
SIMSCRIPT III
Programming Manual

 CACI

 ii

SIMSCRIPT III Programming Manual, contains parts from the book:

SIMSCRIPT III
by Stephen V. Rice, Ana K. Marjanski, Harry M. Markowitz, and Stephen M. Bailey

Copyright © 2007 CACI Products Company.

All rights reserved. No part of this publication may be reproduced by any means without written
permission from CACI.

For product information or technical support contact:

CACI Products Company
1455 Frazee Road, Suite 700
San Diego, CA 92108
Phone: (619) 881-5806
Email: simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot
assume the responsibility for any consequences resulting from the use thereof. The information contained
herein is subject to change. Revisions to this publication or new editions of it may be issued to incorporate
such change.

Table of Content
1 INTRODUCTION TO SIMSCRIPT III... 1

1.01 LANGUAGE BASICS .. 3
1.02 CHARACTER SET.. 4
1.03 COMMENTS .. 4
1.04 SCIENTIFIC NOTATION AND PUNCTUATION.. 5
1.05 NAMED AND ENUMERATED CONSTANTS... 6
1.06 BASIC DATA TYPES ... 7
1.07 TEXT AND ALPHA .. 7
1.08 VARIABLES AND ARRAYS .. 8
1.09 EXPRESSIONS ... 8
1.10 BASIC STATEMENTS... 10
1.11 LOOPS .. 11
1.12 FUNCTIONS AND SUBROUTINES.. 11
1.13 ARGUMENT CHECKING .. 13
1.14 REFERENCE MODE ... 14

2 OBJECT-ORIENTED PROGRAMMING .. 17

2.01 CLASSES AND OBJECTS .. 17
2.02 ATTRIBUTES... 18
2.03 METHODS .. 22
2.04 GROUPING OBJECTS IN SETS .. 26
2.05 ARRAYS OF SETS.. 28
2.06 INHERITANCE ... 29

3 OBJECT-ORIENTED DISCRETE SIMULATION ... 34

3.01 PROCESS METHOD ... 35
3.02 RANDOM NUMBER GENERATION ... 38
3.03 STATISTICS .. 38

4 MODULARITY .. 41

4.01 SUBSYSTEMS.. 41
4.02 SOURCE CODE ORGANIZATION .. 45

5 LIBRARY.M ... 49

5.01 MODE CONVERSION... 50
5.02 NUMERIC OPERATIONS .. 53
5.03 TEXT OPERATIONS... 58
5.04 INPUT/OUTPUT... 60
5.05 RANDOM-NUMBER GENERATION... 64
5.06 SIMULATION .. 68
5.07 MISCELLANEOUS ... 72

6 EXAMPLE PROGRAMS .. 74

6.01 EXAMPLE 1 - GAS STATION.. 74
6.02 EXAMPLE 2 – SIMPLE GAS STATION WITH 2 ATTENDANTS................................. 78

 iii

 iv

6.03 EXAMPLE 3 – A BANK WITH SEPARATE QUEUE FOR EACH TELLER 83
6.04 EXAMPLE 4 – A HARBOR MODEL .. 89
6.05 EXAMPLE 5 – THE MODERN BANK .. 92
(SINGLE-QUEUE-MULTIPLE-SERVER).. 92
6.06 EXAMPLE 6 – A JOB SHOP MODEL... 98
6.07 EXAMPLE 7 - A COMPUTER CENTER STUDY.. 106

1 Introduction to SIMSCRIPT III

The SIMSCRIPT III programming language is a superset of SIMSCRIPT II.5 with
significant new features to support modular object-oriented simulation programming.

It preserves existing world-view and the powerful data structures: entities, attributes and
sets, process and event-oriented discrete simulation of SIMSCRIPT II.5, and adds the
new, more elaborated, data structures and concepts like classes, methods, objects,
multiple inheritance and process-methods, to support object-view and object-oriented
process and event discrete simulation. Object types are defined with the class which can
be instantiated, they may have methods which describe object behavior, and may contain
special process-methods with time elapsing capabilities which can be scheduled for
execution in defined instances of time. Both, world-view and object-view can exist in
the same model, or a modeler may decide to use entirely object-view or a world-view
only.

SIMSCRIPT III model can consist only of main module (preamble and implementation),
but larger models should be designed with modularity in mind, as a main module with a
set of subsystems to facilitate code reuse and team work development. Modularity can be
easily added to an existing SIMSCRIPT II.5 model, defining it as a main module
(system) and adding new subordinate modules (subsystems/packages).

SIMSCRIPT III includes all standard language elements and can be used as a general-
purpose object-oriented programming language with English-like syntax. In addition, it
includes powerful support for building simulation models with interactive GUI,
presentation graphics and animation. Building SIMSCRIPT III graphical models is
explained in the SIMSCRIPT III Graphics Manual.

The SIMSCRIPT III models are developed inside the “Simstudio” integrated
development environment (IDE) which incorporates an automated project builder, syntax
colored text editors, a class browser and graphical editors for GUI elements: dialog
boxes, menus, palettes, icons, graphs. Building SIMSCRIPT III projects using Simstudio
is described in SIMSCRIPT III User’s Manual.

This chapter describes basic language elements and related enhancements like support for
the Latin-1 character set, named constants, argument type checking, multiple-line
comments, and reference modes.

Chapter 2 introduces classes, objects, multiple inheritance, object and class methods all
used for object-oriented programming.

Chapter 3 describes a process-method which can be used for process and event-based
discrete simulation. It also describes the ACCUMULATE and TALLY statements used
for statistics collection.

 1

Chapter 4 explains how SIMSCRIPT III programs can be designed as a set of modules or
“subsystems”, and elaborates on data scope and name resolution. A subsystem is
composed of public and private declarations and implementation code. Public data and
function/method declaration defines subsystem’s interface with the system and other
subsystems. Data structures and functionality can also be declared privately which can
be used to hide implementation details.

Chapter 5 lists the “system” routines, variables, and constants, which are defined by
SIMSCRIPT III’s library.m subsystem and are implicitly imported into every subsystem.
Other system modules like gui.m, 3d.m, 3dshapes.m, sdbc.m, and continuous.m are
imported on demand and described in specialized manuals.

Chapter 6 provides SIMSCRIPT III example programs, rewritten from SIMSCRIPT II.5.
Original programs are from the book: Building Simulation Models with SIMSCRIPT
II.5. These examples illustrate use of classes, objects, subsystems, creating simulations
with process methods and collection of statistics on object attributes.

 2

1.01 Language Basics

SIMSCRIPT III is Modular Object-Oriented Language which can be used for general
purpose program development. It is especially suited for building discrete-event and
process based simulation models.

SIMSCRIPT program consists of a main module and zero or more imported subordinated
modules called subsystems or packages. Main module consists of a block of declarations
known as the “preamble,” followed by one or more functions and routines, one of which
is named main. The simplest main module without a preamble in SIMSCRIPT would
be:

 main
 print 1 line thus
 Hello World !
 end

or with a preamble:

 preamble
 define Greeting as a text variable
 end

 main
 Greeting = “Have a nice day!”
 write Greeting as T *,/
 end

Declarations in the preamble are “global,” i.e., they apply to every routine in the module.
Declarations within a routine are “local,” i.e., they apply only to the routine in which they
are declared. Other levels of scope: object scope, class scope, public and private scope of
the subsystem will be described in the chapters that follow.

Program execution begins with the first statement in main and continues until main
returns or a stop statement is executed.

Programmer-defined names and language keywords are case insensitive. A programmer-
defined name is a sequence of letters, digits, periods, dollar signs, and underscores.
Except for and, there are no reserved words.

 3

1.02 Character Set

The character set supported by SIMSCRIPT III is Latin1, more formally ISO 8859-1,
which is an 8-bit character encoding that includes ASCII as a subset. Values 0 to 127 are
defined by ASCII, and values 128 to 159 are non-printable Latin1 characters. Values 160
to 255 are printable Latin1 characters and include these letters,

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü Ý Þ ß

à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ø ù ú û ü ý þ ÿ

and these special symbols:

¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ × ÷

Words in the following languages can be represented using the Latin1 character set:
Afrikaans, Albanian, Basque, Catalan, Danish, Dutch, Faroese, Finnish, French, German,
Icelandic, Irish, Italian, Norwegian, Portuguese, Romansh, Scottish Gaelic, Spanish,
Swahili, and Swedish.

Latin1 characters can appear in SIMSCRIPT III source code and in program input and
output, and can be stored in alpha and text variables. For example:

 define CAFÉ as a text variable
 CAFÉ = "Le Loir dans la Théière"
 write CAFÉ as "Le nom du café est ", t *, /

The character set supported by SIMSCRIPT II.5 is ASCII, which is a 7-bit character
code.

1.03 Comments

SIMSCRIPT III supports single and multiple line comment. A single line comment
begins with a pair of consecutive apostrophes and terminates at the end of the line or
upon reaching another pair of apostrophes on the same line. The comments are for
human readers; the compiler ignores them. This block of code,

if N = 0 ' ' variable N is uninitialized
 read ' ' number of elements into ' ' N
always
reserve X as N ' ' allocate the array

is equivalent to:

if N = 0
 read N

 4

always
reserve X as N

Multiple line comment which may span several lines begins with slash-tilde /~ and ends
with tilde-slash ~/. It can also be used in a single line as in the example:

if N = 0 ' ' variable N is uninitialized
 read ' ' number of elements into ' ' N
always
reserve X as N /~ allocate the array ~/

Single line comments can be nested inside multiple line comments. This makes it
convenient to “comment out” a block of code which may itself contain comments:

/~ assume the array is already allocated
if N = 0 ' ' variable N is uninitialized
 read ' ' number of elements into ' ' N
always
reserve X as N /~ allocate the array ~/
~/

Comments may be nested to any depth.

1.04 Scientific Notation and Punctuation

A numeric constant is a sequence of digits with an optional period (i.e., decimal point)
and optional scientific notation.

Floating point variables and constants can be expressed in scientific notation. For
example:

Define X, Y, and Z as double variables

X = 3.5026E5 ' ' assign 350260.0 to X
Y = 1.72e–03 ' ' assign 0.00172 to Y
Z = –27.641e+2 ' ' assign –2764.1 to Z

The letter E may be omitted from an input value (e.g., 4.82–7), but it is required when
expressing the value as a constant (e.g., 4.82e–7). Space characters are not permitted
within the constant.

SIMSCRIPT III permits periods and semicolons to enhance the readability of statements.
When used for this purpose, these punctuation characters are ignored by the compiler. In
this example a period is placed at the end of the define statement and a semicolon after
each assignment statement:

Define X, Y, and Z as double variables.

 5

X = 3.5026E5; ' ' assign 350260.0 to X
Y = 1.72e–03; ' ' assign 0.00172 to Y
Z = –27.641e+2; ' ' assign –2764.1 to Z

1.05 Named and Enumerated Constants

Named constants are defined with a specified value in define constant statement. More
than one constants can be defined in a single statement, for example:

define Max_Capacity = 100 as a constant
or

define Min_Capacity = 5 and Max_Capacity = 100 as constants

Named constants are not limited to integers, for example:

define cm_per_inch = 2.54, cm = "centimeters" as constants

write 12 * cm_per_inch, cm as d(5,2), " ", t *

The above write statement writes the number of centimeters in one foot:

30.48 centimeters

If the value of a named constant is unspecified, it is assigned the integer value that is one
greater than the value of the preceding integer constant in the statement, or assigned a
value of one if there is no preceding integer constant. In the following example, the
constants named F, D, C, B, and A represent letter grades and are assigned values zero
through four, and the constants Idle, Busy, and Terminated are given values one to three.

define F = 0, D, C, B, A as constants
define Idle, Busy, and Terminated as constants

Named constants declared in a preamble are “global,” that is, they are accessible to every
routine of the module. Named constants declared in a routine are “local,” that is, they are
accessible only within the declaring routine.

Similar mechanism for creating named constants is a define to mean or substitute
statement. For example, after the following statement, each occurrence of the name
Max_Capacity is replaced by the number 100.

define Max_Capacity to mean 100

 6

1.06 Basic Data Types

There are several basic data types, called “modes”: integer, real, double, alpha, text,
and pointer. Integer is implemented as a signed 32-bit or 64-bit value, depending on
which SIMSCRIPT III product (32-bit SIMSCRIPT vs. 64-bit SIMSCRIPT) is being
used. Real and double are single- and double-precision floating-point values,
respectively. Pointer is a generic (untyped) reference value, implemented as a 32-bit or
64-bit address, depending on a platform.

1.07 Text and Alpha

Alpha holds one 8-bit character; an alpha constant is surrounded by quotation marks,
e.g., "B". Text is a dynamic string holding a sequence of zero or more characters; a text
constant is also surrounded by quotation marks: "Hello, world!". Built-in functions are
available for string operations like concat.f, upper.f and type conversions like ttoa.f,
atot.f.

A text expression can be assigned to an alpha variable and passed to an alpha argument,
and its value is converted automatically by an implicit call of ttoa.f. Likewise, an alpha
expression can be assigned to a text variable and passed to a text argument, and its value
is converted automatically by an implicit call of atot.f. This notational convenience
permits, for example, an alpha variable named A to be converted to uppercase by

 A = upper.f(A)

A text expression can be compared with an alpha expression as part of a logical
expression. The alpha expression is automatically converted to text before the
comparison is performed. For example, if T is a text variable, the following syntax is
valid:

 if T = A

An alpha constant, such as "x", can appear in, and be compared with, an arithmetic
expression. It can also be assigned to an integer or double variable, and can be used as an
array subscript. For these cases, the alpha constant evaluates to its Latin1 character code
which ranges from zero to 255.

The binary + operator concatenates text and/or alpha operands. For example:

define First_Name, Last_Name, Full_Name as text variables
define Middle_Initial as an alpha variable
…

Full_Name = First_Name + " " + Middle_Initial + ". " + Last_Name

 7

1.08 Variables and Arrays

An integer variable named X is declared by the following statement:

define X as an integer variable

If the statement is specified in the preamble, the variable is global for that module; if
specified within a routine, the variable is local to the routine. All variables are
automatically initialized to zero, except text variables which are initialized to the zero-
length string "".

A one-dimensional double array named Y is declared by:

define Y as a 1-dimensional double array

 An array is dynamically allocated, and its number of elements determined at run time, by
executing a reserve statement, e.g.,

reserve Y as 100

The number of elements in an array can be obtained by calling the built-in function dim.f;
for example, dim.f(Y) returns 100. The first element of the array is stored at index 1. The
elements of Y therefore are Y(1), Y(2), …, Y(100). Each element is automatically initialized
to zero. Multi-dimensional arrays may also be declared. The release statement de-
allocates an array, i.e., frees its storage.

Arrays can also be reserve with an arbitrary low boundary other than “1”. This is
employed by replacing the number of elements in the reserve statement with
“<low_bound> to <high_bound>” . For example, suppose we wanted to reserve a 2-
dimensional double array indexed from –10 to +10 in the first dimension and from 0 to
20 in the second dimension:

define Z as a 2-dimensional double array
reserve Z as –10 to 10 by 0 to 20

The lower and upper index boundaries can be retrieved using the built-in functions low.f
and high.f. In the above example, calling low.f(Z) would return –10. Calling high.f(Z(0))
would return 20.

1.09 Expressions

Arithmetic expressions may use any combination of arithmetic operators: unary + and –;
binary +, –, *, /, and ** (exponentiation). Built-in functions may be called to perform other

 8

arithmetic operations, including logarithms, modulus, square root, and trigonometric
functions.

