SINTEF

Developer's Manual

SiSaS Studio v 2.0

SINTEF ICT
6/11/2012

DEVELOPER'S MANUAL

For S15AS Stupio v2.0

Version: 1.0
Contributors:

e Franck Chauvel - SINTEF / ICT
Summary:

This document briefly explains how to add new features in the SiSaS studio v1.0. It first
outlines the basic software toolset needed, and depicts the main architecture of the SiSaS Studio.
The addition of a simple feature is given as a tutorial and some common issues are discussed to

conclude.

Change History:

Version Date Changes Description Author
1.2 June 11, 2012 Add section about bundle creation F. Chauvel
1.1 June 8,2012 Introduce the new architecture F. Chauvel
1.0 Nov 29, 2011 First Version F. Chauvel
0.1 Oct 17,2011 Initial Outline F. Chauvel

© 2009 - 2011 SINTEF 1

1 CONTENTS

JZZN U 4 U (oY 15 ot [) o VU000 OO SP 3
3 Setting up your Development ENVIFONMENT ... sesessesssesssessessssssessssssssssssssssessssesssssans 3
3.1 Installing the Development TOOISELcoereeneeureisesseesee s essseesse s ss s ssssss s sesassnees 3
3.2 Checking out the SiSaS Studio SOUICE COAE.....omiieriereereeerseesee e ssesseseens 4

4 Architecture of the SiSAS STUAIO ... sees s st s s s senans 4
4.1 A Set Of EClIPSE PIUGINS. it iseseesset e sssesssss e sssss s s bbb s s bbb s 4
4.2 INEEINAL ATCHITECTUTE. ..o ettt s et b ss s bbb s Rt s 4
42.1 TEMPIALE PIOJECES ..eureeceerreesreersesseessereseesses s sees s ses s s e sssens s essasssasesssens 4
4.2.2 MoOdel TranSfOrMAtiONS ..o ceereereeereesereesseessesse s esssessee s ss s es s b s eees 5
4.2.3 Existing Model TranSformMations ... eeesseseesssesssssssssesssesssessssssssesssssssssssssssssssessess 6

D TULOTIALS ottt sttt sas bt a b s b £ RS eER e A e bR e e bbb 7
5.1 Developing a NeW TranSfOrmMation ... cneeeessessesseeesssssssssesssessesssssssessessessssssssssssssssees 7
511 Developing the GENerator SCIPT. ... e eerseeeseesssesseesssessesssesssessssesssesssesssssssssssesssessess 7
5.1.2 Developing the CheCKer SCIiPT ...t eesss e ssses s ssssssss s eees 8
5.1.3 Registering the TransformMation. ... e ssssssesssessssssssssssssessens 8

5.2 Adding a new Project TEMPIAte.....ccreereerreeeeeseesseessessesssessssesssessseesssesssssssesssessssssssesssesssssssessans 9

6 TTOUDIESNOOTINEG ...oeueeeeeiieeeresee ettt es et s s s s s s bbbt 10
6.1.1 Unable to Start the WOorkbench ...t ssseesssessesseeseeens 10

7 REFEIEIICES ..cuueeeeeeeeereeecese ettt ea e s e s £ R R eEaeER Rt b bR 10
© 2009 - 2011 SINTEF 2

2 INTRODUCTION

SiSaS Studio [5] is an Eclipse bundle that enables to generate code (Java [2] among others) from
various models, especially from UML models [7]. The core part of the SiSaS studio [1] is basically
a set of model transformations, written in MOFScript [4], and some additional Java classes that
ensure the proper integration of these transformations within the Eclipse GUI [1].

The SiSaS studio bundle also includes other Eclipse plugins that support common development
tasks associated with the model-driven methodology: UML modelling using the Papyrus UML
Editor [10], Mathematical modelling using the OpenModelica plugin [8, 12], etc. Although these
plugins are bundled within the SiSaS Studio, they must be considered as third party elements,
and are maintained separately.

This document is aimed at people who need to extend or to fix bugs in the SiSaS Studio. It
is NOT aimed at people who merely want to use it. Please consult the User Guide [5] in
this case.

The aim of this document is to introduce the tool set used to develop and extend the SiSaS Studio.
The first section describes precisely how to setup your development environment. The second
part then briefly describes the architecture of the model transformations that have been
developed in the SiSaS Studio.

3 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

3.1 INSTALLING THE DEVELOPMENT TOOLSET

Below are the main steps to follow in order to configure your SiSaS development environment.
These steps are only relevant to setup the environment needed to develop the SiSaS Studio itself,
and is NOT relevant if you only want to use it.

