

Programmable 24-bit RGB LED Color Panel
via Bluetooth Technology

By

Albert M. Agonoy
Antonio Rufo R. Cuenco

Lillette C. Daplas
Mark Dale A. Nieveras

A Design Report Submitted to the School of Electrical Engineering,
Electronics and Communication Engineering, and Computer

Engineering in Partial Fulfilment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology
June 2009

ii

iii

ACKNOWLEDGEMENT

First of all, the greatest engineer, God, from whom all knowledge flows

and all guidance emanates from. This report would not have seen completion

without the help of the following people who have contributed insights and

guidance.

Our parents, for their continuing support and patience which has directed

us to the achievement of our goals. We are very thankful for having you around.

Our classmates, who have, in their own ways, contributed pieces of

information that led to the completion of this study. These individuals

participated in lengthy discussions regarding project issues and outcomes. Their

efforts are greatly appreciated.

Mr. Dela Paz, for providing valuable assistance. His efforts are gratefully

acknowledged.

And Finally, Mr. Linsangan for his concern to our group that we may be

able to finish the design. His patience and understanding is appreciated by the

group.

iv

TABLE OF CONTENTS

TITLE PAGE i

APPROVAL SHEET ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT viii

Chapter 1: DESIGN BACKGROUND AND INTRODUCTION 1

 Design Background and Introduction 1
 Statement of the Problem 2
 Objective of the Design 2
 Significance of the Design 3
 Conceptual Framework 4
 The Scope of Delimitation 5
 Definition of Terms 6

Chapter 2: REVIEW OF RELATED LITERATURE AND RELATED STUDIES 9

 RGB LEDs operate in extreme outdoor conditions 9
 Wireless Smart Remote Display System (WSRD) 10
 Pulse Width Modulation 11
 TPS62260LED Wireless Remote Control RGB LED design kit 13

Chapter 3: DESIGN METHODOLOGY AND PROCEDURES 14

 Design Methodology 14
 Design Procedure 14
 Project Design Flowchart 15

Data Collection 18
 Prototype Designing 20
 Design Procedure for Actual Design 22
 List of Materials 22
 Hardware Component 23

v

 Circuit Design 26
 Software Design 27

Using Pulse Width Modulation to generate multiple colors 28
 System Flowchart 30
 Prototype Development 32

Chapter 4: TESTING, PRESENTATION, AND INTERPRETATION OF DATA 34

Chapter 5: CONCLUSION AND RECOMMENDATION 45

 Conclusion 45
 Recommendation 46

References 47

Appendices 48

 APPENDIX A – User’s Manual 49

APPENDIX B – Diagram for Character Loading 53
APPENDIX C – Color Spectrum 54

 APPENDIX D – Data Sheet of Maxim 6971 55
APPENDIX E – Bluetooth Serial Converter UART Interface 57
APPENDIX F – Figures 59
APPENDIX G – Source Code 62

vi

LIST OF TABLES

Table 1: List of materials 22
Table 2: Character Display (Alphabet) 35
Table 3: Character Display (Numerical) 36
Table 4: Character Display (Special Characters) 36
Table 5: Expected values for color variation 37
Table 6: Actual values for color variation 38
Table 7: Expected values for colors that will be generated 39
Table 8: Actual values for colors that will be generated 41
Table 9: BT Chat Acknowledgement 42
Table 10: Point-to-point connection 43
Table 11: Actual values for BT Chat Acknowledgement 44
Table 12: Actual values for Point-to-point connection 44

vii

LIST OF FIGURES

Figure 1.1: Conceptual Framework 4
Figure 2.1: C.I.E Color Chart 12
Figure 2.2: TPS62260LED Wireless Remote Control design kit 13
Figure 3.1: Project Design Flowchart 15
Figure 3.2: Design Block Diagram 20
Figure 3.3: RGB Led Panel Set-up 23
Figure 3.4: PIC18F4550 Configuration 24
Figure 3.5: Bluetooth Serial Converter UART Interface 25
Figure 3.6: Three Terminal Voltage Regulator 25
Figure 3.7: Schematic Diagram 26
Figure 3.9: The PIC18F4550 Microcontroller controlling the Led drivers 28
Figure 3.10: System Flowchart 30
Figure 3.11: The Circuit Board 32
Figure 3.12: The RGB Led Panel 33

viii

ABSTRACT

 The design is all about the microcontroller-based RGB LED panel. This design
project is very useful as a form of advertisement for small businesses. The
design uses Bluetooth technology as its communication medium for the user
input device to the RGB Led panel. The main purpose of the design project is to
aid small businesses on their struggle against high cost advertisement
techniques. It uses microcontrollers and Led drivers to manipulate the colors
produced by the RGB Led panel. The design is powered by a 12 volts power
supply and is controlled by the PIC microcontroller. The design uses a Bluetooth
module to receive data coming from mobile phones, laptops and desktop
computers. The design can be interfaced with desktop personal computers via a
hyper-terminal that uses RJ11 phone jack.

Keywords: RGB LED, microcontroller, Bluetooth, wireless

1

Chapter 1

DESIGN BACKGROUND AND INTRODUCTION

Small Businesses are the major job providers in most economies. The

most common problem faced by small businesses is bankruptcy, this is often

caused by poor planning rather than economic conditions; Poor planning mainly

on product marketing, on how to advertise their products effectively. They can

try word of mouth, customer referrals, yellow pages directories and there are

other marketing techniques but are quite expensive like television, radio,

outdoor (roadside billboards), and internet marketing.

Another effective way to market a product is by digital signage. Digital

signage is not yet considered by most business development experts as a

marketing technique, because they are simply unaware of its value. Digital

signage costs less compared to that of broad-based media such as TV,

newspapers, radio and yellow pages, and it is usually a one-time investment.

Another thing to keep in mind is the longevity of the medium. All other media

stop as soon as you quit paying for it.

There is a need for a design of an RGB LED Panel via Bluetooth

Technology that has commercial features and can allow users to change their

messages in “real time”, to reach target audience without delay. This can result

to a more efficient and economical design that can allow low-budget

establishments or small businesses to purchase their own display systems.

2

Statement of the Problem

Marketing techniques help small businesses promote their products or

services to the general public. More exposure to the public means better

revenue. This allows small businesses to increase their revenue, thus, having an

opportunity to expand their market.

Small businesses spend a lot of money for the endorsement of their

products. Problems may arise using various marketing techniques such as,

signboards, tarpaulin, flyers, posters, etc. These marketing techniques are often

costly because of printing multiple posters, flyers, and tarpaulins, and will

eventually be trashed once the endorsement theme or event is done. Moreover,

the disposal of these materials may cause environmental hazards, due to most

of the materials are non-biodegradable.

Objective of the Design

The general objective of the design is to produce a LED panel that can

display user input messages in seven different colors using Bluetooth

technology. The design aims to:

1. Develop a low-cost Digital Signage that can be made using available

parts and materials locally.

2. Develop a compact Digital Signage design which aims to target a

specific audience.

3. Generate seven different colors that can be used as font colors for the

messages that will be displayed in the RGB LED Panel.

3

4. Use Pulse Width Modulation or PWM on four RGB LEDs so that it can

display multiple colors that the RGB LED can produce.

5. Improvise a software that can act as a bridge between the mobile

phone and the RGB LED Panel.

Significance of the Study

 The design has a global impact for the business owners. With the

implementation of this project, marketers and business owners will have access

to a cost-effective medium for advertising their products and services. It is not

only simple and easy to use but the product itself is also affordable even to the

small and medium Entrepreneurs. It would be a great advertising tool because it

allows users to change their messages in “real time”, to reach target audience

without delay.

 The design has an environmental impact. With the use of this design, it

can minimize the use of paper posters, flyer advertisements, tarpaulins and the

like which add to the amount of waste dumped. This can help in lessening the

garbage in the society.

4

The Conceptual Framework

Figure 1.1 – Conceptual Framework

 Figure 1.1 shows the RGB LED display system’s structure and

functionalities. It is divided into three stages, the Input, the Process, and the

Output of the system.

 Based on Figure 1.1, the user must input certain variables for the

prototype to operate. First, the user must input the data he or she wishes to be

displayed in the RGB Panel. This is done via Bluetooth Technology. The user

must have a software application called “Bluetooth Chat” installed in his mobile

phone for the data transmission to be successful. Lastly, when the message is

already displayed in the RGB LED display panel, the user can change the font

color of the displayed message.

 After the users input data, it can now go to its processing where the

Bluetooth Module converts the raw data that are sent via Bluetooth to its

corresponding ASCII characters. Then, the data are sent to the input port of the

microcontroller. The microcontroller processes the data and controls the Column

Input
- Data to be
displayed in the
Panel.

- Color of the
data when
displayed.

Process
- Convert input
data to ASCII.

- Define color to
be used.

Output
- Display the
ASCII
characters in
the RGB Panel
with the
corresponding
color.

5

and Row drivers of the design to which RGB LED lights up which color to emit.

After the Processing Stage, the user input message or text can now be seen in

the RGB LED Panel and displays the desired font color.

Scope and Delimitation

 Since it is the objective of the study to develop a cost-efficient Digital

Signage, the design consists of readily available components in the market. The

design is compact and easy to use with the proposed operation via Bluetooth

technology.

 The study also covers the implementation and assessment of the

prototype as to its usability in different conditions and the acceptance of both

the advertisers and the target audience.

 The Digital Signage displays text data that are sent thru Bluetooth. The

text input comprises of letters, numbers and special characters. The letters

displayed are all in upper case as a limitation on the matrix of the design.

 The display panel is 8x40 RGB LED matrix. The panel displays up to 240

characters per message. The design uses Bluetooth from mobile phones to send

messages which is advantageous because it doesn’t require money every time

the user sends a note or a message; much cheaper and much efficient

compared to SMS developed designs. The input device must have a software

called “Bluetooth Chat” installed. The “Bluetooth Chat” software acts as a bridge

between the input device and the RGB LED Panel. Sending data to the RGB LED

6

Panel via SMS or infrared messaging will not work. The limited distance between

the mobile phone and the design is up to 10 meters.

 With constraints such as timeframe and funding for the development of

the prototype, the project is limited only to a small design that can only display

text messages of varying colors, though it shall consist of components that can

display animated images.

Definition of Terms

LED - A light-emitting diode (LED) is a semiconductor diode that emits light

when an electrical current is applied in the forward direction of the device (Basic

Electronics, 2003).

RGB LED - is a LED (Light Emitting Diode) that emits three primary colors of red,

green and blue (Scherz, 2000).

Battery - is a device that changes chemical energy into electrical energy. It

consists of a number of connected units called cells which convert the energy

into electrical current (Bell, 2007).

Hardware - is the physical components of a computer system (Stalling, 2006).

Bluetooth® Technology - is a wireless protocol utilizing short-range

communications technology that facilitates data transmission over short

distances from fixed and mobile devices, creating wireless personal area

networks (Wireless and Cellular Telecommunications, 2006).

