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Abstract

This document is the user manual for the Common Lisp Analytical Statistics Package

(Clasp), a tool for visualizing and statistically analyzing data, and also for the Common

Lisp Instrumentation Package (Clip), a tool for automating data collection and experimen-

tation.

Through statistics we attempt to separate those events which are simply due to chance

from those which are related to other events in our world. Clasp provides the tools neces-

sary for these tasks. Clasp and Clip are implemented in Common Lisp, with the Clasp

user interface implemented in Clim, the Common Lisp Interface Manager. Along with

describing the operation of Clasp and Clip, this manual details the Clasp programming

interface, an aid for building extensions to Clasp.
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Chapter 1

Introduction

When events occur in the world, people turn to statistics to analyze and describe them. This

is especially true of the behavioral sciences, psychology and sociology. Through statistics

we attempt to separate those events which are simply due to chance from those which are a

result of, or are related to, other events in our world. Through careful analysis it is possible

to understand a great deal about the state of the world. In AI, we have a new aspect of

behavioral science, the study of the behavior of intelligent agents and computer programs in

complex environments, and so we turn to statistical analysis to describe and analyze their

behavior and the factors that predict their behavior. Two examples of such AI programs

are Phoenix, a simulator of agents that �ght forest �res in Yellowstone National Park, and

TransSim, a simulator of transportation plans in a global logistical problem. We expect

that these simulated worlds will lend themselves to the same forms of analysis we use to

study the natural world. Our goal is to smoothly connect the simulators and other computer

programs with statistical analysis tools, written in Common Lisp and running in the same

Lisp world, so that high quality statistical analysis will be conveniently available to help us

understand and test the behavior of our programs.

Why use statistics to understand our programs? Why not just look at the code? As our

programs because increasingly large and complex, studying the code becomes as e�ective

in understanding overall behavior as studying biochemistry is in understanding animal

behavior. The interaction of components and the response of the program to di�erent

circumstances of its execution make global behavior hard to predict. Furthermore, programs

will act di�erently in di�erent executions because of di�erences in their environments, and

statistics can help us summarize, visualize, and analyze the overall behavior, abstracting

away the details of particular executions. We implemented Clasp, the Common Lisp

Analytical Statistics Package, to help AI researchers analyze the behavior of their programs.

1.1 History and Acknowledgments

This document describes the second implementation of Clasp. Many people helped develop

Clasp since the idea was �rst conceived in the Experimental Knowledge Systems Labora-

tory (Eksl) in 1989. First, Paul Silvey developed our relational database technology, called

the Relational Table Manager, or Rtm. This gave us a good way of saving and processing

our data in the same Lisp environment that generated it. It also led us to want to compute

means and perform t-tests to analyze the di�erences of means. Soon, it became apparent

that there was no end to the kinds of analyses that we might need to perform, given the

1



2 CHAPTER 1. INTRODUCTION

increasing sophistication of our models and experimental questions, and so the idea of a

coherent statistical package was born.

David Fisher designed and implemented the statistical functions and graphical interface

for the �rst implementation of Clasp. He was assisted by David Westbrook in many

ways, but primarily in the TI Explorer windowing and graphics code. Paul Silvey assisted

in integrating Clasp with Rtm. Other people implemented speci�c statistical functions,

including Sameen Fatima's implementation of Chi-square analysis of two-way contingency

tables and Dorothy Mammen's implementation of log-linear analysis for higher dimensional

contingency tables.

Even before the �rst implementation of Clasp, Eksl was collecting data from systems

like Phoenix and statistically analyzing them. Therefore, we quickly started implementing

general methods for instrumenting Phoenix, collecting data, and running experiments.

This e�ort was begun by Scott Anderson and David Westbrook, and eventually evolved

into what call Clip, which is simply a set of macros to make it easier to run experiments.

The second implementation of Clasp is a joint e�ort by Scott Anderson, Adam Carlson

and David Westbrook. Its goal is to make Clasp more convenient and generally available

by simplifying the data representation, eliminating its dependence on the TI Explorer by

using Clim, the Common Lisp Interface Manager, and improving the user interface based

on our experience with the �rst implementation.

1.2 Design

This manual roughly follows the design of Clip and Clasp, and therefore breaks down

into �ve sections. The �rst is a description of Clip, our aids for automated data collection

and experimentation. The other three sections are aspects of Clasp: its graphical user

interface, its data manipulation functionality, and its statistical functionality. We designed

Clasp so that these aspects are fairly modular: the graphical user interface makes it easy

to call the data manipulation and statistical subsystems, but those functions are separate

from it and from each other. The functions of those subsystems can be called directly

from a user's program or from a Common Lisp evaluator. Consequently, the �fth section

describes the actual Common Lisp functions. Indeed, individual functions, Clos classes

and methods are documented by automatically typesetting of the name, argument list,

type, and documentation string, pulling this information directly out of the code.

1.3 Getting Clip/Clasp

Clip/Clasp is available via anonymous ftp from ftp.cs.umass.edu in the directories

pub/eksl/clip and pub/eksl/clasp.

Clip requires Common Lisp and the Common Lisp Object System, Clos. Clasp

requires these also, and in addition requires the Common Lisp Interface Manager, or Clim,

and SciGraph, a publicly available scienti�c graphing package written in Common Lisp

and Clim by Bolt, Beranek and Newman (BBN). SciGraph is included in the distribution.

Clip/Clasp runs on a number of platforms under a variety of lisp implementations. Check

the release notes for a detailed list of currently supported platforms.

If you have any problems, questions, or suggestions, contact us at:

clasp-support@cs.umass.edu
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1.4 Conventions

Wherever lisp or Clasp objects appear in a body of text, the following conventions hold:

� Names of Clasp commands are printed in Small caps and pre�xed with a semi-

colon.

� Names of arguments to Clasp functions and commands appear in italics.

� Names of keywords are printed in teletype and are pre�xed with a semi-colon.

� Names of all other lisp objects, including functions are printed in teletype.

Where sections of code are included, they will be in teletype. In examples of interactive

Clasp sessions, san serif will be used and for anything the system prints and bold san serif

will be used for user input.
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Chapter 2

CLIP

2.1 Motivation

We collect information from software systems for many reasons. Sometimes, the very pur-

pose of the system is to produce information. Other times, we collect data for debugging,

feedback to the user|in general, for understanding the system's behavior. Unfortunately,

there seem to be few general tools available for this task. Instead, we often �nd ad hoc,

domain-speci�c code, spread throughout a system, varying from component to component,

despite strong similarity in the requirements for any data collection code.

Clip, the Common Lisp Instrumentation Package, standardizes data collection. It is

named by analogy with the \alligator clips" that connect diagnostic equipment to electrical

components. By standardizing data collection, we can more easily add and delete instru-

mentation from our systems. We can reuse a piece of data collection code, called a \clip,"

in other systems we are studying. We can use general tools to analyze the collected data.

Instrumentation in a system becomes more easily used and understood, because the basic

functionality of the system is separated from the functionality of the instrumentation.

We designed Clip to be used for scienti�c experiments, in which a system is run under a

number of di�erent conditions to see whether and how the behavior changes as a function of

the condition. Consequently, we view an experiment as a series of trials, varying the settings

of experiment variables and collecting information. Generally speaking, an experiment

comprises the following steps:

1. Creating clips and inserting them into the system to be studied. Generally, clip

measures one particular aspect of a system, but you can also de�ne clips that combine

many measurements, including other clips. Often, the clips you need will already be

de�ned.

2. De�ne the experiment, in terms of what system is to be run, any necessary initializa-

tion code, and the conditions under which it is to run (di�erent input parameters or

environmental conditions).

3. Run a series of trials, saving the output into a Claspformat data �le.� This format

is described in the Clasp manual section Data Manipulation Functions, although it

isn't necessary to understand the �le format. Clasp can read what Clip writes.

�
Clip can also write data �les in standard tab or space delimited format used by most other statistical

packages, databases and spreadsheets.

5



6 CHAPTER 2. CLIP

4. Analyze the data using Clasp.

2.2 Implementation

Clip provides �ve major forms to support experiments:

� define-simulator,

� defclip,

� define-experiment,

� write-current-experiment-data, and

� run-experiment

Each is described in detail below.

2.2.1 De�ne-simulator Macro

define-simulator (name &key system-name system-version reset-system

start-system stop-system schedule-function deactivate-scheduled-function

seconds-per-time-unit timestamp)

[Macro]

De�ne the interface to a simulation. The following options are recognized:
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:system-name string naming system [2]

:system-version function or form which handles the arguments

of the experiment and returns a string which

denotes the version of the system a

[1]

:start-system function or form that handles the experiment

variables and arguments of the experiment;

this function is called during the experiment

loop to begin execution of the system; when it

returns the trial is considered to be completed

[2]

:reset-system same as :start-system; this function will be

called during the experiment loop before the

system is started;

[1]

:stop-system same arg handling as :start-system; this func-

tion can be used to execute code when a trial

is shutdown; it is most useful when instru-

menting multiprocessing systems where other

processes need to be terminated

[1]

:schedule-function function or form that handles the lambda list

(function time period name) and optionally

returns a data-structure which represents the

event; used to provide access to the simula-

tor's event-scheduling mechanism

[3]

:deactivate-scheduled-function function or form that handles one arg,

namely the data structure returned by the

schedule-function function; used to pro-

vide access to the simulator's event-scheduling

mechanism

[1]

:timestamp a function or a list of (<function-name>

<clip-name>) where function should re-

turn the current time in units speci�ed by

:seconds-per-time-unit

[3]

:seconds-per-time-unit the number of seconds in 1 simulator time

quantum (default is 1)

[3]

Keywords marked [1] are optional; Keywords marked [2] are required, and keywords marked [3] are
required when using time-series clips

aFunctions must accept the formal arguments speci�ed in define-experiment and the actual arguments

speci�ed in a call to run-experiment. Forms can refer to the arguments lexically.

The define-simulator form is used to eliminate the need to specify redundant infor-

mation when multiple experiments are to be de�ned for the same system. All of the options

speci�ed in this form can be overridden in a define-experiment form.

2.2.2 De�ne-experiment Macro

define-experiment (name arguments &body body &aux documentation) [Macro]

A define-experiment form sets up the environment in which the system is to be run.

Options for define-experiment support the sequential nature of experimentation. That
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is, for the purposes of alligator clips, we view an experiment as a series of trials, varying the

settings of experiment variables and collecting information. The define-experimentmacro

allows code to be run at the beginning and end of the experiment, usually to set up data-

recording or to do data analysis. It also allows code to be run at the beginning and end of

each trial; often this is used to reset counters, clear data structures, or otherwise set up the

data collection apparatus. Through the :script keyword a user may add speci�c code to

run at particular times during the experiment. A user can also specify experiment variables

and their associated sets of values; the experiment code will ensure that all combinations

of the experiment variables are run. For example, specifying:

:variables ((rating-scheme '(:OPPORTUNISTIC :ORDER-BY-ORDER))

(percentage from 100 downto 50 by 10))

describes an experiment with twelve conditions (six values of percentage times two kinds

of rating schemes), and so the number of trials will be a multiple of twelve, with an

equal number of trials being executed under each condition. The options accepted by

define-experiment are:

:simulator specify the name of the simulator de�nition to use

:before-trial called with the current values of the experiment variables and

arguments to specify operations performed before each trial

(such as initializations)

:after-trial similar to :before-trial, speci�es operations to be per-

formed after each trial. Summary data �les for each trial can

be written at this time using write-current-experiment-

data.

:before-experiment called with the arguments. The value should be a form that

refers to the arguments or a function that handles the correct

number of arguments. Used to initialize system and de�ne

experiment environment.

:after-experiment Similar to :before-experiment, called with just the argu-

ments. Used to close �les, write any experiment summariza-

tion output and clean up after the experiment.

:instrumentation is a list of names de�ned with defclip which will be enabled

during the experiment. Use write-current-experiment-

data in the after-trial code to write the data to the output-

�le.

:variables (f(var exp) j (var floop-for-clauseg)g) - de�ne experiment

variables

:locals (f(var exp) j varg*) - bind variables in the context of the

experiment

:script (f(descriptive-name initial-time [next-time] form) | script-

element-nameg*) initial-time can be a string, a number or

form to evaluate. next-time is a time interval and should be

a �xnum or form.

In addition, define-experiment accepts all the options accepted by define-simulator.
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The following steps are generated from the define-experiment speci�cation to run a

typical experiment. After initializing the system using the :before-experiment form, it

loops over the cross-product of the speci�ed experiment variables, running one trial for

each element in the cross-product. This is repeated for as many times as is speci�ed in the

:repetitions option. After the last trial, the :after-experiment form is run.

Run :BEFORE-EXPERIMENT code with args

LOOP

Update experiment-variables for trial

Run :BEFORE-TRIAL code with experiment-variables and args

Run :RESET-SYSTEM code with experiment-variables and args

Instantiate Script Events

Reset and Enable all the instrumentation

Run :START-SYSTEM code with experiment-variables and args

<system runs (possible periodic and event based collection done)>

Run :AFTER-TRIAL code (possible post-hoc collection done)

END LOOP when all trials completed

Run :AFTER-EXPERIMENT code with args

2.2.3 Write-current-experiment-data Function

write-current-experiment-data (&key separator format instrumentation

stream)

[Function]

Causes each experiment instrumentation to write its data to stream or the output-�les

speci�ed in the run-experiment call or in a defclip. separator should be a character which

will be used to separate �elds. It defaults to the value of *data-separator-character*.

format should be one of :CLASP which means write a clasp native format data �le, :ASCII

which means write a standard separator delimited data �le including column names or

:DATA-ONLY which is the same as :ASCII except no column names are included. format

defaults to the value of *output-format*. instrumentation can be used to specify a subset

of the experiment's instrumentation to write to the data �le.

2.2.4 Run-experiment Function

run-experiment (experiment-name &key args repetitions number-of-trials

length-of-trial output-�le error-�le extra-header starting-trial-number)

[Function]

Run-experiment starts execution of the experiment named experiment-name. The args

are passed on to the experiment. output-�le is optional, but must be speci�ed if write-

current-experiment-data is called from within your experiment. number-of-trials can be

used to specify an exact number of trials to run. If number-of-trials is not speci�ed it will

be calculated so as to vary all the experiment variables across all their values repetitions

(default 1) times. starting-trial-number can be used to change this value to something other

than one (1) which is useful for continuing partially completed experiments. length-of-trial

can be speci�ed for time-based simulators to put a limit on the maximum trial length.

error-�le can also be used to direct the error/debug output to a �le. extra-header is written

at the end of the header of the output �le.
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2.2.5 Explicitly Stopping Trials

The following functions can be called from user code to explicitly terminate a Clip trial

or experiment. Usually this is done from within the code of a script or as part of an error

handler. They all take no arguments and assume that an experiment is in progress.

shutdown-and-rerun-trial () [Function]

This will cause the current trial to be aborted (no data written) and restarted. This

is a function that users should call when they have detected an error condition of

some sort that renders the trial worthless, but rerunning the trial may work.

shutdown-and-run-next-trial () [Function]

This will cause the current trial to be stopped (data will be written) and the next

trial started. This is a function that users should call when want to normally

shutdown a trial and collect and report the data from that trial.

shutdown-experiment () [Function]

This will cause the current trial to be aborted (no data will be written) and will

return the system to the state it was before the experiment began (by running the

after-experiment code).

2.3 Clip De�nition

There are basically only a small number of ways to instrument a software system. These

are: adding special purpose code to collect data, interrogating global (usually objects with

state) data structures or using advice.

The �rst way is to build in special purpose code to collect data about the state of the

system while the system is running. We used this technique in the Phoenix< testbed to keep

information about the execution time of timeline entries and also message tra�c patterns.

The Transsim simulator also uses this technique when it keeps track of daily costs, ship

locations, demon �ring intervals. The key point here is that the only reason for adding the

piece of code was to allow an experimenter to analyze the behavior of the system. The

simulation itself does not use the information. This method increases the complexity and

reduces the readability and maintainability of the software system. In code that is highly

instrumented it is often di�cult to determine what is intrinsic to the running of the system

and what is used to instrument.

Another method involves interrogating global data structures to determine the state

post hoc. Examples include most everything we collected about Phoenix (ie., �reline built,

�rst plan tried, bulldozer digging times, etc.). This technique is �ne if the information

is hanging around after you have �nished running the simulation, but this is not always

the case. Also, there is some information that is time-sensitive, and therefore must be

collected on a periodic or event-driven basis. Collecting this type of information often

involves resorting to the �rst method { altering the code itself.

Alternatively, one can use the advise facility available in many lisp environments to non-

intrusively collect information when functions are called. This is a nice modular approach,

but requires a good deal of knowledge about the advise facility and the software system

itself. Unfortunately, the advise facility is not standardized across Lisp implementations.

The defclip macro encapsulates the code necessary to instrument a software system

and separates it from the system itself. It avoids the pitfalls of adding special purpose code
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directly to the software system while at the same time allowing periodic and event-driven

data collection. It also allows collection to be done by perusing global data structures.

2.3.1 Simple Clips

Simple clips have no components and collect data immediately prior to reporting it to the

output �le at :after-trial time. If they are de�ned with a :schedule or :trigger-event

defclip option their default behavior is store all of the data collected during a trial and

report a single value which is the mean of all the values collected.y

2.3.2 Clips with Components

Clips with components, as speci�ed by the :components keyword, generate multiple columns

in a data �le each time they are reported. Depending on other options they may produce

one column per component (composite clips) or multiple columns per component (mapping

clips). Mapping clips are speci�ed using the :map-function option to defclip. Clips with

components are sometimes referred to as super clips. For a good example of clips with

components and further discussion of their use, see Appendix B.1.1.

2.3.3 Time-series Clips

Clips that have :components and either the :schedule or :trigger-event option are

time-series clips. They generate multiple data columns in the manner of component clips

(which they are) and also multiple data rows. Each row corresponds to a single collection

and is either triggered by a particular event or activated periodically. Since time-series

clips generate multiple rows, they are generally written to a data �le that is separate from

the main experiment (summary) data �le. The name of the data �le associated with a

time-series clip is speci�ed using the :output-file option to defclip.

The :schedule-function, :seconds-per-time-unit, and :timestamp keywords to

define-simulatormust be speci�ed for periodic time-series clips. Event-based time-series

clips require only that the Common Lisp implementation provide some mechanism similar

to the advise function.z

2.3.4 Defclip Macro

defclip (name args (options) &rest body) [Macro]

A defclip form de�nes and names a particular data-collection instrument. Each clip

collects a single variable which, together with other variables, make up a dataset. The

dataset can then be analyzed by Clasp. The form may contain arbitrary code to gather

data for the clip: access to global variables, function calls, and so forth. Naming the clips

makes it easy to turn them on and o� programatically or with menu selections.

options is a list of keywords and values which modify the main form implemented by

the clip. options can be any of the following, all of which are optional:

yThe default behavior if the collected values are non-numeric is to generate an error.
zActually, one can explicitly call the undocumented (until now), unexported `clip::collect' function on a

particular instrumentation and achieve the same e�ect as an event-based clip, but requires modifying the

code.
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:schedule a list of keyword/value pairs; currently allowed are :period

which provides the time interval between collections for time-

series data, and :start-time which speci�es the time of the

�rst collection; if neither :schedule nor :trigger-event is

speci�ed, collection will be done immediately prior to the

report being output to the data stream

:trigger-event a function, list of functions or list of trigger speci�cations

which trigger event-driven collection ; each trigger spec

should of the form (<fname> [:BEFORE j :AFTER] [:PRED-
ICATE <fname>])

:components a list of clips that are associated with this clip; ie., they are

collected and reported as a group by collecting or reporting

this clip

:map-function provides a list of items to map the :components over ; this

function should return the same arguments in the same order

each time it is called

:report-key allows overriding of the column header key which is written to

the data stream; avoid using this for component clips unless

you really know what you are doing as the default key will

be generated to correctly di�erentiate between multiple in-

vocations of the same clip with di�erent parents; this string

is used in a call to `format'; for most component clips this

string should handle the same arguments as the clip

:initial-status whether the clip is enabled or disabled by default

:report-function can be used to override the default report function; for expert

users only

:enable-function codea to set up data structures for the clip; runs once when

the clip is turned on

:disable-function code to remove data structures set up for the clip; runs once

when the clip is turned o�

:reset-function code to reinitialize data structures at the beginning of each

trial; for example, setting counters back to zero

:display-function code for graphical display of the information

:output-file used to specify the output �le for time-series clips - merged

with the pathname speci�ed in the run-experiment call;

should be a string or a function of one arg; the function is

called with the name of the clip and should return a value

suitable for use as the �rst argument to merge-pathnames

a`code' at this level is speci�c to the user's system, and is assumed to be user-supplied Lisp code. For

example, enabling a counter of events in a system may require creation and initialization of a counter variable.

Some examples of defclip usage:

A simple clip with code used to report a value:

(defclip number-of-dead-bulldozers ()

(length (bds-that-died)))
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An example showing a clip with components:

(defclip methods-each-bd (bulldozer)

"Salient information for each instance of applying a recovery method:"

(:components (trial-number

agent-name

method-type

failure-type

calculate-recovery-cost

method-succeeded-p

order-of-application)

:map-function (gather-recovery-method-instances (name-of bulldozer)))

;; This code executes before the map-function is executed.

(send (fire-system) :set-frame-system (name-of bulldozer)))

(defclip ii-projection-attempts-made ()

"Clip for reporting the number of attempts that were made by

ii-projection during the last projection of the trial."

(:reset-function (setf *ii-projection-attempts-made* nil))

(car *ii-projection-attempts-made*))

2.4 Examples from a Simple Agent Simulator

The following three examples illustrate experiment control and data collection using Clip.

The agents in this simulator stochastically increment their state until they reach a �nal

state. The �rst example de�nes the experimental interface to an agent simulator and two

simple clips for collecting data. The second and third examples build on the �rst, de�ning

more complicated clips for mapping a simple clip onto multiple agents and for collecting

time-series data.

2.4.1 Using Simple Clips to Collect Trial Summary Data

This example collects trial summarydata about overall agent-cost and task completion-time.

Collection occurs at the end of each trial and is written out to a summary �le in Clasp

format. The define-simulator form designates methods for starting the simulation at

the beginning of the experiment, resetting and reinitializing it if necessary, and stopping it

after the �nal trial. The define-experiment form designates the simulator to use, in this

the case the one we have de�ned. It also speci�es: a set of experiment variables and the

experimental settings for each, a list of the clips we've de�ned under :instrumentation,

initializations for global variables before each trial, and a function for writing out a row of

data at the end of each trial.

For each trial, the trial number (assigned sequentially) and the value of each experiment

variable are written out to the summary �le along with the values of the speci�ed clips. An

example of the Clasp output �le produced by this experiment is shown in Figure 2.1.

In this �rst example we have de�ned two simple clips. One collects the combined cost

of all agents at the end of each trial and the other records the time at which the trial ends.

;;;-------------------------------------------------------
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(define-simulator agent-sim-1

:start-system (run-agent-simulation :reset nil)

:reset-system (reset-agent-simulation)

:stop-system stop-simulation)

;;;-------------------------------------------------------

;;; Clip Definitions

(defclip agents-cost ()

()

(reduce #'+ (find-agents) :key #'cost))

(defclip completion-time ()

()

(current-time))

;;; ******************************************************

;;; The Experiment Definition

(define-experiment simple-agent-experiment-1 ()

"A test experiment."

:simulator agent-sim-1

:variables ((transition-probability in '(.01 .1))

(cost-factor from 1 to 3))

:instrumentation (agents-cost completion-time)

:before-trial (setf *transition-probability* transition-probability

*relative-cost* cost-factor)

:after-trial (write-current-experiment-data))

#| Execute this to run the demo experiment.

(run-experiment 'simple-agent-experiment-1

:output-file

#+Explorer "ed-buffer:data.clasp")

|#

2.4.2 Using a Mapping Clip to Map Simple Clips Over Multiple Agents

This example de�nes a mapping clip that maps over all the agents at the end of each

trial and returns the cost accrued by each. It produces a summary output �le like that in

Figure 2.2 recording after each trial an entry that includes trial number, each experiment

variable, each of three agent's cost, and the completion time of the trial.

;;;-------------------------------------------------------

;;; Mapping clip to collect cost of each agent

(defclip all-agents-costs ()
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(1  0.01  1  1571  729)
(2  0.01  2  3288  587)
(3  0.01  3  4011  567)
(4  0.10  1   126   63)
(5  0.10  2   328   67)
(6  0.10  3   537   68)

CLASP 
Format

agents-cost completion-timecost-factortransition-probabilitytrial-number

Figure 2.1: Simple Clip Example from the Agent Experiment.

(:map-function (find-agents)

:components (each-agent-cost)))

(defclip each-agent-cost (agent)

()

(cost agent))

;;; ****************************************************

;;; The Experiment Definition

(define-experiment simple-agent-experiment-2 ()

"A test experiment."

:simulator agent-sim-1

:variables ((transition-probability in '(.01 .1))

(cost-factor from 1 to 3))

:instrumentation (agents-cost all-agents-costs completion-time)

:before-trial (setf *transition-probability* transition-probability

*relative-cost* cost-factor)

:after-trial (write-current-experiment-data))

#| Execute this to run the experiment.

(run-experiment 'simple-agent-experiment-2

:output-file

#+Explorer "ed-buffer:data.clasp")

|#

2.4.3 Full Agent Simulator Experiment with Time-Series Clips

This example uses both periodic and event-driven time-series clips to collect data about

each agent's state. To use time-series clips the experimentor must supply Clip with

enough information to schedule data collection during trials. This is done by specify-



16 CHAPTER 2. CLIP

(1  0.01  1  1370   390   622  358  622)
(2  0.01  2  2108   746   364  998  499)
(3  0.01  3  4938  1299  2772  867  924)
(4  0.1   1   148    36    59   53   59)
(5  0.1   2   280   130    80   70   65)
(6  0.1   3   627   192   258  177   86)

trial-number transition-probability cost-factor agents-cost completion-timeall-agents-costs

each-agent-cost

:map (agent-1 
      agent-2 
      agent-3)

Figure 2.2: Mapping Clip Example from the Agent Experiment. Mapping clips are used to

map one or more simple clips over multiple objects.

ing in define-simulator a :schedule-function that tells defclip how to schedule clip

execution. The optional :deactivate-scheduled-function provides a function for un-

scheduling clips (if necessary). :seconds-per-time-unit tells Clip how to translate the

time units of the simulator into seconds. The value of :timestamp is used to automatically

record the time of collection in each row of a time-series data �le.

