

MASTER THESIS IN
COMPUTER SCIENCE

30 HP, ADVANCED LEVEL

School of Innovation, Design and Engineering

Principles of a Central
Database for System

Interfaces during Train
Development

Author: Peter Lännhult
Email: peterlannhult@gmail.com
Date: 14 April 2011
Carried out at: Bombardier Transportation AB
Advisor at Bombardier Transportation AB: Filip Sebek
Advisor at MDH: Dag Nyström
Examinator: Mats Björkman, Mälardalen University

ii

ABSTRACT

This thesis has developed a database solution for storage of interface data which are to

different systems in a train, the interface data is used in the design of data communication

between different systems in the vehicles. The database solution has focused on following

problems: revision control of project related data, consistency of interface data between

documentation and database, the possibility to roll back the database to an earlier revision,

and the possibility to extract delta documents between two revisions in the database. For

demonstration of the database solution, a user interface program has been created which

communicates with the database.

Revision control of the database has been solved by dividing the project related data into

three sections: one approved, one modified, and one revised section. The approved section

always contains the latest approved data and thereby the ability to read data even though it is

subject for a revision at the moment. The modified section contains data that are currently

being changed. Obsolete data are stored in the revised section.

To aviod inconsistency of interface data which are stored in both Word documents and

in the database, the data is extracted from the database and inserted into tables in the Word

documents. The Word documents contain bookmarks where the tables shall be inserted.

Algorithms for rolling back the database to an earlier revision, and to extract delta

documents were created. These algorithms are not implemented in the user interface

program.

As a result from this thesis, the interface data is revision controlled and no data is

removed from the database during the change process; the data is moved between sections

with different flags and revision numbers. Only if the database is rolled back to an earlier

revision, data is removed. The functionality to transfer data from the database into tables in

Word documents is verified.

iii

SAMMANFATTNING

Detta examensarbete har tagit fram en databaslösning för lagring av gränssnittsdata för

olika systemenheter i ett tåg, gränssnittsdatat används i konstruktionen av kommunikation

mellan olika system i fordonen. Databaslösningen har fokuserats på följande problem:

revisionskontroll av projekt relaterat data, att gränssnittsdata överensstämmer mellan

dokument och databasen, möjligheten att kunna gå tillbaks till en tidigare revision i

databasen, samt möjligheten att kunna exportera delta dokument mellan två revisioner i

databasen. För att demonstrera databaslösningen har ett användarprogram skapats som

kommunicerar med databasen.

Revisionskontroll i databasen har lösts genom att dela upp det projektrelaterade datat i

tre sektioner: en godkänd, en modifierad samt en reviderad sektion. I den godkända

sektionen finns alltid det senast godkända datat och möjligheten att läsa dessa data även om

den är under ändring. I den modifierade sektonen finns data som är under pågående

ändring. Data som har blivit ersatt återfinns i den reviderade sektionen.

För att undvika inkonsekvens av gränssnittssdata som återfinns både i Word-dokument

samt i databasen, extraheras datat från databasen till tabeller i Word-dokumenten. Word-

dokumenten innehåller bokmärken där tabellerna sätts in.

Algoritmer är framtagna för att kunna backa tillbaka till en tidigare revision i databasen

samt kunna exportera delta dokument. Dessa algoritmer är inte implementerade i

användarprogrammet.

Detta examensarbete har resluterat i att gränssnittsdatat är revisionskontrollerat och

inget data tas bort från databasen under en ändringsrutin, datat flyttas bara mellan olika

sektioner med olika flaggor och revisionsnummer. Endast om man går tillbaks till en tidigare

revision tas data bort ur databasen. Funktionaliteten att överföra gränssnittsdata från

databasen till tabeller i Word-dokument är verifierad.

iv

PREFACE

This is a thesis at advanced level in Computer Science at School of Innovation, Design

and Engineering at Mälardalen University. It was carried out at Bombardier in Västerås.

I would like to thank my son Kevin for inspiration in life, and my supervisors at

Bombardier and Mälardalen University for their insight in computer science and support of

this thesis. There are many other people who have helped me carry out this thesis, thanks to

you all.

Västerås, April 2011

Peter Lännhult

v

ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

CCTV Close Circuit TV

CCUO Central Computing Unit Operation

DB DataBase

DBDL Database Design Language

DBMS DataBase Management System

ER Entity-Relationship

FK Foreign Key

GDB tool Generic Database Management Software

GUI Graphical User Interface

HVAC Heating Ventilation and Air Conditioning

ICD Interface Control Document

IPT Internet Protocol Train

ISO International Organization for Standardization

MD Message Data

MS Microsoft

MVB Multi Vehicle Bus

ODBC Open DataBase Connectivity

PD Process Data

PDM Product Data Management

PIS Passenger Information System

PK Primary Key

SQL Structured Query Language

TCMS Train Control and Management System

TTL Time To Live

TIS Train Information Systems

VCS Vehicle Control Simulator

XML Extensible Markup Language

vi

CONTENTS

 Chapter 1 INTRODUCTION 1

1.1 Background ..1

1.2 Motivation ..1

1.3 Requirements .. 2

1.4 Problem Formulation ... 3

Kind of Database ... 3
Change Management .. 3
ICD Data Consistency ... 3
User Concurrency ... 4
Database Architecture .. 4
Graphical User Interface .. 4
Data Security ... 4

1.5 Contributions .. 5

Database Management tool .. 5
Change management .. 5
ICD Data Consistency ... 5
Graphical User Interface .. 5

1.6 Limitations .. 5

Interface Data Process .. 5

1.7 Methods .. 7

Studies of Work Process ... 7
Studies of Relevant Change Management Methods .. 7
Testing the Solution .. 7

 Chapter 2 RELATED WORK 8

2.1 Database Theory ... 8

Introduction .. 8
Database Models ... 8
Programming ... 11
Integrity Constraints... 12
Transactions .. 13
ACID .. 13
Concurrency .. 13

2.2 Database Management System Survey ... 14

2.3 Train Information System ... 16

2.4 GDB Tool ... 18

Data Storage .. 18
Graphical User Interface .. 20
Change Management .. 21
User Access ... 21
Administration .. 21

 Chapter 3 DESIGN INVESTIGATION 22

3.1 Requirements .. 22

3.2 ICD Data Consistency ... 22

3.3 Change Management... 23

Locking .. 23
User Privileges .. 24
Finance Model .. 24
Copy Model ... 25

vii

Wire Model .. 26
Conclusion ... 27

 Chapter 4 SYSTEM DESIGN 28

4.1 Database Architecture... 28

Conceptual Design .. 28
Logical Design ... 32

4.2 Change Management... 37

4.3 ICD Data Consistency ... 42

 Chapter 5 RESULT 43

5.1 Graphical User Interface Program .. 43

Menu and Status Field .. 43
Programming .. 45

5.2 Database Schema .. 46

Programming .. 46

 Chapter 6 CONCLUSION AND DISCUSSION 48

6.1 Change Management .. 48

6.2 ICD Data Consistency ... 48

6.3 User Concurrency .. 49

6.4 Graphical User Interface ... 49

6.5 Data Security ... 49

 Chapter 7 FUTURE WORK 50

7.1 Database .. 50

Data security ... 50

7.2 User Interface Program .. 50

Login .. 50
Copy and Delete Project ... 50
Export .. 50
Help ... 51
User Manual .. 51

7.3 Work Process regarding ICD Data ... 51

7.4 Testing .. 51

Delta document ... 51
Copy a project ... 51
Delete a project ... 51

 Chapter 8 REFERENCES 52

 Appendix A - Requirements 54

 Appendix B - XML File 57

 Appendix C - Header File 59

 Appendix D - Attributes for Administration Data Entities 64

 Appendix E – Attributes for DB Data Entities 65

viii

 Appendix F – ER Diagrams 71

 Appendix G – Relations 73

FIGURES

Figure 1. Interface data process .. 6

Figure 2. Hierarchical model .. 9

Figure 3. Database table Employee .. 9

Figure 4. Database table Salary .. 10

Figure 5. Simple ER diagram .. 10

Figure 6. Object oriented model [30] .. 11

Figure 7. Simple train layout [3] ..16

Figure 8. Dataset example [4] ... 17

Figure 9. Current interface data process ...19

Figure 10. Table CarType .. 20

Figure 11. GDB tool ... 20

Figure 12. Table Car .. 24

Figure 13. Table Revision.. 25

Figure 14. Data tables for Car with different revisions ... 26

Figure 15. Create modification form in Wire .. 27

Figure 16. Wire change process .. 27

Figure 17. Example of ICD data [1] ... 36

Figure 18. Table Car in all 3 sections .. 38

Figure 19. Graphical user interface... 43

Figure 20. Change menu .. 44

TABLES

Table 1. DBMS comparison ... 15

Table 2. Entities for DB administration ... 28

Table 3. Entities for DB project data .. 30

1

Chapter 1

INTRODUCTION

1.1 Background

Bombardier Transportation is a rail equipment manufacturer with operations in 35

countries and has 33,800 employees. The operations include Rail vehicles, Propulsion and

Controls, Bogies, Services, Transportation systems, and Rail control solutions.

Bombardier is divided in several divisions, and the one that design intercity trains in

Västerås is Passenger. The Passenger division is divided in several departments.

The department Software, Design and Implementation is responsible for developing Train

Information Systems (TIS) which includes Train Control and Management (TCMS),

Passenger Information System (PIS), and Closed Circuit TV (CCTV). TCMS have a central

role to control and monitor a modern train and have a lot of interfaces to different systems

that are distributed in the train, such as doors, pantograph, HVAC (Heating Ventilation and

Air Conditioning) among others. Some of these systems are specified and bought from

external subcontractors and others are designed by Bombardier. The interfaces to the

systems are different kind of serial buses, or the interface is discreet and communications is

via digital or analogue inputs and outputs.

For testing the system designs, different kinds of test equipment are used. The

interfaces to those test equipment‟s needs to be configured for the systems interfaces which

are unique for every project.

In the vehicles, several kinds of buses are used: Multi Vehicle Bus (MVB), Internet

Protocol Train bus (IPT), and the serial buses RS 232, RS 422, and RS 485.

A big challenge in ongoing projects is to handle necessary updates of the different

interfaces without that error and inconsistencies arise.

1.2 Motivation

The goal is to evaluate and establish a central storage place for all data that is needed in

the development process of the TIS systems‟ interfaces; this data is named interface data in

this thesis. The interface data is all data regarding bus communication between units and

I/O operations from the units in the train.

For communication on a bus, telegrams are used for transferring data between units;

the telegrams are either sent on regular basis, process data (PD), or sent on events, message

data (MD). All information regarding telegrams shall be stored in the storage place, both the

data structure that is packed in the telegram and telegram attributes such as address, Time

To Live (TTL), telegram length, and type of telegram among others. All variables are defined

2

although many values are set at run-time. An example is when a passenger display in the

train communicates to the train computer system that the temperature has exceeded its

maximum temperature value at the display, then the variable FtemperatureExd is set to the

value fault at run-time; otherwise the value will be ok. The storage place for interface data

will contain the variables and when applicable, constraints the values to the possible ones, in

this case the values fault and ok.

Bombardier has developed a database (DB) tool to store a part of TIS interface data,

named Generic Database Management Software (GDB tool). It was created at Bombardier‟s

site in Crespin (France) and is based on Microsoft (MS) Access. GDB tool is both a database

and a user interface application for dealing with the data in the database. Every project has

its own database contained in an mdb-file (MS Access), the file is stored by the version-

control program Visual SourceSafe; this guarantees version control and a possibility to roll

back to an earlier version of the project. But there is no possibility to check which changes

that have been made between two versions. Also, only one user at a time can access a certain

project unless a user has copied the mdb-file and there are two or more users working in

parallel; this causes inconsistency and shall be avoided.

 The software engineers complain of GDB tool‟s usability, that it is difficult to

understand in which order the interface data shall be inserted; the tool only has support for

some of the buses that are used in a train. It also lacks some functionality such as multiple

access to a project, the ability to check which changes has been made, an approval process

when a user updates data. Unfortunately, the developer of GDB tool has quit his employment

at Bombardier and the knowledge of the tool is limited. So a better solution is demanded to

gain a better controlled environment for storage of interface data; and the storage place shall

contain all interface data, not just a part of it.

The interface data that is stored in GDB tool is the same data that is stored in Interface

Control Documents (ICD); there is one ICD for every subsystem. For example, the subsystem

Displays has an ICD which contains information of functionality and communication for the

Display system. These documents are written by the software engineers and are intended for

subcontractors and for internal use. The interface data are written in predefined tables in the

document and transferred to the database, GDB tool, manually. When the database needs to

be updated due to project changes, the ICD documents must be changed accordingly. In

other words, a change is implemented in both GDB tool and in the ICD documents; the

probability for inconsistencies is high and shall be avoided.

The interface data will be used by system engineers for effectively create deliverables

and design software. The central storage place needs to keep information so exports of data

into ICD documents, discreet I/O lists, train configurations files (XML and header files), test

equipment files, and information for electrical drawings.

1.3 Requirements

Bombardier had some requirements for the new storage solution which the old solution

(GDB tool) could not fulfill. This thesis has looked into the possibility to expand GDB tool or

use another solution to fulfill the requirements and to have a platform for further

functionalities if desired in the future.

The storage solution must ensure correctness and consistency of the data at all times.

This to avoid things such as, one user is blocking all other users when he/she has checked

out the database file from Visual SourceSafe, or that the ICD documents and the stored

interface data always are consistent with each other.

3

It shall be possible to see what changes have been made between two revisions, who has

approved it and why the changes have been made. In other words, a proper approval process

is required where a user initiates changes, and another user checks them and thereafter

approves the changes if applicable; during this process, blocking other users for reading data

is not allowed or that data is updated before an approval is implemented. The functionality

to roll back to an earlier revision shall be remained in the new storage solution, because

unwanted changes or inconsistency may occur in a project.

The graphical user interface (GUI) shall be more easy to use than GDB tool is today, the

users need a more intuitive interface which clarify the insertion order of data.

Simultaneous and multiple access of the stored data is required as more than one user

works in the same project, and delays are avoided if several users have access to the same

data at the same time. To prevent inconsistency, several users can update data in the same

project but they are not allowed to update the same data concurrently.

1.4 Problem Formulation

To store and manipulate data, some kind of database is the most common solution; it is

possible to store the data on regular files at a server, but much functionality that are

provided with a database solution will be lost or difficult to implement. This thesis looks into

a database solution for storing the interface data.

The main problems that this thesis focuses on are listed below; the problems are

numbered for easy reference in this report.

Kind of Database

There are different kinds of databases, depending on how the data is modeled and

linked with each other. We need to establish which kind of database model that is best suited

to solve our particular problem; if GDB tool is one of these tools that use the chosen database

model, then it will be a candidate for the new database solution.

 P1 – What kind of database model shall the storage of interface data be based on? Is

GDB tool based on the chosen database model? If so, can it be expanded to fulfill the

requirements or shall a complete new solution be realized?

Change Management

The work process of handling interface data lacks proper change management today

because there is no approval process when a user does a change, which means that no one is

checking if the changes are correct. And there is no possibility to retrieve delta information

between two revisions in the database, in other words to check what changes that have been

made.

P2 – How shall the design of change management (revision control) be carried out? Are

there any good examples that can be realized? How can delta (difference) information be

retrieved from the database regarding changes between two revisions?

ICD Data Consistency

In the current solution, the software engineers create project specific ICD documents in

MS Word which contains interface data regarding bus information. This information is

written before it is inserted manually into GDB tool, which can lead to inconsistency if there

is some mistyped information in either source; or if either of ICD document or GDB tool is

updated but not the other.

4

P3 – How can inconsistency be avoided between data in the ICD documents and those

stored in the database?

User Concurrency

One requirement is that several users can login to the same project concurrently, this

because several users‟ works in the same project and need to check or update data at the

same time. With this requirement, we need to ensure that inconsistency is prevented if

several users try to update the same data.

P4 – How can multiple logins to the same project be realized? And how can users be

allowed to read the same interface data concurrently without blocking each other or avoid

that inconsistency arise? How can several users update the interface data in the same project

without interfering each other? How shall the solution prevent that users tries to revise the

same data between two approved revisions in the database?

Database Architecture

A database system must be designed for a deeper understanding of the problem and to

ensure that all information are included in the solution and then in the implementation; this

to gain a sustainable solution. A good design also makes the solution transparent for others

to understand the construction of the database.

P5 - How shall the design of the database system be carried out such that problems P2,

P3, and P4 are fulfilled as well as Bombardiers requirements? What kind of data shall the

database contain and how shall it be related to each other?