7

RGB Panel - Refers to the use of flat panel electronic display devices; in the

designs case, a collection of RGB LEDs (Trundle, 2001).

Microcontroller – Is a chip which has a computer processor with all its support

functions, memory, and input/output built into the device (Programming and

customizing the microcontroller, 1999).

PSOC - most closely resembles a microcontroller in usage, since the programs

written by a user execute code to interact with the user-specified peripheral

functions (Programming and customizing the microcontroller, 1999).

Pulse Width Modulation (PWM) – is a signal that involves the modulation of its

duty cycle, to either convey information over a communications channel or

control the amount of power sent to a load (Roddy, 1995).

PCB (Printed Circuit Board) - is used to mechanically support and electrically

connect electronic components using conductive pathways, or traces, etched

from copper sheets laminated onto a non-conductive substrate (PCB Design by

Chris Stahl).

Point-to-point communication - is a dedicated transmission link between two

devices (Introduction to Mobile Communications, 2007).

Input device – is any peripheral (piece of computer hardware equipment) used

to provide data and control signals to an information processing system such as

a computer (Miller, 2007).

8

Interface – is a device or program enabling a user to communicate with a

computer, or for connecting two items of hardware or software (Stone, Stone

and Jarett, 2005).

Power Supply – pertains to the voltage supply needed by the RGB LED display

system for operation (Gumhalter, 1986).

Wireless – It is operated by means of transmitted electromagnetic waves. No

wires or connectors to be used in sending or receiving data (Wireless and

Cellular Telecommunications, 2006).

9

Chapter 2

RELATED LITERATURE

In the development of this design, the group has explored different

materials to help them in the progress of their study. The group had consulted

online journals as well as publications that tackled and discussed the concepts to

be used in the advancement of the prototype.

The group’s design is a Programmable 24-bit RGB LED Color Panel via

Bluetooth Technology. The concept of the design is to display a message or a

note into an RGB LED panel where it can be modulated to produce any color

that is desired. Data Transferring is achieved through Bluetooth Technology.

RGB LEDs operate in extreme outdoor conditions

One of the important concerns that the group has considered is the

location of the RGB LED panel, on where it is to be used. According to Emily

Gleason, Avago Technologies developed a series of high-brightness SMT tri-color

LEDs that will enable designers to develop large indoor and outdoor electronic

displays that will provide sharper images and graphics. The series of high-

brightness RGB LEDs have been designed to operate in extreme outdoor

conditions. Typical applications include stadium scoreboards, billboards,

marquee signs and electronic variable messages signs.

The group’s design which is similar to the ‘electronic variable messages

signs’ knows the importance of choosing the suitable RGB LED for the project.

10

The group has considered the one that displays most visibility and can be seen

at stiff viewing angles; the RGB Quad-LED offers a viewing angle of 120° for

large display.

In this article, it stated that the RGB LED light output can be affected by

the PCB temperature where the LEDs are soldered and the elevation

temperatures will also result in further degradation of the light output. At 55

degrees Celsius, it would approximately cost the light output 15% - 20% lower.

It is helpful for the group’s design, so that if the design is to be installed, it

would be placed in a shaded area, away from the sun.

Wireless Smart Remote Display System (WSRD)

An innovation that is comparable to the group’s study is the Wireless

Smart Remote Display System developed by Scanning Devices Inc. last 2002.

This device was designed to provide fast digital readings in industrial and

process control situations where a remote display is required for operator

convenience.

According to the developer of WSRD, the system consists of:

• One base station - a Bluetooth enabled display linked to the data source

by either RS232 or 20 milliamp current loop connection. The base station

learns transmission characteristics, receives data from the source,

constructs messages, manages the Bluetooth Network and transmits

messages wirelessly to the remote displays.

11

• Up to 7 remote displays - any Scanning Devices Smart Remote Display

linked to the base station by Bluetooth wireless communications.

This system uses Bluetooth radio module power class 2 with specified

range of only 10 meters and a selection of bright yellow reflective

electromechanical and bright red LED displays that provides readability. The

group’s innovation to this design is the implementation of RGB LEDs in the

display which can be modulated to control the brightness and to provide

excellent readability anytime and anywhere. The 10 meter range can also be

extended using another version of bluetooth module that can transmit up to 100

meters.

Pulse Width Modulation

 According to A.K. Gelig of IEEE, Pulse-width modulation (PWM) of a signal

or power source involves the modulation of its duty cycle, to either convey

information over a communications channel or control the amount of power sent

to a load. In relation to the group’s design, changing the duty cycle of each

PWM signal can control the average current flowing through each RGB led

creating any color desired. In this project, the duty cycle is the ratio of ON or

OFF time to the total time the LED was ON and OFF.

 The mixing of colors from red, green and blue to produce any other color

is described in the CIE color chart (figure 2.1). The CIE chart is a triangular

wedge which shows all the colors the eye can see where the top left corner is

pure green, the bottom right is pure red and the bottom left is pure blue. The

12

numbers on the perimeter are corresponding wavelength (in nanometers) .The

inscribed triangle is a demonstration of actual color generated. For example,

let’s say our RGB LED can generate the following pure wavelengths: 700nm

(red), 545nm (green) and 400nm (blue). These would correspond to the points

plotted on the CIE chart and so we can make any of the colors inside the

triangle, but none outside of it.

Figure 2.1 – CIE Color Chart

 To change the duty cycle of the PMW signal to each of the LED, a

different period of delay should be set for the time it is ON and OFF. Consider a

LED set to ON state for 1ms and then set to OFF state for 3ms, since the LED is

OFF 3 times longer that it was ON the positive duty cycle is 25% of the time

(1ms / 4ms) and the negative duty cycle is 75% of the time (3ms / 4ms). This

makes the RGB LED produces other colors.

13

TPS62260LED Wireless Remote Control RGB LED design kit

Figure 2.2 - TPS62260LED Wireless Remote Control RGB LED design kit

This design related to the group’s study is a new product of Texas

Instruments Incorporated. According to the author, the TPS62260LED Board

controls the color and brightness of RGB LEDs or runs an automatic color light

animation program. It can utilize wireless communication by using eZ430-

RF2500 (RF development tool) which is plugged directly to the board. This

allows designers to create a lighting network of RF controlled lamps.

Using wireless technology same as ours, flexibility is obtained as well as

additional infrastructures are eliminated. Using Bluetooth will be more

convenient than RF as quoted by Bortman (2002), Bluetooth is a protocol that

allows short-range communication among computers, cell phones, printers,

keyboards, mice and other electronic device. There are a lot of Bluetooth-

enabled devices available that can be used to transmit signals.

14

CHAPTER 3

DESIGN METHODOLOGY AND PROCEDURES

Design Methodology

Constructive research was used as the design methodology. Constructive

research is perhaps the most common computer science research method. This

type of approach demands a form of validation that doesn’t need to be quite as

empirically based as in other types of research. The study was composed of

Gathering of the Data and Materials, Prototyping, Prototype Testing and

Validation. The design was patterned mainly on the existing LED matrices

available in the market. This design is a stand-alone microcontroller-based

prototype. The design procedure part provides further explanation of the

method, and a step by step procedure is discussed.

Design Procedure

The design as stated above follows the Constructive research method.

Figure 3.1 located on the next page further explains the step by step method.

The design was separated in three parts: the first part being the data gathering

and prototype designing, second is the hardware part and the last part is the

software design. The data gathering and designing involve the library research

and interviews the researchers have done. The researchers established a block

diagram to guide the whole process of designing. The block diagram serves as

a backbone of the design, as seen on Fig. 3.2. Fig. 3.2 shows the components to

be used. The hardware part basically involves building the circuit and this part

15

shows the interconnection of the components based on the design in the first

part. The software part of the design is the programming part. This involves the

proton programming to program the microcontroller. (See each respective part

for specific details).

Figure 3.1: Project Design Flowchart

16

1. Identify the problem – Before the start of the project the

researchers identified the problem. The researchers determined

the ineffective means of advertising. The existing types of

advertising like tarpaulins, flyers roadside billboards and other

types are more expensive, and moreover after the period of

time these materials will be thrown away and can cause

environmental hazards.

2. Set objectives and tasks – The researchers set the different

objectives and tasks and distributed equally to the members of

the group. Also, the scope and limitations were considered for

the outcome of the project.

3. Data Gathering – Data gathering for the project was done by

the researchers. Topics from the different fields of the project

have been studied. These were used during the start of the

project.

4. Designing – After gathering sufficient data for the project, the

researchers started the design of the project. The project

generally used RGB LED that would be manipulated using Pulse

width modulation to generate multiple colors. The design has

eight LED drivers, three of which would be the color drivers

namely Red, Green and Blue. The remaining drivers were RGB

LED column drivers. Then the program needed in which it

17

would be responsible for the manipulation of the colors and the

conversion of the raw data to its equivalent hexadecimal

values. Bluetooth technology will act as the communication

medium for the transfer of data from the mobile phone to the

LED Panel.

5. Prototype production – After the design was laid-out, the

researchers then proceeded on the production of the design.

The researchers first accomplished the hardware part before

proceeding to the software.

6. Testing – The prototype has undergone series of testing to

ensure the functionality of the design.

7. Interpret testing results and modification – After undergoing

series of testing, the researchers evaluated the test results

based on the objectives set already. If some malfunction

happened or some parts didn’t match the objectives, then it

would be modified further by reviewing steps 4 to 6 to satisfy

the objectives missed.

8. Conclusion and recommendation – After the designers

completed all the necessary tests and evaluations of the results,

the researchers made their findings and then gave the

necessary recommendation to further improve the design.

18

I. Data Collection

1. The first step the researchers had taken was to find the perfect RGB LED for

the RGB LED display panel that the design was going to use. The researchers

conducted a study about the different kinds of RGB LED.

After studying and comparing the RGB LEDs, the researchers were able to

identify which RGB LED was best suited for the design. The researchers

preferred to use RGB Quad-LED over Tri-LED because the former was easier to

manipulate. A typical RGB Tri-LED has its Red pin as Anode, the Blue and Green

pins as Cathode. While in RGB Quad-LED, the fourth pin could be an Anode or

Cathode wherein the color could be easily manipulated through the concept of

PWM.

2. Because the design implements communication via Bluetooth, the

researchers studied about the latest on Bluetooth technology. The device is

called Bluetooth module, a transceiver, will be used in receiving raw data from

the input device.

3. The group had identified a way to make sure that the Bluetooth connection

was secured because almost every mobile phone and laptop had an available

Bluetooth device. This part of the study is the most crucial part of the design.

After hours and hours of trial and error, the researchers decided to go with a

special program called “Bluetooth Chat” that was installed in the input device.

Also, point-to-point communication was implemented in the designs Bluetooth

19

communication so that only one user could access the RGB LED display panel at

a time.

