
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 776
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Sayali A. Kulkarni, Charudatta V. Kulkarni, Rakesh Mehta

Abstract—The Ethernet boot loader is used in the Arm processor to boot the ARM from the external flash/ memory. The internal boot
loader is programmed such that the program counter (PC) starts execution from the address of the external flash device. The Ethernet
and UART have been used to program the external and internal memory respectively. All the utilities and the tools used are either
evaluation versions or free softwares. Hence, the use of expensive boot loaders or boot loading devices is reduced making the module
cost effective. The module uses a flash of 4Mb as the external memory and an internal flash of 512Kb. The Ethernet boot loader can be
effectively used for any processor with modifications as applicable. The TFTP has been implemented for the file transfer.

Index Terms—ARM, Boot loader, Ethernet, External Boot loader, TFTP, Processor Bootloader, ARM7

——————————  ——————————

1 INTRODUCTION
HE Ethernet boot loader has been designed for
LPC2478 (ARM7) microcontroller having an on-chip
Ethernet controller and on-chip external memory

controller (EMC) interfaced with an external flash.
 The boot loader is designed to download application
code (in form of a binary “.bin” file) from a Server using
TFTP (Trivial File Transfer Protocol) and program it into
the external flash. It then jumps to the external flash start
address and starts executing the application code from
external flash.
The literature survey for the same is done by referring the
[1] – [7] references in the reference section.

2 BOOTLOADER
2.1 What is a boot loader?
The code that runs before any operating system is called
the boot loader. Operating systems have their specific set
of boot loader. Boot loader may be used in several ways to
boot the OS kernel. The boot loader also consists of
commands for debugging and/or modifying the kernel
environment. The boot loader is a highly processor and
board specific software or firmware which runs at every
power-up or reset.

————————————————
• Sayali Kulkarni is currently pursuing masters degree program in VLSI

and Embedded Systems from Pune University, India, PH-09657710122.
E-mail: kulkarnisayo@gmail.com

• Charudatta V. Kulkarni is currently working as a Professor in MIT
College of Engineering, Pune,India
 E-mail: charudatta.kulkarni@mitcoe.edu.in

• Rakesh Mehta is currently working as the CEO of Bitmapper Integration
Technologies Pvt. Ltd. , Pune, India
Email: rakesh.mehta@bitmapper.com
(This information is optional; change it according to your need.)

2.2 Board and Processor Specific

Boot loader commences before any other software starts
in the OS. Hence, the boot loader needs to be highly
processor specific and board specific. The necessary
initializations to prepare the system for booting the
Operating system are performed by the boot loader. The
OS is more generic and usually is associated to minimum
board or processor specific code.

2.3 Execution

a) Starts from ROM (Flash)

When a CPU is in power-up or reset, the memory has
certain preset values in its registers. The CPU is
unaware of the on-board memory and its details. It
expects to find program code at a specific address.
The address is the one which points to ROM or Flash,
this is the commencement of the boot loader
firmware.

• The primary task of the boot loader is to map
the RAM to predefined addresses.

• After RAM is mapped, the Stack pointer (SP)
is setup.

This is the minimal setup required, after that the boot
loader starts work.

b) Moves itself to RAM for actual work

The RAM and Stack pointer are set and ready.

• The boot loader code is moved to the RAM
memory for actual execution.

• The Flash memory is not used for this purpose
because of its slow execution and scarce
availability.

• The Flash memory is most of the times located in
the address space that is non-executable.

Ethernet Boot loader for ARM Processor

T

IJSER

http://www.ijser.org/
mailto:charudatta.kulkarni@mitcoe.edu.in

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 777
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Example: A serial flash that can be accessed by
reading repetitively from one address.
Sometimes, the actual boot loader software code
is compressed, and hence must be uncompressed
first, before writing into the RAM.

c) Peripheral initialization

The boot loader needs to initialize peripherals
required for the operation. Hence, minimum
peripheral initializations are done.

In embedded systems a terminal is required. A
network connection may also be required if booting
is done over the network, hence Ethernet card needs
to be initialized.

Initializations done are limited for the boot loader
only. They are not performed for the entire system.
The OS either over rides these initializations or
discards them.

d) Decide which OS image to start

Boot loaders can choose to load one of several
kernel images that are known to the boot loader.

