
SINTEF

Developer's	Manual	
SiSaS	Studio	v	2.0	

	

SINTEF	ICT	

6/11/2012	
	

	

	

	 	

	

	

©	2009	–	2011	SINTEF	 1	

	

DEVELOPER'S	MANUAL	
FOR	SISAS	STUDIO	V2.0	

	

Version:	1.0	

Contributors:	

 Franck	Chauvel	–	SINTEF	/	ICT		

Summary:		

This	document	briefly	explains	how	to	add	new	features	in	the	SiSaS	studio	v1.0.	It	first	
outlines	the	basic	software	toolset	needed,	and	depicts	the	main	architecture	of	the	SiSaS	Studio.	
The	addition	of	a	simple	feature	is	given	as	a	tutorial	and	some	common	issues	are	discussed	to	
conclude.	

Change	History:	

Version	 Date	 Changes	Description Author
1.2	 June	11,	2012	 Add	section	about	bundle	creation F.	Chauvel
1.1	 June	8,	2012	 Introduce	the	new	architecture F.	Chauvel
1.0	 Nov	29,	2011	 First	Version F.	Chauvel
0.1	 Oct	17,	2011	 Initial	Outline F.	Chauvel
	

	 	

	

©	2009	–	2011	SINTEF	 2	

	

1 CONTENTS	
2 Introduction	..	3

3 Setting	up	your	Development	Environment	...	3

3.1 Installing	the	Development	Toolset	..	3

3.2 Checking	out	the	SiSaS	Studio	Source	Code	...	4

4 Architecture	of	the	SiSaS	Studio	...	4

4.1 A	Set	of	Eclipse	Plugins	...	4

4.2 Internal	Architecture	...	4

4.2.1 Template	Projects	...	4

4.2.2 Model	Transformations	..	5

4.2.3 Existing	Model	Transformations	..	6

5 Tutorials	...	7

5.1 Developing	a	New	Transformation	...	7

5.1.1 Developing	the	Generator	script	...	7

5.1.2 Developing	the	Checker	Script	..	8

5.1.3 Registering	the	Transformation	..	8

5.2 Adding	a	new	Project	Template	..	9

6 Troubleshooting	..	10

6.1.1 Unable	to	Start	the	Workbench	..	10

7 References	..	10

	

	 	

	

©	2009	–	2011	SINTEF	 3	

	

2 INTRODUCTION	
SiSaS	Studio	[5]	is	an	Eclipse	bundle	that	enables	to	generate	code	(Java	[2]	among	others)	from	
various	models,	especially	from	UML	models	[7].	The	core	part	of	the	SiSaS	studio	[1]	is	basically	
a	set	of	model	transformations,	written	in	MOFScript	[4],	and	some	additional	Java	classes	that	
ensure	the	proper	integration	of	these	transformations	within	the	Eclipse	GUI	[1].	

The	SiSaS	studio	bundle	also	includes	other	Eclipse	plugins	that	support	common	development	
tasks	associated	with	the	model‐driven	methodology:	UML	modelling	using	the	Papyrus	UML	
Editor	[10],	Mathematical	modelling	using	the	OpenModelica	plugin	[8,	12],	etc.	Although	these	
plugins	are	bundled	within	the	SiSaS	Studio,	they	must	be	considered	as	third	party	elements,	
and	are	maintained	separately.	

This	document	is	aimed	at	people	who	need	to	extend	or	to	fix	bugs	in	the	SiSaS	Studio.	It	
is	NOT	aimed	at	people	who	merely	want	to	use	it.	Please	consult	the	User	Guide	[5]	in	
this	case.	

The	aim	of	this	document	is	to	introduce	the	tool	set	used	to	develop	and	extend	the	SiSaS	Studio.	
The	first	section	describes	precisely	how	to	setup	your	development	environment.	The	second	
part	then	briefly	describes	the	architecture	of	the	model	transformations	that	have	been	
developed	in	the	SiSaS	Studio.	

