
FADC250 User’s Manual

Table of Contents
1. How to use this document
2. VME64x Flash ADC Module Specifications
3. Using the FADC250 module
4. FADC250 Data Format
5. FIRMWARE for FADC250 Ver2 ADC FPGA
6. IEEE article on FADC250 module

How to use this document
This document is a collage of different documentation produced by the Jefferson Lab data
acquisition group regarding the FADC250 module. This collection pulls together these diverse
sources to provide a single point of reference information regarding this module. For those who
want to exploit the full capabilities of the module, it is recommended to start at the beginning and
review the module specifications (section 2 below), and then proceed to the instructions for how
to use the module (section 3 below). The Data Format section gives more details regarding the
status values encoded in the data block header words and how the data from the module should
be interpreted, which varies according to the different modes of operation. The internals of the
board firmware gives a full picture of how the module behaves in each operating mode, and will
be useful to those who are interested in extending its capabilities. The IEEE article at the end
gives a general overview of the module, and can serve as a reference in case doubts arise
whether a design feature has actually been implemented (see Results).

This collection has been assembled by Richard Jones, University of Connecticut, with full credit
given to the actual authors of the contents, whose names are listed as authors of the IEEE
article.

1

3

5

6

8

10

11

13

15

2

4

7

9

12

14

16

S
V

DC TR ST

Q Q

fA
D

C
-2

50

 J

LA
B

fADC250

VME64x Flash ADC Module Specifications

Signal Inputs Number 16 S Version (50 Ohm, LEMO)*

Range -0.5V, -1V & -2V. User Selectable
 Offset ±10% FS per channel via DACs

Clock Sampling 250 MSPS, Differential
 Jitter 1 pS (10-bit ADC), 350 fS (12-bit ADC)
 Source Internal and External

Control Clock IN – Diff., LVPECL (Front Panel & Backplane)
Inputs/Outputs Trigger IN, OUT - Differential (Front Panel & Backplane)

 Status 1 OUT – Differential (Front Panel & Backplane)
 Status 2 OUT – Differential (Front Panel & Backplane)
 Sync OUT – Differential (Front Panel & Backplane)
Trigger SW Software Strobe (Internal)

Conversion Resolution 10-bit (8 and 12-bit by chip replacement)
Characteristics INL ± 0.8 LSB

 DNL ± 0.5 LSB
 SNR 56.8 dB @ 100 MHz Input
 Data Latency 32 nS

Trigger Latency 8 µS

Data Memory 8 µS

Data Processing Sparcification
 Windowing
 Charge, Pedestal, Peak
 Time (Over Threshold, Relative to trigger)
 Output (Backplane, VXS)

Interface VME64x – 2eVME Data Transfer Cycles (40, 80, 160 & 320
MB/sec) with VXS-P0

Packaging 6U VME64x

Power +3.3V, +5V, +12V, -12V

FJB, JLAB, FADC_SPEC.DOC

Using the FADC250 Module (V19 - 11/25/13)

1.1 Controlling the Module

 Communication with the module is by standard VME bus protocols. All registers

and memory locations are defined to be 4-byte entities. The VME slave module has three

distinct address ranges.

A24 – The base address of this range is set by a 12-element DIP switch on the board. It

occupies 4 Kbytes of VME address space, organized in 1 K 32-bit words. Relative to the

base address, this space is divided as follows:

 000-0FF – Register space to control and monitor the module (64 long words)

 100-1FF – ADC processing registers (64 long words)

 200-2FF – HITSUM processing registers (64 long words)

 300-3FF – SCALER registers (64 long words)

 400-4FF – SYSTEM TEST registers (64 long words)

 500-FFF – Reserved (704 long words)

In addition to registers that are directly mapped to a VME address (Primary Address), the

module supports Secondary Addressing in the A24 address space. These registers are

accessed through an address mapping register (Secondary Address Register). Each

secondary address is associated with a primary address. A Primary Address may have up

to 64 K secondary addresses associated with it. A VME cycle loads the mapping register

with data which is the internal (secondary) address of the target register. A VME cycle

with the associated primary address accesses (read/write) the chosen internal register.

Important registers are assigned primary addresses, allowing them to be directly

accessible in a single VME cycle. Setup tables are assigned secondary addresses. This

allows for a large internal address space, while maintaining a small VME footprint.

A32 - The base address of this range is programmed into register ADR32. It occupies 8

Mbytes of VME address space, organized in 2 M 32-bit words. A read of any address in

this range will yield the next FADC data word from the module. Even though the

module is logically a FIFO, the expanded address range allows the VME master to

increment the address during block transfers. This address range can participate in single

cycle, 32-bit block, and 64-bit block reads. The only valid write to this address range is

the data value 0x80000000 which re-enables the module to generate interrupts (after one

has occurred). The address range must be enabled by setting ADR32[0] = 1.

A32 - The lower and upper limits of this address range are programmed into register

ADR_MB. This common address range for a set of FADC modules in the crate is used to

implement the Multiblock protocol. By means of token passing FADC data may be read

out from multiple FADC modules using a single logical block read. The board

possessing the token will respond to a read cycle in this address range with the next

FADC data word from that module. The token is passed along a private daisy chain line

to the next module when it has transferred all data from a programmed number of events

(register BLOCK SIZE). The address range must be enabled: set ADR_MB[0] = 1.

1.3 Module Registers

VERSION – board/firmware revision (0x0)

 [7…0] – (R) – firmware revision

 [15…8] – (R) – board revision

 [31…16] – (R) – board type (“FADC”)

CSR – Control/Status (0x4)

 0 – (R) – Event Accepted

 1 – (R) – Block of Events Accepted

 2 – (R) – Block of Events ready for readout

 3 – (R) – BERR Status (1 = BERR asserted)

 4 – (R) – Token Status (1 = module has token)

 [5…10] – (reserved)

 11 – (R) – Data FIFO Empty Flag Asserted

 12 – (R) – Data FIFO Almost Empty Flag Asserted

 13 – (R) – Data FIFO Half Full Flag Asserted

 14 – (R) – Data FIFO Almost Full Flag Asserted

 15 – (R) – Data FIFO Full Flag Asserted

[16…19] – (reserved)

 20 – (W) – Pulse Soft Trigger 2 (if CTRL[7] = 1 and CTRL[6..4] = 5)

 (delayed Trigger 1 follows; delay in TRIG21_DELAY register)

 (R) – Trigger 2 -> Trigger 1 sequence active

 21 – (W) – Pulse Clear Module – soft reset + clear data pipelines

 (R) – Clear Module process active

22 – (W) – ENABLE SCALERS INTO DATA STREAM with FORCED

 BLOCK TRAILER INSERTION (write ‘1’ to bits 22, 23)

 23 – (W) – FORCE BLOCK TRAILER INSERTION – will be successful only

 if there are NO triggers waiting to be processed

 24 – (R) – Last FORCE BLOCK TRAILER INSERTION Successful

 25 – (R) – Last FORCE BLOCK TRAILER INSERTION Failed

 26 – (R) – Local Bus Time Out – target AK or DK timed out (5 us);

 27 – (R/W) – Local Bus Error – target protocol violation;

 (write ‘1’ clears latched bits 26, 27)

 28 – (W) – Pulse Soft Sync Reset (if CTRL[11] = 1 and CTRL[10..8] = 6)

 29 – (W) – Pulse Soft Trigger 1 (if CTRL[7] = 1 and CTRL[6..4] = 6)

 30 – (W) – Pulse Soft Reset – initialize counters, state machines, memory

 31 – (W) – Pulse Hard Reset – initialize module to power-up state

CTRL1 – Control 1 (0x8)

 [1…0] – (R/W) – Sampling Clock Source Select

0 = Internal Clock

1 = Front Panel connector

2 = P0 connector (VXS)

3 = P0 connector (VXS)

 2 – (not used)

 3 – (R/W) – Enable Internal Clock

[6…4] – (R/W) – Trigger Source Select

0 = Front Panel Connector (Trigger 1)

1 = Front Panel Connector (Trigger 1; synchronized)

2 = P0 Connector (VXS) (Trigger1, Trigger 2)

3 = P0 Connector (VXS) (Trigger1, Trigger 2; synchronized)

4 – (not used)

5 – Software Generated (Trigger 2 + delayed Trigger 1)

6 = Software Generated (Trigger 1)

7 = Module Internal Logic

7 – (R/W) – Enable Soft Trigger

 [10…8] – (R/W) – Sync Reset Source Select

0 = Front Panel Connector

1 = Front Panel Connector (synchronized)

2 = P0 Connector (VXS)

3 = P0 Connector (VXS) (synchronized)

4 – (not used)

5 – (not used)

6 = Software Generated

7 = no source

11 – (R/W) – Enable Soft Sync Reset

12 – (R/W) – Select Live Internal Trigger to Output

13 – (R/W) – Enable Front Panel Trigger Output

14 – (R/W) – Enable P0 (VXS) Trigger Output

 [15…17] – (reserved)

 18 – (R/W) – Enable Event Level Interrupt

 19 – (reserved)

 20 – (R/W) – Enable BERR response

 21 – (R/W) – Enable Multiblock protocol

 22 – (R/W) – FIRST board in Multiblock system

 23 – (R/W) – LAST board in Multiblock system

 24 – (reserved)

 25 – (R/W) – Enable Debug Mode

 [26…27] – (reserved)

 28 – (R/W) – Multiblock Token passed on P0

 29 – (R/W) – Multiblock Token passed on P2

 30 – (reserved)

31 – (R/W) – System Test Mode (0 = normal, 1 = test mode enabled)

CTRL2 – Control 2 (0xC)

 0 – (R/W) – GO (allow data transfer from external FIFOs to input FIFOs)

 1 – (R/W) – Enable Trigger (1 & 2) to Module (source = CTRL1[6…4])

 2 – (R/W) – Enable Sync Reset to Module (source = CTRL1[10…8])

 3 – (R/W) – Enable Internal Trigger Logic

 4 – (R/W) – Enable Streaming mode (NO event build)

 [5…7] – (reserved)

8 – (R/W) – Enable Test Event Generation (for debug)

[9…15] – (reserved)

 Bits 16 – 31 are functional only in Debug Mode (CTRL1[25] = 1)

 16 – (reserved)

 17 – (R/W) – Transfer data: build FIFO  output FIFO

 [18…31] – (reserved)

BLOCK SIZE (0x10)

[15…0] – (R/W) – number of events in a BLOCK.

 Stored Event Count ≥ BLOCK SIZE → CSR[3] = 1.

 [31…16] – (reserved)

INTERRUPT (0x14)

 [7…0] – (R/W) – Interrupt ID (vector)

 [10…8] – (R/W) – Interrupt Level [2..0]. Valid values = 1,..,7.

 11 - 15 – (reserved)

 [20…16] – (R) – Geographic Address (slot number) in VME64x chassis.

 21 – 22 – (reserved)

 23 – (R) – Parity Error in Geographic Address.

 24 – 31 – (reserved)

ADR32 – Address for data access (0x18)

 0 – (R/W) – Enable 32-bit address decoding

 1 – 6 – (reserved – read as 0)

 [15…7] – (R/W) – Base Address for 32-bit addressing mode (8 Mbyte total)

ADR_MB – Multiblock Address for data access (0x1C)

 0 – (R/W) – Enable Multiblock address decoding

 1 – 6 – (reserved – read as 0)

 [15…7] – (R/W) – Lower Limit address (ADR_MIN) for Multiblock access

 16 – 22 – (reserved – read as 0)

 [31…23] – (R/W) – Upper Limit address (ADR_MAX) for Multiblock access

The board that has the TOKEN will respond with data when the VME address

satisfies the following condition:

 ADR_MIN ≤ Address < ADR_MAX.