Graphical User Interface

The database solution needs a user interface program to communicate with the

database; this because an ordinary user do not have database knowledge. And in order to be

intuitive and user friendly, the user interface program will have some kind of graphic

interface with a logical order of buttons, drop-down menus, and presented information.

P6 – How will a GUI look like to achieve the users‟ acceptance regarding intuitive

handling of interface data? How shall input of interface data be carried out? What kind of

documents needs to be exported and how shall it be realized?

Data Security

The interface data is very important in a project as it contains the key information

between different systems in a train; this data needs to be protected from distortion and

unauthorized manipulations. If the data for some reason have errors, rolling back to an

earlier version is a requirement from Bombardier.

P7 – How can unauthorized access to the database and the user interface program be

avoided? What kind of user privileges shall the new storage solution have? How shall the

design for rolling back the interface data to an old revision be implemented?

5

1.5 Contributions

This thesis has answered the questions addressed in the problem formulations defined

in chapter 1.4. There are problems such that disc failure issues, or proper login handling

among others, that this thesis has not answered due to lack of time. The chosen database

supports a good solution of these problems and they are mentioned in chapter 7.1 as a

recommendation for implementation in the future.

The contributions from this thesis are numbered for easy reference in this report.

Database Management tool

C1 – A database management tool has been evaluated and chosen with respect to the

problems P1, P2, P4, P5, and P7.

Change management

C2 - Three different kinds of change management solutions were evaluated where a

well-proven one was chosen and adapted to suit our database. The change management

solution solves the user concurrency problem and handles user privileges; it also gives a

foundation for rolling back the database if necessary. This contribution is related to the

problems P2, P4 and part of P7.

ICD Data Consistency

C3 – A process for handling ICD data has been proposed where the database is the main

source for ICD data. This guarantees that the interface data always are accurate and updated

in a controlled environment. This contribution is related to problem P3.

Graphical User Interface

C4 - A graphical user interface program has been created to communicate with the

database. This is related to problem P6.

1.6 Limitations

This thesis has considered the whole process with a solution for storage of interface

data, but only implements a part of the solution due to lack of time. The implementation

covers graphical user interface program and database management, with respect to the IPT

bus. The other bus types are considered in the architecture of the database management

solution but not implemented. The discreet analogue and digital I/O signals are not

considered in the design solution but as they are independent of the bus data, it is quite easy

to implement them in the same database solution.

Interface Data Process

The process of the interface data from input to the database,
then output to various kinds of documents is shown in

Figure 1. Interface data process. The green boxes represent the database solution in this

thesis.

6

Figure 1. Interface data process

7

1.7 Methods

This thesis spans from understanding current work process regarding handling of interface

data as well as document storage, implement user interface, database management, and

testing that the solution works as intended. For this several methods have been used as

interviews, reading literature, and using software tools.

Studies of Work Process

Every software tool is linked to a working process and either needs to adapt to the other.

In order to understand the current work process regarding handling of interface data,

interviews with several employees, both managers and design engineers, have been carried

out. The objective was to improve the process as well as the data handling. Internal

Bombardier documents and various kinds of interface data files were collected, see

documents [1], [3], [4], [5], and [6].

The current database GDB tool was studied in order to understand what kind of data

and in which format the new database solution must handle, this study were primarily for

assurance that all interface data regarding IPT bus was taken into consideration in the new

solution.

The ICD work process was investigated by interviews with Product Data Management

(PDM) responsible within Bombardier, mainly Martin Svartz.

Studies of Relevant Change Management Methods

Choosing a method for change management is one of the main problems in this thesis,

the information of how to revision control the data in the database is not well documented

on internet. The main sources for the solution presented in chapter 4.2 are interviews with

Attila Flamborg, experienced with Oracle databases; and Dag Nyström, experienced with

Mimer databases.

Testing the Solution

To test the new database solution, a graphical user interface program has been

developed to interact with the database and thereby confirm the proposed solution.

Various functions, such as revision control, metadata about projects, and that user data

are consistent and correct were tested by running a test project; the test project have several

fictive users with different user rights and several modifications were open at the same time

for testing that reading and writing to the database works as intended.

8

Chapter 2

RELATED WORK

This chapter describes related work and related areas; also a description of the previous

database tool, GDB tool, which is used within Bombardier, is given.

2.1 Database Theory

Some basic database theory is described for easier understanding of this thesis intended

for readers not familiar with databases and their functionality. For further knowledge in this

area, see [2] (Swedish), [24] or other literature in this field.

Introduction

A database is a collection of data that describes or models something, in our case the

database models the system interfaces for TIS data. A database management system (DBMS)

is a program that organize, store, manage, and retrieve data in a database. Examples of

DBMS programs are Oracle, MySQL, DB2, Microsoft (MS) SQL Server and Postgre SQL. MS

Access is sometimes mentioned in this context but it is rather an application program using

JET as DBMS; in this thesis MS Access will be considered as a DBMS with the implicitly that

JET is running in the background. A database and DBMS is often mistaken for each other

but the database is the collection of data and DBMS is a program handling the data in the

database.

Database Models

A database is often quite complex with different kind of data which is related to each

other; in order to organize these data, a database model is used. There are several database

models which the most common ones are Hierarchical, Network, Relational, and Object-

oriented models.

Hierarchical Model

A hierarchical model is a tree-structure model with parent/child relationships between

data objects. A parent object can have multiple children but a child can only have one parent

[27], see Figure 2.

This model is good for simple one-to-many (1:N) relationships but does not perform

very well when dealing with more complex many-to-many (N:M) relationships. Hierarchical

databases were popular from late 60‟s through 70‟s, but have become more or less obsolete

when the relational model was developed.

9

Figure 2. Hierarchical model

Network Model

The network model was invented by Charles Bachman [28] and was first published

1969. This model uses records and sets to represent data objects (records) and its relations

(sets). This model is similar to the hierarchical model but allows a record to have N:M

relationships. See web site [29] for further details.

Relational Model

The relational model was invented by Edgar Codd [31] in 1970, when he issued the

paper “A Relational Model of Data for Large Shared Data Banks”.

 In a relational model, which is the most common model used today, the data are

organized in tables. A database contains entities (objects) and its attributes, and

relationships between the entities. The columns in the tables are the data attributes, and the

rows (also named tuples) contain the actual data. The tables are the entities of the database

and the associations between tables are the relationship. Figure 3 shows an example of a

database table (entity) named Employee with the attributes Employee nr, Name, and

Telephone nr.

Employee

Employee nr Name Telephone nr

100 Oscar 1245

101 Anna 1250

102 Per 1251

Figure 3. Database table Employee

To identify specific rows, keys are used; several attributes can be combined to act as a

key. In this example, we can use Employee nr and/or Telephone nr as keys provided that

they are unique for each employee. The attribute Name is a bad choice of key because of the

possibility that several employees have the same name is quite high. There are several kinds

of keys: primary, candidate, foreign, super and alternate keys. Here we only explain the

primary key (PK) and foreign keys (FK), for further details about keys, see [2] or [24]. A

primary key is a unique key to identify each row in a table and there is only one primary key

for each table (could be combined from several attributes). In table Employee, Employee

nr is a primary key which is denoted by the underline in the table. A foreign key is a

reference key to another table, in this thesis it always refers to a primary key. For example if

10

we have a table Salary that lists how much each employee earns every month, the foreign

key will be Employee nr which refers to Employee nr in table Employee. See Figure 4.

Salary

Salary Id Employee nr Salary

1 100 15000

2 101 15500

3 102 17000

Figure 4. Database table Salary

It is possible to skip a value in some attributes (not keys), it will be denoted NULL

which means they are empty (not zero).

The DBMS can set up Views of the database so different users/application programs

only see a part of the database, this is useful to prevent access to certain parts and this

functionality makes it possible to customize the appearance of data.

A database schema is a description of the database structure containing tables,

attributes, relationships between tables, and indexes; in other words metadata of the

database. For further details, see [26].

In the conceptual stage of designing a relational database, Entity-Relationship (ER)

diagrams is used. ER diagrams are used to draw entities with its attributes and relations to

other entities. Figure 5 shows an example of an ER diagram, the relationship shows that one

employee belongs to one department but a department can have several employees.

Employee has the primary key Employee_nr and the foreign key Department nr, the latter

indicates a relation to table Department. Figure 5 is drawn in Crow‟s notation. Employee

and Department are called entities and will later in the design process end up as tables.

Figure 5. Simple ER diagram

Object-Oriented Model

An object-oriented model has objects, classes, and inheritance very similar to an object-

oriented programming language. Usually the same type system is used both in the DBMS

and in the application program for easier programming. Figure 6 shows an example with two

objects and an instance of an object [30].

11

Figure 6. Object oriented model [30]

Programming

In order to create, update, and remove tables in a database, the Structured Query

Language (SQL) is the most common one to use. It is a standard language for accessing

relational and object-oriented databases, all major DBMS‟s support SQL. It is possible to

integrate SQL in application code written in, for example, C++ or C#. Unfortunately, the

DBMS‟s have their own variants of SQL which differ slightly from each other; this

complicates the design and coding. Therefore, Microsoft has developed the language Open

DataBase Connectivity (ODBC) for a better standard communication between the

application code and the DBMS. See web sites [20] and [21] for further details about ODBC.

An example of SQL code is:

SELECT * FROM Employee

WHERE Name = “Kalle”;

This query asks for all data that has the name Kalle in the table Employee.

To achieve better control over a database, it can have active rules called triggers; see

web sites [22] and [23] for further details. It is procedural code that executes when certain

events happens on a tables(s), view(s) or database. These events are insert, delete, and

update of a table; triggers can be used for logging data, prevent unauthorized deleting of

data, or enforce certain business rules.

Most of the DBMS‟s today support stored procedures, which are code stored on the

database server and can be called from an application program, another procedure, or a

trigger. The procedure returns row values from a table and can have parameters as input. If

we want a single return value, functions can be used.

For describing relations, Database Design Language (DBDL) notation can be used, the

format is:

Employee (EmployeeNr, Name, TelephoneNr, DepartmentId)

Primary Key EmployeeNr

Foreign Key DepartmentId references Department (DepartmentId)

This means that table Employee has the attributes EmployeeNr, Name,

TelephoneNr, and DepartmentId, where DepartmentId is a foreign key related to

table Department.

12

Integrity Constraints

In a database, integrity constraints are needed to avoid errors as much as possible.

DBMSs have slightly different integrity rules but most of them apply to the described rules

below. Here, we describe five integrity rules as denoted in chapter 7.2 in [24]: required data,

domain constraints, entity integrity, referential integrity, and general constraints. The rules

are for relational DBs primarily but similar rules can be applied for other kinds of databases.

Required Data

Some data are required in a database; for example if we have an employee, he must have

employee number. This requirement is called required data. The SQL ISO (International

Organization for Standardization) standard states that the SQL commands CREATE and

ALTER TABLE can be specified as NOT NULL, according to chapter 7.2.1 in [24]. This

means that we can enforce data to not have NULL values.

Example:

Name VARCHAR (20) NOT NULL

This means that attribute Name is not allowed to be empty, it must have a name.

Domain Constraints

Data have a legal set of values, so called domain constraints. For example, may

employee number have minimum value 100000 and maximum value 999999, or user name

may have the constraints of only allow letters. According to SQL ISO standard, domain

constraints can be set in the CREATE and ALTER TABLE statements with the CHECK and

CREATE DOMAIN constraints, see chapter 7.2.2 in [24].

Example with CHECK constraint:

Employee_number INT NOT NULL CHECK (Employee_number >= 100000 AND

Employee_number <= 999999))

Entity Integrity

A primary key must have a unique and NOT NULL value for each data row (in a table).

The PRIMARY KEY constraint can be used with the CREATE and ALTER TABLE statements

according to SQL ISO standard. See chapter 7.2.3 in [24] for further details.

Referential Integrity

Referential integrity [8] means that all references in the database must be valid. If table

Salary have a reference of name Kalle from table Employee, then Kalle must exist. Foreign

keys must always have referential integrity, in other words refer to a valid primary key; if the

primary key is deleted, the DBMS shall either delete the foreign key as well or refuse to

delete the primary keys. According to SQL ISO standard, referential integrity can be set in

the CREATE and ALTER TABLE statements with the FOREIGN KEY constraint, see chapter

7.2.4 in [24].

Example:

FOREIGN KEY (Employee_Id) REFERENCES Employee (Employee _Id)

This means that attribute Employee_Id in table Salary refers to attribute Employee_Id

in table Employee.

13

General Constraints

A general constraint is similar to domain constraints but is applicable to more than one

table. The SQL ISO standard has the CREATE ASSERTION statement for allowing general

constraints to be used by several tables. See chapter 7.2.5 in [24] for further details. This

feature is not available in all DMBSs.

Transactions

According to [24], “A transaction is a logical unit of work consisting of one or more

SQL statements that is guaranteed to be atomic with respect to recovery”. This means that a

unit of commands (transaction) is indivisible regarding execution of them; other concurrent

executing commands are not able to interrupt. A transaction either COMMIT or ROLLBACK,

in other words it either completes the execution successfully or aborts the execution and

undo eventual changes in the database.

ACID

For reliable database transactions: Atomicity, Consistency, Isolation, and Durability

(ACID) properties are recommended.

Atomicity

An indivisible transaction with the property that either shall all commands in the

transaction be executed or none.

Consistency

Quote from [24], chapter 22.1.1: “A transaction must transform the database from one

consistent state to another consistent state”. This rule can only be implied for constraints

that have been specified in the database schema.

Isolation

In concurrent transactions, a transaction must be executed independently of other

transactions.

Durability

All committed transactions shall be in the database permanently and must survive a

system failure; this is usually done by keeping transaction logs.

Concurrency

When multiple users access a database concurrently, locking is needed to prevent them

from writing to the same data and have inconsistency as a result. There are two main

concurrency control mechanisms in a database: pessimistic and optimistic. A pessimistic

concurrency control locks the records immediately while in optimistic the locking occurs

during update of the records. It is recommended to use pessimistic when the risk for conflict

is high and optimistic if the system have relative few users and the updates are not likely to

occur at the same time.

14

2.2 Database Management System Survey

In order to choose a Database Management System (DBMS), we must first evaluate if

the database shall be relational or object-oriented. An object-oriented database works with

objects just like an object-oriented programming language, so the database management and

the application program becomes the same environment; a relational database on the other

hand have two environments, the application program and the DBMS. An object-oriented

DB is good when dealing with objects such as multimedia or other complex data types [32].

A relational DB is more standardized (SQL) and quite easy to understand with its tables and

relations. Also, the literature of relational DB‟s is extensive comparing to object-oriented

DB‟s. This thesis will use a relational DB solution because it is easy to find literature in this

field and because the current DB (GDB tool) is a relational DB and we can benefit from the

work that is already done. This is related to problem P1 and contribution C1.

GDB tool is based on MS Access 2003 which is part of the MS Office package that is

installed on Bombardier‟s current computer network, an eventual expansion of GDB tool

should therefore still be based on MS Access 2003. At Bombardiers site in Västerås this tool

has only been used in two projects, so the user experience is quite low and acceptance for a

new tool is high.

A new or modified DBMS tool (GDB tool) will be needed to achieve the requirements

and expectations in this thesis. We will use standard implementation in order to be as

independent as possible of a certain DBMS tool, but every tool has its own way of doing

things so the solution will not be totally independent. A DBMS tool shall be able to handle

several requirements; in this thesis following requirements shall be considered: MR-13, MR-

14, MR-23, MR-24, and MR-25. See appendix A for further details.

For comparison, following DBMS‟s have been chosen with the criteria of free

development software: MS SQL Server 2008 R2, Mimer SQL Enterprise, MySQL 5.1, and MS

Access 2003. MS Access 2003 is chosen because GDB tool is based on it, it will then be

possible to check if GDB tool could be modified to fulfill the requirements. Table 1 shows a

comparison between the DBMS‟s.

15

Comparison MS Access

2003

MS SQL

Server 2008

R2

MySQL 5.1 Mimer SQL

Enterprise

Row-level locking

(MR-13)

Yes [12] Yes [13] Yes (InnoDB

engine) [11]

Optimistic

concurrency

control (no

locking)

Simultaneous and

multiple access to

the database (MR-

13)

Yes[12] Yes [13] Yes Yes [15]

Referential

integrity (MR-14)

Partially [8] Yes [8] Yes [8] [9] Yes [15]

ACID transactions

(MR-24)

No [12] Yes [7] Yes [9] Yes [15]

Password

protection/Access

privileges (MR-23,

MR-25)

Yes [12] Yes [14] Yes[10] Yes [15]

Support database

triggers

No [12] Yes [13] Yes [10] Yes [15]

Free software Free software

for students

Free software

for students

Free software Free software

for developers

Table 1. DBMS comparison

As MS SQL Server has excellent developer community, fulfills all requirements, and

Bombardier‟s network is based on Microsoft‟s products and they have expertise available to

continue with this solution it is chosen as the tool to work with in this thesis.