This is used in embedded systems to make sure
that a kernel upgrade can be done without fear of
power loss during the upgrade. Also the backup of
the kernel to be loaded needs to be present.

The boot loaders accept kernel image to be loaded
from a known location. It provides several ways to
load the kernel.

• Load kernel image from memory
• Load kernel image from file
• Load kernel image from network
• Load kernel image to memory using TFTP

3 ARCHITECTURE

The objective of the project is to develop a low power,
efficient flexible and low cost hardware which can
implement and be used as a User interface for the system
and can be effectively used in applications related to
vehicle automation.

The system has the following architecture:

1) Processor: The processor is an advanced fast
processor which can meet the requirements like
Ethernet, sufficient internal memory, inbuilt
display driver, etc. ARM processor.

2) Ethernet: The system must have an Ethernet chip
which can enable it to be controlled over the
LAN.

3) External UART: It needs to have at-least 8 UART
(serial) channels for communication, hence and

external UART is a requirement as most
processors cannot satisfy this demand.

4) Flash Memory: The external ROM is required to
store the application code (firmware) if the
internal memory is insufficient. Also the system
has to boot up from this external memory.

External
8 Port
UART

(XR16L788)

ARM 7

LPC2478
Bicolour
5 LEDs

DISPLAY
VFD (Vacuum Fluorescent

Display)

KEYPAD
4x5

FLASH 4MB
ISP

JTAG

Audio
In

Ethernet Phy
DP83848

Audio Amp.
TDA7056AT

Audio
Out

Power In
+12V

12V

Crystals

A12MHz

25MHz

14.78MHz

B

C

A

B

C

DTR /RTS for Programming
ARM through Serial Port

4 UART channels
(TX/RX/GND)

4 UART channels
(TX/RX/GND)

 Fig.1. Block Diagram of the system

The other interfaces and peripherals have been designed
and the firmware for their interfacing is done with the
information from reference [8]-[14].

4 BOOT LOADING SCHEME

The Ethernet boot loader is programmed in the internal
flash of ARM controller through serial port using “Flash
Magic”. After power on reset the Ethernet boot loader
starts running. It initializes the ARM Ethernet controller
for UDP communication and EMC (External Memory
Controller) for accessing the external flash. It then sends
an ARP request to PC (whose IP address is hard-coded in
the boot loader) to obtain its MAC address. On receiving
an ARP reply the boot loader sends a read request to a
TFTP server for downloading the binary image of the
application code. A TFTP Server application (as in [15]
PumpKIN or [16] tftpd32) runs on PC and keeps listening
for incoming TFTP requests on UDP port 69. On receiving
a read request, the TFTP server prompts the user whether
to grant access to the file or not. If permission is granted
the TFTP server starts sending the binary file in blocks of
512 bytes to the boot loader. The boot loader accepts the
data blocks and after receiving 4096 bytes programs one
sector of external flash. This process continues till the
entire binary file has been transferred to the external flash.

To verify that the programming of external flash has
been successful the boot loader reads the external flash
and uploads it as a binary file to the TFTP server. For this
it sends a write request to the TFTP server. The TFTP
server prompts the user whether to accept the file or not.
If permission is granted the TFTP server starts accepting

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 778
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

data from the boot loader and stores it in a binary file.
Once the uploading is complete, the received file can be
compared manually with the original application code
binary file using a hex editor (as in [17] HxD). The file
compare must show the two files to be completely
identical.

The boot loader keeps sending requests to the TFTP
server for a predefined timeout period. If there is no reply
from server within this period the boot loader times out
and jumps to the external flash start address and starts
executing the application code already present in flash.
Also, if the user denies access for
downloading/uploading the binary file when the TFTP
server asks for permission, the TFTP server sends an error
message to the boot loader. On receiving an error message
the boot loader stops sending requests and jumps to the
external flash start address and starts executing the
application code.

5 TRIVIAL FILE TRANSFER PROTOCOL

TFTP is a simple protocol to transfer files, and therefore
was named the Trivial File Transfer Protocol or TFTP. It
has been implemented on top of the Internet User
Datagram Protocol (UDP) so it may be used to move files
between machines on different networks implementing
UDP. It is designed to be small and easy to implement. It
can read and write files from/to a remote server. (As in [4]
rfc1350 and [5] rfc2347 for detailed explanation of TFTP
protocol.)