SEC_ADR – Secondary Address (0x20)

 [15…0] – (R/W) – Secondary Address for 24-bit addressing mode

16 – (R/W) – Enable auto-increment mode (secondary address increments by 1

after each access of the associated primary address)

DELAY – Trigger/Sync_Reset Delay (0x24)

 [21…16] – (R/W) – Sync reset delay

 [5…0] – (R/W) – Trigger delay

INTERNAL TRIGGER CONTROL (0x28)

 [23…16] – (R/W) – trigger width (4 ns per count)

 [7…0] – (R/W) – trigger hold off delay (4 ns per count)

RESET CONTROL (0x2C)

 0 – (W) – Hard reset – Control FPGA

 1 – (W) – Hard reset – ADC processing FPGA

[2…3] – (reserved)

 4 – (W) – Soft reset – Control FPGA

 5 – (W) – Soft reset – ADC processing FPGA

[6…7] – (reserved)

 8 – (W) – Reset – ADC data FIFO

 [9…10] – (reserved)

 10 – (W) – Reset – HITSUM FIFO

 11 – (W) – Reset – DAC (all channels)

 12 – (W) – Reset – EXTERNAL RAM Read & Write Address Pointers

 [13…15] – (reserved)

 16 – (W) – Take Token – return token to 1
st
 board of multiboard set

 [17…31] – (reserved)

TRIGGER COUNT (0x30)

 [31…0] – (R) – total trigger count

 31 – (W) – reset count

EVENT COUNT (0x34)

 [23…0] – (R) – number of events on board (non-zero → CSR[0] = 1).

 [31…24] – (reserved)

BLOCK COUNT – (0x38)

 [31…20] – reserved

 [19…0] – (R) - number of event BLOCKS on board (non-zero → CSR[2] = 1).

BLOCK FIFO COUNT – (0x3C)

 [31…6] – reserved

 [5…0] – (R) - number of entries in BLOCK WORD COUNT FIFO

BLOCK WORD COUNT FIFO – (64 deep FIFO) (0x40)

 [31…25] – reserved (read as ‘0’)

 24 – (R) – count not valid (word count FIFO empty)

 [23…20] – reserved (read as ‘0’)

 [19…0] – (R) - number of words in next event BLOCK

INTERNAL TRIGGER COUNT (0x44)

 [31…0] – (R) – internal live trigger count

 31 – (W) – reset count

EXTERNAL RAM WORD COUNT (0x48)

 [31…22] – reserved (read as ‘0’)

 21 – (R) – RAM empty

 20 – (R) – RAM full (1,048,576 eight byte words)

 [19…0] – (R) – data word count (eight byte words)

DATA FLOW STATUS (0x4C) (for debug)

DAC 1_2 – DAC channels 1,2 (0x50)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16] – (R/W) – DAC value channel 1

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 2

DAC 3_4 – DAC channels 3,4 (0x54)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16]– (R/W) – DAC value channel 3

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 4

DAC 5_6 – DAC channels 5,6 (0x58)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16]– (R/W) – DAC value channel 5

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 6

DAC 7_8 – DAC channels 7,8 (0x5C)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16]– (R/W) – DAC value channel 7

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 8

DAC 9_10 – DAC channels 9,10 (0x60)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16]– (R/W) – DAC value channel 9

 15 – (reserved)

[14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 10

DAC 11_12 – DAC channels 11,12 (0x64)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16]– (R/W) – DAC value channel 11

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 12

DAC 13_14 – DAC channels 13,14 (0x68)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...18]– (R/W) – DAC value channel 13

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 14

DAC 15_16 – DAC channels 15,16 (0x6C)

 31 – (reserved)

 [30…28] – (reserved – read as 0)

 [27...16] – (R/W) – DAC value channel 15

 15 – (reserved)

 [14…12] – (reserved – read as 0)

 [11...0] – (R/W) – DAC value channel 16

STATUS 1 – Input Buffer Status (0x70)

 31 – (R) – data buffer ready for input

 30 – (R) – data buffer input paused

 29 – (R) – reserved (read as ‘0’)

 28 – (R) – data buffer empty

 27 – (R) – data buffer full

 [26…16] – (R) – data buffer word count

 [15…0] – (reserved)

STATUS 2 – Build Buffer Status (0x74)

 [31…29] – reserved (read as ‘0’)

 28 – (R) – data buffer ‘A’ empty

 27 – (R) – data buffer ‘A’ full

 [26…16] – (R) – data buffer ‘A’ word count

 [15…13] – reserved (read as ‘0’)

 12 – (R) – data buffer ‘B’ empty

 11 – (R) – data buffer ‘B’ full

 [10…0] – (R) – data buffer ‘B’ word count

STATUS 3 – Output Buffer Status (0x78)

 [31…30] – reserved (read as ‘0’)

 29 – (R) – data buffer ‘A’ empty

 28 – (R) – data buffer ‘A’ full

 [27…16] – (R) – data buffer ‘A’ word count

 [15…14] – reserved (read as ‘0’)

 13 – (R) – data buffer ‘B’ empty

 12 – (R) – data buffer ‘B’ full

 [11…0] – (R) – data buffer ‘B’ word count

STATUS 4 – (spare) (0x7C)

 [31…0] – reserved

AUXILIARY 1 – (spare) (0x80)

 [31…0] – reserved

AUXILIARY 2 – (spare) (0x84)

 [31…0] – reserved

TRIG21 DELAY (0x88)

 [31…12] – reserved

 [11…0] – (R/W) – Delay from soft TRIG2 to generated TRIG1 (4 ns/count)

RAM Address Register (0x8C) – The RAM is organized as two 36-bit words with a

common address. Auxiliary VME access (R/W) to the RAM is provided through a pair

of 32 bit data registers (RAM 1, RAM 2). Note that bits 35 – 32 of each RAM word are

not accessible through VME. During data flow operations, these bits carry event marker

tags (header, trailer).

 31 – increment address after access (R/W) of RAM 1 Data Register

 30 – increment address after access (R/W) of RAM 2 Data Register

 [29…21] – reserved (read as 0)

[19…0] – RAM address

RAM 1 Data Register (0x90)

 [31…0] – RAM data word bits 67 – 36 (32 bits)

RAM 2 Data Register (0x94)

 [31…0] – RAM data word bits 31 – 0 (32 bits)

(PROM Registers 1 and 2 are used for FPGA configuration over VME.)

PROM Register 1 (0x98)

31 – READY – (R) – configuration state machine is available to accept command

 (i.e. no configuration process is currently executing).

 [30…8] – reserved (read as 0)

 [7…0] – configuration OPCODE

PROM Register 2 (0x9C)

 [31…0] – PROM ID – (R) response to specific OPCODE write to PROM reg 1.

BERR Module Count (0xA0)

 [31…0] – BERR count (driven by module to terminate data transmission)

BERR Total Count (0xA4)

 [31…0] – BERR count (as detected on bus)

Auxiliary Scaler 1 (0xA8)

 [31…0] – Total word count from ADC Processing FPGA

Auxiliary Scaler 2 (0xAC)

 [31…0] – (reserved)

Auxiliary Scaler 3 (0xB0)

 [31…0] – Event header word count from ADC Processing FPGA

TRIGGER 2 SCALER (0xB4)

 [31…0] – (R) – Trigger 2 count

 31 – (W) – write ‘1’ to reset count

Auxiliary Scaler 5 (0xB8)

 [31…0] – Event trailer word count from ADC Processing FPGA

SYNC RESET SCALER (0xBC)

 [31…0] – (R) – Sync Reset count

 31 – (W) – write ‘1’ to reset count

Module Busy Level (0xC0)

 [31] – Force module busy

 [30…20] – reserved

 [19…0] – Busy level (eight byte words)

 (External RAM word count > Busy level  module busy = 1)

Generate Event Header Word (0xC4) (for debug)

 [31…0] – (W) – Event Header Word

Generate Event Data Word (0xC8) (for debug)

 [31...0] – (W) – Event Data Word

Generate Event Trailer Word (0xCC) (for debug)

 [31...0] – (W) – Event Trailer Word

MGT STATUS (0xD0)

 0 – (R) – lane 1 up (GTX1)

 1 – (R) – lane 2 up (GTX1)

 2 – (R) – channel up (GTX1)

 3 – (R) – hard error (GTX1)

 4 – (R) – soft error (GTX1)

 5 – (R) – lane 1 up (GTX2)

 6 – (R) – lane 2 up (GTX2)

 7 – (R) – channel up (GTX2)

 8 – (R) – hard error (GTX2)

 9 – (R) – soft error (GTX2)

 10 – (R) – SUM DATA VALID

 11 – (R) – MGT RESET ASSERTED

[31...12] – (R) - Reserved

MGT CONTROL (0xD4)

0 – RELEASE MGT RESET (0 = reset MGT, 1 = release reset)

1 – Data Type to CTP (0 = counting sequence, 1 = front-end data)

2 – Enable Data Alignment on Sync Reset occurrence

 [31...3] – Reserved

RESERVED (2 registers) (0xD8 – 0xDC)

SCALER CONTROL (0xE0) – See SCALERS (0x300 – 0x340)

 0 – (R/W) – Enable all scalers to count (1 = enable, 0 = disable)

1 – (W) – Latch all scalers. Write ‘1’ to simultaneously transfer all 17 scaler

 counts to registers for readout.

2 – (W) – Reset all scalers. Write ‘1’ to simultaneously reset all 17 scaler

 counts to zero.

[3 – 31] – (reserved)

BOARD SERIAL NUMBER 0 (0xE4)

 [31…24] – (R) – board serial number byte 0

 [23…16] – (R) – board serial number byte 1

 [15…8] – (R) – board serial number byte 2

 [7…0] – (R) – board serial number byte 3

BOARD SERIAL NUMBER 1 (0xE8)

 [31…24] – (R) – board serial number byte 4

 [23…16] – (R) – board serial number byte 5

 [15…8] – (R) – board serial number byte 6

 [7…0] – (R) – board serial number byte 7

BOARD SERIAL NUMBER 2 (0xEC)

 [31…24] – (R) – board serial number byte 8

 [23…16] – (R) – board serial number byte 9

 [15…8] – (R) – board serial number byte 10

 [7…0] – (R) – board serial number byte 11

SCALER INSERTION INTERVAL (0xF0) - Data from the SCALERS defined below

(0x300 – 0x340) may be inserted into the readout data stream at regular event count

intervals. The interval is specified in multiples of the event BLOCK SIZE. When the

interval is ZERO (the default condition), there is NO insertion of scaler data into the data

stream. When programmed for a non-zero interval, the current scaler values are

appended to the last event of the appropriate BLOCK of events. The current Trigger 1

count is also inserted as the 18
th

 scaler. Note that the scalers are NOT reset after their

values are captured.

Example: Interval = 10 means that every 10
th

 block of events will have the integrated

scaler data appended to it.

(See the document FADC V2 Data Format for information on identifying scaler data

words in an event.)

The scalers may ALSO be inserted into the data stream when a FORCE BLOCK

TRAILER is done by the user. A simultaneous write of ‘1’ to bit 22 and bit 23 of the

CSR (0x4) accomplishes this. The scaler values are those at the time of the last trigger’s

occurrence.

[15…0] - (R/W) – N (in BLOCKS of events); every N
th

 block of events has

integrated scaler data appended to the last event in the block.

 [31…16] – (reserved)

SPARE (3 registers) (0xF4 – 0xFC)

--

SCALER Registers (0x300 – 0x340) (R)

 SCALER[0] – (0x300) - input channel 0 count

 SCALER[1] – (0x304) - input channel 1 count

 SCALER[2] – (0x308) - input channel 2 count

 SCALER[3] – (0x30C) - input channel 3 count

 SCALER[4] – (0x310) - input channel 4 count

 SCALER[5] – (0x314) - input channel 5 count

 SCALER[6] – (0x318) - input channel 6 count

 SCALER[7] – (0x31C) - input channel 7 count

 SCALER[8] – (0x320) - input channel 8 count

 SCALER[9] – (0x324) - input channel 9 count

 SCALER[10] – (0x328) - input channel 10 count

 SCALER[11] – (0x32C) - input channel 11 count

 SCALER[12] – (0x330) - input channel 12 count

 SCALER[13] – (0x334) - input channel 13 count

 SCALER[14] – (0x338) - input channel 14 count

 SCALER[15] – (0x33C) - input channel 15 count

 TIME COUNT – (0x340) - timer (each count represents 2048 ns)

--

System Test Registers (0x400 – 0x410)

TEST BIT REGISTER (0x400)

 0 – (R/W) – trigger_out_p0 (1 = asserted, 0 = not asserted)

 1 – (R/W) – busy_out_p0 (1 = asserted, 0 = not asserted)

 2 – (R/W) – sdlink_out_p0 (1 = asserted, 0 = not asserted)

 3 – (R/W) – token_out_p0 (1 = asserted, 0 = not asserted)

 [4 – 7] – (R/W) – spare out test bits

 8 – (R) – status_b_in_p0 state (1 = asserted, 0 = not asserted)

 9 – (R) – token_in_p0 state (1 = asserted, 0 = not asserted)

[10 - 14] – (R) – reserved (read as ‘0’)

15 – (R) – clock_250 counter status (1 = counting, 0 = not counting)

[16 - 31] – (R) – reserved (read as ‘0’)

CLOCK_250 COUNT REGISTER (0x404)

 0 – (W) – Write ‘0’ resets the counter. Write ‘1’ initiates 20us counting interval.