4. The researchers focused on how to display characters in the RGB led panel.

This was done using the microcontroller that decoded the incoming data and

converted it to its hexadecimal value, then it was passed to the RGB led drivers.

The RGB led drivers controlled the RGB leds on which should lit on and what

color. The RGB led panel matrix was 8x40 where in each character segment was

8x8.

5. Furthermore, the researchers determined the effective principles that could

be used in order to control the desired output. The most suited idea that could

give the desired variable output was Pulse Width Modulation (PWM). This

principle was responsible for altering the duty cycle which depended on the

input current coming from the drivers. During the process of designing the

project, the researchers studied and applied methods and principles of Pulse

Width Modulation. Pulse Width Modulation was used in the development of the

design. PWM was responsible for the control of the current directed to the RGB

led, thus changing the colors that it displayed.

20

II. Prototype Designing

 Figure 3.2: Design Block Diagram

The researchers established a block diagram to guide the whole process

of designing. The block diagram served as a backbone of the design. Fig. 3.2

illustrates the block diagram used by the group. These could be broken down to

5 phases.

1. The design used RGB Quad-LED because it could be easily manipulated

through the concept of Pulse Width Modulation.

21

2. The design used RGB LED drivers. The 8 led drivers were categorized into

two. The first type was three color drivers for Red, Blue and Green. The second

type was five led drivers for the RGB LED panel columns.

3. Construct a program that would be embedded in the microcontroller, so that

it would be responsible for all the processes in the design which included

manipulation of colors in the panel and the conversion of raw data to its

equivalent hexadecimal values.

4. The design used a component called Bluetooth module, a transceiver that

would be used in receiving raw data from the input device.

5. The design project used 12 volts of power supply in order to operate the

whole design. The 12 volts supplied the voltage needed by the microcontroller,

the LED drivers, the circuit and the Bluetooth Module. Since, the microcontroller

and the RGB leds needed 5v supply while the Bluetooth module needed 3.3v

supply, two voltage regulators were used.

6. After completing the 5 phases, the last step was to make a PCB layout for the

connection between the microcontroller, the LED drivers and the Bluetooth

module and other components in order for the design to work. After finalizing

the layout, the PCB and all the components were fabricated and installed.

22

Design Procedure for Actual Design

The researchers discussed both software and hardware specifications

separately in this section. The job done by the software part is discussed later in

this section.

1. First, the group gathered all the materials needed in the development of the

design as listed in Table 1 – List of Materials.

Quantity Description
360 RGB quad-LED
1 100 uF Capacitor
3 0.1 uF Capacitor
1 1000uF Capacitor
2 20 pF Capacitor
1 1N4001 Diode
1 Phone jack
1 CON6AP connectors
1 CON5 connectors
1 Connector Rectangle 17x2
8 Connector Rectangle 8-pin
3 MAX6971 LED Drivers
3 100 ohm Resistor
3 10 ohm Resistor
1 470 ohm Resistor
1 SPDT switch
1 PIC18F4550 Microcontroller
1 LT1086 3.3 Voltage Regulator
1 LT78L05A Voltage Regulator
1 CD4049UB Buffer
5 74VHC595 Column Drivers
1 Crystal pin

Table 1 - List of Materials

Table 1 shows the list of materials significant in building of the design.

The first column of Table 1 indicates the quantity or how many items are

23

required in making the system. The second column is the name of the

component.

Hardware Component

2. The researchers setup the proper placements of the main hardware

components in the designed PCB as shown in Figure 3.3.

Figure 3.3 – RGB LED Panel Setup

Figure 3.3 shows the main part of the design which is the component

used to display message that can vary color in the RGB Led Panel. The whole

panel is powered by a 12V Power supply (1) that will be regulated so that it can

be used by the panel components.

Figure 3.3 shows the setup of the whole design. The hardware

components of the design are the voltage regulator (2), the Bluetooth Module

(3), the Microcontroller (4), the Led Drivers (5), and the RGB Led panel (6). The

24

main board contains the circuitry of the whole RGB display panel. The voltage

regulator regulates the voltage that will be coming in from the 12V supply.

There are two types of led drivers used. MAX6971 is the color drivers for Red,

Blue and Green. 74VHC595 led driver is for the RGB LED panel columns. The

microcontroller will control the drivers on what characters to display and which

color to emit. The microcontroller will receive signals through the Bluetooth

module. It will then convert the signals to its equivalent hexadecimal value. The

RGB Led panel will display the message that the user will input.

Figure 3.4 – PIC18F4550 Configuration

Figure 3.4 shows the pin configuration of microcontroller chip used in the

design. The microcontroller serves as the main processor of the design which

has the capability to store program that must be implemented in the design.

The microcontroller used is PIC18F4550, a 40 pin 16-bit with a CMOS flash

25

microcontroller that operates at 48MHz that can do 12 million instructions per

second.

Figure 3.5 – Bluetooth Serial Converter UART Interface

The prototype will use a RGB led panel, the panel will be used to display

the message or note from the user that will be sent through Bluetooth.

The prototype will use a Bluetooth Serial Converter UART Interface also

known as a Bluetooth module. Figure 3.5 shows the Bluetooth module. The

Bluetooth module will play a major factor in the system because it translates

data between parallel and serial forms. The Bluetooth module requires a 3.3V to

operate.

Figure 3.6: Three Terminal Voltage Regulator

 Figure 3.6 shows the voltage regulator to be used in order to produce 5V

for the microcontroller. LM7805 is the model name of the voltage regulator

used. This voltage regulator is a three terminal regulator that produces fixed

output voltage which is 5V. This is important because the driver voltage of the

microcontroller is only 5v. Excess voltage may damage the IC.

2
6

C
ir

c
u

it
 D

e
s
ig

n

F
ig

u
re

 3
.7

 –
 S

c
h

e
m

a
ti

c
 D

ia
g

ra
m

 27

3. The group laid out the circuit diagram of the whole project to guide the

development of the design. Figure 3.7 illustrates the circuit diagram of the Power

Supply and the Bluetooth Module. The Power Supply as two output voltages, 3V

and 5V. The 3V supplies the Bluetooth Module; while the 5V supplies the

Microcontroller and the other design components, which is found in Figure 3.8.

Figure 3.8 illustrates the circuit diagram for the Color and the Row Drivers

implemented by the researchers. It is shown in Figure 3.8 that the Drivers get

their voltage input from the Voltage Output that is in Figure 3.7, additional

voltage input for the column drivers is taken from the Unregulated Voltage also

found in Figure 3.7. Both illustrations show the interconnection between the

Microcontroller, the RGB LED drivers, the Drivers, the Bluetooth Module, and the

other hardware components. The output ports are the ones that are connected

to the RGB Led panel.

Software Design

4. Next is the development of the software component that operates the

microcontroller.

 28

Software Component

Figure 3.9 –The PIC18F4550 Microcontroller controlling the Led drivers

 For the program in the microcontroller, the researchers have used Proton,

a python based compiler, to program the PIC18F4550 microcontroller that was

used. This software is a powerful application with user-friendly graphical

development environment for Windows with integrated simulator (emulator),

basic compiler, assembler, disassembler and debugger. It supports the Microchip

Technology PIC microcontrollers, which mostly controls the other parts of the

design such as the Color Drivers. Figure 3.9 shows the Microcontroller controlling

the Column Drivers and the Row Drivers.

Using Pulse Width Modulation to generate multiple colors

Pulse-Width Modulation (PWM) control signal is widely used in embedded

control applications for a variety of tasks that include light dimming, output

voltage control and communication between devices. In the groups’ design, PWM

 29

is responsible for the demonstration of multiple colors when “@demo” command

is used.

To create different color combinations, the researchers changed the duty

cycles of the three PWM outputs over time. One way to do this was to control

the three PWM duty cycles with a three phase sinusoidal profile. This generated

a rotating (color) vector that would sweep smoothly across the chromaticity

plane generating a wide range of color combinations. The three PWM signal

would be used to control the brightness of the Red, Green and Blue emitters.

5. After the software design was finished, the next step was to use the PIC

programmer kit in order to transfer the program into the PIC Microcontroller.

 30

System Flowchart

Fig 3.10 – System Flowchart

 31

Figure 3.10 is the system flowchart of the prototype. It briefly shows how

the operation of the design starts and when does it end. As shown in the figure,

the process starts as the system is turned ON. It will first display the default

message that is stored in the Flash storage that is in the microcontroller. Then it

will then check on whether the Bluetooth Module is sending a message.

If the Bluetooth Module is sending a message, each character in the

message will be then checked, if each character is in the microcontroller’s lookup

table. If a character is not in the microcontroller’s lookup table, it will skip this

character and move on to the next one. Meanwhile if the character is in the

microcontroller’s lookup table, this character will be sent to the ‘Data’ Array

which will be used in displaying the characters.

It will now check if the character is the end of the message character, if

not it will go back and get the next character that is sent. Meanwhile, if it is the

end character, then it will not display all contents of the ‘Data’ Array in the RGB

Led Panel.

 32

Prototype Development

6. Last is the development of the circuit board and the RGB LED panel.

Fig 3.11 – The Circuit Board

 The circuit board consists of several components such as the PIC

microcontroller which is the overall controller of the RGB LED panel. It also has

two types of drivers. The first type is the column drivers; these drivers

manipulate the column segment of the panel. The second type is the row and

color drivers; these manipulate the color of the panel and the row part of the

panel. The circuit board has five ports of an eight-pin connected to the panel.

Lastly, it has a voltage regulator that supplies the power for the whole design

project.

 33

Fig 3.12 – The RGB Led Panel

 The RGB LED panel consists of series of RGB LEDs lined up. The actual

size of the panel per segment is 8 x 8 RGB. The panel has five segments with a

total of 320 RGB LEDs. At the back side of the panel, it has the provision of wires

that will be connected to the circuit board thorough via an 8-pin port; 1 8-pin

port for each segment also 1 8-pin port for each color.

 34

Chapter 4

TESTING, PRESENTATION AND INTERPRETATION OF DATA

In this chapter, the design was tested to further determine its capability in

handling the operation of the whole system. This aspect was important for the

design, to determine whether the design would work out as expected or not.

Results of the tests are shown below.

Testing was done in four parts. The first part was displaying text

messages on the RGB led panel using mobile phone through Bluetooth

Technology. This was to test if the design could display user defined messages.

The second part was about changing the font color of the message displayed.

The third part was to determine whether or not the RGB Quad-LED could

generate different colors. The fourth part was concerned with the software that

would act as a bridge between the mobile phone and the RGB LED Panel.

Part I: Display characters

 The purpose of this test was to display the characters sent via Nokia

N70 Music Edition using Bluetooth and to display it to the RGB LED Panel. The

characters used were alphabets from A to Z, numbers from 0 to 9 and some

special characters.