This example illustrates three uses of clips: collecting summary data about the highest

agent state, gathering periodic snapshots of all agent states, and recording particular aspects

of the agents' changes of state. The periodic clip de�nition speci�es an output �le and a

scheduling interval. Two event-driven clips are triggered in this example by the same

function, change-of-state-event-function, which looks for any change of agent state.

However, since their component clips are not identical, their output is routed to separate

�les (Clasp �le format expects all rows to have the same number of columns and column

names).

Four output �les are produced by this experiment. As in the previous examples, a

summary �le records a row of data at the end of each trial. Each change in an agent's state

triggers event-driven clips that record a row in a time-series output �le, as in Figure 2.3.

The event-driven clip de�nitions change-of-state and change-of-state-pred produce

one output �le each. The fourth output �le also records time-series data, one row for each

periodic snapshot of all agents' states (cf. Figure 2.4).

Collecting time-series data is more time-consuming than collecting summary data. In

the �rst two examples, where only summary data was collected, trials were allowed to run to

completion. In the third example periodic clips run every 12 minutes and event-driven clips

run as frequently as agent's states change. We can limit the duration of trials by specifying

a :length-of-trial value to run-experiment. This is useful for statistical tests on time-

series data, such as cross-correlation, that expect the number of rows for each trial to be

the same. Thus, in this example, specifying :length-of-trial to be 500 minutes ensures

that the periodic data collection will produce the same number of rows for each trial.

;;;-------------------------------------------------------

(define-simulator agent-sim

:start-system (run-agent-simulation :reset nil)
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:reset-system (reset-agent-simulation)

:stop-system stop-simulation

;; a function that places functions to run on the queue of events.

:schedule-function (lambda (function time period name &rest options)

(declare (ignore name options))

(schedule-event function nil time period))

;; a function that removes functions from the queue of events.

:deactivate-scheduled-function unschedule-event

:seconds-per-time-unit 60

:timestamp current-time)

;;;--------------------------------------------------

;;; Clip Definitions

;; This post-hoc clip produces two values.

(defclip highest-agent-state ()

(:components (highest-state highest-agent))

(loop

with agents = (find-agents)

with highest-agent = (first agents)

with highest-state = (state highest-agent)

for agent in (rest agents)

for agent-state = (state agent) do

(when (state< highest-state agent-state)

(setf highest-state agent-state

highest-agent agent))

finally (return (values highest-state highest-agent))))

;;;--------------------------------------------------

;;; Periodic collection

;; This clip invokes its component every 12 minutes.

(defclip periodic-agent-state-snapshot ()

(:output-file "snapshot.clasp"

:schedule (:period "12 minutes")

:map-function (clip::find-instances 'agent)

:components (each-agent-state-snapshot)))

;; Simple clip that returns the state of the agent.

(defclip each-agent-state-snapshot (agent)

"Record the state at an agent."

()

(state agent))

;;;--------------------------------------------------

;;; Event-driven collection
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;; This clip accepts the arguments passed to `change-of-state-event-function'

;; and simply passes them through.

(defclip change-of-state (agent-name new-state)

(:output-file "state-change.clasp"

:trigger-event (change-of-state-event-function :BEFORE)

:components (new-state agent-name))

(values new-state agent-name))

;; This clip accepts no arguments and returns two values computed by other

;; functions.

(defclip change-of-state-pred ()

(:output-file "state-change-pred.clasp"

:trigger-event (change-of-state-event-function :AFTER)

:components (fred barney))

(values (compute-fred) (compute-barney)))

;;; *************************************************

;;; The Experiment Definition

(define-experiment agent-experiment ()

"A test experiment."

:simulator agent-sim

:variables ((transition-probability in '(.01 .1))

(cost-factor from 1 to 5 by 2))

:instrumentation (agents-cost

all-agents-costs

completion-time

highest-agent-state

change-of-state-pred

change-of-state

periodic-agent-state-snapshot)

:before-trial (setf *transition-probability* transition-probability

*relative-cost* cost-factor)

:after-trial (write-current-experiment-data))

;; Execute this to run the demo experiment.

(defun rexp ()

(run-experiment 'agent-experiment

:output-file "data.clasp"

:length-of-trial "500 minutes"))
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trial-number transition-probability cost-factor

new-state agent-name

change-of-statetimestamp

(1   65  0.01  1 STATE2 AGENT-2)
(1   82  0.01  1 STATE3 AGENT-2)
(1  136  0.01  1 STATE3 AGENT-1)
(1  151  0.01  1 STATE4 AGENT-2)
(1  154  0.01  1 STATE4 AGENT-1)
(1  250  0.01  1 STATE5 AGENT-2)
(1  296  0.01  1 STATE6 AGENT-2)
(2    0  0.01  3 STATE2 AGENT-2)
(2   23  0.01  3 STATE2 AGENT-1)
(2   28  0.01  3 STATE3 AGENT-2)
...

Figure 2.3: Event-Driven Time-Series Clips are used to collect data when an agent's state

changes in the Full Agent Experiment.

(1   0  0.01  1  STATE1 STATE1 STATE1)
(1  12  0.01  1  STATE1 STATE1 STATE1)
(1  24  0.01  1  STATE1 STATE1 STATE1)
( ...                                )
(6  36  0.1   5  STATE3 STATE6 STATE2)
(6  48  0.1   5  STATE4 STATE6 STATE6)
(6  60  0.1   5  STATE4 STATE6 STATE6)

trial-number transition-probability cost-factor

each-agent-
state-snapshot

periodic-agent-
state-snapshot

timestamp

:map (agent-1 
      agent-2 
      agent-3)

Figure 2.4: Periodic Time-Series Clips collect snapshots of each agent's state at regular

intervals during the Full Agent Experiment.
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Chapter 3

Graphical User Interface

This chapter describes the layout and use of the Clasp graphical user interface. The

interface is built using the Common Lisp Interface Manager (Clim), so many Clim features

are available in Clasp.

The �rst section describes the layout of Clasp. The second section discusses Clasp

command syntax. The next section explains how to interact with Clasp using the mouse

and keyboard. Some examples of Clasp usage follow. Finally, each of the command menus

are described.

3.1 Clasp Layout

The main window of Clasp is called the Clasp frame. This frame contains a number of

sections called panes. Information in Clasp is displayed in one of four areas.

Menu Bar The Clasp menus will appear across the top of the Clasp frame. The menus

are: File, Graph, Describe, Manipulate, Transform, Test and Sample. Clicking on a

menu name will pop up the menu.

Datasets Display This contains the names of all Datasets and Variables currently loaded

into Clasp. Dataset names are aligned to the left margin; variable names for each

dataset are indented below the dataset name.

Results Display A mouse-sensitive icon for each Clasp result appears in this window.

Notebook Clasp commands and lisp expressions are entered here.

While the Menu Bar and Notebook are always in the Clasp frame, the Datasets

Display and Results Display are under user control. They can either be panes at the

left edge of the Clasp frame, or in separate windows. This is controlled through the

:Preferences command.

3.2 Clasp Command Syntax

3.2.1 Basic syntax

Commands have the form :verb arg1 arg2 ... argn. :verb is the name of the command and

arg1 arg2 ... argn are the arguments it accepts. Note that when being entered, commands

are pre�xed by a colon character (:).

21
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Some examples of command usage:

:Load Dataset (Pathname) my-data.clasp

:Rename Variable (Variable) Var-1 (New name) Numnodes

:Merge Datasets (Datasets) Dataset-1, Dataset-2

3.2.2 Mapped arguments

Many Clasp commands give the user the option of entering multiple values for their argu-

ments. When this happens, the command will be executed for each value of the argument

it is given. This is called argument mapping. If a command has more than one argument

that allows mapping, each argument must be given the same number of values and multiple

values will be mapped over in parallel. That is, the command will be executed on all the

�rst values of its arguments, then all the second values, etc.

Some examples of mapped arguments are:

:Mean (X(s)) Var-1, Var-2, Var-3

Will return the mean of Var-1, Var-2 and Var-3.

:Anova One Way Variables (Y(s)) Y1, Y2 (X(s)) X1, X2

This will do a one-way anova of Y1 on X1 and a one-way anova of Y2 on X2.

:Correlation (Y(s)) Y1, Y2 (X(s)) X1

This is illegal, X and Y are both mapping arguments, but they were given di�erent

numbers of inputs.

The following example shows an instance where not all the arguments of a command

are mapped arguments. In :T Test Two Samples, although the X and Y arguments

map, the Tails argument doesn't. Whatever single value is entered for Tails will be

used for every iteration of the other arguments. The prompt for an argument that

may be mapped over will end in (s).

:T Test Two Samples (Y(s)) Y1, Y2 (X(s)) X1, X2 (Tails: [Both, Positive or Negative])

Positive

This will perform two 2 sample t-tests, one on X1 and Y1 and another on X2 and Y2.

Both tests will be Positive tail tests.

3.3 Interacting with Clasp

At the command prompt ()), Clasp will accept either a Clasp command or a lisp expres-

sion. If a command is entered, its arguments will be prompted for and then the command

will be run. If a lisp expression is typed, it will be evaluated and the value printed as in

a normal lisp listener. When Clasp is looking for a particular kind of input, a variable, a

string, etc. it is said to be accepting that kind of input. When accepting a particular type

of input, Clasp makes it easy to enter that type of data by making objects of that type

mouse selectable and also by doing completion on the names of those objects. For instance,

when Clasp is accepting a variable as an argument to a statistical command, all Clasp

variables will be selectable. In addition any sequence of numbers being displayed in the

Clasp frame will be selectable, as will any lisp symbol which evaluates to a sequence of

numbers.
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3.3.1 Using the mouse

To enter a command, click on the menu in which the command resides and then click on the

command. When a command has been selected and is waiting for arguments to be entered,

any object which is a valid argument will become mouse selectable.

To select multiple objects, either for a mapped argument or a command which accepts

multiple objects (such as :Merge Datasets), click on each object.

At the command prompt, clicking on a previously entered command or lisp expression

will re-execute it. Clicking on a Clasp object (a Dataset, Variable or Result) will cause it

to :Open, clicking on an open object will cause it to :Close.

While entering a lisp expression, clicking on any other lisp expression will insert it at

the cursor. Clicking on a Clasp variable will insert its value into the current expression as

a quoted list.

3.3.2 Using the keyboard

As with the mouse, whenever Clasp is accepting a variable, the name of any Clasp variable

may be typed. In addition, the name of any lisp symbol which has a sequence of numbers

as its value may be typed. To enter multiple objects, separate them by commas.

Clasp also performs completion on typed input. When entering a command or the

name of a variable, the Tab key will do partial completion, �lling in as much information as

possible until there are two possibilities which will be distinguished by the next character.

For instance, since there are a number of sampling commands, all of which start with

:Sample, typing :sam followed by a Tab will complete the word :Sample. The Space

key completes the current word or object, and then prompts for the next piece of input

(either the next word of a command, or the next argument.) The Return key indicates

to Clasp that the input is complete and ready for processing. Returning to the :Sample

commands, if the user types :Sample U (which uniquely determines the command :Sample

Uniform), then the three completion characters will behave di�erently. Space will complete

the command and prompt the user for the �rst argument. Tab will complete the command,

but it will not prompt for the �rst argument. Return will complete not only the command,

but the �rst few arguments, which have default values, and then it will try and process the

input line. In general, a good rule of thumb is: \When in doubt, hit the Space key, if that

doesn't do what you want, hit the Backspace key and go from there."

Since Clasp uses the CLIM input editing facility, most of the normal CLIM editing

keys will work. The following is a table of editing keys available at the Clasp command

line.

When typing a lisp expression in Clasp, the bang key (!) can be used to reference

Clasp variables. The expression !variable-name will substitute the value of the variable

into the expression. If more than one variable has the same name,

!variable-name!dataset-name

will uniquely determine a variable, and its value will be used. If there are multiple variables

with the same name, and the dataset is not speci�ed, the matching variable belonging to

the most recently created dataset will be used. When a �nal close parenthesis is entered

in a lisp expression, the expression will immediately be evaluated { there is no need to hit

Return.

A useful trick for editing a lisp expression from a previous line is:
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Forward character control-F

Backward character control-B

Beginning of line control-A

End of line control-E

Delete next character control-D

Delete previous character Rubout

Kill to end of line control-K

Transpose adjacent characters control-T

Yank from kill ring control-Y

Table 3.1: Keys used for editing input

1. Type an open parenthesis - This will tell Clasp that you are entering an expression.

2. Click on the line to edit - This will insert it into the current line.

3. Edit the line- Make whatever changes are desired using the keyboard editing charac-

ters described below.

4. Remove initial parenthesis - Go to the beginning of the line (you can use Control-A)

and delete the extra open parenthesis (Control-D.)

5. Move to the end of the line (Control-E) - This will cause the new line to be entered.

3.4 Examples of Clasp command usage

Some examples of other Clasp commands follow. These commands make a new dataset,

de�ne a new variable for the dataset and rename the new variable.

:Make Dataset from Rows (Name) Exper-1 (Data) A, 13, 431; A, 10, 389; B, 11, 214;

B, 10, 203 (Variable names) Method, Time, Score

Create a new dataset called EXPER-1 with three variables, METHOD, TIME, and SCORE,

and 4 rows of data. Note that in entering data, single items are separated by a comma,

rows are separated by a semicolon.

:User De�ned (Dataset) exper-1 (Expression) (/ score time)

:User Defined is a command from the Transform menu which allows arbitrary

transformations of variables. In this case, the command will add a new variable to

EXPER-1 which divides SCORE by TIME.

:Rename Variable (Variable) /-score-time (New name) points-per-second

Commands from the transform menu compute a name for the new variable by using

the expression that created it. Often the user will want to give the new variable a more

semantically appropriate name. This command rename the newly created variable,

/-SCORE-TIME to POINTS-PER-SECOND.
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3.5 Clasp Command Menus

The Clasp commandmenu pane has seven menus, each of which is described in this section.

Clicking on a menu name will pop up the menu, left clicking on a menu item will select that

item, right clicking on it will bring up help for that item.

3.5.1 The File Menu

File

Load Dataset

Import Dataset

Save Dataset

Export Dataset

Clear All

Clear Notebook

Save Notebook

Print

Preferences

Quit

File menu commands are used to manage datasets and the Clasp notebook, and to

print results.

:Load Dataset (Filename) [Command]

Loads a dataset from a disk �le in Clasp format.�

:Import Dataset (Filename) (Separator) (Include variable names) [Command]

Loads a dataset from a disk �le in columnar format. Separator is the character used

to separate columns in the �le. If Include variable names is Yes, then the �rst line

of the �le will be interpreted as variable names.y

:Save Dataset (Filename) [Command]

Saves a dataset to a disk �le in Clasp format.

:Export Dataset (Dataset) (Filename) (Separator) (Include variable names)[Command]

Saves a dataset to a disk �le in columnar format. As with :Import Dataset,

Separator is the character used to separate columns. If Include variable names is

Yes, then the variable names will be written to the �rst line of the �le.

:Clear All [Command]

Clears the Clasp notebook and all datasets and results.

:Clear Notebook [Command]

Clears the Clasp notebook, but doesn't delete datasets and results.

:Save Notebook [Command]

Saves the current notebook to a postscript �le.

:Print (Object) (Filename) [Command]

�
Clasp �le format is described in 6.3.2.
yFor more information on importing and exporting �les, see 6.3.2.
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Object may be a Clasp dataset or the result of a Claspcommand. The output

is written in postscript format to Filename. Because of limitations in Clim 1.1's

postscript support, printing graphs is di�cult. The following procedure will produce

reasonable postscript output for graphs.

1) Unless the graph will be printed with a color postscript printer, set the color of

each dataset in the graph to black. This can be accomplished by clicking on the

datasets in the graphs legends and using the window that pops up to set the dataset

color. (Note, since SciGraphdisplays graphs with a black background, the datasets

will not be visible on screen.)

2) Print the graph to a �le using the :Print command.

3) Run the postscript �le through the sed script ps-fix.sed, to do this type

sed -f ps-fix.sed file.ps > new-file.ps

at the shell prompt. In the above example, file.ps is the name of the �le that was

created by the :Print command and new-file.ps is the name of the �le created

by sed. The �le ps-fix.sed is available via anonymous ftp from the same location

as Clasp.

:Preferences [Command]

Brings up a window in which the user can modify the behavior of Clasp. The win-

dow has three sections, the results display preferences, the error handling preferences

and the datasets and results display preferences.

In the �rst section of the preferences window, the user can specify how a num-

ber of result types are displayed in Clasp. Each type will be followed by four

options, Display-In-Interactor, Display-In-Window, Iconify and NIL. Click-

ing on an option will select it. If Display-In-Window is selected, then when re-

sults of that type are created, they will be displayed directly in the notebook. If

Display-In-Window is selected, then results of that type will initially be displayed

in a separate window and an icon will be placed in the notebook. If Iconify is

selected, then an icon will be placed in the notebook and the result will not be

displayed until the icon is opened. If NIL is selected, then nothing will be shown in

the notebook. In all cases, the results window will always show all existing results.

The default setting for all result types is Display-In-Interactor.

The available error handling preferences are Use-Native-Debugger and

Trap-Underflow-Errors. When Use-Native-Debugger is not selected, Clasp cap-

tures lisp errors and prints a message in the notebook. When it is selected Clasp

passes lisp errors down to the underlying lisp process. This can be useful when

debugging code. When Trap-Underflow-Errors is not selected, Clasp will always

convert oating point underow errors to 0.0. Setting this parameter will cause

Clasp to signal an error when a oating point underow occurs. The default value

for both error handling preferences is unselected.

The Display datasets and results preferences controls where the datasets and

results lists are displayed. The Pane setting will display these lists directly in the

Clasp frame, to the left of the notebook. The Window setting will cause them to be

displayed in separate windows. This could be useful if when there are many datasets

or variables with long names. Most window managers allow resizing of windows, so

with this option, the user may set the datasets and results listings to a convenient
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size. The �nal setting is None which will suppress displaying these lists altogether.

:Quit [Command]

Exits from Clasp. It is up to the user to save whatever datasets were created or

changed during the session. Clasp will not save these automatically, nor does it

prompt the to save datasets before quitting.

3.5.2 The Graph Menu

Graph

Histogram

Scatter Plot

Line Plot

Row Line Plot

Regression Plot

Overlay Graphs

The Graph menu has commands which allow the creation of graphical views of data.

Graphs in Clasp are created by the SciGraph system from BBN. The elements of

these graphs are mouse sensitive. To change the style or color of a line or point, select the

entry for that data from the legend. This will pop up a window which allows for editing of

data attributes. For a more detailed description of SciGraph and its functionality, see the

SciGraph documentation, available via anonymous ftp from cambridge.apple.com in the

directory /pub/clim/clim-1-and-2/scigraph.

:Histogram (X(s)) (Color by) [Command]

Creates a histogram from the variable X. Unless Color by is None, the points in X

are grouped by the Color by variable and each group is shown in a di�erent color.

To use the Color by option, both X and Color by must be Clasp variables and they

must come from the same dataset. Color by is not a mapped variable, if multiple

variables are selected for X, the same Color by option will be used for all of them.

:Scatter Plot (Y(s)) (X(s)) (Color by) [Command]

Creates a scatter plot of Y on X. Coloring is the same as for :Histogram, except

that since there are two variable arguments, they must both be from the same

dataset as Color by for coloring to be used.

:Line Plot (Y(s)) (X(s)) (Color by) [Command]

Creates a line plot of Y on X. Coloring is the same as for :Scatter Plot.

:Row Line Plot (Y(s)) (Color by) [Command]

Creates a line of Y against 1, 2, 3 ... N, where N is the length of Y. Coloring

is the same as for :Histogram.

:Regression Plot (Y(s)) (X(s)) [Command]

Creates a scatter plot of Y on X and overlays the regression line from the linear

regression of Y on X.

:Overlay Graphs (Graphs) [Command]

Graphs is a sequence of graphs. :Overlay Graphs produces a single graph with

each member of Graphs overlayed. :Overlay Graphs will attempt to choose high

contrast colors so that points from di�erent source graphs may be distinguished.
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To produce colored graphs when the original data are not variables which are in the

same dataset as the coloring variable, partition the data by hand, produce a single graph

for each partition, and overlay the graphs.

3.5.3 The Describe Menu

Describe

Data Length

Mean

Variance

Standard Deviation

Minimum

Maximum

Range

Quantile

Median

Trimmed Mean

Mode

Interquartile Range

Statistical Summary

Covariance

Correlation

Cross Correlation

Autocorrelation

The Describe menu contains commands which produce descriptive statistics on data.

Since most of these commands are described in section 4.1, only their arguments are given

here.

:Data Length (X(s)) [Command]

:Mean (X(s)) [Command]

:Variance (X(s)) [Command]

:Standard Deviation (X(s)) [Command]

:Minimum (X(s)) [Command]

:Maximum (X(s)) [Command]

:Range (X(s)) [Command]

:Quantile (X(s)) (Percentile) [Command]

Note that Percentile isn't a mapped argument. It must be a real number from 0 to

1 inclusive, and the same value will be mapped over all X's.

:Median (X(s)) [Command]

:Trimmed Mean (X(s)) (Trimming factor) [Command]

Note that Trimming factor isn't a mapped argument. It must be a real number

from 0 to .5, and the same value will be mapped over all X's.

:Mode (X(s)) [Command]

:Interquartile Range (X(s)) [Command]
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:Statistical Summary (X(s)) [Command]

Displays a variety of commonly used descriptive statistics.

:Covariance (Y(s) (X(s)) [Command]

:Correlation (Y(s) (X(s)) [Command]

:Cross Correlation (Y(s) (X(s)) (Min lag) (Max lag) [Command]

Note that Min lag and Max lag are not mapped arguments.

:Autocorrelation (Y(s) (X(s)) (Min lag) (Max lag) [Command]

Note that Min lag and Max lag are not mapped arguments.

3.5.4 The Manipulate Menu

Manipulate

Rename Dataset

Rename Variable

Delete Result

Make Dataset From Rows

Make Dataset From Columns

Add Variable To Dataset

Partition Dataset

Partition On

Merge Datasets

Open

Close

Describe

The Manipulate menu has commands for manipulating data within a dataset and delet-

ing, renaming, opening, closing and describing data objects.

:Rename Dataset (Dataset) (New name) [Command]

Changes the name of Dataset to New name.

:Rename Variable (Variable) (New name) [Command]

Changes the name of Variable to New name.

:Delete Result (Object) [Command]

Deletes Object. Object can be a variable, a dataset or a result from a statistical

command.

:Make dataset from Rows (Name) (Data) (Variable names) [Command]

Creates a new dataset called Name, using Data as the row-major data and Variable

names as the names of the columns. To enter data, each row is a comma separated

sequence, and semicolons separate the rows. For instance, to create a dataset called

DS1, with variables V1, V2, V3 and V4, and containing the data:

2 4 2 3

5 7 4 3
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Enter DS1 for Name, 2, 4, 2, 3; 5, 7, 4, 3 for Data, and V1, V2, V3, V4 for

Variable names.

:Make dataset from Columns (Name) (Data) (Variable names) [Command]

Creates a new dataset called Name, using Data as the column-major data and Vari-

able names as the names of the columns. To enter data, each row is a comma

separated sequence, and semicolons separate the rows. For instance, to create a

dataset called DS1, with variables V1, V2, V3 and V4, and containing the data:

2 4 2 3

5 7 4 3

Enter DS1 for Name, 2, 5; 4, 7; 2, 4; 3, 3 for Data, and V1, V2, V3, V4 for

Variable names.

:Add Variable To Dataset (Dataset) (Data) (Name) [Command]

Adds a new variable, called Name to Dataset using Data, which should be a comma

separated sequence.

:Partition Dataset (Dataset) (Partition clause) (Include variables) [Command]

Partitions Dataset using Partition clause. Include variables should be a comma

separated list of variables from the original dataset to include in the new dataset(s).

The default is to include all variables. Partitioning is described in greater detail in

section 5.

:Partition On (Dataset) (Partition variable) (Include variables) [Command]

Partitions Dataset on Partition variable. Include variables is the same as for :Par-

tition Dataset.

:Merge Datasets (Datasets) [Command]

Creates a new dataset by combining the rows of Datasets. Merging is described in

greater detail in section 5.

:Open (Object) [Command]

DisplaysObject in a separate window. Object can be a dataset, a variable or a result.

:Close (Object) [Command]

Closes the window that Object is being displayed in. Object can be a dataset, a

variable or a result.

:Describe (Object) [Command]

Prints a history of Object's creation. Object can be a dataset, a variable or a result.
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3.5.5 The Transform Menu

Transform

User De�ned

Sort

Index

Add a Constant

Natural Log

Log10

Recode Categorical

Reassign Bins

Smooth 4235h

Discrete Derivative

The Transformmenu contains commands that allow for various transformations of data.

Unlike most other commands, the Transform commands require that their arguments be

actual Clasp variables. All the menu options create a new variable in the dataset to which

the variable being transformed belongs. The name of the new variable will be derived from

the transformation being performed, for instance, smoothing a variable called A will result

in a variable called SMOOTH-OF-A.

:User Defined (Dataset) (Expression) [Command]

Adds a new variable to Dataset by evaluating Expression for each row of Dataset.

Expression may refer to variables in Dataset by name. For example, to calculate

the processing time per node of a search, Expression might be (/ nodesvisited

totaltime).

:Sort (Variable) [Command]

Sorts Variable in ascending order.

:Index (Variable) (Index) [Command]

Sorts Variable by Index. Both must be Clasp variables from the same dataset.

:Add a Constant (Variable) (Number) [Command]

Adds Number to Variable.