[31 - 0] – (R) – CLK_250 counter value. (Should be 5000 after count interval.)

SYNC_IN_P0 COUNT REGISTER (0x408)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – SYNC_IN_P0 counter value.

TRIG1_IN_P0 COUNT REGISTER (0x40C)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – TRIG1_IN_P0 counter value.

TRIG2_IN_P0 COUNT REGISTER (0x410)

 0 – (W) – Write ‘0’ resets the counter.

[31 - 0] – (R) – TRIG2_IN_P0 counter value.

ADC PROCESSING FPGA ADDRESS MAP:

Control Bus Memory Map for FADC FPGA

Name

[VME ADDRESS]

Width

(Bits)

Quant

ity

Access Primary

Address

(Secondar

y

Address)

Function

STATUS0

[0x100]

16 1 R 0x0000

(---)

Bits 14 to 0: Code

Version

Bit 15: 1= Command

can be sent to AD9230

STATUS1

[0x104]

16 1 R 0x0001

(---)

TRIGGER NUMBER

BIT 15 to 0

STATUS2

[0x108]

16 1 R 0x0002

(---)

Tbd. Read 0

CONFIG 1

[0x10C]

16 1 R/W 0x0003

(---)

Bit 0-2 (process mode):

 000  Select option1

 001  Select option2

 010  Select option3

 011  Select option4

 111  Run option1

then option4 for each

trigger

Bit 3: 1:Run

Bit 6-5 : Number of

Pulses in Mode 1 and 2

Bit 7: Test Mode (play

Back).

CONFIG 2

[0x110]

 R/W 0x0004

(---)

When 1 ADC values = 0

Bit 0  ADC 0

Bit 1  ADC 1

Bit 2  ADC 2

Bit 3  ADC 3

Bit 4  ADC 4

Bit 5  ADC 5

Bit 6  ADC 6

Bit 7  ADC 7

Bit 8  ADC 8

Bit 9  ADC 9

Bit 10 ADC 10

Bit 11 ADC 11

Bit 12 ADC 12

Bit 13 ADC 13

Bit 14 ADC 14

Bit 15 ADC 15

CONFIG 4

[0x114]

16 1 0x0005

(---)

7 => rising edge write to

AD9230 ADC

6 => 1 write to all ADC.

Bits 3..0 are don’t care

5 => 0 write to AD9230

 1 read from

AD9230

3..0 => Select ADC to

write to

CONFIG 5

[0x118]

16 1 0x0006

(---)

15..8 => Registers inside

AD9230

7..0 => Data to write to

register.

PTW

[0x11C]

9 1 R/W 0x0007

(---)

Number of ADC sample

to include in trigger

window.

PTW = Trigger Window

(ns) * 250 MHz.

Minimum is 6.

Always report Even

Number. For odd PTW

number, discard the

last sample reported.

PL

[0x120]

11 1 0x0008

(---)

Number of sample back

from trigger point.

PL = Trigger

Window(ns) * 250MHz

NSB

[0x124]

12 1 0x0009

(---)

Number of sample

before trigger point to

include in data

processing. This include

the trigger Point.

Minimum is 2 in all

mode.

NSA

[0x128]

13 1 0x000A

(---)

Number of sample after

trigger point to include

in data processing.

Minimum is (6 in mode

2)and (3 in mode 0

and 1). Number of

sample report is 1

more for odd and 2

more for even NSA

number.

TET

[0x12C – 0x148]

(2 channels per word)

(see Note 1 below)

12 16 0x000B -

0x001A

(---)

Trigger Energy

Threshold.

PTW DAT BUF

LAST ADR

[0x14C]

12 1 0x001B

(---)

Last Address of the

Secondary Buffer. See

calculation below

PTW MAX BUF

[0x150]

8 1 0x001C

(---)

The maximum number

of unprocessed PTW

blocks that can be stored

in Secondary Buffer.

See Calculation below.

Test Wave Form

[0x154]

16 1 0x001D

(---)

Write to PPG. Read

should immediately

follow write.

ADC0 Pedestal

Subtract

[0x158]

16 1 R/W 0x001E Subtract from ADC0

Count before Summing

ADC1 Pedestal

Subtract

[0x15C]

16 1 R/W 0x001F Subtract from ADC1

Count before Summing

ADC2 Pedestal

Subtract

[0x160]

16 1 R/W 0x0020 Subtract from ADC2

Count before Summing

ADC3 Pedestal

Subtract

[0x164]

16 1 R/W 0x0021 Subtract from ADC3

Count before Summing

ADC4 Pedestal

Subtract

[0x168]

16 1 R/W 0x0022 Subtract from ADC4

Count before Summing

ADC5 Pedestal

Subtract

[0x16C]

16 1 R/W 0x0023 Subtract from ADC5

Count before Summing

ADC6 Pedestal

Subtract

[0x170]

16 1 R/W 0x0024 Subtract from ADC6

Count before Summing

ADC7 Pedestal

Subtract

[0x174]

16 1 R/W 0x0025 Subtract from ADC7

Count before Summing

ADC8 Pedestal

Subtract

 [0x178]

16 1 R/W 0x0026 Subtract from ADC8

Count before Summing

ADC9 Pedestal

Subtract

[0x17C]

16 1 R/W 0x0027 Subtract from ADC9

Count before Summing

ADC10 Pedestal

Subtract

[0x180]

16 1 R/W 0x0028 Subtract from ADC10

Count before Summing

ADC11 Pedestal

Subtract

[0x184]

16 1 R/W 0x0029 Subtract from ADC11

Count before Summing

ADC12 Pedestal

Subtract

[0x188]

16 1 R/W 0x002A Subtract from ADC12

Count before Summing

ADC13 Pedestal

Subtract

[0x18C]

16 1 R/W 0x002B Subtract from ADC13

Count before Summing

ADC14 Pedestal

Subtract

[0x190]

16 1 R/W 0x002C Subtract from ADC14

Count before Summing

ADC15 Pedestal

Subtract

[0x194]

16 1 R/W 0x002D Subtract from ADC15

Count before Summing

PTW MAX BUF = INT(2016 / (PTW + 8) * 250000000)

 Where:

 2016  Number of address of Secondary Buffer

 PTW  Trigger Window width in nano-second

PTW DAT BUF LAST ADR = PTW MAX BUF * (PTW + 6)- 1;

 Where:

 6  4 address for Time Stamp and 2 address for Trigger Number

 NumberOfBytePerTrigger  PTW * 250 MHz.

NOTE 1: Trigger Energy Threshold (TET)

 0x12C – Channel 1 & Channel 2

 [31…28] – not used

 [27…16] – channel 1 threshold

 [15…12] – not used

 [27…16] – channel 2 threshold

 0x130 – Channel 3 & Channel 4

 [31…28] – not used

 [27…16] – channel 3 threshold

 [15…12] – not used

 [27…16] – channel 4 threshold

 .

 0x148 – Channel 15 & Channel 16

 [31…28] – not used

 [27…16] – channel 15 threshold

 [15…12] – not used

 [27…16] – channel 16 threshold

1

FADC250 Data Format

(Ed Jastrzembski – updated 11/4/13)

We have identified the multiple types of data produced by the JLab 250 MHz Flash ADC

module and defined a 32-bit word data format for readout over VME. This format is

consistent with the 12 GeV standard defined for JLab custom data acquisition modules.

Data Word Categories

Data words from the module are divided into two categories: Data Type Defining

(bit 31 = 1) and Data Type Continuation (bit 31 = 0). Data Type Defining words contain

a 4-bit data type tag (bits 30 - 27) along with a type dependent data payload (bits 26 - 0).

Data Type Continuation words provide additional data payload (bits 30 – 0) for the last

defined data type. Continuation words permit data payloads to span multiple words and

allow for efficient packing of raw ADC samples. Any number of Data Type

Continuation words may follow a Data Type Defining word. The scaler data type is an

exception. It specifies the number of 32-bit data words that follow.

Data Type List

0 – block header

1 – block trailer

2 – event header

3 – trigger time

4 – window raw data

5 – (reserved)

6 – pulse raw data

7 – pulse integral

8 – pulse time

9 – 11 – (reserved)

12 – scaler data

13 – (reserved)

14 – data not valid (empty module)

15 – filler (non-data) word

Pulse Data

 To reduce the amount of data generated at high trigger rates, the module has the

capability of identifying pulses within the trigger window and reporting computed

quantities (pulse integral, pulse time) instead of raw data samples or simple sums of raw

samples. The algorithm for identifying a pulse may be complex and application

dependent. Individual pulses may have characteristics that compromise the accuracy of

the computed quantities. For example, a pulse that extends beyond the measurement

window may significantly affect the computed integral value, while the computed time

2

value (which relies on the leading edge) may be accurate. On the other hand, a pulse

whose leading edge starts outside the measurement window may have an inaccurate time,

but an acceptable integral value. To identify these or other conditions, we include a two-

bit quality factor when reporting computed quantities for pulses. The algorithm designer

may use the four classes to identify specific conditions that may be associated with the

measurement, or give an overall rating of confidence in the measurement based of all

characteristics of the pulse. Of course, the algorithm can ultimately choose to not report

a particular measurement for a pulse.

 The data format allows for up to four identified pulses in the trigger window for

each channel. The pulse number links together pulse data types 6, 7, and 8.

Data Types

Block Header (0) – indicates the beginning of a block of events. (High-speed readout of

a board or set of boards is done in blocks of events.)

 (31) = 1

 (30 – 27) = 0

 (26 – 22) = slot number (set by VME64x backplane)

 (21 – 18) = module ID (‘1’ for FADC250)

 (17 – 8) = event block number (used to align blocks when building events)

 (7 – 0) = number of events in block

Block Trailer (1) – indicates the end of a block of events. The data words in a block are

bracketed by the block header and trailer.

 (31) = 1

 (30 – 27) = 1

 (26 – 22) = slot number (set by VME64x backplane)

 (21 – 0) = total number of words in block of events

Event Header (2) – indicates the start an event. The included trigger number is useful to

ensure proper alignment of event fragments when building events. The 22-bit trigger

number is not a limitation, as it will be used to distinguish events within event blocks, or

among events that are concurrently being built or transported.

 (31) = 1

 (30 – 27) = 2

(26 – 22) = slot number (set by VME64x backplane)

 (21 – 0) = event number (trigger number)

Trigger Time (3) – time of trigger occurrence relative to the most recent global reset.

Time in the ADC data processing chip is measured by a 48-bit counter that is clocked by

the 250 MHz system clock. The global reset signal is distributed to every ADC

processing chip. The assertion of the global reset clears the counters and inhibits

counting. The de-assertion of global reset enables counting and thus sets t = 0 for the

component. The trigger time is necessary to ensure system synchronization and is useful

in aligning event fragments when building events. With careful clock, trigger, and global

reset distribution it may be possible to achieve identical trigger times from all

3

components of the system. However, even if t = 0 is not the same for all components,

changes in trigger times can be monitored to ensure system synchronization is

maintained. The six bytes of the trigger time

 Time = TA TB TC TD TE TF

are reported in two words (Type Defining + Type Continuation):

Word 1:

 (31) = 1

 (30 – 27) = 3

 (26 – 24) = reserved (read as 0)

 (23 – 16) = TD

 (15 – 8) = TE

 (7 – 0) = TF

Word 2:

 (31) = 0

 (30 – 24) = reserved (read as 0)

 (23 – 16) = TA

 (15 – 8) = TB

 (7 – 0) = TC

Window Raw Data (4) – raw ADC data samples for the trigger window. The first word

identifies the channel number and window width. Multiple continuation words contain

two samples each. The earlier sample is stored in the most significant half of the

continuation word. Strict time ordering of the samples is maintained in the order of the

continuation words. A sample not valid flag may be set for any sample; e.g. the last

reported sample is not valid when the window consists of an odd number of samples.