Logical expressions may use relational operators, =, <>, <, <=, >, >=, and logical operators
and and or. Logical negation is specified by appending is false to a logical expression.
The expression J >= 1 and J <= dim.f(Y) may be abbreviated as 1 <= J <= dim.f(Y). Logical
expressions use “short-circuit” evaluation; that is, if the first operand of and evaluates to
false, or the first operand of or evaluates to true, the second operand is not evaluated.

 9

1.10 Basic Statements

Multiple statements may appear on one line, and one statement may span multiple lines.
A semicolon is not required but is allowed after a statement.

The following statement assigns the value 10 to the variable named X:

X = 10

The optional let keyword can be also used:

let X = 10

 The statement:

add 1 to X

 is equivalent to

X = X + 1

Likewise, X may be decremented by subtract 1 from X.

The read statement reads free-form and formatted input. The write and print statements
produce formatted output. The open and close statements open and close files.

The if statement specifies a logical expression followed by a sequence of statements to
execute if the expression is true, and optionally by else and a sequence of statements to
execute if the expression is false. It is terminated by the keyword always. For example:

define J as an integer variable

read J

if 1 <= J <= dim.f(Y)
 write Y(J) as "The value is ", d(7,2), /
else ''invalid entry
 write as "The index is out of bounds!", /
always

The select statement is a “case” statement in which one of several blocks of statements is
chosen for execution based on the value of an expression.

 10

1.11 Loops

A loop is specified by one or more control phrases followed by the body of the loop,
which is either a single statement or a sequence of statements between the keywords do
and loop. A for phrase causes the body of the loop to be executed once for each value
assigned to a control variable, for example, for J = 1 to N. A while (or until) phrase
specifies a logical expression and terminates the loop when the expression is false (or
true). A with (or unless) phrase specifies a logical expression and executes the body of
the loop for the current iteration when the expression is true (or false). These phrases
may be combined to control loop execution. In addition, leave and cycle statements may
be specified in the body of the loop: a leave statement terminates the loop, and a cycle
statement terminates the current iteration of the loop.

A find or compute statement may be specified in the body of a loop. A find statement
terminates the loop when the body is executed for the first time and is followed by an
if found (or if none) phrase which evaluates to true if the body of the loop was (or was
not) executed. For each execution of the body of the loop, a compute statement
evaluates an arithmetic expression and computes statistics (e.g., sum, mean, maximum,
minimum) from the values of the expression over the life of the loop.

1.12 Functions and Subroutines

A subroutine is a block of code which can be written once and invoked from different
places in the program. In SIMSCRIPT, subroutines are recursive, which means the same
subroutine can be invoked by itself. A function is a routine that returns a function result.
A subroutine does not return a function result. Functions and subroutines may have one
or more given arguments; however, only subroutines may have yielded arguments. The
value of a given argument is an input to the routine, whereas the value of a yielded
argument is an output from the routine.

Each function and subroutine is declared by a define statement in the preamble, which
specifies the number and mode of arguments, and the mode of the function result for
functions. To call a function with n given arguments, the function name is followed by a
parenthesized list of n expressions, for example, F(I, J, K). A subroutine is invoked by a
call statement, for example

call Analyze given A, B yielding C, D

A function is terminated by a return with statement, which specifies the function result.
A subroutine terminates when a return statement is executed or the end of the subroutine
is reached.

 11

The following function has three given arguments: a one-dimensional array of text
values, a text key to look up in the array, and a text value describing the order of values
in the array. The function searches for the key in the array. If it is found, the index of the
array element containing the key is returned; otherwise, zero is returned to indicate that
the key was not found. If the third argument is "ascending", the function uses binary
search; otherwise, the array is searched sequentially.

function Search (T, Key, Order)

 define First, Last, and Index
 as integer variables

 First = 1
 Last = dim.f(T)

 if Order = "ascending"

 ''binary search
 Index = (First + Last) / 2
 while First <= Last and Key <> T(Index)
 do
 if Key < T(Index)
 Last = Index – 1
 else
 First = Index + 1
 always
 Index = (First + Last) / 2
 loop

 if First > Last
 Index = 0 ''not found
 always

 else ''sequential search

 for Index = First to Last
 with Key = T(Index)
 find the first case
 if none
 Index = 0 ''not found
 always

 always

 return with Index

end

The function must be declared in the preamble:

define Search as an integer function
 given a 1-dimensional text argument
 and 2 text arguments

 12

The following is an example of a function call:

if Search (A, "Jim", "ascending") > 0
 write as "Found Jim in array A", /

 always

1.13 Argument Checking

The define routine statement specifies the number of given and yielded arguments of a
routine. It is also possible to specify the mode and dimensionality of each argument.

In the following example, a double function named F is declared. Its first argument is
integer, its second argument is double, and its third argument is integer.

 define F as a double function
 given an integer argument, a double argument, and an integer argument

The following statement declares a subroutine named Test given a text value and a one-
dimensional integer array and yielding two double values.

 define Test as a routine
 given a text argument and a 1–dimensional integer argument
 yielding 2 double arguments

The compiler checks each routine call to verify that the caller’s arguments are compatible
with the routine’s arguments. A caller’s given value is converted to the mode of the
routine’s given argument, and a routine’s yielded value is converted to the mode of the
caller’s yielded argument, if the argument modes differ and mode conversion is possible.
For example, a double value passed to an integer argument is automatically converted to
integer. If the argument modes differ but mode conversion is not permitted (for example,
passing a text value to a double argument), the compiler issues an error message.

When the mode and dimensionality of a routine’s arguments have been declared in a
define routine statement, it is not necessary to define the mode and dimensionality of the
arguments within the routine implementation. But, if they are defined within the routine
implementation, their definitions must agree with the definitions in the define routine
statement. For example:

 function F(M, X, N)
 /~ the following statements are optional because the argument modes
 have already been declared in a "define routine" statement ~/
 define M and N as integer variables
 define X as a double variable

In some cases, the mode of routine arguments is known by the compiler without a define
routine statement, such as the mode of arguments to function attributes, monitoring
functions, and before/after routines.

 13

1.14 Reference Mode

In SIMSCRIPT III, a “reference mode” is implicitly defined for each process type and
temporary entity type. The name of the mode is the name of the entity type followed by
the keyword reference. A “reference variable” is a typed pointer variable that can hold
the “reference value” or address of an entity.

For example, if Ship is a temporary entity type, the mode Ship reference is implicitly
defined. The following statement defines Tanker to be a reference variable that can hold
the reference value of a Ship entity:

 define Tanker as a Ship reference variable

The following statement creates a Ship entity, initializes its attributes to zero, and assigns
its reference value to Tanker:

 create Tanker

This entity is destroyed by:

 destroy Tanker

When a reference variable is used to access an attribute, the compiler verifies that the
attribute is an attribute of the entity type. For example:

 C = Capacity(Tanker) ' ' if Ship does not have a Capacity, an error is reported

The compiler also validates set operations when reference variables are used. For
example:

 define Captain as a Shiphand reference variable
 …
 file Captain in Crew(Tanker) /~ compiler error unless
 every Shiphand belongs to a Crew and
 every Ship owns a Crew ~/

A reference variable of one entity type cannot be assigned to a reference variable of
another entity type. For backward compatibility with SIMSCRIPT II.5, a reference
variable can be assigned to an integer or pointer variable, and an integer or pointer
variable can be assigned to a reference variable.

A variable can be checked at runtime to determine if it contains a reference value of a
particular reference mode. For example, if P is a pointer variable that refers to a Ship
entity, the logical condition, P is a Ship reference, is true:

 14

 15

 if P is a Ship reference
 /~ it is safe to access a Ship attribute using P ~/
 C = Capacity(P)
 /~ and it is safe to assign P to a Ship reference variable ~/
 Tanker = P
 always

More than one Ship entity can be created and destroyed at a time:

 define S1, S2, S3 as Ship reference variables
 create S1, S2, S3 ' ' create three Ships
 destroy S1, S2, S3 ' ' destroy three Ships

An array of reference values can be defined and initialized:

 define Armada as a 1–dimensional Ship reference array
 define J as an integer variable

 reserve Armada as 1000
 for J = 1 to 1000
 create Armada(J)

Attributes, global variables, local variables, and arguments can be reference variables. A
function that returns a reference value has a reference mode. The background mode, set
by a normally statement, can be a reference mode. Preamble declarations may specify a
reference mode before the entity type is declared; for example, Ship reference may
appear in statements that precede the declaration of the Ship entity type.

2 Object-Oriented Programming

2.01 Classes and Objects

A class is defined by one or more begin class blocks appearing in a preamble. The
following block defines a class named Vehicle:

 begin class Vehicle
 …
 end

Definitions of attributes, methods, and sets are placed within these blocks.

A class also defines reference mode of the same name, so a reference variables of that
mode can be declared, like:

 define Car as a Vehicle reference variable

The following statement allocates a Vehicle type object, initializes its attributes to zero,
and assigns its reference value to the reference variable named Car:

 create Car

The following statement de-allocates the object whose reference value is stored in Car:

 destroy Car

An array of objects can be created and destroyed:

 define Fleet as a 1–dimensional Vehicle reference array

 reserve Fleet as 50
 for J = 1 to 50
 create Fleet(J)
 …
 for J = 1 to 50
 destroy Fleet(J)
 release Fleet

 17

2.02 Attributes

“Object attributes” are declared in every statement within begin class blocks. In the
following example, every Vehicle object has an integer attribute named ID, a text attribute
named Manufacturer, and double attributes named Maximum_Speed and Current_Speed:

 begin class Vehicle

 every Vehicle
 has an ID,
 a Manufacturer,
 a Maximum_Speed,
 and a Current_Speed

 define ID as an integer variable
 define Manufacturer as a text variable
 define Maximum_Speed and Current_Speed as double variables

 end

An object attribute is accessed like an attribute of a temporary entity, by placing a
reference value expression in parentheses after the attribute name. For example:

 ID(Car) = 781

Manufacturer(Car) = "Chrysler"
 Maximum_Speed(Car) = 100
 Current_Speed(Car) = Maximum_Speed(Car) / 2

It reads “ID of Car is 781”, “Manufacturer of Car is Chrysler”, etc.

“Class attributes” are declared in the class statements within begin class blocks.
Whereas each object has its own copy of each object attribute, there is only one copy of
each class attribute in the program. In our example, a class attribute named Count can be
used to keep track of the current number of Vehicle objects in the program, and a class
attribute named Last_ID can hold the ID of the last Vehicle created by the program.

 begin class Vehicle

 the class has a Count and a Last_ID
 define Count and Last_ID as integer variables

 end

A class attribute is accessed by specifying its qualified name, which is the class name
followed by an apostrophe and the attribute name, with no intervening spaces. For
example:

 write Vehicle'Count as "The number of vehicles is ", i *, /

 18

Object attributes and class attributes are automatically initialized to zero. Their names
must be unique within the class.

The mode of an object attribute or class attribute must be specified by a define variable
statement after the has phrase that names the attribute and within the same begin class
block.
 begin class Vehicle

 every Vehicle
 has an ID,
 a Manufacturer,
 a Maximum_Speed,
 and a Current_Speed

 define ID, Manufacturer, Maximum_Speed, and Current_Speed
 as integer variables
 define Manufacturer as a text variable

 the class has a Count and a Last_ID
 define Count and a Last_ID as integer variables

 end

Statement normally mode is may appear within a begin class block to establish a
background mode, and attributes defined by subsequent has phrases will have the
background mode if their mode is not specified by a define variable statement. In the
following example, all of the attributes have the background mode of integer except
Manufacturer:

 begin class Vehicle

 normally mode is integer

 every Vehicle
 has an ID,
 a Manufacturer,
 a Maximum_Speed,
 and a Current_Speed

 define Manufacturer as a text variable

 the class has a Count and a Last_ID

 end

After the begin class block, the background mode reverts to its setting before the block.
The background settings inside the block are independent of the background settings
outside the block. Substitutions defined by define to mean and substitute statements
within a begin class block have effect only within the block.

The dimensionality of an object attribute or class attribute is zero by default, which
means the attribute contains a scalar value. However, a dimensionality greater than zero

 19

may be specified in a define variable statement or normally dimension is statement to
define an array attribute. Let us add to our example an object attribute named
Tire_Pressure that is an array of real values, where each element of the array contains the
air pressure of one tire of the Vehicle.

 begin class Vehicle

 every Vehicle has a Tire_Pressure

 define Tire_Pressure as a 1–dimensional real array

 end

When accessing an element of an array attribute of an object, the array subscripts appear
in parentheses after the parenthesized reference value expression. The following
statements allocate and initialize the Tire_Pressure array for the Vehicle object whose
reference value is stored in Car:

 reserve Tire_Pressure(Car) as 4
 for J = 1 to 4
 Tire_Pressure(Car)(J) = 30

Suppose that a Vehicle object is assumed to have four tires. A named constant may be
defined within a begin class block and is called a “class constant”:

 begin class Vehicle

 define Num_Tires = 4 as a constant

 end

A class constant is accessed by specifying its qualified name:

 reserve Tire_Pressure(Car) as Vehicle'Num_Tires
 for J = 1 to Vehicle'Num_Tires
 Tire_Pressure(Car)(J) = 30

Statistical attributes may be defined by accumulate and tally statements appearing within
a begin class block. A statistical attribute is an object attribute (or class attribute) whose
value is computed based on the values assigned to another object attribute (or class
attribute). We add to our example an object attribute named Trip_Distance and a
statistical attribute named Odometer containing the sum of the values assigned to
Trip_Distance.

 20

 begin class Vehicle

 every Vehicle has a Trip_Distance

 define Trip_Distance as a real variable

 tally Odometer as the sum of Trip_Distance

 end

Object attributes and class attributes may be reference variables, random variables, and
monitored variables.

 21

2.03 Methods

A method is a routine associated with a class. It may have given arguments, and it may
be a function which returns a function result, or a subroutine which does not return a
function result but may have yielded arguments.

An “object method” is invoked on behalf of an object and performs some operation using
the object. A “class method” is related to the class but is not invoked on behalf of an
object.

Object methods are declared in every statements, and class methods are declared in the
class statements, within begin class blocks. The mode and dimensionality of a method’s
arguments, and the mode of the method’s function result if the method is a function, are
specified by a define method statement after the method’s declaration and within the
same begin class block. A define method statement is similar to a define routine
statement. If the define method statement is omitted, the method is assumed to be a
subroutine with no arguments.

The names of methods and attributes must be unique within the class; however, these
names may be defined elsewhere in the program, including in other classes.

If an object method is a subroutine with no arguments, it may be specified in an after
creating statement within a begin class block, which causes the method to be invoked
implicitly on behalf of an object after a create statement has allocated the object and
initialized its attributes to zero. Since this method cannot accept arguments, the program
can define and explicitly call another object method that accepts arguments and uses
them to initialize attributes of the new object to nonzero values.

If an object method is a subroutine with no arguments, it may be specified in a before
destroying statement within a begin class block, which causes the method to be invoked
implicitly on behalf of an object before a destroy statement has de-allocated the object.

In our Vehicle example, we define five object methods and one class method. The object
method Construct is invoked automatically after a Vehicle is created, and the object
method Destruct is invoked automatically before a Vehicle is destroyed. The object
method Initialize is given three arguments which are used to initialize a Vehicle object.
The object method Flat_Tires is a function that returns the number of under-inflated tires.
The object method Print writes a description of a Vehicle, and the class method
Print_Count writes the current number of Vehicle objects.