3 SETTING	UP	YOUR	DEVELOPMENT	ENVIRONMENT	

3.1 INSTALLING	THE	DEVELOPMENT	TOOLSET		
Below	are	the	main	steps	to	follow	in	order	to	configure	your	SiSaS	development	environment.	
These	steps	are	only	relevant	to	setup	the	environment	needed	to	develop	the	SiSaS	Studio	itself,	
and	is	NOT	relevant	if	you	only	want	to	use	it.		

1. Java	Development	Kit	(JDK	v1.6).	The	first	element	to	install	is	the	Java	Development	
Kit	[2],	which	includes	the	Java	virtual	machine,	and	the	Java	development	tools.	This	is	
needed	to	run	the	Eclipse	IDE.	It	is	worth	to	note	that	you	can	run	Eclipse	over	newer	
version	of	the	JDK	(e.g.,	on	Java	7)	but	the	code	of	the	SiSaS	Studio	itself	requires	Java	6.	

2. Eclipse‐Modelling	(v3.5.x,	so	called	"Galileo",	NOT	higher).	The	second	element	needed	
is	a	distribution	of	the	Eclipse	Modelling	Framework.	We	recommend	the	version	3.5	as	
some	of	the	plugins	that	will	be	later	added	require	this	specific	version.		

3. Papyrus	UML	[10]	is	the	UML	editor	advocated	by	the	SiSaS	studio.	It	comes	as	an	
Eclipse	plugin	and	can	be	installed	in	Eclipse	using	the	update	site.	

4. MOFScript	[4]	(v1.4	or	higher)	is	the	programming	language	used	to	write	the	model	
transformations	that	are	provided	by	the	SiSaS	Studio.	The	MOFScript	language	comes	as	
well	as	an	Eclipse	plugin	providing	syntax	highlighting	and	automatic	completion.	The	
MOFScript	plugin	can	be	installed	using	the	update	site.	

5. SVN	Plugin.	You	might	want	as	well	to	install	an	additional	SVN	plugin,	which	permits	to	
directly	commit	the	changes	you	made	to	the	SiSaS	source	code	into	the	SiSaS	repository	
(So	they	become	available	for	other	developers).	Basically,	two	main	plugins	are	

	

©	2009	–	2011	SINTEF	 4	

	

Figure	4.1 Dependencies	between	the	
plugins	that	compose	the	SiSaS	Studio	

available:	Subclipse	and	Subversive.	Both	of	them	are	compatible	with	the	rest	of	the	
toolset.		

3.2 CHECKING	OUT	THE	SISAS	STUDIO	SOURCE	CODE	
The	source	code	of	the	SiSaS	studio	is	available	on	a	SVN	server.	You	can	retrieve	it	from	the	
following	URL:	

https://cloud.catenda.no/svn/sisas/sisasstudio/	

If	you	have	not	yet	got	proper	credential	to	access	the	SiSaS	Studio,	you	may	contact	the	Catenda	
staff	in	charge	of	the	SVN	repository.	

4 ARCHITECTURE	OF	THE	SISAS	STUDIO	

4.1 A	SET	OF	ECLIPSE	PLUGINS		
The	SiSaS	Studio	is	made	of	four	main	Eclipse	plugins:	

 Profiles	plugin	defines	a	set	of	UML	profiles	that	
can	be	used	within	the	SiSaS	Studio,	e.g.,	SoaML,	
migration,	etc.	

 Transformations	plugin	binds	the	Eclipse	
graphical	interfaces	to	the	set	of	MoFScript	
transformations.	Basically,	it	drives	the	
MoFScript	engine	and	selects	the	proper	
transformation	according	to	the	UI	events.		

 ProjectTemplates	provides	the	user	with	the	
ability	to	define	his	own	project	templates,	
assuming	that	the	transformation	he	needs	
already	exist	in	the	SiSaS	Studio.	

 Features	plugin	is	basically	a	collection	of	
plugins.	It	is	used	as	a	façade/container	by	the	
Eclipse	Framework.	It	depends	on	the	two	other	
plugins	

 Site	plugin	permits	to	create	an	Eclipse	update‐site	from	which	the	SiSaS	Studio	plugin	
can	be	retrieved	and	install.	It	is	used	when	building	the	SiSaS	Studio	bundle.	