Word 1:

 (31) = 1

 (30 – 27) = 4

 (26 – 23) = channel number (0 – 15)

 (22 – 12) = reserved (read as 0)

 (11 – 0) = window width (in number of samples)

Words 2 - N:

 (31) = 0

 (30) = reserved (read as 0)

 (29) = sample x not valid

 (28 – 16) = ADC sample x (includes overflow bit)

 (15 – 14) = reserved (read as 0)

 (13) = sample x + 1 not valid

 (12 – 0) = ADC sample x + 1 (includes overflow bit)

4

Pulse Raw Data (6) – raw ADC data samples for an identified pulse. Raw data from an

interval of the trigger window that includes the pulse is provided. The first word

indicates the channel number, pulse number, and first sample number. The first sample

number is relative to the beginning of the trigger window (sample 0). Up to 4 pulses may

be identified for each channel. Multiple continuation words contain two raw samples

each. The earlier sample is stored in the most significant half of the continuation word.

Strict time ordering of the samples is maintained in the order of the continuation words.

A sample not valid flag may be set for any sample; for example, the last reported sample

is tagged as not valid when the pulse interval consists of an odd number of samples.

Word 1:

 (31) = 1

 (30 – 27) = 6

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 10) = reserved (read as 0)

 (9 – 0) = first sample number for pulse

Words 2 - N:

 (31) = 0

 (30) = reserved (read as 0)

 (29) = sample x not valid

 (28 – 16) = ADC sample x (includes overflow bit)

 (15 - 14) = reserved (read as 0)

 (13) = sample x + 1 not valid

 (12 – 0) = ADC sample x + 1 (includes overflow bit)

Pulse Integral (7) – integral of an identified pulse within the trigger window. The pulse

integral may be a simple sum of raw data samples over the pulse duration, or the result of

a complex fit to pulse shape. Pedestal subtraction may be included.

 (31) = 1

 (30 – 27) = 7

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 19) = measurement quality factor (0 – 3)

 (18 – 0) = pulse integral

Pulse Time (8) – time associated with an identified pulse within the trigger window.

 (31) = 1

 (30 – 27) = 8

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 19) = measurement quality factor (0 – 3)

 (18 - 16) = reserved (read as 0)

 (15 – 0) = pulse time

5

Scaler Header (12) – indicates the beginning of a block of scaler data words. The

number of scaler data words that will immediately follow it is provided in the header.

The scaler data words are 32 bits wide and so have no bits available to identify them.

Currently there are 18 scaler words reported: 16 from individual channels, a timer, and a

trigger count. The scalers and time represent values recorded at the indicated trigger

count. Scaler data must be enabled into the data stream by the user.

 (31) = 1

 (30 – 27) = 12

 (26 – 6) = reserved (read as 0)

 (5 – 0) = number of scaler data words to follow (18 = current)

Data Not Valid (14) – module has no valid data available for read out.

 (31) = 1

 (30 – 27) = 14

 (26 – 22) = slot number (set by VME64x backplane)

 (21 – 0) = undefined

Filler Word (15) – non-data word appended to the block of events. Forces the total

number of 32-bit words read out of a module to be a multiple of 2 or 4 when 64-bit VME

transfers are used. This word should be ignored.

 (31) = 1

 (30 – 27) = 15

 (26 – 22) = slot number (set by VME64x backplane)

 (21 – 0) = undefined

FIRMWARE for FADC250 Ver2 ADC FPGA

Table of Content:

1. Functional (Requirement) Description

a. Overview

b. Pedestal Subtraction

c. Programmable Pulse Generator.

d. Channel Data Processing

i. Option 1: Raw Mode

ii. Option 2: Pulse Mode

iii. Option 3: Integral

iv. Trigger Input Buffer

e. Triggering Options

f. Energy Sum

g. Acceptance Pulse (Hit Bits)

2. Conceptual Architecture Diagram.

a. Overview

b. Data Buffer

c. Process Algorithm

d. VME FPGA Interface

3. Data Format

a. Internal

b. To FIFO (to VME FPGA)

c. To Hit Sum FPGA

4. Modified Fast Bus Address Mapping

5. VHDL Block Diagram

6. VHDL Test Bench and Test Vector.

7. Size, Power, and Performance

ADC FPGA Functional Description

Overview:

The ADC FPGA receives 12-bit data words streaming at 250 MHz from 16 ADC.

It performs Channel Data Processing for each ADC, computes Energy Sum of all

ADC, and generates Acceptance Pulse for each ADC. The data selected in Channel Data

Processing and results of Energy Sum are passed to CTRL FPGA to be sent to VME host

and CTP respectively. The code is modular such that processing algorithms can easily be

added or deleted.

Block Diagram (Input Mode):

Disable 0

0

16

ADC

Samples

PlayBack

ADC

Samples

PlayBack

Sel

PlayBack

Disable 16

0

To Read Out Path

To Trigger Path

1

Block Diagram (Read Out Path):

To

Data

Format

Mode 0 Raw Mode:

Samples in Window are read back

Mode 1 Pulse Raw Mode:

Samples in Window from NSB and

NSA and Time only when Sample >

Threshold (TET) are read back

Mode 2 Integral Mode:

SUM of samples in Window from NSB

and NSA and Time only when Sample

> Threshold (TET) are read back

Mode 3 TDC Mode:

Time when Vmid occurred, Vmin,

Vmax are read back only when

samples are greater then TET

Mode Supervisor:

Mode 0,1,2,3,7

(In Mode 7, Mode

0 runs then Mode

3 run)

Block Diagram (Trigger Path):

16

5

16

5

From

Input

Mode

1

Pedestal

16

Pedestal

SUM to

CTRL FPGA

TET

> 1

TET

> 16

HITBITS to

CTRL FPGA

Reset:
Hard Reset: Reset Everything except Time Stamp and ADC IC

Soft Reset: Reset Everything except Time Stamp, Registers, and ADC IC

Sync : Only reset Time Stamp.

ADC IC is reset through register bit.

Pedestal Subtraction:
 Samples received from the ADC are immediately subtracted from a

programmable pedestal value in the Trigger Data Path. The result is not allowed to go

below zero. Each of the ADC has a separate pedestal value.

Programmable Pulse Generator (PPG):
 Input to Channel Data Processing can either come from ADC after pedestal

subtraction or the Programmable Pulse Generator (PPG). Users can load simulated PMT

data into the PPG via VME host. When a trigger occurs in test mode, the stored data is

read and apply to Channel Data Processing. There are 16 PPG, one for each ADC

channel and each PPG can hold 32 samples.

1. Channel Data Processing:

ADC Data

Trigger Input

 Time Line |

 |

 |Programmable Trigger Window| |

 -------- 100nS to 2uS --------------- |

 |

 |----------Programmable Latency (100nS to 8uS ------------------ |

 Data from ADC are stored continuously in circular buffer until Trigger input becomes

active (low). The data that was stored from the time that the Trigger occurs back to the

time specified by Programmable Latency within the Programmable Trigger Window are

processed.

 There are three main options to which these data are processed. The options are

selectable by the user via VME register setting and two Trigger Inputs.

 While data are being processed, ADC FPGA will continue storing incoming ADC data

with no loss of data. Programmable Trigger Window (PTW) and Programmable

Latency(PL) are common to all 8 ADC channels.

Mode 0 (Raw Mode):
Data within the Programmable Trigger Window [PTW] is passed with no further

processing to the VME Host.

Option 1 Raw Mode Data to VME Host Illustration:

Trigger Input

Time Line |

 |

 |Programmable Trigger Window| |

 |

 |----------Programmable Latency ----------------------------------- |

Mode 1 (Pulse Mode) :

When an ADC sample has a value that is greater than Programmable Trigger

Energy Threshold (TET), the number of samples before (NSB) the Maximum

value (Vp) and the number of samples after (NSA) Vp are sent to VME Host.

NSB and NSA are programmable. T1 and T2 are described in TDC Algorithm.

TET is 12 bits and unique to each ADC channel.

NSB has a maximum value of 1024

NSA has a maximum value of 1024

Mode 1 Pulse Mode Data to VME Host Illustration:

Vp
Vp

T1

TET

T2

NSB NSA NSB NSA

PL

PTW

Mode 2 Integral Mode:
Data within NSB and NSA of Option 2 Raw Mode are summed around T1 and

T2. PNS defines the number of samples before and after T1 and T2 include in

Sum 1 and Sum 2 respectively. Only Sum 1, T1, Sum 2, and T2are passed to

VME FPGA. T1 and T2 are described in TDC Algorithm.

Mode 2 Integral ModevData to VME Host Illustration:

Sum2 Sum1

Vp
Vp

T1

TET

T2

NSB NSA NSB NSA

PL

PTW

Mode 3 TDC Algorithm:

The TDC algorithm calculates time of the mid value (Va) of a pulse relative to the

beginning of the look back window. Va is the value between the smallest and the

peak value (Vp) of the pulse. The smallest value (Vm) is the beginning of the

pulse. The time consists of coarse time and fine time. The coarse time is the

number of clock the sample value before the mid value and the fine time is the

interpolating value of mid value away from next sample. The coarse value is 10

bits and the fine value is 6 bit. The resolution of LSB is 1/(CLK * 64). For a

250MHz the resolution is 62.5 pS. For example for a 20MHz clock, a pulse time

(Ta) value of 110 means the mid-point of the pulse occurred at 6.875nS (62.5pS *

110) from the beginning of look back window.

Requirements for TDC Algorithm:

i) There must be at least 5 samples (background) before pulse. Four of these

samples are used to determine the pedestal (Vnoise) floor. The minimum

value of the pulse is the first value that is greater than Vnoise.

Vp

Vm

Va Va

Vm

Vp

PTW

PL

Ta1 Ta2

Trigger Input Buffer:
In the event that the Trigger Input rate is faster than the data processing time, the

processing algorithm has to be able to process 100 consecutives triggers with no loss in

time lines. If a trigger cannot be processed due to an overflow condition, the VME

FPGA will be notified: “no data for trigger. If T1, T2, or T3 is less than 50 Ns, the

trigger will not be recorded.

Successive Trigger Input Illustration:

 | Window 1  | | | |

 |Latency 1 | | | |

 | | |

 |Window 2 | | | |

 |Latency 2  | | |

 T1 | | |

 |Window 3 | | |

 |Latency 3 | |

 T2  | |

 | Window 4 | |

 | Latency 4 |

 T3 

T1 T2 T3

1 2 3 4

Trigger Options:
 The type of processing mode is determined by two trigger inputs and

the two bits of a VME register setting. The Trigger Processing Mode table

below shows the possible processing mode.

Trigger Processing Mode:

VME Bits Trigger

Inputs

Trig2 | Trig1

Modes

00 00 Idle

 01 Raw, Integral

 10 Integral

 11 Scaler Read Back

01 00 Idle

 01 Pulse, Integral

 10 Integral

 11 Scaler Read Back

10 Xx Idle

11 Xx Idle

Memory Model for Successive Trigger Input Illustration:

Processing

OverHead

Spec.

8uS

Trig 1

PTW

Trig 2

PTW

Trig 3

Trig 4

PTW

PTW

Fill

2. Energy Sum:
 Data from ADC are added and the 16 bits-sum is sent to CTRL FPGA. Three

stages pipeline adders are implemented to allow 250 MHz clocking. Sum valid signal

accompanied the Sum.

 The 16 bit energy sum is transferred from the CTRL FPGA on two full duplex

gigabit transceiver ports. The transceivers are configured to operate at 2.5Gb/s per lane

and will communicate directly to the VXS switch “A” slot.

 There is probably more information that can be written here to define the

configuration of the transceivers and explain the data format of the energy sum.

3. HITBITS:
 When counts from an ADC channel are greater than threshold, the corresponding

Hit Bit for that channel is high. The HitBits are processed by TRIG_PROC_TOP to

form coincident trigger.