 22

 begin class Vehicle

 every Vehicle
 has a Construct method,
 a Destruct method,
 an Initialize method,
 a Flat_Tires method,
 and a Print method

 after creating a Vehicle, call Construct
 before destroying a Vehicle, call Destruct

 define Initialize as a method given
 a text argument, ' ' name of manufacturer
 a double argument, ' ' maximum speed
 and a real argument ' ' initial tire pressure

 define Flat_Tires as an integer method given
 a real argument ' ' minimum tire pressure

 the class has a Print_Count method

 end

An object method is may be invoked with given and yielded arguments. A reference
value expression is specified in parentheses after an object method name and before any
given arguments. A class method name must be qualified. The following statements
invoke the methods of the Vehicle class and the Chevy object methods:

 define Chevy as a Vehicle reference variable

 create Chevy ' ' implicit call Construct(Chevy)
 call Initialize(Chevy) given "Chevrolet", 90, 32

 if Flat_Tires(Chevy)(25) is zero
 write as "Tires are okay", /
 always

 call Print(Chevy)
 call Vehicle'Print_Count

 destroy Chevy ' ' implicit call Destruct(Chevy)

The reference value of an object is passed implicitly by value to an object method and
must be nonzero. It is accessible within the object method in an implicitly-defined local
reference variable that has the same name as the class. Because a class method is not
invoked on behalf of an object, a reference value is not passed to a class method and this
local reference variable is not defined within a class method.

A method implementation begins with the keyword method. The following is an
implementation of the Construct object method:

 23

 method Vehicle'Construct

 add 1 to Count
 add 1 to Last_ID
 ID(Vehicle) = Last_ID
 Manufacturer(Vehicle) = "Unknown"
 reserve Tire_Pressure(Vehicle) as Num_Tires

 end

As shown above, the names of class attributes, Count and Last_ID, and the name of the
class constant, Num_Tires, do not need to be qualified within a method of the class.
However, the method name, Vehicle'Construct, must be qualified unless it follows a
methods heading that names the class. The object attributes, ID, Manufacturer, and
Tire_Pressure, are subscripted by the implicitly-defined local reference variable named
Vehicle that contains the reference value of the Vehicle object for which the method was
invoked. However, these subscripts may be omitted and are implicit when accessing
object attributes and calling object methods. With these changes, here is an equivalent
implementation of the Construct method followed by implementations of the other
Vehicle methods:

 methods for the Vehicle class

 method Construct ' ' called after a Vehicle object has been created

 add 1 to Count
 add 1 to Last_ID
 ID = Last_ID
 Manufacturer = "Unknown"
 reserve Tire_Pressure as Num_Tires

 end

 method Initialize given Maker, Max_Speed, Initial_Pressure

 Manufacturer = Maker
 Maximum_Speed = Max_Speed

 define J as an integer variable
 for J = 1 to Num_Tires
 Tire_Pressure(J) = Initial_Pressure

 end

 24

 method Flat_Tires(Min_Pressure)

 define Count and J as integer variables

 for J = 1 to Num_Tires with Tire_Pressure(J) < Min_Pressure
 add 1 to Count ' ' increment local variable

 return with Count ' ' return number of under–inflated tires

 end

 method Print

 print 3 lines with ID, Manufacturer, Current_Speed,
 Maximum_Speed, Odometer, Flat_Tires(10) thus
 Vehicle # *** manufactured by ******************
 Its current and maximum speeds are *** and *** mph.
 Its odometer reads ******.* miles. It has * flat tires.

 end

 method Destruct ' ' called before a Vehicle object is destroyed

 write as "Destroying:", /
 call Print
 release Tire_Pressure
 subtract 1 from Count

 end

 method Print_Count

 write Count as "There are ", i *, " Vehicle objects in existence.", /

 end

A method that is a function may have left and/or right implementations. A left
implementation begins with the keywords left method, whereas a right implementation
begins with the keywords method or right method.

An object method (or class method) that is a function is implicitly defined for a
monitored object attribute (or class attribute). This method has the same name and mode
as the attribute, and is given n integer arguments where n is the dimensionality of the
attribute. It has left and/or right implementations depending on whether the attribute is
monitored on the left and/or the right.

A method may not be represented as a subprogram literal and called using a subprogram
variable.

 25

2.04 Grouping Objects in Sets

Objects as well as entities can be grouped in sets. A set is a doubly-linked list with a
programmer-defined name. The owner of a set of objects named List has three owner
attributes: reference variables F.List and L.List, which identify the first and last objects in
the set, and N.List, which holds the number of objects in the set. A member of this set has
three member attributes: reference variables P.List and S.List, which identify the
predecessor and successor objects in the set, and M.List, which indicates whether this
object is in a set named List.

An object may own and belong to any number of sets. Each belongs phrase in an every
statement names a set in which an object may be a member. Each owns phrase in an
every statement names a set owned by an object. An owns phrase in the class statement
names a set owned by the class. The set named in an owns phrase is qualified by the
name of the member class.

A belongs phrase in an every statement appearing inside a begin class block defines a set
that contains objects of the class. Member attributes p.set_name, s.set_name, and
m.set_name are implicitly defined as 0-dimensional (scalar) object attributes. A define
set statement may appear inside the block after the belongs phrase to specify the ordering
of members of the set, either FIFO (first-in first-out, which is the default), LIFO (last-in
first-out), or ranked based on the values of one or more 0-dimensional object attributes
(and values returned by object methods that are functions with no arguments).

An owns phrase in an every statement (or the class statement) appearing inside a begin
class block refers to a set of entities or set of objects owned by an object of the class (or
owned by the class). Owner attributes f.set_name, l.set_name, and n.set_name are
implicitly defined as object attributes (or class attributes) with the background
dimensionality. If the background dimensionality is nonzero, the owner attributes are
array attributes and the object (or class) owns an array of sets.

Unless the owner and member class are the same class, an owns phrase must refer to a set
of objects by its qualified name, i.e., the name of the member class, followed by an
apostrophe and the set name. However, only the set name appears in the name of owner
attributes.

In the following example, the owns phrase indicates that every Repair_Shop object owns
a set of Vehicle objects named Service_Queue. The set of objects is defined by the
belongs phrase and define set statement.

 begin class Repair_Shop

 every Repair_Shop owns a Vehicle'Service_Queue

 end

begin class Vehicle

 26

 every Vehicle belongs to a Service_Queue
 define Service_Queue as a FIFO set

 end

The implicitly-defined member set attributes of a Vehicle object are p.Service_Queue,
s.Service_Queue, and m.Service_Queue. The implicitly-defined owner set attributes of a
Repair_Shop object are f.Service_Queue, l.Service_Queue, and n.Service_Queue. The
mode of attributes p.Service_Queue, s.Service_Queue, f.Service_Queue, and
l.Service_Queue is Vehicle reference.

A file statement inserts an object into a set. Variations of this statement permit the object
to be inserted first or last in the set, or immediately before or after a specified object. If
the position is unspecified, the object is placed into the set according to the “set
discipline,” which may be FIFO, LIFO, or “ranked,” i.e., ordered according to attribute
values of the members. The set discipline is declared by a define statement in the begin
class block of the member class and is FIFO by default.

A remove statement removes an object from a set. Variations of this statement remove
the first or last object, or a specific object from the set. A for each loop control phrase
traverses a set in the forward or reverse direction, executing the body of the loop once for
each member of the set. Special logical expressions test whether an object is in a set and
whether a set is empty. For example:

The following statements illustrate operations involving the Service_Queue set:

 define Car and MyCar as Vehicle reference variables

define EZ_Auto and Ferrari_Depot as Repair_Shop reference variables
create MyCar, EZ_Auto, and Ferrari_Depot

 …

 for each Car in Service_Queue(EZ_Auto) with Manufacturer(Car) = "Ferrari"
 do
 remove Car from Service_Queue(EZ_Auto)
 file Car in Service_Queue(Ferrari_Depot)
 write as "Transferred:", /
 call Print(Car)
 loop

 if Service_Queue(EZ_Auto) is empty
 write as "Time for a coffee break", /
 always

 if MyCar is in Service_Queue
 write as "My car is in the shop", /
 always

An object may belong to any number of sets. An object or class may own any number of
sets and arrays of sets. A set contains either objects or entities but not a mixture of the

 27

two. An object method (or class method) can be invoked automatically before/after
filing/removing an entity or object into a set owned by an object (or class).

A belongs phrase in an every statement appearing outside a begin class block defines a
set of entities (temporary entities, permanent entities, and/or resources).

An owns phrase in an every statement (or the system statement) appearing outside a
begin class block refers to a set of entities or set of objects owned by an entity (or owned
by the system).

SIMSCRIPT III supports sets of objects and sets of entities. It also supports array of sets.

2.05 Arrays of Sets

An array of sets can be declared, as illustrated by the following example:

every Ship belongs to a Fleet

normally dimension is 1
the system owns the Fleet

The following statements reserve and release an array of sets Fleet:

reserve Fleet as 100
release Fleet

The number of elements in this array of sets is obtained by dim.f(Fleet).

 28

2.06 Inheritance

A new class similar to the existing classes defined in the model can be derived from one
or more existing classes by inheriting their attributes and methods. This language
property is named inheritance.

In single inheritance, a class is derived from one base class. In multiple inheritance, a
class is derived from two or more base classes. SIMSCRIPT III supports both, single and
multiple inheritance.

A derived class inherits the object attributes of each of its base classes. This means that
an object of a derived class has a copy of each object attribute defined or inherited by its
base classes. In addition, the derived class may define object attributes of its own.

In the following example, a class named Gas_Vehicle is derived from the Vehicle class,
which is indicated by the is a phrase of the every statement. Each Gas_Vehicle object has
the object attributes of a Vehicle, such as ID, Manufacturer, etc., and the object attributes
defined here: Miles_Per_Gallon, Fuel_Capacity, and Current_Gallons.

 begin class Gas_Vehicle

 every Gas_Vehicle is a Vehicle and
 has a Miles_Per_Gallon,
 a Fuel_Capacity,
 and a Current_Gallons

 define Miles_Per_Gallon, Fuel_Capacity, and Current_Gallons as real variables

 end

A derived class also inherits the object methods of each of its base classes. This means
that each object method defined or inherited by its base classes may be invoked on behalf
of an object of the derived class. In addition, the derived class may define object
methods of its own.

In our example, the object methods of the Vehicle class, such as Initialize, Flat_Tires, etc.,
may be invoked on behalf of a Gas_Vehicle object. This is appropriate because the
Gas_Vehicle is a Vehicle: it has all of the object attributes of a Vehicle and can be
operated upon by these methods as if it were a Vehicle object. The Gas_Vehicle class
may define object methods of its own, for example, a Fuel_Level method that returns the
value of (Current_Gallons / Fuel_Capacity). Note that an object method defined by the
Gas_Vehicle class may not be invoked on behalf of a Vehicle object because a Vehicle
object lacks the object attributes defined by the Gas_Vehicle class. A Vehicle is not a
Gas_Vehicle.

A derived class cannot alter the definition of an inherited object attribute or object
method. For example, the Gas_Vehicle class cannot change the mode of the inherited ID

 29

attribute. A derived class may define an attribute or method having the same name as an
inherited attribute or method, but it does not replace or change the inherited attribute or
method. The result is that the derived class has two definitions of the name, one defined
by the class and the other inherited from a base class.

In the following example, the Gas_Vehicle defines a text object attribute named ID and an
object method named Initialize which accepts three more given arguments than the
inherited Initialize method.

 begin class Gas_Vehicle

 every Gas_Vehicle has an ID and an Initialize method

 define ID as a text variable

 define Initialize as a method given
 2 text arguments, ' ' VIN and manufacturer name
 1 double argument, ' ' maximum speed
 and 3 real arguments ' ' initial tire pressure, mpg, and fuel capacity

 end

When a name has been inherited from two or more base classes, or has been defined by
the derived class and inherited from one or more base classes, each inherited definition
must be accessed using its qualified name. A Gas_Vehicle object has an inherited integer
attribute named Vehicle'ID and a defined text attribute named ID or Gas_Vehicle'ID.

The Initialize method defined by the Gas_Vehicle class is called on behalf of a
Gas_Vehicle object. The following implementation of this method calls the inherited
Initialize method on behalf of the Gas_Vehicle object to initialize its inherited attributes,
Manufacturer, Maximum_Speed, and Tire_Pressure. It then initializes three of its defined
attributes, ID, Miles_Per_Gallon, and Fuel_Capacity.

 methods for the Gas_Vehicle class

 method Initialize

 given VIN, Maker, Max_Speed, Initial_Pressure, MPG, Tank_Size

 call Vehicle'Initialize given Maker, Max_Speed, Initial_Pressure
 ID = VIN
 Miles_Per_Gallon = MPG
 Fuel_Capacity = Tank_Size

 end

 30

The inherited after creating and before destroying methods, Construct and Destruct, are
invoked implicitly:

 define Buick as a Gas_Vehicle reference variable

 create Buick ' ' invokes Vehicle'Construct
 call Initialize(Buick) ' ' invokes Gas_Vehicle'Initialize

 given "5A2TY461T", "Buick", 95, 35, 22.5, 15
 call Print(Buick) ' ' invokes Vehicle'Print
 destroy Buick ' ' invokes Vehicle'Destruct

A derived class can provide an object method implementation that “overrides” an
inherited one. For example, the Gas_Vehicle class can override the inherited Print
method:

 begin class Gas_Vehicle

 every Gas_Vehicle overrides the Print

 end

The new implementation calls the overridden implementation to print attributes inherited
from the Vehicle class. It then prints attributes defined by the Gas_Vehicle class.

 methods for the Gas_Vehicle class

 method Print

 call Vehicle'Print ' ' invoke the overridden implementation

 print 2 lines with ID, Miles_Per_Gallon, Fuel_Capacity, Current_Gallons thus
 ********* gets **.* miles per gallon.
 Its **.*–gallon tank contains **.* gallons.

 end

 31

Because a Gas_Vehicle object can be treated as a Vehicle object, a Gas_Vehicle reference
value can be assigned (or passed) to a Vehicle reference variable (or argument).
However, a Vehicle reference value cannot be assigned (or passed) to a Gas_Vehicle
reference variable (or argument). When the Print method is called using a Vehicle
reference variable that contains a Gas_Vehicle reference value, Gas_Vehicle'Print is
invoked. For example:

 define V as a Vehicle reference variable
 create V ' ' create a Vehicle object
 call Print(V) ' ' invoke Vehicle'Print
 destroy V ' ' destroy the Vehicle object

 define GV as a Gas_Vehicle reference variable
 create GV ' ' create a Gas_Vehicle object
 call Print(GV) ' ' invoke Gas_Vehicle'Print

 V = GV ' ' assign Gas_Vehicle reference value to Vehicle reference variable
 call Print(V) ' ' invoke Gas_Vehicle'Print
 destroy V ' ' destroy the Gas_Vehicle object

 create V ' ' create a Vehicle object
 GV = V ' ' not allowed! this is flagged by the compiler

A variable can be checked at runtime to determine if it contains a reference value of an
object belonging to a particular class. The following logical condition is true if the
variable P refers to a Vehicle object or to an object of a class derived from Vehicle such as
a Gas_Vehicle object.

 if P is a Vehicle reference

A Service_Queue set may contain not only Vehicle objects but also objects of classes
derived from Vehicle. A Gas_Vehicle object has inherited the ability to be a member of a
Service_Queue set. It has inherited the member attributes, p.Service_Queue,
s.Service_Queue, and m.Service_Queue, from the Vehicle class.

define Shop as a Repair_Shop reference variable
define V as a Vehicle reference variable
define GV as a Gas_Vehicle reference variable
create Shop, V, GV

file V in Service_Queue(Shop)
file GV in Service_Queue(Shop)

for each V in Service_Queue(Shop)
 call Print(V)

The body of the loop invokes Vehicle'Print or Gas_Vehicle'Print depending on whether
reference variable V holds the reference value of a Vehicle or Gas_Vehicle object.
This capability is called polymorphism and is one of the properties of Object-Oriented
languages.