The	dependencies	between	these	four	plugins	are	depicted	by	Figure	1,	aside.	For	a	better	
understanding	of	the	Eclipse	plugin	framework,	the	interested	reader	may	consult	[5].	

4.2 INTERNAL	ARCHITECTURE	
The	SiSaS	Studio	is	built	as	a	sort	of	"product	line"	of	models	transformations.	The	basic	idea	is	
to	separate	the	idea	definition	of	specific	model	transformations	from	their	combination	to	
generate	complex	code	structures	(e.g.,	Maven	projects).	To	this	end,	the	SiSaS	studio	let	the	user	
define	"project	templates"	where	she	specifies	the	organization	of	the	code	she	needs	in	terms	of	
a	directory	structure	containing	the	"to‐generate"	artefacts.	

4.2.1 TEMPLATE	PROJECTS	

	

©	2009	

	

Templat
the	orga
generate
comes	w
EJB,	etc.

Figure	4.2

As	show
needed	

Project	t
artefact	
the	code

4.2.2 M
The	SiSa
type	of	g
trigger	t

Each	tra
Generat
verifyin
generato

It	is	wor
respons

Figure	4
SiSaS	St
separate
pass	thr
transfor
artefact)

–	2011	SINT

te	Projects	a
anization	of	
ed	artefacts
with	a	set	of	
)	

2	The	Project

wn	by	Figure
artefacts	ca

template	de
requires	to	
e	the	related

MODEL	TRA
aS	Studio	is	
generated	ar
the	transfor

ansformatio
tors	are	in	ch
g	whether	t
or	to	run	pr

rth	to	note	t
sibility	of	th

4.3,	below	ill
udio	explici
e	MofScript	
rough	the	te
rmation	(or	
).	

TEF

are	separate
the	code	to	
.	Although	t
predefined	

t	Template	me

e	4.2,	"projec
n	be	place	s

efines	a	fixed
	modify	the	
d	Eclipse	plu

ANSFORMAT
actually	a	re
rtefact.	Whi
mation	rele

n	registered
harge	of	effe
he	model	gi
operly.	

hat	the	cons
he	transform

lustrates	ho
tly	declares
files	and	the
mplate	that
raise	an	err

ed	models	(b
generate,	es
the	user	can	
project	tem

etamodel	

ct	templates
o	as	to	ensu

d	set	of	gene
model	of	pr
ugin.	

TIONS	
egistry	of	m
le	instantiat
vant	for	eac

d	in	the	SiSa
ectively	gene
ven	as	input

sistency	bet
mation	deve

w	model	tra
	the	transfo
e	type	artefa
trigger	the	
ror	if	not	tra

bundle	in	a	s
specially	com
	define	is	ow

mplates	supp

s"	basically	d
ure	the	prop

erated	artefa
roject	templ

odels	transf
ting	a	specif
ch	generated

aS	Studio	ma
erating	the	
t	by	the	use

tween	a	gen
eloper.	

ansformatio
rmations	th
act	they	gen
generation	
ansformation

separate	Ecl
mplex	struc
wn	project	t
porting	(POJ

describe	a	d
per	generate

act	types.	Ad
late	and	hen

formation,	e
fic	project	te
d	artefacts.

ade	of	two	p
code,	where
r	contains	s

nerator	and

on	registered
hat	are	availa
nerate.	Invok
of	each	arte
n	are	availab

lipse	models
tures	includ
emplates,	th
O	projects,	O

directory	str
	of	the	comp

dding	a	new
nce	to	regene

each	of	them
emplate,	the

arts:	genera
e	as	a	checke
ufficient	inf

d	its	related

d	with	the	Si
able,	includi
king	the	"ins
efact	using	th
ble	to	handl

s)	which	cap
ding	multipl
he	SiSaS	Stu
OGC/WPS	p

ructure	in	w
plete	projec

w	type	of	gen
erate	and	re

m	targeting	a
e	sisas	studio

ators	and	ch
er	is	in	char
formation	fo

d	checker	is

iSaS	Studio.
ing	the	two	
stantiate"	w
he	relevant	
le	one	of	the

5	

pture	
e	
dio	
projects,	

	

hich	the	
t.	