1. Java Development Kit (JDK v1.6). The first element to install is the Java Development
Kit [2], which includes the Java virtual machine, and the Java development tools. This is
needed to run the Eclipse IDE. It is worth to note that you can run Eclipse over newer
version of the]DK (e.g., on Java 7) but the code of the SiSaS Studio itself requires Java 6.

2. Eclipse-Modelling (v3.5.x, so called "Galileo", NOT higher). The second element needed
is a distribution of the Eclipse Modelling Framework. We recommend the version 3.5 as
some of the plugins that will be later added require this specific version.

3. Papyrus UML [10] is the UML editor advocated by the SiSaS studio. It comes as an
Eclipse plugin and can be installed in Eclipse using the update site.

4. MOFScript [4] (v1.4 or higher) is the programming language used to write the model
transformations that are provided by the SiSaS Studio. The MOFScript language comes as
well as an Eclipse plugin providing syntax highlighting and automatic completion. The
MOFScript plugin can be installed using the update site.

5. SVN Plugin. You might want as well to install an additional SVN plugin, which permits to
directly commit the changes you made to the SiSaS source code into the SiSaS repository
(So they become available for other developers). Basically, two main plugins are

© 2009 - 2011 SINTEF 3

available: Subclipse and Subversive. Both of them are compatible with the rest of the
toolset.

3.2 CHECKING OUT THE SISAS STUDIO SOURCE CODE
The source code of the SiSaS studio is available on a SVN server. You can retrieve it from the
following URL:

https://cloud.catenda.no/svn/sisas/sisasstudio

If you have not yet got proper credential to access the SiSaS Studio, you may contact the Catenda
staff in charge of the SVN repository.

4 ARCHITECTURE OF THE SISAS STUDIO

4.1 A SETOF ECLIPSE PLUGINS
The SiSaS Studio is made of four main Eclipse plugins:

o Profiles plugin defines a set of UML profiles that
can be used within the SiSaS Studio, e.g., SoaML,
migration, etc.

o Transformations plugin binds the Eclipse
graphical interfaces to the set of MoFScript
transformations. Basically, it drives the
MoFScript engine and selects the proper
transformation according to the Ul events.

e ProjectTemplates provides the user with the
ability to define his own project templates,

assuming that the transformation he needs v
already exist in the SiSaS Studio. papyrus

o Features plugin is basically a collection of Figure 4.1 Dependencies between the
plugins. It is used as a fagade/container by the plugins that compose the SiSa$S Studio
Eclipse Framework. It depends on the two other
plugins

e Site plugin permits to create an Eclipse update-site from which the SiSaS Studio plugin
can be retrieved and install. It is used when building the SiSaS Studio bundle.

The dependencies between these four plugins are depicted by Figure 1, aside. For a better
understanding of the Eclipse plugin framework, the interested reader may consult [5].

4.2 INTERNAL ARCHITECTURE

The SiSaS Studio is built as a sort of "product line" of models transformations. The basic idea is
to separate the idea definition of specific model transformations from their combination to
generate complex code structures (e.g.,, Maven projects). To this end, the SiSaS studio let the user
define "project templates” where she specifies the organization of the code she needs in terms of
a directory structure containing the "to-generate" artefacts.

4.2.1 TEMPLATE PROJECTS
© 2009 - 2011 SINTEF 4

Template Projects are separated models (bundle in a separate Eclipse models) which capture
the organization of the code to generate, especially complex structures including multiple
generated artefacts. Although the user can define is own project templates, the SiSaS Studio
comes with a set of predefined project templates supporting (POJO projects, OGC/WPS projects,
EJB, etc.)

£ ArtifactType

’ S Resource [E projectTemplatd | = POJO_MAVEN_POM_FILE
o . < [rojectTemplatel = JO_MAVEN_ |_FIL
contents IaTHEESTINg 1 = - Estr - POJO_JAVA_CODE
© id : EString ¢ e = Name : EString = .
0.r | root — - POJO_JUNIT_CODE

@ getAllArtifacts() : GeneratedArtifact

@ getAbsolutePath() : EString
[

ik andi ks ARCChrin)
=~ ifNSianuaeAncouing)

0.1[B Directory [B GeneratedArtifact
i [A
owner [| = type : ArtifactType

Figure 4.2 The Project Template metamodel

As shown by Figure 4.2, "project templates” basically describe a directory structure in which the
needed artefacts can be place so as to ensure the proper generate of the complete project.