 32

Suppose each vehicle in the service queue must be driven to another repair shop ten miles
away:

for each V in Service_Queue(Shop)
 schedule a Trip(V) given 10, 30 in 0 days

If the Gas_Vehicle class overrides the Trip process method, then Gas_Vehicle'Trip is
scheduled for each Gas_Vehicle object in the queue and Vehicle'Trip is scheduled for each
Vehicle object.

A class derived from the Repair_Shop class inherits the ability to own a Service_Queue
set. It inherits the owner attributes, f.Service_Queue, l.Service_Queue, and
n.Service_Queue.

A derived class may specify accumulate and tally statements that compute statistics based
on the values assigned to inherited object attributes. An inherited object method that is a
function, including the method associated with a monitored object attribute, is overridden
by naming it an overrides phrase and providing left and/or right implementations of the
method.

The class attributes, class methods, and class constants of a base class may be accessed
without qualification within a method of a derived class. A class method cannot be
overridden. Substitutions defined by define to mean and substitute statements within a
begin class block of a base class are not inherited.

“Cyclic” inheritance is not permitted, for example, every A is a B and every B is an A, or
every A is a B, every B is a C, and every C is an A.

Suppose class D is derived from classes B and C, and that class A is a base class of both B
and C. That is, every D is a B and a C, every B is an A, and every C is an A. This is
known as “diamond-shaped” inheritance. There is only one occurrence of A's object
attributes in a D object. If both B and C override an object method M inherited from A,
then D must override M; the implementation of D'M may invoke any combination of A'M,
B'M, and C'M.

 33

3 Object-Oriented Discrete Simulation

 34

3.01 Process Method

Any method that is a subroutine may be declared as a “process method,” which can be
invoked directly by a call statement or scheduled by a schedule statement for execution at
some future simulation time. In our example, let us define a process method named Trip
given the trip distance and average speed and yielding the duration of the trip.

 begin class Vehicle

 every Vehicle has a Trip process method

 define Trip as a process method
 given 2 double arguments ' ' trip distance in miles and

' ' average speed in mph
 yielding 1 double argument ' ' trip duration in hours

 end

 methods for the Vehicle class

 process method Trip given Distance, Average_Speed yielding Duration

 define Start_Time as a double variable
 Start_Time = time.v

 Current_Speed = min.f(Average_Speed, Maximum_Speed)
 wait Distance / Current_Speed hours
 Current_Speed = 0

 Duration = (time.v – Start_Time) * hours.v

 Trip_Distance = Distance ' ' update Odometer

end

This process method can be called directly, for example:

 call Trip(Chevy) given 600, 55 yielding Trip_Duration.

In this case, the caller waits for the trip to complete and receives the duration of the trip
in the yielded argument.

However, a trip can be scheduled to begin now,

 schedule a Trip(Chevy) given 600, 55 in 0 days

or to begin sometime in the future:

 schedule a Trip(Chevy) given 600, 55 in 3 days.

 35

The routine that executes the schedule statement does not wait for the trip to complete
and continues on without delay to the next statement of the routine. Upon completion of
the trip, argument values yielded by the process method are discarded. In this example,
there is no one waiting to receive the duration of the trip; however, this information could
be saved by the process method in an attribute.

If the process method is an object method, then an explicit or implicit reference value
subscript must follow the method name. If the process method is a class method,
however, the method is scheduled without a reference value expression.

A schedule a statement creates an instance of the process method:

 schedule a Trip(Chevy) called Midwest_Trip given 600, 55 in 3 days.

The given arguments, and the reference value of the object, are saved in attributes of the
process notice for this process method instance. The time.a attribute of the notice is
assigned the simulation time at which the process method is to begin execution.

The process notice is filed into the event set ev.s, where it co-exists with other process
notices. The event set is an array of sets and each process method type is assigned a
unique index into the array.

The scheduled execution of a process method can be canceled and rescheduled by cancel
and schedule the statements that refer to the process method instance. The reference
value of the process notice may be stored in the implicitly-defined attribute,

 cancel the Trip(Chevy)
 schedule the Trip(Chevy) in 7 days

or stored in a pointer variable:

 cancel the Midwest_Trip
 schedule the Midwest_Trip in 7 days.

A process method in a wait state can be interrupted and later resumed:

 interrupt the Trip(Chevy)
 …
 resume the Trip(Chevy)
or
 interrupt the Midwest_Trip
 …
 resume the Midwest_Trip.

A process method can check the value of global variable process.v to determine if a
simulation is running. If process.v is nonzero, then a simulation is running and process.v

 36

contains the reference value of the current process notice, and the process method is
permitted to suspend execution using a wait, suspend, or request statement. However, if
process.v is zero, then no simulation is running and it is a runtime error to suspend
execution. Note that resources are requested and owned by the current process notice.

A process method can call or schedule itself or other process methods. A process method
that is an object method is invoked on behalf of an object and can be thought of as an
activity of the object. The event set can contain more than one scheduled invocation of
the same or different process methods on behalf of a single object to model concurrent
activities of the object.

A method can be invoked automatically before/after scheduling/canceling a process
method. All process methods are scheduled internally (endogenously); however, an
externally-scheduled process routine can call a process method to achieve the effect of
exogenous scheduling.

A priority statement inside a begin class block specifies the priority order of the process
methods of the class. A priority statement outside a begin class block may specify the
priority order of process methods in different classes, and the priority order of processes.
A break ties statement may not be specified for a process method.

 37

3.02 Random Number Generation

SIMSCRIPT III utilizes a linear congruential generator (LCG) to produce uniform
pseudo-random 31-bit values ranging from zero to 2,147,483,647. A predefined array
named seed.v contains ten seed values equally spaced throughout the period of the LCG;
however, any seed values may be assigned by the program to this array. A “stream”
number between 1 and 10 selects a seed value from this array.

The values from the LCG are transformed by built-in functions into pseudo-random
numbers from the following probability distributions: beta, binomial, Erlang, exponential,
gamma, lognormal, normal, Poisson, triangular, uniform (continuous and discrete), and
Weibull.

3.03 Statistics

An accumulate or tally statement specifies one or more statistics to compute
automatically from the values assigned to an object attribute (or class attribute). A name
is given to each statistic, and an object method (or class method) by that name is
generated that returns the value of the statistic. Any of the following statistics may be
computed: the maximum, minimum, number, sum, mean, mean square, sum of squares,
variance, and standard deviation of the values assigned to the attribute. A histogram of
the values may also be computed.

The statistics are weighted by simulation time if specified by an accumulate statement
and are unweighted if the tally statement is used. The statistics can be computed for the
entire simulation, or for particular time intervals, for example, every day or every week
of simulation time. The reset statement is used to initialize the statistics at the beginning
of a time interval.

Suppose in our example we wish to measure how well a repair shop is doing its job, and
assume that after each vehicle is serviced, the time required to service the vehicle is
assigned to an object attribute named Service_Time. A tally statement specifies that the
average and maximum service time is to be computed from the values assigned to this
attribute. An accumulate statement indicates that the time-weighted average of the
length of the service queue is to be computed. The number of vehicles in the queue is
maintained in the implicitly-defined object attribute named N.Service_Queue, which is
automatically updated whenever a vehicle is inserted into the queue by a file statement or
removed from the queue by a remove statement. A Print_Statistics method displays the
results.

 38

 39

begin class Repair_Shop

 every Repair_Shop
 has a Service_Time and
 a Print_Statistics method, and
 owns a Vehicle'Service_Queue

 define Service_Time as a double variable

 tally Avg_Service_Time as the mean and
 Max_Service_Time as the maximum
 of Service_Time

 accumulate Avg_Queue_Length as the mean
 of N.Service_Queue

end

 methods for the Repair_Shop class

method Print_Statistics
 print 3 lines with
 Avg_Service_Time, Max_Service_Time, and
 Avg_Queue_Length as follows
 Average service time is **.**
 Maximum service time is **.**
 Average queue length is **.**
end

4 Modularity

4.01 Subsystems

A SIMSCRIPT III program consists of a main module and zero or more subordinate
modules called “subsystems.”

Main module consists of a preamble followed by one or more routines, including a main
routine. The preamble declarations are visible only to the routines of the main module.
A SIMSCRIPT II.5 program can be viewed as a SIMSCRIPT III main module.

Subsystem is a named module consisting of a public preamble followed by an optional
private preamble and zero or more routines. The declarations in the public preamble are
visible to the private preamble and routines of the subsystem, and to every module that
“imports” this subsystem. The declarations in the private preamble are visible only to the
routines of the subsystem.

It is easier to develop and maintain a large program that has been divided into meaningful
units. Subsystems promote better source code organization and facilitate the reuse of
code. The public preamble of a subsystem defines the interface to the subsystem, and the
implementation is hidden in the private preamble and routines of the subsystem. A
module may import any number of subsystems, and a subsystem may be imported by any
number of modules.

A subsystem may be distributed as a source file containing only the public preamble, and
one or more binary object files obtained by compiling the subsystem. The source file
documents the subsystem interface and is read by the compiler when compiling a module
that imports the subsystem. An executable program is built by linking the binary object
files that were produced by compiling the main module and each of its subsystems.

Separate compilation is supported. If a subsystem’s private preamble or routines are
modified, only the subsystem needs to be recompiled. However, each program that uses
the subsystem must be re-linked.

A module imports a subsystem by specifying its name in an importing phrase appended to
a preamble heading.

Not only can a main module import a subsystem, but a subsystem A can import a
subsystem B. If the public preamble of subsystem A imports subsystem B, then a module
that imports subsystem A will automatically import subsystem B.

 public preamble for the X system

 importing subsystem A
end

public preamble for the A subsystem

 41

 importing subsystem B
end

However, if the private preamble of subsystem A imports subsystem B, then a module
that imports subsystem A is unaware of subsystem B.

 public preamble for the X system

 importing subsystem A
end

public preamble for the A subsystem

end

private preamble for the A subsystem

 importing subsystem B

 end

If the name of an imported definition is the same as a name defined by the importing
module, or if the same name is imported from two or more subsystems, then the name of
an imported definition must be qualified by pre-pending the name of the defining
subsystem followed by a colon, with no intervening spaces. For example, if module M
imports subsystems S1 and S2, and the name C is defined in module M and in the public
preambles of S1 and S2, then the three definitions may be accessed within module M by
using the qualified names, M:C, S1:C, and S2:C. The local definition may be accessed
without qualification, that is, C and M:C are synonymous. Suppose S1:C is a class that
has a class attribute named A. This attribute may be accessed within module M by using
the qualified name, S1:C'A. If such a name is unwieldy, a substitution can be defined for
it, for example:

 define CA to mean S1:C'A

The method implementations of a class must appear within the module that defines the
class. A “private” class is defined by one or more begin class blocks within the preamble
of a main module or within the private preamble of a subsystem. A private class is
visible only to the defining module.

A “public” class is defined by one or more begin class blocks within the public preamble
of a subsystem and by zero or more begin class blocks within the private preamble of the
subsystem. The public part of a public class is specified in the public preamble, whereas
the private part of a public class is hidden in the private preamble. This makes it possible
for a class to have a public interface yet also have private attributes, methods, and sets,
and even private base classes.

Substitutions defined by define to mean and substitute statements, and the settings
established by normally and suppress/resume statements, in effect at the end of the
public preamble of a subsystem, are in effect at the beginning of the private preamble of
the subsystem, and those in effect at the end of the private preamble apply to the routines

 42

of the subsystem. A module that imports the subsystem, however, does not import, nor is
affected by, the substitutions and settings defined by the subsystem. Although it is not
possible to import substitutions, named constants defined in the public preamble of the
subsystem are imported.

In subsystems, each public routine, whether function or subroutine, must be defined in a
public preamble, and each private function and subroutine must be defined in a private
preamble. Full definition is encouraged, including specification of the mode and
dimensionality of its arguments.

“System” attributes are defined by the system statements in the preamble of a main
module. “Subsystem” attributes are analogously defined by the subsystem statements
appearing in the public and private preambles of a subsystem.

A subsystem may provide a special initialize routine which is called once automatically
before the main routine is executed. This routine can be used to initialize subsystem
attributes, global variables, and class attributes defined by the subsystem. If more than
one subsystem in a program has an initialize routine, the sequence in which these routines
are executed is undefined.

The following example shows a subsystem and a main module that imports the
subsystem.

 public preamble for the Transportation subsystem

 begin class Vehicle ' ' public part of public class
 the class has a Count ' ' public class attribute
 …
 end

 ' ' public subroutine
 define Check as a subroutine given a double argument

 ' ' public subsystem attributes
 the subsystem has an X and a Y
 define X and Y as double variables
 end

 private preamble for the Transportation subsystem

 begin class Moving_Object ' ' private class
 …
 end

 begin class Vehicle ' ' private part of public class
 every Vehicle is a Moving_Object ' ' private base class
 the class has a Last_ID ' ' private class attribute
 …
 end

 ' ' private subsystem attribute

 43

 the subsystem has a Z
 define Z as a double variable
 end
 methods for the Moving_Object class
 …

 methods for the Vehicle class
 …

 subroutine Check(Arg)
 …
 end

 initialize ' ' called before main

 X = 1.0; Y = 1.0; Z = 1.0; Vehicle'Last_ID = 100;

 end

 ' ' main module

 preamble for the City system
 importing the Transportation subsystem

 begin class City_Vehicle
 every City_Vehicle is a Vehicle
 …
 end

 the system has a Y
 define Y as a text variable

 end

 /~

 by importing the Transportation subsystem, routines of this module can:
 create Vehicle objects
 access the public attributes of Vehicle such as Vehicle'Count
 call the public methods of Vehicle
 call the public subroutine Check
 access the public subsystem attributes X and Transportation:Y
 (qualification of Y is required to distinguish it from the system attribute
 named Y defined by this module)

 but cannot:
 refer to class Moving_Object
 access the private attributes of Vehicle such as Vehicle'Last_ID
 call the private methods of Vehicle
 access the private subsystem attribute Z
 ~/

 methods for the City_Vehicle class
 …

 main
 …
 end

 44

4.02 Source Code Organization

A SIMSCRIPT III program consists of a main module or a main module and several
subordinate modules called “subsystems.” The keywords subsystem, module, and
package are synonymous.

A main module may have an optional preamble followed by one or more routines and
methods headings. One of the routines must be named main. The preamble contains
definitions of data structures used in the program like: classes, entities, global variables,
constants and sets. All statements in a preamble are non-executable. The main module
can be given a name and can import subsystems, but cannot BE imported by a subsystem.

' ' **** Begin file ”anyname.sim” ****

Preamble for the Y system importing the A subsystem
 define routine1 as a routine

end

main
 …
end

routine routine1
 …
end

' ' **** End file ”anyname.sim” ****

A subsystem begins with a public preamble and is followed by an optional private
preamble and zero or more routines and methods headings. The file containing a public
preamble must be named after the subsystem. In the following example, the subsystem
called “X” must appear within the file “X.sim”.