HitBits Illustration:

ADC data

Hit Bit

__ _________ ___________ ______________ _________ _____________ __

 | | | | | | || | | | |

 | | | | | | || | | | |

 ----- --- -- -- ---- -------

TET

Conceptual Architecture Diagram

Overview:

15

VME FGPA

IFACE

Control Bus

EXT

FIFO

CTRL

FPGA

ADC PROC TOP

ADC

250MHz

CLK

PROCESS

ALGO-

RITHMS

Trig

48 Bits

Time Stamp

DATA

FORMAT

27 Bits Trigger

Counter

DATA

BUFFER Re

Sync

Dat

ADC CH1

ADC CH16

Re Sync Dat

From ADC

CH0 to 15

HIT

BITS

SUM

15

15

36

S

e

l

TRIG_

PROC_

TOP >

- PedSub Reg

0 to 15

0

Data from each ADC is resynchronized with FPGA main CLK. The outputs of the

Resync are inputs of Data Buffer, Pedestal Substraction, and Hit Bits circuits. Each

ADC Channel has Resync, Data Buffer and Processing Circuits. The Data Buffer

stores Resync Data, Trigger Number, and Time Stamp. Processing Circuit processes

data from Data Buffer. Format read results from each ADC channels (0-15)

Processing Circuit and mux it to external FIFO. For each of the ADC, Pedestal

Subtraction Circuit subtracts a programmable constant from ADC sample if the

sample is greater than the constant. If the sample is smaller than the constant, zero is

output. The output of the Pedestal Subtraction Circuit is fed to the Sum circuit. Sum

circuit adds the pedestal-subtracted-samples from each Pedestal Subtraction Circuit

on a clock by clock basis. Bit Bits circuit compare Resync data to TET and produce a

low active signal when Resync data is above TET.

The architecture supports Processing Modularity. Processing algorithms are

independent of the other functions.

Sel block was added on March 3, 2008 to accommodate both 10 bits and 12 bits

FADC boards This feature also allows individual ADC Channel values (counts) to be

set to zero (effectively disable the ADC). CONF register (see below) configures

these options.

On March 15, Sel block is expanded to include Programmable Pulse Generator.

Programmable Pulse Generator (PPG):

 The PPG generates pulses by reading out digitized values of pulses (samples)

stored in a memory. The memory has 32 locations. Each location has 16 bits and can

hold one sample. Thirteen of the bits simulated the 12 data and 1 overflow bits output of

the ADC implemented on the FAD250 board. The 16
th

 bit facilitates writing and reading

the memory. Samples are written to the PPG memory when VME write to address

(0x0211 and 0x0011) and bit 16
th

 is a one. The address automatically incremented after a

sample is written. The last two samples written are required to have bit 16 zeroed

(Sample value = 0x0000). After the last samples (0x0000) the address reset to the

location of the first sample. Bits 14 and 15 are don’t care bits. VME can verify the data

is written by immediately read back the data (write follow by read).

Data are read out of PPG memory when Play-Back and Test-On are both logical

one. The first location that will be read out is set by a register (Read-Out-Start-Address).

Subsequent locations are read out at 4nS interval until Play-Back returns to logical zero.

The read back cycles to Read-Out-Start-Address when bit 16
th

 is a zero.

 AUX_IO(1) is used as Play-Back.

 Bit 7 of CONFIG register is used as Test-On

 Bit 8-15 of CONFIG register is used as CHx-OFF

For the FADC250 Version 1 the PPG can only hold 16 samples. The last two

samples have to be written with 0x8000.

PPG Mode:

Test On is bit 6 of Configuration register. CHx-Off are bits 8-15 of configuration

register.

ADC 15 Samples

PPG

Memory

Play-
Back

0

Test-On

CH15-Off = 0

To CH15 Processing

0

Test-On

CH0-O ff =

0

To CH0 Processing

ADC 0 Samples

Test-On

Data Buffer:

1. Synchronize data from ADC to 250 MHz FPGA CLK

2. Store ADC data to Primary Buffer. Implement Primary Buffer as ring

(circular) buffer.

3. When a Trigger occurs, the trigger is stored along with the values of the 48

Bits Timer and the Pointer of the Primary Buffer in a FIFO.

4. For each trigger, data within Programmable Trigger Window are copied from

Primary Buffer to Secondary Buffer with time stamps and markers necessary

for further processing. After the block is copied, Number of PTW Data Blocks

increments by one.

5. After a block is read and process, Decrement should be pulsed to decrease th

Number of PTW Data Blocks by one.

6. Each ADC channel has its own Data Buffer.

7. When the Trigger Rate is faster then the time needed to copy ADC Data from

Primary Buffer to Secondary Buffer, RAW BUFFER OVERRUN is set and

remain set until RESET_N or SOFT_RESET_N goes low.

8. When Number of PTW Data Block is equaled Maximum PTW Data Blocks

setted by the host, PTW Buffer Overrun sets and remains set until RESET_N

or SOFT_RESET_N goes low.

9. Utilized 700 LUT, six 18000-bits RAM blocks. Max Clock is 252 MHz.

Number Of

PTW Data

Blocks

increment

Primary Buffer Secondary Buffer

From

Resync

DP

RAM

Logic:

Cir.

Buf

Logic:

Second

ary

Storage

TRIG

DP

RAM

48 BITS TIMER

26 BITS TRIG NUMBER

CLK2

Process

Algorithms

TRIG

FIFO

Counter

Decrement

Maximum PTW Data Blocks
PTW Buffer Overrun

RAW Buffer Overrun

Process Algorithms:

1. Read data from Secondary Buffer.

2. Parse data to Processing Algorithms

3. Process all three options of Data Channel Processing.

4. Create Acceptance (Hit bit) pulse

5. Compute Energy Sum

VME FPGA IFACE

Secondary

FIFO
Option 1

Option 2,3

Logic:

Acceptance

Energy

Sum

Option 4

HIT BITS

Dual

Port

Proces

s

Memo

ry

SUM

HIT SUM

FPGA

Process

Block

Counter

DECREMENT

DATA

FORMAT

VME FPGA IFACE:

Control Bus

CTRL

AD

ADDRESS

DECODE

STATE

MACHINE

REGISTER

FILES

TO: Data Buff,

Process Algorithm,

Data Format

STATUS

VHDL Hierarchy

1. ADC_PROC_TOP

a. SYNC_ADC_IN_VER2

i. IODELAY

b. PlayBack_WV_Ver2

i. DPRAM_16_1024 (UMEM)

c. Data_Buffer_AllCh_Ver2_TOP

i. Data_Buffer_Top (UADCx)

1. DP_RAM1_TOP (2Kx13) (URAW_BUFFER_IN)

2. FIFO_1 (UTrigger_Buffer)

3. DP_RAM2_TOP(2Kx17) (UPTW_DATA_BUF)

4. PTWCPSM

d. TimeStamp_TOP

i. Time_stamp (Xilinx core gen)

e. Trigger_Number_TOP

i. Trigger_number

f. Processing_All_Ver2_Top

i. PROCESSING_TOP (CHx_PROCESSING)

1. DP_RAM3_TOP (2Kx18) (UPROCESS_BUF)

2. PROCESSM

3. fifo_12_64 (UProcAdrHist)

4. TDC_TOP

a. Linear_Interpolation (ULI)

i. Divide_18By12

1. DIVIDESM

b. TDCSM

ii. PROALLSM

g. DataFormat_VER2_TOP

i. DATFORSM

h. SUM_VER2_TOP (USUM_TOP)

i. Hit_Bit_All_ver2_Top (UHIT_BITS_ALL_TOP)

i. HIT_BITS_TOP (UHIT_x)

ii. IOREG_8bits

2. HOST_ADCFPGA_VER2_TOP

a. HSHOSTSM

3. TRIG_PROC_TOP

a. HITBITS_TOP

i. ONE_SHOT

ii. ONE_SHOT_LONG (UTHIT_WIDTH)

iii. DELAY_16bits_max32clk (UDELAY_16bits)

iv. HIT_WINDOW

1. Dpram_65k_1

v. OVERLAP_WINDOW

b. SUM_TRIG

c. EXT_FIFO_WRITE

i. TRIGGER_SYNC

1. Fifo_4

ii. EXTFIWRSM

d. HITSUMTOP2 (not connected at FADC250_V2_TOP)

VHDL Block Diagram

ADC Input ReSync

HARD

RESET N

FPGA

CLK

13

ADC

CLK

ADC

DP

DN

FIFO

15X13

WrEn

Empty RdEn

D Q

IOB

D Q TO

DATA

BUFFER

D Q

Each ADC has 12 bits data, an overflow, and an ADCCLK. The ADC Input Resync

captures ADC’s data and overflow bits with ADC’s output clock to a 15 deep (smallest

allow by ISE) by 13 bits FIFO. The FIFO allows the FPGA main CLK to be independent

of ADC clock. The FPGA main CLK clocks the data out of FIFO and send to the Data

Buffer Block.

The advantage of using ADC’s own CLK to capture its data is the elimination of timing

variations from ADC to ADC. Moreover, the FIFO Empty signal is used as FIFO Read

Enable to allow variation in ADC start up time.

 Data Buffer
Primary Memory Map

Address Location Content

0 ADC Data 0

1 ADC Data 1

2 ADC Data 2

3 ADC Data 3

4 ADC Data 4

: :

: :

: :

4078 ADC Data 4078

4079 ADC Data 4079

4080 ADC Data 4080

0 ADC Data 4081

1 ADC Data 4082

2 ADC Data 4083

3 ADC Data 4084

: :

: :

: :

Primary Memory stores ADC data as it comes in. At the end of buffer, the storing

re-circulates and overwrites previous data.

 Data Buffer
Secondary Memory Map

Memory location from

beginning of PTW

Content

0 PTW 0 “10010” Trigger Number bits 26-16

1 Trigger Number bits 15-0

2 “10011000” Time Stamp bits 47-40

3 Time Stamp bits 39-24

4 “00000000” Time Stamp bits 23-16

5 Time Stamp bits 15-0

6 PTW 0 data 0

: PTW 0 data 1

: :

N-4 “111” PTW 0 data N-4. “111” indicate almost last data

N-3 PTW 0 data N-3

N-2 PTW 0 data N-2

N-1 PTW 0 data N-1

N PTW 0 last data

N+1 PTW 1 “10010” Trigger Number bits 26-16

N+2 Trigger Number bits 15-0

N+3 “10011000” Time Stamp bits 47-40

N+4 Time Stamp bits 39-24

N+5 “00000000” Time Stamp bits 23-16

N+6 Time Stamp bits 15-0

N+7 PTW 1 data 0

 PTW 1 data 1

 :

M-4 “111” PTW 1 data M-4. “111” indicate almost last data

M-3 PTW 1 data M-3

M-2 PTW 1 data M-2

M-1 PTW 1 data M-1

M PTW 1 last data

M+1 PTW 2 “10010” Trigger Number bits 26-16

M+2 Trigger Number bits 15-0

M+3 “10011000” Time Stamp bits 47-40

M+4 Time Stamp bits 39-24

M+5 “00000000” Time Stamp bits 23-16

M+6 Time Stamp bits 15-0

M+7 PTW 2 data 0

 PTW 2 data 1

 :

O-4 “111” PTW 1 data O-4. “111” indicate almost last data

O-3 PTW 2 data O-3

O-2 PTW 2 data O-2

O-1 PTW 2 data O-1

O PTW 2 last data

When a trigger occurs, a number of ADC data words (=PTW*25MHz) is copied from

Primary to Secondary Buffer. The time at which the trigger occurred and the Trigger

Number of Bits is included. Since the Number of ADC data words effects where the

buffer ended and to minimize gate count, the location of the end of the buffers is

provided by the Host Interface block. The Secondary Buffer Size is 2040 to

accommodate 4 successive triggers of 2uS PTW (500 locations per trigger).

Trigger Buffer

When a trigger occurs, the time stamp and the pointer that points to beginning of

Programmable Trigger Window (Raw Data Out PTR Pending) is store to 16 bit FIFO.

The 48-bits time stamp is stored in 4 consecutive locations with LSB stored first. Bits

11-0 is padded with “1100” to signify the beginning of PTW window and Time Stamp

Words. Bits 23-12, 35-24, and 47-36 are padded with “0100” to signify Time Stamp.

After the first word is stored, TrigFifoEmpty goes high and kick off the State Machine to

copy time stamp from FIFO to Secondary Dual-Port memory. Data in the PTW stored in

the Primary Buffer starting at Trigger Address are copied to Secondary Buffer.