:Natural Log (Variable) [Command]

Takes the natural log of Variable.

:Log10 (Variable) [Command]

Takes the common log (base 10) of Variable.

:Recode Categorical (Variable) (Old values) (New values) [Command]

Substitutes each member of New values for the corresponding member of Old values

in Variable. This can be used to create an integer coding of a categorical variable.

:Reassign Bins (Variable) (Bin limits) (Bin names) [Command]

Allows the conversion of a continuous variable into a categorical variable. Bin limits

are the upper limits on the bins, and Bin names are the names of the corresponding

bins. The list of Bin names must be one element longer than the list of Bin limits.

The last element of Bin names will name the bin which holds any values of Variable

which are larger than the largest element of Bin limits.
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:Smooth 4253h (Variable) [Command]

Apply a 4253h smoothing operator to Variable. This is described in greater detail

in section 5.

:Discrete Derivative (Variable) [Command]

Take the pairwise di�erence of each value of Variable with the next value.

3.5.6 The Test Menu

Test

Con�dence Interval Using z Statistic

Con�dence Interval Using t Statistic

Con�dence Interval of a Proportion

t-test One Sample

t-test Two Samples

t-test Matched Pairs

D test

Anova - One Way

Anova - Two Way

Chi-Square Counts

Chi-Square 2x2

Chi-Square RxC

Linear Regression - brief

Linear Regression - verbose

Multiple Linear Regression - verbose

The commands in the Test menu are described in section 4.2, and so only their arguments

are given here.

:Confidence Interval Using z Statistic (X(s)) (Con�dence level) [Command]

Con�dence level is a real number from 0 to 1 inclusive. Note that it is not a mapping

argument.

:Confidence Interval Using t Statistic (X(s)) (Con�dence level) [Command]

Con�dence level is a real number from 0 to 1 inclusive. Note that it is not a mapping

argument.

:Confidence Interval of a Proportion (Successes) (Trials) (Con�dence

level)

[Command]

Successes is an integer � 0, Trials is an integer � 1, and Con�dence level is a real

number from 0 to 1 inclusive.

:t-Test One Sample (X(s)) (Mean(s)) (Tails) [Command]

Tails must be one of Both, Positive or Negative.

:t-Test Two Samples (Y(s)) (X(s)) (Tails) [Command]

Tails must be one of Both, Positive or Negative.

:t-Test Matched Pairs (Y(s)) (X(s)) (Tails) [Command]

Tails must be one of Both, Positive or Negative.
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:D Test (Y(s)) (X(s)) (Tails) [Command]

Tails must be one of Both, Positive or Negative.

:Anova - One Way (Y(s)) (X(s)) [Command]

Displays an anova table, a list of the group means, a plot of the group means, a

sche�e table and an alternate calculation of the sum of squares total.

:Anova - Two Way (Y(s)) (X 1(s)) (X 2(s)) [Command]

Displays an anova table, a table of the cell means, and row and column based means

plots.

:Chi Square Counts (A) (B) (C) (D) [Command]

Performs a chi square analysis on the contingency table

A B

C D.

:Chi Square 2x2 (Y(s)) (X(s)) [Command]

Displays the Chi Square statistic, the G statistic and contingency tables expressed

in terms of frequency, percent of row totals, percent of column totals and expected

values. Y and X must each be two-valued variables.

:Chi Square RxC (Y(s)) (X(s)) [Command]

Displays the Chi Square statistic, the G statistic and contingency tables expressed

in terms of frequency, percent of row totals, percent of column totals and expected

values.

:Linear Regression - brief (Y(s)) (X(s)) [Command]

Displays the slope, intercept, r2, standard error of the slope and signi�cance.

:Linear Regression - verbose (Y(s)) (X(s)) [Command]

Displays all the information the :Linear Regression - Brief does, and in addi-

tion, it displays the correlation, an anova table and a regression plot.

:Multiple Linear Regression - verbose (Y) (X's) [Command]

Performs a multiple linear regression of Y on X's, displaying the correlation, an

anova table, the F statistic, the coe�cients, betas and t statistic for each X, and a

correlation matrix.

3.5.7 The Sample Menu

Sample

Sample from Uniform Distribution

Sample from Normal Distribution

Sample from Binomial Distribution

Sample from Poisson Distribution

Sample from Gamma Distribution

The Sample menu contains commands which take samples from various theoretical dis-

tributions. The variables in the dataset will be sampled from the speci�ed distribution.

In addition to the distribution parameters, all the sampling commands take a Size of
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Sample argument, indicating how many values each variable should contain, and a Number

of Samples argument indicating how many variables to create. The following descriptions

only list the parameters of the distributions.

:Sample from Uniform Distribution (Minimum) (Maximum) [Command]

Will produce samples that are uniformly distributed between Minimum and Maxi-

mum, which must both be integers.

:Sample from Normal Distribution (Mean) (Standard Deviation) [Command]

Mean and Standard Deviation are both real numbers.

:Sample from Binomial Distribution (P) (N) [Command]

P is a real number from 0 to 1, it is the probability of success. N is an integer � 1,

it is the number of Bernoulli trials per sample.

:Sample from Poisson Distribution (Mean) [Command]

Mean is a real number.

:Sample from Gamma Distribution (Integer Order) [Command]

Integer Order is an integer � 1.
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Statistics

Some computations on our data are intended merely to summarize, to distill the general

trend or tendency, to help us see the signal by eliminating the noise. Other computations

are meant to answer a question, to say whether this data is like that data or whether this

model �ts the data. The former computations are called descriptive statistics and the latter

are called inferential or test statistics. In practice, the line between them is rather blurry.

For example, �tting a model to the data describes its basic shape, but asking whether the

model �ts the data is a test, yet many statistical computations do both simultaneously.

Nevertheless, Clasp's functions are categorized this way with respect to its menus and so

is this manual, to help in organizing them.

4.1 Descriptive Statistics

Descriptive statistics are usually a function from the data to a single number. One example

is the arithmetic mean, which we are all familiar with and which describes the data by a

particular kind of central tendency or location. Some of the following statistics may be

unfamiliar to you, but the basic goals are these: what is the data's location, how spread

out is it, and how strong is its association with other data?

4.1.1 Location

The following statistics describe the \location" of the sample, usually the \center" of the

sample, for some reasonable de�nition of the center.

Mean The mean is the average of a group of numbers, which describes the center of mass

of the sample. This value is a good measure of the central tendency of a population;

however, it is a�ected by a skewed distribution or when there are extreme outliers.

Median Like the mean, the median is another measure of central tendency; it indicates

the value at the center of the distribution. Half of the scores will be above and half

below. The median is less a�ected by outliers than the mean, since it is insensitive

to how far the numbers are from the median. However, like the mean, the median is

also a�ected by skewed distributions. The larger the di�erence between the median

and the mean, the more likely that the distribution is not normal.

35



36 CHAPTER 4. STATISTICS

Quantile A generalization of the median is a quantile: given an fraction q, the qth quantile

is a number x such that q of the data is greater than x and 1�q is less than x. Clearly,
the median is simply the 1/2 quantile.

Trimmed Mean Discarding the highest and lowest values in a distribution and averaging

the remaining values yields the trimmed mean. It is common to discard the highest

and the lowest 25 percent of the values, but other trimming percentages may be used.

Here is a sorted distribution:

(1 1 2 15 16 18 19 22 23 28 31 100)

The 25 percent trimmed mean is the mean of the middle six numbers. The trimmed

mean is a robust alternative to the mean and is in some ways preferable to the median.

Mode The mode is the most common value in a distribution; for example, the mode of the

distribution (1, 2, 2, 3, 4, 4, 4) is 4. If the data are continuous, real numbers, then

the mode is apt to be uninformative because of the very low probability that two or

more numbers will have exactly the same value. One solution is to map real-valued

data into discrete numbers by rounding or sorting into bins for frequency histograms

and so on, in which case the mode of a distribution depends on bin size. Although

it is a contradiction in terms, we often speak of a distribution having two or more

modes. This means the distribution has two or more values or ranges of values that

are common. The decision to characterize a distribution as bimodal or multimodal is

subjective.

Minimum and Maximum The minimum and maximum of a sample give an idea of its

location, though certainly not of its central tendency. They are often ignored in

statistics books, which concentrate on statistics that are used in hypothesis testing,

such as the mean. Nevertheless, they are important because they help to visualize the

data, outlining its location and helping to identify outliers, which are sometimes the

most important elements of the data because they are most in need of explanation.

4.1.2 Spread

The following measures describe how much the data spreads out around its central value.

Range The range is simply the di�erence between the maximum and the minimum, and

consequently indicates how spread out the data are.

Variance Variance is an important measure of how spread out a sample is around its

center of mass|the mean. The higher the variance, the more spread out the sample.

Mathematically, the variance is sum of the squared distances from the mean of each

number in the sample. For example, the mean of (1 2 3 4 5) is 3 and the variance is

10, while the mean of (0 1 3 5 6) is also 3 but the variance is 26, reecting the greater

distance of the data from the mean.

Standard Deviation This statistic is simply the square root of the variance. The standard

deviation is useful because its units are the same as the data's. For example, if the

data are distances in meters, the mean will also be in meters, while the variance will
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be in meters-squared. The standard deviation will be in meters, and can be usefully

visualized as the \average" deviation of the data from the mean. If the data are

normally distributed, 96% of the values will fall within a range of plus or minus 2

standard deviations from the mean.

Interquartile Range The interquartile range is a robust alternative to the variance and

standard deviation; that is, it measures how spread out the data are, but it is less

sensitive to one or two values that are wildly far away. The interquartile range is

found by dividing a sorted distribution into four contiguous parts, each containing

the same number of individuals. Each part is called a quartile. (The quartiles are the

1/4, 1/2 and 3/4 quantiles.) The di�erence between the highest value in the third

quartile and the lowest value in the second quartile is the interquartile range. For

example, if the sorted distribution is (1 1 2 3 3 5 5 5 5 6 6 100), then the quartiles

are (1 1 2), (3 3 5), (5 5 5), (6 6 100), and the interquartile range is 5� 3 = 2.

4.1.3 Covariance

Pearson's Correlation This statistic describes the degree of association between two sam-

ples. Alternatively, it describes how well the value of the dependent, Y , variable can

be predicted from the score of the independent, X , variable. This relationship does

not imply causality; it simply indicates that a high value of Y is likely to co-occur

with a high value of X . The idea of co-occurrence means that the data must have

some kind of pairing: (xi,yi). This statistic is considered by some to be overused and

abused, but generally it is a good indicator of an e�ect or relationship between two

variables.

Cross-Correlation Given two samples, X and Y , we can generalize the notion of correla-

tion to ask what is the correlation between X and Y when Y is shifted or translated

by some amount. This idea often arises when analyzing data collected over time,

where you think that there will be a strong correlation between, say, daily baromet-

ric pressures in Bu�alo and daily barometric pressure in Boston two days later. The

time-shift is often called a \lag," and is an additional argument to the cross-correlation

function.

Autocorrelation Autocorrelation is simply the cross-correlation of a variable with itself.

Obviously, this is uninteresting unless the lag is non-zero. This is a way of measuring

cyclic patterns in the sample.

4.2 Test Statistics

Many di�erent kinds of questions can be asked of our data, and so there are many kinds

of test statistics. Some questions ask simply whether two groups of numbers are di�erent,

speci�cally whether their central tendencies (such as their means) are di�erent. Others ask

whether there are di�erences among many groups of data. Still others �t models, such as

a straight line or a curve, to the data and ask whether it �ts well enough or just �ts by

chance. This chapter cannot explain all of these statistical tests in detail, but there are

many excellent statistics texts available. Two good general texts are Statistical Reasoning
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in Psychology and Education by Edward W. Minium [8] and Probability and Statistics for

Engineering and the Sciences, by Jay L. Devore [4].

Test statistics fall into several categories: parametric, non-parametric, and bootstrap,

each of which is most applicable for certain speci�c types of problems. Parametric statistics

make assumptions about the shape of the population from which the data was drawn; typ-

ically, it assumes the population is normal, but with unknown mean and variance. (These

parameters are estimated from the sample, hence the term \parametric" statistics.) Para-

metric statistics are the best available, but only when their assumptions are true. If the

assumptions are false, it is hard to determine the degree of error introduced into the analysis.

Non-parametric statistics avoid making distributional assumptions, and so are more widely

applicable. However, they are less powerful than their parametric competitors, which means

that on the home turf of the parametric statistics (normal distributions), the parametric

statistics are better. Non-parametric statistics typically work by ignoring the absolute mag-

nitudes of the data and instead using only their relative magnitudes; essentially, they sort

the data and map the original numbers onto 1: : :N, because the behavior of the numbers

1: : :N can be analyzed and tables precomputed. James Bradley has an excellent book on

non-parametric statistics [2]. Bootstrap statistics also avoid making distributional assump-

tions, but they retain the absolute magnitudes of the data. They substitute computation

for analysis and tables, essentially by computing tables as necessary. Bootstrap statistics

are even more widely applicable than non-parametric statistics because there is no reliance

on precomputed tables. They are, however, very computation-intensive. A much more

detailed discussion may be found in Cohen's primer [3].

This section will briey review the test statistics that are implemented in Clasp and

their uses.

4.2.1 Con�dence Intervals

Descriptive statistics of the sample are often used to estimate the equivalent statistic on the

population. For example, one can estimate the mean of the population by the mean of the

sample. Of course, the two will never be exactly equal, which gives rise to the question: how

close is the estimate? One way of answering this is by constructing \con�dence intervals."

A con�dence interval is a range, a to b, centered around the sample statistic. It also has

an associated probability, say 90 percent. What does this probability mean? Its meaning

may be best understood with an analogy, where the size of the con�dence interval b � a

corresponds, say, to the size of a horseshoe in a game of horseshoes. A bigger horseshoe

has a higher probability of landing around the stake, which corresponds to the parameter

we are estimating. Equivalently, if we were to construct 90 percent con�dence intervals for

many samples, 90 percent of the con�dence intervals would contain the desired parameter.

Clasp has two ways of computing con�dence intervals, both for means, where the

di�erence depends on the population the mean is from. \Con�dence Interval Using Z

Statistic" is for large samples, where the Central Limit Theorem assures us that the sampling

distribution of the mean is normal. \Con�dence Interval Using T Statistic" is for small

samples, where the sampling distribution of the mean is a t-distribution.

Bootstrapping is a general technique for deriving con�dence intervals for any statistic

on any sample, and so con�dence intervals for other statistics can easily be obtained. These

will be implemented in future releases of Clasp.
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4.2.2 t Tests

To test whether two means are signi�cantly di�erent, use a t test. The t test is reasonably

robust, even for small samples, provided the underlying assumption of normal populations

is not badly violated.

Clasp supports three versions of t tests. The one-sample t test is used to test the

hypothesis that a sample mean has a speci�c value. For example, imagine you are a burglar,

driving through an unfamiliar part of town, trying to judge whether the houses are worth

robbing. You decide to base your decision on the price of the cars parked on the street.

One short cul de sac appears promising: it has just �ve parked cars, but they all cost a

lot. In fact the mean price of the cars is $20,270 and the standard deviation of this sample

is $5811. You know that the mean cost of cars in town is $12,000, and you want to know

whether the cars in the cul de sac are signi�cantly dearer than the \average" car in town.

The test statistic is:

t =
20270� 12000

5811=
p
5

= 3:18

The probability of attaining this result by chance, under the null hypothesis that all cars

cost on average $12,000, is less than .01.

To compare two means, use a two-sample t test. For example, to test the hypothesis

that one search algorithm expands signi�cantly more nodes than another, on average, simply

enter the sample for each algorithm in a separate column, and Clasp will calculate the t

statistic:

t =
�x1 � �x2

�̂�x1��x2

Clasp will also return a p-value for the t statistic. If the p-value is small (conventionally,

.05 is considered small and .01 very small), the test indicates that the two samples are

signi�cantly di�erent.

A special case of a two-sample test is a paired-sample t test. To continue the previous

example, imagine that the two search algorithms were tested on the same problems, so for

each problem you have a pair of scores, one for each algorithm. Under the null hypothesis

that the algorithms are equal, the expected value of the di�erence of scores is zero. The

paired-sample t test computes the average di�erence (summing the di�erences and dividing

by the number of problems) and then runs a one-sample test of the hypothesis that the

average di�erence is zero.

Randomization versions of the one-sample, two-sample and paired-sample t tests are

available in Clasp. These tests substitute massive amounts of computation for parametric

assumptions about the sampling distribution of the mean. Thus, they are the preferred

alternative when one suspects that one's data are not drawn from a normal populations.

Returning to the burglary example, above, we know that the distribution of automobile

prices is not normal; rather, it is skewed to the right (high costs). For such data, or

when you simply do not know the form of the underlying population distribution, use the

randomization versions of t tests.

4.2.3 Analysis of Variance

Analysis of Variance (ANOVA) may initially be thought of as a generalization of the t-test

to multiple groups. Rather than test whether the means of two groups are equal, it tests

whether the means of k groups are equal. Analysis of variance is so named because it
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identi�es the amount of variation in a sample due to the e�ect of some treatment, where

each di�erent treatment results in a di�erent group.

There are two forms of ANOVA implemented in Clasp, \One Way" and \Two Way."

One-way ANOVA is used to examine the e�ect of a single treatment on several samples,

where the treatment is administered at several discrete levels. For example, in the Phoenix

�re�ghting system, we once did an experiment with three levels of wind speed|low, medium

and high|and performed a one-way ANOVA to test whether wind speed had an e�ect on

performance. Two-way ANOVA is used when considering the e�ects of multiple treatments

and their interactions. For example, in the Phoenix �re�ghting system, we might have

run an experiment with three levels of wind speed and two kinds of �re�ghting plans|

called multiple-shell and model-based. We could use a two-way ANOVA to test whether

the performance of the plans depends on wind speed and which plan is better.

Each analysis of variance is calculated in a similar fashion and the results reported in

an ANOVA table. Values used in calculating the ANOVA table are based on the sum of

squares of the deviation scores, SS, and the degrees of freedom, df , associated with that

sum of squares. The general relationship is in the form

s2 =
SS

df

The types of variation involved for one-way ANOVA are those of:

1. Variability of the values about the grand mean (the mean of all scores). Given by

the deviation: (X �X), where X is the grand mean. This is the known as the total

variance, symbolized as s2
T
. This value is useful only in the calculating of the following

items.

2. Variability of scores about their subgroup sample means. Given by the deviation:

(X �X),where X is the mean of the subgroup which contains X . This is known as

the within groups variance, denoted by s2
W
.

3. Variability of subgroup sample means about the grand mean of all scores. Given by

the deviation: (X �X). This is the among groups variance, denoted by, s2
A
.

The within groups variance indicates the amount of variation inherent in the subgroup, all

of the members of the group receive the same treatment so none of the variation can be

due to the treatment. The among groups variance contains two components, the variance

inherent in the population and the variance due to the treatment. By examining these

components, the e�ect of a treatment on a population can be determined.

Calculations for these values are described by the formulas in Figure 4.1, where Xi are

the scores in subgroup i, Xi is the mean of subgroup i, ni is the number of observations in

the ith subgroup and k is the number of subgroups.

Using these values, the F ratio is calculated. The F ratio indicates the probability that the

variation in the samples could be accounted for by chance. Calculation of the F ratio uses

the following formula:

F =
s2
A

s2
W

For two-way ANOVA, there is an additional interaction between di�erent treatments,

sometimes called factors. These are separated into Row and Column treatments. In our

second example, above, we had two treatments, wind speed and plan, and so one becomes
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SSW =
P
(Xi �Xi)

2 +
P
(Xj �Xj)

2 + � � �
SSA =

P
k

i
(Xi �X)2

SST =
P
(X �X)2

dfW =
P
(ni � 1)

dfA = k � 1

dfT =
P
ni � 1

s2
W

= SSW

dfW

s2
A

= SSA

dfA

Figure 4.1: One Way ANOVA Calculations

SSC =
P
(XCi

�X)2

SSR =
P
(XRi

�X)2

SSWC =
P
(X �Xcell)

2

SSR�C = SST � SSC � SSR � SSWC

dfWC =
P

all cells(nWC � 1)

dfC = (C � 1)

dfR = (R� 1)

dfR�C = (C � 1)(R� 1)

dfT = (R)(C)(nWC)� 1

s2
C

= SSC

dfC

s2
R

= SSR

dfR

s2
WC

= SSWC

dfWC

s2
R�C =

SSR�C

dfR�C

Figure 4.2: Two Way ANOVA Calculations
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the row (say, wind speed, giving three rows: low, medium, and high) and the other becomes

the column (plan, giving two columns: multiple-shell and model-based), and each cell of the

table is a particular combination of the two. Having two treatments means there may be

an additional e�ect called an interaction e�ect, where the condition of, say, low wind can

combine with condition of, say, the multiple-shell plan, to produce a di�erent performance.

This interaction e�ect, also called a Row by Column e�ect, is calculated with the formulas

in Figure 4.2, where the four variance estimates correspond to:

s2
WC

within cells estimate, derived from the individual cell variation. This measures the

inherent variation in an subgroup free from the e�ect of any treatment.

s2
C

column estimate, derived from the di�erences from the column means. If there is an

e�ect from the column treatments this value will tend to be larger than s2
WC

.

s2
R

row estimate, as above but for row treatments.

s2
R�C interaction estimate, derived from the discrepancy between the means of several cells.

This value will tend to be larger than s2
WC

if there is an interaction e�ect between

the Row and Column treatments.

There are three F ratios calculated|column, row, and row by column|in the form:

F =
s2
C

s2
WC

F =
s2
R

s2
WC

F =
s2
R�C
s2
WC

A signi�cant value of F indicates that the hypothesis that the means of the subgroups

are equal, that is that there is no variance due to the treatment, should be rejected. Two

way ANOVA requires that each of the cells have the same number of observations in order

to calculate a meaningful statistic, because unequal group sizes make the statistic unstable.

4.2.4 Linear Regression

Many statistical tests can be thought of as �tting a particular kind of model to the data

then measuring how plausible it is to have drawn the data from that model. For t-tests and

ANOVA, those models are simple Gaussian distributions. A slightly more complex model,

but still very simple, is a linear model. Essentially, we think the data points are drawn from

a line with \fuzz" around it|Gaussian fuzz with constant variance:

yi = mxi + b+ �

In this equation, m is the slope of the line, b is its y-intercept, and � represents the Gaussian

fuzz around the line. Linear regression is a way to �nd m and b and also to estimate how

big the �'s are and how plausible it is that the data is generated by this linear model.

A plot of the regression line with a scatter plot of the individual data points provides

a picture of the relationship between the variables and also gives a good indication of

the correlation between the variables. It is important to remember that there may be
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relationships between the variables which are non-linear, such as a logarithmic or quadratic

relationship. Don't use linear regression if the relationship between the variables is clearly

non-linear.

Multi-variate linear regression performs the same calculations with multiple independent

variables, using the model

Y = a+ b1X1 + b2X2 + � � �+ bnXn + �

where the bi are the coe�cients of regression for the corresponding X , a is the intercept of

the regression line, and � is the error, or residual. Each b has a corresponding t statistic

indicating the probability of whether or not the relationship could occur by chance. A

signi�cant b indicates that a portion of the variance of the dependent variable is due to the

inuence of the associated independent variable. The amount of the inuence is measured

as a percentage of the total variance of the dependent variable, which is calculated as the

square of the correlation between Y and Xi. The percentage of the variance due to all of

the independent variables is given by R2, with the F statistic for the regression calculated

from this value. The report for this procedure includes the correlation coe�cients between

the independent variables.

4.2.5 Chi Square

Chi square is a useful statistic when we are counting discrete things, such as the number of

birds of each of several species, and we are interested in whether the observed proportions

(such as ten percent big black birds and ninety percent little brown birds) is likely to have

been drawn from some theoretical population. This is done by subtracting the expected

number of events (for example, the expected number of little brown birds calculated from

our theoretical population and the number of birds we saw) from the actual number of

events, squaring the di�erence, and summing over each category of event. (There is also

a normalizing factor in each term.) By assuming that deviations are normally distributed,

the probability of drawing the sample from the theoretical population can be calculated.

Hence, chi square is a parametric statistic. With a slightly di�erent calculation, we can

compare two samples to test whether they are the same, in the sense of having roughly the

same distribution.

An important special case of the chi square is to test for independence. Again, we are

counting events, and the events fall into categories, but the categories fall along two di�erent

dimensions. The question we are asking is whether the two dimensions are independent:

the distribution of events along one dimension is the same for each category of events along

the other, and vice versa. For example, suppose we are tossing a nickel and a penny, and

we are counting the outcomes. There are four possible events, falling into categories along

two dimensions, namely the identity of the coin. The following �gure is a 2x2 \contingency

table" to represent the data, where each cell is the observed frequency for the combination

of the two categories.

penny

nickel

H T

H a b

T c d



44 CHAPTER 4. STATISTICS

We can use \Chi square" to analyze the contingency table and test whether the two

coins are independent. (We would be surprised if they weren't.) Larger contingency tables

can be handled by Clasp.

When the sample is small, the deviations can't be normally distributed, since the data

are discrete integers. In that case, the user can choose Yate's correction, which adjusts for

the discontinuity.
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Data Manipulation

Clasp data is organized into variables and datasets. A variable is an ordered column of

numbers which have some semantic interpretation, such as \Number of Ships Allocated" in

a transportation simulator. The values might represent di�erent measurements over time or

measurements during di�erent trials in an experiment. A dataset is a collection of variables,

all of which have the same number of values. Usually a dataset will represent the variables

collected during a single experiment or set of experiments. In Clasp, all variables belong

to a dataset. Datasets are analogous to tables of data, where variables are columns, and a

row is a set of the ith value in each column. For example, in an experiment where thirty

trials are run and, during each trial, \Runtime," \Num-Nodes" and \Goal-Found?" were

measured, the resulting dataset would have thirty rows, each corresponding to one of the

trials, and three Variables, \Runtime," \Num-Nodes" and \Goal-Found?" Most statistical

operations involve performing some operation on the values of one or more variables. For

example, the mean operates on one variable and the t-test compares two variables to test

if they have statistically di�erent means. Clasp o�ers a variety of ways of accessing these

values for statistical manipulation.