 The researchers assumed that all the characters that were sent would

be displayed on the RGB LED panel. These included all alphabets, numeric and

 35

some special characters. All sent characters would be displayed with respect to

their types and cases.

The procedure conducted by the researchers for this part is as follows:

1. Connect the mobile phone (N70 Music Edition) to the RGB LED Panel via

Bluetooth Technology. The mobile phone must have an application called

“Bluetooth Chat”, which acts as a communication medium for both parties.

After a successful connection;

2. The researchers typed the default syntax, “@msg” then followed by the

desired characters for testing. After typing the desired characters;

3. The researchers send the message to the RGB LED Panel. The table below

shows the results of the test.

Input Character Output Character
A , a A , A

B , b B , B

C , c C , C

D , d D , D

E , e E , E

F , f F , F

G , g G , G

H , h H , H

I , i I , I

J , j J , J

K , k K , K

L , l L , L

M , m M , M

N , n N , N

O , o O , O

P , p P , P

Q , q Q , Q

R , r R , R

S , s S , S

T , t T , T

 36

U , u U , U

V , v V , V

W , w W , W

X , x X , X

Y , y Y, Y

Z , z Z , Z

Table 2 - Character Display (Alphabet)

Input Output

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Table 3 - Character Display (Numerical)

Input Character Output Character

! !
@ @
< <
> >
? ?
. .
, ,

: :

 Table 4 - Character Display (Special Characters)

 The researchers sent characters A to Z to the RGB LED Panel and the

same characters were displayed on the RGB LED panel. When the researchers

sent lower case characters a to z to the RGB LED Panel, the output characters

remained in their respective upper case equivalent. The Panel encountered

problems displaying lower case characters that exceeds the 5x7 character frame,

characters such as “g”, “q”, “j”, “y” and “p”; that is why the RGB LED Panel is

 37

programmed to display all Alphabet characters to be in their respective upper

case equivalent. The test results for sending numerical characters 0 to 9 to the

RGB Panel are shown in Table 6. The test results for sending special characters

are shown in Table 7.

Part II: Testing the seven colors that can be displayed in the RGB

Panel.

 The testing is about changing the font color of the messages displayed

on the RGB LED panel. It is important to have different font colors for an RGB

LED Panel that is designed for product marketing. This allows users to have the

flexibility on promoting their products, by trying on different colors to attract

audiences.

 Table 8 shows the expected values for color variations of the font colors

for the RGB LED Panel. The left arrow button of the mobile phone is connected

to the Red color driver; while the up arrow button of the mobile phone is

connected to the Green color driver, and the right arrow button of the mobile

phone is connected to the Blue color driver. Pressing these buttons will result to

different color combinations. The default color is White.

Condition Output Color

Default White

White + Left Button Aqua Blue

Aqua Blue + Up Button Blue

White + Right Button Yellow

Yellow + Left Button Green

 38

Default + Up Button Violet

Violet + Right Button Red

Table 5 – Expected values for color variation

The procedure conducted by the researchers for this part is as follows:

1. First connect the mobile phone (N70 Music Edition) to the RGB LED Panel

via Bluetooth Technology with Bluetooth Chat application to be able to

communicate to the RGB LED Panel. After a successful connection,

2. Type a test message, “@msg FONT COLOR TEST”. After typing the

desired characters,

3. Send the message to the RGB LED Panel. When the message is already

displayed,

4. Use the keypad arrows (left, right and up) on the mobile phone to create

different color combinations.

The table below shows the results of the test.

Condition Output Color

Default White

White + Left Button Aqua Blue

Aqua Blue + Up Button Blue

White + Right Button Yellow
Yellow + Left Button Green

Default + Up Button Violet

Violet + Right Button Red

Table 6 – Actual values for color variation

 39

 Referring to the results taken during the test, each button would result

to a different color combination as expected. When the default color was

displayed, this would mean that the red, green and blue colors were on, resulting

to the color white. As the left button was pressed, the color red would shut off,

resulting to the color Aqua Blue. Going back to the default color white, if the

right button was pressed, this would shut off the color Blue and would display

the color Yellow. Going back again to the default color white, if the up button

was pressed, the color green would be turned off, displaying color Violet.

Pressing these arrow keys would result to different color combinations. This

would result to 7 different colors as shown in Table 9.

Part III: Generate the multi-colors produced by the RGB Led

 The purpose of this test was to verify if the Pulse Width Modulation

actually work to the design. It also tested if the special command “@demo”

which when transmitted from the mobile phone to the RGB LED Panel would

actually display different colors continuously for 26.22 seconds. The distinct

number of colors displayed was not 16 million because a person’s eye was not

capable of distinguishing every color transition.

 The researchers assumed that using Pulse Width Modulation (PWM) it

would display multiple colors. Table 10, shows the expected distinguishable

colors that would be displayed when the “@demo” was transmitted:

Time Color Displayed

1 second White

 40

2 seconds Pink

3 seconds Orange

4 seconds Yellow

5 seconds Neon

6 seconds Light Green

7 seconds Green

8 seconds Bright Turquoise

9 seconds Turquoise

10 seconds Turquoise

11 seconds Purple

12 seconds Light Blue

13 seconds Aqua Blue

14 seconds Blue

15 seconds Azure

16 seconds Amaranth Pink

17 seconds Cherry Blossom Pink

18 seconds Bright Pink

19 seconds Carrot Orange

20 seconds Amber

21 seconds Chartreuse Yellow

22 seconds Lime

23 seconds Green-Yellow

24 seconds Jade

25 seconds Aqua

26 seconds Cyan

Table 7 – Expected values for colors that will be generated

The procedure conducted by the researchers for this part is as follows:

1. Connecting the Nokia N70 Music Edition to the RGB LED Panel via

Bluetooth Technology. The “Bluetooth Chat” application is used in order to

establish the communication between both parties. Then,

 41

2. The command sent is “@demo” which is the default command for

producing multiple colors. The demo lasted 26.22 seconds displaying

expected color transitions that are shown in Table 11.

Time Color Displayed

1 second White

2 seconds Pink

3 seconds Orange

4 seconds Yellow

5 seconds Neon

6 seconds Light Green

7 seconds Green

8 seconds Bright Turquoise

9 seconds Turquoise

10 seconds Turquoise

11 seconds Purple

12 seconds Light Blue

13 seconds Aqua Blue

14 seconds Blue

15 seconds Azure

16 seconds Amaranth Pink

17 seconds Cherry Blossom Pink

18 seconds Bright Pink

19 seconds Carrot Orange

20 seconds Amber

21 seconds Chartreuse Yellow

22 seconds Lime

23 seconds Green-Yellow

24 seconds Jade

25 seconds Aqua

26 seconds Cyan

Table 8 – Actual values for colors that will be generated

 The starting color is White which has an RGB intensity range of 255,

255, and 255. From the initial color, the four LEDs will then transition colors in a

 42

counter clockwise direction based on the CIE chart. The colors will be the

transition based on the varying clock pulse. For example at time interval 1 sec,

the transition is from (white) RGB 255-255-255, to (pink) RGB 255-17-255, to

(orange) RGB 255-17-17, to (yellow) 255-255-0, and so on and so forth.

Part IV: Security Tests

 The purpose of this test was to know if the “Bluetooth Chat” software

could work as a communication medium between the mobile device and the RGB

LED Panel.

 Tables 10 and 11 show the expected results for the Communication

Tests that are divided into two parts; the first test is connecting a mobile phone

without a “Bluetooth Chat” to the RGB Panel. The researchers assumed that the

RGB Panel would not acknowledge the invitation of Mobile Phones without the

application “Bluetooth Chat”. The second part is testing whether the Bluetooth

communication is a point-to-point connection or not. The researchers assumed

that the RGB LED Panel would only accept one user at a time; thus rejecting

other user invitation while a user is currently connected.

Table 10 shows the expected comparative result for mobile phones with and

without “Bluetooth Chat”:

Transmitter Result

Trial 1 Trial 2 Trial 3

Mobile Phone
without BT Chat

NOT
Acknowledged

NOT
Acknowledged

NOT
Acknowledged

Mobile Phone with
BT Chat

User
Acknowledged

User
Acknowledged

User
Acknowledged

 43

Table 9 – BT Chat Acknowledgement

Table 11 shows the expected results for multiple mobile phones trying to connect

to the RGB LED Panel:

Transmitter Result

Trial 1 Trial 2 Trial 3

Mobile Phone A with
BT Chat

Connected Connected Connected

Mobile Phone B with
BT Chat

Not Connected Not Connected Not Connected

Table 10 – Point-to-point connection

The procedure conducted by the researchers for this part is as follows:

1. Connect two mobile phones (Nokia N70 Music Edition and a Nokia N90)

to the RGB LED Panel via Bluetooth Technology. One mobile phone

(Nokia N70 Music Edition) has an application of “Bluetooth Chat”, which

acts as a communication medium for both parties. The other mobile

phone (Nokia N90) has no application installed. Mobile A and Mobile B

will try to connect simultaneously to the RGB LED Panel. After finishing

the first part,

2. The researchers followed the second test by which two mobile phones

(Nokia N70 Music Edition and Nokia N73) would try to connect to the RGB

LED Panel via Bluetooth Technology. Both mobile phones have an

application of “Bluetooth Chat” to communicate to the RGB LED Panel.

Both mobile phones will simultaneously try to connect.

 44

The table below shows the results of both actual tests:

Transmitter Result

Trial 1 Trial 2 Trial 3

Nokia N90 without
BT Chat

NOT
Acknowledged

NOT
Acknowledged

NOT
Acknowledged

Nokia N70 with BT
Chat

User
Acknowledged

User
Acknowledged

User
Acknowledged

Table 11 – Actual values for BT Chat Acknowledgement

Transmitter Result

Trial 1 Trial 2 Trial 3

N70 with BT Chat Connected Connected Connected

N73 with BT Chat Not Connected Not Connected Not Connected

Table 12 – Actual values for Point-to-point connection

 Referring to Table 12, the results are clearly seen in the three trials

made, that the RGB LED Panel only accepts the mobile with the “Bluetooth Chat”

application. The “Bluetooth Chat” application acts as a communication medium

between the mobile phone and the RGB LED Panel. In the second part of the

test, Table 13 shows what kind of Bluetooth connection is used in the design;

based on the results of the test, the design uses point-to-point communication.

Meaning, if a mobile phone is connected to the design, the design will reject all

incoming invitations. The design will be available again, when the mobile phone

that is currently connected decides to disconnect.

 45

Chapter 5

CONCLUSION AND RECOMMENDATION

Conclusion

 The group was able to develop a design called Programmable 24-Bit RGB

LED Panel via Bluetooth® Technology, using RGB Quad Led to display text

messages in different colors. The design cannot display the 16 million colors

distinctively due to eye limitation which is not capable of seeing each color

transition. The security of the design is very important to keep the integrity of

the data being displayed; this was accomplished by improvising application

software on mobile phones to limit the use of the design.