nerated	
ecompile	

a	specific	
o	merely	

heckers.	
ge	of	
or	the	

s	the	

	The	

will	then	

e	

	

©	2009	–	2011	SINTEF	 6	

	

	

Figure	4.3	Internal	representation	of	model	transformation	within	the	SiSaS	Studio	

Registering	a	new	transformation	in	the	SiSaS	Studio	is	hence	a	matters	of	a	few	lines,	in	the	
initialization	of	the	SisasStudio	singleton	class.	In	the	following	code	snippet,	we	registered	one	
transformation	that	aims	at	generated	POJO	(plain	old	java	projects).	

private SisasStudio() {
 transfoRegistry = new Hashtable<ArtifactType, Transformation>();

 // ----
 // ADD BELOW ANY TRANFORMATION THAT MUST BE AVAILABLE BY DEFAULT OR ANY
 // NEW TRANSFORMATION THAT MUST BE SUPPORTED
 //
 List<Transformation> transformations = new LinkedList<Transformation>();
 transformations.add(new Transformation("UML TO POJO",
 ArtifactType.POJO_JAVA_CODE,
 "uml_to_pojo/plain_java_checker.m2t",
 "uml_to_pojo/plain_java_generator.m2t"));
 transformations.add(new Transformation("UML to MAVEN POM FOR Java",
 ArtifactType.POJO_MAVEN_POM_FILE,
 "uml_to_pojo/maven_pom_checker.m2t",
 "uml_to_pojo/maven_pom_generator.m2t"));

 // ----
 // ...

 }

4.2.3 EXISTING	MODEL	TRANSFORMATIONS	
Scope	 Input	 Required	Profile Output
Storage	 UML		 SoaML	/	Persistence XSD	Schema	
	 	 SQL	Schema	Creation	
	 	 SQL	Schema	Deletion	
Persistence	 UML	 SoaML	/	Persistence Java	Classes	(POJO)	
	 	 JEE	6	– Entity	Beans		
	 	 JEE	6	– Entity	Managers
Business	 UML	 SoaML WS	‐ WSDL	
	 	 WS	– Skeleton	(JAX‐WS)

JEE	6	–	Stateless	Session	Beans	

 class Class Model

«enumeration»
ArtifactType

 JSF_BEANS
 SQL_DATA
 JAVA_EJB
 JSF_PAGES
 XML_SERVICES_CONFIG

«singleton»
SisasStudio

+ instantiate(Model, Template) : void

Transformation

- description: String
- name: String

+ apply(Model) : void

MofScript

- path: String

+ process(Model) : void

Preferences

+config 1

+implementation1+checker 1

+definedTypes

1..*

+outputType

1

+transformations 1..*

	

©	2009	

	

Presenta
	
Develop
Import/

Table	1.

As	show
applied	
code	of	a

The	tran
contains
integrat
transfor
contains
basically
transfor
models	

5 TU

5.1 D
A	good	p
transfor
and	test
it	within
the	seco
transfo
for	addi
transfor

This	don

1. D
t

2. D
t
m

3. R
c
	

5.1.1 D
The	cod
message
shows	h

–	2011	SINT

ation	

pment	
/Export	

	Overview	o

wn	 in	 the	 ta
on	 various
all	these	tra

nsformation
s	 all	 the	 tra
ted	 in	 the	 f
rmation	 (in
s	transforma
y	 the	 trans
rmation	con
(e.g.,	conver

UTORIAL

DEVELOPING
practice	to	f
rmations	int
t	the	transfo
n	the	SiSaS	S
ond	parts,	na
ormation.	I
tional	detail
rmation.	

ne	is	three	m

Develop	the
transformat
Develop	the
transformat
model	is	pro
Register	a	n
checker	and