Project template defines a fixed set of generated artefact types. Adding a new type of generated
artefact requires to modify the model of project template and hence to regenerate and recompile
the code the related Eclipse plugin.

4.2.2 MODEL TRANSFORMATIONS

The SiSaS Studio is actually a registry of models transformation, each of them targeting a specific
type of generated artefact. While instantiating a specific project template, the sisas studio merely
trigger the transformation relevant for each generated artefacts.

Each transformation registered in the SiSaS Studio made of two parts: generators and checkers.
Generators are in charge of effectively generating the code, where as a checker is in charge of
verifying whether the model given as input by the user contains sufficient information for the
generator to run properly.

It is worth to note that the consistency between a generator and its related checker is the
responsibility of the transformation developer.

Figure 4.3, below illustrates how model transformation registered with the SiSaS Studio. The
SiSaS Studio explicitly declares the transformations that are available, including the two
separate MofScript files and the type artefact they generate. Invoking the "instantiate" will then
pass through the template that trigger the generation of each artefact using the relevant
transformation (or raise an error if not transformation are available to handle one of the
artefact).

© 2009 - 2011 SINTEF 5

class Class Model /

«singleton»
SisasStudio

+ instantiate(Model, Template) : void

+transformations|1..*

«enumeration» +eonfig |t
ArtifactTvpe +definedTypes)
yp Transformation Preferences
JSF_BEANS +outputType - description: String
SQL_DATA 1 - name: String
JAVA_EJB
JSF_PAGES + apply(Model) : void
XML_SERVICES_CONFIG
+checker|1 1 | +implementation
MofScript
- path: String

+ process(Model) : void

Figure 4.3 Internal representation of model transformation within the SiSaS Studio

Registering a new transformation in the SiSaS Studio is hence a matters of a few lines, in the
initialization of the SisasStudio singleton class. In the following code snippet, we registered one
transformation that aims at generated POJO (plain old java projects).

private SisasStudio () {
transfoRegistry = new Hashtable<ArtifactType,

/)=

Transformation> () ;

// ADD BELOW ANY TRANFORMATION THAT MUST BE AVAILABLE BY DEFAULT OR ANY

// NEW TRANSFORMATION THAT MUST BE SUPPORTED
//

List<Transformation> transformations = new LinkedList<Transformation>();
transformations.add (new Transformation ("UML TO POJO",

ArtifactType.POJO JAVA CODE,

"uml to pojo/plain java checker.m2t",
"uml to pojo/plain java generator.m2t"));
transformations.add (new Transformation ("UML to MAVEN POM FOR Java",

ArtifactType.POJO MAVEN POM FILE,

"uml to pojo/maven pom checker.m2t",
"uml to pojo/maven pom generator.m2t"));

/===
/7

4.2.3 EXISTING MODEL TRANSFORMATIONS

Scope Input Required Profile Output
Storage UML SoaML / Persistence XSD Schema
SQL Schema Creation
SQL Schema Deletion
Persistence UML SoaML / Persistence Java Classes (P0JO)
JEE 6 - Entity Beans
JEE 6 - Entity Managers
Business UML SoaML WS - WSDL

WS - Skeleton (JAX-WS)
JEE 6 - Stateless Session Beans

© 2009 - 2011 SINTEF

6

Presentation UML JSP Web Service Client

JSF Sample Site
Development UML None Maven JEE Project Structure
Import/Export Enterprise None ECore Model

Architect

Table 1. Overview of the model transformations included in the SiSaS Studio

As shown in the table above, the SiSaS Studio contains a set of model transformations that be
applied on various models, mainly on UML model, extended with ad hoc profiles. The source
code of all these transformations is contained into the "transformation" plugin.

The transformations included in the SiSaS Studio can be divided in three categories. The first one
contains all the transformations that produce "production” code, i.e., code that will be later
integrated in the final application. In Table 1, this first category corresponds to first set of
transformation (including storage, persistence, business and presentation). The second set
contains transformations that generate code useful to compile and package the final application:
basically the transformation generating the Maven Infrastructure. Finally, the last group of
transformation contain transformations providing conversion means between different types of
models (e.g., converting Enterprise Architect Model into ECore models).