15-0

“10010” & 26-14

TriggerN

umber

Trigger

Trigger address

Trig Fifo

Empty

Trigger

Raw Data

Out PTR

Pending

“0000” & 12-0

15-0

“00000000” & 23-16

39-24

“10011000” & 47-40

TimeStamp

0

1

2

3

4

5

6

48

0

1

12

0

1

Enable

COUNTER
Set

Clr

= 3

D Q

FIFO(500

x16)

WE RE

 Empty

Trig Buf

Fifo Out

Trig Fifo

RDEN

(sm)

Data Buffer:

Primary and Secondary Buffer

LastPtw

Word

RAW_DATIN_PTR

PTW_DATA_BLOCK

_CNT

PTW_COPY_DONE

(sm)

PTW_BUF_DAT_IN

PTW_DPRAM

WREN1 (sm)

PTW_DPRAM

WREN2 (sm)

12

16

Primary Buffer

SEL_TS

(sm)

Trig Buf

Fifo Out

“000”

13

RawBufRd

En (sm)

0

Ld Raw

Out PTR

(sm)

Trig Buf

Fifo Out

12

12

SoftReset_N

Reset_N

ADC

D

WEN

AdrA AdrB

 DP RAM

 4090x13

 Q Clear

COUNTER

1

0

1

0

1

0
+

=

4080

0

1

16

12

Secondary Buffer

D

WEN

AdrA AdrB

 DP RAM

 2200x16

 Q

PTW RAM

ADDR

PTW RAM

DATA Enable

COUNTER

Clear

=

PTW DAT BUF

LAST ADR (host)

Enable

COUNTER

PTW_BUF_

DAT_CNT_EN (sm)

PTW_WORDS (host)

=

Inc Dec

PTW

COUNTER

INC_PTW_CNT

(sm)

DEC_PTW_CNT

0

1

“111” LastPtw

Word

=

PtwWordMinus1 (host)

After power up, data from ADC is stored in Ring Buffer continuously. When

Trigger is in Trigger Buffer, the Time Stamp is copied from the Trigger Buffer to the

Secondary Buffer. The Primary Address when the trigger occurred is retrieved from the

Trigger Fifo to be used as the starting Primary address to copy ADC data over. A counter

is keeping track of the number of ADC words copied. When the counter equaled the

PTW words the copied process stop. Another counter that keeps track of the number of

triggers that are in the Secondary Buffer ready for Process algorithm. When a block of

trigger is process, this counter is decrement by the Process algorithm.

The Secondary Buffer storage is such that the starting address of each block of

trigger data is determine by the PTW but it is fixed with PTW. For example, if PTW is

2uS, the starting address are 0, 504, 1008, 1512. The data formats from low to high

address are

 “1000” “TS bits 47-36”

 “1000” “TS bits 35-24”

 “1000” “TS bits 23-12”

 “1000” “TS bits 11-0”

 “010” “ TriggerNumber bits 26-14”

 “01” “ TriggerNumber bits 13-0”

 “000” “ADC data”

 :

 :

 “001” “Last ADC data in PTW”

 PTW Counter is coded such that when decrement commands and increment

commands occurs exactly at the same time, decrement occurs before increment.

Data Buffer:

 STATUS

Data Processing:

Memory Map

Data Processing Memory Assignment for Mode 0

Memory location from

beginning of PTW

Content (WITH EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “00” “00000000” Time Stamp bits 23-16

5 “00” Time Stamp bits 15-0

6 “00” PTW data 0

7 “00” PTW data 1

8 “00” PTW data 2

9 “00” PTW data 3

etc etc

N+7 *”11” “FFFF” : end of PTW

Memory location from

beginning of PTW

Content (WITHOUT EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “01 “00000000” Time Stamp bits 23-16

5 “01” Time Stamp bits 15-0

6 “01” “0000”

7 “01” “0000”

: :

: :

N+6 N

N+7 “11” “0000” : end of PTW

N = PTW

Data Processing Memory Assignment for Mode 1:

Memory location

from beginning of

PTW

Content (WITH EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “00” “00000000” Time Stamp bits 23-16

5 “00” Time Stamp bits 15-0

6
“10” “0000” Pulse Number “00” SampleNumber from

Thredhold bits 9-0

7 “00” PTW pulse 0 data 0

8 “00” PTW pulse 0 data 1

N “00” PTW pulse 0 data last

N+1
“10” “0000” Pulse Number “01” SampleNumber from

Thredhold bits 9-0

N+2 PTW pulse 1 data 0

N+3 PTW pulse 1 data 1

M PTW pulse 1 data last

M+1
“10” “0000” Pulse Number “10” SampleNumber from

Thredhold bits 9-0

M+2 PTW pulse 2 data 0

M+3 PTW pulse 2 data 1

O PTW pulse 2 data last

O+1
“10” “0000 Pulse Number “11” SampleNumber from

Thredhold bits 9-0

O+2 PTW pulse 3 data 0

O+3 PTW pulse 3 data 1

P PTW pulse 3 data last

P+1+7 “11” “0000” : end of PTW

Memory location

from beginning of

PTW

Content (WITHOUT EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “01” “00000000” Time Stamp bits 23-16

5 “01” Time Stamp bits 15-0

6 x”10000”

7 x”10000”

8 “11” “0000” : end of PTW

Data Processing Memory Assignment for Mode 2:

Memory location

from beginning of

PTW

Content (WITH EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “00” “00000000” Time Stamp bits 23-16

5 “00” Time Stamp bits 15-0

6
“10” “0000” Pulse Number “00” SampleNumber from

Thredhold bits 9-0

7 “00” Pulse 0 Sum bits 18-3

8 “00” “0000000000000” Pulse 0 Sum bits 2-0

9
“10” “0000” Pulse Number “01” SampleNumber from

Thredhold bits 9-0

10 “00” Pulse 1 Sum bits 18-3

11 “00” “0000000000000” Pulse 1 Sum bits 2-0

12
“10” “0000” Pulse Number “10” SampleNumber from

Thredhold bits 9-0

13 “00” Pulse 2 Sum bits 18-3 20-5

14 “00” “0000000000000” Pulse 2 Sum bits 2-0 4-0

15
“10” “0000” Pulse Number “11” SampleNumber from

Thredhold bits 9-0

16 “00” Pulse 3 Sum bits 18-3

17 “00” “0000000000000” Pulse 3 Sum bits 2-0

18 “11” “0000” : end of PTW

Memory location

from beginning of

PTW

Content (WITHOUT EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “01” “00000000” Time Stamp bits 23-16

5 “01” Time Stamp bits 15-0

6 x”10000”

7 x”10000”

8 “11” “0000” : end of PTW

Data Processing Memory Assignment for Mode 3:

Memory location

from beginning of

PTW

Content (WITH EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “00” “00000000” Time Stamp bits 23-16

5 “00” Time Stamp bits 15-0

6
“10” “0000” Pulse Number “00” SampleNumber from

Thredhold bits 9-0

7 “00” Tfine(5..0) Vmin (11..4)

8 Vmin(3..0) Vp (11..0)

9
“10” “0000” Pulse Number “01” SampleNumber from

Thredhold bits 9-0

10 “00” Tfine(5..0) Vmin (11..4)

11 “00” Vmin(3..0) Vp (11..0)

12
“10” “0000” Pulse Number “10” SampleNumber from

Thredhold bits 9-0

13 “00” Tfine(5..0) Vmin (11..4)

14 “00” Vmin(3..0) Vp (11..0)

15
“10” “0000” Pulse Number “11” SampleNumber from

Thredhold bits 9-0

16 “00” Tfine(5..0) Vmin (11..4)

17 “00” Vmin(3..0) Vp (11..0)

18 “11” “0000” : end of PTW

Memory location

from beginning of

PTW

Content (WITHOUT EVENT)

0 “00” “10010” Trigger Number bits 26-16

1 “00” Trigger Number bits 15-0

2 “00” “10011000” Time Stamp bits 47-40

3 “00” Time Stamp bits 39-24

4 “01” “00000000” Time Stamp bits 23-16

5 “01” Time Stamp bits 15-0

6 x”10000”

7 x”10000”

8 “11” “0000” : end of PTW

Data Processing:

Data Processing for all mode involves scanning the entire secondary buffer. If

there is no pulses (data that cross thredshold), x”FFF0” is written to processing memory

(PTW) data locations. Trigger Number and Time Stamp info are copied from secondary

buffer to processing memory. X”FFF0” signal DataFormat block to prevent data from

written to external FIFO. This feature only writes ADC channel that has data that cross

thresdhold (TET).

Data Processing consists of 4 state machines, counters, and pointers. The 4 State

Machines include Main and one for each of the 3 Processing Options. When there is

ADC data to process, Main State Machine read Time Stamps and Trigger Number from

Secondary Buffer and write to Data Processing Buffer. It then calls on one of the other

three state machines to process the Option that is in effect.

The state machine for option 1 does the following:

1. Copies PTW * 20MHz number of words from Secondary Data Buffer to

Data Processing.

2. Increment number of process counter by one

The state machine for option 2 does the following:

1. Read ADC data from Secondary Data Buffer. Start PULSE_TIMER to

tick mark the data read.

2. If ADC data is above Trigger Threshold, it writes PULSE_TIMER to

Process Buffer. Then it copies NSB and NSA number of words from

Secondary Data Buffer to Data Processing Buffer as follow:

a. If the number of words read before threshold is greater than NSB

load RD_PTW_PTR with address that is NSB before threshold. If

the number of words read (WORD_AFTER_TS_CNT) is less than

NSB, load the RD_PTW_PTR with address of

WORD_AFTER_TS_CNT word back from threshold.

b. Start NSB_CNT.

c. When NSB_CNT = NSB if WORD_AFTER_TS_CNT > NSB or

NSB_CNT = WORD_AFTER_TS_CNT if

WORD_AFTER_TS_CNT < NSB start NSA_CNT.

d. When NSA_CNT = NSA, it stop reading Secondary Buffers.

3. Repeat Step 1 and 2 until number (PTW * 250MHz) numbers of words

have been read.

4. Write “FFFF” to signal the end of PTW.

5. Increment number of process counter by one

The state machine for option 2 does the following:

1. Read ADC data from Secondary Data Buffer.

2. If ADC data is above Trigger Threshold, it unable accumulated sum

circuit to add ADC value from NSB to NSA ADC words.

3. Write accumulated sum to Secondary Data Buffer

4. Repeat Step 1, 2, and 3 until number number PTW * 20MHz numbers

of words have been read.

5. Write “FFFF” to signal the end of PTW.

6. Increment number of process counter by one

In mode 2 and 3, when the number of words read before the ADC value exceeds

the Trigger Threshold is less then NSB, only that many word are processed.

Each state machine is responsible to change and reset the counters that pertained

to the option.

The counters and their functions are listed below.

1. WORD_AFTER_TS_CNT: keep track of words read from beginning of

PTW to the ADC sample that exceeds the Trigger Threshold. If

WORD_AFTER_TS_CNT is less then NSB when this Threshold

exceeded occurs, the NSB_PTR_ENOUGH pointer is used as starting

address. Only WORD_AFTER_TS_CNT number of word before

Threshold is processed.

2. TS_CNT: keep track of the number of time stamp and trigger number

words read from the Secondary Buffer. Main state machine uses this to

stop copying time stamp and trigger number words.

3. PTW_WORDS_CNT: keep track of the number of word in PTW has been

read out. It is cleared when it is equaled to number of “PTW words + 4

Time Stamp words + 2 Trigger Number words”.

4. NSB_CNT: Keep track of the number of words before Threshold has read

and process.

5. NSA_CNT: Keep track of the number of words after Threshold has read

and processed.

6. PULSE_TIMER: Tick mark ADC data read from Secondary Buffer from

beginning of PTW.

7. PULSE_NUMBER: Keep track of the number of pulses in PTW.

8. HOST_BLOCK_CNT: Keep track of the number of PTW ready to transfer

to host. The host decrement this counter after the host read one PTW.

The pointers and theirs functions are listed below:

1. NSB_PTR_ENOUGH: This pointer is used as starting address if the

number of words read from PTW beginning to Threshold is greater

than NSB value. A number of NSB words is processed.

2. NSB_PTR_NOT_ENOUGH: This pointer is used as starting address if

the number of words read from PTW beginning to Threshold is less

than NSB value. Only WORD_AFTER_TS_CNT number of word is

processed.