DEVELOPIN
de	snippet	be
e	on	the	Ecli
how	to	integ

TEF

UML	
	
UML	
Enterp
Archit

of	the	model

able	above,	 t
	models,	m
ansformation

ns	included	i
ansformatio
final	 applica
cluding	 sto
ations	that	g
formation	 g
ntain	transfo
rting	Enterp

LS	

G	A	NEW	TR
follow	while
to	the	SiSaS	
ormation	asi
Studio.	This	
amely	how	
Interested	r
ls	about	how

main	steps:	

e	generator
tion	that	gen
e	checker,	a	
tion	that	che
oper	regard
new	transfor
d	the	type	of

NG	THE	GEN
elow	is	a	ver
ipse	console
grate	this	tra

No
prise	
tect	

No

l	transforma

the	SiSaS	St
ainly	 on	 UM
ns	is	contain

in	the	SiSaS	
ons	 that	 pro
ation.	 In	 Ta
orage,	 persis
generate	co
generating	
ormations	pr
prise	Archite

RANSFORM
e	adding	new
Studio,	is	to
de,	and	then
section	desc
to	integra
eaders	may	
w	to	write	M

r,		a	separate
nerates	the	n
MoFScript	
ecks	whethe
ing	the	requ
rmation	in	th
f	artefact	tha

NERATOR	SCR
ry	simple	m
e.	It	is	writte
ansformation

one
one

ations	includ

tudio	contai
ML	model,	 e
ned	into	the

Studio	can	b
oduce	 "prod
able	 1,	 this	
stence,	 bus
de	useful	to
the	 Maven	
roviding	con
ect	Model	in

MATION	
w	
o	first	develo
n	to	integrat
cribes	briefl
ate	a	new	
y	refer	to	[4]
MoFScript	

e	MoFScript	
needed	cod

er	a	given	UM
uirements	o
he	SiSaS	Stu
at	is	produc

CRIPT	
model	transfo
en	in	the	MO
n	into	the	Si

ded	in	the	Si

ins	a	set	of	
extended	w
	"transform

be	divided	in
duction"	 co
first	 catego
siness	 and	
o	compile	an
Infrastruct
nversion	me
nto	ECore	mo

op	
te	
ly	

	
e	

ML	
f	the	genera
udio	that	bin
ed.	

ormation	tha
OFScript	lang
iSaS	Studio.

Figure
Trans

JSP	Web	Se
JSF	Sample
Maven	JEE
ECore	Mod

iSaS	Studio	

model	 tran
ith	ad	hoc	 p
ation"	plugi

n	three	cate
de,	 i.e.,	 cod
ory	 corresp
presentatio
nd	package	t
ture.	 Finally
eans	betwee
odels).	

ator	
nd	together	t

at	merely	pr
guage	[4].	T

	

e	5.1	Structu
formation	p

ervice	Client
e	Site	
E	Project	Stru
del	

nsformations
profiles.	 Th
in.	

egories.	The	
de	 that	 will	
ponds	 to	 fir
n).	 The	 sec
the	final	app
y,	 the	 last	 g
en	different

the	generato

rints	a	welco
The	next	para

ture	of	the	
plugin	

7	

t	

ucture

s	 that	be	
e	 source	

first	one	
be	 later	
st	 set	 of	
cond	 set	
plication:	
group	 of	
t	types	of	

or,	the	

oming	
agraph	

	

©	2009	–	2011	SINTEF	 8	

	

/**
 * Test.m2t
 * Test whether the MoFScript Engine is ready for use.
 *
 * date: 29/10/2011
 *
 * author: Franck Chauvel - SINTEF
 */

texttransformation FooGenerator (in mdl:"http://www.eclipse.org/uml2/2.1.0/UML") {

 mdl.Model::main () {
 println("This is a test:")
 println("If you can read this message, MofScript is operational")
 }

}	

The	file	that	contains	this	code	snippet	must	be	placed	into	the	transformation	directory	of	the	
transformation	plugin	(or	one	of	its	sub	directories).	For	the	sake	of	consistent	organisation,	we	
recommend	to	place	it	in	"transformations/uml_to_foo/foo_generator.m2t"	