5 TUTORIALS

5.1 DEVELOPING A NEW TRANSFORMATION
A good practice to follow while adding new

transformations into the SiSaS Studio, is to first develop 4 &> orgssintef.no.sisas.transformations

and test the transformation aside, and then to integrate . .s.ettlngs
it within the SiSaS Studio. This section describes briefly !: :Ln
the second parts, namely how to integrate a new : META-INF
transformation. Interested readers may refer to [4] G sre
for additional details about how to write MoFScript (= transformations
transformation. X| .classpath
X| .project
This done is three main steps: o0 build.properties
% pluginxml

1. Develop the generator, a separate MoFScript
transformation that generates the needed code
2. Develop the checker, a MoFScript
transformation that checks whether a given UML
model is proper regarding the requirements of the generator
3. Register a new transformation in the SiSaS Studio that bind together the generator, the
checker and the type of artefact that is produced.

5.1.1 DEVELOPING THE GENERATOR SCRIPT

The code snippet below is a very simple model transformation that merely prints a welcoming
message on the Eclipse console. It is written in the MOFScript language [4]. The next paragraph
shows how to integrate this transformation into the SiSaS Studio.

© 2009 - 2011 SINTEF 7

/**
* Test.m2t
B Test whether the MoFScript Engine is ready for use.

*
* date: 29/10/2011
*
* author: Franck Chauvel - SINTEF
7
texttransformation FooGenerator (in mdl:"http://www.eclipse.org/uml2/2.1.0/UML") {
mdl.Model: :main () {
println("This is a test:")
println("If you can read this message, MofScript is operational")

The file that contains this code snippet must be placed into the transformation directory of the
transformation plugin (or one of its sub directories). For the sake of consistent organisation, we
recommend to place it in "transformations/uml_to_foo/foo_generator.m2t"

5.1.2 DEVELOPING THE CHECKER SCRIPT

The following code snippets illustrates how to write a checker, and especially how to return a
values that can be understood in the Java layer of the SiSaS Studio. In this simple example, the
checker actually checks nothing, and replies that the models conforms the requirements,
sending the "CHECKER_PASS" message.

import "../configuration.m2t"
texttransformation FooChecker (in mdl:"http://www.eclipse.org/uml2/2.1.0/UML") {
mdl .Model: :main () {

print (CHECKER PASS) ;
}

This file must be saved in the transformation plugin in a separated directory (for sake of
organization). For instance, we may place it into "transformation/uml_to_foo/for_checker.m2t"

5.1.3 REGISTERING THE TRANSFORMATION

The second step aims at writing a piece of Java code that registers the generator and the checker
in the SiSaS Studio. Hence, instantiating templates containing the related generated artefact type
will hence trigger the execution of both the generator and the checker. The code excerpt below
illustrates such a registration: In the initialization of the SisasStudio singleton class
(org.sintef.no.sisas.transformation.SisasStudio), we add in the internal registry a new
transformation point to the checker, the generator, and the artefact type.

private SisasStudio () {
transfoRegistry = new Hashtable<ArtifactType, Transformation>();

1y ====
// ADD BELOW ANY TRANFORMATION THAT MUST BE AVAILABLE BY DEFAULT OR ANY
// NEW TRANSFORMATION THAT MUST BE SUPPORTED
//
List<Transformation> transformations = new LinkedList<Transformation>();
transformations.add (new Transformation ("UML TO POJO",
ArtifactType.POJO JAVA CODE,
"uml to pojo/plain java checker.m2t",
"uml to pojo/plain java generator.m2t"));
transformations.add (new Transformation ("UML to Foo",

© 2009 - 2011 SINTEF 8

ArtifactType.FOO FILE,
"uml_to_ foo/foo_checker.m2t",
"uml to foo/foo generator.m2t"));

/) ===
/.

5.2 ADDING A NEW PROJECT TEMPLATE

Additionally, new project templates can be defined, and have to be defined to support new types
of generated artefacts. The SiSaS studio includes a plugin which permit to build new project
templates. To do so, just create a new Project template file, as describe the structure of the
resulting source directory, as shown on Figure 4.2 below:

= Resource - SandBox/POJO System.projecttemplate - Eclipse Platform =B &

File Edit Mavigate Search Project Run ProjectTemplate Editor Window Help

- - BB -~ £ ([Resource |
L5 Project Explorer 2 = O|| 4 POJO System.projecttemplate 53 =8
= <.===’=>| ~ I @ platform:/resource/SandBox/P0J0%20System projecttemplate