This thesis could have been done with MySQL 5.1 or Mimer SQL Enterprise, with

slightly different solutions. MS Access 2003 would require more workarounds and is not

suitable for this thesis.

16

2.3 Train Information System

Train information system, TIS, is investigated due to data terminology and how

everything fits together. The same terminology will be used in the new solution as far as

possible.

The interface data handles a variety of different kind of signals and in different formats,

such as IP signals, MVB signals, Serial link signals, and discreet I/O signals. In this thesis

only IP interface data will be considered.

The TIS systems have several devices in the train; the devices belong to a certain device

type which has a connection point for communication between devices. The devices are

linked with buses and messages are sent with telegrams. A simple train layout is shown in

Figure 7.

Figure 7. Simple train layout [3]

A device type is a type of system such as CCTV or HVAC; a complete list of device types

is in appendix C in [1]. There can be several devices belonging to a device type.

A telegram consists of a header and dataset. It can be either message data (MD) or

process data (PD); MD‟s are event driven messages and can handle dynamic size data, and

PD‟s are messages sent cyclically with static data size [5]. A dataset consist of several signals

which are either set or not in the messages, all signals belonging to a dataset are always sent

in the messages; Figure 8 shows an example of a dataset. These tables with all signals are

standardized for each system and a cross in column X indicates that this particular project

will use the appointed signals. A dataset may contain other datasets, see chapter 4.2 in [5].

For further details about MD and PD headers and their contents, see chapter 5 in [6].

17

DISCtrlOp2

X Req

-

level

Data name Description Type Value

Interpretation

Byte

Offset

X B CEndMessage End of message

This byte determines the last

block of sub messages. Only used

in case of multi-block messages.

F10

UINT8 0 = not end

of message

1= end of

message

0

X B CSubMessage

Nb

Sub message number

This defines the block message

ordering

F11

UINT8 0 = single

message

1 to 4 = block

message

5-7 =

reserved

1

X B CMessageLen

gth

Number of CHART

F12

UINT16 2-3

X B CMessage Message

String message (character and

bitmap format)

This message shall be UTF8

encoded

F13

CHART

8

[1000]

0..1000

4-

1003

 Reserved UINT8[

18]

 1004

-

1023

Figure 8. Dataset example [4]

A connection point connects two or more devices to each other with the correspondent

dataset and a direction, named source or sink.

A bus connects devices, either directly or via switches, there are several buses on a train

and the communication between them is via units named CCUO (Central Computing Unit

Operation).

The train have several cars and a complete unit of cars are called consist. According to

requirement MR-34, different configurations shall be supported by the database, for

example 7 or 8 car-trains which correspond to different consists configurations.

Bus architecture contains of devices, types of buses, applied cars/consists.

In the current solution, the input of data into the database must be in a certain order

because of dependencies, see chapter 5 in [3] for further details. Although we will have a

different solution and probably another kind of database management, it is likely that the

dependencies will be similar. It is therefore interesting to know the current insertion order.

18

In GDB tool the inputs are divided in three main areas: ICD Global, Architecture, and

ICD Specific. The insertions follow the steps below.

1. ICD Global

a. Device Type

b. Dataset

c. Connection Point

2. Architecture

a. Bus

b. Device

c. Car Type

d. Consist Type

e. Bus Architecture

3. ICD Specific

a. MVB or IP Attributes (parameters related to communication)

The new solution must be able to export xml and header files of the IP interface data.

There is one xml file per system; a truncated example is in appendix B (telegrams and

datasets are removed for space reasons). There is one header file per system and one per

telegram; an example is in appendix C.

2.4 GDB Tool

Generic Database Management Software (GDB tool) is a relational database with user

interface application and is developed by Bombardier at Crespin (France); the developer has

quit his employment at Bombardier so a deep understanding of the tool within the company

is lost. The objective with the tool is to handle all interface data regarding bus

communication. It is based on MS Access 2003 which is part of the MS Office package that is

installed at Bombardier‟s computer network.

Data Storage

According to [1], MVB and IPT bus protocols are supported by GDB tool even though only

IPT bus based systems have been stored in the database in Västerås. GDB tool is missing

support of the serial buses RS 232, RS 422, and RS 485.

GDB tool is not able to export discreet I/O lists, serial interface configurations, and MVB

signal lists; the latter at least at Bombardier‟s site in Västerås. Figure 9 shows the current

process, from GDT tool point of view, of input and exports from GDB tool in Västerås; it also

shows the database Vehicle Control Simulator (VCS) which is used in testing the design.

Other Bombardier sites might have a slightly different process.

19

Figure 9. Current interface data process

The database stores data about system types, devices (instances of systems), buses, cars,

consists (train configurations), telegram attributes, datasets (data contained in telegrams),

among others. They are stored in tables with attributes and relations between the tables. For

example is table CarType which has the attributes CarTypeId, CarTypeName, and

MaskIndex; see Figure 10. CarTypeId is a unique identification of the car, CarTypeName is

the name of the car, and MaskIndex is a mask to distinguish every car when communicating

with it; the same car can occur several times in a train set, so mask index makes them

unique.

20

Figure 10. Table CarType

Graphical User Interface

In GDB tool the data inputs are divided in three main areas: ICD Global, Architecture,

and ICD Specific. According to [3], the insertions follow the steps below.

4. ICD Global

a. Device Type

b. Dataset

c. Connection Point

5. Architecture

a. Bus

b. Device

c. Car Type

d. Consist Type

e. Bus Architecture

6. ICD Specific

a. MVB or IP Attributes (parameters related to communication)

The interface data has a lot of dependencies, for example a connection point cannot be

inserted without dataset, and a dataset cannot be inserted without a device type.

The terminology is confusing as ICD is a name of a document type rather than database

related, even though the same interface data is stored in both ICD documents and in GDB

tool. Figure 11 shows the interface menu for GDB tool with ICD Global, Architecture, and

ICD Specific as drop-down menus.

Figure 11. GDB tool

21

In the user manual for the tool [3], there are explanations of how to use it.

Unfortunately, the insertion order of interface data is not described in correct order. For

example, the manual starts with insertion of connection points even though device types and

datasets must be inserted first. This, together with confusing terminology such as ICD Global

and ICD Specific, confuses the users of the tool.

Change Management

There is no possibility to check which changes have been made in the tool, so called

revision control even though the database files are stored in Visual SourceSafe. This only

guarantees version control and possibility of roll back but no possibility to get knowledge of

what happened between two versions. Also, there is no possibility to get a delta document

(difference) to see which changes has been implemented or comments of the reason for the

change.

User Access

Multiple and simultaneous access to the current database is not allowed, only one user

at a time can access the database; this is a big problem as the purpose of the database is to let

several software engineers handle the same data. This problem will be worse when more

interface data are put in the database, either GDB tool will be expanded to handle more bus

protocols and other kind of interface data or a new database solution is needed.

Administration

Users will be applied roles in the tool, and each role is associated to privileges. For

example, the role Developer gets privileges to do project related changes in the database.

GDB tool will only give access to areas in which the user has privileges. See chapter 7.2 in [3]

for further details.

It is also possible to set which actions/privileges that each specific role shall have. For

example, decide that role Developer can access the actions Delete Data or Backup Database.

This is described in chapter 7.1 [3].

22

Chapter 3

DESIGN INVESTIGATION

To understand the complexity of the problems and how to solve them, some

investigation is needed. First of all, we need to know exactly what requirements there are on

the new solution in order to do the rest of the investigation properly.

Change management is a key issue for this thesis and several revision control methods

are investigated. How to solve the potential inconsistency between ICD documents and the

database is also investigated.

3.1 Requirements

In agreement with Bombardier, the requirements in appendix A shall be fulfilled; this

lists the main requirements (MR) for the database to be an acceptable solution. In this thesis

only requirements with priority 1 must be implemented. Requirements with lower priorities

shall be considered in the design if applicable, but not necessarily implemented in this stage.

The priority 1 requirements are ICD data consistency, revision control, simultaneous

and multiple access, and database management integrity constraints.

3.2 ICD Data Consistency

ICD documents have templates for each system, even though they have not been used in

Bombardier Västerås. These templates are supposed to be used in conjunction with GDB

tool, so interface data is mapped onto these templates. These templates are not stored in

Bombardier‟s PDM system, neither are most of the ICD documents.

Word documents is usually created from a template stored in PDM to ensure that

metadata such as document number, revision, approver, type of document, among others are

synchronized with PDM.

Bombardier uses a PDM tool named Metaphase to store documentation, especially

project related documentation. This is mandatory according to [33]; a Swedish BT directive

for documentation, technical documents shall be stored in BT‟s common PDM system. This

because technical documents shall be available for 40 years with respect to requirements of

traceability, spare parts, and recycling.

There are mainly two options of how to deal with consistency between the ICD‟s and the

stored interface data in the database. Option one is to store the word file in the database as it

is and when changes occur, just export the file, do the changes and import it back. The

problem is the interface data, as the same data must occur in the database tables as well as in

the word documents. It is not straightforward how to solve this issue in the database.

23

The other option is to store only the interface data and export it to an ICD file for the

current subsystem. The ICD‟s are stored in the PDM system. When changes occur, the ICD is

checked out from PDM and the changed interface data is exported to the ICD word file, and

then checked backed to PDM via an approval process. In this case, the ICD‟s are stored

properly according to Bombardier PDM policy and the database does only handle the

interface data.

The conclusion is to use the second option in our solution as it is in line with

Bombardier policy of documentation, and simplifies the database solution as binding data in

the word documents to tables in the database is difficult. This solves the issue described in

problem P3 and is contribution C3.

3.3 Change Management

Change management is needed to maintain good quality of the interface data as a

change process have responsible persons that approve the changes, and hopefully the data

are checked for errors before an approval is implemented; this to fulfill requirement MR-12.

It also guarantees that authorized and project related users are doing the changes and

approvals, as every user will have different privileges in the projects, according to

requirement MR-23, see appendix A, and problem P7.

Problem P4 raises the issue when several users want to update the interface data in the

same project, this shall be done without the updates interfere with each other and that no

inconsistency occurs. This in conjunction with requirement MR-13 which states that users

shall have simultaneous access to the same project but not be able to change the same data,

the requirement also states that users shall be able to check approved data at all times. This

requires some kind of locking in the database, and is investigated in this chapter.

In order to be able to export delta document (requirement MR-12) and roll back

(requirement MR-22) to an old revision, all changes need to be saved in the database. This

chapter will investigate how this can be implemented, see problems P2 and P7.

An issue is how to realize all demands which we have on the change management, in

this chapter we will investigate if there is a design which fits our needs or if it is best to

implement a new design solution; this according to problem P2.

In order to fulfill the requirements MR-12, MR-13, MR-22, MR-23 and solve the

problems P2, P4, and P7; three different kinds of solutions have been investigated. The first

we call the finance model, because it is used in the finance system for keeping track of

changes. The other solution is a simple copy tables when a change occur, this will be called

copy model. The third solution is used in a database that handles cabling information within

Bombardier, this will be called Wire model (from the DB Wire).

Locking

The requirement with simultaneous and multiple users (MR-13) demands that the

system can have several open modifications; the same interface data cannot be modified

though, so the system need to lock those interface data for writing. There are two main

concurrency control mechanisms in a database: pessimistic and optimistic [34]. A

pessimistic concurrency control locks the records immediately while in optimistic the locking

occurs during update of the records. It is recommended to use pessimistic when the risk for

conflict are high and optimistic if the system have relative few users and the updates are not

likely to occur at the same time.

In our case, a user might have a modification open for several days before an approval

are committed to the database. The likeliness for another user to update the same record(s)

24

with another modification is quite high; therefore pessimistic concurrency control is to

prefer.

User Privileges

In order to know which user that has logged in to the database through the application

program, the latter must ensure user identification. As the computers at Bombardier are in a

MS environment with proper user identification, those user identifications will be used as

well in the application program and database, and synchronized with Bombardiers system.

In a project, a user shall be able to read data in every project (requirement MR-13); and

the change management process requires that a user shall be able to modify and approve

data. This gives us three different user privileges: read, modify, and approve. These

privileges must be granted by authorized users and non-project related data must be handled

as well.

Therefore, the users have different roles that are not linked to a specific project as the

privileges are. In the database, every user will have a role linked to him to ensure that the

user is authorized to manipulate data, see requirement MR-23. For the change management

purposes, the roles DB Admin, Admin, Viewer, and Engineer are satisfactory. All user roles

will have the reading privilege. Viewers can only get read privileges in a project; Engineers

may modify and approval privileges in a project; Admins can change user privileges in a

project including his own; and DB Admins can change non-project related data including set

roles to users.

Finance Model

This change management model is based on the financial databases that handle

currency transactions; they must be able to keep track of all changes in order to restore

errors or inconsistencies as well as both internal and external fraud. It is very important for

these databases to never remove any data; flags are used to set status of data. In many cases,

audit is enabled to keep track of users‟ activities in the database.

It is difficult to find information of this kind of database systems, probably because the

finance community and the database system manufactures want their system to be a secret.

The basic idea is to keep all data records and use status flags for revision control.

An example is a table Car, which has the extra attributes Revision, Terminated,

Superseded, and Lock for revision control; see Figure 12. As no records (rows) are allowed to

be removed, a new record is inserted for every change. This means that the index number is

not unique so a combined primary key is needed, in this case Index and Revision acts as a

primary key. When a change is to occur, a modification is opened and applicable records are

set to current modification number in the Lock attribute. Then copy the record to a new row

and do the changes. The attribute Terminated tells if a record has been obsolete, and

Superseded tells if a record has been updated or not.

Figure 12. Table Car

25

This model becomes complex when we need algorithms for rolling back and produce

delta documents of the changes. This because we need to keep track of which records that

have been deleted (terminated) and in which revision, as well as keep track of latest revision

for each car (in this example).

Copy Model

This model is not established on the database system market to my knowledge; it is

investigated to establish if a very simple copy model is applicable in our case.

The idea is to copy table(s) when a change occur in a project and thereby have data

tables for every revision in the database; the revision is in the table name to differentiate

them from each other.

When a user has created a modification and begins to do the changes, the system copies

the applicable data table(s) and names them datatablename_ModNr, for example

Car_Mod01. There is a table to keep track of the latest revisions and modifications on each

type of data table, for example a data table Car with three revisions will be named Car_R0,

Car_R1, and Car_R2, see Figure 14; and table Revision contains the modification, both

approved and open modifications; it also contains revision number and name of the data

tables, see Figure 13. All changes for modification M2, in our example, takes place in table

Car_M2.

When the changes are done, an approver (user with approval privileges) approves the

changes in the application program. Then the system checks the next free revision number

and stores the revised table(s) as latest revision; table Car_M2 becomes table Car_R3 in our

example. The problem with this is that another user might have open a modification which

affects the same data table(s) and approve his modifications first, a check that the explicit

data rows have not been altered must be done before the modification can be approved; if a

data row has been altered, the system shall roll back all changes which is easy in this case as

we only need to delete the modified table (Car_M2 in the example).

 The problem with duplicates of tables for each revision is that the database will grow

exponentially fast, especially for many small changes. This model is also against the normal

database designs as usually all tables are created before data is put into them; the database

structure is decided with all tables and then an application program(s) read or manipulate

data in the tables. As the database should be locked for user manipulations, including

application programs, as much as possible to prevent errors and ensure correctness of the

data; creating new tables after the database is created is not recommended.

A simple example with one data table (Car) which is split into three tables due to new

revisions and one Revision table for keeping track of all changes is shown in the Figure 13

and Figure 14.

Figure 13. Table Revision

 Figure 14 shows how table Car have been copied into three different revisions.

26

Figure 14. Data tables for Car with different revisions

Wire Model

The wire model is based on the database system Wire which handles cabling

information and is used by Bombardier in Västerås. Wire stores information about cabling

material and connection points; it has a well-established solution of revision control and is

able to export delta documents between two revisions. Wire is an Oracle database.

The database handles harnesses which are point-to-point cabling information, a project

have several harnesses; each harness also has material so a manufacturer can build the

harnesses from information stored in Wire.