 ' ' **** Begin file X.sim ****

Public preamble for the X subsystem importing the A subsystem
 define routine1 as a routine

end

' 'optional private preamble
Private preamble for the X subsystem importing the B subsystem

 define routine2 as a routine
End

' 'optional implementation
routine routine1
 …
end
routine routine2

 45

 …
end

 ' ' **** End file X.sim ****

A separate source file can contain the private preamble for a subsystem followed by
optional implementation code for the subsystem. There are no naming restrictions on this
file. Keep in mind that constructs defined in the private preamble of a subsystem are
never imported.

' ' **** Begin file ”anyname.sim” ****

Private preamble for the X subsystem importing the B subsystem
 define routine3 as a routine

End

' 'optional implementation
routine routine3
 …
end

' ' **** End file ”anyname.sim” ****

A separate source file can contain solely implementation code without any public,
private, or system preamble. If the file contains code for a subsystem, it must have the
heading “Implementation for the … subsystem”:

' ' **** Begin file ”anyname.sim” ****

Implementation for the X subsystem

routine routine3
 …
end

' ' **** End file ”anyname.sim” ****

A separate file containing implementation code for “the system” should NOT have the
“implementation for” header. Basically, any code found in a source file that does not
have any “preamble” or “implementation for” headings is assumed to be part of the main
module or “system”.

' ' **** Begin file ”anyname.sim” ****
 ' ' Some code for the “system’s” implementation

routine routine1
 …
end
main
 …
end

 46

 47

' ' **** End file ”anyname.sim” ****

To formally state the rules on how we can place public preambles, private preambles,
system preambles and implementation code into source files:

Public preamble:

1) Only one “public preamble” per subsystem is allowed.
2) It must appear first in the source file.
3) It cannot span multiple files.
4) The file containing the public preamble must be named after it. (The file “X.sim”

will contain the public preamble for the “X” subsystem.)

Private preambles

5) Only one private preamble per subsystem.
6) It cannot span multiple files.
7) It must appear either first in the source file, or immediately after a public

preamble.

Preamble for the main module

8) Only one main module preamble for the entire program is allowed.
9) It must appear first in the source file.
10) Subsystems cannot import from the main module preamble.

Implementation code

11) Code for a subsystem must appear after a public preamble, private preamble, or
“implementation for” heading. Code can span multiple files.

12) Code for the system must appear after the system’s preamble, or in a file by itself
with no heading. Code can span multiple files.

Adopting some sort of convention is regarding the placement of source code in files is
advisable. For example, in many of the demo programs for SIMSCRIPT III, the
following conventions are used: The public preamble of a subsystem is placed in one file
(say shipping.sim for the “shipping” subsystem), and the private preamble and
subsequent implementation code is placed in a second file with “_i” appended to its
name (in this case shipping_i.sim).

Building SIMSCRIPT III projects is facilitated by the Interactive Development
Environment (IDE) called “Simstudio”. This is fully described in the SIMSCRIPT III
User Manual. SIMSCRIPT III projects can also be built using the command-line
interface also described in the User Manual.

5 Library.m

Library.m is a special module that is implicitly imported by every preamble. This module
defines routines, variables, and constants which are accessible to every module. These
definitions may be accessed without qualification (for example, time.v) or with
qualification (for example, library.m:time.v). The library.m definitions are described in
the sections of this chapter:

 5.01 Mode Conversion
 5.02 Numeric Operations
 5.03 Text Operations
 5.04 Input/Output
 5.05 Random-Number Generation
 5.06 Simulation
 5.07 Miscellaneous

 49

5.01 Mode Conversion
__

atot.f (alpha_arg)

A text function that returns a text value of length one containing alpha_arg as its only
character. For example, atot.f("B") converts an alpha "B" to a text "B".
__

int.f (double_arg)

An integer function that returns the value obtained by rounding double_arg to the nearest
integer. If the argument is positive, the rounded value is computed by adding 0.5 to the
argument and truncating the result. If the argument is negative, the value is obtained by
subtracting 0.5 from the argument and truncating. For example, int.f(3.5) returns 4 and
int.f(–3.5) returns –4.
__

itoa.f (integer_arg)

An alpha function that returns the character representation of integer_arg. The argument
must be in the range 0 to 9. The return value is in the range "0" to "9".
__

itot.f (integer_arg)

A text function that returns the text representation of integer_arg. For example, itot.f(100)
returns "100" and itot.f(–5) returns "–5".
__

real.f (integer_arg)

A double function that returns the floating-point representation of integer_arg. For
example, real.f(3) returns 3.0.
__

rtot.f (double_arg, total_width_integer, frac_width_integer, use_exponential_integer)

A text function that returns textual representation of double_arg. Given as arguments are
the total number of places, the number of places to the right of the decimal point, and a
flag to use exponential notation. For example, rtot.f(65.01369, 10, 4, 0) returns the text
string:
“ 65.0137”.
__

 50

trunc.f (double_arg)

An integer function that returns the value obtained by truncating double_arg to remove its
fractional part. For example, trunc.f(3.5) returns 3 and trunc.f(–3.5) returns –3.

 51

__

ttoa.f (text_arg)

An alpha function that returns the first character of text_arg or returns a blank if text_arg
is the null string. For example, ttoa.f("yes") returns "y" and ttoa.f("") returns " ".
__

ttoi.f (text_arg)

An integer function that returns an integer value that is represented in a text string. If for
some reason the conversion cannot take place, zero is returned.

__

ttor.f (text_arg)

A double function that returns the floating point value that has been converted from a text
string. If for some reason the conversion cannot take place, zero is returned.

 52

5.02 Numeric Operations
__

abs.f (numeric_arg)

A function that returns the absolute value of an integer or double argument. If the
argument is integer, the function returns an integer result. If the argument is double, the
function returns a double result. For example, abs.f(–5) returns 5 and abs.f(12.3) returns
12.3.
__

and.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise AND of
integer_arg1 and integer_arg2. For example, and.f(23, 51) returns 19 because the bitwise
AND of binary 010111 (23) and binary 110011 (51) is binary 010011 (19).
__

arccos.f (double_arg)

A double function that returns the arc cosine of double_arg in radians. The argument
must be in the range –1 to +1. The return value is in the range zero to  .
__

arcsin.f (double_arg)

A double function that returns the arc sine of double_arg in radians. The argument must

be in the range –1 to +1. The return value is in the range
2


 to

2


 .

__

arctan.f (double_argY, double_argX)

A double function that returns the arc tangent of (double_argY / double_argX) in radians.
Either argument may be zero but not both. If double_argY is positive, the return value is
in the range zero to  . If double_argY is negative, the return value is in the range  to
zero. If double_argY is zero and double_argX is positive, the return value is zero. If
double_argY is zero and double_argX is negative, the return value is  .
__

cos.f (double_arg)

A double function that returns the cosine of double_arg. The argument is specified in
radians. The return value is in the range –1 to +1.
__

 53

__

dim.f (array_arg)

An integer function that returns the number of elements in array_arg. The argument is
normally an array pointer. However, if the argument names an array of sets, then the
f.set array pointer is implicitly passed in its place. If the argument is zero, then zero is
returned.
__

div.f (integer_arg1, integer_arg2)

An integer function that returns the truncated result of (integer_arg1 / integer_arg2).
Integer_arg2 must be nonzero. For example, div.f(17, 5) returns 3 and div.f(–12, 8) returns
–1.
__

exp.c

A double constant equal to the value of e, 2.718281828459045.
__

exp.f (double_arg)

A double function that returns the value of where double_arg is the exponent. xe
__

frac.f (double_arg)

A double function that returns the fractional part of double_arg. It is computed by
subtracting the truncated value of the argument from the original value. If the argument
is positive, the return value is positive. If the argument is negative, the return value is
negative. For example, frac.f(3.45) returns 0.45 and frac.f(–3.45) returns –0.45.
__

inf.c

An integer constant equal to the largest integer value. On 32-bit computers, this value is

. The smallest integer value is –inf.c–1. 647,483,147,21231 
__

log.e.f (double_arg)

A double function that returns the natural logarithm (i.e., the base e logarithm) of
double_arg. The argument must be positive.
__

 54

__

log.10.f (double_arg)

A double function that returns the base 10 logarithm of double_arg. The argument must
be positive.
__

max.f (numeric_arg1, numeric_arg2, …)

A function that returns the maximum value of two or more integer or double arguments.
If every argument is integer, the function returns an integer result; otherwise, the function
returns a double result.
__

min.f (numeric_arg1, numeric_arg2, …)

A function that returns the minimum value of two or more integer or double arguments.
If every argument is integer, the function returns an integer result; otherwise, the function
returns a double result.
__

mod.f (numeric_arg1, numeric_arg2)

A function that computes numeric_arg1 divided by numeric_arg2 and returns the
remainder. If both arguments are integer, the function returns an integer result;
otherwise, the function returns a double result. Numeric_arg2 must be nonzero. If
numeric_arg1 is positive, the return value is positive. If numeric_arg1 is negative, the
return value is negative. For example, mod.f(14.5, 3) returns 2.5 and mod.f(–14.5, 3)
returns –2.5.
__

or.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise inclusive OR
of integer_arg1 and integer_arg2. For example, or.f(23, 51) returns 55 because the bitwise
inclusive OR of binary 010111 (23) and binary 110011 (51) is binary 110111 (55).
__

pi.c

A double constant equal to the value of  , 3.141592653589793.
__

 55

__

radian.c

A double constant equal to the number of degrees per radian, which is


180
 or

57.29577951308232.
__

rinf.c

A double constant equal to the largest real value. On 32-bit computers, this value is
approximately ; however, a double value may be as large as . The smallest
real value is –rinf.c.

38104.3  30810

__

shl.f (integer_arg1, integer_arg2)

An integer function that returns the value of integer_arg1 shifted left by integer_arg2 bit
positions. For example, shl.f(23, 2) returns 92 because binary 00010111 (23) shifted left
two positions is binary 01011100 (92). The value of integer_arg1 is returned if
integer_arg2 is zero. The result is undefined if integer_arg2 is negative.
__

shr.f (integer_arg1, integer_arg2)

An integer function that returns the value of integer_arg1 shifted right by integer_arg2 bit
positions. For example, shr.f(23, 2) returns 5 because binary 010111 (23) shifted right
two positions is binary 000101 (5). An arithmetic shift is performed with the sign bit
copied to the most significant bit positions. The value of integer_arg1 is returned if
integer_arg2 is zero. The result is undefined if integer_arg2 is negative.
__

sign.f (double_arg)

An integer function that returns the sign of double_arg: +1 if the argument is positive, –1
if the argument is negative, and zero if the argument is zero.
__

sin.f (double_arg)

A double function that returns the sine of double_arg. The argument is specified in
radians. The return value is in the range –1 to +1.
__

 56

__

sqrt.f (double_arg)

A double function that returns the square root of double_arg. The argument must be
nonnegative.
__

tan.f (double_arg)

A double function that returns the tangent of double_arg. The argument is specified in
radians.
__

xor.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise exclusive OR
of integer_arg1 and integer_arg2. For example, xor.f(23, 51) returns 36 because the
bitwise exclusive OR of binary 010111 (23) and binary 110011 (51) is binary 100100
(36).
__

 57

5.03 Text Operations
__

concat.f (text_arg1, text_arg2, …)

A text function that returns the concatenation of two or more text arguments. For
example, concat.f("Phi", "ladelp", "hia") returns "Philadelphia". Keep in mind that the “+”
operator can be used for concatenation. For example: let philly = "Phi" + "ladelp" + "hia"
__

fixed.f (text_arg, integer_arg)

A text function that returns the value obtained after appending space characters to, or
removing trailing characters from, the value of text_arg to make its length equal the value
of integer_arg. For example, fixed.f("abcd", 2) returns "ab" and fixed.f("abcd", 5) returns
"abcd ". Integer_arg must be nonnegative; if it is zero, a null string is returned.
__

length.f (text_arg)

An integer function that returns the number of characters in text_arg. For example,
length.f("Chicago") returns 7 and length.f("") returns zero.
__

lower.f (text_arg)

A text function that returns the value of text_arg with each uppercase letter converted to
lowercase. All other characters are unchanged. For example, lower.f("Chicago") returns
"chicago" and lower.f("CAFÉ") returns "café".
__

match.f (text_arg1, text_arg2, integer_arg)

An integer function that returns the position of the first occurrence of text_arg2 in
text_arg1 excluding the first integer_arg characters of text_arg1, or returns zero if there is
no such occurrence. Zero is returned if text_arg1 or text_arg2 is the null string.
Integer_arg must be nonnegative. For example, match.f("Philadelphia", "hi", 2) returns 10
and match.f("Chicago", "hi", 2) returns zero.
__

repeat.f (text_arg, integer_arg)

A text function that returns the concatenation of integer_arg copies of text_arg. For
example, repeat.f("AB", 3) returns "ABABAB". Integer_arg must be nonnegative. A null
string is returned if text_arg is a null string or integer_arg is zero.

 58

__

substr.f (text_arg, integer_arg1, integer_arg2)

A text function that returns a substring of text_arg when called as a right function, or
modifies a substring of text_arg when called as a left function. The substring begins with
the character at position integer_arg1 and continues until the substring is integer_arg2
characters long or until the end of text_arg is reached. (The first character of text_arg is
at position 1.) For example, the statement,

T = substr.f("Philadelphia", 6, 5)

assigns "delph" to T. When called as a left function, the text value assigned to the
function replaces the specified substring of text_arg, which must be an unmonitored text
variable. The following assignment changes the value of T from "delph" to "delta":

substr.f(T, 4, 2) = "ta"

If the value assigned to the substring is not the same length as the substring, then space
characters are appended to, or trailing characters are removed from, the assigned value.
Integer_arg1 must be positive and integer_arg2 must be nonnegative. If integer_arg1 is
greater than the length of text_arg, or integer_arg2 is zero, then a null string is returned
when substr.f is called as a right function, and no modification is made to text_arg when
substr.f is called as a left function.
__

trim.f (text_arg, integer_arg)

A text function that returns the value obtained by removing leading and/or trailing blanks,
if any, from the value of text_arg. If integer_arg is zero, leading and trailing blanks are
removed; if integer_arg is negative, only leading blanks are removed; and if integer_arg
is positive, only trailing blanks are removed. If text_arg is the null string or contains all
blanks, then a null string is returned. For example, trim.f(" Hello ", 0) returns "Hello".
__

upper.f (text_arg)

A text function that returns the value of text_arg with each lowercase letter converted to
uppercase. All other characters are unchanged. For example, upper.f("Chicago") returns
"CHICAGO" and upper.f("café") returns "CAFÉ".
__

 59

5.04 Input/Output
__

buffer.v

An integer variable that specifies the length of “the buffer” when the first use the buffer
statement is executed. Its default value is 132.
__

efield.f

An integer function that returns the ending column number of the next value to be read by
a free-form read statement using the current input unit, or returns zero if there are no
more input values.
__

eof.v

An integer variable that specifies the action to take when an attempt is made to read data
from the current input unit beyond the end of file. If the value of the variable is zero
(which is the default), the program is terminated with a runtime error. However, if the
value of the variable is nonzero (typically the program sets it to 1), the variable is
assigned a value of 2 to indicate that end-of-file has been reached. Each input unit has its
own copy of this variable.
__

heading.v

A subprogram variable that specifies a routine to be called for each new page written to
the current output unit when pagination is enabled (lines.v is greater than zero), or
contains zero (which is the default) if no routine is to be called. The routine typically
writes a page heading but may perform other tasks. Each output unit has its own copy of
this variable.
__

line.v

An integer variable that contains the number of the current line for the current output
unit. It is initialized to 1. If pagination is enabled (lines.v is greater than zero), then the
first line of each page is number 1. Each output unit has its own copy of this variable.
__