5.1 Function Application

Most data manipulation consists of transforming one or more variables by mapping a func-

tion across them. You may think of this as equivalent to the Common Lisp `map' function,

in which each variable is treated as a sequence. By typing in an expression, you can trans-

form your data in arbitrary ways. Certain standard operations, such as log transforms, are

built in.

5.1.1 Formula Expressions

Transformations of a variable are accomplished by choosing \User De�ned" from the trans-

form menu. The user is prompted for a dataset and an expression. The formula can be any

valid Common Lisp expression and may contain variable names. The formula is mapped

over all the variables it contains and applied to each successive value. The result is a new

variable which is added to the dataset. For example, the following procedure would produce

the ratio of \Nodes Searched" to \Runtime" in the dataset \My Data."

1. Click on Transform Menu

2. Click on User De�ned

45
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3. Clasp prompts for a dataset, Click on My Data

4. Clasp prompts for a formula, type: (/ Nodes-Searched Runtime)

A new variable will be created called /-Nodes-Searched-Runtime.

Often a categorical variable will need to be converted to a numeric variable to allow

certain statistics to be applied to it. For instance a simulator that reports wind-speed

as \low", \medium" or \high", but for analysis, the user prefers the encoding to be 1, 2

and 3. Alternatively, categorical variables which are encoded as integers might need to be

converted to a nominal encoding for ease of interpretation. For example, a variable which

encodes the completion status of an algorithm as 1 or 0 might be converted to \success"

or \failure" for ease of interpretation. This is called recoding. Formulas may include the

recode operator. The form of this expression is:

(recode Variable old-values new-values)

Recoding will translate all the elements of variable in old-values to the equivalent new-

value. For instance, if a variable is valued

(A D A C B A B D C)

and the expression

(recode Variable '(A B C D) '(1 2 3 4))

is used in a \Transform" statement, the new variable will have values

(1 4 1 3 2 1 2 4 3)

This kind of transformation can be valuable for running statistics that require numeric data

when the original data is symbolic.

5.1.2 Smoothing

Time series and other series plots are sometimes di�cult to read because of rapid uctua-

tions. For example, the time series of mean daily temperature bounces all over the place

and can make it di�cult to see slower-moving seasonal components. Spectral analysis is

sometimes used to decompose series into frequency components, but yields a plot in the fre-

quency domain, not the time domain. Often, it su�ces to simply remove the high-frequency

component from a time series by applying smoothing operators. The basic idea of smoothing

is simple: every value in the series is replaced by an average of the value and its neighbors.

(Endpoints are handled separately; for example, they might be used as is, or averaged with

their neighbor.) The average need not be the arithmetic average, in fact, it is often better

to use the median instead of the mean. In either case, values that are much bigger or

smaller than their neighbors are \brought into line." The most common mean and median

smoothing techniques involve replacing the ith value in the series with the mean or median

of the i-1, i, and i+1 values. These are called \3" smooths because they involve three values,

a window of size 3.

Median smooths handle outlier values di�erently than mean smooths. Whereas me-

dian smooths ignore outliers, leaving only small values, mean smooths average outliers and

neighboring values, giving the impression that the neighbors have higher values than they

actually do. On the other hand, median smooths createmesas or short sequences of identical

values.
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Mesas can be handled by resmoothing that is, smoothing the smoothed series again.

One can resmooth a sequence many times, with various sizes of windows, and various kinds

of averaging|not only median and mean smoothing, but also weighted smoothing in which

each value in a window is multiplied by a weight. One can create long and complicated

smoothing plans. For example, 3R2H means \smooth the sequence with 3,median smooths

repeatedly until the appearance of the series doesn't change with successive smooths (that's

what the R means), then apply a 2,median smooth, and then a hanning operation (that's

what H means). A hanning operation multiplies the three values in a window by .25, .5 and

.25, respectively, and sums the results. It is used to \clean up" a smooth by removing any

leftover spikes.

Many smoothing plans have been developed for di�erent kinds of data, but one that

works pretty well in general is 4253H. This is four median smooths, with window sizes 4, 2,

5 and 3, followed by a Hanning operation. Currently, Clasp o�ers four median smoothing

operators with window sizes 2, 3, 4, and 5, respectively; and the general smoothing plan

4253H.

5.2 Partition Clauses

A common manipulation of data is to reorganize it, say by grouping it or looking at a

fraction of it. Most of these kinds of manipulation can be accomplished by partitioning,

which essentially means mapping over the data, grouping it, and doing something with each

group. (You might discard some groups in order to look more closely at others.)

It is often necessary to apply a command to a subset of the rows in a dataset. Sometimes

this is because the statistics being used are only meaningful for that subset or because

di�erent operations must be done to di�erent parts of the dataset. For instance, suppose

you collect data on the time it takes an algorithm to solve a problem; it is meaningless

to try and compute the mean solution time in cases where an algorithm couldn't �nd a

solution. Instead, you can select from the dataset just those cases where the algorithm

succeeded and then take the mean of the runtimes in that selection. In other situations, it

might be desirable to break the dataset up into a number of subsets by using one or more

key variables. For every row in the dataset, the value of the key variable(s) at that row

determine which new partition the row will be assigned to. This is often useful when a

factorial analysis of data is being done.

In Clasp, the \Partition" command does both partitioning and selection. The form of

the command is

partition dataset partition-clause

Partition clauses are in pre�x notation (operator �rst, arguments last) and must be

enclosed in parentheses. They can be nested. The operators for partition clauses are given

below. A typical partition clause might look like the following:

(.and. (: == : success t)

(.or. (: <= : nodes-searched 5)

(: >><< : tree-depth 50 101)))

This clause would select those rows of the dataset where the \success" variable was true,

and either the \tree-depth" was less than or equal to 5 or the \nodes-searched" was between

50 and 101 exclusive.
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5.2.1 Partition Clause Logic Operators

The following operations can be used to combine variable comparison operations in a selec-

tion clause.

.and. arg1 &rest args

Selects rows matching every argument's selection criteria.

.or. arg1 &rest args

Selects rows matching at least one argument's selection criteria

.not. arg

Selects rows not matching argument's selection criteria.

5.2.2 Partition Clause Comparison Operators

The following operators compare the variable's value to a constant and selects those rows

where the condition is true:

: == : variable-name value

: <= : variable-name value

: >= : variable-name value

:= = : variable-name value

: >> : variable-name value

: << : variable-name value

The following operators select rows where the variable's value is between the two given

constants|either exclusively or inclusively.

: =><= : variable-name value-1 value-2

: =><< : variable-name value-1 value-2

: >><= : variable-name value-1 value-2

: >><< : variable-name value-1 value-2

: <<>> : variable-name value-1 value-2

: <<=> : variable-name value-1 value-2

: <=>> : variable-name value-1 value-2

: <==> : variable-name value-1 value-2

The following operators select rows where the variable's value is an extreme of some

sort:

.min. variable-name

Selects rows where variable is the minimum value in table.

.max. variable-name

Selects rows where variable is the maximum value in table.

.pred. variable-name value

Selects rows where variable has greatest value less than value.

.succ. variable-name value

Selects rows where variable has smallest value greater than value.

.oor. variable-name value

Selects rows where variable has greatest value less than or equal to value.
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.ceiling. variable-name value

Selects rows where variable has smallest value greater than or equal to value.

5.2.3 Exhaustive Partitioning Operator

The exhaustive partition operator is \.on.". A .on. clause has the form

(.on. key-1 : : :key-n)

and the dataset is partitioned on the keys. It is not advisable to partition a dataset on a

key that has many di�erent values, since you'll get an unmanageable number of partitions.

In particular, continuous variables make very bad keys, since it is likely that almost every

row will end up in its own partition.

This operator makes several partitions from a dataset|one for each distinct value of

the key variables. Each resulting dataset will contain all the rows of the original dataset

which share the same key variable values. Here is an example. We start with the following

table:

My Data
Key-1 Key-2 Time Temp

1 A 10 52.1

1 A 12 53.9

2 A 9 52.6

2 B 7 48.2

1 C 10 50.2

2 B 13 47.4

1 C 12 51.5

2 A 6 55.1

2 C 11 46.7

Partitioning the dataset (.on. Key-1 Key-2) would resulting in the following 5 datasets

My Data where Key-1 = 1 and Key-2 = A
Key-1 Key-2 Time Temp

1 A 10 52.1

1 A 12 53.9

My Data where Key-1 = 1 and Key-2 = C
Key-1 Key-2 Time Temp

1 C 10 50.2

1 C 12 51.5

My Data where Key-1 = 2 and Key-2 = A
Key-1 Key-2 Time Temp

2 A 9 52.6

2 A 6 55.1

My Data where Key-1 = 1 and Key-2 = A
Key-1 Key-2 Time Temp

2 B 7 48.2

2 B 13 47.4
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My Data where Key-1 = 1 and Key-2 = A
Key-1 Key-2 Time Temp

2 C 11 46.7



Chapter 6

Functions

Clasp is designed so that the functions that actually compute statistics on data are sepa-

rated from the functions that manipulate data in the Clasp database and also separated

from the graphical interface (Clim) functions. The purpose of this modularity is to allow

users to call statistics functions directly on their own data, from their Lisp Read-Eval-Print

loops (repls) or even from their own Lisp programs, without having to use the graphi-

cal interface or the database. Furthermore, it allows users to manipulate their data using

the database functions, calling them from their own repls or their own Lisp programs.

By using Clip and Clasp, data can be collected and analyzed completely under program

control. (Note that we have called this section \Functions" and referred to its subject as

functions, but a few of them are macros, Clos classes or methods, and other things written

in Common Lisp.)

Having divorced the statistical functions from the database functions, we had to decide

how data was to be presented to the statistical functions. We decided to use sequences,

which have a long history of usefulness in Lisp programs. Some of the simpler functions,

such as `mean,' take sequence keyword arguments, such as :start and :end to indicate

a subsequence, and :key to map sequence elements to actual numbers. These all have

their standard Common Lisp syntax and semantics. Unless otherwise speci�ed, you should

assume that all of these functions take sequences of numbers.

The documentation for speci�c functions is pulled from their online documentation

strings. Those documentation strings occasionally refer you to this manual, which will

seem odd since you are reading the manual. However, this approach helps to keep the

manual up to date.

6.1 Descriptive Statistic Functions

The functions in this section compute statistics that describe a sample, without making

assumptions about the population it was drawn from. All of these functions take sequences

of numbers.

The `data-length' function is usually used to compute the n used in statistical computa-

tions, such as the mean. It is described here because it is so simple and doesn't �t anywhere

very well.

data-length data &key start end key [Function]

Returns the number of data values in `data.' Essentially, this is the Common Lisp
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`length' function, except it handles sequences where there is a `start' or `end' pa-

rameter. The `key' parameter is ignored.

6.1.1 Location

The functions in this subsection describe the \location" of the sample, usually the \center"

of the sample, for some reasonable de�nition of the center.

mean data &rest standard-args &key start end key [Function]

Returns the arithmetic mean of `data,' which should be a sequence. Signals `no-

data' if there is no data.

The following statistics are often ignored in statistics books, which concentrate on statis-

tics that are used in hypothesis testing, such as the mean. Nevertheless, they are important

because they outline the location of the data and help to identify outliers, which are some-

times the most important elements of the data because they are most in need of explanation.

minimum data &rest standard-args &key start end key [Function]

Returns the element of the sequence `data' whose `key' is minimum. Signals `no-

data' if there is no data. If there is only one element in the data sequence, that

element will be returned, regardless of whether it is valid (a number).

maximum data &rest standard-args &key start end key [Function]

Returns the element of the sequence `data' whose `key' is maximum. Signals `no-

data' if there is no data. If there is only one element in the data sequence, that

element will be returned, regardless of whether it is valid (a number).

The `quantile' function is a generalization of medians, quartiles, and percentiles. Even

more than the minimum and maximum, it helps to picture the data, identifying central

values and outliers.

quantile data q &rest standard-args &key start end key [Function]

Returns the element which is the q'th percentile of the data when accessed by `key.'

That is, it returns the element such that `q' of the data is smaller than it and 1-`q'

is above it, where `q' is a number between zero and one, inclusive. For example,

if `q' is .5, this returns the median; if `q' is 0, this returns the minimum (although

the `minimum' function is more e�cient). If there is no `key,' this function returns

a single number, which may be the mean of two numbers in `data.' If there is a

`key,' this function also returns the two data elements whose keys bracket the desired

quantile. If the quantile happens to be exact, these data elements may be eq.

median data &rest standard-args &key start end key [Function]

Returns the median of the subsequence of `data' from `start' to `end', using `key'.

Works by calling `quantile,' and that function has more complete documentation.

Essentially, the `trimmed-mean' gets rid of the outliers and takes the mean of the central

values. It is a robust statistic that still provides good estimates of the center of di�erent

kinds of population distributions, such as uniform, double-exponential, and normal.

trimmed-mean data percentage &rest standard-args &key start end key [Function]
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Returns a trimmed mean of `data.' A trimmed mean is an ordinary, arithmetic

mean of the data, except that an outlying percentage has been discarded. For

example, suppose there are ten elements in `data,' and `percentage' is 0.1: the result

would be the mean of the middle eight elements, having discarded the biggest and

smallest elements. If `percentage' doesn't result in a whole number of elements being

discarded, then a fraction of the remaining biggest and smallest is discarded. For

example, suppose `data' is '(1 2 3 4 5) and `percentage' is 0.25: the result is (.75(2) +

3 + .75(4))/(.75+1+.75) or 3. By convention, the 0.5 trimmed mean is the median,

which is always returned as a number.

The mode of a distribution may not be at the \center" at all, but is certainly a repre-

sentative value.

mode data &rest standard-args &key start end key [Function]

Returns the most frequent element of `data,' which should be a sequence. The

algorithm involves sorting, and so the data must be numbers or the `key' function

must produce numbers. Consider `sxhash' if no better function is available. Also

returns the number of occurrences of the mode. If there is more than one mode,

this returns the �rst mode, as determined by the sorting of the numbers.

The following is a generalization of the \mode" function. If the `k' parameter is quite

large, this function can count the number of occurrences of each data value. Of course, that

computation could take a long time, as the complexity is roughly O(kn).

multiple-modes data k &rest standard-args &key start end key [Function]

Returns the `k' most frequent elements of `data,' which should be a sequence. The

algorithm involves sorting, and so the data must be numbers or the `key' function

must produce numbers. Consider #'sxhash if no better function is available. Also

returns the number of occurrences of each mode. The value is an association list of

modes and their counts. This function is a little more computationally expensive

than `mode,' so only use it if you really need multiple modes.

6.1.2 Spread

The functions in this subsection describe how much a sample spreads out around its center.

The `sum-of-squares' function is rarely useful in itself, but is a common building block

for statistical computations such as the variance or the analysis of variance. It is given by

the following formula:
nX
i=1

(xi � �x)2

The variance is this divided by n � 1 and the standard deviation is the square root of the

variance.

sum-of-squares data &rest standard-args &key start end key [Function]

Returns the sum of squared distances from the mean of `data'. Signals `no-data'

if there is no data.

variance data &rest standard-args &key start end key [Function]

Returns the variance of `data,' that is, the `sum-of-squares' divided by n-1. Signals

`no-data' if there is no data. Signals `insu�cient-data' if there is only one datum.
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standard-deviation data &rest standard-args &key start end key [Function]

Returns the standard deviation of `data,' which is just the square root of the vari-

ance. Signals `no-data' if there is no data. Signals `insu�cient-data' if there is only

one datum.

range data &rest standard-args &key start end key [Function]

Returns the range of the sequence `data.' Signals `no-data' if there is no data. The

range is given by max - min.

interquartile-range data &rest standard-args [Function]

The interquartile range is similar to the variance of a sample because both are

statistics that measure out \spread out" a sample is. The interquartile range is the

di�erence between the 3/4 quantile (the upper quartile) and the 1/4 quantile (the

lower quartile).

6.1.3 Correlation

When several measurements are taken of a system, so that we get a sample of points

in two-, three-, or n-dimensions, we can not only describe the collection of values in each

dimension, but also any relationships between them. One simple measure is their covariance

or correlation, which is simply the normalized equivalent of covariance. (Covariance is rarely

reported, since it depends on the units of measure.) Essentially, correlation measures the

linear association between the values in one dimension and those in another; that is, the

extent to which, say, high x values coincide with high y values.

The �rst question when we start to deal with multi-dimensional samples is representa-

tion. The two obvious possibilities are:

1. a sequence of points:

((x0 y0) (x1 y1) (x2 y2) : : :(xn yn))

2. a collection of sequences:

(x0 x1 x2 : : :xn)

(y0 y1 y2 : : :yn)

We chose to use the latter representation because the database is organized that way|

around variables, which are sequences of data values of a particular kind or dimension.

Note that these representations are easily converted from one to the other:

(setq pts '((0 5) (1 6) (2 8) (3 9) (4 10)))

(values (mapcar #'first pts) (mapcar #'second pts))

=> (0 1 2 3 4)

(5 6 8 9 10)

(mapcar #'list (multiple-value-list *))

=> ((0 5) (1 6) (2 8) (3 9) (4 10))
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If you want to avoid the consing that this involves, the function `map-into' can let you

use and reuse an existing array.

Because the `covariance' and `correlation' functions take several sequences, we allowed

them each to take `start' and `end' parameters. However, there is no `key' parameter.

Mathematically, the covariance is

X
(xi � �x)(yi � �y)

which is algebraically equivalent toX
xiyi � (

X
xi)(

X
yi)=n

but the latter is more e�cient to calculate.

covariance sample1 sample2 &rest args &key start1 end1 start2 end2 [Function]

Computes the covariance of two samples, which should be equal-length sequences

of numbers. Covariance is the inner product of di�erences between sample elements

and their sample means. For more information, see the manual.

correlation sample1 sample2 &rest args &key start1 end1 start2 end2 [Function]

Computes the correlation coe�cient of two samples, which should be equal-length

sequences of numbers.

The `inner-product' function was written to be called by the `covariance' and `correlation'

functions, but may be useful in its own right.

inner-product sample1 sample2 &key start1 end1 start2 end2 [Function]

Returns the inner product of the two samples, which should be sequences of numbers.

The inner product, also called the dot product or vector product, is the sum of the

pairwise multiplication of the numbers. Stops when either sample runs out; it

doesn't check that they have the same length.

Finally, the computation for correlation doesn't really require all the data; it can get

by with just a few \summary" statistics. If you have those summary statistics, you may

prefer to call the following function directly. Keeping the summary statistics can be done

incrementally in a constant amount of space, which can be very useful if you are collecting

data during the run of a program but don't want to keep every value. Instead you can just

keep a few running sums. There are a number of other statistical functions that work on

summary statistics, and the same comments apply to them.

correlation-from-summaries n x x2 y y2 xy [Function]

Computes the correlation of two variables given summary statistics of the variables.

All of these arguments are summed over the variable: `x' is the sum of the x's, `x2'

is the sum of the squares of the x's, and `xy' is the sum of the cross-products, which

is also known as the inner product of the variables x and y. Of course, `n' is the

number of data values in each variable.

See section 4.1 for a description of cross-correlation and autocorrelation

cross-correlation sequence1 sequence2 max-lag &optional min-lag [Function]
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Returns a list of the correlation coe�cients for all lags from `min-lag' to `max-

lag,' inclusive, where the `i'th list element is the correlation of the �rst (length-of-

sequence1 - i) elements of sequence1 with with the last i elements of sequence2.

Both sequences should be sequences of numbers and of equal length.

autocorrelation sample max-lag &optional min-lag [Function]

Autocorrelation is merely a cross-correlation between a sample and itself. This

function returns a list of correlations, where the i'th element is the correlation of

the sample with the sample starting at `i.'

6.1.4 Summary

The following function just collects many, probably too many, of the descriptive statistic

functions. It's an expensive but convenient way to say a lot about a sample in just ten

numbers.

statistical-summary data &rest standard-args &key start end key [Function]

Compute the length, minimum, maximum, range, median, mode, mean, variance,

standard deviation, and interquartile-range of `sequence' from `start' to `end', ac-

cessed by `key'.

6.2 Test Statistic Functions

This section describes functions to test hypotheses and such. The reasoning behind them is

somewhat complicated at times, and users should check that they understand the tests and

their proper uses by referring to any good introductory statistics book, such as the ones

in the references. Most of the tests are described in section 4.2, and will not be further

described here.

6.2.1 t Tests

The functions to compute various t-tests are the following. We don't implement a z-test

because it is just a special case of the t-test in which the samples are quite large. You

can use the `t-test' function on large samples without any signi�cant loss of accuracy or

e�ciency.

t-test-one-sample data tails &optional (h0-mean 0) &rest standard-args &key

start end key

[Function]

Returns the t-statistic for the mean of the data, which should be a sequence of

numbers. Let D be the sample mean. The null hypothesis is that D equals the

`H0-mean.' The alternative hypothesis is speci�ed by `tails': `:both' means D /=

H0-mean, `:positive' means D > H0-mean, and `:negative' means D < H0-mean.

The function also returns the signi�cance, the standard error, and the degrees of

freedom. Signals `zero-variance' if that condition occurs. Signals `insu�cient-data'

unless there are at least two elements in the sample.

t-test sample-1 sample-2 tails [Function]

Returns the t-statistic for the di�erence in the means of two samples, which should

each be a sequence of numbers. Let D=mean1-mean2. The null hypothesis is

that D=0. The alternative hypothesis is speci�ed by `tails': `:both' means D/=0,
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`:positive' means D>0, and `:negative' means D<0. Unless you're using :both tails,

be careful what order the two samples are in: it matters! The function also returns

the signi�cance, the standard error, and the degrees of freedom. Signals `standard-

error-is-zero' if that condition occurs. Signals `insu�cient-data' unless there are at

least two elements in each sample.

t-test-matched sample1 sample2 tails [Function]

Returns the t-statistic for two matched samples, which should be equal-length se-

quences of numbers. Let D=mean1-mean2. The null hypothesis is that D=0. The

alternative hypothesis is speci�ed by `tails': `:both' means D/=0, `:positive' means

D>0, and `:negative' means D<0. Unless you're using :both tails, be careful what

order the two samples are in: it matters! The function also returns the signi�cance,

the standard error, and the degrees of freedom. Signals `standard-error-is-zero' if

that condition occurs. Signals `insu�cient-data' unless there are at least two ele-

ments in each sample.

The d-test is a competitor to the t-test. It uses bootstrapping to estimate the sampling

distribution of d under the null hypothesis. Thus, it avoids the distributional assumptions

of the t-test at the price of a great deal of computation. The t-test will take less than a

second of computation, while the d-test may take several seconds. For example, on two

samples of size 20 on a TI Explorer II, the t-test took 11.7 milliseconds, while the d-test

took 2.9 seconds. Thus, the relative cost of the d-test is very high, but its absolute cost is

really quite small.

d-test sample-1 sample-2 tails &optional (bootstrap-times 1000) [Function]

Two-sample test for di�erence in means. Competes with the unmatched, two-sample

t-test. Each sample should be a sequence of numbers. We calculate the mean of

`sample-1' minus the mean of `sample-2'; call that D. Under the null hypothesis,

D is zero. There are three possible alternative hypotheses: D is positive, D is

negative, and D is either, and they are selected by the `tails' parameter, which

must be :positive, :negative, or :both, respectively. We count the number of chance

occurrences of D in the desired rejection region, and return the estimated probability.

6.2.2 Con�dence Intervals

Computing a con�dence interval on a parameter depends on the parameter and its theoret-

ical distribution. We have implemented just three at this time.

confidence-interval-z data con�dence [Function]

Suppose you have a sample of 50 numbers and you want to compute a 90 percent

con�dence interval on the population mean. This function is the one to use. Note

that it makes the assumption that the sampling distribution is normal, so it's in-

appropriate for small sample sizes. Use con�dence-interval-t instead. It returns

three values: the mean and the lower and upper bound of the con�dence interval.

True, only two numbers are necessary, but the con�dence intervals of other statistics

may be asymmetrical and these values would be consistent with those con�dence

intervals. This function handles 90, 95 and 99 percent con�dence intervals as spe-

cial cases, so those will be quite fast. `Sample' should be a sequence of numbers.

`Con�dence' should be a number between 0 and 1, exclusive.



58 CHAPTER 6. FUNCTIONS

confidence-interval-t data con�dence [Function]

Suppose you have a sample of 10 numbers and you want to compute a 90 percent

con�dence interval on the population mean. This function is the one to use. This

function uses the t-distribution, and so it is appropriate for small sample sizes. It

can also be used for large sample sizes, but the function `con�dence-interval-z' may

be computationally faster. It returns three values: the mean and the lower and

upper bound of the con�dence interval. True, only two numbers are necessary, but

the con�dence intervals of other statistics may be asymmetrical and these values

would be consistent with those con�dence intervals. `Sample' should be a sequence

of numbers. `Con�dence' should be a number between 0 and 1, exclusive.

confidence-interval-proportion x n con�dence [Function]

Suppose we have a sample of `n' things and `x' of them are \successes." We can

estimate the population proportion of successes as x/n; call it `p-hat.' This function

computes the estimate and a con�dence interval on it. This function is not appro-

priate for small samples with p-hat far from 1/2: `x' should be at least 5, and so

should `n'-`x.' This function returns three values: p-hat, and the lower and upper

bounds of the con�dence interval. `Con�dence' should be a number between 0 and

1, exclusive.