Users have different privileges depending on the projects; a few users have DB

administrator rights to change privileges for other users including themselves. The project

privileges are approver, engineer, and viewer. Approver can approve changes in a project; an

engineer can make changes; and a viewer can see approved data.

When a user wants to do a change, a modification is created, see Figure 15. A

modification number is created by writing it manually in the text field next to “Modifiering”.

Revision index and date are created by Wire automatically. The user fills in the text fields

“Orsak” (means reason) and “Konsekvens” (means consequence); and then clicks on button

“Stäng” (means closing) for saving the modification.

27

Figure 15. Create modification form in Wire

The data tables are divided into three sections: approved, modified, and revised; with

the same type of tables and same relations between them. The difference is some flag

attributes for revision control. See Figure 16 for the change process with numbering for

reference in the text. When a modification has been created, the whole harness structure of

the project is copied from the approved section into the modified section with the applicable

modification number (1).

When a modification is open it is possible to create, delete or update a data record. All

changes are made in the modified section with a flag set which informs of the type of change

(new, delete, or update). After approval of the modification, the old data are copied from the

approved section into the revised section with revision number and flags from the modified

section (2). Then the changed data, except the deleted ones, are copied from the modified

section into the approved section (3).

Figure 16. Wire change process

Conclusion

The Wire model is chosen to our change management model, this because it is a simple

solution which fulfills our needs.

The copy model is too memory consuming and would be inefficient in ensuring

correctness of the data.

The finance model is interesting and could probably work in our case but the algorithms

for rolling back the database and produce delta information would be too complex.

28

Chapter 4

SYSTEM DESIGN

The database solution design is described in this chapter regarding database architecture,

change management, and ICD data consistency. A simple test plan for testing the design is

also described.

4.1 Database Architecture

There are three design steps when designing a database system: the conceptual, logical,

and physical designs. See chapter 16 in [24] for details of the methodology to perform these

design steps. In this thesis only conceptual and logical designs are applied.

Conceptual Design

For better overview, the entities in the database are divided into two parts: DB

administration and DB data.

DB administration handles project metadata, user privileges, and revision control. The

entities are User, Role, Project, Privileges, Modification, and Revision; these are

described in Table 2.

Entity name Description Occurrence

User Employees with user rights to

the database.

Each user have a user role to each

project, all users have read privileges

on every project.

Role User role: Admin, Viewer, or

Engineer.

Each User has one Role.

Project Development of a train set. A project has one modification list and

one revision list, can have one or

several users.

Privileges User privileges specified per

project

Connects one user to one project.

Modification A purposed change that is

not approved.

One modification is linked to one

project.

Revision An approved change. One revision is linked to one project.

Table 2. Entities for DB administration

29

DB data handles all project related data. The entities are InstanceOfDevice, Car,

Consist, Device, DeviceType, Bus, BusType, IpTelegram, MvbPort, DataSet,

Substructure, Data, DataType, Value, ValueType, ReqLevel, ConnectionPoint,

IpComParameter, MdReceiveParameter, MdSendParameter, MdSendType,

PdReceiveParameter, and PdSendParameter; these are described in Table 3.

Entity name Description Occurrence

InstanceOfDevice Defines which devices

there are in a train set and

in which cars.

One instance of InstanceOfDevice

has one Device, one Car, one

Consist, and one Bus.

Car A unit in a train set. Belongs to one or more Consists,

and to one or more instances of

InstanceOfDevice.

Consist A consist is several Cars

acting as one unit (train

set).

One instance of Consist has one or

several Cars.

Device An instance of a device

type (system).

A Device belongs to one

DeviceType, and to one or several

instances of InstanceOfDevice.

DeviceType Type of device. Consists of one or several Devices

and ConnectionPoints.

Bus Network for

communication, an

instance of BusType.

Bus belongs to one BusType; each

instance of InstanceOfDevice has

one bus.

BusType Type of bus. Each BusType has zero or several

buses.

IpTelegram An IP message sent on a

bus.

An IpTelegram has one

ConnectionPoint and one

InstanceOfDevice.

MvbPort A MVB message sent on a

bus.

An MvbPort has one

ConnectionPoint and one

InstanceOfDevice.

DataSet Communication message. A part of the IpTelegram or

MvbPort. Each DataSet belongs to

one or several ConnetionPoints.

And each DataSet can have several

Substructures or Data attached to

it.

Substructure Divides data in a dataset. A Substructure is part of a DataSet

and can have several Data.

Data Data information. Belongs to a DataSet or a

Substructure.

DataType Describes type of data in

different languages.

Each Data instance has a

DataType.

30

Value The value of the data Each Data instance can have

several values. A Value belongs to a

ValueType

ValueType Describes type of value Each Value instance has a

ValueType.

ReqLevel Describes the level of the

request

Each DataSet has one ReqLevel.

ConnectionPoint A communication point for

a DeviceType (system).

A ConnectionPoint can handle

several IpTelegrams to/from the

DeviceType; each ConnectionPoint

has one DataSet.

IpComParameter Parameters for the

IpTelegram.

Each IpTelegram has one

IpComParamater.

MdReceiveParameter Parameter for receiving

message data

Each IpTelegram has one

MdReceiveParameter.

MdSendParameter Parameter for sending

message data

Each IpTelegram has one

MdSendParameter.

MdSendType Type of the message data Each MdSendParameter has one

MdSendType.

PdReceiveParameter Parameter for receiving

process data

Each IpTelegram has one

PdReceiveParameter.

PdSendParameter Parameter for sending

process data

Each IpTelegram has one

PdSendParameter.

Table 3. Entities for DB project data

All attributes for the entities are named according to the convention that the first 3-4

characters identify the entity, this will be helpful when programming the solution; it will be

easier to keep track to which entity similar attribute names belongs and avoid mistakes. In

the attribute tables (in appendix D and E), only unique attributes for the specified entities

are shown (not foreign keys). Further explanation of the data types is found on web site

[25]. The column Nulls indicates if an attribute is allowed to have null values (not specified

values).

Attributes for the DB administration entities are shown in appendix D, and attributes

for the DB project data entities are shown in appendix E. Some attributes need further

explanation and are marked with a number in the attribute tables in the appendices.

1. The attributes ModNr and RevNr start generate the numbers from 0 and

increments by 1 for each project, this because the revision and modification

numbers shall be continuous in a project.

2. The creator of a project will automatically have all privileges (read, modify, and

approve) in that project. When a user is granted a privilege, it shall be checked

that the user has authority to the specified privilege by checking his/her role

status; the roles are DBAdmin, Admin, Engineer, and Viewer. An Admin can

change privileges of all users including his/her own and obtain all privileges in

project related data, an Engineer can obtain all privileges, and a Viewer can only

31

obtain reading privileges. A DBAdmin have privileges to change non-project

related data and have the same privileges as an Admin.

3. One of the attributes InsMvbDeviceAddress and InsIpRingSwitchId must be

filled in, it shall only be possible to choose one of them in the application code;

and the database code shall check that one and only one of the fields are filled.

4. The attributes IptComId and MvbComId are built up with DatsId + 00, see

document [1] appendix D.

5. The attribute MvbPortNr is either NULL or less than 16383 (0x3FFF).

6. The attribute PdrValidityBehaviour can only have the values 0 or 1 according to

[5], table 22.

7. The attribute PdsRedundant can only have the values 0 or 1 according to [5],

table 23; where o means no redundancy and a positive value (1 in our case)

means redundancy.

8. The attribute ReqName can have 3 values: B (Basic), R (Recommended), or O

(Optional). See [1], section 2.2.2.6.1 for further details.

9. The entities BusType and DeviceType have attributes Version, Release,

Update, and Evolution. These are built up according to the format

Version.Release.Update.Evolution, see [1] section 8.4 for further details. Version

number is incremented when new software is incompatible to previous software;

valid range is 1 to 99. Release number is incremented when new functions are

added but is still compatible with current version; valid range is 0 to 99. Update

number is incremented when new software with minor modifications is added;

valid range is 0 to 99. Evolution number is incremented when new software

during testing has been updated but is not validated; valid range is 0 to 99.

Version and release number are used for deliveries, and update and evolution

number are used for internal elaboration.

10. The attribute IpcQOS have the value range 0 to 7, and the attribute IpcTTL have

the range 0 to 255 with default value 64; see [5] section 10.5.

11. The attribute DatsId (entity DataSet) is built up with 4 parameters, ranging 0-

99, according to [1], appendix D.

12. Generic data types for IPTCom are described in [5] section 4.3.

 The ER diagrams are shown in appendix F, one for DB admin and one for DB data.

32

Logical Design

The logical design is divided into three parts: derive relations for logical model, validate

relations using normalization, and validate relations against user transactions. This is

described in [24], section 17.

Derive Relations for Logical Model

The first part is to derive relations from the ER diagram to a relational model. In the

relational model, a relation is a table with rows and columns. To determine all relations,

there are 9 steps we can use as guidance (see [24], section17). We use the Database Design

Language (DBDL) notation when describing the relations and put all relations in a table in

Appendix G.

1. Strong entity types

2. Weak entity types

3. One-to-many binary relationship types

4. One-to-one binary relationship types

5. One-to-one recursive relationship types

6. Superclass/subclass relationship types

7. Many-to-many binary relationship types

8. Complex relationship types

9. Multi-valued attributes

Step 1: A strong entity is “An entity type that is not existence-dependent on some other

entity type” [24] section 12.4. Each instance of the entity shall be uniquely identifiable

by its primary key(s). An example of a strong entity is User, which get the notation:

User (UserId, UserName, UserRole)

Primary Key UserId

Following strong entities are identified in this thesis:

User, Role, Project, Modification, Revision, InstanceOfDevice, Car, Consist,

Device, DeviceType, Bus, BusType, IpTelegram, MvbPort, DataSet,

Substructure, Data, DataType, Value, ValueType, ReqLevel,

ConnectionPoint, IpComParameter, MdReceiveParameter,

MdSendParameter, MdSendType, PdReceiveParameter, and

PdSendParameter.

These are added in the relations table in appendix G.

Step 3: One-to-many (1:n) binary relationship types. The design has a lot of one-to-

many relationships; see ER-diagrams in appendix F, for further details. We add foreign

key with reference attributes in the relations table in appendix G for those entities on

the many-side.

Example:

User (UserId, UserName, UserRole, RolId)

Primary Key UserId

Foreign Key RolId references Role (RolId)

33

Step 4: One-to-one (1:1) binary relationship types. The relation between Revision and

Modification is the only one-to-one binary relationship in this design. The foreign key

reference attribute will be at entity Revision because the attribute Modnr is mandatory

in Revision.

Revision (RevId, RevNr, ProjId, RevDate, UserId, ModNr)

Primary Key RevId

Foreign Key ProjId references Project (ProjId)

Foreign Key UserId references User (UserId)

Foreign Key ModNr references Modification (ModNr)

Step 5: One-to-one (1:1) recursive relationship types. The entity Substructure has a

1:1 recursive relation that is not mandatory at one side. The attribute SubParentId will

point to the parent Substructure when applicable and act as a foreign key.

Substructure (SubId, SubName, SubIndex, DatsId, SubParentId, ProjId)

Primary Key SubId

Foreign key DatsId references DataSet (DatsId)

Foreign key SubParentId references Substructure (SubParentId)

Foreign key ProjId references Project (ProjId)

Step 7: Many-to-many (m:n) binary relationship types. Each user needs privileges to

several projects and each project can have several users with privileges to it. Therefore

the entity Privileges was created to link between Project and User. Privileges do

not have its own primary key; instead we use the primary keys from Project and User.

Privileges (ProjId, UserId, PriRead, PriModify, PriApprove)

Primary Key ProjId, UserId

Foreign key ProjId references Project (ProjId)

Foreign key UserId references User (UserId)

Steps 2, 6, 8, and 9: These steps are not applicable in this project.

Validate Relations Using Normalization

The second part of the logical design is normalization. There are normally three levels of

normalization: 1NF, 2NF and 3NF. Further details about normalization is in [24],

section 14.

1NF: One value per field in the tables and the primary key(s) must be unique. We fulfill

these requirements.

2NF: 1NF + all non-key attributes shall be functional dependent of the whole primary

key; no partial dependency of the primary key may exist. We have four entities with two

primary keys: Privileges, Revision, Modification, and DataSet. In DataSet, the

attribute DatsName is only dependent of the primary key DatsId; ProjId can be

removed entirely from this entity. The relation table in appendix G is updated

accordingly. The other three entities have attributes that are fully dependent of both

primary keys.

3NF: 2NF + no functional dependency between non-primary keys. In entity User, the

attribute UserRole is dependent of the attribute UserName; the role comes with the

user. As we already have an entity Role for each user (RolId), we delete the attribute

UserRole. The tables in appendix D and appendix G are updated accordingly.

34

Validate Relations against User Transactions

The main user transactions are input of ICD data, export ICD data to a Word template,

and export configuration data to Extensible Markup Language (XML) and header files.

The datasets with its data variables (entity Data) are listed as a tree structure and

includes substructures in the tree. All datasets are the same for all projects and the basic

structure (all DataSets) will automatically be viewed for the users. The problem with this

arrangement is that a user is not allowed to update or delete a DataSet as it would affect all

projects; it will be possible to add new datasets for users with DBAdmin privileges, it does

not matter if there are datasets which are not used in a project. To prevent deletion of used

datasets, the relations from DataSet to the child entities ConnectionPoint,

Substructure, and Data will get the rule Restricted Delete in the database; this means that

it is not possible to delete rows in DataSet if the specified attribute DatsId is used in one of

the other entities. A database trigger will ensure that the update of attribute DatsName in

DataSet is restricted:

CREATE TRIGGER Trigger_DataSet_Upd ON [DataSet]

INSTEAD OF UPDATE

AS

DECLARE @idExists int

SET @idExists = 0

BEGIN

 IF EXISTS (SELECT * FROM ConnectionPoint s

 JOIN deleted d ON d.DatsId = s.DatsId)

 BEGIN

 @idExists = 1

 END

 ELSE IF EXISTS (SELECT 1 FROM Substructure s

 JOIN deleted d ON d.DatsId = s.DatsId)

 BEGIN

 @idExists = 1

 END

 ELSE IF EXISTS (SELECT 1 FROM Data s

 JOIN deleted d ON d.DatsId = s.DatsId)

 BEGIN

 @idExists = 1

 END

 IF @idExists = 1

 BEGIN

RAISERROR („Update is not allowed: dataset is in use,

16, 1)

 WAITFOR DELAY ‟00:00:01‟

 ROLLBACK TRANSACTION

 END

 ELSE

 BEGIN

 UPDATE s SET

 DatsId = o.DatsId,

 DatsName = i.DatsName

 FROM DataSet s

 INER JOIN inserted i ON i.DatsId = s.DatsId

 END

35

END

Input of ICD data shall handle the data fields in Figure 17 and the pseudo-code:

1. Chose a DataSet or a Substructure from a tree structure in the

application program

2. The Admin user can either add a Substructure or Data for the

specified DataSet/Substructure.

a. Add a Substructure

i. User inserts a SubName

ii. User inserts SubDesription (optional)

iii. System insert SubIndex (depending of the location in

the structure tree)

b. Add Data

i. System insert DataStructureIndex (depending of the

location in structure tree)

ii. User inserts a DataName

iii. User inserts DataDescription (optional)

iv. User inserts DataType (type and size of data) from a

drop-down menu

v. User insert DataArraySize (default is 1)

vi. User ticks a box if DataReserved, the system removes

the ReqLevel menu and FunctionDescription box, skip the

next steps

vii. User inserts ValueType from a drop-down menu

1. System shows values for the specified ValueType

2. User tick(s) the appropriate values for this

project

viii. User inserts DataFunctionDescription (optional)

ix. User insert ReqLevel from a drop-down menu

x. User ticks a box if DataProjectSelection (data is

required in the specified project)

xi. User saves the data

xii. System adds the data

The pseudo-code indicated two errors in the schema. Entity Substructure missed an

attribute for description, and entity Data had the attribute DataBasicVariable (to

distinguish data from substructure) which is unnecessary; the schema have been updated

according to this. All columns in Figure 17, except Byte Offset, are handled in the pseudo-

code.