 60

__

lines.v

An integer variable that enables pagination for the current output unit if containing a
positive value indicating the maximum number of lines per page, or disables pagination if
zero (which is the default) or negative. Each output unit has its own copy of this
variable.
__

mark.v

An alpha variable that specifies the character that marks the end of input data describing
an external process or random variable. Its default value is "*" (asterisk).
__

out.f (integer_arg)

An alpha function that returns (when called as a right function), or modifies (when called
as a left function), the specified character of the current output line. Integer_arg is the
column number of the character, which must be between 1 and the record size. For
example, the statement, A = out.f(4), assigns the character in column four to the variable
A. The statement, out.f(4) = "s", changes the character in column four to "s". This
function may not be used if the current output unit has been opened for writing binary
data.
__

page.v

An integer variable that contains the number of the current page for the current output
unit. It is initialized to 1 and is incremented for each new page when pagination is
enabled (lines.v is greater than zero). Each output unit has its own copy of this variable.
__

pagecol.v

An integer variable that specifies for the current output unit, a positive starting column
number at which the word “Page,” followed by the current page number, will be written
as the first line of each page (preceding lines written by a heading.v routine) when
pagination is enabled (lines.v is greater than zero); or the variable is zero (which is the
default) or negative to disable this feature. Each output unit has its own copy of this
variable.
__

 61

__

rcolumn.v

An integer variable that contains the column number of the last character read from the
current input line, or zero if no character has been read. Each input unit has its own copy
of this variable.
__

read.v

An integer variable that contains the unit number of the current input unit. Its initial
value is 5 because unit 5 (standard input) is the current input unit when a program begins
execution. The assignment, read.v = N, changes the current input unit and has the same
effect as the statement, use N for input.
__

record.v (integer_arg)

An integer function that returns the number of lines read from, or written to, the specified
I/O unit. Integer_arg must be a valid unit number.
__

ropenerr.v

An integer variable that equals 1 to indicate that an error occurred when opening the file
associated with the current input unit, or equals zero if no error occurred. If the Open
statement for the unit specifies the noerror keyword, then the program can check the
value of this variable after a use statement to determine whether an error occurred when
opening the file; otherwise, such an error causes the program to terminate. Each input
unit has its own copy of this variable.
__

rreclen.v

An integer variable that contains the number of characters read in the current input line,
excluding the end-of-line character. Each input unit has its own copy of this variable.
__

rrecord.v

An integer variable that contains the number of lines read from the current input unit.
Each input unit has its own copy of this variable.
__

 62

__

sfield.f

An integer function that returns the starting column number of the next value to be read
by a free-form read statement using the current input unit, or returns zero if there are no
more input values.
__

wcolumn.v

An integer variable that contains the column number of the last character written to the
current output line, or zero if no character has been written. Each output unit has its own
copy of this variable.
__

wopenerr.v

An integer variable that equals 1 to indicate that an error occurred when opening the file
associated with the current output unit, or equals zero if no error occurred. If the Open
statement for the unit specifies the noerror keyword, then the program can check the
value of this variable after a use statement to determine whether an error occurred when
opening the file; otherwise, such an error causes the program to terminate. Each output
unit has its own copy of this variable.
__

wrecord.v

An integer variable that contains the number of lines written to the current output unit.
Each output unit has its own copy of this variable.
__

write.v

An integer variable that contains the unit number of the current output unit. Its initial
value is 6 because unit 6 (standard output) is the current output unit when a program
begins execution. The assignment, write.v = N, changes the current output unit and has
the same effect as the statement, use N for output.
__

 63

5.05 Random-Number Generation
__

beta.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number in the range zero to one from the beta
distribution having shape parameters 1 equal to double_arg1 and 2 equal to

double_arg2, and mean  equal to
21

1





, where 01  and 02  . Integer_arg must

specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate.
__

binomial.f (integer_arg1, double_arg, integer_arg2)

An integer function that returns a random number in the range zero to n from the
binomial distribution having parameters n equal to integer_arg1 and p equal to
double_arg, and mean  equal to np, where and . The return value
represents a random number of successes in n independent trials where p is the
probability of success for each trial. Integer_arg2 must specify a random number stream
between 1 and dim.f(seed.v), or a negative stream number to generate the antithetic
variate.

0n 0p

If n equals 1, the binomial distribution is the same as the Bernoulli distribution.
__

erlang.f (double_arg, integer_arg1, integer_arg2)

A double function that returns a nonnegative random number from the Erlang distribution
having mean  equal to double_arg, shape parameter  equal to integer_arg1, and scale

parameter  equal to



, where 0 and 0 . Integer_arg2 must specify a random

number stream between 1 and dim.f(seed.v), or a negative stream number to generate the
antithetic variate.
__

exponential.f (double_arg, integer_arg)

A double function that returns a nonnegative random number from the exponential
distribution having mean  equal to double_arg, where 0 . Integer_arg must specify
a random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

 64

__

gamma.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the gamma
distribution having mean  equal to double_arg1, shape parameter  equal to

double_arg2, and scale parameter  equal to



, where 0 and 0 . Integer_arg

must specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate.

If  equals 1, the gamma distribution is the same as the exponential distribution. If  is
an integer, the gamma distribution is the same as the Erlang distribution. If  is an

integer and  equals
2


, the gamma distribution is the same as the chi-square

distribution with  degrees of freedom.
__

log.normal.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the lognormal
distribution having mean  equal to double_arg1 and standard deviation  equal to
double_arg2, where 0 and 0 . Integer_arg must specify a random number stream
between 1 and dim.f(seed.v), or a negative stream number to generate the antithetic
variate.
__

normal.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number from the normal distribution having
mean  equal to double_arg1 and standard deviation  equal to double_arg2, where

0 . Integer_arg must specify a random number stream between 1 and dim.f(seed.v),
or a negative stream number to generate the antithetic variate.
__

poisson.f (double_arg, integer_arg)

An integer function that returns a nonnegative random number from the Poisson
distribution having mean  equal to double_arg, where 0 . Integer_arg must specify
a random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

 65

__

randi.f (integer_arg1, integer_arg2, integer_arg3)

An integer function that returns a random number in the range m to n from the discrete
uniform distribution having parameters m equal to integer_arg1 and n equal to

integer_arg2, and mean  equal to
2

nm 
, where nm  . Integer_arg3 must specify a

random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

random.f (integer_arg)

A double function that returns a uniform random number in the range 0 to 1. Integer_arg
must specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate equal to 1 – random.f(–integer_arg).
__

seed.v

A one-dimensional integer array that contains the current seed value for each random
number stream. A stream number is used as an index into the array. The number of array
elements returned by dim.f(seed.v) is the number of streams and is initially 10; however,
the program may release the array and reserve it to change the number of streams.
__

triang.f (double_arg1, double_arg2, double_arg3, integer_arg)

A double function that returns a random number in the range m to n from the triangular
distribution having parameters m equal to double_arg1, peak k (the mode) equal to

double_arg2, and n equal to double_arg3, and mean  equal to
3

nkm 
, where

. Integer_arg must specify a random number stream between 1 and
dim.f(seed.v), or a negative stream number to generate the antithetic variate.

nkm 

__

 66

__

uniform.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number in the range m to n from the continuous
uniform distribution having parameters m equal to double_arg1 and n equal to

double_arg2, and mean  equal to
2

nm 
, where nm  . Integer_arg must specify a

random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

weibull.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the Weibull
distribution having shape parameter  equal to double_arg1 and scale parameter 
equal to double_arg2, where 0 and 0 . Integer_arg must specify a random
number stream between 1 and dim.f(seed.v), or a negative stream number to generate the
antithetic variate.

If  equals 1, the Weibull distribution is the same as the exponential distribution. If 
equals 2, the Weibull distribution is the same as the Rayleigh distribution.
__

 67

5.06 Simulation
__

between.v

A subprogram variable that specifies a routine to be called by the timing routine before
each process method or process routine is executed, or contains zero (which is the
default) if none is to be called. The process notice is removed from the event set (ev.s),
and the simulation time (time.v) and event set index (event.v) are updated, before this
routine is called; however, the pointer to the process notice (process.v) is not yet
assigned.
__

date.f (integer_arg1, integer_arg2, integer_arg3)

An integer function that returns the number of days from the origin date (established by a
prior call of origin.r) to the specified date, where month m equals integer_arg1, day d
equals integer_arg2, and year y equals integer_arg3. The arguments must satisfy

, , and . 121  m 311  d 100y
__

day.f (double_arg)

An integer function that returns the day of the month in the range 1 to 31 for the date that
is double_arg days after the origin date (established by a prior call of origin.r). The
argument must be nonnegative.
__

ev.s

A one-dimensional array of sets called the “event set.” Each process method and process
type in the program is assigned a unique index into this array. A smaller index value
gives higher priority to the process method or process type. The set at an index contains
a process notice for each scheduled invocation of the process method or process type
associated with the index. The process notices are ranked within the set by increasing
time of occurrence (time.a). The number of elements in this array is contained in
events.v.
__

event.v

An integer variable that contains the event set index, in the range 1 to events.v, of the
current process method or process type during a simulation.
__

 68

__

events.v

An integer variable that contains the largest event set index, which is equal to the total
number of process methods and process types defined by the program.
__

f.ev.s

A one-dimensional pointer array that contains in each element the reference value of the
process notice for the most imminent invocation (smallest time.a) of a process method or
process type, or is zero if there are no scheduled invocations. The number of elements in
this array is contained in events.v.
__

hour.f (double_arg)

An integer function that returns the hour part, in the range 0 to hours.v–1, of the number
of days specified by double_arg, which must be nonnegative.
__

hours.v

A double variable that specifies the number of hours per day. Its default value is 24.0.
__

l.ev.s

A one-dimensional pointer array that contains in each element the reference value of the
process notice for the least imminent invocation (largest time.a) of a process method or
process type, or is zero if there are no scheduled invocations. The number of elements in
this array is contained in events.v.
__

minute.f (double_arg)

An integer function that returns the minute part, in the range 0 to minutes.v–1, of the
number of days specified by double_arg, which must be nonnegative.
__

minutes.v

A double variable that specifies the number of minutes per hour. Its default value is 60.0.
__

 69

__

month.f (double_arg)

An integer function that returns the month in the range 1 to 12 for the date that is
double_arg days after the origin date (established by a prior call of origin.r). The
argument must be nonnegative.
__

n.ev.s (integer_arg)

An integer function that returns the number of process notices in ev.s(integer_arg). The
argument must be in the range 1 to events.v.
__

nday.f (double_arg)

An integer function that returns the day part of the number of days specified by
double_arg, which must be nonnegative.
__

origin.r (integer_arg1, integer_arg2, integer_arg3)

A subroutine that establishes the specified date as the origin, where month m equals
integer_arg1, day d equals integer_arg2, and year y equals integer_arg3. The arguments
must satisfy , , and . 121  m 311  d 100y
__

process.v

A pointer variable that contains the reference value of the process notice for the current
process method or process routine during a simulation, or zero if no process method or
process routine is active.
__

time.v

A double variable that contains the current simulation time. Its initial value is zero,
which corresponds to the start of the day of origin.
__

 70

__

weekday.f (double_arg)

An integer function that returns the weekday, in the range 1 to 7 representing Sunday
through Saturday, for the date that is double_arg days after the origin date. If no origin
date has been established by a prior call of origin.r, the origin is assumed to be a Sunday.
The argument must be nonnegative.
__

year.f (double_arg)

An integer function that returns the year for the date that is double_arg days after the
origin date (established by a prior call of origin.r). The argument must be nonnegative.
__

 71

5.07 Miscellaneous
__

batchtrace.v

An integer variable that specifies the action to take when a runtime error occurs. The
debugger is invoked unless the value of the variable is 1 or 2. If the value is 1, a
traceback is written to a file named “simerr.trc” and snap.r is called. If the value is 2, the
program exits without a traceback or snap.r invocation. The default value is zero, which
invokes the debugger.
__

date.r yielding text_arg1, text_arg2

A subroutine that returns the current date in the form MM/DD/YYYY in text_arg1 and the
current time in the form HH:MM:SS in text_arg2.
__

(left) err.message.f

A “left usage” text function that can be assigned a text value if a critical runtime error has
occurred in the simulation. If this function is assigned, the assigned message is
displayed, the program is halted, and SIMSCRIPT III debugger will be activated if the
program was compiled WITHOUT optimization. For example:

if number_operations_pending < 0
 let err.message.f = “ERROR! Negative number of pending operations!”
always
__

exit.r (integer_arg)

A subroutine that terminates the program with an exit status of integer_arg.
__

high.f (array_arg)

Returns the upper bound of the given array. The return value will be identical to that
returned by DIM.F unless the array was reserved with an upper and lower boundary.
Zero is returned if the given array pointer is zero. A runtime error is generated if the
given argument is not an array.
__

low.f (array_arg)

 72

Returns the lower bound of the given array. The return value will be “1” if the array was
not reserved with an upper and lower boundary. Zero is returned if the given array
pointer is zero. A runtime error is generated if the given argument is not an array.

__

parm.v

A one-dimensional text array that contains the command-line arguments given to the
program when it was invoked. Dim.f(parm.v) is the number of command-line arguments
and is zero if no arguments were provided.
__

snap.r

A subroutine that may be provided by the program which is invoked when a runtime
error occurs and the value of batchtrace.v is 1. The subroutine may write to the file
named “simerr.trc” by writing to the current output unit.
__

wordsize.f

An integer function that always returns 32 for 32-bit SIMSCRIPT III products or 64 for
64-bit SIMSCRIPT. Note that this function does NOT necessarily return with word size
of the architecture.
__

 73

6 Example Programs

6.01 Example 1 - Gas Station

preamble for the GAS.STATION system ''Example 1
 importing the RESOURCE subsystem

 begin class CUSTOMER

 the class
 has a FILL.UP process method
 and a GENERATOR process method

 end

 begin class ATTENDANT

 every ATTENDANT
 is a RESOURCE and
 has a PRINT.STATISTICS method

 accumulate AVG.QLEN as the average,
 MAX.QLEN as the maximum of N.QUEUE
 accumulate AVG.BUSY as the average of ACQUIRED.UNITS

 end

end

process method CUSTOMER'FILL.UP

 if AVAILABLE.UNITS(ATTENDANT) = 0 ''no attendants available
 call WAIT.FOR(ATTENDANT)(1, 0) ''wait for an attendant
 else
 add 1 to ACQUIRED.UNITS(ATTENDANT)
 always

 work UNIFORM.F(5.0, 15.0, 2) minutes ''fill up

 subtract 1 from ACQUIRED.UNITS(ATTENDANT)

end

process method CUSTOMER'GENERATOR

 define I as an integer variable

 for I = 1 to 1000
 do
 schedule a FILL.UP now
 wait UNIFORM.F(2.0, 8.0, 1) minutes
 loop

end

 74

method ATTENDANT'PRINT.STATISTICS

 print 3 lines with AVG.QLEN, MAX.QLEN, 100 * AVG.BUSY / TOTAL.UNITS thus
 AVERAGE CUSTOMER QUEUE LENGTH IS *.***
 MAXIMUM CUSTOMER QUEUE LENGTH IS *
 THE ATTENDANTS WERE BUSY **.** PER CENT OF THE TIME.

end

main

 create ATTENDANT ''reference value stored in global variable
 TOTAL.UNITS(ATTENDANT) = 2

 schedule a CUSTOMER'GENERATOR now
 start simulation

 print 1 line thus
SIMPLE GAS STATION MODEL WITH 2 ATTENDANTS
 call PRINT.STATISTICS(ATTENDANT)