Counters that also serve as pointers are listed below:

1. RD_PTW_PTR: This is the address to the Secondary Buffer. It is load

with either NSB_PTR_ENOUGH or NSB_PTR_NOT_ENOUGH and

increment under state machine control. It is cleared (restart at address 0)

when PTW_WORDS_CNT is equaled to “number of PTW words + 4

Time Stamp words + 2 Trigger Number words”.

TDC Algorithm Overview:

 The TDC algorithm calculates time of the mid value of a pulse relative to

the beginning of the look back window. The mid value is the value between the smallest

and the peak value of the pulse. The smallest value is the beginning of the pulse. The

time consists of coarse time and fine time. The coarse time is the number of clock the

sample value before the mid value and the fine time is the interpolating value of mid

value away from next sample. The coarse value is 10 bits and the fine value is 6 bit. The

resolution of LSB is 1/(CLK * 64). For a 250MHz the resolution is 62.5 pS. For example

for a 20MHz clock, a pulse time value of 110 means the mid-point of the pulse occurred

at 6.875nS (62.5pS * 110) from the beginning of look back window.

Requirements for TDC Algorithm:

ii) There must be at least 5 samples (background) before pulse. Four of these

samples are used to determine the pedestal (Vnoise) floor. The minimum

value of the pulse is the first value that is Vnoise.

TDC Algorithm for Mode 3:

1) Search for Vaverage
a) Latch starting PTW_RAM ADR
b) Read four samples. Vnoise = Average of 4 samples. Increment sample

count by 4.
c) Vmin = Vnoise. Increment sample count.
d) Read until Vram < Vram_delay. Vpeak = Vram if Vram is greater than

TET. Increment sample count.
e) Store PTW_RAM ADR for Vpeak.
f) Vaverage = (Vpeak – Vmin) / 2

2) Search for sample before (Vba) and sample after (Vaa) Vaverage
a) Restore starting PTW_RAM ADR. Increment Pulse Timer whenever the

address is incremented.
b) Read until Vram > Vmin. Vba = Vram
c) Read one more for Vaa
d) Calculated Tfine

3) Write Pulse Number and Pulse Timer to Processing RAM.
4) Increment Pulse Number
5) Restore PTW_RAM ADR for Vpeak. Load sample count to Pulse Timer.
6) Read until Vram < Vmin. End of first pulse. Increment Pulse Timer whenever

the address is increment. End processing whenever PT_RAM data is ended.
7) Go to step 1.

Data Format :

Data format read data from Data Processing Memory, put the data in proper

format as described in FADC Data Format, and write to external FIFO to host. The data

format falls into 5 categories: Event_Header, Time_Stamp, Window_Raw_Word1,

Pulse_Raw_Word1, Window_Pulse_Raw_Words_2_to_N, Pulse_Integral and

Event_Trailer. The words are 36 bits wide.

Event_Header indicates the start of an event and bits are assigned as follow:

(35-34) = 0

(33-32) = 1

(31) = 1

(30-27) = 2

(26-0) = trigger number

 x”19 trigger number”

Trigger Time (Time_Stamp) indicates time of trigger occurrence relative to the

most recent global reset. The six bytes (48 bits) of trigger time Ta Tb Tc Td Te Tf are

format in two 32-bits words:

Word1:

 (35-34) = 0

 (33-32) = 0

 (31) = 1

 (30-27) = 3

 (26-24) = 0

 (23-16) = Ta

 (15-8) = Tb

 (7-0) = Tc

  x”0980 time stamp hi

Word2:

 (35-34) = 0

 (33-32) = 0

 (31) = 0

 (30-24) = 0

 (23-16) = Td

 (15-8) = Te

 (7-0) = Tf

 x”0000 time stamp lo

Window Raw Word1 indicates the beginning of Window Raw Data.

 (35-34) = 0

 (33-32) = 0

 (31) = 1

 (30-27) = 4

 (26-23) = Channel number (0-7)

 (22-12) = 0

 (11-0) = Window Width (PTW) (in number of samples).

 x”0A ChannelNumber 00 numberOfSamples”

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

--

1010 0Cha n000 0000 0000 Ptw- ---- ----

Pulse Raw Word1 indicates the beginning of Pulse Raw Data.

 (35-34) = 0

 (33-32) = 0

 (31) = 1

 (30-27) = 6

 (26-23) = Channel number (0-7)

 (22-21) = pulse number (0-3)

 (20-10) = 0

 (9-0) = time from beginning of PTW that the pulse crossed thredshold

 x”0B ChannelNumber 00 TIME”

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

--

1011 0Cha nP#0 0000 0000 00Ti me-- ----

Remaining words for Pulse Raw Data and Window Raw Data have the same

format.

 (35-34) = 0

 (33-32) = 0

 (31) = 0

 (30) = 0

(29) = 1 indicates sample x not valid

 (28-16) = ADC sample x (includes overflow bit)

 (15-14) = 0

(13) = 1 indicates sample x+1 not valid.

 (12-0) = ADC sample x+1 (includes overflow bits).

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

--

00xA dcSa mple ---- 00xA dcSa mple ----

Pulse Time (8) – time associated with an identified pulse within the trigger window.

 (31) = 1

 (30 – 27) = 8

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 19) = measurement quality factor (0 – 3)

 (18 - 16) = reserved (read as 0)

 (15 – 6) = coarse pulse time

 (5 – 0) = fine pulse time

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

--

1100 0Cha nP#0 0000 Puls eTim e

Pulse Integral (7) – integral of an identified pulse within the trigger window. The pulse

integral may be a simple sum of raw data samples over the pulse duration, or the result of

a complex fit to pulse shape. Pedestal subtraction may be included.

 (31) = 1

 (30 – 27) = 7

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 19) = measurement quality factor (0 – 3)

 (18 – 0) = pulse integral

 (20-0) = pulse integral

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

 --

 1011 1Cha nP#0 0Pul seIn tegr al

Pulse Vmin Vpeak (10) – ADC count for minimum and peak value of a pulse. This is

too be used off line to apply correction to Pulse Time in TDC mode.

 (31) = 1

 (30 – 27) = 10

 (26 – 23) = channel number (0 – 15)

 (22 – 21) = pulse number (0 – 3)

 (20 – 12) = Vmin

 (11 – 0) = Vpeak

3322 2222 2222 1111 1111 1198 7654 3210

1098 7654 3210 9876 5432 10

 --

 1101 0Cha nP#v minn nnn vpea kkkk kkkk

 D

Event Trailer: Indicate the end of an event.

 EVENT_TRAILER = "0010" & X"E8000000";

Example:

Raw Data (mode0) :

 x”19_____” Event Header

 x”98_____ “ Time Stamp upper 24 bits.

 x”_______” Time Stamp lower 24 bits.

 x”A_____” Channel Number, Window Width (PTW)

 x”______” Raw Data

 x”2E8000000” End of Event

Pulse Data (mode 1):

 x”19_____” Event Header

 x”98_____ “ Time Stamp upper 24 bits.

 x”_______” Time Stamp lower 24 bits.

 x”B______” ChanNum(26-23), PulseNumb(22-21),Time from beginning of PTW

that the pulse crossed thredshold(9-0).

 x”_______” 2 pulses (12-0) (28-16) per 36 bits words.

 x”2E8000000” End of Event

Pulse Sum (mode 2):

 x”19_____” Event Header

 x”98_____ “ Time Stamp upper 24 bits.

 x”_______” Time Stamp lower 24 bits.

 x”C______” Pulse time, ChanNum(26-23), PulseNumb(22-21),Time(15-0)

 x”B8_____” Channel Numbe(26-23)r, Pulse Number(22-21), Pulse Integral (18-0)

 x”2E8000000” End of Event

TDC (mode 3):

 x”19_____” Event Header

 x”98_____ “ Time Stamp upper 24 bits.

 x”_______” Time Stamp lower 24 bits.

 x”C______” Pulse time, ChanNum(26-23), PulseNumb(22-21),Time(15-0)

 x”D______” ChanNum(26-23), PulseNumb(22-21),Vm(20-12),Vp(11-0)

 x”2E8000000” End of Event

Raw Data and TDC (mode 7)

 x”19_____” Event Header

 x”98_____ “ Time Stamp upper 24 bits.

 x”_______” Time Stamp lower 24 bits.

 x”A_____” Channel Number, Window Width (PTW)

 x”______” Raw Data

 x”C______” Pulse time

 x”D______” VminVpeak

 x”2E8000000” End of Event

Data Format VHDL:
The VHDL code read data streams from processing block, format them per document

"FADC Data Format" by Ed Jastrzembski.

When all HOST_BLOCKx_CNT is greater then one, DATFORSM begins the write out

algorithm. The algorithm is as follow:

 1) Pop the starting and last address of the data in the processing buffer.

 2) Load the starting adddress of Channel 0 to Address counter. Start FIFO clock. Inc

Address counter on rising edge of FIFO clock.

 Output Address to PROCx_ADR

 3) Read data from PROCx_OUTDAT. Assemble them into Event Header,

TimeStamp1, and TimeStamp2 and writes to FIFO.

 4) In mode 0, the Address is stop after TimeStamp2 address (5) to allow time to insert

Window Raw Data Word 1 which contains Channel Number and Window Width.

 5) In mode 1 and mode 2, the Address is stop after Pulse Number and SampleNumber

from Threshold Address (6), to allow time to assemble Pulse Raw Data Word 1 which

contains Channel Number and

 first sample number for pulse or Pulse Time which contains Channel Number and

pulse time.

 6) The data are read and write in pairs until the Address counter equal last address of

the processing buffer. The channel are incremnent and repeats step 1 through 6.

 7) After the last channel is finish, Event Trailer is written to FIFO.

 Because of the different in the data format between the modes: 0,1,and 2, each mode has

its own state machine.

 In mode 2, there might be extra words (for some setting of NSA and NSB) in the

processing buffer after the last integral, the statemachine does not write this to FIFO.

 In mode 0 and 1, for even number of data, the number of data written to FIFO is 2 more,

for odd number of data, the number of data written to FIFO is one more.

Data Streams from Processing for diferent modes:

 In mode 0: EventHeader, TimeStamp1, TimeStamp2, WindowRaw(not from

processing), Deven Dodd,..., TimeEnd

 In mode 1: EventHeader, TimeStamp1, TimeStamp2, PulseRaw(upper 16 from

processing, not lower 16), Deven Dodd,..., TimeEnd

 In mode 1: EventHeader, TimeStamp1, TimeStamp2, PulseRaw(upper 16 from

processing, not lower 16), Integral, TimeEnd

Data Format VHDL Diagram

FirstChannel

FIFO

DATA

“0001”

“0000”

Load

Mode

Chx

ChxFirstLa

stProcAdr

Fifo Clk

Gen

Edge

Detect

First Last

Process

Address

Adr Gen

Channel

Count

=Proc

BufSiz

e

R

ProcX_ADR

=Proc

BufSiz

e

ChX_

Done

FIFO

CLK

ProcX

OutDat

Chx

UpperWd

Valid

Word

Hi

Word

LO

Format

Assembler

Chx

Pulse Wd 1

Pulse Time

Format

Assembler

WinPulse Wd 2

Pulse Int

Event Header

Time Stamp

Event

Trailer

Qualifier

FIFO_WEN

SelEventHeader

SelTimeStamp

MODE

FirstChannel

FIFO

WEN

State

Machine

Data Format State Machine Main

Main State Machine does the following:

1. Call State Machine for Mode 0,1,or 2.

Data Format State Machine For Mode 0

Data Format State Machine RD For Mode 1

Data Format State Machine RD For Mode 2

 SUM

Resync Data

0

0

0

0

 +
12

12

12

12

Resync Data

ADC 5

ADC 6

ADC 7

ADC 8

 +
12

12

12

12

 +
1

4

1

4

D Q
15

IOB

HIT BITS

 -

ADC1
12 Everag

e
12

>

8

ADC8
12 Averag

e
12

>

D Q

IOB

VME FPGA IFACE:
Control Bus Memory Map for FADC FPGA

Name Width

(Bits)

Quant

ity

Access Primary

Address

(Secondar

y

Address)

Function

STATUS0 16 1 R 0x0000

(---)

Bits 14 to 0: Code

Version

Bit 15: 1= Command

can be sent to AD9230

STATUS1 16 1 R 0x0001

(---)

TRIGGER NUMBER

BIT 15 to 0

STATUS2 16 1 R 0x0002

(---)

Tbd. Read 0

CONFIG 1 16 1 R/W 0x0003

(---)

Bit 0-2 (process mode):

 000  Select Mode 0

 001  Select Mode 1

 010  Select Mode 2

 011  Select Mode 3

 111  Run Mode 0

then Mode 3 for each

trigger

Bit 3: 1:Run

Bit 5-4 : Number of

Pulses in Mode 1 and 2

Bit 7: Test Mode (play

Back).