To export ICD data to a Word template, we need the Byte Offset (last column in Figure

17) which is calculated with the following pseudo-code:

offset[0] = 0;

36

for (n=1; n <= (dataInsertionsInDataset + 1); n++) {

offset[n] = offset[n-1] + typeSizeInBytes * arraySize;

}

X Req-

level

Data name Description Type Value

Interpretation

Byte

Offset

s Speed

 R ITrainSpeed Train speed

Calibrated train speed

F1-01 Subscriber:BCU,TCU

UINT16 0…40000

100 = 1km/h

0

Figure 17. Example of ICD data [1]

In this section we only identify which data are needed to export configuration data to

XML and header files. Following data are needed in the XML file:

 DevName + DevLocation

 Application tool version

 DevtVersion, DevtRelease, DevtUpdate, DevtEvolution (device type)

 DB version

 BustName, BusName

 CnpDirection

 DatsId

 Dataset size in bytes

 IptName (or CnpName)

 IptComId

 IpcId

 PdrSourceURI, PdrTimeOutValue, PdrValidityBehaviour

 PdsDestinationURI, PdsCycleTime, PdsRedundant

 MdspDestination

 MdrSourceURI

 DattName

 Byte Offset (calculated)

 DataArraySize

 IpcQOS, IpcName, IpcTTL

sub tructure Function headline

37

Following data are needed in the header files:

 DevtName

 Application tool version

 DevtVersion, DevtRelease, DevtUpdate, DevtEvolution (device type)

 DB version

 IptComId, IptName

4.2 Change Management

The change management is based on the Wire model that is described in Wire Model

with adaptions to our database solution.

A model for interaction between user and system (database and/or user interface

program) on how to create and approve changes is described below.

User perspective:

1. Create a modification

2. Write why and what is changed

3. Do the changes

4. Approve the modification

System perspective:

1. Create a modification number

2. Store the revision text (will be part of the difference document)

3. Check if the changes are consistent

a. If yes, approve the modification and update the database with

a new revision number

b. If no, inform the user of the inconsistency

In order to fulfill requirement MR-12 about revision control (see appendix A), the

database shall store and retrieve changes. Therefore, the database structure is divided into

three sections: one for approved data, one for modified data, and one for revised data. All

three sections have basically the same tables but contain different data depending of the

status.

The approved section has all actual and approved data, and is the only section which

includes all variant of tables, both project and non-project related tables. The modified

section contains data that are being modified but not yet approved. The revised section

stores obsolete data that are no longer relevant but makes it possible to roll back the data

into an old revision and retrieve delta documents between two revisions.

Only relations (tables) which are project dependent, the relations with the attribute

ProjId, are included in all three sections. The exception are the DB administration tables,

they are only included in the approved section; and thereby not included in the change

management.

38

When realizing the design into code all common tables for the sections, need to have

exclusives names. Therefore all common tables will start with the notation App, Mod, and

Rev in their respective table name. For example table Car will be named: AppCar,

ModCar, and RevCar.

When a user wants to do some changes in a project, a modification request takes place

and the user specify a project and write a change description (the latter is not mandatory).

The changes can either be update, delete or new data in the project; a modification request

can handle one or several changes. When a user starts implementing the changes, one at a

time, the actual rows are copied to the corresponding modification tables and a flag is set.

This is different from the Wire model which copies the whole structure at once for a project.

The approved section tables will have two extra attributes: ModNr and RevId. ModNr

will act as a lock, as soon as a change is requested this attribute will be updated and other

modification requests will be locked from the specified row; ModNr is not a reference

attribute. RevId is a reference attribute to table Revision and specify the latest approved

revision.

The modified section tables will have two extra attributes: ModNr and Flag. ModNr is a

reference attribute to table Modification and shows which modification the row is handled

by. Flag indicates the change status, which can be N (New), U (Update), or D (Delete).

The revised section tables will have three extra attributes: AppRevId, ModRevId, and

Flag. AppRevId and ModRevId are reference attributes to table Revision and Flag

indicates the change status (N, U, or D); these attributes shows the earlier status of the data

and what happened (update, new, deleted), in which revision the change were approved

before the change (AppRevId) and in revision this changed was initiated (ModRevId).

Figure 18 shows an example of these three variants for table Car.

Figure 18. Table Car in all 3 sections

The primary key (CarId in the example) will always be created in the modify section

because all new data will be created there and then copied to the approved section. The

approved and modified section tables will have unique identifications (CarId) as primary

keys but the revised section can contain several rows with the same value of the

identification (CarId), the revised tables must therefore have ModRevId in its primary key to

make each row unique. Figure 18 shows (underlined attributes) that RevCar have both

CarId and ModRevId as a combined primary key. Foreign keys that refers to other data

tables, which are in all three sections, can only be in the approved section; this because the

links are unclear, for example shall ConId in ModCar be related to table AppConsist or

ModConsist? The solution is to let the user interface program make sure that the

insertions to the DB comes in correct order, for example must ConId exist either in table

AppConsist or in ModConsist otherwise the DBMS will report an inconsistency and stop

the transaction.

39

Below is an algorithm for change management. If a user do several changes in the user

interface program and then clicks on the save button, this algorithm is still valid. It will

handle the changes as it is only one change at a time and loop through them:

1. Choose project from a list or create a new project.

2. Create a new modification.

a. User creates a new modification in the menu in the interface

program.

b. User writes revision text (not mandatory).

c. User saves the modification by clicking on Save button.

d. System creates a new ModNr and update the table

Modification.

3. Changes are implemented, either new data (a), update old data (b),

or delete data (c). One change at a time will be logged in the

database.

a. New data.

i. User puts new data in the interface program and click

on the save button.

ii. System adds a new row in the corresponding modify

section table, the flag is set to N and a new identity

(primary key) is created.

b. Update data.

i. User updates values in the interface program and click

on the save button.

ii. System updates the corresponding approved section table

by writing the modification number in ModNr (locking),

then the data is copied from approved section to the

modified section and finally the data is changed. The

Flag is set to U.

c. Delete data.

i. User marks data in the interface program and clicks on

button delete, and then clicks on button save.

ii. System updates the corresponding approved section table

by writing the modification number in ModNr (locking),

then the data is copied to the modify section table and

the Flag is set to D.

4. Approval of modification.

a. User selects to approve modification in interface program.

b. System checks that user has correct privileges.

c. System checks the latest revNr for the specified project and

increments it by 1 and create a new revision in table

Revision (this is done once for each modification).

40

d. System copies the affected data from the approved section to

the revised section with the flag from the modified section

(only for updated and deleted data).

e. System deletes changed data in the approved section (only

for updated and deleted data).

f. System copies data from the modified section to the approved

section (only updated and new data will be copied); ModNr is

set to NULL and RevId according to applicable revision.

g. System deletes data from the modified section.

Below is the algorithm for the difference document (Delta), the Delta document can only

be created between two approved revisions in the specified project. The algorithm starts with

the lowest revision number incremented by one:

1. User chooses which two revisions the difference shall be between and

then clock on button OK.

2. System checks that the requested revisions are valid.

3. System sets variable ActualRev to lowest chosen revision number + 1.

4. System saves revision text (RevText in table Modification) in the

Delta document.

5. System checks in the revised section for data with revision ActualRev

and flag D. If found, move to 5.a otherwise move to 6.

a. Write “Deleted data” and data information in the Delta

document.

b. Move to 5.

6. System checks in the approved section for data with revision

ActualRev; if found, move to 6.a otherwise move to 7.

a. System checks if applicable data with revision ActualRev is in

the revised section; if no, move to 6.b otherwise move to 6.c.

b. New data

i. Write “New data” and applicable data information in the

delta document.

ii. Move to 6.

c. Updated data

i. Write “Updated data”, “Old data”, data information from

revised section, “New data”, and data information from

approved section in the delta document.

ii. Move to 6.

7. System checks if there are more revisions to include in the Delta-

file.

a. If yes, increment ActualRev and loop back to step 4.

b. If no, save and close the Delta-file.

41

Below is an algorithm for rolling back to an earlier revision in the database, this answers

a part of problem P7.

1. User chooses a project and a revision to roll back to in the interface

program.

2. System sets variable ActualRev to latest revision in the specified

project.

3. System checks if there is an open modification in the specified

project; if so, abort this algorithm and the system gives the user a

message of the abortion.

4. System locks the project in the approved section by setting ModNr to -

1 in all relevant tables. If a lock is found during this process, move

to step 4a, otherwise move to step 5.

a. If locks were set, remove them (the locking procedure is

expected to be run from the interface program and thereby have

the same locking order, this means that simultaneous roll backs

does not affect each other, the latter will back off).

b. System gives the user a message that a change have been started

in the project and that a roll back is not possible.

c. System ends this algorithm.

5. System checks if any data have been deleted during the revision

(ActualRev + 1) in the revised section (this is done for all project

related data). If yes, move to step 5a otherwise move to step 6.

a. System copies the deleted data to the approved section and set

ModNr to -1 and set RevNr to AppRevNr (from revised section).

b. Delete data in revised section.

6. System checks through the approved section for the actual revision

(loop until all project related data is checked). If found, move to

step 6a otherwise move to step 7.

a. System loops through the revised section and checks for the

latest revision of the actual data. If found, move to step 6b

otherwise move to step 6c (the latter means that the data were

new and shall be removed from the database).

b. Data was found in revised section (deleted or updated data)

i. System deletes the data in the approved section.

ii. System copies the data to the approved section, set

ModNr to -1 and RevNr to AppRevNr (from revised

section).

iii. Delete data in revised section.

iv. Move to 6.

c. Data was not found in revised section (new data)

i. System deletes the data in the approved section.

42

ii. Move to 6.

7. System checks if the required roll back revision + 1 is lower than

ActualRev, decrement ActualRev and move to step 5.

8. System notifies user that the database has been successfully rolled

back.

This change management solution is contribution C2.

4.3 ICD Data Consistency

Each ICD is on system level, so an export of ICD data requires that the user specify a

system for the ICD export in the user interface program. The solution to export only

applicable interface data to an ICD Word document means that we need a pathway to the

document. The ICD‟s must contain bookmarks to identify where the tables with interface

data shall be inserted.

In order to handle tables in Word, the C# code in the user interface program has been

inspired by the web sites [37] and [38].

There are four kinds of tables that shall be inserted in the document: dataset tables,

dataset identifiers table, connection point definitions table, and network connection

attributes table; the bookmarks for these tables shall be in the format bmDatsId, dsDevtId,

cpDevtId, and ncDevtId. For example, insert bookmark bm2407001 where the dataset

DISDiag shall be inserted in the document. When replacing a table with a new one, we need

a bookmark to mark the end of the table, therefore bookmarks in the format bmDatsIdEnd,

dsDevtIdEnd, cpDevtIdEnd, and ncDevtIdEnd must be placed in the ICD document one

paragraph after the original bookmark.

To identify all datasets belonging to a certain system (DeviceType), we need to list all

instances of the entity ConnectionPoint that have the specified system; then all datasets

are listed as well. The user interface program will extract information of datasets and device

type from the database to create a list of bookmarks. This list will be used when inserting and

replacing tables in the ICD document.

43

Chapter 5

RESULT

The implementation result based on the change management, ICD data consistency, and

user interface is presented in this chapter; these results are related to the contributions C2,

C3, and C4 respectively. This chapter is divided into graphical user interface program,

database schema, and testing as change management and ICD data consistency are handled

in all three of them.

5.1 Graphical User Interface Program

A graphical user interface program that communicates with the database has been

created in order to demonstrate the solutions of this thesis. The tool can also act as a base

for further development when dealing with interface data. The issues addressed in problem

P6, are not answered properly in this thesis; it should be a further investigation of what

functionalities and expectations the users have from the program. This GUI is contribution

C4.

Menu and Status Field

The graphical user interface program needs to handle system administration and

interface data. The user interface is divided in several parts in order to get intuitive and easy

to use. The menu has the choices Project, User, Change, Data, Export, and Help. The status

field shows if the user has logged in to a project and/or a modification. Figure 19 shows the

start page of the program after a login process.

Figure 19. Graphical user interface

44

Project

In this drop-down menu, the choices New, Open, Modify, Copy, and Delete can be

selected.

The choice New project creates a new project where the user inserts project name and

customer; only users with DB Admin role will be able to do this, this choice is disabled for

other users.

The choice Open project is enabled for all users and a drop-down choice with all

projects in the database appears; when clicking at the OK button, the selected project name

will appear at the status field.

The choice Modify project is only enabled for users with DB Admin role; they can

modify a projects name or customer.

The choices Copy and Delete a project are not programmed yet.

User

In this drop-down menu a new user can be created and an existing user can be modified

regarding his roles and privileges. Only DB Admin users can access this menu.

Change

In the Change drop-down menu, the handling of change management is done. A project

must have been chosen before this menu is enabled. See Figure 20 for the Change drop-

down menu.

To create a new modification, go to Modification/New and a new form appears with a

text field for input of revision text and the buttons OK and Cancel. To continue working on

an existing modification, just choose Modification/Open. In both these cases, the

modification number will appear at the status field.

To approve a modification, choose Approval; this is for users with approval privileges in

the specified project.

If Revision menu is selected, a list of all approved revisions in current project appears;

when selecting one revision, the revision text appears.

Figure 20. Change menu

Data

In the Data drop-down menu, two main choices appear: General and Project.

In General, all data that is not project related such as BusType, DataSet, DataType,

DeviceType, IpcomParameter, MdSendType, ReqLevel, and ValueType can be chosen and

manipulated if the user has DB Admin role.

45

In Project, all project related data such as Bus, Car, ConnectionPoint, Consist, Data,

Device, InstanceOfDevice, IpTelegram, MdReceiveParamater, MdSendParamater, MvbPort,

PdReceiveParameter, PdSendParameter, SubStructure, and Value can be shown and

manipulated if the user has engineer privileges in the current project.

Export

In the Export drop-down menu, it shall be possible to export documents such as ICD,

XML, Delta, and header files. This functionality is not yet programmed into the program,

even though the ICD function is tested.

Help

The Help menu is not implemented yet; it is intended for helping users with

explanations of the program.

Programming

The programming environment MS Visual C# has been used to create the user interface

program, see web sites [18] and [19] for C# code references. The user interface program calls

stored procedures in the database if some kind of data manipulation is implemented; stored

procedures are used because it is easier to change code at one place if necessary (if several

programs use the same database) and ensure business rules. When reading data from the

database, the SQL command SELECT is used to retrieve the information.

Example of how to call the stored procedure createModification from the C# program:

public int createModification(int projId, int userId, string revisionText)
 {
 /* Initiate the stored procedure CreateUser */
 SqlCommand cmd = new SqlCommand("CreateModification", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 /* Initialize paramaters to the stored procedure */
 cmd.Parameters.Add("@Return_Value", SqlDbType.Int);
 cmd.Parameters[0].Direction = ParameterDirection.ReturnValue;

 cmd.Parameters.Add(new SqlParameter("@ProjId", SqlDbType.Int));
 cmd.Parameters[1].Value = projId;

 cmd.Parameters.Add(new SqlParameter("@UserId", SqlDbType.Int));
 cmd.Parameters[2].Value = userId;

 string dt;
 DateTime date = DateTime.Now;
 dt = date.ToShortDateString(); /* display format: 2011-03-09 */
 cmd.Parameters.Add(new SqlParameter("@ModDate", SqlDbType.Date));
 cmd.Parameters[3].Value = dt;

cmd.Parameters.Add(new SqlParameter("@ModRevisionText", SqlDbType.VarChar,
300));

 cmd.Parameters[4].Value = revisionText;

 /* Execute stored procedure */
 cmd.ExecuteNonQuery();

 /* Check if new modification was inserted properly in DB */
 int retVal = Int32.Parse(cmd.Parameters[0].Value.ToString());

 /* Returns modification nr if success, otherwise 0 (failure) */
 return retVal;

}

46

5.2 Database Schema

Programming

To ensure business rules, for example change management, a trigger and stored

procedures are used. A trigger fires when a user tries to manipulate data in the database (if a

trigger is set); a stored procedure is called from an application program.

Stored Procedures

MS SQL SERVER 2008R2 does not allow that an old identification number is re-used

for the data tables in the modified section. Re-use of old identification numbers are

necessary when an update or deletion of data rows occurs. To solve this issue, the command

IDENTITY_INSERT is used. Below is an example code for table ModCar with identification

CarId:

SET IDENTITY_INSERT [InterfaceData].[dbo].[ModCar]

ON INSERT [InterfaceData].[dbo].[ModCar]

 ([CarId], [ProjId], [ConId], [CarName],

 [CarMaskIndex], [CarInstance], [ModNr], [CarFlag])

 VALUES (4, 1, 1, 'T2', 255, 2, 3, 'U')

SET IDENTITY_INSERT [InterfaceData].[dbo].[ModCar] OFF

In the change process, the stored procedures Createmodification and ApproveRevsion

are called from the user interface program when creating a new modification and approve a

modification.