The following functions compute the very same values, but don't require all of the

data, just summaries of it. There is no need for a summary version of `con�dence-interval-

proportion,' since it is already summarized.

confidence-interval-z-summaries mean standard-error con�dence [Function]

This function is just like `con�dence-interval-z,' except that instead of its arguments

being the actual data, it takes the following summary statistics: `mean', a point

estimator of the mean of some normally distributed population; and the `standard-

error' of the estimator, that is, the estimated standard deviation of the normal

population. `Con�dence' should be a number between 0 and 1, exclusive.

confidence-interval-t-summaries mean dof standard-error con�dence [Function]

This function is just like `con�dence-interval-t,' except that instead of its arguments

being the actual data, it takes the following summary statistics: `mean,' which is

the estimator of some t-distributed parameter; `dof,' which is the number of degrees

of freedom in estimating the mean; and the `standard-error' of the estimator. In

general, `mean' is a point estimator of the mean of a t-distribution, which may be the

slope parameter of a regression, the di�erence between two means, or other practical

t-distributions. `Con�dence' should be a number between 0 and 1, exclusive.

6.2.3 Analysis of Variance

The analysis of variance is something like a t-test on many samples simultaneously. In any

event, to pass data to these functions, we need a way to specify many groups of numbers.

We have implemented two ways:

1. Structural Groups

In this representation, each group of data (numbers), is its own sequence. Thus, the

one-way analysis of variance using structural grouping takes a sequence of sequences.

For example, the following is three groups of four numbers each.
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data => ((1 6 2 5) (8 3 6 5) (8 9 3 5))

2. Keyed Groups (Variables)

In this representation, each data value (number) is associated with a key or keys,

and data that share the same keys are in the same group. Functions that take data

represented this way have two or three arguments, one of which is called `dv' and

contains all the data as a at sequence of numbers. The other arguments are sequences

of keys. Keys can be any Lisp object; they are compared with `eql.' These functions

have -variables appended to their names because their representation is the same

as that of variables in the database. For example, to specify the same three groups of

four numbers, the input would be as follows:

iv => (a a a a b b b b c c c c)

dv => (1 6 2 5 8 3 6 5 8 9 3 5)

Of course, it doesn't matter what identi�ers are used to distinguish groups.

The one-way anova function needs its input to be sorted in key order, so that the

groups are contiguous, as in our example. The two-way anova function can have its

inputs in any order, because it does a lot more processing.

The analysis of variance functions return an ANOVA table as their �rst value. For the

one-way ANOVA, it looks like this:

((df-group ss-group ms-group f p)

(df-error ss-error ms-error)

(df-total ss-total))

For a two-way ANOVA, there is a larger ANOVA table because there are two groupings

(a row e�ect and a column e�ect) and the interaction of the two. The table looks like this:

((df-interaction SS-interaction MS-interaction F-interaction p-interaction)

(df-row SS-row MS-row F-row p-row)

(df-column SS-column MS-column F-column p-column)

(df-error SS-error MS-error)

(df-total SS-total MS-total))

A useful function to print these out is `print-anova-table'; it can tell which kind of table it

is by the length of the list.

anova-one-way-variables iv dv &optional (sche�e-tests-p t) [Function]

Performs a one-way analysis of variance (ANOVA) on the input data, which should

be two equal-length sequences: `iv' is the independent variable, represented as a

sequence of categories or group identi�ers, and `dv' is the dependent variable, repre-

sented as a sequence of numbers. The `iv' variable must be \sorted," meaning that

AAABBCCCCCDDDD is okay but ABCDABCDABDCDC is not, where A, B, C

and D are group identi�ers. Furthermore, each group should consist of at least 2

elements. The signi�cance of the result indicates that the group means are not all

equal; that is, at least two of the groups have signi�cantly di�erent means. If there

were only two groups, this would be semantically equivalent to an unmatched, two-

tailed t-test, so you can think of the one-way ANOVA as a multi-group, two-tailed
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t-test. This function returns four values: 1. an ANOVA table; 2. a list a group

means; 3. either a Sche�e table or nil depending on `sche�e-tests-p'; and 4. an

alternate value for SST. The fourth value is only interesting if you think there are

numerical accuracy problems; it should be approximately equal to the SST value

in the ANOVA table. This function di�ers from `anova-one-way-groups' only in its

input representation. See the manual for more information.

anova-one-way-groups data &optional (sche�e-tests-p t) [Function]

Performs a one-way analysis of variance (ANOVA) on the `data,' which should be

a sequence of sequences, where each interior sequence is the data for a particular

group. Furthermore, each sequence should consist entirely of numbers, and each

should have at least 2 elements. The signi�cance of the result indicates that the

group means are not all equal; that is, at least two of the groups have signi�cantly

di�erent means. If there were only two groups, this would be semantically equivalent

to an unmatched, two-tailed t-test, so you can think of the one-way ANOVA as a

multi-group, two-tailed t-test. This function returns four values: 1. an ANOVA

table; 2. a list a group means; 3. either a Sche�e table or nil depending on `sche�e-

tests-p'; and 4. an alternate value for SST. The fourth value is only interesting if

you think there are numerical accuracy problems; it should be approximately equal

to the SST value in the ANOVA table. This function di�ers from `anova-one-way-

variables' only in its input representation. See the manual for more information.

print-anova-table anova-table &optional (stream *standard-output*) [Function]

Prints `anova-table' on `stream.'

Optionally, the ANOVA functions can also return sche�e-tables, which represent all pair-

wise comparisons between groups. A sche�e-table is an upper-triangular table represented

with list structure. For example, with four groups, it would look like this:

(((F-01 p-01) (F-02 p-02) (F-03 p-03))

((F-12 p-12) (F-13 p-13))

((F-22 p-23)))

This table makes more sense when formatted as follows:

mean-1 mean-2 mean-3

mean-0: F-01 p-01 F-02 p-02 F-03 p-03

mean-1: F-12 p-12 F-13 p-13

mean-2: F-22 p-22 F-23 p-23

The sche�e-tables can be computed and printed by the following functions.

scheffe-tests group-means group-sizes ms-error df-error [Function]

Performs all pairwise comparisons between group means, testing for signi�cance

using Sche�e's F-test. Returns an upper-triangular table in a format described in

the manual. Also see the function `print-sche�e-table.' `Group-means' and `group-

sizes' should be sequences. The arguments `ms-error' and `df-error' are the mean

square error within groups and its degrees of freedom, both of which are computed

by the analysis of variance. An ANOVA test should always be run �rst, to see if

there are any signi�cant di�erences.
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print-scheffe-table sche�e-table &optional group-means (stream

*standard-output*)

[Function]

Prints `sche�e-table' on `stream.' If the original one-way anova data had N groups,

the Sche�e table prints as an n-1 x n-1 upper-triangular table. If `group-means' is

given, it should be a list of the group means, which will be printed along with the

table.

Two factor analysis of variance is computed by the following functions.

anova-two-way-groups data-array [Function]

Calculates the analysis of variance when there are two factors that may a�ect the

dependent variable. Because the input is represented as an array, we can refer

to these two factors as the row-e�ect and the column e�ect. Unlike the one-way

ANOVA, there are mathematical di�culties with the two-way ANOVA if there are

unequal cell sizes; therefore, we require all cells to be the same size, and so the

input is a three-dimensional array. The result of the analysis is an anova-table,

as described in the manual. This function di�ers from `anova-two-way-variables'

only in its input representation. See the manual for further discussion of analysis of

variance.

anova-two-way-variables dv iv1 iv2 [Function]

Calculates the analysis of variance when there are two factors that may a�ect the

dependent variable, speci�cally `iv1' and `iv2.' Unlike the one-way ANOVA, there

are mathematical di�culties with the two-way ANOVA if there are unequal cell sizes;

therefore, we require all cells to be the same size; that is, the same number of values

(of the dependent variable) for each combination of the independent factors. The

result of the analysis is an anova-table, as described in the manual. This function

di�ers from `anova-two-way-groups' only in its input representation. See the manual

for further discussion of analysis of variance. If you use `print-anova-table,' the row

e�ect is `iv1' and the column e�ect is `iv2.'

6.2.4 Linear Regression

Clasp implements six di�erent linear regression functions, the result of two kinds of input

representations (data versus summaries) and three quantities of output (minimal, brief, and

verbose). The verbose form returns an anova table in the following format:

((df-regression SS-regression MS-regression F p)

(df-error SS-error MS-error)

(df-total SS-total))

linear-regression-minimal dv iv [Function]

Calculates the slope and intercept of the regression line. This function takes two

equal-length sequences of raw data. Note that the dependent variable, as always,

comes �rst in the argument list. You should �rst look at your data with a scatter

plot to see if a linear model is plausible. See the manual for a fuller explanation of

linear regression statistics.

linear-regression-minimal-summaries n x y x2 y2 xy [Function]
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Calculates the slope and intercept of the regression line. This function di�ers from

`linear-regression-minimal' in that it takes summary statistics: `x' and `y' are the

sums of the independent variable and dependent variables, respectively; `x2' and `y2'

are the sums of the squares of the independent variable and dependent variables,

respectively; and `xy' is the sum of the products of the independent and dependent

variables. You should �rst look at your data with a scatter plot to see if a linear

model is plausible. See the manual for a fuller explanation of linear regression

statistics.

linear-regression-brief dv iv [Function]

Calculates the main statistics of a linear regression: the slope and intercept of the

line, the coe�cient of determination, also known as r-square, the standard error of

the slope, and the p-value for the regression. This function takes two equal-length

sequences of raw data. Note that the dependent variable, as always, comes �rst in

the argument list. You should �rst look at your data with a scatter plot to see if a

linear model is plausible. See the manual for a fuller explanation of linear regression

statistics.

linear-regression-brief-summaries n x y x2 y2 xy [Function]

Calculates the main statistics of a linear regression: the slope and intercept of the

line, the coe�cient of determination, also known as r-square, the standard error

of the slope, and the p-value for the regression. This function di�ers from `linear-

regression-brief' in that it takes summary variables: `x' and `y' are the sums of

the independent variable and dependent variables, respectively; `x2' and `y2' are

the sums of the squares of the independent variable and dependent variables, re-

spectively; and `xy' is the sum of the products of the independent and dependent

variables. You should �rst look at your data with a scatter plot to see if a lin-

ear model is plausible. See the manual for a fuller explanation of linear regression

statistics.

linear-regression-verbose dv iv [Function]

Calculates almost every statistic of a linear regression: the slope and intercept of

the line, the standard error on each, the correlation coe�cient, the coe�cient of

determination, also known as r-square, and an ANOVA table as described in the

manual. This function takes two equal-length sequences of raw data. Note that the

dependent variable, as always, comes �rst in the argument list. If you don't need

all this information, consider using the \-brief," or \-minimal" functions, which do

less computation. You should �rst look at your data with a scatter plot to see if a

linear model is plausible. See the manual for a fuller explanation of linear regression

statistics.

linear-regression-verbose-summaries n x y x2 y2 xy [Function]

Calculates almost every statistic of a linear regression: the slope and intercept of

the line, the standard error on each, the correlation coe�cient, the coe�cient of

determination, also known as r-square, and an ANOVA table as described in the

manual. If you don't need all this information, consider using the \-brief" or \-

minimal" functions, which do less computation. This function di�ers from `linear-

regression-verbose' in that it takes summary variables: `x' and `y' are the sums

of the independent variable and dependent variables, respectively; `x2' and `y2'
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are the sums of the squares of the independent variable and dependent variables,

respectively; and `xy' is the sum of the products of the independent and dependent

variables. You should �rst look at your data with a scatter plot to see if a linear

model is plausible. See the manual for a fuller explanation of linear regression

statistics.

The verbose functions do not currently return the standard error of the intercept. This

will be �xed in the next release.

6.2.5 Contingency Table Analysis

Often, data collection will simply observe the occurrence of discrete events, rather than

measuring some dependent variable. The data, then, consists of counts: n events of type

A, m events of type B, and so on. Data tables of counts are called contingency tables.

Hypotheses can then be tested about the distribution of events (their relative frequency)

and whether one kind of event is independent of another. The following functions test such

hypotheses.

There are generally two kinds of functions, depending on whether the input representa-

tion is a contingency table or sequences of events. In the latter case, the functions construct

a contingency table by counting events and then call the other functions.

By convention, the cells in a 2x2 contingency table are labeled as follows:

a b

c d

This is the semantics for the arguments of `chi-square-2x2-counts.' By symmetry, it doesn't

matter if you swap the `b' and `c' arguments.

chi-square-2x2-counts a b c d &optional (yates t) [Function]

Runs a chi-square test for association on a simple 2 x 2 table. If `yates' is nil, the

correction for continuity is not done; default is t. Returns the chi-square statistic

and the signi�cance of the value.

chi-square-2x2 v1 v2 [Function]

Performs a chi-square test for independence of the two variables, `v1' and `v2.' These

should be categorial variables with only two values; the function will construct a

2x2 contingency table by counting the number of occurrences of each combination

of the variables. See the manual for more details.

chi-square-rxc-counts contingency-table [Function]

Calculates the chi-square statistic and corresponding p-value for the given contin-

gency table. The result says whether the row factor is independent of the column

factor. Does not apply Yate's correction.

chi-square-rxc v1 v2 [Function]

Performs a chi-square test for independence of the two variables, `v1' and `v2.'

These should be categorial variables; the function will construct a contingency table

by counting the number of occurrences of each combination of the variables. See

the manual for more details.
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6.2.6 Smoothing

The following functions \smooth" data in a non-parametric way, by replacing elements with

a function of themselves and their neighbors. They aren't statistics functions in the usual

sense, but they operate on sequences and are useful in processing data before computing

statistics. For example, smoothing a time series before doing a cross-correlation can produce

a clearer result.

smooth-median-2 data [Function]

Smooths `data' by replacing each element with the median of it and its neighbor on

the left. A median of two elements is the same as their mean. The end is handled

by duplicating the end element. This function is not destructive; it returns a list

the same length as `data,' which should be a sequence of numbers.

smooth-median-3 data [Function]

Smooths `data' by replacing each element with the median of it and its two neigh-

bors. The ends are handled by duplicating the end elements. This function is not

destructive; it returns a list the same length as `data,' which should be a sequence

of numbers.

smooth-median-4 data [Function]

Smooths `data' by replacing each element with the median of it, its left neighbor,

and its two right neighbors. The ends are handled by duplicating the end elements.

This function is not destructive; it returns a list the same length as `data,' which

should be a sequence of numbers.

smooth-median-5 data [Function]

Smooths `data' by replacing each element with the median of it, its two left neighbors

and its two right neighbors. The ends are handled by duplicating the end elements.

This function is not destructive; it returns a list the same length as `data,' which

should be a sequence of numbers.

smooth-hanning data [Function]

Smooths `data' by replacing each element with the weighted mean of it and its two

neighbors. The weights are 1/2 for itself and 1/4 for each neighbor. The ends are

handled by duplicating the end elements. This function is not destructive; it returns

a list the same length as `data,' which should be a sequence of numbers.

smooth-4253h data [Function]

Smooths `data' by successive smoothing: 4,median; then 2,median; then 5,median;

then 3,median; then hanning. The ends are handled by duplicating the end elements.

This function is not destructive; it returns a list the same length as `data,' which

should be a sequence of numbers.

6.3 Data Manipulation Functions

This section describes the representation and functions for Clasp's internal data manip-

ulation code. These functions are called by the graphical interface when data is loaded,

manipulated, transformed, saved, and so forth. The functions in this section could allow
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you to manipulate your own data under program control, or they could be the basis for new

manipulation functions.

The basic class de�nitions and methods are the following:

data [Class]

`data' is the basic data class for clasp. Dataset, variable etc. are all subclasses of

data.

name object [Method]

data `name' returns the name of a data object.

name object [Method]

data `description' returns the description of a data object.

name object [Method]

data `id' returns the internal id of a data object.

dataset [Class]

The `dataset' is the top-level user class for data representation in Clasp. A dataset

is a collection of variables.

variable [Class]

`variable's are ordered collections of values. Valid data types for variables are num-

bers (integers, rationals and oats), symbols and strings. Symbols and strings can

be used to represent for categorical data).

6.3.1 Dataset Functions

With the following functions, we start creating and manipulating data, variables, and

datasets. These are the fairly low-level functions for creating, accessing and destroying

the data structures.

variable-value the-variable &key [Function]

`variable-value' returns the value of a variable, expressed as a list.

make-dataset &key (name nil) (description nil) [Function]

Creates a new dataset and �lls the slots with `name', `data', `variable-list' and

`description'. `data' is an rtm-table.

make-dataset-from-rows name data column-names &optional description [Function]

Creates a new data set and �lls the slots with `name', `data' and `description'. `data'

is a list of lists where each interior list represents one row of the data.

make-dataset-from-columns name data column-names &optional description [Function]

Creates a new data set and �lls the slots with `name', `data' and `description'. `data'

is a list of lists where each interior list represents one column of the data.

rename-dataset dataset new-name [Function]

rename-dataset changes the name of `dataset to `new-name', insuring the new name

is unique. `dataset' can either be a dataset or the name of a dataset, and `new-name'

must be a string.

delete-dataset dataset [Function]
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Destroys a dataset and removes it from the dataset lists

get-dataset the-dataset &optional active-datasets-only-p [Function]

Given a name or id, �nds the dataset. If `active-datasets-only-p' is nil, will search

through all current clasp datasets, otherwise, only the active datasets are searched.

activate-dataset dataset [Function]

Takes a dataset on the available list *clasp-datasets* and adds it to the active list

*clasp-active-datasets*

deactivate-dataset dataset [Function]

Takes a dataset o� of the *clasp-active-datasets* list.

make-variable &key name type attribute value description dataset rtm-table [Function]

make-variable creates a new variable. `name' is a string. If `type' is one of :number,

:symbol or :string, then that will be used as the type, otherwise the type will be

inferred from (type-of `type'). `value' is the data the variable should be initialized

with. `description' is a description of the variable. `dataset' is the dataset to which

the variable belongs.

add-variable-to-dataset dataset data variable-name &optional (description

nil)

[Function]

add-variable-to-dataset adds the `data', which must be a list of values, to `dataset'

using `variable-name' as the name of the new variable and `description' as a descrip-

tion.

add-variables-to-dataset dataset data-list variable-names &optional

(descriptions nil)

[Function]

add-variables-to-dataset adds a number of variables to `dataset'. For each variable,

i, its value (which must be a list) is the ith element of `data-list', its name is the ith

element of `variable-names', and its description is the ith element of descriptions.

rename-variable variable new-name [Function]

rename-variable changes the name of `variable' to `new-name', insure the new name

is unique. `variable' can either be a variable or the name of a variable, and `new-

name' must be a string.

delete-variable variable [Function]

Destroys a variable. `variable' can either be a variable or the name of a variable.

get-variable the-variable &optional dataset active-datasets-only-p [Function]

Given a name or id, �nds the variable. If `dataset' is speci�ed, that is the dataset

which will be searched for `variable'. Otherwise, a search will be made across

datasets. If this is the case, then `active-datasets-only-p' will determine whether

all datasets currently loaded are searched, or just the active ones. Note, since vari-

able names must only be unique within a dataset, not across datasets, care must

be taken to request the correct variable. It is advisable to call get-variable with the

dataset optional variable set.

add-row-to-dataset dataset data variables [Function]

This function will add `data' to the dataset `dataset' as a new row. `variables' is

a list of variables and speci�es what order the new row is in with respect to the
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variables in the dataset. Therefore, `data' must match `variables' in both length

and the types of its values. Note: Whenever this function is called, clear-cache

should be called on the same dataset.

add-rows-to-dataset dataset data-list variables [Function]

This function will add `data-list' to the dataset `dataset'. `data-list' is a list of lists

representing rows of data. The rows must be of equal length. `variables' is a list of

variables and speci�es what order the new rows are in with respect to the variables

in the dataset. Therefore, each element of `data-list' must match variables in both

length and the types of its elements.

6.3.2 Input/Output

The following functions do input and output of data, so that they can be saved between ses-

sions and processed by other programs. Clasp supports two ways of representing datasets

in �les: a special Clasp format and a general non-Clasp format that should be readable

by most other statistics programs.

The Clasp �le format is read by `load-dataset' and saved by `save-dataset.' The loading

function takes a �lename as its only argument, while the saving function takes a dataset

and a �lename. This format is also produced by Clip, because we want Clip and Clasp

to have a seamless interface. The Clasp format is as follows:�

� The �rst line of the �le is a string (surrounded by double-quotes) containing the name

of the dataset.

� The following n lines of the �le each have a single string with the name of one of the

n variables in the dataset.

� At any point after the variable names, comments may be inserted by starting a line

with a semicolon (;).

� The rest of the lines of the �le each contain a Common Lisp list representing one row

of data. The order of the elements must match the order of the variable names listed

at the top of the �le.

The non-Clasp �le format is read by `import-dataset' and saved by `export-dataset.'

They take extra arguments because the �le representation allows user-speci�ed separator

characters between data values. Some statistics packages use commas between values, others

use tabs or spaces. The separator character is speci�ed by :separator, defaulting to a

comma (#\,). Furthermore, the �le representation allows, optionally, the names of the

variables to appear in the �le. You can allow them to appear using :include-labels-p,

which defaults to nil. The non-Clasp format is as follows:

� The �rst line is, optionally, a line of variable names, expressed as symbols, and sepa-

rated by separator characters.

� The rest of the �le is lines of data values, separated by separator characters.

�For examples of Clasp format, see Section 2.4 and Appendix B.
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Both `load-dataset' and `import-dataset' will signal an error if `�lename' does not specify

an extant �le. No other error checking is currently done, and so, for example, if some of

the data rows have too few elements, as in the case of missing data, the dataset will be

incorrect. In addition, the datatype of each variable will be inferred from its value in the

�rst row of the data.

Both `save-dataset' and `export-dataset' will signal an error if `�lename' speci�es an

already extant �le.

load-dataset �lename [Function]

Reads a dataset in from a �le in standard CLASP format. Speci�cally, the �rst

line is a string containing the name of the dataset. The following n lines are strings

containing the names of the variables in the dataset, and the following m lines are

lists containing the rows of the dataset.

save-dataset data �lename [Function]

Writes a dataset out to a �le in CLASP format.

import-dataset �lename &key (separator ,) include-labels-p [Function]

Reads a dataset in from a �le, where `�lename' is a string or pathname. If `�lename'

doesn't exist, an error is signaled. The data on each line in the �le must be separated

by `separator' characters or whitespace. No error checking is done to insure that

each line of the �le contains the same number of data. If `include-labels-p' is non-nil,

the �rst line will be used a variable names, otherwise they will be named variable,

variable-1, variable-2, etc. The �lename will be used for the dataset name.

export-dataset dataset �lename &key (separator #n,) include-labels-p [Function]

Writes out the values in `dataset' in row-major order to the �le `�lename.' Each row

in `�lename' will be one row of data in `dataset.' The data in a row will be separated

by the character `separator'. If include-labels-p is non-nil, the variable-names will

be written out on the �rst line. `export-dataset' will signal an error if a �le of name

`�lename' already exists.

6.3.3 Manipulation

Finally, we get to functions that transform or otherwise manipulate existing data.

create-new-column-from-function dataset expression [Function]

create-new-column-from-function adds a new variable to `dataset', using `expression'

to calculate the values. `expression' may be any numerical expression. If variables

are included in `expression', they should be referenced by name. For instance, if a

dataset has two variables, \hits" and \misses", then

(create-new-column-from-function dataset

(/ hits (+ hits misses)))

will add a new variable with the hit-to-attempt ratio.

When create-new-column-from-function is called, the rows of `dataset' are mapped

over, and for each row, substitutions are made into `expression' for any variable

references. The value returned is added to the new variable in the appropriate row of

`dataset'. Because the dataset is mapped over, aggregating functions (such as mean
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or data-length) cannot be used. A new function, `recode', has been implemented to

allow for mapping of categorical variables to new values.

recode value old-values new-values [Function]

Maps `value' from it's position in `original-values' to the value at the equivalent

position in `new-values'. For instance, (recode 2 '(1 2 3) '(a b c)) would return

'b. This function can be used with create-new-column-from-function to recode a

categorical variable. From the program interface, it is recommended that \recode-

list" be used instead.

recode-list list old-values new-values [Function]

Maps each element of `list' from it's position in `old-values' to the value at the

equivalent position in `new-values'.

partition-dataset old-dataset partition-clause [Function]

Often it is desirable to operate on a portion of a dataset, or to separate out di�erent

parts of a dataset according to the values of some of the variables. When a dataset

is broken up this way, it is called partitioning, and the parts of the dataset cre-

ated are called partitions. partition-dataset takes a dataset and a partition-clause

which describes how to split the dataset up, and returns a list of datasets, each

one containing one partition. (Note, this does not destroy the original dataset.)

Partition clauses are made up of boolean operators, and the partitioning operator,

\.on.". The boolean operators act as expected and are explained in detail in the

reference manual. The .on. operator takes any number of variables as its operands,

and separates the dataset into di�erent partitions for each unique set of values of

its operands. For example, if a dataset consisted of a boolean variable \key1", a

categorical variable \key2", with values 'a, 'b and 'c, and a data variable \y", and

was partitioned with a partitioning clause of (.on. key1 key2), then at most six

new datasets would be created, one containing all the rows of the original dataset

where key1 = true and key2 = 'a, one with all the rows where key1 = false and

key2 = 'a, one with all the rows where key1 = true and key2 = 'b, and so on. If a

partition would be empty (i.e. if there were no rows where key1 = false and key2 =

'c), then no dataset is created for that partition, which is why AT MOST six new

datasets would be created in the above example. The .on. operator can be used in

conjunction with the boolean operators. When this happens, the .on. operator can

be thought of as a macro which causes a set of partitioning clauses to be created,

each exactly like the original, except that .on. is replaces with an .==. operator

and one of the unique values of the key. If there are multiple keys in the .on., it is

replaced by (.and. (.==. key1 value11) (.==. key2 value21), etc.). In the above

example, a partition clause of (.and. (.==. key1 true) (.on. key2)) would cause up

to three datasets to be created. Each would contain rows where key1 was true, and

one would be created for key2 = 'a, one for key2 = 'b and one for key2 = 'c.

dataset-to-rows data &key rows columns [Function]

Takes a dataset `data' and extracts tuples representing the rows of data in the

dataset.

dataset-to-columns data &key rows columns [Function]

Takes a dataset `data' and extracts tuples representing the columns of data in the

dataset.
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transpose data [Function]

Takes a list of lists, `data', and makes a list of tuples t where t[i] contains all the

i'th elements of the lists in `data'.