CONFIG 2 R/W 0x0004

(---)

When 1 ADC values = 0

Bit 0  ADC 0

Bit 1  ADC 1

Bit 2  ADC 2

Bit 3  ADC 3

Bit 4  ADC 4

Bit 5  ADC 5

Bit 6  ADC 6

Bit 7  ADC 7

Bit 8  ADC 8

Bit 9  ADC 9

Bit 10 ADC 10

Bit 11 ADC 11

Bit 12 ADC 12

Bit 13 ADC 13

Bit 14 ADC 14

Bit 15 ADC 15

CONFIG 4 16 1 0x0005 7 => rising edge write to

AD9230 ADC

6 => 1 write to all ADC

5 => 0 write to AD9230

 1 read from

AD9230

4 => 1 Reset ADC

3..0 => Select ADC to

write to

CONFIG 5 16 1 0x0006 15..8 => Registers inside

AD9230

7..0 => Data to write to

register.

PTW 9 1 R/W 0x0007

(---)

Number of ADC sample

to include in trigger

window.

PTW = Trigger Window

(ns) * 250 MHz.

Minimum is 6.

Always report Even

Number. For odd PTW

number, discard the

last sample reported.

PL 11 1 0x0008

(---)

Number of sample back

from trigger point.

PL = Trigger

Window(ns) * 250MHz

NSB 12 1 0x0009

(---)

Number of sample

before trigger point to

include in data

processing. This include

the trigger Point.

Minimum is 2 in all

mode.

NSA 13 1 0x000A

(---)

Number of sample after

trigger point to include

in data processing.

Minimum is (6 in mode

2)and (3 in mode 0

and 1). Number of

sample report is 1

more for odd and 2

more for even NSA

number.

TET 12 16 0x000B -

0x001A

Trigger Energy

Thredhold.

PTW DAT BUF

LAST ADR

12 1 0x001B Last Address of the

Secondary Buffer. See

calculation below

PTW MAX BUF 8 1 0x001C The maximum number

of unprocessed PTW

blocks that can be stored

in Secondary Buffer.

See Calculation below.

Test Wave Form 16 1 0x001D Write to PPG. Read

should immediately

follow write.

ADC0 Pedestal

Subtract

16 1 R/W 0x001E Subtract from ADC0

Count before Summing

ADC1 Pedestal

Subtract

16 1 R/W 0x001F Subtract from ADC1

Count before Summing

ADC2 Pedestal

Subtract

16 1 R/W 0x0020 Subtract from ADC2

Count before Summing

ADC3 Pedestal

Subtract

16 1 R/W 0x0021 Subtract from ADC3

Count before Summing

ADC4 Pedestal

Subtract

16 1 R/W 0x0022 Subtract from ADC4

Count before Summing

ADC5 Pedestal

Subtract

16 1 R/W 0x0023 Subtract from ADC5

Count before Summing

ADC6 Pedestal

Subtract

16 1 R/W 0x0024 Subtract from ADC6

Count before Summing

ADC7 Pedestal

Subtract

16 1 R/W 0x0025 Subtract from ADC7

Count before Summing

ADC8 Pedestal

Subtract

16 1 R/W 0x0026 Subtract from ADC8

Count before Summing

ADC9 Pedestal

Subtract

16 1 R/W 0x0027 Subtract from ADC9

Count before Summing

ADC10 Pedestal

Subtract

16 1 R/W 0x0028 Subtract from ADC10

Count before Summing

ADC11 Pedestal

Subtract

16 1 R/W 0x0029 Subtract from ADC11

Count before Summing

ADC12 Pedestal

Subtract

16 1 R/W 0x002A Subtract from ADC12

Count before Summing

ADC13 Pedestal

Subtract

16 1 R/W 0x002B Subtract from ADC13

Count before Summing

ADC14 Pedestal

Subtract

16 1 R/W 0x002C Subtract from ADC14

Count before Summing

ADC15 Pedestal 16 1 R/W 0x002D Subtract from ADC15

Subtract Count before Summing

STATUS3 16 1 R 0x0400

(---)

00

CONFIG6 16 1 R/W 0x0401

(---)

00 Table mode

10 Window mode

01 Boolean Overlap

11 undefined

Bit 2: 0 T_HIT to Ctrl

FPGA, Hitpattern to

FIFO

 1 T_SUM to

Ctrl FPGA, Sumpattern

to FIFO

Bitt3: 1 select Hit Bit

with programmable

positive pulse width to

P2.

 0 select Sum to

P2

Bit4 0 unable Table

overlap and Trigger

mode

 1 read back hit

pattern selection table.

Disable Table overlap

and Trigger mode.

HITBITS_WIDTH

8 16 R/W 0x0402

(0 –

0x000F)

(7..0) Hit Bits One Shot

Pulse Width. Actual

width is one clk longer.

HITS_DLY 16 1 R/W 0x0403 Actual delay is 7 clock

longer for all values.

Exmple: 0 7, 1 8,

2 9 etc. Delay is from

input of FX20.

Live Trig Out

WIDTH

8 1 R/W 0x0404 Pulse width of LiveTrig

Output. Actual width is

1 clock longer.

TRIGGER HITBITS 16 1 R/W 0x0405 In Window Mode.

Select Hit Bit(s) that can

activate(s) window. The

Bit(s) that activate the

Window is include in

the Trigger Hit Pattern.

WINDOW WIDTH 16 1 R/W 0x0406 In Window Mode.

Select the duration of

window. Width is 2

clock longer.

BOOLEAN

OVERLAP

QUALIFIED BITS

16 1 R/W 0x0407 In Boolean Overlap

Mode. Select Hit Bits to

be active in this mode

HIT PATTERN

SELECTION TABLE

DATA

16 65536 R/W 0x0408 Write to 65536x1 Hit

Pattern Selection Table.

Each word contains data

for 1 location. The

address are auto-

increment.

SUM/HITBIT

External FIFO

16 R 0x0409

Read HITBITS

SUM Threshold 16 1 R/W 0x40A Write SUM Threshold

Register. T_SUM goes

high when BSUM >

register value

PTW MAX BUF = INT(2016 / (PTW + 8) * 250000000)

 Where:

 2016  Number of address of Secondary Buffer

 PTW  Trigger Window width in nano-second

PTW DAT BUF LAST ADR = PTW MAX BUF * (PTW + 6)- 1;

 Where:

 6  4 address for Time Stamp and 2 address for Trigger Number

 NumberOfBytePerTrigger  PTW * 250 MHz.

 1

A VME64x, 16-Channel, Pipelined 250 MSPS Flash ADC
With Switched Serial (VXS) Extension

F.J. Barbosa, E. Jastrzembski, H. Dong, J. Wilson, C. Cuevas, D.J. Abbott
Thomas Jefferson National Accelerator Facility, Newport News, Virginia1

Abstract - We have designed a 250 MSPS
pipelined flash ADC (Analog-to-Digital
Converter) which will be employed at the
Jefferson Lab’s four experimental physics halls.
This high speed and high density flash ADC
conforms to VITA-41 VME64x switched serial
(VXS) standard.

I. Introduction

A high speed and high density flash ADC
module has been designed for use in nuclear
physics experiments at Jefferson Lab. The
Continuous Electron Beam Accelerator at
Jefferson Lab currently delivers 6 GeV electrons
to three experimental end stations. As part of a
planned energy upgrade to 12 GeV electrons, a
new experimental end station (Hall D) will be
built and instrumented. A high speed and
pipelined flash ADC will be used to provide
information about the energy deposited on a
detector element or group, timing, hit and trigger
information.

The trigger information output from each of
the modules on a VXS crate is routed via the
backplane to a switch slot. A total of 18 flash
ADCs per crate feed serial data to the switch slot
at an aggregate rate of 6 Gb/s which is then sent
to the experiment global VXS trigger crate.

Figure 1 shows some of the components of a
typical VXS crate to be used at Jefferson Lab2:
fADCs, an energy sum output switch card, a
switch card for clock and timing distribution and
a backplane.

Figure 1: VXS Crate Components

II. The Flash ADC Module

The flash ADC module has been designed to

accept 8-, 10- or 12-bit ADC chips. The choice
of the chip will depend on the application
resolution requirements and cost. The
architecture of the fADC is shown in figure 2.

CLOCK
TRIGGER
SYNC
STATUS

Pipeline
(8 uS)

INTERFACE

VXS-P0

FRONT
PANEL

SIGNAL
INPUT
(50 Ohm,
COAX,
LEMO)

TIMING & CONTROL

250 MHz

ADC Processor

FRONT-END

VME64X
INTERFACE

FIFO
(8 uS)

DIFF LPF (125 MHz)

P1 & P2

FIFOS

EVENT
MEMORY
(RAM)

INPUT RANGES
(-0.5V, -1V, -2V)

DATA PROCESSING
TIMING & VXS FPGAs

SIGNAL
CONDITIONING

Figure2: Simplified fADC Architecture

There are three user-selectable ranges

available for each of the inputs and differential
signal conditioning scales the input signals to
within the dynamic range of the ADCs. A single-
pole low-pass filter limits the signal bandwidth
to the Nyquist band of the converter or 125
MHz. Individual channel offsets are effected by
means of DACs under VME control. For the 10-
bit version of the flash ADC, the INL and DNL
are expected to be ± 0.8 LSB and ± 0.5 LSB,
respectively.

The digitized LVDS data and clock signals
are then fed to a set of Virtex 4 LX25 FPGAs for
data processing and temporary storage at the full
250 MSPS rate. ADC data is stored in RAM for
event building and readout via VME.
Additionally, these FPGAs output 16-bit energy
sum words and channel hit information.

A Virtex 4 FX20 FPGA effects the board
energy sum for output through the VXS
connector via the RocketIO Multi-Gigabit
Transceivers (MGT).

A fourth STRATIX II FPGA handles the
control, trigger and interface functions. The
VME 2eSST data transfer cycles can reach up to
320 MB/s.

The depth of the pipeline is 8 us and
windowing and trigger latency are user
programmable. In addition, sparcification,
charge, pedestal and peak values may be

 2

obtained, as well as, hit information with user-
defined thresholds and trigger processing.

In order to take full advantage of this high
speed ADC, a differential PECL clock with jitter
specification of less than 2 ps is timed properly
across the various clock domains.

III. Results

The fADC prototype board is shown in figure
3. This 14-layer high density board employs fine
pitch components on both sides and takes
advantage of impedance matched micro-strip
lines. The FPGAs’ packages are of the BGA type
and the ADC chips use QFN packages for
improved thermal performance.

Figure 3: The 250 MSPS fADC

The 250 MHz differential PECL clock is

shown in Figure 4. Its jitter was measured to be
less than 2 ps.

Figure 4: The 250 MHz Sampling Clock

The front end signal response to a 10 ns wide
pulse is shown in figure 5. The pulses at the top
of the picture are the differential inputs to the
ADC chip after being conditioned and filtered by
the input low pass filter; the pulse at the bottom
is the difference of the above signals and
represents what the ADC chip actually digitizes.
The front end bandwidth was measured to be 110
MHz.

Figure 5: Front End Pulse Response

IV. Conclusion

We have designed and assembled a high density
250 MSPS flash ADC for use in physics
experiments. This prototype, which is currently
undergoing tests, will be used to further study
the data transfer characteristics of the VXS
standard conforming to VITA-41 and to
implement algorithms in the study of detector
signals for energy deposition, timing and
triggering in realistic conditions expected in the
experimental end stations at Jefferson Lab.

V. References

[1] H. Dong, C. Cuevas, D. Curry, E.
Jastrzembski, F. Barbosa, J. Wilson, M. Taylor, “
VXS Switch Card for High Density Data
Acquisition System”, IEEE SoutheastCon 2007,
Richmond, VA, March 22-25, 2007.

VI. Acknowledgements

Authored by Jefferson Science Associates,
LLC under U.S. DOE Contract No. DE-AC05-
06OR23177. The U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this manuscript
for U.S. Government purposes.