Installing and configuring the TFTP server:

The Ethernet boot loader was tested using “PumpKIN” (as
in [1]) TFTP server. The procedure for installing and
configuring “PumpKIN” on PC is as follows:

1. Run the executable “pumpkin-2.7.3.exe”.
2. Launch “PumpKIN.exe
3. The “PumpKIN” TFTP Server window opens as

shown in Fig. 2.
4. To properly configure the “PumpKIN” TFTP

server click on “Options” button. The “Options”
window opens as shown in Fig. 3.

5. In the “Server” tab enter the path for the TFTP root
directory using the browse button. This is the
folder where the TFTP server searches/stores the
binary file requested by the boot loader for
downloading/uploading. The user has to create a
binary “.bin” file of the application code to be
downloaded into the external flash and place it in
this root directory. The flash image uploaded by
the boot loader for verification is also stored by the
Server in this root directory. The procedure for
generating the binary file of the application code
in “Keil

Fig.2. PumpKIN Software window

6. In the “Read Request Behavior” and “Write
Request Behavior” in the “Server” tab select
“Prompt before giving file” and “Always prompt
before accepting file” respectively. On using these
settings the Server will ask for permission before
giving or accepting a file. If this is not desired
other options can be selected as convenient.

Fig.3. PumpKIN Software – Options Tab - Server

7. The duration for which the Server waits for a reply
from the boot loader can be adjusted using the
“Confirmation timeout” slider.

8. In the “Log file” text box enter the directory path
and filename of the log file to be created. The log
file logs all download/upload requests received
by Server. The log file can be viewed in any text
editor like “notepad” etc.

9. Click on the “Network” tab. The “Network” tab
opens as shown in Fig. 4.

10. In the “UDP Ports” section set the incoming and
outgoing ports to 69 (standard TFTP port).

11. Enter the IP address of your PC in the “ip address”
field.

Active
transfers
window

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 779
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.4. PumpKIN Software – Options Tab - Network

12. Set the “Default connection timeout” to 30 seconds.
13. Set the “Default block size” to 512 bytes.
14. Click on “OK” button. The TFTP Server is now

configured to start listening for incoming requests.

booting
1. Generate the application code binary file

(explained in next section), name it as
“firmware.bin” and copy it into the “PumpKIN”
TFTP server root directory.

2. Connect the board to an Ethernet port in the
network using a LAN cable.

3. The boot loading progress is displayed on the
“HyperTerminal” (Fig. 5).

4. When “PumpKIN” receives a read request from
the boot loader it prompts the user for
permission. It displays the IP address from which
the request is received and the filename that is
requested (Fig. 6).

5. On granting access the Server starts transferring
the binary file to the boot loader. The connection
status and the activity log are displayed in their
respective windows (Fig. 7).

6. Similarly when “PumpKIN” receives a write
request from the boot loader it prompts the user
for permission. It displays the IP address from
which the request is received and the filename
that will be copied to the root directory (Fig. 8).

7. On granting access the Server starts accepting the
binary file from the boot loader. The connection
status and the activity log are displayed in the
respective windows.

8. After uploading the Flash image to the
“PumpKIN” TFTP Server, the boot loader jumps
to the external flash start sector address and starts
executing the application code. The boot loading
progress is displayed in “HyperTerminal” (Fig.
9).

9. If there is no reply from Server the boot loader
times out and jumps to the user code previously
loaded in the external flash as shown in (Fig. 10).

10. The files “firmware.bin” and “flashIMG.bin” can
be compared using a hex editor (as in [17]HxD) to
verify that they are identical (Fig. 11).