 With the use of the system, small businesses or stores can have an

alternative way to lessen the cost of their advertisement for their products, due

to sending data via Bluetooth® Technology does not require the user to have

load on their mobile phones unlike previous designs that used SMS Technology.

 46

Recommendation

 More improvements can be made to further enhance the systems

functionality and capability. Security feature such as authorization of mobile

device before changing the displayed message is one of the enhancements that

the group recommends, so that no one can easily change the displayed message

in the display panel. Also, for the Bluetooth® range to be extended. The

display panels can be enlarged as those seen on main highways in the

metropolis. Additional features like display large images and animated images

can further improve this design.

 47

REFERENCES

Thomas E. Kissell, Industrial Electronics, Copyright: 2000

Webster Comprehensive dictionary, Encyclopedic Edition, Ferguson publishing
Company, Chicago, Copyright: 2006

Issa Batarseh, Power Electronic Circuits, Copyright: 2004

Myke Predko, Programming and Customizing the Microcontroller, Mcgraw-hill,
Copyright: 1999

William C. Y. Lee, Wireless and Celluar Telecommunications, Mcgraw-hill,

Copyright: 2006

Grob-Schultz, Basic Electronics, Mcgraw-hill, Copyright: 2003

Tony Wakefield, Introduction to Mobile Communications, Auerbach Publications,
Copyright: 2007

Trundle, E. (2001). Newnes Guide to television and video technology, 3rd Edition,
Newnes

Miller, M. (2007). Absolute Beginner’s Guide to Computer Basics, 4th Edition,
Que Publishing

Gumhalter, H. (1986). Power supply systems in communications engineering, 2nd
Edition, Siemens Aktiengesellschaft

48

APPENDICES

 49

APPENDIX A

Programmable 24-bit RGB LED Color Panel

via Bluetooth Technology

User’s Manual

Prepared by:

Albert M. Agonoy
Antonio Rufo R. Cuenco

Lillette C. Daplas
Mark Dale A. Nieveras

Mapua Institute of Technology
May 2009

 50

WARNINGS________________________

To avoid electrical shock, refrain from holding any exposed wires of the
device.

• This device is intended for adults use only. If the child wants to use the
device, parents should supervise him/her.

• Avoid prolonged use of the product in dark rooms/areas so to avoid eye

strains.

SAFETY PRECAUTIONS_____________

� For your safety, always unplug the device while it is not in use.

� The device is mainly used for indoors.

� The device uses 220 V of electricity.

� Only use the authorized plug adaptor for this device.

THE 24-BIT PROGRAMMABLE RGB LED DISPLAY

This device is a small-scale model for digital display that uses RGB LED
(light emitting diode). This LED displays multiple colors and uses the
Bluetooth technology. The Bluetooth acts as a communication medium
between the display panel and the mobile phone.

BEFORE USING THE DEVICE_________

• Only Nokia N70 version mobile phones or early Symbian 60 OS mobile
phones can interact with the device provided that the mobile phone has
an installed application called “BT CHAT”.

• Make sure that the operating condition of the area is dry and well-

ventilated.

 51

OPERATING THE DEVICE____________

THE RGB LED Panel Display:

1. Open the top flip of the box.

2. Connect the power adaptor to the panel’s power port.

3. Plug the power adaptor to the wall outlet.

4. The panel shows the pre-installed message; the panel is ready for use.

Using the Mobile Bluetooth Chat:

1. Press the menu button of the N70 mobile phone

2. Select Connectivity → Bluetooth

3. Highlight Bluetooth, then press
 Options→ Change→ ON

4. Then press Exit

5. To operate Bluetooth, Select My Own → Bluetooth Chat

6. To connect the mobile phone to the RGB Panel via Bluetooth, select

Options → Connect.

7. When it searches “E-gizmo” Select and press Connect.

8. You are now connected to the Panel.

9. To disconnect, press Option → Disconnect.

10. To Exit, just press the EXIT then it will go back to the My Own Folder.

TO Send Messages

1. Type on the textbox, the “@msg” syntax then followed by 5 spaces then
type the desired message you want to be displayed.

2. Press Options → Send.

 52

3. Then it will display the Message you have sent.

TO Show the Color spectrum

1. Type on the textbox “@demo”

2. Press Options → Send.

3. It will show the color spectrum of the Panel.

5
3

A
P

P
E
N

D
IX

 B

D
ia

g
ra

m
 f

o
r

C
h

a
ra

c
te

r
L
o
a
d

in
g

t
=
 0
u
s

t
=
 2
5
0
u
s

t
=
 5
0
0
u
s

t
=
 7
5
0
u
s

t
=
 1
0
0
0
u
s

t
=
 1
2
5
0
u
s

 54

APPENDIX C
Color Spectrum

 55

APPENDIX D
Data Sheet of Maxim 6971

 56

 57

APPENDIX E
Bluetooth Serial Converter UART Interface

 58

 59

APPENDIX F
 Figures

8 x 8 LED MODULE; FIVE OF THESE MODULES MAKE UP THE RGB LED

PANEL.

 60

LED MODULE ROW DRIVERS

 61

LED MODULE COLUMN DRIVERS

 62

APPENDIX G
Source Code

'**
'* Name : UNTITLED.BAS
'* Author : Antonio Rufo R. Cuenco
'* Notice : Copyright (c) 2008 Strategic Instruments
'* : All Rights Reserved
'* Date : 11/26/2008
'* Version : 1.0
'* Notes : Sourcecode to test DM135 shift-registers
'* :
'**

Device = 18F4550

'Declare XTAL 20

CONFIG_START
 PLLDIV = 5 ' prescale (Divide by 5 (20 MHz oscillator input)
 ' default 4mhz result in 48mhz with PLL enabled other osc
input needs to be prescaled
 ' or divided to have a reult of 4mhz example 20/5 = 4 always
should be 4!!!
 CPUDIV = OSC1_PLL2 ' postscale [OSC1/OSC2 Src: /1][96 MHz PLL
Src: /2]
 USBDIV = 2 ' USB clock source comes from the 96 MHz
PLL divided by 2
 FOSC = HSPLL_HS 'HS 'HS oscillator, PLL enabled, HS used by USB
 FCMEN = OFF ' Fail-Safe Clock Monitor disabled
 IESO = OFF ' Oscillator Switchover mode disabled
 PWRT = On ' PWRT enabled
 BOR = On ' Brown-out Reset enabled in hardware only
(SBOREN is disabled)
 BORV = 3 ' Minimum setting
 VREGEN = OFF ' USB voltage regulator disabled
 WDT = OFF ' HW Disabled - SW Controlled
 WDTPS = 1024 ' 1:1024
 MCLRE = On ' MCLR pin Disabled' RE3 input pin enabled
 LPT1OSC = On ' Timer1 configured for low-power operation
 PBADEN = OFF ' PORTB<4:0> pins are configured as digital
I/O on Reset
 CCP2MX = On ' CCP2 input/output is multiplexed with
RC1
 STVREN = OFF ' Stack full/underflow will not cause Reset

 63

 LVP = OFF ' Single-Supply ICSP disabled
 ICPRT = OFF ' ICPORT disabled
 XINST = OFF ' Instruction set extension and Indexed
Addressing mode disabled
 Debug = OFF ' Background debugger disabled, RB6
and RB7 configured as general purpose I/O pins
 CP0 = OFF ' Block 0 (000800-001FFFh) not code-
protected
 CP1 = OFF ' Block 1 (002000-003FFFh) not code-
protected
 CP2 = OFF ' Block 2 (004000-005FFFh) not code-
protected
 CP3 = OFF ' Block 3 (006000-007FFFh) not code-
protected
 CPB = OFF ' Boot block (000000-0007FFh) not code-
protected
 CPD = OFF ' Data EEPROM not code-protected
 WRT0 = OFF ' Block 0 (000800-001FFFh) not write-
protected
 WRT1 = OFF ' Block 1 (002000-003FFFh) not write-
protected
 WRT2 = OFF ' Block 2 (004000-005FFFh) not write-
protected
 WRT3 = OFF ' Block 3 (006000-007FFFh) not write-
protected
 WRTB = OFF ' Boot block (000000-0007FFh) not write-
protected
 WRTC = OFF ' Configuration registers (300000-3000FFh)
not write-protected
 WRTD = OFF ' Data EEPROM not write-protected
 EBTR0 = OFF ' Block 0 (000800-001FFFh) not
protected from table reads executed in other blocks
 EBTR1 = OFF ' Block 1 (002000-003FFFh) not
protected from table reads executed in other blocks
 EBTR2 = OFF ' Block 2 (004000-005FFFh) not
protected from table reads executed in other blocks
 EBTR3 = OFF ' Block 3 (006000-007FFFh) not
protected from table reads executed in other blocks
 EBTRB = OFF ' Boot block (000000-0007FFh) not
protected from table reads executed in other blocks
CONFIG_END

'*************************** Variables Allocations

Dim CHAR_String[256] As Byte

 64

Dim S_Holder As String * 4
Dim BytesIn[256] As Byte
Dim A_Holder[4] As Byte
Dim null As Byte
Dim CHAR_Column[40] As Byte
Dim CHAR_count As Word
Dim Matrix_Column As Word
Dim Matrix_Column1 As Word
Dim Matrix_Column2 As Word
Dim Matrix_Column3 As Word
Dim Matrix_Column4 As Word
Dim Matrix_Column5 As Word
Dim Segment As Byte
Dim Segment_holder As Byte
Dim Speed As Byte
Dim Segment_Count As Word
Dim Total_Segment As Word
Dim Loop As Word
Dim ind As Word
Dim Loop_COUNT As Word
Dim Ram_LEFT As Byte
Dim CHAR_Reload As Word
Dim MSSG_END As Word
Dim dummy As Word
Dim TIMER0 As TMR0L.Word
Dim Ph_Val As Byte
Dim StrReload_bit As Bit
Dim CHANGE_BIT As Bit
Dim first_run_bit As Bit
Dim Color_Red As Bit
Dim Color_Green As Bit
Dim Color_Blue As Bit
Dim PWM0 As Bit
Dim PWM1 As Bit
Dim PWM2 As Bit
Dim Loop_bit As Bit
Dim Demo_bit As Bit
Dim Demo_flag As Bit

Dim IntCount As Byte
Dim DutyCycle0 As Byte ' Holds duty cycle for PWM channel
0

 65

Dim DutyCycle1 As Byte ' Holds duty cycle for PWM channel
1
Dim DutyCycle2 As Byte ' Holds duty cycle for PWM channel
2
Dim PWMFlags As Byte ' Used for software flags

Dim Temp As Byte
Dim Phase As Word ' Holds the sinusoidal pointer location
Dim BeginPWM As PWMFlags.0