 Read as / using unit 5

end

 75

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

 76

end

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

 77

6.02 Example 2 – Simple Gas Station with 2 attendants

preamble for the GAS.STATION system ''Example 2
 importing the RESOURCE subsystem

 begin class CUSTOMER

 the class
 has a FILL.UP process method
 and a GENERATOR process method

 end

 begin class GAS.STATION.RESOURCE

 every GAS.STATION.RESOURCE
 is a RESOURCE and
 has a REQUEST method,
 a RELINQUISH method,
 and a UTILIZATION method

 accumulate AVG.QLEN as the average,
 MAX.QLEN as the maximum of N.QUEUE
 accumulate AVG.BUSY as the average of ACQUIRED.UNITS

 define UTILIZATION as a double method

 end

 begin class ATTENDANT

 every ATTENDANT
 is a GAS.STATION.RESOURCE and
 has a PRINT.STATISTICS method

 end

 begin class PUMP

 every PUMP
 is a GAS.STATION.RESOURCE and
 has a PRINT.STATISTICS method

 define PRINT.STATISTICS as a method
 given a text argument ''name of grade

 the class
 has a REGULAR,
 a PREMIUM,
 a PRINT.ALL.STATISTICS method,
 and a SELECT method

 define REGULAR, PREMIUM as PUMP reference variables
 define SELECT as a PUMP reference method

 end

end

methods for the CUSTOMER class

 78

process method FILL.UP

 define PUMP as a PUMP reference variable

 PUMP = PUMP'SELECT

 call REQUEST(PUMP)

 call REQUEST(ATTENDANT)
 work UNIFORM.F(2, 4, 2) minutes ''insert nozzle
 call RELINQUISH(ATTENDANT)

 work UNIFORM.F(5, 9, 2) minutes ''fill up unattended

 call REQUEST(ATTENDANT)
 work UNIFORM.F(3, 5, 2) minutes ''remove nozzle
 call RELINQUISH(ATTENDANT)

 call RELINQUISH(PUMP)

end

process method GENERATOR

 define I as an integer variable

 for I = 1 to 1000
 do
 schedule a FILL.UP now
 wait UNIFORM.F(2, 8, 1) minutes
 loop

end

methods for the GAS.STATION.RESOURCE class

method REQUEST

 if AVAILABLE.UNITS = 0
 call WAIT.FOR(1, 0)
 else
 add 1 to ACQUIRED.UNITS
 always

end

method RELINQUISH

 subtract 1 from ACQUIRED.UNITS

end

method UTILIZATION

 return with 100 * AVG.BUSY / TOTAL.UNITS

end

methods for the ATTENDANT class

method PRINT.STATISTICS

 print 3 lines with AVG.QLEN, MAX.QLEN, UTILIZATION thus

 79

 AVERAGE QUEUE WAITING FOR ATTENDANTS IS *.*** CUSTOMERS
 MAXIMUM " " " " " *
 THE ATTENDANTS WERE BUSY *.** PER CENT OF THE TIME.

end

methods for the PUMP class

method PRINT.STATISTICS(GRADE)

 print 1 line with GRADE, AVG.QLEN, MAX.QLEN, UTILIZATION thus
*******: *.*** * *.** PERCENT

end

method PRINT.ALL.STATISTICS

 print 3 lines thus

 THE QUEUES FOR THE PUMPS WERE AS FOLLOWS:
 GRADE AVERAGE MAXIMUM UTILIZATION

 call PRINT.STATISTICS(REGULAR)("REGULAR")
 call PRINT.STATISTICS(PREMIUM)("PREMIUM")

end

method SELECT

 if RANDOM.F(3) > 0.70
 return with REGULAR
 otherwise

 return with PREMIUM

end

main

 create ATTENDANT
 TOTAL.UNITS(ATTENDANT) = 2

 create PUMP'REGULAR
 create PUMP'PREMIUM
 TOTAL.UNITS(PUMP'REGULAR) = 1
 TOTAL.UNITS(PUMP'PREMIUM) = 3

 schedule a CUSTOMER'GENERATOR now
 start simulation

 print 2 line thus
 SIMPLE GAS STATION WITH TWO ATTENDANTS
 AND TWO GRADES OF GASOLINE
 call PRINT.STATISTICS(ATTENDANT)
 call PUMP'PRINT.ALL.STATISTICS

 Read as / using unit 5

end

 80

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

end

 81

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

 82

6.03 Example 3 – A Bank with Separate Queue for Each Teller

Input data in file ex3.dat

 2
 5.0
10.0
 8.0

preamble for the BANK system ''Example 3
 importing the RESOURCE subsystem

 begin class CUSTOMER

 the class
 has a WAITING.TIME, ''in minutes,
 a BANK.VISIT process method,
 and a GENERATOR process method

 define WAITING.TIME as a real variable
 tally MEAN.WAITING.TIME as the mean of WAITING.TIME

 define GENERATOR as a process method
 given 2 real values ''day length in hours and
 ''mean interarrival time in minutes

 end

 begin class TELLER

 every TELLER
 is a RESOURCE,
 has an ID.NUMBER
 and an ENGAGE method, and
 belongs to the TELLER.POOL

 define ID.NUMBER as an integer variable

 define ENGAGE as a method
 yielding 1 real value ''waiting time in minutes

 accumulate UTILIZATION as the mean of ACQUIRED.UNITS
 accumulate AVG.QLEN as the mean,
 MAX.QLEN as the maximum of N.QUEUE

 the class
 has a MEAN.SERVICE.TIME, ''in minutes
 an INITIALIZE method,
 a SELECT method,
 and a PRINT.STATISTICS method, and
 owns the TELLER.POOL

 83

 define MEAN.SERVICE.TIME as a real variable

 define INITIALIZE as a method
 given 1 integer value ''number of tellers
 and 1 real value ''mean service time in minutes

 define SELECT as a TELLER reference method

 end

end

methods for the CUSTOMER class

process method BANK.VISIT

 call ENGAGE(TELLER'SELECT) yielding WAITING.TIME

end

process method GENERATOR(DAY.LENGTH, MEAN.INTERARRIVAL.TIME)

 define TIME.TO.CLOSE as a real variable

 TIME.TO.CLOSE = DAY.LENGTH / HOURS.V

 until TIME.V >= TIME.TO.CLOSE
 do
 schedule a BANK.VISIT now
 wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 1) minutes
 loop

end

methods for the TELLER class

method ENGAGE yielding WAIT

 if ACQUIRED.UNITS = 1 ''teller is busy
 define START.TIME as a real variable
 START.TIME = TIME.V
 call WAIT.FOR(1, 0)
 WAIT = (TIME.V - START.TIME) * HOURS.V * MINUTES.V
 else
 ACQUIRED.UNITS = 1
 always

 work EXPONENTIAL.F(MEAN.SERVICE.TIME, 2) minutes

 ACQUIRED.UNITS = 0 ''free the teller

end

method INITIALIZE(NO.OF.TELLERS, MST)

 define ID as an integer variable
 define TELLER as a TELLER reference variable

 for ID = 1 to NO.OF.TELLERS
 do
 create TELLER
 ID.NUMBER(TELLER) = ID
 TOTAL.UNITS(TELLER) = 1

 84

 file TELLER in TELLER.POOL
 loop

 MEAN.SERVICE.TIME = MST

end

method SELECT

 define TELLER, CHOICE as TELLER reference variables

 for each TELLER in TELLER.POOL with ACQUIRED.UNITS(TELLER) = 0
 find the first case
 if found
 return with TELLER
 otherwise

 for each TELLER in TELLER.POOL
 compute CHOICE as the minimum(TELLER) of N.QUEUE(TELLER)
 return with CHOICE

end

method PRINT.STATISTICS

 define TELLER as a TELLER reference variable

 print 4 lines thus

TELLER UTILIZATION QUEUE LENGTH
 AVERAGE MAXIMUM

 for each TELLER in TELLER.POOL
 print 1 line with ID.NUMBER(TELLER), UTILIZATION(TELLER),
 AVG.QLEN(TELLER), MAX.QLEN(TELLER) thus
 * *.** *.** *

end

main

 define NO.OF.TELLERS as an integer variable
 define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
 as real variables

 open unit 1 for input, name is "ed_ex3.dat"
 use unit 1 for input

 read NO.OF.TELLERS, MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
 call TELLER'INITIALIZE(NO.OF.TELLERS, MEAN.SERVICE.TIME)

 schedule a CUSTOMER'GENERATOR(DAY.LENGTH, MEAN.INTERARRIVAL.TIME) now
 start simulation

 print 10 lines with NO.OF.TELLERS, MEAN.INTERARRIVAL.TIME,
 MEAN.SERVICE.TIME, DAY.LENGTH, TIME.V * HOURS.V,
 CUSTOMER'MEAN.WAITING.TIME thus
SIMULATION OF A BANK WITH * TELLERS
 (EACH WITH A SEPARATE QUEUE)
CUSTOMERS ARRIVE ACCORDING TO AN EXPONENTIAL DISTRIBUTION
 OF INTER ARRIVAL TIMES WITH A MEAN OF *.** MINUTES.
SERVICE TIME IS ALSO EXPONENTIALLY DISTRIBUTED
 WITH A MEAN OF *.** MINUTES.

 85

THE BANK DOORS ARE CLOSED AFTER *.** HOURS.
 (BUT ALL CUSTOMERS INSIDE ARE SERVED.)
THE LAST CUSTOMER LEFT THE BANK AT *.** HOURS.
THE AVERAGE CUSTOMER DELAY WAS *.** MINUTES.

 call TELLER'PRINT.STATISTICS

 Read as / using unit 5 '' to keep the window open

end

 86

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

end

 87

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

 88

6.04 Example 4 – A Harbor Model

preamble for the HARBOR system ''Example 4

 begin class SHIP

 every SHIP
 has an UNLOAD process method and
 a DONE.WAITING method, and
 a RESCHEDULE.UNLOAD method, and
 belongs to a QUEUE and a DOCK

 define RESCHEDULE.UNLOAD as a method
 given a real argument ''time scale factor

 the class
 has a CYCLE.TIME,
 a GENERATOR process method,
 and a STOP.SIMULATION process method, and
 owns the QUEUE and the DOCK

 define CYCLE.TIME as a real variable
 tally NO.OF.SHIPS as the number,
 MIN.CYCLE.TIME as the minimum,
 MAX.CYCLE.TIME as the maximum,
 MEAN.CYCLE.TIME as the mean of CYCLE.TIME

 accumulate MAX.QLENGTH as the maximum,
 MEAN.QLENGTH as the mean of N.QUEUE

 end

end

methods for the SHIP class

process method UNLOAD

 define ARRIVE.TIME, UNLOADING.TIME as real variables

 ARRIVE.TIME = TIME.V
 UNLOADING.TIME = UNIFORM.F(0.5, 1.5, 2)

 if N.DOCK < 2
 if N.DOCK = 1 ''an existing ship is using both cranes
 call RESCHEDULE.UNLOAD(F.DOCK)(2) ''give up one crane
 else ''no existing ships, so this ship will use both cranes
 UNLOADING.TIME = UNLOADING.TIME / 2
 always
 file SHIP in DOCK
 else ''no room at the dock, must wait in the queue
 file SHIP in QUEUE
 suspend
 always

 work UNLOADING.TIME days

 remove SHIP from DOCK

 89

 destroy SHIP
 CYCLE.TIME = TIME.V - ARRIVE.TIME

 if QUEUE is not empty
 call DONE.WAITING(F.QUEUE)
 else
 if N.DOCK = 1
 call RESCHEDULE.UNLOAD(F.DOCK)(0.5) ''gain a crane
 always
 always

end

method DONE.WAITING

 remove SHIP from QUEUE
 file SHIP in DOCK
 schedule the UNLOAD now

end

method RESCHEDULE.UNLOAD(SCALE.FACTOR)

 interrupt UNLOAD
 TIME.A(UNLOAD) = TIME.A(UNLOAD) * SCALE.FACTOR
 resume UNLOAD

end

process method GENERATOR

 define SHIP as a SHIP reference variable

 until TIME.V > 80
 do
 create SHIP
 schedule an UNLOAD(SHIP) now
 wait EXPONENTIAL.F(4/3, 1) days
 loop

end

process method STOP.SIMULATION

 print 5 lines with NO.OF.SHIPS, TIME.V, MIN.CYCLE.TIME,
 MAX.CYCLE.TIME, MEAN.CYCLE.TIME thus
 SHIP AND CRANE MODEL
 * SHIPS WERE UNLOADED IN *.** DAYS
THE MINIMUM TIME TO UNLOAD A SHIP WAS *.***
 " MAXIMUM " " " " " " *.***
 " MEAN " " " " " " *.***

 skip 3 lines

 print 2 lines with MEAN.QLENGTH, MAX.QLENGTH thus
THE AVERAGE QUEUE OF SHIPS WAITING TO BE UNLOADED WAS *.***
THE MAXIMUM QUEUE WAS *

 ''stop

end

main

 90

 schedule a SHIP'GENERATOR now
 schedule a SHIP'STOP.SIMULATION in 80 days
 start simulation

 read as / using unit 5 '' to keep text window open

end

 91

6.05 Example 5 – The Modern Bank

 (Single-Queue-Multiple-Server)

Input data in file ex5.dat

 1 3
 5
 5.00
10.00
 8.00
(SHOULD BE 1.00 24.97 58 251.57)
(SHOULD BE .92 4.61 28 25.25)
(SHOULD BE .67 .60 6 2.99)

preamble for the BANK system ''Example 5
 importing the RESOURCE subsystem

 begin class CUSTOMER

 the class
 has a WAITING.TIME, ''in minutes,
 a BANK.VISIT process method,
 and a GENERATOR process method

 define WAITING.TIME as a real variable
 tally DAILY.MEAN.WAITING.TIME as the DAILY mean,
 MEAN.WAITING.TIME as the mean,
 WAIT.HISTOGRAM(0 to 100 by 5) as the histogram
 of WAITING.TIME

 define GENERATOR as a process method
 given 2 real values ''day length in hours and
 ''mean interarrival time in minutes

 end

 begin class TELLER

 every TELLER
 is a RESOURCE and
 has an ENGAGE method

 define ENGAGE as a method
 yielding 1 real value ''waiting time in minutes

 accumulate DAILY.AVG.BUSY as the DAILY mean,
 AVG.BUSY as the mean
 of ACQUIRED.UNITS

 accumulate DAILY.AVG.QLEN as the DAILY mean,
 DAILY.MAX.QLEN as the DAILY maximum,
 AVG.QLEN as the mean,