Every project related data table in the database have 6 stored procedures; they are

ModifyNew, ModifyUpdate, ModifyDelete, ApproveNew, ApproveUpdate, and

ApproveDelete. For example if table Car shall be added with a new car, then the stored

procedure ModifyNewCar is called from the interface program when a modification has

been created and a user chose to add a new row; a new row is added in table ModCar with

flag set to „N‟. When the modification is approved in the interface program, the stored

procedure ApproveNewCar is called; then the table AppCar gets the new row with current

revision number.

For handling non-project related data in the database, the stored procedures

CreateProject, UpdateProject, CreateUser, UpdateUser, and UpdatePriviliges are called.

These procesures ensures that only users with appropriate user role (DB Admin) are able to

do these changes. Example code for CreateProject which shows that user must have role DB

Admin and that every users get read priviliges in the new project:

 CREATE PROCEDURE [dbo].[CreateProject]
 @ProjName varchar (30),
 @ProjCustomer varchar (50),
 @UserId int
 AS
 /* Check that ProjName is not null */
 IF (@ProjName IS NULL)
 BEGIN
 RETURN 0
 END

 /* Check that UserId is valid */
 IF NOT EXISTS (SELECT * FROM Users WHERE UserId = @UserId)
 BEGIN
 RETURN 0
 END

 /* Check that User has the role DBAdmin */
 DECLARE @roleDBAdmin int

47

 SET @roleDBAdmin = (SELECT RolId FROM Users WHERE UserId = @UserId)
 IF NOT (@roleDBAdmin = (SELECT RolId FROM Role WHERE RolName =
'DBAdmin'))
 BEGIN
 RETURN 0
 END

 /* Create new row in table Project with a new project */
 INSERT INTO Project
 ([ProjName],
 [ProjCustomer])
 VALUES (@ProjName, @ProjCustomer)

 /* Get the latest inserted ProjId */
 DECLARE @projId int
 SET @projId = (SELECT IDENT_CURRENT ('Project'))

 /* All users get read privileges */
 DECLARE @tempUserId int
 DECLARE @rowNum int
 DECLARE UserList CURSOR FOR
 SELECT UserID FROM Users
 OPEN UserList
 FETCH NEXT FROM UserList
 INTO @tempUserId
 SET @RowNum = 0
 WHILE @@FETCH_STATUS = 0
 BEGIN
 SET @RowNum = @RowNum + 1
 INSERT INTO Priviliges
 ([UserID],
 [ProjId],
 [PriRead],
 [PriModify],
 [PriApprove])
 VALUES (@tempUserID, @projId, 1, 0, 0)
 FETCH NEXT FROM UserList
 INTO @tempUserId
 END
 CLOSE UserList
 DEALLOCATE UserList

 /* Creator gets the privileges modify and approve */
 UPDATE Privileges
 SET PriModify = 1,
 PriApprove = 1
 WHERE UserId = @UserId AND ProjId = @projId

 RETURN 1

All stored procedures return 0 if failure and a poitive integer if success (usually 1), this

to inform a user/program if the database was updated or not.

Trigger

The trigger Trigger_Dataset_Upd fires instead of a normal update command for table

DataSet, it checks if the current dataset is used in either of the tables

AppConnectionPoint, AppSubstructure, or AppData. If so, the update is refused and

the command is rolled back. This ensures that it is not possible to delete a dataset that is in

use.

48

Chapter 6

CONCLUSION AND DISCUSSION

The main problems which this thesis has solved: the change management, ICD data

consistency, user concurrency, graphical user interface, and data security are discussed with

conclusions in this chapter.

6.1 Change Management

To keep track of what changes that have been made in a project, and to roll back to an

earlier state, revision control was needed. It was surprisingly difficult to retrieve information

about revision control of databases; most articles discussed version control in the code

implementation process when creating database solutions but not revision control of the

data itself. Even database literature does not mention this subject, at least not what I have

found.

Fortunately, there was a revision control solution in another database at Bombardier

which proved to be sufficient in our case. Even though the revision control solution was not

copied directly, the model (Wire model) was implemented with slight changes; it has worked

within expectations. The model‟s change process with three sections which contains project

related data (data that needs revision control) in different phases depending on change

status is easy to grasp and understand. The downside with this solution is that there are a lot

of tables, as every project related relation (table) occurs in three sections with slightly

different attributes for the change management; it takes some time to implement all tables

with corresponding stored procedures.

The finance model could probably have worked in our case, but the database solution

with the roll back and delta revision algorithms would have been much more difficult to

implement than the corresponding algorithms in the wire model.

The copy model was in reality not an alternative as new tables would be created as soon

as a change occurs, this goes against the database theory which states that all tables is

created once; and the database schema would grow very fast as changes occurs quite often

and the database will hold a lot of projects.

6.2 ICD Data Consistency

The problem (P3) with storing the same data at two different places, in a word

document and in a database in this case, is that inconsistency arises as soon as one storage

place is updated and not the other, or if they are updated differently. The proposed solution

is to let the ICD data in the database be the master data and derive information from DB to

the ICD word documents, then there is no confusion of what data is correct if they differ.

This, along with a proper work process that updates the word documents on a regular basis,

is the solution to problem P3.

49

The ICD word documents are sent to internal and external subcontractors, so they are

official Bombardier documents with unique document numbers and other metadata; the lack

of proper administration for these documents should be solved regardless if Bombardier

chose to use this thesis solution or continue with GDB tool.

6.3 User Concurrency

The MS Server 2008R2 DBMS permits several users to be logged in to the database, and

the user interface program allows users to login to the same project. The problem with data

inconsistency if several users tries to change the same data (problem P4) is solved with the

change management solution, as users locks data rows that shall be changed and then copy

it to the modify section for manipulation. This way, only one user at a time can do changes to

a specific data row and thereby avoid inconsistency and let other users change other data

rows in the same project.

It could be the case that a user change data in table A that is dependent of data in table

B, and another user has locked that data in table B. Then one of the users must roll back his

change so the lock disappears; this is not implemented in the solution. This problem is

probably very rare and could be solved with manual manipulation in the database.

6.4 Graphical User Interface

The graphical user interface was mainly developed to demonstrate and test the database

solution presented in this thesis. Even though, the program has done its purpose; there are

some improvements to do in the program, such as add some functionality and get a better

looking design. And, of course, the intended users of the program should test it and give

comments for improvements.

6.5 Data Security

If data in the database contains errors or inconsistency for some reason, rolling back to

a fault-free revision is a requirement from Bombardier (see MR-22 in appendix A). An

algorithm for rolling back the database has been developed but not implemented. The

algorithm is quite straight forward and benefits from the clear structure of the change

management model with data separated in three sections depending on status.

The problem with unauthorized access to the database is not solved in this thesis, but

the MS SQL Server 2008R2 DBMS supports login authentication; either Windows

authentication mode or Mixed mode where the first is recommended by Microsoft, see [39]

for further details.

50

Chapter 7

FUTURE WORK

To develop a new database design and a user interface program is an extensive work, which

ranges from producing requirement specifications, designing a solution, and testing that all

works as intended. Even though this thesis has gone through these areas, there is still a lot of

work left before the database solution is ready to be implemented at Bombardier.

This chapter raises the most important issues that remain to be solved and implemented.

7.1 Database

Data security

A strategy for preventing data losses in case of disc failures or other unexpected events

should be prepared. It could be a backup of data on a regular basis and/or redundant discs.

Keeping log files for tracking events and changes in the database is also a good strategy, then

eventual errors or data losses can be retrieved.

7.2 User Interface Program

Some functionality are missing in the current user interface program, they are listed

below as a recommendation to implement.

Login

Bombardier uses network logins, this login can probably be synchronized with the login

to the user interface program (and thereby to the database); this has not been investigated in

this thesis. The database is prepared as the user name is restricted to 8 characters according

to Bombardiers login naming convention.

Copy and Delete Project

The functionality to copy and delete a project should be programmed, especially copy a

project as it is time saving in a new project to copy a similar one and then make changes.

Export

The program shall be able to export several kinds of documents such as header files,

XML files, Delta document, and map ICD data into existing ICD word documents. The latter

functionality is tested but not implemented into the user interface program.

XML data shall be exported per system (device type), template files (txt) are needed

which shall be built up with all necessary tags. See appendix B for an example of a XML file

extracted from GDB tool. The web sites [16], [17], [35], and [36] show examples of how to

retrieve information from a database and create XML files by using stored procedures.

51

A Delta document should be implemented according to the algorithm in Change

Management.

Help

Write explanations of the program functionality and implement into the help menu, this

for helping users understand all functionalities.

User Manual

If Bombardier decides to implement this database solution, a user manual is

recommended to explain the program and act as guidance for the users.

7.3 Work Process regarding ICD Data

Assuming that ICD data are stored in the DB, the ICD word documents needs to be

updated regularly to contain correct data. They should be updated either every time ICD data

in DB are changed or in some stages in the development process. This is outside the scope of

this thesis but should be considered if this database solution is implemented.

7.4 Testing

A good testing strategy is very extensive and is not applicable in this thesis due to

restricted time and resources. Even though, the main issues of this thesis have been tested

such as mapping ICD data from the DB to the ICD word documents, and that the change

management; they should be tested further to ensure correctness when users do unexpected

things such as writing data in the wrong format or similar.

In this chapter some functions that are not implemented yet, and thereby not tested, are

listed.

Delta document

Check that output from a delta document is correct, both two succeeding and two non-

succeeding revisions should be tested.

 Copy a project

Check that copy a project works as intended, it shall copy the project data but reset

flags, revision indexes. Only data from the approved section shall be copied, not from the

modified or revised sections.

Delete a project

Test that it is only possible to delete projects which has no revisions, this because to

prevent old projects to be deleted as maintenance may use this information in the future.

52

Chapter 8

REFERENCES

[1] Hans-Juergen Roska, General Interface Control Document, (2006-12-01) Doc ID-
number 005717, revision 01

[2] Thomas Padron-McCarthy and Tore Risch, Databasteknik, Studentlitteratur (2005)
ISBN 91-44-04449-6

[3] Benham Beyraghi, Software User Manual Generic Database Management Software,
(2008-10-28) Doc ID-number 3EGH000048-9041, revision _H

[4] Inger Bolin, Project Display ICD Delhi Metro RS2 (DM2), (2008-11-18) Doc ID-number
3EST000216-1691, revision _B

[5] P Brander, MITRAC CC IPT-COM 3.8, IPTCom User’s Manual, (2009-12-17) Doc ID-
number 3EST000213-8088, revision _V

[6] Peter Sandberg, Bombardier TCMS, IPT Wire Protocol, (2007-06-28) Doc ID-number
3EST000211-9664, revision _C

[7] Comparison of databases, Wikipedia
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_syste
ms, (2010-11-23)

[8] Michael Blaha, Referential Integrity Is Important For Databases,
http://odbms.org/download/007.02%20Blaha%20Referential%20Integrity%20Is%20I
mportant%20For%20Databases%20November%202005.PDF (2010-11-23)

[9] MySQL Technical Specifications
http://www.mysql.com/products/enterprise/techspec.html (2010-11-24)

 [10] MySQL 5.1 Reference Manual http://dev.mysql.com/doc/refman/5.1/en/index.html
(2010-11-24)

[11] MySQL Storage Engines http://www.softwareprojects.com/resources/programming/t-
mysql-storage-engines-1470.html (2010-11-24)

[12] MS Access, Wikipedia http://en.wikipedia.org/wiki/Microsoft_Access (2010-11-24)

[13] MS SQL Server http://en.wikipedia.org/wiki/Ms_sql_server (2010-11-24)

[14] MSDN Database Engine http://msdn.microsoft.com/en-
us/library/ms187875(v=SQL.100).aspx (2010-11-24)

[15] Mimer http://www.mimer.com/ (2010-11-24)

[16] Database journal, Export XML files from MS SQL Server
http://www.databasejournal.com/features/mssql/article.php/2196461/XML-and-SQL-
2000-Part-1.htm (2010-11-29)

[17] MDID Wiki, How to export data from SQL Server 2000 to XML
http://mdid.org/mdidwiki/index.php?title=How_to_export_data_from_SQL_Server_
2000_to_XML (2010-11-29)

http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://odbms.org/download/007.02%20Blaha%20Referential%20Integrity%20Is%20Important%20For%20Databases%20November%202005.PDF
http://odbms.org/download/007.02%20Blaha%20Referential%20Integrity%20Is%20Important%20For%20Databases%20November%202005.PDF
http://www.mysql.com/products/enterprise/techspec.html
http://dev.mysql.com/doc/refman/5.1/en/index.html
http://www.softwareprojects.com/resources/programming/t-mysql-storage-engines-1470.html
http://www.softwareprojects.com/resources/programming/t-mysql-storage-engines-1470.html
http://en.wikipedia.org/wiki/Microsoft_Access
http://en.wikipedia.org/wiki/Ms_sql_server
http://msdn.microsoft.com/en-us/library/ms187875(v=SQL.100).aspx
http://msdn.microsoft.com/en-us/library/ms187875(v=SQL.100).aspx
http://www.mimer.com/
http://www.databasejournal.com/features/mssql/article.php/2196461/XML-and-SQL-2000-Part-1.htm
http://www.databasejournal.com/features/mssql/article.php/2196461/XML-and-SQL-2000-Part-1.htm
http://mdid.org/mdidwiki/index.php?title=How_to_export_data_from_SQL_Server_2000_to_XML
http://mdid.org/mdidwiki/index.php?title=How_to_export_data_from_SQL_Server_2000_to_XML

53

[18] MSDN, Visual C# Language
http://msdn.microsoft.com/en-us/library/aa287558(v=VS.71).aspx (2010-11-29)

[19] Programmers Heaven, C# eBook
http://www.programmersheaven.com/ebooks/csharp_ebook.pdf (2010-11-29)

[20] MSDN, ODBC Programmer‟s Reference
http://msdn.microsoft.com/en-us/library/ms714177(VS.85).aspx (2010-11-29)

[21] Oracle, ODBC 2.0 Programmer‟s Manual
http://download.oracle.com/otn_hosted_doc/timesten/706/TimesTen-
Documentation/ms.odbc.pdf (2010-11-29)

[22] SQL team, An Introduction to Triggers
http://www.sqlteam.com/article/an-introduction-to-triggers-part-i (2010-11-29)

[23] MSDN, Exploring SQL Server Triggers
http://msdn.microsoft.com/en-us/magazine/cc164047.aspx (2010-11-29)

[24] Thomas Connolly and Carolyn Begg, Database Systems – A Practical Approach to
Design, Implementation, and Management, Addison-Wesley, Fifth edition (2010)
ISBN-13: 978-0-321-52306-8

[25] MSDN Data Types (Transact-SQL)
http://msdn.microsoft.com/en-us/library/ms187752(SQL.100).aspx (2010-12-10)

[26] Wikipedia Database Schema
http://en.wikipedia.org/wiki/Database_schema (2010-12-30)

[27] Wikipedia Hierarchical database model
http://en.wikipedia.org/wiki/Hierarchical_database_model (2011-02-03)

[28] Wikipedia Charles Bachman
http://en.wikipedia.org/wiki/Charles_Bachman (2011-02-03)

[29] Wikipedia Network model
http://en.wikipedia.org/wiki/Network_database (2011-02-03)

[30] Wikipedia Object-oriented model
http://en.wikipedia.org/wiki/Database_model (2011-02-03)

[31] Wikipedia Edgar Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd (2011-02-03)

[32] Wikipedia Object-oriented database
http://en.wikipedia.org/wiki/Object_database (2011-02-08)

[33] Lars Arnmark, Produktansvar, åtaganden, (2000-11-24) Doc ID-number 3EST 114-67

[34] Wikipedia Concurrency control
http://en.wikipedia.org/wiki/Concurrency_control (2011-03-16)

[35] SQLXML
http://sqlxml.org/faqs.aspx?faq=29 (2011-03-18)

[36] Perfect XML
http://www.perfectxml.com/Articles/XML/ExportSQLXML.asp (2011-03-18)

[37] How to automate Microsoft Word to create a new document by using Visual C#
http://support.microsoft.com/default.aspx?scid=kb;en-us;316384&Product=vcSnet
(2011-03-18)

[38] Walkthrough: Building a Word Document Using SQL Server Data
http://msdn.microsoft.com/en-us/library/aa192487(v=office.11).aspx (2011-03-18)

[39] Authentication modes
http://msdn.microsoft.com/en-us/library/aa905171(v=sql.80).aspx (2011-03-18)

http://msdn.microsoft.com/en-us/library/aa287558(v=VS.71).aspx
http://www.programmersheaven.com/ebooks/csharp_ebook.pdf
http://msdn.microsoft.com/en-us/library/ms714177(VS.85).aspx
http://download.oracle.com/otn_hosted_doc/timesten/706/TimesTen-Documentation/ms.odbc.pdf
http://download.oracle.com/otn_hosted_doc/timesten/706/TimesTen-Documentation/ms.odbc.pdf
http://www.sqlteam.com/article/an-introduction-to-triggers-part-i
http://msdn.microsoft.com/en-us/magazine/cc164047.aspx
http://msdn.microsoft.com/en-us/library/ms187752(SQL.100).aspx
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Hierarchical_database_model
http://en.wikipedia.org/wiki/Charles_Bachman
http://en.wikipedia.org/wiki/Network_database
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Concurrency_control
http://sqlxml.org/faqs.aspx?faq=29
http://www.perfectxml.com/Articles/XML/ExportSQLXML.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;316384&Product=vcSnet
http://msdn.microsoft.com/en-us/library/aa192487(v=office.11).aspx
http://msdn.microsoft.com/en-us/library/aa905171(v=sql.80).aspx

54

Appendix A - Requirements

Identity Priority Description

MR-11 1 ICD data consistency

Definition: The interface data contained in ICD documents and stored
in the database must be the same at all times. The database is the base

for ICD data and shall always have the latest revision.