6.4 Density and Combinatorial Functions

Given a statistic, such as the t-statistic, the �nal step in hypothesis testing is to compute

the p-value of the statistic|that is, the probability that a value for the statistic as extreme

or more so could occur by chance. In statistics books, p-values are found by looking in

tables in the appendices, but our computer programs can't do that. Instead, they must

calculate the p-value.

The following functions are how Clasp calculates p-values. Some of them may be

completely useless to you unless you are implementing new statistical functions. (If you do,

let us know; perhaps they can be incorporated into the next release.) Some are useful if you

want to graph theoretical distributions or otherwise experiment with them. Finally, there

are some functions that calculate combinatorial probabilities, such as the binomial.

Most of the following functions are implemented from Numerical Recipes in C [10]. The

code has been extensively tested and the values compared to tables of statistics or, in some

cases, to �gures in the Numerical Recipes book.

beta z w [Function]

Returns the value of the Beta function, de�ned in terms of the complete gamma

function, G, as: G(z)G(w)/G(z+w). The implementation follows Numerical Recipes

in C, section 6.1.

The complete Beta function is not used in Clasp, but may be helpful to some users.

gamma-incomplete a x [Function]

This is an incomplete gamma function, whatNumerical Recipes in C calls \gammp."

This function also returns, as the second value, g(a,x). See the manual for more

information.

The incomplete gamma function, notated p(a,x) is mathematically de�ned as

p(a; x) = g(a; x)=G(a)

where g(a; x) is what Mathematicatm calls the incomplete gamma function and is mathe-

matically de�ned as Z
x

0
ta�1e�tdt

and G is the complete gamma function, de�ned asZ 1

0
ta�1e�tdt

Yes, it's very confusing; apparently, there is no standard naming scheme for these func-

tions. Our implementation follows Numerical Recipes in C, section 6.2 and is the function

that they call \gammp." We did not implement the function they call \gammq," since it is

just 1.0-gammp.
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error-function x [Function]

Computes the error function, which is typically used to compute areas under the

Gaussian probability distribution. See the manual for more information. Also see

the function `gaussian-cdf.' This implementation follows Numerical Recipes in C,

section 6.2

The error function is not well described in Numerical Recipes or other books that we

checked, and it mysti�ed us for some time. Once we understood it, it made perfect sense,

so we o�er the following explanation.

The error function is de�ned as

erf(x) =
2p
�

Z
x

0
e�t

2

dt

The error function is related to the integral of the Gaussian probability density function

(pdf), as we can see in the following proof. First, de�ne A(x) to be the area under the

Gaussian pdf and less than x in absolute value. (This is the complement of a two-tailed

test of the signi�cance of x.)

A(x) =

Z
x

�x

1p
2�

e�t
2
=2dt

Because the Gaussian is symmetrical, if x > 0, we can just integrate from 0 to x and

double it:

A(x) = 2

Z
x

0

1p
2�

e�t
2
=2dt

Now we can show that A is closely related to erf. The proof works by a change of

variable, substituting t = u
p
2. All the rest is just algebra.

A(x) = 2

Z
x

0

1p
2�

e�t
2=2dt

= 2

Z
x=
p
2

0

1p
2�

e�(u
p
2)2=2du

p
2

= 2

Z
x=
p
2

0

1p
�
e�u

2

du

=
2p
�

Z
x=

p
2

0
e�u

2

du

= erf(x=
p
2)

That change of variable is the key to understanding erf: erf is the integral (from zero

outwards) of a function that is shaped exactly like the Gaussian, except that the axis has

been \stretched" by a factor of
p
2. So, to �nd A(x), we just compute erf(x=

p
2).

Note, by de�ning erf to be the integral from 0 to x, we have erf(�x) = �erf(x). With

this in mind, we can compute other integrals of the Gaussian using erf. De�ne F(x) to be

the cumulative distribution function of the Gaussian. Then

F (x) =
1

2
(1 + erf(x=

p
2))

Indeed, erf can be used to compute the cdf of Gaussians withmeanm and standard deviation

s by standardizing and dividing by the square root of 2.
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gaussian-cdf x &optional (mean 0.0) (sd 1.0) [Function]

Computes the cumulative distribution function for a Gaussian random variable (de-

faults: mean=0.0, s.d.=1.0) evaluated at `x.' The result is the probability of getting

a random number less than or equal to `x,' from the given Gaussian distribution.

error-function-complement x [Function]

This function computes the complement of the error function, \erfc(x)," de�ned as 1-

erf(x). See the documentation for `error-function' for a more complete de�nition and

description. Essentially, this function on z/sqrt2 returns the two-tailed signi�cance

of z in a standard Gaussian distribution. This function implements the function

that Numerical Recipes in C calls erfcc, see section 6.3; that is, it's the one using

the Chebyshev approximation, since that is the one they call from their statistical

functions. It is quick to compute and has fractional error everywhere less than

1.2x10^f-7g.
gaussian-significance x tails &optional mean sd [Function]

Computes the signi�cance of `x' in a Gaussian distribution with mean=`mean' (de-

fault 0.0) and standard deviation=`sd' (default 1.0); that is, it returns the area which

farther from the mean than `x' is. The null hypothesis is roughly that `x' is zero;

you must specify your alternative hypothesis (H1) via the `tails' parameter, which

must be :both, :positive or :negative. The �rst corresponds to a two-tailed test: H1

is that `x' is not zero, but you are not specifying a direction. If the parameter is

:positive, H1 is that `x' is positive, and similarly for :negative.

Departing from the Gaussian distribution, we can compute the signi�cance of other

kinds of statistics.

poisson-cdf k x [Function]

Computes the cumulative distribution function for a Poisson random variable with

mean `x' evaluated at `k.' The result is the probability that the number of Poisson

random events occurring will be between 0 and k-1 inclusive, if the expected number

is `x.' The argument `k' should be an integer, while `x' should be a oat. The

implementation follows Numerical Recipes in C, section 6.2

chi-square-significance x dof [Function]

Computes the complement of the cumulative distribution function for a Chi-square

random variable with `dof' degrees of freedom evaluated at `x.' The result is the

probability that the observed chi-square for a correct model should be greater than

`x.' The implementation follows Numerical Recipes in C, section 6.2. Small values

suggest that the null hypothesis should be rejected; in other words, this computes

the signi�cance of `x.'

The incomplete \beta" function is not particularly useful by itself, but is useful in de�n-

ing the cumulative distributions for Student's t and the F distribution. It is mathematically

de�ned as

Ix(a; b) =
1

B(a; b)

Z
x

0
ta�1(1� t)b�1dt

where B(a; b) is the complete \beta" function.

beta-incomplete a b x [Function]
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This function is useful in de�ning the cumulative distributions for Student's t and

the F distribution. All arguments must be oating-point numbers; `a' and `b' must

be positive and `x' must be between 0.0 and 1.0, inclusive.

students-t-significance t-statistic dof tails [Function]

Student's distribution is much like the Gaussian distribution except with heavier

tails, depending on the number of degrees of freedom, `dof.' As `dof' goes to in-

�nity, Student's distribution approaches the Gaussian. This function computes the

signi�cance of `t-statistic.' Values range from 0.0 to 1.0: small values suggest that

the null hypothesis|that `t-statistic' is drawn from a t distribution|should be re-

jected. The `t-statistic' parameter should be a oat, while `dof' should be an integer.

The null hypothesis is roughly that `t-statistic' is zero; you must specify your alter-

native hypothesis (H1) via the `tails' parameter, which must be :both, :positive or

:negative. The �rst corresponds to a two-tailed test: H1 is that `t-statistic' is not

zero, but you are not specifying a direction. If the parameter is :positive, H1 is that

`t-statistic' is positive, and similarly for :negative. This implementation follows

Numerical Recipes in C, section 6.3.

f-significance f-statistic numerator-dof denominator-dof &optional

one-tailed-p

[Function]

This function occurs in the statistical test of whether two observed samples have

the same variance. A certain statistic, F, essentially the ratio of the observed dis-

persion of the �rst sample to that of the second one, is calculated. This function

computes the tail areas of the null hypothesis: that the variances of the numerator

and denominator are equal. It can be used for either a one-tailed or two-tailed test.

The default is two-tailed, but one-tailed can be computed by setting the optional

argument `one-tailed-p' to true. For a two-tailed test, this function computes

the probability that F would be as di�erent from 1.0 (larger or smaller) as it is,

if the null hypothesis is true. For a one-tailed test, this function computes the

probability that F would be as LARGE as it is if the �rst sample's underlying dis-

tribution actually has SMALLER variance that the second's, where `numerator-dof'

and `denominator-dof' is the number of degrees of freedom in the numerator sample

and the denominator sample. In other words, this computes the signi�cance level at

which the hypothesis \the numerator sample has smaller variance than the denom-

inator sample" can be rejected. A small numerical value implies a very signi�cant

rejection. The `f-statistic' must be a non-negative oating-point number. The

degrees of freedom arguments must be positive integers. The `one-tailed-p' argu-

ment is treated as a boolean. This implementation follows Numerical Recipes in

C, section 6.3 and the `ftest' function in section 13.4. Some of the documentation

is also drawn from the section 6.3, since I couldn't improve on their explanation.

Some useful combinatorial functions are the following. The `gamma-ln' function is the

natural logarithm of the gamma function, which is the continuous form of the factorial

function.

gamma-ln x [Function]

Returns the natural logarithm of the Gamma function evaluated at `x.' Mathemat-

ically, the Gamma function is de�ned to be the integral from 0 to In�nity of t^x

exp(-t) dt. The implementation is copied, with extensions for the reection for-

mula, from Numerical Recipes in C, section 6.1. The argument `x' must be positive.
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Full accuracy is obtained for x>1. For x<1, the reection formula is used. The

computation is done using double-oats, and the result is a double-oat.

factorial-exact n [Function]

Returns the factorial of `n,' which should be an integer. The result will returned as

an integer or bignum. This implementation is exact, but is more computationally

expensive than `factorial,' which is to be preferred.

factorial n [Function]

Returns the factorial of `n,' which should be a non-negative integer. The result will

returned as a oating-point number, single-oat if possible, otherwise double-oat.

If it is returned as a double-oat, it won't necessarily be integral, since the actual

computation is (exp (gamma-ln (1+ n))) Implementation is loosely based on

Numerical Recipes in C, section 6.1. On the TI Explorer, the largest argument that

won't cause a oating overow is 170.

factorial-ln n [Function]

Returns the natural logarithm of n!; `n' should be an integer. The result will be

a single-precision, oating point number. The implementation follows Numerical

Recipes in C, section 6.1

binomial-coefficient n k [Function]

Returns the binomial coe�cient, `n' choose `k,' as an integer. The result may not

be exactly correct, since the computation is done with logarithms. The result is

rounded to an integer. The implementation follows Numerical Recipes in C, section

6.1

binomial-coefficient-exact n k [Function]

This is an exact but computationally intensive form of the preferred function,

`binomial-coe�cient.'

binomial-probability p n k [Function]

Returns the probability of `k' successes in `n' trials, where at each trial the proba-

bility of success is `p.' This function uses oating-point approximations, and so is

computationally e�cient but not necessarily exact.

binomial-probability-exact p n k [Function]

This is an exact but computationally intensive form of the preferred function,

`binomial-probability.'

binomial-cdf p n k [Function]

Suppose an event occurs with probability `p' per trial. This function computes the

probability of `k' or more events occurring in `n' trials. Note that this is the com-

plement of the usual de�nition of cdf. This function approximates the actual com-

putation using the incomplete beta function, but is preferable for large `n' (greater

than a dozen or so) because it avoids summing many tiny oating-point numbers.

The implementation follows Numerical Recipes in C, section 6.3.

binomial-cdf-exact p n k [Function]

This is an exact but computationally intensive form of the preferred function,

`binomial-cdf.'
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Distribution Slots Legal value

Uniform-distribution Minimum Real number

Maximum Real number

Normal-distribution Mean Real number

Standard-deviation Non-negative real number

Binomial-distribution P Real number from 0 to 1

N Positive integer

Poisson-distribution Mean Real number

Gamma-distribution IA Positive real number

Table 6.1: Distribution classes and parameters

The following function uses binary search to �nd a critical value of a statistic, given a

distribution function for the statistic.

find-critical-value p-function p-value &optional (x-tolerance 1.0e-5)

(y-tolerance 1.0e-5)

[Function]

Returns the critical value of some statistic. The function `p-function' should be a

unary function mapping statistics|x values|to their signi�cance|p values. The

function will �nd the value of x such that the p-value is `p-value.' The function

works by binary search. A secant method might be better, but this seems to be

acceptably fast. Only positive values of x are considered, and `p-function' should

be monotonically decreasing from its value at x=0. The binary search ends when

either the function value is within `y-tolerance' of `p-value' or the size of the search

region shrinks to less than `x-tolerance.'

6.5 Sampling

Clasp provides random sampling from uniform, normal, binomial, poisson and gamma

distributions. Distributions are Clos classes . The distribution classes are de�ned as

follows:

Sampling from a distribution is a two step process. The �rst step is to create the distribu-

tion, and the second step is to draw a sample from the distribution. To create a distribution,

use make-instance. To draw a sample from a distribution use either sample-to-list or

sample-to-dataset.

The following example shows how to create a standard-normal distribution and then

make a dataset from two samples of length 50 drawn from the distribution.

;;; create a standard normal distribution

(setf dist (make-instance normal-distribution :mean 0

:standard-deviation 1))

;;; draw two 50 element samples from the distribution and create a

;;; dataset from the result

(sample-to-dataset dist 50 2)

sample-to-list ((dist distribution) size-of-sample) [Method]
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Gets a sample from the distribution `dist' of size `size-of-sample'

sample-to-dataset ((dist distribution) size-of-samples &optional

number-of-samples dataset-name variable-names

[Method]

Gets a sample from the distribution `dist' of size `size-of-sample' and creates a

dataset out of it. If `number-of-samples' is > 1 then multiple samples are taken

from the distribution and each one forms one column of the dataset.

6.6 Graphics

All graphics in Clasp are obtained via the SciGraph graphing system from BBN. Please

refer to the documentation available with that system to use graphical functions in Clasp.

SciGraph is available via anonymous ftp from cambridge.apple.com in the directory

/pub/clim/clim-1-and-2/scigraph.



Appendix A

Computational Methods

Essentially, this chapter acts as extended documentation for some of the more complicated

statistical functions. Statistical functions, by their very nature, take collections of numbers,

do some calculations that are often mysterious and unintuitive, and produce some other

numbers that are di�cult to check by hand. Consequently, these functions are hard for

programmers to debug and hard for users to trust. This chapter will try to explain the

calculations for some of the more arcane functions.

A.1 Quantiles

Quantiles seem like they ought to be simple, since they are just a generalization of the

median, which splits the data in half. All we need to do is split the data into q and

1�q. But there are other valid ways of viewing the quantile, which lead to other ways of

dividing the data. As Freund says in his discussion of quartiles, \there is ample room for

arbitrariness" [5, p. 52].

x0 x1 x2 x3 x4
2 3 5 8 13

Consider the preceding �ve-element sample, which we will use throughout our discussion

of quantiles. Clearly, x2 is the median. What is x1? There are three reasonable answers:

� First Quartile x1 splits the sample so that three times as many elements are above it

as below it; splitting the sample in a ratio of 1:3 is one de�nition of the �rst quartile.

� First Quintile One �fth of the sample is less than x1, and so it is the �rst quintile.

� Second Quintile Two �fths of the sample is less than or equal to x1, and so it is the

second quintile.

There are two kinds of de�nitions here, resulting in di�erent computational methods.

The �rst is what we will call the \bisection" method because we look at how the data

are split, and the second is the \cumulative" method, because we refer to the cumulative

distribution function of the data. Of course, in the cumulative method, we also have to

think about whether we want \<" or \�." These methods will be discussed in turn. Only

the bisection method is implemented in Clasp, so some readers may want to read only

subsection A.1.1; readers who want to understand why we chose the bisection method over

the cumulative method will want to read this whole section.

77
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Figure A.1: In these graphs, the vertical axis is q, the quantile, and the horizontal axis is

either x (at left) or i (at right). The bisection method maps q directly onto i 2 [0; n�1], as
shown at right. The graph at the left shows how q maps onto the data values, xi.

In either case, the way to think about the quantile is as a function from the quantile

q 2 [0; 1] to the indices of the data, i 2 [0; n� 1], where n is the number of sample items.

This makes sense because the actual data values have little inuence on the quantile; their

relative ranks matter more. Their magnitudes will matter when the quantile falls between

two values and we interpolate.

A.1.1 Bisection

The bisection method is very easy, because it maps q directly onto i in the obvious

manner, i = q(n�1), as shown in Figure A.1. The median conforms easily to this de�nition:

0:5(5�1) = 2, and x2 is the median of our example. Similarly, 0:25(5�1) = 1 and x1 is the

�rst quartile. Using the bisection method, q = 0:0 is the smallest element in the sample

and q = 1:0 is the largest.

What about when i is not an integer? For example, suppose q = 0:7, so the element

\index" is 2:8, as illustrated in Figure A.1. Letting i = bq(n�1)c, we can linearly interpolate
between the two bracketing values, xi and xi+1, which have exact quantiles of qi = i=(n�1)
and qi+1 = (i+1)=(n�1). The linear interpolation is a weighted sum of xi and xi+1 where

the weights are such that q is the same weighted sum of qi and qi+1. Let the weights be �

and (1��) for elements i+1 and i, respectively.

q = �qi+1 + (1� �)qi

q = �

�
i+ 1

n � 1

�
+ (1� �)

�
i

n� 1

�
q(n� 1) = �(i+ 1) + (1� �)i

q(n� 1) = �+ i

� = q(n� 1)� i

� = q(n� 1)� bq(n� 1)c

In other words, � is the fractional part left over after we compute the oor of q(n�1), so
we get it for free in our calculation of i. We then compute:

xq(n�1) = �xi+1 + (1� �)xi

In our example with q = 0:7, � = 2:8� b2:8c, and x2:8 = (0:2)5+ (0:8)8 = 7:4.
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Figure A.2: Inverting the discrete CDF for our sample. In both graphs, each vertical step is

1=n, since each element is that fraction of the whole. On the left, we map directly to the xi,

while on the right we just map to i, which has a very easy structure, since each horizontal

step is of unit length.

A.1.2 Cumulative

The cumulative distribution function (CDF) of a random variable X is de�ned as F (x) =

Pr(X � x). As such, the CDF maps from the domain of the random variable to the interval

[0; 1]. The quantile function is simply the inverse of the CDF! For example, we know that

if X has a standard normal distribution, Pr(X<�1:96) = 0:025, so �1:96 is the q = 0:025

quantile of the standard normal.

Figure A.2 shows two cumulative distribution functions for our sample. They are step

functions because our sample is �nite, and each element adds 1=n to the running total. The

function on the left has the xi as its domain, while the function on the right has i as its

domain. The idea is to invert this function, so start at q on the vertical axis, go right until

we hit the function, and then go down until we hit the horizontal axis, just as we did in

Figure A.1. In the graph on the right, we hit i such that:

i=n < q < (i+ 1)=n

i < nq < (i+ 1)

So, i = bqnc. Compare this with the bisection method, which gives i = bq(n�1)c; the
algorithmic di�erence is obvious, but the semantic di�erence is subtle.

Note that the cumulative method is the inverse of the bisection method with respect to

non-integer values of i: with bisection, we knew what to do when q(n�1) was an integer,

and we had to resolve what to do when it is not, while with the cumulative method, we have

not resolved what to do when qn is an integer. When qn is an integer, the horizontal line

hits the top of one vertical segment and the bottom of the next vertical segment. To which

vertical segment does q belong? This question is identical to whether we de�ne quantiles

in terms of \<" or \�." In other words, is i=n < q or is i=n � q? This is a fairly arbitrary

decision, but we can reduce its e�ects by interpolating between values.

Suppose we want to interpolate with the cumulative method. Remember that, currently,

the cumulative method always returns one of the elements of the sample. Indeed, this is a

major aw of the cumulative method, because the cumulative method cannot yet compute

the median when n is even. In our example, n = 5, so it computes the median as xi where

i = bqnc = 2, which is correct. But if n = 4, the median is de�ned to be the average of the

middle two elements and is not equal to any element of the sample.

Linear interpolation in the cumulative method can be visualized by connecting the ver-

tical lines in our cumulative distribution function (see Figure A.3). Unfortunately, because
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Figure A.3: The ways of interpolating in the cumulative method: either connecting the

bottoms of the vertical segments (left) or the tops (right).

of the \<" versus \�" problem, it can be done in two di�erent ways, either connecting the

bottoms of the vertical lines (\<") or the tops (\�"). Once we �nd the right interval, the

interpolation is done the same as in the bisection method, computing the weight � from

the fractional part of i = qn. In our q = 0:7 example, the interpolated value is either 10:5

(halfway between the 0.8 quantile, x3 = 8, and the 1.0 quantile, x4 = 13) or 6:5 (halfway

between the 0.8 quantile, x2 = 5, and the 0.8 quantile, x3 = 8), as is shown in Figure A.3.

Contrast these values with the 7:4 obtained with the bisection method.

Note in �gure A.3 that when we connect the bottoms of the segments, the last vertical

segment (over x4 = 13) belongs to the CDF, while when we connect the tops, the �rst

vertical segment (over x0 = 2) belongs to the CDF. This produces an essential asymmetry

in each curve. Most elements inuence two nths of the curve (the interval on either side),

but the extremes are di�erent. One extreme inuences only one interval, while the other

extreme inuences one interval and completely determines another. For example, when

connecting the bottoms of the verticals, it seems that x4 = 13 has more than its fair share

of inuence. One solution to this asymmetry is to count the quantile from the nearer end.

This amounts to connecting the tops of the segments for q < 0:5 and the bottoms of the

segments for q > 0:5 or vice versa. Thus either both extreme elements get undue inuence

(relative to middle elements) or neither does.

A.1.3 Discussion

We have presented two ways of viewing the quantile. One views the quantile as bisecting a

line from 0 to n�1, with data elements sitting on the line at the integer positions. The other

views the quantile with reference to the CDF and leads to unending problems all stemming

from how to treat the vertical steps in that CDF.

One problem that still remains with the cumulative method is how to �nd the median.

In our example, element x2 = 5 is either at quantile q = :4 or q = :6, and so it cannot be the

median. A solution can certainly be found, but it doesn't fall easily out of the cumulative

method.

For these reasons, we have chosen to implement the bisection method as simpler and

more elegant than any version of the cumulative method. Figure A.4 shows all three func-

tions in one large graph; you can see how the three methods will disagree on every quantile

(except the extremes), and sometimes even interpolate in di�erent intervals. Nevertheless,

the disagreements will be fairly small and will shrink as the samples get larger.
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Figure A.4: A graphical comparison of the bisection method (middle line) the cumulative

method with \<" (bottom line) and the cumulative method with \�" (top line).

A.2 Analysis of Variance

The heart of the analysis of variance is, of course, calculating di�erent kinds of variance in

the data. Calculations of sums-of-squares (variance is just a sum-of-squares divided by the

number of degrees of freedom) can generally be done in two di�erent ways:

nX
i=1

(xi � �x)2 =
nX
i=1

x2
i
� 1=n

 
nX
i=1

xi

!2

These expressions are algebraically equivalent, as can easily be shown. We will do the proof

carefully once, so that when we talk about di�erent kinds of variance below, we can give

sketches of the algebra, skipping steps that are similar to this proof. Here's the careful

proof.
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P
(xi � �x)2

We dropped the indices of summation, since they will

always be i from 1 to n. The next step is to expand

the squaring inside the summation.P�
x2
i
� 2xi�x+ �x2

�
We now split this into three di�erent sums.P

x2
i
�
P

2xi�x+
P

�x2

Factor out constant quantities.P
x2
i
� 2�x

P
xi + �x2

P
The middle sum is just the total of the numbers, call

it t, and the last sum is the number of numbers, nP
x2
i
� 2�x(t) + �x2(n)

Note that �x = t=n, so let's eliminate �x.P
x2
i
� 2t=n(t) + (t=n)2(n)

Combine factors in the last two terms.P
x2
i
� 2t2=n+ t2=n

Combine the last two terms.P
x2
i
� t2=n

This last expression is just the right side of the equa-

tion, once we substitute the de�nition of t back in.P
x2
i
� 1=n (

P
xi)

2

Which formula should we use in our implementation? There are several issues in an-

swering that question:

E�ciency The �rst expression requires computing the mean, which is n additions and

a division. Then it requires n subtractions, squarings and additions. The second

expression requires n squarings and additions to compute the �rst sum, n additions,

a squaring and a division for the second, and a �nal subtraction. We can compare

them as follows:

Adds Subs Squares DividesP
(xi � �x)2 2n n n 1P
x2
i
� t2=n 2n 1 n+1 1

Basically, there's only a hair's breadth di�erence between the two. On most machines,

squaring is more expensive than even quite a few subtractions, but the e�ciency issue

will clearly be our least important.

Data Representation The �rst expression clearly requires two passes over the data|

once to compute the mean and the second time to compute the variance. The second

expression requires only one pass over the data, because we can compute the total

while we're summing the x2
i
; we can even count the data to compute n if that's

necessary. For some data representations, this issue will dominate.

In Clasp, there are two ANOVA functions, one in which the values are structurally

grouped (sequences of sequences) and another in which each value is paired with a

key that tells what group it's in; for one-way ANOVA, these functions are `anova-one-

way-groups' and `anova-one-way-variables' respectively. With the structural represen-

tation, it's easy to do several passes over a group. The other representation requires
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�guring out the groups, which is not too hard, but may tip the scales towards the

one-pass expression.

Numerical Accuracy If a data value lies quite close to the mean, the di�erence will be

very small, and squaring it could produce a numerical underow. At the very least,

the �rst expression (subtract and square) will tend to cancel the signi�cant digits and

square the uncertain digits, resulting in numerical instability. The second expression

will preserve the signi�cant digits for as long as possible, but because it is adding up

squared data values, it runs the risk of numerical overow. (Numerical overow and

underow will only happen if the data are oating point; if they are exact (integer

or rational), the exactness will be preserved by the Clasp functions.) Numerical

accuracy suggests that the second expression is better.