The results of the files transferred can be viewed on the
hyper terminal. The result will be as follows:

Fig.5. Hyperterminal - UART0 Initialisation

Fig.6. PumpKIN Window – Read Request Confirmation

Fig.7. PumpKIN Window – Transfer Begins

IJSER

http://www.ijser.org/
http://mh-nexus.de/en/hxd/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 780
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.8. PumpKIN Window – Write Request Confirmation

Fig.9. Hyperterminal – Report of Flash Write

Fig.10. Hyperterminal - No Reply from Server

Fig.11. HDK Software - Identical files: 1.External Flash
2.Created by User

The part of the code for the impelementation of UDP for
TFTP is given below:

void UDPLowLevelInit(void)
{
 Init_EMAC();
 TransmitControl = 0;

 print("\n--\n");
 print ("\nEMAC Initialized. \n");
 print ("\nOur IP : 192.168.0.100 \n");
 print ("\nOur MAC : 00:30:6C:00:00:02 \n");
 print ("\nTFTP Server IP(Port) : 192.168.0.38(69) \n ");
 print("\n--\n");
}

/* This function reads the length of the received ethernet
frame and checks if the destination address is a broadcast
message or not */

unsigned int IsBroadcast(void) {
 unsigned short RecdDestMAC[3];
 // 48-bit MAC Address

 RecdFrameLength = StartReadFrame();

 CopyFromFrame_EMAC(&RecdDestMAC, 6);
 // Receive DA to see if it was a broadcast
 CopyFromFrame_EMAC(&RecdFrameMAC, 6);
 // Store SA (for our answer)

 if ((RecdDestMAC[0] == 0xFFFF) &&
 // Check if destination address is broadcast
 (RecdDestMAC[1] == 0xFFFF) &&
 (RecdDestMAC[2] == 0xFFFF)) {
 return(1);
 } else {

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 781
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 return (0);
 }
}

For Flash:

 EMC_STA_WAITRD0 = 0x1f;
 EMC_STA_WAITPAGE0 = 0x1f;
 EMC_STA_WAITWR0 = 0x1f;
 EMC_STA_WAITTURN0 = 0xf;

 delay(10000);

 print("\nReading External Flash ID....\n");
 if (FLASHCheckID() == FALSE)
 {
 print ("\nFlash External ID Invalid.\n");
 }

 print ("\nExternal Flash ID verified. Flash: SST39VF1602
(Microchip Inc.)\n"); .

Main DataTransfer Code (part):

FLASHInit();
 /* Initialize EMC for accessing External Flash */

/* Intialize Remote IP */
 *(unsigned char *)RemoteIP = 192;
 *((unsigned char *)RemoteIP + 1) = 168;
 *((unsigned char *)RemoteIP + 2) = 0;
 *((unsigned char *)RemoteIP + 3) = 38;

/* Intialize Remote MAC */
 *(unsigned char *)RemoteMAC = 0x3C;
 *((unsigned char *)RemoteMAC + 1) = 0x4A;
 *((unsigned char *)RemoteMAC + 2) = 0x92;
 *((unsigned char *)RemoteMAC + 3) = 0xD5;
 *((unsigned char *)RemoteMAC + 4) = 0x29;
 *((unsigned char *)RemoteMAC + 5) = 0x84;

 UDPLowLevelInit(); /* Initialize EMAC for UDP */

 UDPLocalPort = 1200; /* Set port we want to listen to
*/
 UDPRemotePort = 1024; /* Set port we want to Send to
*/

 while (1)
 {
 if (Arp_reply == 0)
/* If ARP reply not received yet */
 {
 /* Send ARP request to Server to obtain its MAC address
*/
 PrepareARP_REQUEST();

 /* Print on Hyperterminal */
 print ("\nSending ARP Request to 192.168.0.38... \n");
 }

6 CONCLUSION
Using the above procedure the external memory of

the system can be used as the internal memory for
booting up. The flash memory in this case contains the
firmware for the system, which was supposed to be
programmed in the internal flash. Hence, due to the
wide space available for the firmware, firm wares of up
to 4GB can be programmed in the external flash for
execution.

The procedure uses all the free and evaluation
version soft-wares. The process is hence cost effective
and does not provide any overhead to the system with
respect to finances. The results show that the data
corruption check is also performed which confirms the
programming of the correct firmware in the external
memory.

The process can be modified and used according to
the requirements for various processors and embedded
systems. The paper describes important parts of the
process for the use of external memory as the booting
memory. Some code parts have been provided for quick
references.

The TFTP and UDP are the common protocols used
widely; hence they have been used to give a good scope
for using the process to be used.

The prime benefit of this procedure is its cost
effectiveness. The use of chips such as Smart Fusion
cSoC by Micro Semi (as in [1]), JTAG connectors for
programming is hence not necessary.