Motivation: To avoid confusion of what data is correct and ensure that
the database contains the latest and correct information.

MR-12 1 Revision control

Definition: The database shall have revision control; this includes an
approval process in the tool. It shall be possible to get a difference

document that describes changes between two revisions.

Motivation: To check what changes have been made and why.

MR-13 1 Simultaneous and multiple access

Definition: It shall be possible to access the same project
simultaneously with multiple users but not modify the same data. All

users shall be able to check approved data at all times.

Motivation: With all interface data stored in a common database, a lot
of users need to access the database frequently in their daily work.

MR-14 1 Database management integrity constraints

Definition: The database management tool shall have limitations of
data values where appropriate and check that data represented in

different tables are equal; ensure that references to other tables exists;
and the primary and foreign keys must be unique.

Motivation: Ensure accuracy and consistency in the database

55

MR-21 2 Graphical interface

Definition: The system shall have a standard XP window format with
intuitive commands for handling project meta data, user meta data, and

interface data stored in the database.

Motivation: The XP window format is a well-known environment

MR-22 2 Roll back

Definition: It shall be possible to roll back the server to an earlier
revision.

Motivation: The database could be inconsistent or a user might have
done unrepairable errors.

MR-23 2 User roles

Definition: Users shall get a role depending on project and/or role in
the company. The roles are not defined but could be database

administrator, database engineer, database user, maintenance staff,
system engineer, and test engineer. The roles will have different

permissions in the database.

Motivation: Ensure that only authorised users have permissions to
alter data in the database.

MR-24 2 ACID transactions

Definition: The database management tool shall guarantee ACID
transactions.

Motivation: A transaction must be fulfilled in its whole or not at all
(atomicity); check all integrity conditions (consistency); transactions
shall be kept from each other, one transactionshall not affect another

(Isolation); when a transaction is realized, the changes shall be
preserved in DBMS (durability).

MR-25 2 Password protected databases

Definition: The database access shall be password protected.

Motivation: Ensure that authorized users have rights to do changes in
the databases and to be able to track who has open modifications or

approved changes.

56

MR-31 3 Secure storage

Defintion: The database files (server) shall be stored in such a way that
data is secured from a disc crash.

Motivation: If a storage place craches it shall be possible to retrieve
the database.

MR-32 3 Transaction log files

Definition: Keep transaction log files and store them seperately from
the database disks.

Motivation: To be able to restore changes for incomplete transactions.
And in a case of disk crash, restore all transactions that have been made
since the last backup copy ot the database(s). For performance issues, it

is good to have the log files seperated from the databases. Also,
modifications of the databases can be open for several days and the

proposed changes need to be stored in a log file during that time.

MR-33 3 Copy a project

Definition: It shall be possible to copy an old project to a new project.

Motivation: A project is often based on another project and the
differences are small, in those cases it is much faster to copy an old

project and then do the changes.

MR-34 3 Configurations

Definition: It shall be possible to have different configurations of cars,
i.e 7 or 8 cars in a consist.

Motivation: Trains can be shipped with different configurations.

57

Appendix B - XML File

A lot of telegrams and datasets were removed because this example only shows the

construction of the XML-file.

 <?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE cpu SYSTEM "mt-project_with_ip.dtd">

<cpu name="CCUC1" >

<comment><![CDATA[CCUC1]]></comment>

<!-- ICD_DB_VERSION 1.0.0.0 -->

<!-- DEVICE_INTERFACE_VERSION 1.0.0.788 -->

<!-- GDB_TOOL_VERSION 5.3.0 -->

<bus-interface-list>

<bus-interface type="ETH" address="0" name="ETH_1">

<!-- Instance Specific Telegrams -->

<!-- Generic Telegrams -->

 <telegram type="sink" data-set-id="2052001" size="132" name="iCCUCRclCtrl"

class="absolute" com-parameter-id="2" com-id="205200100">

 <md-receive-parameter source-uri="" />

 <md-send-parameter destination-uri="ia2.routectrl@grpCCUC.aCar.lCst" />

 </telegram>

 <telegram type="sink" data-set-id="2052002" size="96"

name="iCCUCAtcCtrlOp1" class="absolute" com-parameter-id="2" com-

id="205200200">

 <md-receive-parameter source-uri="" />

 <md-send-parameter destination-uri="ia2.dmrcpis@grpCCUC.aCar.lCst" />

 </telegram>

</bus-interface>

</bus-interface-list>

<data-set-list>

 <data-set data-set-id="1001" size="2400" data-id="5545">

 <!--RclBasic-->

 <process-variable name="IInfoValidity" type="UINT8" array-size="1"

unit="" scale="1.0" zero-offset="0" size="8" offset="0"/>

 <process-variable name="IRclLifeSign" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="8"/>

 <process-variable name="IRouteMode" type="UINT8" array-size="1" unit=""

scale="1.0" zero-offset="0" size="8" offset="40"/>

 <process-variable name="IDelayTime" type="INT16" array-size="1" unit=""

scale="1.0" zero-offset="0" size="16" offset="48"/>

 <process-variable name="IBTTripID" type="UINT32" array-size="1" unit=""

scale="1.0" zero-offset="0" size="32" offset="64"/>

 <process-variable name="INextBTTripID" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="96"/>

 <process-variable name="IOrigStationID" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="128"/>

 <process-variable name="IDestStationID" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="160"/>

 <process-variable name="ICloseStationID" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="192"/>

58

 <process-variable name="ISegmentID" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="224"/>

 <process-variable name="IPosOnSegment" type="UINT8" array-size="1"

unit="" scale="1.0" zero-offset="0" size="8" offset="256"/>

 <process-variable name="IPosOnTrip" type="UINT8" array-size="1" unit=""

scale="1.0" zero-offset="0" size="8" offset="264"/>

 <process-variable name="IDistPrevStation" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="272"/>

 <process-variable name="IProgressIndex" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="304"/>

 <process-variable name="IFDRS" type="UINT8" array-size="1" unit=""

scale="1.0" zero-offset="0" size="8" offset="336"/>

 <process-variable name="IRouteDBAnomaly" type="UINT8" array-size="1"

unit="" scale="1.0" zero-offset="0" size="8" offset="344"/>

 <process-variable name="ISDOWakeUp" type="UINT8" array-size="1" unit=""

scale="1.0" zero-offset="0" size="8" offset="352"/>

 <process-variable name="ITripType" type="CHAR8" array-size="16" unit=""

scale="1.0" zero-offset="0" size="8" offset="360"/>

 <process-variable name="IMaxProgIndex" type="UINT16" array-size="1"

unit="" scale="1.0" zero-offset="0" size="16" offset="488"/>

 <process-variable name="PrevStationInfo" type="1002" array-size="1"

unit="" scale="1.0" zero-offset="0" size="448" offset="504"/>

 <process-variable name="NextStationInfo" type="1003" array-size="1"

unit="" scale="1.0" zero-offset="0" size="448" offset="952"/>

 <process-variable name="ICustomerTripID2" type="UINT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="1400"/>

 <process-variable name="ISegmentUseIndex2" type="INT32" array-size="1"

unit="" scale="1.0" zero-offset="0" size="32" offset="1432"/>

 <process-variable name="RclCounters" type="1004" array-size="1" unit=""

scale="1.0" zero-offset="0" size="256" offset="1464"/>

 <process-variable name="IWayPoint" type="UINT32" array-size="1" unit=""

scale="1.0" zero-offset="0" size="32" offset="1720"/>

 <process-variable name="IRclMode" type="UINT8" array-size="1" unit=""

scale="1.0" zero-offset="0" size="8" offset="1752"/>

 <process-variable name="ILoopStatus" type="INT16" array-size="1"

unit="" scale="1.0" zero-offset="0" size="16" offset="1760"/>

 <process-variable name="ILoopCount" type="INT16" array-size="1" unit=""

scale="1.0" zero-offset="0" size="16" offset="1776"/>

 <process-variable name="Reserved17" type="UINT8" array-size="76"

unit="" scale="1.0" zero-offset="0" size="8" offset="1792"/>

 </data-set>

</data-set-list>

<com-parameter-list>

 <network-parameter-ip com-parameter-id= "1" qos= "5" name= "IP_1" time-to-

live= "64" />

 <network-parameter-ip com-parameter-id= "2" qos= "3" name= "IP_2" time-to-

live= "64" />

</com-parameter-list>

</cpu>

59

Appendix C - Header File

Example of a header file generated from GDB tool.

#ifndef DMRC_ICD_GENERATED_H

#define DMRC_ICD_GENERATED_H

/*

 This file is autogenerated.

 ICD_DB_VERSION 1.0.0.0

 DEVICE_INTERFACE_VERSION 1.0.0.738

 GDB_TOOL_VERSION 5.3.0

*/

 // ComID constants

#define COMID_ICCUCATCCTRLOP2 ((unsigned long int)205202100)

#define COMID_OCCUCREPMANANN ((unsigned long int)205913000)

#define COMID_OCCUCREPSELTRNNR ((unsigned long int)205917000)

#define COMID_OCCUCREPSTNSKIP ((unsigned long int)205917600)

#define COMID_ICCUCREQMANANN ((unsigned long int)205903000)

#define COMID_ICCUCREQOCCANN ((unsigned long int)205905000)

#define COMID_ICCUCREQSELTRNNR ((unsigned long int)205907000)

#define COMID_ICCUCREQSTNSKIP ((unsigned long int)205907600)

#define COMID_OCCUCSTATUS3 ((unsigned long int)205500300)

#define COMID_ICCUO_CCUC_I1 ((unsigned long int)205300100)

#define COMID_OCCUCSTATOPS ((unsigned long int)205300101)

#define COMID_ICCUCSTATOPS ((unsigned long int)205300101)

#define COMID_OPSCCTRLOP2 ((unsigned long int)251210100)

const unsigned long int PSCCTRLOP2_RESERVED1_SIZE = 13;

60

typedef struct {

 unsigned char CChimes;

 unsigned char CCommand;

 unsigned char CSide;

 unsigned char reserved1[PSCCTRLOP2_RESERVED1_SIZE];

} CPSCCtrlOp2;

const unsigned long int CCUO_CCUC_I1_ITEMPINSIDE_SIZE = 12;

const unsigned long int CCUO_CCUC_I1_IDOORSTATUS_SIZE = 96;

const unsigned long int CCUO_CCUC_I1_RESERVED1_SIZE = 61;

const unsigned long int CCUO_CCUC_I1_RESERVED2_SIZE = 60;

typedef struct {

 unsigned long int ILifeSignTCMS;

 unsigned short int IMCnt;

 unsigned long int IKmCnt;

 unsigned char IDoorsReleasedL;

 unsigned char IDoorsReleasedR;

 char ITempOutside;

 char ITempInside[CCUO_CCUC_I1_ITEMPINSIDE_SIZE];

 unsigned char IPSActive;

 unsigned char IDoorStatus[CCUO_CCUC_I1_IDOORSTATUS_SIZE];

 unsigned short int ITrainSpeed;

 unsigned char IDaylightTime;

 unsigned char ITimeZone;

 unsigned char IDriveDir;

 unsigned char ISimulationMode;

 unsigned char Reserved1[CCUO_CCUC_I1_RESERVED1_SIZE];

 unsigned char ICabActive;

 unsigned char INISStatus;

 unsigned char ILoadshedStatus;

 unsigned char ICarConfig;

 unsigned char IDoorClosed;

 unsigned char ILineID;

 unsigned char IRescueMode;

 unsigned char Reserved2[CCUO_CCUC_I1_RESERVED2_SIZE];

} CCCUO_CCUC_I1;

61

const unsigned long int CCUCSTATUS3_RESERVED2_SIZE = 4;

const unsigned long int CCUCSTATUS3_ICURRENTANNONC_SIZE = 255;

const unsigned long int CCUCSTATUS3_RESERVED3_SIZE = 44;

typedef struct {

 unsigned long int ITrainNr;

 unsigned char IEFDSetup;

 unsigned char ICurrentLine;

 unsigned long int IViaStationID;

 unsigned char reserved1;

 unsigned char INextPRMType;

 unsigned char reserved2[CCUCSTATUS3_RESERVED2_SIZE];

 unsigned char IManPRMStat;

 unsigned char IDisrBroadCast;

 unsigned char IStationSkipStatus;

 unsigned char ISuppressPRMStatus;

 unsigned char IPlLstDpMsgStat;

 unsigned char IPlLstManStat;

 unsigned char IPISMsgMode;

 unsigned char IPISTrgMode;

 unsigned char IInTunnel;

 unsigned char ICurrentAnnonc[CCUCSTATUS3_ICURRENTANNONC_SIZE];

 unsigned char reserved3[CCUCSTATUS3_RESERVED3_SIZE];

} CCCUCStatus3;

const unsigned long int CCUCREQSTNSKIP_RESERVED1_SIZE = 8;

typedef struct {

 unsigned char reserved1[CCUCREQSTNSKIP_RESERVED1_SIZE];

} CCCUCReqStnSkip;

const unsigned long int CCUCREQSELTRNNR_RESERVED1_SIZE = 124;

typedef struct {

 unsigned long int ITrainNr;

 unsigned char reserved1[CCUCREQSELTRNNR_RESERVED1_SIZE];

} CCCUCReqSelTrnNr;

62

const unsigned long int CCUCREQOCCANN_TEXT_SIZE = 400;

const unsigned long int CCUCREQOCCANN_RESERVED2_SIZE = 6;

typedef struct {

 unsigned char Command;

 unsigned char LanguageCode;

 unsigned char ColorCoding;

 unsigned char reserved1;

 unsigned short int PRM;

 unsigned char Text[CCUCREQOCCANN_TEXT_SIZE];

 unsigned char reserved2[CCUCREQOCCANN_RESERVED2_SIZE];

} CCCUCReqOccAnn;

const unsigned long int CCUCREQMANANN_RESERVED1_SIZE = 126;

typedef struct {

 unsigned char IAnnMode;

 unsigned char IModeCmd;

 unsigned char reserved1[CCUCREQMANANN_RESERVED1_SIZE];

} CCCUCReqManAnn;

const unsigned long int CCUCREPSTNSKIP_RESERVED1_SIZE = 31;

typedef struct {

 unsigned char IStatus;

 unsigned char reserved1[CCUCREPSTNSKIP_RESERVED1_SIZE];

} CCCUCRepStnSkip;

const unsigned long int CCUCREPSELTRNNR_RESERVED1_SIZE = 7;

typedef struct {

 unsigned char IStatus;

 unsigned char reserved1[CCUCREPSELTRNNR_RESERVED1_SIZE];

} CCCUCRepSelTrnNr;

const unsigned long int CCUCREPMANANN_RESERVED1_SIZE = 3;

typedef struct {

 unsigned char IStatus;

 unsigned char reserved1[CCUCREPMANANN_RESERVED1_SIZE];

} CCCUCRepManAnn;

63

const unsigned long int CCUCATCCTRLOP2_RESERVED1_SIZE = 38;

const unsigned long int CCUCATCCTRLOP2_RESERVED2_SIZE = 46;

typedef struct {

 unsigned char IPhase;

 unsigned char ISDO;

 unsigned long int ISDOPattern;

 unsigned char IDoorSide;

 unsigned char IDoorSidePattern;

 unsigned char IDirection;

 unsigned char IDirectionVal;

 unsigned char reserved1[CCUCATCCTRLOP2_RESERVED1_SIZE];

 unsigned char CKeepDoorClosed;

 unsigned char CFailedAutoStop;

 unsigned char reserved2[CCUCATCCTRLOP2_RESERVED2_SIZE];

} CCCUCAtcCtrlOp2;

#endif

64

Appendix D - Attributes for Administration Data Entities

A number in parenthesis after the attribute indicates that there is more information in

0Conceptual Design of how the attributes are built up or other useful information.