Since there are two ways of computing the variance, couldn't we compute both and

use them to improve our numerical accuracy? For example, we could signal an error if

they are very di�erent, or we could simply take their average as the \true" variance.

We could do this, but it seems excessive for most purposes. However, we will shortly

see a way to exploit this redundancy.

The one-way ANOVA computes three sums of squares, called the sums of squares total,

group, and error, or SST, SSG and SSE, respectively. By de�nition, they are the following:

SST =
IX

i=1

JiX
j=1

(xij �M)2

SSG =
IX

i=1

JiX
j=1

(Mi �M)2

SSE =
IX

i=1

JiX
j=1

(xij �Mi)
2

The notation is a little complicated, but not too bad. There are I groups, and they all

might be di�erent sizes, denoted Ji. Thus, each of these summations has one term for each

data value, xij . The �rst sum of squares, SST, subtracts the data values from the grand

mean, denoted M . The second sum of squares, SSG, subtracts the mean of the ith group,

denotedMi, from the grand mean. The third sum of squares, SSE, subtracts the data values

from the group means.

There is a fundamental identity, called the ANOVA identity, that states:

SST = SSG+ SSE

This identity doesn't look obvious from the formulas above; however, it becomes more

obvious when the computing formulas are derived. We will denote the grand total by T

and the number of data values by N , so the grand mean is just M = T=N . Similarly, we

will denote the group totals by Ti, so the group means are Mi = Ti=Ji.

SST =
XX

(xij �M)2XX
x2
ij
� 2M

XX
xij +

XX
M2
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XX
x2
ij
� 2MT +M2NXX

x2
ij
� T 2=N

SSG =
XX

(Mi �M)2X
Ji(Mi �M)2X
JiM

2
i
� 2JiMiM +M2X

JiM
2
i
� 2M

X
JiMi +M2

X
JiX

Ji(Ti=Ji)
2 � 2MT +M2NX

T 2
i
=Ji � T 2=N

SSE =
XX

(xij �Mi)
2XX

x2
ij
� 2

XX
xijMi +

XX
M2

iXX
x2ij � 2

X
MiTi +

X
JiM

2
iXX

x2ij � 2
X

T 2
i =Ji +

X
Ji(Ti=Ji)

2XX
x2ij �

X
T 2
i =Ji

SST SSG SSEPP
(xij �M)2

PP
(Mi �M)2

PP
(xij �Mi)

2PP
x
2
ij
� 2M

PP
xij +

PP
M

2
P

Ji(Mi �M)2
PP

x
2
ij
� 2
PP

xijMi +
PP

M
2
iPP

x
2
ij
� 2MT +M

2
N

P
JiM

2
i
� 2JiMiM +M

2
PP

x
2
ij
� 2
P

MiTi +
P

JiM
2
iPP

x2
ij
� T 2=N

P
JiM

2
i
� 2M

P
JiMi +M2

P
Ji

PP
x2
ij
� 2
P

T 2
i
=Ji +

P
Ji(Ti=Ji)

2P
Ji(Ti=Ji)

2 � 2MT +M
2
N

PP
x
2
ij
�
P

T
2
i
=JiP

T
2
i
=Ji � T

2
=N

We see a lot of recurring expressions here, so we can see the relationships of these

expressions better by making the following substitutions:

A )
XX

x2ij

B ) T 2=N

C )
X

T 2
i =Ji

With those substitutions, we get the following formulas for the sums of squares:

SST = A�B

SSG = C �B

SSE = A� C

It's now obvious why the ANOVA identity is true.

What's the point of all this? First, the code for calculating the sums of squares will

calculate A, B, and C, and that code wouldn't make any sense to a reader without this

explanation. Second, we can calculate any one of these sums of squares by the two-pass

method and compare it to the one-pass method as a test for numerical accuracy. The largest
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sum is SST and so it is the one most liable to produce oating overow, especially with

these calculating formulas, since A will be bigger than SST. SST also computes with the

largest di�erences (subtracting data from the grand mean rather than a group mean), and

so is the least likely to su�er from numerical inaccuracy by the two-pass method. Therefore,

we will calculate SST by the two-pass method as well as by A � B. Rather than enforce

some arbitrary precision, we will simply report both values for SST to the users, who can

judge the numerical accuracy for themselves.

A.3 Linear Regression

Linear regression �ts a linear model to the data using a least squares �t. If the linear

model has more than one independent (x) variable, we will call it multiple linear regression.

Multiple linear regression is implemented by matrix methods, which are covered in the next

section. This section is devoted to the special case of linear regression in which we �t a line to

bivariate data. Thus, we only have two variables, x and y. We will give the computational

formulas we implemented. The main references we used are Devore [4], Freund [5], and

Bohrnstedt and Knoke [1].

The linear regression statistics can be calculated from just six summary statistics of

the original data. Since authors use di�erent notation for the regression statistics and the

summary statistics, we have also decided to invent our own notation. This will be useful

later, when we attempt to resolve discrepancies between the formulas given by di�erent

authors. The six summary statistics are the following. The second column is the symbol

used in the Common Lisp code, the third column is the mathematical notation we are

inventing. These are all easy summary statistics, computable in one pass over the data,

which makes them useful for bootstrapping.

CL math

symbol symbol de�nitions

1 n n the number of data points, (xi; yi)

2 x x+
P

n

i=1 xi sum of the x's

3 y y+
P

n

i=1 yi sum of the y's

4 x2 (x2)+
P

n

i=1(xi)
2 sum after squaring

5 y2 (y2)+
P

n

i=1(yi)
2 sum after squaring

6 xy (xy)+
P

n

i=1 xiyi AKA dot product of ~x and ~y

Clasp implements linear regression functions that return three amounts of information:

minimal, brief, and verbose. The functions take two di�erent kinds of argument lists: two

sequences of data, or the six summary statistics. Thus, there are six linear regression

functions, depending on how you want to supply your arguments and howmuch computation

you want done. All of the ones that take data sequences just calculate the summary statistics

and pass them on to the ones that take summary statistics, so we will only discuss the latter

in this section.

From these summary statistics, we will calculate the following sums of squares. The �rst

formula on each line is the intuitive de�nition in terms of variation or covariation around the

means and the second formula is an easy computing formula in terms of summary statistics.

SSX =
P
(xi � �x)2 = (x2)+ � (x+)2=n

SSY =
P
(yi � �y)2 = (y2)+ � (y+)2=n

SSXY =
P
(xi � �x)(yi � �y) = (xy)+ � x+y+=n
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Notice that all of these formulas involve a division by n. Since division is an expensive

arithmetic operation, second only to square root, we try to avoid it wherever possible.

Consequently, we found it e�cient to compute the following instead.

NSSY = n(x2)+ � (x+)2

NSSY = n(y2)+ � (y+)2

NSSXY = n(xy)+ � x+y+

Now we are ready to give computational formulas for the slope and intercept of the

regression line. Our formula for slope matches Devore's, and is algebraically equivalent to

the other authors' formulas. Indeed, it was Devore's use of multiplying through by n that

inspired us to do so everywhere.

slope : NSSXY
NSSX

intercept :
y
+�(slope)x+

n

The slope and intercept are the only statistics calculated by the function `linear-regression-

minimal.' That function doesn't need the `y2' variable, (y2)+, but takes it anyhow, just for

consistency with the other linear regression functions.

The next statistics all depend on the sum of squares of the residuals|the remaining

error not accounted for by the regression model. Most authors denote this quantity with

SSE. All de�ne it the same way, based on the di�erence between yi and the y value of the

line at the corresponding xi, denoted ŷi.

SSE =
X

(yi � ŷi)
2 =

X
(yi � [(slope)xi + intercept])2

Just as with the analysis of variance, there is an identity relating the total sum of

squares, usually denoted SST, to the regression sum of squares, denoted SSR, and the error

sum of squares, SSE. That identity is

SST = SSR + SSE

By de�nition, SST=SSY, so we will use SSY to avoid introducing any new symbols. Because

of this identity, and the fact that we already have SSY, we should compute SSR or SSE,

whichever is easier, and then obtain the other by subtraction.

The authors all give di�erent computing formulas for SSE. Translating into our notation,

their computing formulas are:

BK SSY(1� r2)

Devore (y2)+ � (intercept)y+ � (slope)(xy)+

Freund SSY� (slope)SSXY

It's hard to believe that these are all algebraically equivalent! Still, because of the subtrac-

tions in Freund' and BK's formulas, it's easy to see that SSR=(slope)SSXY. Therefore, our

code will compute the following:

NSSR = (slope)NSSXY

NSSE = NSSY �NSSR

At last, we are ready to compute the coe�cient of determination, denoted r2. We are

also ready to compute the standard error of the slope, which is used in t-tests on the slope
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and also in building con�dence intervals on the slope. Fortunately, all the authors agree on

how to compute these statistics.

r2 =
NSSR

NSSY

std. err. slope =

s
NSSE

(n� 2)NSSX

Note that the degrees of freedom for the t-distribution of the slope is n� 2. Also note how

we have taken advantage of multiplying through by n in all our sums of squares.

The next step is to perform a t-test on the slope parameter to test the hypothesis that

the slope is non-zero. This t-test is equivalent to testing whether the correlation coe�cient,

r, is non-zero and equivalent to testing whether the F statistic (mean square regression

divided by mean square error) is greater than one. The t-statistic is:

t =
slope

std. err. slope

and is tested with n�2 degrees of freedom. This computes a p-value which is also returned.

In summary, the \brief" linear regression functions return the following information:

slope, intercept, coe�cient of determination, standard error of the slope, and the p-value.

The \verbose" linear regression functions return even more statistics, but most are

redundant with others. They return the correlation coe�cient, r, but the user can get that

by simply taking the square root of the coe�cient of determination, r2. It also returns an

ANOVA table, computing the F statistic and p-value rather than the t-statistic and p-value

that the \brief" functions do. The ANOVA table looks like this:

Source of degrees Sum of Mean

Variation of freedom squares Square F p-value

Regression 1 SSR MSR = SSR=1 MSR/MSE p

Error n � 2 SSE MSE = SSE=(n� 2)

Total n � 1 SSY

In addition to all this, the \verbose" functions return the standard error of the intercept.

Unfortunately, there are several conicting formulas for the standard error of the intercept,

which we have not yet resolved as of this release. For now, we return nil, deeming less

information better than bad information.

A.4 Regression Analysis: Matrix Method�

To implement `linear regression' in Clasp the decision was made to use matrix algebra

methods for the calculation of the statistics. The basis of the method is in the ability

to calculate the sum of squares and cross products for the independent and dependent

variables through matrix multiplication, then using these values to calculate the regression

coe�cients, correlation coe�cients, and percentage variance of the dependent variable, Y .

The advantage of using matrix algebra over direct raw score calculation is not obvious when

considering an example with only two independent variables, however the complexity of the

�This discussion is a condensation of chapters 2 and 3 from Pedhazur's book, Multiple Regression in

Behavioral Research [9].



88 APPENDIX A. COMPUTATIONAL METHODS

direct calculations becomes apparent as the number of independent variables increase. The

following formulae illustrate the calculations involved using the direct raw score method,

for two independent, X , variables, with
P
xi the sum of deviation scores for the i 'th X

variable, and
P
xiy the sum of the cross products of the deviation scores of Y and the i 'th

X variable.

b1 =
(
P
x22)(

P
x1y)� (

P
x1x2)(

P
x2y)

(
P
x21)(

P
x22)� (

P
x1x2)2

b2 =
(
P
x21)(

P
x2y)� (

P
x1x2)(

P
x1y)

(
P
x21)(

P
x22)� (

P
x1x2)2

As can be seen these equations expand with the introduction of each new independent

variable, making them very unwieldy. In order to perform the calculations with matrices

we �rst introduce a new variable, X0, a unit vector (a vector of ones), of the same size as

the vectors Xi, with this the matrix Z is built, with the columns being de�ned as X0 � � �Xi

and Y . Using the equation

Y = a+ b1X1 + b2X2 + � � �+ bkXk + e

in matrix form, where Y is a N � 1 column vector, X is a N � k matrix with each column

corresponding to Xi, where X0 is the unit vector described above, a is the �rst element of

the 1 � k row vector of regression coe�cients, b, and e is the 1 � k column vector of the

error terms of the equation, given by the form Y = Ŷ + e, where Ŷ is the predicted value

of Y from the regression equation, produces the following equation:

Y = a + b X + e2
6666664

Y1
Y2
Y3
...

YN

3
7777775

2
6666664

a

b1
b2
...

bN

3
7777775

2
6666664

X10 X11 X12 � � � X1k

X20 X21 X22 � � � X2k

X30 X31 X32 � � � X3k

...
...

...
...

...

XN0 XN1 XN2 � � � XNk

3
7777775

2
6666664

e1
e2
e3
...

eN

3
7777775

To calculate the values of b and e we use the sum of squares and cross product matrix

produced by multiplying the transpose of the matrix Z, Z0, by Z, Z0Z . As can be seen the

result of this multiplication contains the summed squares of the individual variables along

the diagonal, with
P
X2

0 =
P
X0, and the cross products along the o� diagonals.

Z0Z =

2
666666664

P
X0

P
X1

P
X2 � � �

P
Xk

P
YP

X1

P
X2

1

P
X1X2 � � �

P
X1Xk

P
X1YP

X2

P
X1X2

P
X2

2 � � � P
X2Xk

P
X2Y

...
...

...
...

...
...P

Xk

P
XkX1

P
XkX2 � � �

P
X2
k

P
XkYP

Y
P
Y X1

P
Y X2 � � � P

Y Xk

P
Y 2

3
777777775

From this we get the two component matrices X0X , X transpose X , and X0Y , X
transpose Y ,

X0X =

2
6666664

P
X0

P
X1

P
X2 � � �

P
XkP

X1

P
X2

1

P
X1X2 � � � P

X1XkP
X2

P
X1X2

P
X2

2 � � � P
X2Xk

...
...

...
...

...P
Xk

P
XkX1

P
XkX2 � � � P

X2
k

3
7777775

X0Y =

2
666666664

P
YP
X1YP
X2Y

...P
XkYP
Y 2

3
777777775
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which are then used to determine the matrix b, using the following equation:

b = (X 0X)�1X 0Y

where (X 0X)�1 is the inverse of the matrix X0X. Recall that the inverse of a matrix is a

matrix such that X�1X = I, where I is the identity matrix. So multiplying by the inverse

of a matrix is equivalent to division. The signi�cance of the coe�cients can be tested using

a standard t test, using the formula t = b

sb
, where sb is the error term of the coe�cient. The

value of t indicates whether or not the coe�cient is signi�cantly di�erent from zero, with a

critical value at the 0.05 level of 1.96 for a two tailed test. A two tailed test is used as it

does not matter whether the coe�cient is positive or negative. With b the sum of squares

of the regression and the sum of squares of the residual are calculated, with:

ssreg = b'X'Y� (
P
Y )2

N

ssres = e'e =
X

e2 = Y'Y-b'X'Y

where e0e is the sum of squared error terms for the regression. The sum of squares of the

regression indicate what portion of the total squared deviation scores,
P
y2, of the dependent

variable, are due to the e�ects of the independent variables. The sum of squares of the

residual indicate the proportion which is unaccounted for by the independent variables.

Recall that

sstotal = ssreg + ssres =
X

y2 = Y'Y� (
P
Y )2

N

using these values the signi�cance of the regression can be tested.

The key value of interest from the regression is the F statistic of the R2 value, which

is the percentage of the variance accounted for by the regression. The value of R2 can be

calculated using either of the following two equations:

R2 =
b'X'Y� (

P
Y )2

N

Y'Y� (
P

Y )2

N

=
ssregP
y2

R2 = 1� e'e

Y'Y� (
P

Y )2

N

= 1� ssresP
y2

where
P
y2 is the sum of squared deviations for the dependent variable Y . The value of F

indicates the probability that such a value could occur due to chance. F is calculated as:

F =
ssreg=dfreg
ssres=dfres

=
R2=k

(1�R2)=(N � k � 1)

where k is the number of independent variables and N is the number of observations.

Additionally the coe�cients of correlation between each Xi and Y , as well as between

the Xi's can be calculated, with the squared coe�cient for each of the Xi's indicating its

contribution to the variance of Y .

It is possible, as with other statistics, to produce results which are signi�cant, but not

meaningful, as well as meaningful, but not signi�cant. Evaluating the result of a linear

regression, especially when there is interaction between the independent variables, can be

a very di�cult task. Often a small value of R2 can discourage a researcher, even though
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its value is signi�cant, and, by the same token, a large value of R2 does not immediately

confer meaning to the results of the regression. In cases where the results of the analysis are

not clear, or appear to be at a border line, a useful strategy can be to reduce the number

of independent variables being used, looking for a change in the analysis as the interactive

e�ects are reduced. The covariance of the independent variables, which is indicated by the

correlation between the Xi's, is a good indicator of the interaction between the independent

variables. In general it is best to refer to a statistics text when evaluating the results of a

linear regression.



Appendix B

Clip Examples

B.1 More Experiment De�nitions Using Clip

The following three examples, taken from di�erent domains, illustrate experiment control

and data collection using Clip. The third example includes output �les (in Clasp format)

for time-series clips.

B.1.1 Measuring an Airport Gate Maintenance Scheduler's Performance

This extended example of Clip code was provided by Zachary Rubinstein. The system

being studied is an AI scheduler developed by David Hildum for a domain called Airport

Resource Management (ARM). The task is to schedule gate maintenance, providing and

coordinating vehicles for servicing planes at terminal gates. The experiments shown here

were part of a baseline study designed to measure the performance characteristics of several

priority rating schemes under resource-constrained scenarios. The dependent variables are

delay and fragmentation (how much shuttling between gates occurs). The independent

variables are the competing heuristic rating schemes for determining the order in which

resource requests are scheduled. For clarity, many of the implementation details have been

omitted.

The example uses several super clips to organize the collection of similar kinds of data,

such as all measures of delay. All data collection occurs post hoc and is written to a single

summary �le. Note that two experiments are de�ned, each of which uses the same clips. The

function delays-information, called by the clip delay, provides an interesting example of

the interface between clips and the system being instrumentated.

The delay and fragmentation clips are examples of composite clips. The values re-

turned by the body of a composite clip are one-to-one mapped onto the components of the

clip. Each component is itself a clip which accepts an argument and has a body that returns

a value. This value is what is output to the data �le. The number of values a composite

clip produces is equal to the number of its components.

The components of a composite clip have a clip de�nition automatically generated for

them. The default action for this automatically generated component clip is to return its

single argument as a single value. For example, the delay clip below generates a clip

for each of its components automatically. The clip designer can also override this default

behavior by writing a clip for that component that does something with the argument before

returning it.

91
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(define-simulator arm :start-system arm:run-arm)

;;; ----------------------------------------------------------------------

;;; CLIP Definitions

(defclip airport ()

"Return the Currently Loaded Airport"

()

(arm::get-loaded-airport))

(defclip timetable ()

"Return the Currently Loaded timetable"

()

(arm::get-loaded-timetable))

(defclip delay ()

"Composite clip to calculate the various delay clips."

(:components (total-delay number-of-delays average-delay

std-dev-delay maximum-delay duration-ratio))

(delays-information))

(defclip fragmentation ()

"Composite fragmentation clip to calculate the various fragmentation clips."

(:components (total-servicing-time

total-sig-frag-time

total-setup-time

total-travel-time

ratio-of-frag-to-servicing

ratio-of-setup-to-servicing

ratio-of-travel-to-servicing))

(resource-fragmentation-information 'arm:baggage-truck-planner-unit))

;;; ----------------------------------------------------------------------

;;; Experiments

(define-experiment limit-resources-numerically-over-rating-schemes

(&key (rating-schemes *defined-rating-schemes*)

(airport-delimiter 10)

(airports user::*10-FTS-AIRPORTS*)

(timetable-name :20-flights))

"Using the various rating schemes, constrain the resources

and report the delays."

:locals ((report-filename nil))
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:variables ((airport-name in airports)

(rating-scheme in rating-schemes))

:instrumentation (timetable

total-delay number-of-delays average-delay

std-dev-delay maximum-delay duration-ratio

total-servicing-time total-sig-frag-time

total-setup-time total-travel-time

ratio-of-frag-to-servicing

ratio-of-setup-to-servicing

ratio-of-travel-to-servicing)

:before-experiment (progn (arm:zack-set-default-demo-parameters)

(arm:execute-load-timetable

:LOAD-SPECIFIC-FILE timetable-name))

:before-trial (setf report-filename

(delay-initialize-trial rating-scheme

airport-delimiter airport-name))

:after-trial (delay-report report-filename

airport-delimiter rating-scheme))

;;; ----------------------------------------------------------------------

;;; Example Invocation

#+COMMENT

(run-experiment 'dss:limit-resources-numerically-over-rating-schemes

:args '(:rating-schemes

(:zack-1 :default :obo-minest-heuristic)

:airport-delimiter :20-ref

:airports (:detroit-17-bts :detroit-16-bts

:detroit-15-bts :detroit-14-bts

:detroit-13-bts :detroit-12-bts)

:timetable-name :20-flights)

:output-file "hillary:reports;20-REF-FTS-DELAY-STATS.TEXT")

;;; ----------------------------------------------------------------------

;;; Experiments

(define-experiment run-over-rating-schemes

(&key (rating-schemes *defined-rating-schemes*)

(airport-delimiter 10))

"Using the various rating schemes, constrain the resources, introduce

orders, and report the delays."

:locals ((report-stream nil))

:variables ((rating-scheme in rating-schemes))

:instrumentation (airport timetable

total-delay number-of-delays

average-delay std-dev-delay
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maximum-delay duration-ratio

total-servicing-time total-sig-frag-time

total-setup-time total-travel-time

ratio-of-frag-to-servicing

ratio-of-setup-to-servicing

ratio-of-travel-to-servicing)

:before-trial (setf report-stream

(delay-initialize-trial rating-scheme

airport-delimiter))

:after-trial (write-current-experiment-data ))

;;; ----------------------------------------------------------------------

;;; Example Invocation

#+COMMENT

(run-experiment 'dss:run-over-rating-schemes

:ARGS `(:RATING-SCHEMES

,(cons :DEFAULT

(cons :ZACK-1

(remove :OPPORTUNISTIC

*defined-rating-schemes*

:TEST #'eq)))

:airport-delimiter 10)

:OUTPUT-FILE "hillary:reports;HILDUM-EXP-1.TEXT")

;;; ----------------------------------------------------------------------

;;; Delay Information

(defun delays-information ()

(LOOP WITH local-delay-time = 0

AND network = nil

AND release-time = nil

AND due-date = nil

AND start-time = nil

AND finish-time = nil

AND avg-delay = 0

AND std-dev-delay = 0

AND max-delay = 0

FOR order IN (find-units 'order

(make-paths '(scheduler * order)) :ALL)

DO

(setf network (order$network order))

(setf release-time (order$release-time order))

(setf due-date (order$due-date-time order))

(setf start-time (task-network$start-time network))
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(setf finish-time (task-network$finish-time network))

(setf local-delay-time (- finish-time due-date))

SUM (- finish-time start-time) INTO total-actual-duration

SUM (- due-date release-time) INTO total-desired-duration

WHEN (not (= local-delay-time 0))

COUNT local-delay-time INTO number-of-delays

AND

SUM local-delay-time INTO total-delay-time

AND

COLLECT local-delay-time INTO delays

FINALLY

(unless (zerop number-of-delays)

(setf avg-delay (float (/ total-delay-time number-of-delays)))

(setf std-dev-delay

(LOOP FOR delay IN delays

SUM (expt (- delay avg-delay) 2)

INTO sum-of-squares

FINALLY (return

(sqrt

(float

(/ sum-of-squares

(1- number-of-delays)))))))

(setf max-delay (apply #'max delays)))

(return (values total-delay-time

number-of-delays

avg-delay

std-dev-delay

max-delay

(float (/ total-actual-duration

total-desired-duration))))))
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B.1.2 Phoenix Real-Time-Knob Experiment

This section describes an experiment done in the Phoenix �re-�ghting simulation system.

We give some background on the Phoenix system and on the experiment design to help

the reader better interpret the experiment de�nition that follows. For more detail on the

experiment and its results see Hart & Cohen, 1992 [6].

The Phoenix System

Phoenix is a multi-agent planning system that �ghts simulated forest-�res. The simulation

uses terrain, elevation, and feature data from Yellowstone National Park and a model of

�re spread from the National Wildlife Coordinating Group Fireline Handbook (National

Wildlife Coordinating Group 1985). The spread of �res is inuenced by wind and moisture

conditions, changes in elevation and ground cover, and is impeded by natural and man-made

boundaries such as rivers, roads, and �reline. The Fireline Handbook also prescribes many

of the characteristics of our �re�ghting agents, such as rates of movement and e�ectiveness

of various �re�ghting techniques. For example, the rate at which bulldozers dig �reline

varies with the terrain. Phoenix is a real-time simulation environment Phoenix agents

must think and act as the �re spreads. Thus, if it takes too long to decide on a course of

action, or if the environment changes while a decision is being made, a plan is likely to fail.

One Phoenix agent, the Fireboss, coordinates the �re�ghting activities of all �eld

agents, such as bulldozers and watchtowers. The Fireboss is essentially a thinking agent,

using reports from �eld agents to form and maintain a global assessment of the world.

Based on these reports (e.g., �re sightings, position updates, task progress), it selects and

instantiates �re-�ghting plans and directs �eld agents in the execution of plan subtasks.

A new �re is typically spotted by a watchtower, which reports observed �re size and

location to the Fireboss. With this information, the Fireboss selects an appropriate �re-

�ghting plan from its plan library. Typically these plans dispatch bulldozer agents to the �re

to dig �reline. An important �rst step in each of the three plans in the experiment described

below is to decide where �reline should be dug. The Fireboss projects the spread of the �re

based on prevailing weather conditions, then considers the number of available bulldozers

and the proximity of natural boundaries. It projects a bounding polygon of �reline to

be dug and assigns segments to bulldozers based on a periodically updated assessment of

which segments will be reached by the spreading �re soonest. Because there are usually

many more segments than bulldozers, each bulldozer digs multiple segments. The Fireboss

assigns segments to bulldozers one at a time, then waits for each bulldozer to report that it

has completed its segment before assigning another. This ensures that segment assignment

incorporates the most up-to-date information about overall progress and changes in the

prevailing conditions.