The paper provides an overlook on, an option for the
secondary / external boot loader to be implemented in
an easy, convenient and cost effective way.

7 REFERENCES

[1] Micro Semi Corporation , Application Note AC346, “SmartFusion cSoC:

Loading and Booting from External Memories”, pp. 11, Feb 2012
[2] Mohit Arora, and Varun Jain, “Understanding embedded-system-boot

techniques”, Freescale Semiconductors, Feb 2011.
 site:http://www.edn.com/design/systems-
design/4363984/Understanding-embedded-system-boot-techniques-
4363984

[3] Texas Instruments Incorporated, “Creating a Second-Level Bootloader for
FLASH Bootloading on TMS320C6000 Platform with Code Composer
Studio”,Texas Instruments, May 2006.

[4] Zhang guolong, Xu xiaosu, “Implemention of Secondary Bootloader for
Large-scale Embedded System”, Computer Engineering, vol. 36, No.13, , pp
219-221, July 2010.

[5] Chen daiyuan, “External FLASH Memory’s Bootloader System for C6000,”
Telecommunication Engineering, vol.49, No5, pp. 86-88, May, 2009.

[6] Daniel Allred, and Gaurav Agarwal, “Software and hardware design
Challenges due to the dynamic raw NAND market”, Texas Instruments,
Apr 2011.

[7] Odd Jostein Svendsli, “Atmel’s Self-Programming Flash Microcontrollers” ,
Atmel, March 2010.

[8] John Peatman, “Microcomputer based Design”, published by Tata
McGraw Hill, 2005 edition,pg. 365.

[9] Michael Barr, “Programming Embedded Systems in C and C++”, Oreilly
Publication, edition January 1999.

IJSER

http://www.ijser.org/
http://www.edn.com/design/systems-design/4363984/Understanding-embedded-system-boot-techniques-4363984
http://www.edn.com/design/systems-design/4363984/Understanding-embedded-system-boot-techniques-4363984
http://www.edn.com/design/systems-design/4363984/Understanding-embedded-system-boot-techniques-4363984

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 782
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[10] Byte Craft, “First Steps with Embedded Systems”, ByteCraft Limited, first
edition.

[11] Andrew Sloss, Dominic Symes and Chris Wright “ARM System
Developers Guide – Designing and Optimizing System Software” ,
published by ELSEVIER, 2009.

[12] Ted Van Sickle, “Programming Microcontrollers in C”, LLH Technology
Publishing, 2001.

[13] Michael Pont, “Embedded C”, Pearson Publication, 2002.
[14] David Katz and Rick Gentile, “Fundamentals of Booting for Embedded

Processors”, Sept 2009.
Site:http://www.embedded.com/design/mcus-processors-and-
socs/4008796/Fundamentals-of-Booting-for-Embedded-Processors

[15] NXP, “User Manual for ARM 7”, NXP website.
[16] Website for PumpKIN: http://kin.klever.net/pumpkin
[17] Website for TFTP : http://tftpd32.jounin.net/
[18] Website for HXD software: http://mh-nexus.de/en/hxd/
[19] Website for Remote Server: http://tools.ietf.org/html/rfc1350
[20] Website for Remote Server: http://tools.ietf.org/html/rfc2347
[21] Website for Flash Magic: http://flashmagic.com

IJSER

http://www.ijser.org/
http://www.embedded.com/design/mcus-processors-and-socs/4008796/Fundamentals-of-Booting-for-Embedded-Processors
http://www.embedded.com/design/mcus-processors-and-socs/4008796/Fundamentals-of-Booting-for-Embedded-Processors
http://kin.klever.net/pumpkin
http://tftpd32.jounin.net/
http://mh-nexus.de/en/hxd/
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc2347
http://flashmagic.com/

	1 INTRODUCTION
	2 BOOTLOADER
	2.1 What is a boot loader?
	2.2 Board and Processor Specific
	2.3 Execution
	a) Starts from ROM (Flash)
	b) Moves itself to RAM for actual work
	c) Peripheral initialization
	d) Decide which OS image to start

	3 architecture
	4 boot loading scheme
	5 Trivial File Transfer Protocol
	Installing and configuring the TFTP server:

	booting
	6 conclusion
	7 References