Clear

'*************************** Peripherals Setup

ONBOARD_USB = False ' Disable the USB and
free the extra RAM
OPTIMISER_LEVEL = 3 ' Maximum
optimiser
DEAD_CODE_REMOVE = On ' Remove redundant ASM
ALL_DIGITAL = True
WARNINGS = OFF
REMINDERS = OFF

TRISA=%00000000 'set ports for input or output

TRISB = %00000001 ' Make the last four bits of PortB
Outputs
INTCON2.7 = 0 ' Enable Internal PortB Pullup Resistors

TRISC=%10000000 'just make sure the USART RX Port C.7 is an
input
TRISD=%00000000 'and the LCD ports are set up correctly
TRISE=%00000000

'**************************** USART Interrupt Setup

'Declare FSR_CONTEXT_SAVE = off
'On_Interrupt GoTo USART_Int ' define interrupt handler
'INTCON = %11000000
PIE1.5 = 1 ' enable interrupt on USART receive

'RCSTA = $90 ' Enable serial port & continuous receive
'TXSTA = $20 ' Enable transmit, BRGH = 0

 66

'SPBRG = 112 ' 4800 Baud @ 48MHz, 0.0%
'SPBRGH = 2
'BAUDCON.3 = 1 ' Enable 16 bit baudrate generator

RCSTA = $90 ' Enable serial port & continuous receive
TXSTA = $24 ' Enable transmit, BRGH = 1
SPBRG = 225 ' 9600 Baud @ 48MHz, 0.0%
SPBRGH = 4
BAUDCON.3 = 1 ' Enable 16 bit baudrate generator

'**************************** T0CON: TIMER0 Control Register Interrupt
Setup ***************************
'
' T0CON: TIMER0 Control Register
'
 Symbol TMR0ON = T0CON.7 '
TIMER0 On/Off Control bit

 ' 1 = Enables TIMER0

 ' 0 = Stops TIMER0
 Symbol T08BIT = T0CON.6
 ' TIMER0 8-bit/16-bit Control bit

 ' 1 = TIMER0 is configured as an 8-bit timer/counter

 ' 0 = TIMER0 is configured as a 16-bit timer/counter
 Symbol T0CS = T0CON.5 '
TIMER0 Clock Source Select bit

 ' 1 = Transition on T0CKI pin

 ' 0 = Internal instruction cycle clock (CLKO)
 Symbol T0SE = T0CON.4 '
TIMER0 Source Edge Select bit

 ' 1 = Increment on high-to-low transition on T0CKI pin

 ' 0 = Increment on low-to-high transition on T0CKI pin
 Symbol PSA = T0CON.3 '
TIMER0 Prescaler Assignment bit

 67

 ' 1 = TIMER0 prescaler is NOT assigned. TIMER0 clock input
bypasses prescaler.

 ' 0 = TIMER0 prescaler is assigned. TIMER0 clock input
comes from prescaler output.
 Symbol T0PS2 = T0CON.2
 ' \
 Symbol T0PS1 = T0CON.1
 ' TIMER0 Prescaler Select bits
 Symbol T0PS0 = T0CON.0
 ' /

 ' 111 = 1:256 prescale value

 ' 110 = 1:128 prescale value

 ' 101 = 1:64 prescale value

 ' 100 = 1:32 prescale value

 ' 011 = 1:16 prescale value

 ' 010 = 1:8 prescale value

 ' 001 = 1:4 prescale value

 ' 000 = 1:2 prescale value

'**************************** Interrupt Priority Setup

' INTCON1: Interrupt Control Register 1
'
 Symbol GIE = INTCON.7 '
Global Interrupt Enable bit

 ' When IPEN (RCON.7) = 0:

 ' 1 = Enables all unmasked interrupts

 ' 0 = Disables all interrupts

 68

 ' When IPEN (RCON.7) = 1:

 ' 1 = Enables all high priority interrupts

 ' 0 = Disables all interrupts
 Symbol PEIE = INTCON.6 ' \
 Symbol GIEL = INTCON.6 ' /
Peripheral Interrupt Enable bit

 ' When IPEN (RCON.7) = 0:

 ' 1 = Enables all unmasked peripheral interrupts

 ' 0 = Disables all peripheral interrupts

 ' When IPEN (RCON.7) = 1:

 ' 1 = Enables all low priority peripheral interrupts

 ' 0 = Disables all low priority peripheral interrupts
 Symbol TMR0IE = INTCON.5 '
TIMER0 Overflow Interrupt Enable bit
 ' 1 = Enables
the TIMER0 overflow interrupt

 ' 0 = Disables the TIMER0 overflow interrupt
 Symbol TMR0IF = INTCON.2 '
TIMER0 Overflow Interrupt Flag bit

 ' 1 = TIMER0 register has overflowed (must be cleared in
software)

 ' 0 = TIMER0 register did not overflow
'
' INTCON2: Interrupt Control Register 2
'
 Symbol TMR0IP = INTCON2.2 '
TIMER0 Overflow Interrupt Priority bit

 ' 1 = High priority

 ' 0 = Low priority

 69

''**************************** PIR1: Peripheral Interrupt Request
Register 1 Setup ***************************

' RCON: Reset Control Register
'
 Symbol IPEN = RCON.7 '
Interrupt Priority Enable bit

 ' 1 = Enable priority levels on interrupts

 ' 0 = Disable priority levels on interrupts

'---

 INTCON = 0
 ' Disable Interrupts (just in case)
'
' Setup TIMER0
'
 T0PS2 = 0
 ' \
 T0PS1 = 0 ' TIMER0 Prescaler to 1:2
 T0PS0 = 0 ' /
 PSA = 0
 ' Assign the prescaler
 T0CS = 0
 ' Increment on the internal Clk
 T0SE = 0 ' 0 = Increment On low-to-high
transition On T0CKI pin
 T08BIT = 0
 ' TIMER0 is configured as a 16-bit counter
 TIMER0 = 0
 ' Clear TIMER0

 TMR0ON = 0
 ' Enable TIMER0 off for a while
 TMR0IE = 1
 ' Interrrupt Priorities
 TMR0IP = 0
 IPEN = 0

 70

'******************************* Constants

IntCount = 32 ' Initialise IntCount to 32
DutyCycle0 = 0 ' \
DutyCycle1 = 0 ' Clear the Duty Cycle Variables
DutyCycle2 = 0 ' /
Symbol True = 1
Symbol False = 0
Symbol DTA PORTB.2
Symbol CLK PORTB.3
Symbol Latch_E PORTB.4
Symbol OE_Red PORTB.5
Symbol OE_Green PORTB.6
Symbol OE_Blue PORTB.7
Symbol OE_Col PORTC.2
Symbol EOM = 255'"`"
Symbol Loop_START = 0
Symbol Loop_END = 39

'******************************* Initial Values

Demo_bit = 0
TIMER0 = 63670
Ph_Val = 255
Phase = 0 ' Initialise the sinusoidal pointer to 0
first_run_bit = 0
Loop_bit = 1
Speed = 3
Latch_E = 1
OE_Red = 1
OE_Green = 1
OE_Blue = 1
OE_Col = 1
Color_Red = 0
Color_Green = 0
Color_Blue = 0

 HRSOut "Type some characters in the terminal window\n\r",_
 "and they will appear on the LCD.",_
 "Note that no characters are missed\n\r",_
 "even though there is a stupidly large delay within the receiving
loop.\n\r" ' USART Tx Test

 71

'---

' Include "BUFFERED_HSERIN.INC" ' Load the USART 1 interrupt handler
and buffer read subroutines into memory
'
' INIT_USART_INTERRUPT ' Initiate the USART 1 serial buffer
interrupt
' CLEAR_SERIAL_BUFFER ' Clear the serial buffer and reset its
pointers
'---

' StrN CHAR_String = " <<<<<....MAPUATECH BLUETOOTH MOVING
MESSAGE DISPLAY >>>>>>"
 StrN CHAR_String = " MAPUATECH BLUETOOTH RGB LED MATRIX
DISPLAY!!! ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890 < > ! ? @ . , _ "

 ON_HARDWARE_INTERRUPT GoTo Int_Handler
' ON_HARDWARE_INTERRUPT GoTo PWM_InterruptHandler
 Declare FSR_CONTEXT_SAVE = Off

 GoSub CHANGE_CONTENT
 GoSub STORE_ARRAY

 INTCON.7 = 1 ' enable interrupts
 INTCON.6 = 1

 GoTo Start

''''' S T O R E C H A R A C T E R C O L U M N S E G M E N T S I N A R
R A Y ''''''

STORE_ARRAY:

 For ind = 0 To CHAR_count ' Fill in Character Arrays
with Segments
 ' 5 characters at a time

 If CHAR_String[ind] >= "A" And CHAR_String[ind] <= "_" Then

 72

 While Segment_holder <> EOM
 GoSub UPPERcase
 If Segment_holder = EOM Then Break

 If StrReload_bit = 1 Then
 If CHAR_Reload = Segment_Count Then
 Segment_Count = 0
 CHAR_Column[Segment_Count] = Segment_holder
 StrReload_bit = 0
 EndIf
 EndIf
 If StrReload_bit = 0 Then
 If Segment_Count < 40 Then CHAR_Column[Segment_Count] =
Segment_holder
 EndIf

 Segment_Count = Segment_Count + 1
 Segment = Segment + 1
 If first_run_bit = 0 Then Total_Segment = Total_Segment + 1
 Wend
 Segment = 0
 Segment_holder = 0
 EndIf

 If CHAR_String[ind] >= "a" And CHAR_String[ind] <= 127 Then '"z"
Then
 While Segment_holder <> EOM
 GoSub LOWERcase
 If Segment_holder = EOM Then Break

 If StrReload_bit = 1 Then
 If CHAR_Reload = Segment_Count Then
 Segment_Count = 0
 CHAR_Column[Segment_Count] = Segment_holder
 StrReload_bit = 0
 EndIf
 EndIf
 If StrReload_bit = 0 Then
 If Segment_Count < 40 Then CHAR_Column[Segment_Count] =
Segment_holder
 EndIf

 Segment_Count = Segment_Count + 1
 Segment = Segment + 1
 If first_run_bit = 0 Then Total_Segment = Total_Segment + 1

 73

 Wend
 Segment = 0
 Segment_holder = 0
 EndIf

 If CHAR_String[ind] >= " " And CHAR_String[ind] <= "@" Then
 While Segment_holder <> EOM
 GoSub NUMcase
 If Segment_holder = EOM Then Break

 If StrReload_bit = 1 Then
 If CHAR_Reload = Segment_Count Then
 Segment_Count = 0
 CHAR_Column[Segment_Count] = Segment_holder
 StrReload_bit = 0
 EndIf
 EndIf
 If StrReload_bit = 0 Then
 If Segment_Count < 40 Then CHAR_Column[Segment_Count] =
Segment_holder
 EndIf