5.1.2 DEVELOPING	THE	CHECKER	SCRIPT	
The	following	code	snippets	illustrates	how	to	write	a	checker,	and	especially	how	to	return	a	
values	that	can	be	understood	in	the	Java	layer	of	the	SiSaS	Studio.	In	this	simple	example,	the	
checker	actually	checks	nothing,	and	replies	that	the	models	conforms	the	requirements,	
sending	the	"CHECKER_PASS"	message.	

import "../configuration.m2t"

texttransformation FooChecker(in mdl:"http://www.eclipse.org/uml2/2.1.0/UML") {

 mdl.Model::main () {
 print(CHECKER_PASS);
 }

}	

This	 file	 must	 be	 saved	 in	 the	 transformation	 plugin	 in	 a	 separated	 directory	 (for	 sake	 of	
organization).	For	instance,	we	may	place	it	into	"transformation/uml_to_foo/for_checker.m2t"	

5.1.3 REGISTERING	THE	TRANSFORMATION	
The	second	step	aims	at	writing	a	piece	of	Java	code	that	registers	the	generator	and	the	checker	
in	the	SiSaS	Studio.	Hence,	instantiating	templates	containing	the	related	generated	artefact	type	
will	hence	trigger	the	execution	of	both	the	generator	and	the	checker.	The	code	excerpt	below	
illustrates	 such	 a	 registration:	 In	 the	 initialization	 of	 the	 SisasStudio	 singleton	 class	
(org.sintef.no.sisas.transformation.SisasStudio),	 we	 add	 in	 the	 internal	 registry	 a	 new	
transformation	point	to	the	checker,	the	generator,	and	the	artefact	type.	

private SisasStudio() {
 transfoRegistry = new Hashtable<ArtifactType, Transformation>();

 // ----
 // ADD BELOW ANY TRANFORMATION THAT MUST BE AVAILABLE BY DEFAULT OR ANY
 // NEW TRANSFORMATION THAT MUST BE SUPPORTED
 //
 List<Transformation> transformations = new LinkedList<Transformation>();
 transformations.add(new Transformation("UML TO POJO",
 ArtifactType.POJO_JAVA_CODE,
 "uml_to_pojo/plain_java_checker.m2t",
 "uml_to_pojo/plain_java_generator.m2t"));
 transformations.add(new Transformation("UML to Foo",

	

©	2009	–	2011	SINTEF	 9	

	

 ArtifactType.FOO_FILE,
 "uml_to_foo/foo_checker.m2t",
 "uml_to_foo/foo_generator.m2t"));

 // ----
 // ...

 }

5.2 ADDING	A	NEW	PROJECT	TEMPLATE	
Additionally,	new	project	templates	can	be	defined,	and	have	to	be	defined	to	support	new	types	
of	 generated	 artefacts.	 The	 SiSaS	 studio	 includes	 a	 plugin	which	 permit	 to	 build	 new	 project	
templates.	 To	 do	 so,	 just	 create	 a	 new	 Project	 template	 file,	 as	 describe	 the	 structure	 of	 the	
resulting	source	directory,	as	shown	on	Figure	4.2	below:	

	

Figure	5.2	Defining	new		project	template	with	the	project	template	editor	

Once	 the	 desired	 template	 has	 been	 designed	 and	 saved	 in	 a	 ".projecttemplate"	 file,	 it	 can	 be	
either	registered	during	the	SiSaS	Studio	session,	using	the	SiSaS	Popup	menu,	or	copy	into	the	
SiSaS	 Studio	 installation,	 so	 as	 to	 pertain	 for	 later	 sessions.	 The	 transformation	 plugin	 has	 a	
specific	 directory	 named	 "template"	 which	 is	 automatically	 browsed	 when	 the	 SiSaS	 Studio	
starts,	and	each	 template	placed	 there	will	be	 loaded	and	hence	accessible	 in	 the	SiSaS	popup	
menu.		