= MofScript & ﬁ Project Template POJO Application
= SandBox um Directory src
@ MavenleeTemplate.projecttempli wa Directory main
&) My.projecttemplate E um Directory java
@ OGC_WPS_Process.projecttempla ? Generated Artifact POJO code
@ PQJO System.projecttemplate 9 Generated Artifact Maven POM file
n test.di2
&) testuml -
‘4 nr 3

55 Qutline 52~ [E TaskList| & ~ = 01| ‘&) Tasks [Properties 3\ [31 Problems Bk e

Selection | Parent | List | Tree | Table| Tree with Columns

@ platform:/resource/SandBox/P0J0 %205 Property Value
Id '= POJO_CODE
Mame ‘= POJO code
Type '= POJO_JAVA_CODE

4 m 2 4 n 3

7% B Theld of the Resource

Figure 5.2 Defining new project template with the project template editor

Once the desired template has been designed and saved in a ".projecttemplate” file, it can be
either registered during the SiSaS Studio session, using the SiSaS Popup menu, or copy into the
SiSaS Studio installation, so as to pertain for later sessions. The transformation plugin has a
specific directory named "template” which is automatically browsed when the SiSaS Studio
starts, and each template placed there will be loaded and hence accessible in the SiSaS popup
menu.

5.3 CREATING A BUNDLE OF THE SISAS STUDIO
Creating a bundle of Eclipse that contains an updated version of the SiSaS Studio is a simple
process:

1. Go to the update site of the SiSaS Studio plugin (project
org.sintef.no.sisas.transformations.update). Then rebuild the update site, build right
clicking on PDE tool, and selecting "Build site".

2. Install a brand new eclipse distribution and install the needed plugins inside, MoFScript,
Papyrus, etc.

© 2009 - 2011 SINTEF 9

3.

Start the new eclipse and select File->Install New Software. Select a local repository, and
provide the location of the update site directory (namely the place where you checkout
the org.sintef.no.sisas.transformation.update). This will install the Sisas Studio in the
new Eclipse distribution.

Exit Eclipse and create an archive containing the new eclipse distribution (just zip the
eclipse directory). Your bundle is ready, enjoy ©

6 TROUBLESHOOTING

This section summarizes common problems that may occur while developing the SiSaS Studio.

6.1.1

UNABLE TO START THE WORKBENCH

When running the SiSaS Studio as an Eclipse Workbench, you may get "Could not reserve enough
space for object heap. Could not create the Java virtual machine." This might be due to a mismatch
between the JVM used by Eclipse when it creates a new workbench, and the one provided by
your operating system. Make sure that the latter one is a 32 bit version. If you are using a 64 bits
system, you may need to install an older version of the JVM, optimized for 32 bits systems.

7 REFERENCES

A

Ut

10.
11.

12.

13.
14.

Eric Clayberg, Dan Rubel. Eclipse Plug-ins. 4th edition, Addison-Wesley, 2009.
Bruce Eckel, Thinking in Java. 4th edition, Prentice Hall, 2006.
Kito D. Mann. Java Server Faces in Action. Manning Publications, 2005.

Jon Oldevik. MOFScript User Guide. Unpublished. Version 1.0, February 2011. (available
at http://eclipse.org/gmt/mofscript/)

Ggran K. Olsen. SiSasS Studio - User Manual. Volumel, 2 and 3. Unpublished.

Object Management Group (OMG). Service oriented architecture Modeling Language
(SoaML) - Specification for the UML Profile and Metamodel for Services (UPMS) SoaML.
ptc/2009-12-09. 2009. (see http://www.omg.org/spec/SoaML/)

Object Management Group (OMG). Unified Modeling Language - Superstructure (v2.4.1).
formal/2011-08-06. 2011. (see http://www.uml.org/)

Open Modelica. (See http://www.openmodelica.org/)
Debu Panda, Reza Rahman and Derek Lane. EJB 3 in Action. Manning Publications, 2007.

Papyrus UML. (See http://www.eclipse.org/modeling/mdt/papyrus/)

Chris Richardson. POJO in Action: Developing Enterprise Applications with Lightweight
Frameworks. Manning Publications, 2006

Wladimir Schamai. Modelica Modeling Language (ModelicaML): A UML Profile for
Modelica. (available at http://www.openmodelica.org/index.php/developer/tools/134)

Sonatype. Maven: The Definitive Guide. O'Reilly Media. September 2008.

Eric Van der Vlist. XML Schemas: The W3C's Object-Oriented Descriptions for XML. O'Reilly
Media. June 2002.

© 2009 - 2011 SINTEF 10