 Segment_Count = Segment_Count + 1
 Segment = Segment + 1
 If first_run_bit = 0 Then Total_Segment = Total_Segment + 1
 Wend
 Segment = 0
 Segment_holder = 0
 EndIf

 Next ind

 If first_run_bit = 0 Then
 MSSG_END = Total_Segment
 first_run_bit = 1
 EndIf

Return

Start:

Display_Char:

 74

 Matrix_Column = 1
 Matrix_Column1 = 1
 Matrix_Column2 = 1
 Matrix_Column3 = 1
 Matrix_Column4 = 1

 For Loop = Loop_START To Loop_END ' Create a loop of 10

 If Matrix_Column.9 <> 1 Then
 SHOut DTA , CLK , lsbfirst , [0, 0, 0 ,0 ,0 ,0 ,0]
 SHOut DTA , CLK , lsbfirst , [Matrix_Column]
 Matrix_Column = Matrix_Column << 1
 EndIf

 If Matrix_Column.9 = 1 Then
 If Matrix_Column1.9 <> 1 Then
 SHOut DTA , CLK , lsbfirst , [0, 0, 0 ,0 ,0 ,0 ,0]
 SHOut DTA , CLK , lsbfirst , [Matrix_Column1 ,0]
 Matrix_Column1 = Matrix_Column1 << 1
 EndIf
 EndIf

 If Matrix_Column1.9 = 1 Then
 If Matrix_Column2.9 <> 1 Then
 SHOut DTA , CLK , lsbfirst , [0, 0, 0 ,0 ,0 ,0 ,0]
 SHOut DTA , CLK , lsbfirst , [Matrix_Column2 ,0 ,0]
 Matrix_Column2 = Matrix_Column2 << 1
 EndIf
 EndIf

 If Matrix_Column2.9 = 1 Then
 If Matrix_Column3.9 <> 1 Then
 SHOut DTA , CLK , lsbfirst , [0, 0, 0 ,0 ,0 ,0 ,0]
 SHOut DTA , CLK , lsbfirst , [Matrix_Column3 ,0 ,0 ,0]
 Matrix_Column3 = Matrix_Column3 << 1
 EndIf
 EndIf

 If Matrix_Column3.9 = 1 Then
 If Matrix_Column4.9 <> 1 Then
 SHOut DTA , CLK , lsbfirst , [0, 0, 0 ,0 ,0 ,0 ,0]
 SHOut DTA , CLK , lsbfirst , [Matrix_Column4 ,0 ,0 ,0 ,0]
 Matrix_Column4 = Matrix_Column4 << 1
 EndIf
 EndIf

 75

 If Matrix_Column4.9 = 1 Then
 Matrix_Column = 1
 Matrix_Column1 = 1
 Matrix_Column2 = 1
 Matrix_Column3 = 1
 Matrix_Column4 = 1
 EndIf

 SHOut DTA , CLK , msbfirst , [0, CHAR_Column[Loop]]
'Total of 56 shifts using 74HC595 for rows of 40
 PulsOut Latch_E,1 'And MAX6971 For
columns of 8 shifted 8 Bit more than needed 8-bit only
 'To compensate For its 16
Bit Output
 OE_Col = 0 'Turn on Column

 OE_Red = Color_Red 'Mix Colors
 OE_Green = 1
 OE_Blue = 1
 DelayUS 200
 OE_Red = 1
 OE_Green = Color_Green
 OE_Blue = 1
 DelayUS 200
 OE_Red = 1
 OE_Green = 1
 OE_Blue = Color_Blue
 DelayUS 200
' DelayMS 1

 OE_Col = 1 ' Turn off Everything
 OE_Col = 0
 OE_Red = 1
 OE_Green = 1
 OE_Blue = 1

' If demo_bit = 1 Then
 While Demo_bit = 1 ' let the TMR0 ISR do its
thing infinitely!!!!

 If Demo_flag = 1 Then
 Demo_flag = 0
 SHOut DTA , CLK , lsbfirst , [%00000010 ,0 ,0 ,0 ,%01000000
]

 76

 SHOut DTA , CLK , msbfirst , [0, %10000001] 'Total
of 56 shifts using 74HC595 for rows of 40
 PulsOut Latch_E,10
 EndIf

 If BeginPWM = True Then
 BeginPWM = False
 Ph_Val = 4092'2046
 Ph_Val = Ph_Val >> 1 ' Make the value 7-bits wide
 Ph_Val = Ph_Val + 1 ' Add the offset
 Phase = Phase + Ph_Val ' Add this to the Phase variable
 '
 ' To get the three duty cycle values, The upper 7-bits of Phase are used
as a lookup index to the sine table.
 ' Offsets of $55 (120 degrees) and $AA (240 degrees) are used for the
2nd and 3rd duty cycles.
 '
 ' Phase 1
 Temp = Phase.HighByte >> 1 ' Make the value 7-bits wide
 GoSub GetSin ' Sine value returned in Temp
 DutyCycle0 = Temp ' Place the Sine value into
DutyCyle0
 '
 ' Phase 2
 Temp = Phase.HighByte >> 1 ' Make the value 7-bits wide
 Temp = Temp + $55 ' Phase2 = Phase1 + $55 for the
first phase shift of 120 degree
 GoSub GetSin ' Sine value returned in Temp
 DutyCycle1 = Temp ' Place the Sine value into
DutyCyle1
 '
 ' Phase 3
 Temp = Phase.HighByte >> 1 ' Make the value 7-bits wide
 Temp = Temp + $AA ' Phase3 = Phase1 + $AA for the
second phase shift of 240 degree
 GoSub GetSin ' Sine value returned in Temp
 DutyCycle2 = Temp ' Place the Sine value into
DutyCyle2
 EndIf

 Wend
' EndIf

 Next Loop

 77

 If Loop_bit = 1 Then Loop_COUNT = Loop_COUNT + 1

 If Loop_COUNT = Speed Then
 Loop_COUNT = 0
 CHAR_Reload = CHAR_Reload + 1
 If CHAR_Reload > MSSG_END Then
 CHAR_Reload = 0
 CHAR_count = 0 ' Empty total character holder
 GoSub CHANGE_CONTENT
 EndIf
 EndIf

 If CHAR_Reload <> dummy Then
 dummy = CHAR_Reload
 StrReload_bit = 1
 Segment_Count = 0
 GoSub STORE_ARRAY
 EndIf

GoTo Start

CHANGE_CONTENT: ' " "

 For ind = 0 To 255
 If CHAR_String[ind] = $00 Then Break
 CHAR_count = CHAR_count + 1
 Next ind

Return

NUMcase:
 Select Case CHAR_String[ind]
 Case " "
 LookUp Segment,[$00,$00,$00,$00,$00,EOM],Segment_holder

 Case "1"
 LookUp Segment,[$00, $42, $7F, $40, $00, $00,
EOM],Segment_holder
 Case "2"

 78

 LookUp Segment,[$42, $61, $51, $49, $46, $00,
EOM],Segment_holder
 Case "3"
 LookUp Segment,[$21, $41, $45, $4B, $31, $00,
EOM],Segment_holder
 Case "4"
 LookUp Segment,[$18, $14, $12, $7F, $10, $00,
EOM],Segment_holder
 Case "5"
 LookUp Segment,[$27, $45, $45, $45, $39, $00,
EOM],Segment_holder
 Case "6"
 LookUp Segment,[$3C, $4A, $49, $49, $30, $00,
EOM],Segment_holder
 Case "7"
 LookUp Segment,[$01, $71, $09, $05, $03, $00,
EOM],Segment_holder
 Case "8"
 LookUp Segment,[$36, $49, $49, $49, $36, $00,
EOM],Segment_holder
 Case "9"
 LookUp Segment,[$06, $49, $49, $29, $1E, $00,
EOM],Segment_holder
 Case "0"
 LookUp Segment,[$3E, $51, $49, $45, $3E, $00,
EOM],Segment_holder
 Case ":"
 LookUp Segment,[$00, $36, $36, $00, EOM],Segment_holder
 Case "<"
 LookUp Segment,[$00, $08, $14, $22, $41, $00,
EOM],Segment_holder
 Case ">"
 LookUp Segment,[$41, $22, $14, $08, $00, $00,
EOM],Segment_holder
 Case "?"
 LookUp Segment,[$02, $01, $51, $09, $06, $00,
EOM],Segment_holder
 Case "!"
 LookUp Segment,[$5F,$00,EOM],Segment_holder
 Case "."
 LookUp Segment,[$60,$60,$00,EOM],Segment_holder
 Case ","
 LookUp Segment,[$80,$E0,$60,$00,EOM],Segment_holder
 Case "@"

 79

 LookUp Segment,[$32, $49, $79, $41, $3E, $00,
EOM],Segment_holder
 Case Else
 LookUp Segment,[$00,EOM],Segment_holder

 End Select
Return

UPPERcase:
 Select Case CHAR_String[ind]
 Case "A"
 Segment_holder = LookUp Segment,[$7E, $11, $11, $11, $7E, $00,
EOM]
 Case "B"
 Segment_holder = LookUp Segment,[$7F, $49, $49, $49, $36, $00,
EOM]
 Case "C"
 Segment_holder = LookUp Segment,[$3E, $41, $41, $41, $22, $00,
EOM] 'same as the other syntax below!!!
 Case "D"
 LookUp Segment,[$7F, $41, $41, $22, $1C, $00,
EOM],Segment_holder
 Case "E"
 LookUp Segment,[$7F, $49, $49, $49, $41, $00,
EOM],Segment_holder
 Case "F"
 LookUp Segment,[$7F, $09, $09, $01, $01, $00,
EOM],Segment_holder
 Case "G"
 LookUp Segment,[$3E, $41, $41, $51, $32, $00,
EOM],Segment_holder
 Case "H"
 LookUp Segment,[$7F, $08, $08, $08, $7F, $00,
EOM],Segment_holder
 Case "I"
 LookUp Segment,[$41, $7F, $41, $00, EOM],Segment_holder
 Case "J"
 LookUp Segment,[$20, $40, $41, $3F, $01, $00,
EOM],Segment_holder
 Case "K"
 LookUp Segment,[$7F, $08, $14, $22, $41, $00,
EOM],Segment_holder
 Case "L"

