strategies to achieve the learning you want

to convey, accommodate multiple learning styles, and
push for mastery, not memory.

Appendix: Sample Exam Questions

From Florida Tech Testing Class
Spring 2001

126Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Sample Exam Questions

• The following are examples of the review questions that
my first- semester testing students work from. They get
the questions during the term and work together to
create answers.

• The tests and exams are closed- book, and present
students with a subset of these questions.

• I teach the course using a reference product. Last year
it was TI’s interactive calculator. We work many of our
examples and tests around that one example product.

127Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Reference Information

128Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Definitions

1. Domain testing (as defined
by Clarke et al.)

2. Equivalence class
3. Boundary condition
4. Best representative
5. Fault vs. failure vs. defect
6. Function testing
7. Regression testing
8. Specification-based testing
9. Finite state machine
10. Stochastic testing
11. Oracle
12. Risk factors (as described by

Amland)

13. Exploratory testing
14. Dumb monkey
15. State
16. Line (or statement) coverage
17. Boundary chart
18. Software quality
19. Black box testing
20. Glass box / white box testing
21. Risk-based testing
22. All-pairs combination testing
23. Combination testing

129Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Short Answers

1. Describe the characteristics of a good scenario test.
2. Describe two difficulties and two advantages of state-machine-

model based testing.
3. Give two examples of defects you are likely to discover and five

examples of defects that you are unlikely to discover if you
focus your testing on line and branch coverage.

4. Give three different definitions of “software error.” Which do you
prefer? Why?

5. Ostrand & Balcer described the category-partition method for
designing tests. Their first three steps are:

(a) Analyze
(b) Partition, and
(c) Determine constraints

Describe and explain these steps.

130Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

1. Imagine testing a date field. The field is of the form
MM/DD/YYYY (two digit month, two digit day, 4 digit
year). Do an equivalence class analysis and identify the
boundary tests that you would run in order to test the
field.

2 I, J, and K are integers. The program calculates K = I*J.
For this question, consider only cases in which you enter
integer values into I and J. Do an equivalence class
analysis from the point of view of the effects of I and J
(jointly) on the variable K. Identify the boundary tests that
you would run (the values you would enter into I and J) if
– I, J, K are unsigned integers
– I,J, K are signed integers

131Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

3. (The following statement about TI is not true, but pretend it is
for exam purposes.) TI has just announced that they will
include database support in Release 2.0 of the Interactive
product, which they will ship in November, 2001. They
announce that the first application that uses the database will
be a feature that allows teachers to store the students’ grades,
calculate percentages, final grade percentages, class
averages, etc., and print associated reports.
– List and briefly explain 5 risk factors that you would expect to

find associated with the database part of the 2.0 project. (Refer to
Amland’s paper for discussion of risk factors.)

– For each risk factor, predict 2 defects that could arise in the
database part of the 2.0 project. By “predict”, I mean name and
describe the potential defect, and explain why that particular risk
factor makes this defect more likely.

132Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

4. Ostrand & Balcer described the category- partition
method for designing tests. Their first three steps are:

1. Analyze
2. Partition, and
3. Determine constraints

Apply their method as follows:

I, J, and K are integers. For each function, F, K =
F(I,J). The program is a simple calculator and handles
the usual, basic arithmetic functions.

Use Ostrand & Balcer’s category-partition method to
design a series of tests for four of the basic arithmetic
functions.

133Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

5. The Spring and Fall changes between Standard and
Daylight Savings time creates an interesting problem
for telephone bills. Create a table that shows risks,
equivalence classes, boundary cases, and expected
results for a long distance telephone service that bills
calls at a flat rate of $0.05 per minute. Assume that the
chargeable time of a call begins when the called party
answers, and ends when the calling party disconnects.

134Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

6. Describe a traceability matrix.
– How would you build a traceability matrix for the TI

Interactive product?
– What is the traceability matrix used for?
– What are the advantages and risks associated with

driving your testing using a traceability matrix?
– Give examples of advantages and risks that you would

expect to deal with if you used a traceability matrix for
the TI Interactive product. Answer this in terms of two
of the main features of the TI Interactive product. You
can choose which two features.

135Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

7. Define a scenario test and describe the
characteristics of a good scenario test. Imagine
developing a set of scenario tests for the TI
interactive product, that involved matrix handling.
– What research would you do in order to develop a

series of scenario tests?
– Describe two scenario tests that you would use and
– Explain why each is a good example of a scenario

test.

136Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

8. Define a scenario test and describe the
characteristics of a good scenario test. Imagine
developing a set of scenario tests for the TI
interactive product, that were focused on
configuration-related issues (compatibility of
hardware/software with the product).
– What research would you do in order to develop a

series of scenario tests?
– Describe two scenario tests that you would use and
– Explain why each is a good example of a scenario

test.

137Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

9. Define a scenario test and describe the
characteristics of a good scenario test. Imagine
developing a set of scenario tests for a C compiler.
What research would you do in order to develop a
series of scenario tests? (NOTE: I am not asking
for tests of the user interface to the compiler. I’m
asking for tests of what we typically think of as
compiler functionality.) Describe two scenario tests
that you would use and explain why each is a
good test.

138Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

10.What is regression testing? What are some
benefits and some risks associated with
regression testing? Under what circumstances
would you use regression tests?

139Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

11. Consider the tools in TI interactive. For each tool, identify
the two testing strategies that you would consider most
useful, and explain why. (Across the different tools, please
describe a variety of different testing strategies.)

140Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

12. Suppose that you had access to the TI source code
and the time / opportunity to revise it. Suppose that you
decided to do a diagnostics-based high volume
automated test strategy to test TI Interactive’s
treatment of lists.

– What diagnostics would you add to the code, and
why?

– Describe 3 potential defects, defects that you could
reasonably imagine would be in the list handling
software, that would be easier to find using a
diagnostics-based strategy than by using a lower-
volume strategy such as exploratory testing, spec-
based testing, or domain testing.

141Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

13. You are using a high- volume random testing strategy
for the TI Interactive calculator and will evaluate results
by using an oracle.
– For the functional area, “Generates a table of values for

defined functions”, how would you create an oracle (or
group of oracles)? What would the oracle(s) do?

– For the functional area, “Graphs functions and plots
statistical data,” how would you create an oracle (or
group of oracles)? What would the oracle(s) do?

– Which oracle would be more challenging to create or
use, and why?

142Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

14. Consider testing the TI Interactive function, “Transfers
data to or from a connected calculator.”
– How would you develop a list of risks for this capability?

(If you are talking to people, who would you ask and what
would you ask them?) (If you are consulting books or
records or databases, what are you consulting and what
information are you looking for in it?)

– Why is this a good approach for building a list of risks?
– List 10 risks associated with this function.
– For each risk, briefly (very briefly) describe a test that

could determine whether there was an actual defect.

143Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

15. Why is it important to design maintainability into
automated regression tests? Describe some design (of
the test code) choices that will usually make automated
regression tests more maintainable.

144Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

16. Suppose that you find a reproducible failure that
doesn’t look very serious.

– Describe three tactics for testing whether the defect
is more serious than it first appeared.

– As a particular example, suppose that the display
got a little corrupted (stray dots on the screen, an
unexpected font change, that kind of stuff) in the TI
program when you entered data into a matrix.
Describe some follow-up tests that you would run.

145Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

17. The oracle problem is the problem of finding a method
that lets you determine whether a program passed or
failed a test.
Suppose that you were doing automated testing of the TI
Interactive function, “Graphs functions and plots
statistical data.”
Describe three different oracles that you could use or
create to determine whether this feature was working.
For each of these oracles,
– identify a bug that would be easy to detect using the oracle

and
– identify another bug that your oracle would be more likely

to miss.

146Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

18. Imagine that you were testing the feature, “Enters and/or
edits matrices.”
Describe four examples of each of the following types of
attacks that you could make on this feature, and for each
one, explain why your example is a good attack of that kind.
– Input constraint attacks
– Output constraint attacks
– Storage constraint attacks
– Computation constraint attacks.

(Notes for you while you study. Refer to Jorgensen /
Whittaker’s paper on how to break software. Don’t give me
two examples of what is essentially the same attack. In the
exam, I will not ask for all 16 examples, but I might ask for 4
examples of one type or two examples of two types, etc.)

147Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

19 Imagine that you were testing the feature, “Stat
calculation tool.”
– Describe a scenario test that you would use to test this

feature.
– Explain why this is a particularly good scenario test.

148Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

20 Imagine that you were testing the feature, “Stat
calculation tool.”
– Explain how you would develop a set of soap operas

to test this feature.
– Describe one test that might qualify as a soap opera.
– Explain why this is a good soap opera test.

149Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

21. Imagine that you were testing the feature, “Graphs functions
and plots statistical data.”
Describe four examples of each of the following types of
attacks that you could make on this feature, and for each
one, explain why your example is a good attack of that kind.
– Input constraint attacks
– Output constraint attacks
– Storage constraint attacks
– Computation constraint attacks.

(Notes for you while you study. Refer to Jorgensen /
Whittaker’s paper on how to break software. Don’t give me
two examples of what is essentially the same attack. In the
exam, I will not ask for all 16 examples, but I might ask for 4
examples of one type or two examples of two types, etc.)

150Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

22. Imagine that you were testing the feature, “Transfers data to
or from a connected calculator.”
Describe four examples of each of the following types of
attacks that you could make on this feature, and for each
one, explain why your example is a good attack of that kind.
– Input constraint attacks
– Output constraint attacks
– Storage constraint attacks
– Computation constraint attacks.

(Notes for you while you study. Refer to Jorgensen /
Whittaker’s paper on how to break software. Don’t give me
two examples of what is essentially the same attack. In the
exam, I will not ask for all 16 examples, but I might ask for 4
examples of one type or two examples of two types, etc.)

151Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

23 We are going to do some configuration testing on the TI
Interactive product. We want to test it on
– Windows 95, 98, and 2000 (the latest service pack level of each)
– Printing to an HP inkjet, a LexMark inkjet, and a Xerox laser

printer
– Connected to the web with a dial-up modem (28k), a DSL

modem, and a cable modem
– With a 640x480 display and a 1024x768 display

• How many combinations are there of these variables?
• Explain what an all-pairs combinations table is
• Create an all-pairs combinations table
• Explain why you think this table is correct.

152Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

24. Imagine that you are an external test lab, and the TI
company comes to you with TI interactive. They want
you to test the product. How will you decide what test
documentation to give them? (Suppose that when you
ask them what test documentation they want, they say
that they want something appropriate but they are
relying on your expertise.) What questions would you
ask (up to 7 questions) and how would the answers to
those questions guide you in deciding what to do?

153Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Long Answers

25 The following group of slides are from Windows Paint 95.
Please don’t spend your time replicating the steps or the bug.
(You’re welcome to do so if you are curious, but I will design my
marking scheme to not give extra credit for that extra work.)
Treat the steps that follow as fully reproducible. If you go back to
ANY step, you can reproduce it.
For those of you who aren’t familiar with paint programs, the
essential idea is that you lay down dots. For example, when you
draw a circle, the result is a set of dots, not an object. If you were
using a draw program, you could draw the circle and then later
select the circle, move it, cut it, etc. In a paint program, you
cannot select the circle once you’ve drawn it. You can select an
area that includes the dots that make up the circle, but that area
is simply a bitmap and none of the dots in it have any
relationship to any of the others.

154Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued
Here’s the opening
screen. The
background is
white. The first
thing that we’ll do is
select the Paint
Can
We’ll use this to lay
down a layer of
grey paint on top of
the background.
Then, when we cut
or move an area,
we’ll see the white
background behind
what was moved.

155Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Here’s the screen
again, but the
background has been
painted gray.

The star in the upper
left corner is a
freehand selection tool.
After you click on it,
you can trace around
any part of the picture.
The tracing selects that
part of the picture.
Then you can cut it,
copy it, move it, etc.

156Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued
This shows an area
selected with the freehand
selection tool. The bottom
right corner is selected.
(The dashed line surrounds
the selected area.)
NOTE: The actual area
selected might not be
perfectly rectangular. The
freehand tool shows a
rectangle that is just big
enough to enclose the
selected area. For our
purposes, this is not a
bug. This is a design
decision by Microsoft.

157Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Next, we’ll draw a circle
(so you can see what’s
selected), then use the
freehand select tool to
select the area around
it.

When you use the
freehand selection tool,
you select an area by
moving the mouse. The
real area selected is not
a perfect rectangle.
The rectangle just
shows us where the
selected area is.

158Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Now we cut the
selection. (To do this,
press Ctrl- X.)

The jagged border
shows exactly the area
that was selected.

159Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Next, exit the program,
restart it, color the
background grey, draw
the circle, select the area
around the circle and
drag it up and to the right.
This works.

160Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

This time, we’ll try the
Rectangular Selection tool.
With this one, if you move the
mouse to select an area, the
area that is actually selected is
the smallest rectangle that
encloses the path that your
mouse drew.
So, exit the program, start it up,
color the background, draw a
circle, click the Rectangular
Selection tool, select the area
around the circle and move it up.
It works.

161Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Well, this was just too boring, because everything is
working. When you don’t find a bug while testing a
feature, one tactic is to keep testing the feature but
combine it with some other test.
In this case, we’ll try Zooming the image. When you
zoom 200%, the picture itself doesn’t change size,
but the display doubles in size. Every dot is
displayed as twice as tall and twice as wide.
So we exit the program, start it up, color the
background grey, draw the circle, and then . . .

162Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Bring up the
Custom Zoom
dialog, and select
200% zoom, click
OK.

163Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

It worked. The paint area
is displayed twice as tall
and twice as wide. We’re
looking at the bottom
right corner. To see the
rest, we could move the
scroll bars up or left.

164Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

So, we select part of the
circle using the freehand
selection tool. We’ll try
the move and cut
features.

Cutting fails.

When we try to cut the
selection, the dashed
line disappears, but
nothing goes away.

165Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Exit the program, start
again, color the
background, draw the
circle, zoom to 200%,
select the area.

Drag the area up and to
the right. It works.

166Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued
Exit the program, start again, color the background, draw the
circle, zoom to 200%, select the area.
Now try this. Select the area and move it a bit. THEN press
Ctrl-C to cut. This time, cutting works.

167Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Exit the program, start
again, color the
background, draw the
circle, zoom to 200%,
and this time, grow the
window so you can see
the whole drawing area.

168Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Now, select the circle.
That seems to work.

169Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

But when you press Ctrl-
X to cut the circle, the
program cuts the wrong
area.

170Teaching Testing Copyright © 2001 Cem Kaner. All rights reserved.

Bug Question Continued

Now, write a bug report. I want two sections:
– The Problem summary (or title)
– The Problem Description (how to reproduce the

problem)
Additionally, please describe three follow- up tests that you
would run with this bug