5.3 CREATING	A	BUNDLE	OF	THE	SISAS	STUDIO	
Creating	a	bundle	of	Eclipse	that	contains	an	updated	version	of	the	SiSaS	Studio	is	a	simple	
process:			

1. Go	to	the	update	site	of	the	SiSaS	Studio	plugin	(project	
org.sintef.no.sisas.transformations.update).	Then	rebuild	the	update	site,	build	right	
clicking	on	PDE	tool,	and	selecting	"Build	site".	

2. Install	a	brand	new	eclipse	distribution	and	install	the	needed	plugins	inside,	MoFScript,	
Papyrus,	etc.	

	

©	2009	–	2011	SINTEF	 10	

	

3. Start	the	new	eclipse	and	select	File‐>Install	New	Software.	Select	a	local	repository,	and	
provide	the	location	of	the	update	site	directory	(namely	the	place	where	you	checkout	
the	org.sintef.no.sisas.transformation.update).	This	will	install	the	Sisas	Studio	in	the	
new	Eclipse	distribution.	

4. Exit	Eclipse	and	create	an	archive	containing	the	new	eclipse	distribution	(just	zip	the	
eclipse	directory).	Your	bundle	is	ready,	enjoy		

6 TROUBLESHOOTING		
This	section	summarizes	common	problems	that	may	occur	while	developing	the	SiSaS	Studio.	

6.1.1 UNABLE	TO	START	THE	WORKBENCH	
When	running	the	SiSaS	Studio	as	an	Eclipse	Workbench,	you	may	get	"Could	not	reserve	enough	
space	for	object	heap.	Could	not	create	the	Java	virtual	machine."	This	might	be	due	to	a	mismatch	
between	the	JVM	used	by	Eclipse	when	it	creates	a	new	workbench,	and	the	one	provided	by	
your	operating	system.	Make	sure	that	the	latter	one	is	a	32	bit	version.	If	you	are	using	a	64	bits	
system,	you	may	need	to	install	an	older	version	of	the	JVM,	optimized	for	32	bits	systems.		

7 REFERENCES	
1. Eric	Clayberg,	Dan	Rubel.	Eclipse	Plug‐ins.	4th	edition,	Addison‐Wesley,	2009.	

2. Bruce	Eckel,	Thinking	in	Java.	4th	edition,	Prentice	Hall,	2006.	

3. Kito	D.	Mann.	Java	Server	Faces	in	Action.	Manning	Publications,	2005.		

4. Jon	Oldevik.	MOFScript	User	Guide.	Unpublished.	Version	1.0,	February	2011.	(available	
at	http://eclipse.org/gmt/mofscript/)	

5. Gøran	K.	Olsen.	SiSaS	Studio	–	User	Manual.	Volume1,	2	and	3.	Unpublished.	

6. Object	Management	Group	(OMG).	Service	oriented	architecture	Modeling	Language	
(SoaML)	‐	Specification	for	the	UML	Profile	and	Metamodel	for	Services	(UPMS)	SoaML.	
ptc/2009‐12‐09.	2009.	(see	http://www.omg.org/spec/SoaML/)	

7. Object	Management	Group	(OMG).	Unified	Modeling	Language	–	Superstructure	(v2.4.1).	
formal/2011‐08‐06.	2011.	(see	http://www.uml.org/)	

8. Open	Modelica.	(See	http://www.openmodelica.org/)	

9. Debu	Panda,	Reza	Rahman	and	Derek	Lane.	EJB	3	in	Action.	Manning	Publications,	2007.	

10. Papyrus	UML.	(See	http://www.eclipse.org/modeling/mdt/papyrus/)	

11. Chris	Richardson.	POJO	in	Action:	Developing	Enterprise	Applications	with	Lightweight	
Frameworks.	Manning	Publications,	2006	

12. Wladimir	Schamai.	Modelica	Modeling	Language	(ModelicaML):	A	UML	Profile	for	
Modelica.	(available	at	http://www.openmodelica.org/index.php/developer/tools/134)	

13. Sonatype.	Maven:	The	Definitive	Guide.	O'Reilly	Media.	September	2008.	

14. Eric	Van	der	Vlist.	XML	Schemas:	The	W3C's	Object‐Oriented	Descriptions	for	XML.	O'Reilly	
Media.	June	2002.	