Entity name Attributes Description Data Type &

Length

Nulls

User UserId

UserName

Uniquely identifies a user

Name of user (same as

login name)

int identity(1,1)

char (8)

No

No

Role RolId

RolName

RolDescription

(2)

Uniquely identifies a role

Name of the role

(DBAdmin, Admin,

Viewer, or Engineer)

Description of the user role

int identity(1,1)

varchar(30)

varchar(200)

No

No

Yes

Project ProjId

ProjName

ProjCustomer

Uniquely identifies a

project

Name of project

Name of customer

int identity(1,1)

varchar(30)

varchar(50)

No

No

Yes

Privileges PriRead

PriModify

PriApprove

Read privileges for a user

in a project

Modification privileges for

a user in a project

Approval privileges for a

user in a project

bit(1)

bit(1)

bit(1)

No

No

No

Modification ModNr (1)

ModDate

ModRevision-

Text

Ascending number, unique

for each project

Date when modification

started

Revision text

int

date

varchar(300)

No

No

Yes

Revision RevNr (1)

RevDate

Ascending number, unique

for each project

Date for revision approval

int

date

No

No

65

Appendix E – Attributes for DB Data Entities

A number in parenthesis after the attribute indicates that there is more information in

Conceptual Design of how the attributes are built up or other useful information.

Entity name Attributes Description Data Type

 & Length

Nulls

InstanceOf

Device

InsId

InsLabel

InsIpHostId

InsMvbDevice-

Address (3)

InsIpRing-

SwitchId (3)

Uniquely identifies an

instance of device

A label of the instance of

device (same type of

device) connected to an IP

ring switch

A unique IP identity for a

device per consist and

project

Mvb address for the device

if it is attached to a MVB

bus

Identifies on which IP ring

a device is attached to

int identity(1,1)

varchar(10)

int

int

int

No

Yes

No

Yes

Yes

Car CarId

CarName

CarMaskIndex

CarInstance

Uniquely identifies a car

Name of the car

Mask index for the car for

unique communication

Identifies a car in a consist

and describes the order in

a consist

int identity(1,1)

varchar(20)

int

int

No

No

No

No

Consist ConId

ConName

Uniquely identifies a

consist

Name of the consist

int identity(1,1)

varchar(30)

No

No

Device DevId

DevDescription

DevLocation

DevName

Uniquely identifies a

device

Description of the device

Separate devices in a car

Name of the device

int identity(1,1)

varchar(300)

int

varchar(20)

No

Yes

Yes

No

66

DeviceType DevtId

DevtName

DevtVersion (9)

DevtRelease (9)

DevtUpdate (9)

DevtEvolution

(9)

DevtRelease-

Date

DevtRelease-

User

Uniquely identifies a

device type (system),

predefinied identity nr [1]

Name of the device type

Version of the device type

Release number of the

device type

Update number of the

device type

Evolution number of the

device type

Date of latest release

User who updates the

latest release in DB

int

varchar(20)

int

int

int

int

date

int

No

No

No

No

No

No

Yes

Yes

Bus BusId

BusName

Uniquely identifies a bus

Name of the bus

int identity(1,1)

varchar(20)

No

No

Bus Type BustId

BustName

BustVersion (9)

BustRelease (9)

DevtUpdate (9)

DevtEvolution

(9)

BustDate

Uniquely identifies a bus

type

Name of the bus type

Version number of the bus

type

Release number of the bus

type

Update number of the bus

type

Evolution number of the

bus type

Date of latest version

int identity(1,1)

varchar(20)

int

int

int

int

date

No

No

No

No

No

No

Yes

IpTelegram IptId

IptName

IptComId (4)

Uniquely identifies an IP

telegram

Name of the IP telegram

Identity for exchange

parameter

int identity(1,1)

varchar(30)

int

No

No

No

MvbPort MvbId

MvbPortNr (5)

MvbPortName

MvbPortSize

MvbLocation-

Uniquely identifies a MVB

port

Number of the MVB port

Name of the MVB port

Size of the MVB port

Offset to the MVB location

int identity(1,1)

int

varchar(30)

int

int

No

Yes

Yes

Yes

Yes

67

Offset

MvbCycleTime

MvbRedundant

MvbComId (4)

Cycle time in ms

Tells if the MVB port has

redundancy

Identity for exchange

parameter

int

bit(1)

int

Yes

No

No

DataSet DatsId (11)

DatsName

Uniquely identifies a

dataset within a project

Name of the dataset

int

varchar(30)

No

No

Sub

structure

SubId

SubName

SubIndex

SubParentId

SubDescription

Uniquely identifies a

substructure

Name of the substructure

Placement in the dataset

structure

Identification of parent

substructure

Description of the

substructure

int identity(1,1)

varchar(30)

int

int

varchar(300)

No

No

No

Yes

Yes

Data DataId

DataName

Data-

Description

DataReserved

DataFunction-

Description

DataUserType-

Mask

DataStructure-

Index

DataGenerate-

Level

DataArraySize

DataProject-

Selection

Uniquely identifies data

Name of the data

Description of the dataset

Tells if the current data

placement in the dataset is

reserved or not

Functional description of

the data

Unknown

Placement in the

(sub)structure

Unknown

Size of the data array

Tells if the data is included

in a project

int identity(1,1)

varchar(16)

varchar(300)

bit(1)

varchar(30)

varchar(10)

int

int

int

bit(1)

No

No

Yes

No

Yes

Yes

No

Yes

No

No

DataType DattId

DattName (12)

DattStructure-

Uniquely identifies data

type

Name of the data type

Size in bits (Com size)

int identity(1,1)

varchar(30)

int

No

No

Yes

68

TypeSize

DattCType

DattCSize

DattCppType

DattCppSize

DattXmlType

DattXmlSize

DattJavaType

DattJavaSize

DattIecType

DattIecSize

DattMitracType

DattMvbType

DattMvbSize

DattIpType

DattIpSize

C type name

C size in bits

CPP type name

CPP size in bits

XML type name

XML size in bits

Java type name

Java size in bits

IEC type name

IEC size in bits

Mitrac type name

MVB type name

MVB size in bits

IP type name

IP size in bits

varchar(30)

int

varchar(30)

int

varchar(30)

int

varchar(30)

int

varchar(30)

int

varchar(30)

varchar(30)

int

varchar(30)

int

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Value ValuId

ValuRange-

Descrete

ValuResolution

Range

ValuMin-

Discrete

ValuMaxRange

ValuInterpr-

ValueMin-

Discrete

ValuInterpr-

ValueMax-

Range

Valu-

Description

ValuInterpr-

Unit

Uniquely identifies value

Set to 1 if the value is

range. Set to 0 if value is

discrete

For range value only:

Resolution step for the

value

Minimum discrete value

Maximum range value

Minimum interpretation

discrete value

Maximum interpretation

range value

Description of the value

Interpretation unit of the

variables value

int identity(1,1)

bit(1)

int

int

int

int

int

varchar(300)

varchar(100)

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

ValueType ValtId

ValtName

Uniquely identifies value

type

Name of the value type

int identity(1,1)

varchar(30)

No

No

69

ReqLevel ReqId

ReqName (8)

ReqDescription

Uniquely identifies a

requirement level

Short name of the

requirement

Description of the

requirement level

int identity(1,1)

char(1)

varchar(100)

No

No

Yes

Connection

Point

CnpId

CnpName

CnpDirection

Uniquely identifies a

connection point

Name of the connection

point

Direction of the connection

point (sink or source)

int identity(1,1)

varchar(50)

bit(1)

No

No

No

IpCom

Parameter

IpcID

IpcName

IpcQOS (10)

IpcTTL (10)

IpcVLAN

IpcDescription

Uniquely identifies the IP

communication

parameters

Name of the IP Com

parameters

Quality of Service value for

the IP telegram

Time to live value for the

IP telegram

Virtual LAN value for the

IP telegram

Description of the IP com

parameter

int identity(1,1)

varchar(30)

uint32

uint32

int

varchar(100)

No

Yes

No

Yes

No

Yes

MdReceive

Parameter

MdrId

MdrSourceURI

Uniquely identifies the

message data receive

parameters

Identification of which

devices that are senders of

the IP telegram

int identity(1,1)

varchar(50)

No

Yes

MdSend

Parameter

MdspId

Mdsp-

DestinationURI

Uniquely identifies the

message data send

parameters

Identification of which

devices that are receivers

of the IP telegram

int identity(1,1)

varchar(50)

No

Yes

MdSend

Type

MdstId

MdspType-

Name

Uniquely identifies the

message data type

Name of the message data

type (Command, Request,

or Reply)

int identity(1,1)

varchar(30)

No

No

PdReceive PdrId Uniquely identifies the int identity(1,1) No

70

Parameter

PdrTimeOut-

Value

PdrValidity-

Behaviour (6)

PdrSourceURI

process data receive

parameters

Timeout value for the IP

telegram in ms

Behaviour when received

process data is invalid

Source URI for process

data

int

bit(1)

varchar(50)

Yes

Yes

Yes

PdSend

Parameter

PdsId

PdsDestination-

URI

PdsCycleTime

PdsRedundant

(7)

Uniquely identifies the

process data send

parameters

Identification of which

devices that are receivers

of the IP telegram

Cycle time in ms, describes

how often a process data

shall be transmitted

Tells if process data is

redundant or not

int identity(1,1)

varchar(50)

int

bit(1)

No

No

Yes

No

71

Appendix F – ER Diagrams

The DB admin ER diagram:

User

PK UserID

FK1 RolId

 UserName

Revision

PK RevId

 RevNr

FK1 ProjId

FK2 UserID

FK3 ModNr

 RevDate

Modification

PK ModNr

PK,FK2 ProjId

FK1 UserID

 ModDate

 ModRevisionText

Project

PK ProjId

 ProjName

 ProjCustomer

Privileges

PK,FK2 UserId

PK,FK1 ProjId

 PriRead

 PriModify

 PriApprove

Role

PK RolId

 RolName

 RolDescription

72

The DB data ER diagram:

73

Appendix G – Relations

Relation table in DBDL notation derived from the logical design.

Relations

User (UserId, UserName, RolId)

Primary Key UserId

Foreign key RolId references Role (RolId)

Role (RolId, RolName, RolDescription)

Primary Key RolId

Project (ProjId, ProjName, ProjCustomer)

Primary Key ProjId

Privileges (ProjId, UserId, PriRead, PriModify, PriApprove)

Primary Key ProjId, UserId

Foreign key ProjId references Project (ProjId)

Foreign key UserId references User (UserId)

Modification (ModNr, ProjId, ModDate, ModRevisionText, UserId)

Primary Key ModNr, ProjId

Foreign key ProjId references Project (ProjId)

Foreign key UserId references User (UserId)

Revision (RevNr, ProjId, RevDate, UserId, ModNr)

Primary Key RevNr, ProjId

Foreign key ProjId references Project (ProjId)

Foreign key UserId references User (UserId)

Foreign key ModNr references Modification (ModNr)

InstanceOfDevice (InsId, InsLabel, InsIpHostId, InsMvbDeviceAddress,

InsIpRingSwitchId, BusId, CarId, DevId, ProjId)

Primary Key InsId

Foreign key BusId references Bus (BusId)

Foreign key CarId references Car (CarId)

Foreign key DevId references Device (DevId)

Foreign key ProjId references Project (ProjId)

Car (CarId, CarName, CarMaskIndex, CarInstance, ConId, ProjId)

Primary Key CarId

Foreign key ConId references Consist (ConId)

Foreign key ProjId references Project (ProjId)

Consist (ConId, ConName, ProjId)

Primary Key ConId

Foreign key ProjId references Project (ProjId)

74

Device (DevId, DevDescription, DevLocation, DevName, DevtId, ProjId)

Primary Key DevId

Foreign key DevtId references DeviceType (DevtId)

Foreign key ProjId references Project (ProjId)

DeviceType (DevtId, DevtName, DevtVersion, DevtRelease, DevtDate)

Primary Key DevtId

Bus (BusId, BusName, BustId, ProjId)

Primary Key BusId

Foreign key BustId references BusType (BustId)

Foreign key ProjId references Project (ProjId)

BusType (BustId, BustName, BustVersion, BustRelease, BustDate)

Primary Key BustId

IpTelegram (IptId, IptName, IptComId, IpcId, MdrId, MdspId, PdrId, PdsId, InsId,

CnpId, ProjId)

Primary Key IptId

Foreign key IpcId references IpComParameter (IpcId)

Foreign key MdrId references MdReceiveParameter (MdrId)

Foreign key MdspId references MdSendParameter (MdspId)

Foreign key PdrId references PdReceiveParameter (PdrId)

Foreign key PdsId references PdSendParameter (PdsId)

Foreign key InsId references InstanceOfDevice (InsId)

Foreign key CnpId references ConnectionPoint (CnpId)

Foreign key ProjId references Project (ProjId)

MvbPort (MvbId, MvbPortNr, MvbPortName, MvbPortSize, MvbLocationOffset,

MvbCycleTime, MvbRedundant, MvbComId, InsId, CnpId, ProjId)

Primary Key MvbId

Foreign key InsId references InstanceOfDevice (InsID)

Foreign key CnpId references ConnectionPoint (CnpId)

Foreign key ProjId references Project (ProjId)

DataSet (DatsId, DatsName)

Primary Key DatsId

Substructure (SubId, SubName, SubIndex, SubDescription, DatsId, SubParentId, ProjId)

Primary Key SubId

Foreign key DatsId references DataSet (DatsId)

Foreign key SubParentId references Substructure (SubParentId)

Foreign key ProjId references Project (ProjId)

Data (DataId, DataName, DataDescription, DataReserved, DataFunctionDescription,

DataUserTypeMask, DataStructureIndex, DataGenerateLevel, DataArraySize,

DataProjectSelection, ReqId, DatsId, DattId, ProjId)

Primary Key DataId

Foreign key ReqId references ReqLevel (ReqId)

Foreign key DatsId references DataSet (DatsId)

Foreign key SubId references Substructure (SubId)

Foreign key DattId references DataType (DattId)

Foreign key ProjId references Project (ProjId)

DataType (DattId, DattName, DattStructureTypeSize, DattCType, DattCSize, DattCppType,

DattCppSize, DattXmlType, DattXmlSize, DattJavaType, DattJavaSize, DattIecType,

75

DattIecSize, DattMitracType, DattMvbType, DattMvbSize, DattIpType, DattIpSize)

Primary Key DattId

Value (ValuId, ValuRangeDescrete, ValuResolutionRange, ValuMinDiscrete,

ValuMaxRange, ValuInterprValueMinDiscrete, ValuInterprValueMaxRange,

ValuDescription, ValuInterprUnit, DataId, ValtId, ProjId)

Primary Key ValuId

Foreign key DataId references Data (DataId)

Foreign key ValtId references ValueType (ValtId)

Foreign key ProjId references Project (ProjId)

ValueType (ValtId, ValtName)

Primary Key ValtId

ReqLevel (ReqId, ReqName, ReqDescription)

Primary Key ReqId

ConnectionPoint (CnpId, CnpName, CnpDirection, DevtId, DatsId, ProjId)

Primary Key CnpId

Foreign key DevtId references DeviceType (DevtId)

Foreign key DatsId references Dataset (DatsId)

Foreign key ProjId references Project (ProjId)

IpComParameter (IpcId, IpcName, IpcQOS, IpcTTL, IpcVLAN)

Primary Key IpcId

MdReceiveParameter (MdrId, MdrSourceURI, ProjId)

Primary Key MdrId

Foreign key ProjId references Project (ProjId)

MdSendParameter (MdspId, MdspDestinationURI, MdstId, ProjId)

Primary Key MdspId

Foreign key MdstId references MdSendType (MdstId)

Foreign key ProjId references Project (ProjId)

MdSendType (MdstId, MdspTypeName)

Primary Key MdstId

PdReceiveParameter (PdrId, PdrTimeOutValue, PdrValidityBehaviour, PdrSourceURI,

ProjId)

Primary Key PdrId

Foreign key ProjId references Project (ProjId)

PdSendParameter (PdsId, PdsDestinationURI, PdsCycleTime, PdsRedundant, ProjId)

Primary Key PdsId

Foreign key ProjId references Project (ProjId)