Once a plan is set into motion, any number of problems might arise that require the

Fireboss's intervention. The types of problems and mechanisms for handling them are

described in Howe & Cohen, 1990 [7], but one is of particular interest here: As bulldozers

build �reline, the Fireboss compares their progress to expected progress. If their actual

progress falls too far below expectations, a plan failure occurs, and (under the experiment

scenario described here) a new plan is generated. The new plan uses the same bulldozers to

�ght the �re and exploits any �reline that has already been dug. We call this error recovery

method vreplanning. Phoenix is built to be an adaptable planning system that can recover

from plan failures. Although it has many failure-recovery methods, replanning is the focus



B.1. MORE EXPERIMENT DEFINITIONS USING CLIP 97

of the experiment described in the next section.

Identifying the Factors that A�ect Performance

We designed an experiment with two purposes. A con�rmatory purpose was to test pre-

dictions that the planner's performance is sensitive to some environmental conditions but

not others. In particular, we expected performance to degrade when we change a fun-

damental relationship between the planner and its environment|the amount of time the

planner is allowed to think relative to the rate at which the environment changes|and not

be sensitive to common dynamics in the environment such as weather, and particularly,

wind speed. We tested two speci�c predictions: 1) that performance would not degrade or

would degrade gracefully as wind speed increased; and 2) that the planner would not be

robust to changes in the Fireboss's thinking speed due to a bottleneck problem described

below. An exploratory purpose of the experiment was to identify the factors in the Fireboss

architecture and Phoenix environment that most a�ected the planner's behavior, leading

to a causal model.

The Fireboss must select plans, instantiate them, dispatch agents and monitor their

progress, and respond to plan failures as the �re burns. The rate at which the Fireboss thinks

is determined by a parameter called the Real Time Knob. By adjusting the Real Time Knob

we allow more or less simulation time to elapse per unit CPU time, e�ectively adjusting the

speed at which the Fireboss thinks relative to the rate at which the environment changes.

The Fireboss services bulldozer requests for assignments, providing each bulldozer with a

task directive for each new �reline segment it builds. The Fireboss can become a bottleneck

when the arrival rate of bulldozer task requests is high or when its thinking speed is slowed

by adjusting the Real Time Knob. This bottleneck sometimes causes the overall digging rate

to fall below that required to complete the �reline polygon before the �re reaches it, which

causes replanning. In the worst case, a Fireboss bottleneck can cause a thrashing e�ect

in which plan failures occur repeatedly because the Fireboss can't assign bulldozers during

replanning fast enough to keep the overall digging rate at e�ective levels. We designed our

experiment to explore the e�ects of this bottleneck on system performance and to con�rm

our prediction that performance would vary in proportion to the manipulation of thinking

speed. Because the current design of the Fireboss is not sensitive to changes in thinking

speed, we expect it to take longer to �ght �res and to fail more often to contain them as

thinking speed slows.

In contrast, we expect Phoenix to be able to �ght �res at di�erent wind speeds. It

might take longer and sacri�ce more area burned at high wind speeds, but we expect this

e�ect to be proportional as wind speed increases and we expect Phoenix to succeed equally

often at a range of wind speeds, since it was designed to do so.

Experiment Design

We created a straightforward �re �ghting scenario that controlled for many of the variables

known to a�ect the planner's performance. In each trial, one �re of a known initial size was

set at the same location (an area with no natural boundaries) at the same time (relative to

the start of the simulation). Four bulldozers were used to �ght it. The wind's speed and

direction were set initially and not varied during the trial. Thus, in each trial, the Fireboss

receives the same �re report, chooses a �re-�ghting plan, and dispatches the bulldozers to

implement it. A trial ends when the bulldozers have successfully surrounded the �re or after
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120 hours without success. The experiment's �rst dependent variable then is Success, which

is true if the �re is contained, and false otherwise. A second dependent variable is shutdown

time (SD), the time at which the trial was stopped. For successful trials, shutdown time

tells us how long it took to contain the �re. Two independent variables were wind speed

(WS) and the setting of the Fireboss's Real Time Knob (RTK). A third variable, the �rst

plan chosen by the Fireboss in a trial (FPLAN), varied randomly between trials. It was not

expected to inuence performance, but because it did, we treat it here as an independent

variable.

WS The settings of WS in the experiment were 3, 6, and 9 kilometers per hour. As

wind speed increases, �re spreads more quickly in all directions, and most quickly

downwind. The Fireboss compensates for higher values of wind speed by directing

bulldozers to build �reline further from the �re.

RTK The default setting of RTK for Phoenix agents allows them to execute 1 CPU

second of Lisp code for every 5 minutes that elapses in the simulation. We varied

the Fireboss's RTK setting in di�erent trials (leaving the settings for all other agents

at the default). We started at a ratio of 1 simulation-minute/cpu-second, a thinking

speed 5 times as fast as the default, and varied the setting over values of 1, 3, 5, 7,

9, 11, and 15 simulation-minutes/cpu-second. These values range from 5 times the

normal speed at a setting of 1 down to one-third the normal speed at 15. The values

of RTK reported here are rescaled. The normal thinking speed (5) has been set to

RTK=1, and the other settings are relative to normal. The scaled values (in order of

increasing thinking speed ) are .33, .45, .56, .71, 1, 1.67, and 5. RTK was set at the

start of each trial and held constant throughout.

FPLAN The Fireboss randomly selects one of three plans as its �rst plan in each trial.

The plans di�er mainly in the way they project �re spread and decide where to

dig �reline. SHELL is aggressive, assuming an optimistic combination of low �re

spread and fast progress on the part of bulldozers. MODEL is conservative in its

expectations, assuming a high rate of spread and a lower rate of progress. The third,

MBIA, generally makes an assessment intermediate with respect to the others. When

replanning is necessary, the Fireboss again chooses randomly from among the same

three plans. We adopted a basic factorial design, systematically varying the values

of WS and RTK. Because we had not anticipated a signi�cant e�ect of FPLAN, we

allowed it to vary randomly.

Rtk Experiment Clips

All data collection in this experiment occurs at the end of each trial. Many of these clips

invoke system speci�c calls to the simulator and to agents' state memories, again, as in

the �rst example, illustrating the interface between clips and the system under study. Of

particular interest here is the script invoked to recreate the same experimental scenario

for each trial (see the :script keyword to define-experiment below). This script has a

set of instructions to the Phoenix simulator's event-scheduler that introduce a �xed set of

environmental changes that are part of the experimental control.

(define-experiment real-time-knob-experiment (use-exp-style)

"Simple experiments for exercising and testing the real time knob."
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:before-experiment (real-time-knob-experiment-init-before-experiment

use-exp-style)

:before-trial (real-time-knob-experiment-init-before-trial)

:after-trial (real-time-knob-experiment-after-trial)

:after-experiment (real-time-knob-experiment-reset-after-experiment)

:variables ((real-time-knob in '(1 3 5 7 9 11))

(wind-speed in '(3 9 12)))

:instrumentation (number-of-bulldozers

plan-to-contain-fire ; FPLAN

all-plans-to-contain-fire

fires-started

shutdown-time ; SD

number-of-fires-contained

total-fire-line-built

r-factor

area-burned

agents-lost

all-agent-instrumentation

fireboss-instrumentation

bulldozer-instrumentation)

:script

((setup-starting-conditions "12:29"

(progn

(send (fire-system)

:alter-environment-parameter 'wind-direction 315)

(send (fire-system)

:alter-environment-parameter 'wind-speed (wind-speed))))

(start-fire "12:30"

(send (fire-system) :start-fire 700 (point 50000 40000)))))

;;; ----------------------------------------------------------------------

;;; Utility functions used by the :before- and :after- forms to

;;; initialize and reset the experiment environment

(defun real-time-knob-experiment-init-before-experiment (use-exp-style)

(when use-exp-style

(setf (interaction-style t) 'experiment))

;; Don't allow fires to skip over fire lines.

(send (fire-simulation) :set-spotting-scale-factor 0)

;; Get rid of flank attack, etc.

(modify-knowledge-base))

(defun real-time-knob-experiment-init-before-trial ()

(gc-immediately :silent t))

(defun real-time-knob-experiment-after-trial ()

;; This is now done in the `shutdown-trial' method.
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(write-current-experiment-data))

(defun real-time-knob-experiment-reset-after-experiment ()

(setf (interaction-style t) 'normal))

;;; ----------------------------------------------------------------------

(defmacro pct (part wh)

`(if (zerop ,wh) 0 (* 100.0 (/ ,part ,wh))))

(defmacro /-safe (dividend divisor)

`(if (zerop ,divisor) 0 (/ ,dividend ,divisor)))

;;; ----------------------------------------------------------------------

;;; Instrumentation definitions...

(defclip number-of-bulldozers ()

(:report-key "Number of bulldozers")

(length (find-agent-by-name 'bulldozer :multiple-allowed t)))

(defclip area-burned ()

(:report-key "Area burned (sq. km)")

(send (real-world-firemap) :fire-state))

(defclip shutdown-time ()

(:report-key "Shutdown time (hours)")

(current-time))

;;; ----------------------------------------------------------------------

;;; Fire clips

(defclip fires-started ()

(:report-key "Fires started")

(let ((cnt 0))

(map-over-fires (fire) (:delete-fire-frames nil)

(incf cnt))

(values cnt)))

(defclip fires-contained ()

(:report-key "Fires contained")

(mapcan #'(lambda (fire)

(when (eq (f:get-value* fire 'status) 'under-control)

(list fire)))

(f:get-values* 'actual-fire 'instance+inv)))

(defclip number-of-fires-contained ()

(:report-key "Fires extinguished")

(length (fires-contained)))



B.1. MORE EXPERIMENT DEFINITIONS USING CLIP 101

;;; ----------------------------------------------------------------------

;;; Fireline clips

(defun expand-extent-in-all-directions-by (extent distance-in-meters)

(let ((temp-point (point distance-in-meters distance-in-meters)))

(extent (point-clip (point-difference (extent-upper-left extent)

temp-point))

(point-clip (point-sum (extent-lower-right extent) temp-point)))))

(defun length-of-built-line-in-extent (extent)

(let ((line-length 0))

(dofiremap (point :upper-left (extent-upper-left extent)

:lower-right (extent-lower-right extent))

(do-feature-edges (edge point (real-world-firemap) :edge-type :dynamic)

(incf line-length (feature-edge-length edge))))

(values line-length)))

(defclip r-factor ()

(:report-key "R factor")

(/-safe (total-fire-line-built) (total-perimeter)))

(defclip total-perimeter ()

()

(reduce #'+ (fires-contained)

:key #'(lambda (fire)

(fast-polyline-length

(fire-perimeter-polyline (fire-origin fire)

*fire-perimeter-resolution*)

t))))

(defclip total-fire-line-built ()

(:report-key "Fireline Built (meters)")

(reduce #'+ (fires-contained)

:key #'(lambda (fire)

(length-of-built-line-in-extent

(expand-extent-in-all-directions-by

(accurate-fire-extent (fire-center-of-mass fire)

(point-on-polyline-furthest-from

(fire-center-of-mass fire)

(fire-boundary fire)

nil))

*fire-sector-extension*)))))

;;; ----------------------------------------------------------------------

;;; Agent clips

(defclip agents-lost ()
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()

(mapcan #'(lambda (agent)

(when (eq (f:get-value (send agent :self-frame) 'status) :dead)

(list (name-of agent))))

(all-agents)))

;;; "all-agent-instrumentation" is a mapping clip that collects information

;;; from its components, all of the Phoenix agents defined in this

;;; scenario. Each of the :component clips is run for each agent found

;;; by the :mapping function. Values returned by the :component clips

;;; are written out to the data file in sequence.

(defclip all-agent-instrumentation ()

"Records the utilization of all the agents."

(:components (agent-overall-utilization

agent-cognitive-utilization

agent-message-handling-time-pct

agent-action-selection-time-pct

agent-error-recovery-cost

agent-error-recovery-percentage-of-cognitive-time

number-of-frames-on-timeline)

:map-function (cons

(find-agent-by-name 'fireboss)

(find-agent-by-name 'bulldozer :multiple-allowed t))))

(defclip agent-overall-utilization (agent)

(:report-key "~a overall utilization")

(pct (task-cumulative-cpu-time agent) (current-time)))

(defclip agent-cognitive-utilization (agent)

(:report-key "~a cognitive utilization")

(pct (phoenix-agent-cumulative-action-execution-time agent)

(current-time)))

(defclip agent-message-handling-time-pct (agent)

(:report-key "~a message handling pct")

(pct (phoenix-agent-cumulative-message-handling-time agent)

(current-time)))

(defclip agent-action-selection-time-pct (agent)

(:report-key "~a action selection pct")

(pct (phoenix-agent-cumulative-next-action-selection-time agent)

(current-time)))

(defclip agent-error-recovery-cost (agent)

(:report-key "~a error recovery cost")

(f:using-frame-system ((name-of agent))
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(reduce #'+ (gather-recovery-method-instances (name-of agent))

:key #'determine-recovery-cost)))

(defclip agent-error-recovery-percentage-of-cognitive-time (agent)

(:report-key "~a ER % of cognitive time")

(pct (agent-error-recovery-cost (name-of agent))

(phoenix-agent-cumulative-action-execution-time agent)))

(defclip number-of-frames-on-timeline (agent)

(:report-key "~a number of frames on timeline")

(f:using-frame-system ((name-of agent))

(unwind-protect

(let ((cnt 0))

(labels ((count-frame (frame)

(unless (f:get-value frame 'counted)

(incf cnt)

(f:put-value frame 'counted t)

(count-frames-after frame)

(count-frames-below frame)))

(count-frames-below (start-frame)

(dolist (frame (tl-has-components start-frame))

(count-frame frame)))

(count-frames-after (start-frame)

(dolist (frame (tl-next-actions start-frame))

(count-frame frame))))

(dolist (frame (tl-has-start-actions (f:get-value 'initial-timeline

'instance+inv)))

(count-frame frame)))

(values cnt))

(f:map-frames #'(lambda (frame)

(f:delete-all-values frame 'counted))))))

;;; ----------------------------------------------------------------------

;;; Fireboss clips

(defclip fireboss-instrumentation ()

"Instrumentation for the fireboss."

(:components (agent-total-envelope-time)

:map-function (list (find-agent-by-name 'fireboss))))

(defclip agent-total-envelope-time (agent)

(:report-key "~a total envelope time")

(f:using-frame-system ((name-of agent))

(reduce #'+

(f:pattern-match #p(instance {f:value-in-hierarchy-of

'(ako instance) 'plan-envelope})))))
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;;; ----------------------------------------------------------------------

;;; Bulldozer clips

(defclip bulldozer-instrumentation ()

"Mapping clip mapping reflexes-executed :component over all bulldozers."

(:components (reflexes-executed)

:map-function (find-agent-by-name 'bulldozer :multiple-allowed t)))

(defclip reflexes-executed (agent)

(:report-key "~a reflexes executed")

(reduce #'+ (standard-agent-model-reflexes agent)

:key #'reflex-execution-count))

(defclip count-of-deadly-object-in-path-messages ()

(:enable-function (trace-message-patterns

'(:message-type :msg-reflex :type :error

:reason :deadly-object-in-path))

:disable-function (untrace-message-patterns

'(:message-type :msg-reflex :type :error

:reason :deadly-object-in-path)))

(message-pattern-count '(:message-type :msg-reflex :type :error

:reason :deadly-object-in-path)))

;;; ----------------------------------------------------------------------

;;; Plan clips record which plan(s) was used during a trial to fight the fire.

(defun the-first-fire-started ()

(first (last (f:get-values* 'actual-fire 'instance+inv))))

(defclip plan-to-contain-fire ()

(:report-key "Plan to Contain Fire")

(get-primitive-action

(tl-entry-of-plan-to-contain-fire)))

(defun tl-entry-of-plan-to-contain-fire ()

(f:using-frame-system ((name-of (find-agent-by-name 'fireboss)))

(let (top-level-actions)

(dolist (possible (f:get-values* 'act-deal-with-new-fire 'instance+inv))

(when (equal (f:framer (the-first-fire-started))

(variable-value 'fire :action possible))

(push possible top-level-actions)))

(f:get-value*

(first (sort top-level-actions

#'>

:key #'(lambda (x)

(f:get-value* x 'creation-time))))

'has-end-action))))
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(defclip all-plans-to-contain-fire ()

(:report-key "All plans to Contain Fire")

(f:using-frame-system ((name-of (find-agent-by-name 'fireboss)))

(mapcar #'(lambda (act-deal-with-our-fire)

(get-primitive-action (f:get-value* act-deal-with-our-fire

'has-end-action)))

(sort

(mapcan #'(lambda (act-deal-with-new-fire)

(when (equal (f:framer (the-first-fire-started))

(variable-value 'fire :action

act-deal-with-new-fire))

(list act-deal-with-new-fire)))

(f:get-values* 'act-deal-with-new-fire 'instance+inv))

#'< :key #'(lambda (x) (f:get-value* x 'creation-time))))))
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B.1.3 Example from a Transportation Planning Simulation

This example comes from a baseline experiment in bottleneck prediction at a shipping port

in a transportation planning simulator called TransSim. On each day it predicts the occur-

rence of bottlenecks at a single port in the shipping network, then captures data about actual

bottlenecks for later comparison. The experiment collects time-series data, a fragment of

which is shown after the example. The summary output �le (data collected after each trial)

is also shown. Note the use of the keywords to define-simulator (:schedule-function,

:deactivate-scheduled-function, :seconds-per-time-unit and :timestamp) that de-

�ne the time-series clips.

;;; -------------------------------------------------------------------

;;; Clips for the collection of time series data over the course of a trial

(defun current-day ()

"Return the current day of simulated time from 0."

(/ (current-time) 24))

(defclip port-state-snapshot ()

"Record state information for a port at the end of each day."

(:output-file "port-state"

:schedule (:period "1 day")

:map-function (list (port 'port-1))

:components (ships-en-route ships-queued ships-docked

expected-ship-arrivals predicted-queue-length)))

(defclip ships-en-route (port)

"Record the number of ships en route to a port."

()

(length (apply #'append (mapcar 'contents (incoming-channels port)))))

(defclip ships-queued (port)

"Record the number of ships queued at a port."

()

(length (contents (docking-queue port))))

(defclip ships-docked (port)

"Record the number of ships docked at a port."

()

(length (apply #'append (mapcar 'contents (docks port)))))

(defclip expected-ship-arrivals (port) ()

(progn

(update-prediction)

(let ((prediction-units (find-units 'prediction '(port-model) :all)))

(float (/ (round (* 10000

(expected-value (first prediction-units)))) 10000)))))
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(defclip port-predicted-value (port) ()

(let ((prediction-units (find-units 'prediction '(port-model) :all)))

(generate-prediction (expected-value (first prediction-units)))))

(defclip port-actual-change (port) ()

(let ((prediction-units (find-units 'prediction '(port-model) :all)))

(length

(set-difference

(ships-previously-in-port port 0)

(ships-previously-in-port

port (days-in-future (first prediction-units)))))))

(defclip predicted-queue-length (port) ()

(let ((prediction-units (find-units 'prediction '(port-model) :all)))

(pred-queue-length (first prediction-units))))

;;; -------------------------------------------------------------------

;;; Clips for the collection of data at the end of a trial

(defclip prediction-score ()

(:output-file "score"

:components (score-for-day)

:map-function '(2 5)))

(defclip score-for-day (day)

()

(compute-score-for-day day))

;;; -------------------------------------------------------------------

;;; Experiment and simulator definitions

(define-simulator transsim

:system-name "TransSim"

:start-system (simulate nil)

:reset-system reset-transsim-experiment

:schedule-function schedule-function-for-clips

:deactivate-scheduled-function transsim::reset

:seconds-per-time-unit 3600

:timestamp current-day)

(define-experiment test-experiment ()

:simulator transsim

:instrumentation (prediction-score port-state-snapshot)

:variables ((prediction-threshold in '(0.6 0.75 0.9))

(eta-variance-multiplier in '(0.2 0.4 0.6))

(prediction-point in '(5)))

:after-trial

;; Other options here include building CLASP datasets,
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;; exporting to some database, massaging the data or some

;; combination fo these.

(write-current-experiment-data))

;;; -------------------------------------------------------------------

;;; Utilities

(defun reset-transsim-experiment (prediction-threshold

eta-variance-multiplier

prediction-point)

(setf *prediction-threshold* prediction-threshold)

(format t "~&Prediction threshold = ~a" prediction-threshold)

(setf *eta-variance-multiplier* eta-variance-multiplier)

(format t "~&ETA variance multiplier = ~a" eta-variance-multiplier)

(setf *prediction-point* prediction-point)

(format t "~&Prediction point = ~a" prediction-point)

(initialize-simulation))

(defun schedule-function-for-clips (function time period name)

(if period

(transsim::schedule-recurring-event (transsim::event-actuator :external)

:function function

:time time

:period period

:type (or name :instrumentation))

(transsim::schedule-event (transsim::event-actuator :external)

:function function

:time time

:type (or name :instrumentation))))

(defun rexp (&key &optional number-of-trials)

(run-experiment 'test-experiment :output-file "ed-buffer:out"

:number-of-trials number-of-trials))

Shown below is the summary output �le produced for 9 trials. This �le is in Clasp

format. It begins with an informative header string, followed by a series of strings, each of

which is a column name in the data table. Rows of the table follow, stored as lists. Each

list contains one element per column name.

"

*********************************************************************

****

**** Experiment: Test-Experiment

**** Machine: Miles

**** TransSim version: Unknown

**** Date: 10/1/93 11:26

**** Scenario: None

**** Script-name: None
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**** First trial number: 1

**** Last trial number: 9

**** Number of trials: 9

**** Max trial length: Unknown hours

*********************************************************************

The key follows:"

"Trial"

"Prediction-Threshold"

"Eta-Variance-Multiplier"

"Prediction-Point"

"Score-For-Day 2"

"Score-For-Day 5"

(1 0.75 0.2 5 100 100 )

(2 0.75 0.3 5 100 100 )

(3 0.75 0.4 5 100 100 )

(4 0.8 0.2 5 100 100 )

(5 0.8 0.3 5 100 100 )

(6 0.8 0.4 5 100 100 )

(7 0.85 0.2 5 100 100 )

(8 0.85 0.3 5 100 100 )

(9 0.85 0.4 5 100 100 )

This is a fragment of the time-series data (from the �rst trial only) showing the at �le

structure produced by component and time-series clip relationships.

"

********************************************************************

****

**** Experiment: Test-Experiment

**** Machine: Miles

**** TransSim version: Unknown

**** Date: 10/5/93 15:17

**** Scenario: None

**** Script-name: None

**** First trial number: 1

**** Last trial number: 12

**** Number of trials: 12

**** Max trial length: Unknown hours

********************************************************************

The key follows:"

"Trial"

"Timestamp"

"Prediction-Threshold"

"Eta-Variance-Multiplier"

"Prediction-Point"

"Ships-En-Route port-1"
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"Ships-Queued port-1"

"Ships-Docked port-1"

"Expected-Ship-Arrivals port-1"

"Predicted-Queue-Length port-1"

(1 0 0.6 0.2 5 0 0 0 0.0 0 )

(1 1 0.6 0.2 5 0 0 0 0.0 0 )

(1 2 0.6 0.2 5 0 0 0 0.0 0 )

(1 3 0.6 0.2 5 0 0 0 0.0 0 )

(1 4 0.6 0.2 5 0 0 0 0.0 0 )

(1 5 0.6 0.2 5 2 0 0 0.0597 0 )

(1 6 0.6 0.2 5 2 0 0 0.3357 0 )

(1 7 0.6 0.2 5 2 0 0 0.7643 0 )

(1 8 0.6 0.2 5 2 0 0 0.9961 0 )

(1 9 0.6 0.2 5 2 0 0 0.9977 0 )

(1 10 0.6 0.2 5 4 0 0 0.683 0 )

(1 11 0.6 0.2 5 3 0 1 0.2361 0 )

(1 12 0.6 0.2 5 3 0 1 0.6389 1 )

(1 13 0.6 0.2 5 3 0 1 1.4062 1 )

(1 14 0.6 0.2 5 3 0 1 1.9885 1 )

(1 15 0.6 0.2 5 3 0 0 2.071 1 )

(1 16 0.6 0.2 5 3 0 0 1.5729 0 )

(1 17 0.6 0.2 5 1 1 1 0.5053 1 )

(1 18 0.6 0.2 5 1 1 1 0.8974 2 )

(1 19 0.6 0.2 5 1 1 1 0.9996 2 )

(1 20 0.6 0.2 5 1 1 0 1.0 1 )

(1 21 0.6 0.2 5 1 0 1 1.0 1 )

(1 22 0.6 0.2 5 0 1 1 0.0 1 )

(1 23 0.6 0.2 5 0 1 1 0.0 1 )

(1 24 0.6 0.2 5 0 1 0 0.0 0 )

(1 25 0.6 0.2 5 2 0 1 0.1331 0 )

(1 26 0.6 0.2 5 2 0 1 0.355 0 )

(1 27 0.6 0.2 5 2 0 1 0.6276 1 )

(1 28 0.6 0.2 5 2 0 0 0.946 0 )

(1 29 0.6 0.2 5 4 0 0 1.2677 0 )

(1 30 0.6 0.2 5 4 0 0 2.0143 1 )

(1 31 0.6 0.2 5 4 0 0 2.8832 2 )

(1 32 0.6 0.2 5 4 0 0 3.3096 2 )

(1 33 0.6 0.2 5 4 0 0 2.4576 1 )

(1 34 0.6 0.2 5 2 1 1 1.9172 3 )

(1 35 0.6 0.2 5 1 2 1 0.9961 3 )
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