 80

 LookUp Segment,[$7F, $40, $40, $40, $40, $00,
EOM],Segment_holder
 Case "M"
 LookUp Segment,[$7F, $02, $04, $02, $7F, $00,
EOM],Segment_holder
 Case "N"
 LookUp Segment,[$7F, $04, $08, $10, $7F, $00,
EOM],Segment_holder
 Case "O"
 LookUp Segment,[$3E, $41, $41, $41, $3E, $00,
EOM],Segment_holder
 Case "P"
 LookUp Segment,[$7F, $09, $09, $09, $06, $00,
EOM],Segment_holder
 Case "Q"
 LookUp Segment,[$3E, $41, $51, $21, $5E, $00,
EOM],Segment_holder
 Case "R"
 LookUp Segment,[$7F, $09, $19, $29, $46, $00,
EOM],Segment_holder
 Case "S"
 LookUp Segment,[$46, $49, $49, $49, $31, $00,
EOM],Segment_holder
 Case "T"
 LookUp Segment,[$01, $01, $7F, $01, $01, $00,
EOM],Segment_holder
 Case "U"
 LookUp Segment,[$3F, $40, $40, $40, $3F, $00,
EOM],Segment_holder
 Case "V"
 LookUp Segment,[$1F, $20, $40, $20, $1F, $00,
EOM],Segment_holder
 Case "W"
 LookUp Segment,[$7F, $20, $18, $20, $7F, $00,
EOM],Segment_holder
 Case "X"
 LookUp Segment,[$63, $14, $08, $14, $63, $00,
EOM],Segment_holder
 Case "Y"
 LookUp Segment,[$03, $04, $78, $04, $03, $00,
EOM],Segment_holder
 Case "Z"
 LookUp Segment,[$61, $51, $49, $45, $43, $00,
EOM],Segment_holder
 Case "_"

 81

 LookUp Segment,[$80, $80, $80, $80, $80, $00,
EOM],Segment_holder
 Case Else
 LookUp Segment,[$00,EOM],Segment_holder

 End Select
Return

LOWERcase:
 Select Case CHAR_String[ind]
 Case "a"
 Segment_holder = LookUp Segment,[$7E, $11, $11, $11, $7E, $00,
EOM]
 Case "b"
 Segment_holder = LookUp Segment,[$7F, $49, $49, $49, $36, $00,
EOM]
 Case "c"
 Segment_holder = LookUp Segment,[$3E, $41, $41, $41, $22, $00,
EOM] 'same as the other syntax below!!!
 Case "d"
 LookUp Segment,[$7F, $41, $41, $22, $1C, $00,
EOM],Segment_holder
 Case "e"
 LookUp Segment,[$7F, $49, $49, $49, $41, $00,
EOM],Segment_holder
 Case "f"
 LookUp Segment,[$7F, $09, $09, $01, $01, $00,
EOM],Segment_holder
 Case "g"
 LookUp Segment,[$3E, $41, $41, $51, $32, $00,
EOM],Segment_holder
 Case "h"
 LookUp Segment,[$7F, $08, $08, $08, $7F, $00,
EOM],Segment_holder
 Case "i"
 LookUp Segment,[$41, $7F, $41, $00, EOM],Segment_holder
 Case "j"
 LookUp Segment,[$20, $40, $41, $3F, $01, $00,
EOM],Segment_holder
 Case "k"
 LookUp Segment,[$7F, $08, $14, $22, $41, $00,
EOM],Segment_holder
 Case "l"

 82

 LookUp Segment,[$7F, $40, $40, $40, $40, $00,
EOM],Segment_holder
 Case "m"
 LookUp Segment,[$7F, $02, $04, $02, $7F, $00,
EOM],Segment_holder
 Case "n"
 LookUp Segment,[$7F, $04, $08, $10, $7F, $00,
EOM],Segment_holder
 Case "o"
 LookUp Segment,[$3E, $41, $41, $41, $3E, $00,
EOM],Segment_holder
 Case "p"
 LookUp Segment,[$7F, $09, $09, $09, $06, $00,
EOM],Segment_holder
 Case "q"
 LookUp Segment,[$3E, $41, $51, $21, $5E, $00,
EOM],Segment_holder
 Case "r"
 LookUp Segment,[$7F, $09, $19, $29, $46, $00,
EOM],Segment_holder
 Case "s"
 LookUp Segment,[$46, $49, $49, $49, $31, $00,
EOM],Segment_holder
 Case "t"
 LookUp Segment,[$01, $01, $7F, $01, $01, $00,
EOM],Segment_holder
 Case "u"
 LookUp Segment,[$3F, $40, $40, $40, $3F, $00,
EOM],Segment_holder
 Case "v"
 LookUp Segment,[$1F, $20, $40, $20, $1F, $00,
EOM],Segment_holder
 Case "w"
 LookUp Segment,[$7F, $20, $18, $20, $7F, $00,
EOM],Segment_holder
 Case "x"
 LookUp Segment,[$63, $14, $08, $14, $63, $00,
EOM],Segment_holder
 Case "y"
 LookUp Segment,[$03, $04, $78, $04, $03, $00,
EOM],Segment_holder
 Case "z"
 LookUp Segment,[$61, $51, $49, $45, $43, $00,
EOM],Segment_holder
 Case 127

 83

 LookUp Segment,[$FF, $FF, $FF, $FF, $FF, $FF,
EOM],Segment_holder
 Case Else
 LookUp Segment,[$00,EOM],Segment_holder

 End Select
Return

GetSin:
 Temp = Temp & %01111111 ' Make sure only 7-bits are present
 Temp = LookUp
Temp,[16,17,17,18,19,20,20,21,22,22,23,24,24,25,26,26,27,27,28,28,28,29,29,
_

30,30,30,30,31,31,31,31,31,31,31,31,31,31,31,30,30,30,30,29,29,28,28,_

28,27,27,26,26,25,24,24,23,22,22,21,20,20,19,18,17,17,16,15,15,14,13,_

12,12,11,10,10,09,08,08,07,06,06,05,05,04,04,04,03,03,02,02,02,02,01,_

01,01,01,01,01,01,01,01,01,01,02,02,02,02,03,03,04,04,04,05,05,06,06,_
 07,08,08,09,10,10,11,12,12,13,14,15,15]
Return

' -----[Interrupt Handler]---

Int_Handler:

USART_Int:
 If PIR1.5 = 1 Then
 PIE1.5 = 0
' INTCON.7 = 0 ' disable interrupts
' INTCON.6 = 0
 Context SAVE

 If RCSTA.1 = 1 Then
 WREG = RCREG
 RCSTA.4 = 0
 RCSTA.4 = 1
 GoTo USART_RECEIVE_EXIT
 EndIf

 84

 HSerIn 10000,Just_Rx,[Wait("@"), Str BytesIn]

 Just_Rx:

 For ind = 0 To 3
 A_Holder [ind] = BytesIn [ind]
 Next ind

 A_Holder [3] = " "
 S_Holder = Str A_Holder

 If S_Holder = "msg " Then GoTo MSSG_RECEIVE

 If S_Holder = "ryt " Then Color_Red = Color_Red ^ 1

 If S_Holder = "lft " Then Color_Green = Color_Green ^ 1

 If S_Holder = "fwd " Then Color_Blue = Color_Blue ^ 1

 If S_Holder = "bck " Then Loop_bit = Loop_bit ^ 1

 If S_Holder = "dem " Then
 Demo_bit = Demo_bit ^ 1

 If Demo_bit = 1 Then
' SHOut DTA , CLK , lsbfirst , [0 ,0 ,%00011000 ,0 ,0]
' SHOut DTA , CLK , lsbfirst , [0, %00011000] 'Total of
56 shifts using 74HC595 for rows of 40
' PulsOut Latch_E,1

; SHOut DTA , CLK , lsbfirst , [0 ,0 ,%11111111 ,0 ,0]
; SHOut DTA , CLK , msbfirst , [0, %00100100] 'Total of
56 shifts using 74HC595 for rows of 40
; PulsOut Latch_E,10
 Demo_flag = Demo_bit
 TMR0ON = Demo_bit

 EndIf
' If Demo_bit = 0 Then
' StrN CHAR_String = " MAPUATECH BLUETOOTH RGB LED
MATRIX DISPLAY!!! ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890 < > ! ? @
. , _ "
' TMR0ON = 0
' goto Demo_Exit

 85

' endif
 EndIf

 GoTo USART_RECEIVE_EXIT

 MSSG_RECEIVE:

 For ind = 0 To 255
 CHAR_String[ind] = BytesIn[ind+5]' + NULL_String'Str$ (Dec null)
 Next ind

 For ind = 0 To 255
 BytesIn[ind] = $00
 Next ind
 Demo_Exit:
 first_run_bit = 0
 StrReload_bit = 0
 Segment_Count = 0
 Total_Segment = 0
 CHAR_Reload = 0
 Loop_COUNT = 0

 GoSub CHANGE_CONTENT
 GoSub STORE_ARRAY

 For ind = 0 To 3
 A_Holder [ind] = $00
 Next ind

 USART_RECEIVE_EXIT:

 While PIR1.5 = 1 ' Keep reading until RCIF
is clear to flush buffer
 null = RCREG ' after EOM is received
 Wend

' If Demo_bit = 1 then PIE1.5 = 0
' If Demo_bit = 0 Then PIE1.5 = 1

 PIE1.5 = 1

 Context Restore

' INTCON.7 = 1 ' enable interrupts

 86

' INTCON.6 = 1

 EndIf

'--

PWM_InterruptHandler:

 If TMR0IF = 1 Then
' INTCON.7 = 0 ' disable interrupts
' INTCON.6 = 0
 Context SAVE
 TMR0ON = 0

 '--
--
 ' Interrupt Handler for three software PWM signals using the Timer0
interrupt.
 ' The resolution is 6 bits per channel (0 to 31)
 '
 ' Input : DutyCycle0, DutyCycle1, and DutyCycle1 hold the 6-bit Duty
Cycles for channels 1 to 3
 ' : BeginPWM is true when the interrupt is able to have it's duty
cycle variables altered

 TIMER0 = 63670 '65348 35537 ' Write TIMER0 to setup
next interrupt interval
 '
 'State Machine for PWM starts from here
 '
 Dec IntCount ' Decrement the IntCount variable
 If IntCount = 0 Then ' If IntCount is 0, then it is time to
start a new PWM signal period
 IntCount = 32 '32 ' Initialise IntCount
to 32
 BeginPWM = True ' Set flag for main software
loop
 If Demo_bit = 1 Then
 OE_Red = 0 ' \
 OE_Green = 0 ' Set all PWM output pins low
 OE_Blue = 0 ' /
 EndIf

 87

 Else ' Otherwise.. if IntCount is not zero then
check the DutyCycle of the signal

 ' If it's not the beginning of the PWM period, we need to compare
each DutyCycle to the value of IntCount.
 ' This is done by performing a subtraction and checking to see
whether the result is 0.
 ' When a match occurs, the output pin for the PWM channel is set to
0.
 '
 If Demo_bit = 1 Then

 null = IntCount - DutyCycle0
 If null = 0 Then OE_Red = 1

 null = IntCount - DutyCycle1
 If null = 0 Then OE_Green = 1

 null = IntCount - DutyCycle2
 If null = 0 Then OE_Blue = 1

 EndIf

 EndIf
 TMR0IF = 0 ' Clear the T0IF bit in the INTCON
register
 TMR0ON = 1
' INTCON.7 = 1 ' enable interrupts
' INTCON.6 = 1
 Context Restore ' Context restore and exit the interrupt

 EndIf

End