 92

 MAX.QLEN as the maximum,
 QLEN.HISTOGRAM(0 to 20 by 1) as the histogram
 of N.QUEUE

 the class
 has a MEAN.SERVICE.TIME ''in minutes

 define MEAN.SERVICE.TIME as a real variable

 end

 define SIMULATE.BANK as a routine
 given 4 integer values ''no. of tellers, no. of replications,
 ''stream 1 seed, stream 2 seed,
 and 3 real values ''mean interarrival time in minutes,
 ''mean service time in minutes,
 ''day length in hours

end

process method CUSTOMER'BANK.VISIT

 call ENGAGE(TELLER) yielding WAITING.TIME

end

process method CUSTOMER'GENERATOR(DAY.LENGTH, MEAN.INTERARRIVAL.TIME)

 define TIME.TO.CLOSE as a real variable

 TIME.TO.CLOSE = TIME.V + DAY.LENGTH / HOURS.V

 until TIME.V >= TIME.TO.CLOSE
 do
 schedule a BANK.VISIT now
 wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 1) minutes
 loop

end

method TELLER'ENGAGE yielding WAIT

 if AVAILABLE.UNITS = 0
 define START.TIME as a real variable
 START.TIME = TIME.V
 call WAIT.FOR(1, 0)
 WAIT = (TIME.V - START.TIME) * HOURS.V * MINUTES.V
 else
 add 1 to ACQUIRED.UNITS
 always

 work EXPONENTIAL.F(MEAN.SERVICE.TIME, 2) minutes

 subtract 1 from ACQUIRED.UNITS ''free the teller

end

routine SIMULATE.BANK
 given NO.OF.TELLERS, NO.OF.REPLICATIONS, SEED1, SEED2,
 MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH

 define I as an integer variable
 define START.TIME as a real variable

 93

 TIME.V = 0
 SEED.V(1) = SEED1
 SEED.V(2) = SEED2
 reset totals of CUSTOMER'WAITING.TIME

 create TELLER
 TOTAL.UNITS(TELLER) = NO.OF.TELLERS
 TELLER'MEAN.SERVICE.TIME = MEAN.SERVICE.TIME

 skip 2 lines
 print 5 lines with NO.OF.TELLERS thus
NUMBER OF TELLERS = *

FINISH TELLER QUEUE LENGTH AVERAGE CUSTOMER
 TIME UTILIZATION AVERAGE MAXIMUM WAITING TIME
(HOURS) (MINUTES)

 for I = 1 to NO.OF.REPLICATIONS
 do
 START.TIME = TIME.V
 reset DAILY totals of CUSTOMER'WAITING.TIME,
 ACQUIRED.UNITS(TELLER), N.QUEUE(TELLER)
 schedule a CUSTOMER'GENERATOR(DAY.LENGTH, MEAN.INTERARRIVAL.TIME) now
 start simulation
 print 1 line with (TIME.V - START.TIME) * HOURS.V,
 DAILY.AVG.BUSY(TELLER) / NO.OF.TELLERS, DAILY.AVG.QLEN(TELLER),
 DAILY.MAX.QLEN(TELLER), CUSTOMER'DAILY.MEAN.WAITING.TIME thus
 *.** *.** *.** * *.**
 loop

 print 4 lines with AVG.BUSY(TELLER) / NO.OF.TELLERS, AVG.QLEN(TELLER),
 MAX.QLEN(TELLER), CUSTOMER'MEAN.WAITING.TIME thus

AVERAGE OVER ALL REPLICATIONS:

 *.** *.** * *.**

 skip 3 lines
 print 3 lines with CUSTOMER'WAIT.HISTOGRAM(1),
 QLEN.HISTOGRAM(TELLER)(1) / TIME.V thus
 WAITING TIME NO. WHO WAITED QUEUE LENGTH PERCENTAGE
 (MINUTES) THIS TIME OF TIME
 T < 5 * 0 *.****
 for I = 2 to 20
 print 1 line with 5 * (I - 1), 5 * I, CUSTOMER'WAIT.HISTOGRAM(I),
 I - 1, QLEN.HISTOGRAM(TELLER)(I) / TIME.V thus
 * <= T < * * * *.****
 print 1 line with CUSTOMER'WAIT.HISTOGRAM(21),
 QLEN.HISTOGRAM(TELLER)(21) / TIME.V thus
 100 <= T * 20 *.****

 destroy TELLER

end

main

 define MIN.TELLERS, MAX.TELLERS, NO.OF.TELLERS, NO.OF.REPLICATIONS,
 SEED1, SEED2 as integer variables
 define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
 as real variables

 94

 open unit 1 for input, name is "ex5.dat"
 use unit 1 for input

 read MIN.TELLERS, MAX.TELLERS, NO.OF.REPLICATIONS,
 MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH

 print 9 lines with MIN.TELLERS, MAX.TELLERS, NO.OF.REPLICATIONS,
 MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH thus
 SIMULATION OF A SINGLE-QUEUE BANK
 THE NO. OF TELLERS RANGES FROM * TO *
 (* REPLICATIONS FOR EACH NO. OF TELLERS)
 CUSTOMERS ARRIVE ACCORDING TO AN EXPONENTIAL DISTRIBUTION
 OF INTER ARRIVAL TIMES WITH A MEAN OF *.** MINUTES.
 SERVICE TIME IS ALSO EXPONENTIALLY DISTRIBUTED
 WITH A MEAN OF *.** MINUTES.
 THE BANK DOORS ARE CLOSED AFTER *.** HOURS (EACH DAY).
 (BUT ALL CUSTOMERS INSIDE ARE SERVED.)

 SEED1 = SEED.V(1)
 SEED2 = SEED.V(2)

 for NO.OF.TELLERS = MIN.TELLERS to MAX.TELLERS
 do
 call SIMULATE.BANK given NO.OF.TELLERS, NO.OF.REPLICATIONS, SEED1,
 SEED2, MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
 start new page
 loop

 read as / using unit 5 '' to keep text window open

end

 95

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

 96

end

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

 97

6.06 Example 6 – A Job Shop Model

Input data in file ex6.dat

 6
 14 CASTING_UNITS
 5 LATHES
 4 PLANES
 8 DRILL_PRESSES
 16 SHAPERS
 4 POLISHING_MACHINES
 3
 FIRST
 2.0833 CASTING_UNITS
 0.5833 PLANES
 0.3333 LATHES
 1.0 POLISHING_MACHINES
 SECOND
 1.75 SHAPERS
 1.5 DRILL_PRESSES
 1.0833 LATHES
 THIRD
 3.9166 CASTING_UNITS
 4.1666 SHAPERS
 0.8333 DRILL_PRESSES
 0.5 PLANES
 0.4166 POLISHING_MACHINES
 END
 0.16 40

 .241 1 .44 2 .32 3 *

preamble for the JOB.SHOP system ''Example 6
 importing the RESOURCE subsystem

 begin class MACHINE

 every MACHINE
 is a RESOURCE,
 has a NAME,
 a STREAM,
 and a USE.UNIT method, and
 belongs to the SHOP

 define NAME as a text variable
 define STREAM as an integer variable

 define USE.UNIT as a method
 given a real argument ''mean time needed using a unit
 yielding a real argument ''time waiting for a unit

 accumulate AVG.BUSY as the mean of ACQUIRED.UNITS
 accumulate AVG.BACKLOG as the mean,
 MAX.BACKLOG as the maximum of N.QUEUE

 the class
 has a LOOKUP method,
 a READ.SHOP method,
 and a PRINT.STATISTICS method, and

 98

 owns the SHOP

 define LOOKUP as a MACHINE reference method
 given a text argument ''machine name

 end

 begin class JOB

 every JOB
 has a NAME,
 a PROBABILITY,
 a DELAY.TIME,
 and a PERFORM process method, and
 owns a TASK'SEQUENCE

 define NAME as a text variable
 define PROBABILITY, DELAY.TIME as real variables
 tally NO.COMPLETED as the number,
 AVG.DELAY as the mean of DELAY.TIME

 the class
 has a NO.OF.JOBS,
 a REPERTOIRE,
 a SELECTION random step variable,
 a GENERATOR process method,
 a READ.REPERTOIRE method,
 a READ.PROBABILITIES method,
 a PRINT.REPERTOIRE method,
 a PRINT.PROBABILITIES method,
 and a PRINT.STATISTICS method

 define NO.OF.JOBS as an integer variable
 define REPERTOIRE as a 1-dim JOB reference array
 define SELECTION as an integer, stream 9 variable

 define GENERATOR as a process method
 given 2 real arguments ''mean interarrival time and stop time

 end

 begin class TASK

 every TASK
 has a MACHINE
 and a MEAN.TIME, and
 belongs to a SEQUENCE

 define MACHINE as a MACHINE reference variable
 define MEAN.TIME as a real variable

 end

 define HOURS to mean units

end

methods for the MACHINE class

method USE.UNIT given MEAN.TIME yielding TIME.WAITED

 if AVAILABLE.UNITS = 0
 define START.TIME as a real variable

 99

 START.TIME = TIME.V
 call WAIT.FOR(1, 0)
 TIME.WAITED = TIME.V - START.TIME
 else
 add 1 to ACQUIRED.UNITS
 always

 work EXPONENTIAL.F(MEAN.TIME, STREAM) HOURS

 subtract 1 from ACQUIRED.UNITS

end

method LOOKUP(MACHINE.NAME)

 define MACHINE as a MACHINE reference variable

 for each MACHINE in SHOP with NAME(MACHINE) = MACHINE.NAME
 find the first case
 if found
 return with MACHINE
 otherwise

 return with 0

end

method READ.SHOP

 define NO.OF.MACHINES, I as integer variables
 define MACHINE as a MACHINE reference variable

 read NO.OF.MACHINES
 for I = 1 to NO.OF.MACHINES
 do
 create MACHINE
 read TOTAL.UNITS(MACHINE), NAME(MACHINE)
 STREAM(MACHINE) = I
 file MACHINE in SHOP
 loop

end

method PRINT.STATISTICS

 define MACHINE as a MACHINE reference variable

 print 5 lines thus

 DEPARTMENT INFORMATION

NAME NO.OF MACHINES UTILIZATION AVG. NO. OF JOBS MAXIMUM
 IN BACKLOG BACKLOG

 for each MACHINE in SHOP
 print 1 line with NAME(MACHINE), TOTAL.UNITS(MACHINE),
 AVG.BUSY(MACHINE) / TOTAL.UNITS(MACHINE),
 AVG.BACKLOG(MACHINE), MAX.BACKLOG(MACHINE) thus
******************** * *.** *.** *

end

methods for the JOB class

 100

process method PERFORM

 define TASK as a TASK reference variable
 define TOTAL.WAIT, WAIT as real variables

 for each TASK in SEQUENCE
 do
 call USE.UNIT(MACHINE(TASK)) given MEAN.TIME(TASK) yielding WAIT
 add WAIT to TOTAL.WAIT
 loop

 DELAY.TIME = TOTAL.WAIT

end

process method GENERATOR(MEAN.INTERARRIVAL.TIME, STOP.TIME)

 until TIME.V >= STOP.TIME
 do
 schedule a PERFORM(REPERTOIRE(SELECTION)) now
 wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 10) HOURS
 loop

 call PRINT.STATISTICS

 ''stop

end

method READ.REPERTOIRE

 define I as an integer variable
 define JOB as a JOB reference variable
 define TASK as a TASK reference variable
 define MACHINE.NAME as a text variable

 read NO.OF.JOBS
 reserve REPERTOIRE as NO.OF.JOBS

 for I = 1 to NO.OF.JOBS
 do
 create JOB
 read NAME(JOB)
 until mode is alpha
 do
 create TASK
 read MEAN.TIME(TASK), MACHINE.NAME
 MACHINE(TASK) = MACHINE'LOOKUP(MACHINE.NAME)
 if MACHINE(TASK) = 0
 print 1 line with MACHINE.NAME, NAME(JOB) thus
 TASK ******************** FOR JOB TYPE ******************** IS NOT DEFINED
 destroy TASK
 else
 file TASK in SEQUENCE(JOB)
 always
 loop
 REPERTOIRE(I) = JOB
 loop

 start new input line

end

 101

method READ.PROBABILITIES

 define I, J as integer variables

 for I = 1 to NO.OF.JOBS
 read PROBABILITY(REPERTOIRE(I)), J

 read as B 1 ''to reread the current input line
 read SELECTION

end

method PRINT.REPERTOIRE

 define I as an integer variable
 define JOB as a JOB reference variable
 define TASK as a TASK reference variable

 print 2 lines thus

 THE JOB TYPE DESCRIPTIONS

 for I = 1 to NO.OF.JOBS
 do
 JOB = REPERTOIRE(I)
 print 3 lines with NAME(JOB) thus
 JOB NAME ********************
 TASK SEQUENCE
 MACHINE MEAN TIME
 for each TASK in SEQUENCE(JOB)
 print 1 line with NAME(MACHINE(TASK)), MEAN.TIME(TASK) thus
 ******************** *.**
 loop

end

method PRINT.PROBABILITIES

 define I as an integer variable
 define JOB as a JOB reference variable

 print 3 lines thus

 THE JOBS WERE DISTRIBUTED AS FOLLOWS:
 NAME PROBABILITY

 for I = 1 to NO.OF.JOBS
 do
 JOB = REPERTOIRE(I)
 print 1 line with NAME(JOB), PROBABILITY(JOB) thus
 ******************** *.***
 loop

end

method PRINT.STATISTICS

 define I as an integer variable
 define JOB as a JOB reference variable

 print 4 lines with TIME.V thus

 102

RESULTS AFTER *.** HOURS OF CONTINUOUS OPERATION
 JOB TYPE NO. COMPLETED AVERAGE DELAY
 (HOURS)

 for I = 1 to NO.OF.JOBS
 do
 JOB = REPERTOIRE(I)
 print 1 line with NAME(JOB), NO.COMPLETED(JOB), AVG.DELAY(JOB) thus
 ******************** * *.**
 loop

 call MACHINE'PRINT.STATISTICS

end

main

 define MEAN.INTERARRIVAL.TIME, STOP.TIME as real variables

 open unit 1 for input, name is "ex6.dat"
 use unit 1 for input

 call MACHINE'READ.SHOP
 call JOB'READ.REPERTOIRE
 read MEAN.INTERARRIVAL.TIME, STOP.TIME
 call JOB'READ.PROBABILITIES

 print 1 line thus
 E X A M P L E J O B S H O P S I M U L A T I O N

 call JOB'PRINT.REPERTOIRE
 call JOB'PRINT.PROBABILITIES

 schedule a JOB'GENERATOR(MEAN.INTERARRIVAL.TIME, STOP.TIME) now
 start simulation

 read as / using unit 5 '' keep text window open
end

 103

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

 104

end

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

 105

6.07 Example 7 - A Computer Center Study

Input data in file ex7.dat

1
6
2.0
0.8
12.0

Input data in file ex7_x.dat

JOB 1.00 3 1 5.00 *
JOB 2.46 1 2 7.00 *
JOB 3.78 3 3 10.00 *
JOB 9.28 2 2 30.00 *
JOB 10.48 1 4 40.00 *
JOB 24.22 1 5 60.00 *

preamble for the COMPUTER.CENTER system ''Example 7
 importing the RESOURCE subsystem

 begin class COMPUTER

 the class
 has a CPU,
 a MEMORY,
 a JOB.TIME, ''in minutes
 a JOB process method,
 a JOB.GENERATOR process method,
 and a STOP.SIMULATION process method

 define CPU, MEMORY as COMPUTER.RESOURCE reference variables

 define JOB.TIME as a real variable
 tally NO.PROCESSED as the number,
 AVG.JOB.TIME as the average of JOB.TIME

 define JOB as a process method
 given 2 integer values ''priority, required units of memory,
 and 1 real value ''processing time in minutes

 define JOB.GENERATOR as a process method
 given 3 real values ''mean interarrival time in minutes,
 ''mean processing time in minutes,
 ''stop time

 end

 begin class COMPUTER.RESOURCE

 every COMPUTER.RESOURCE
 is a RESOURCE and
 has a UTILIZATION method

 106

 define UTILIZATION as a double method

 accumulate AVG.USED as the average of ACQUIRED.UNITS
 accumulate AVG.QLEN as the average,
 MAX.QLEN as the maximum of N.QUEUE

 end

 processes include JOB
 external process is JOB
 external process unit is 7

end

methods for the COMPUTER class

process method JOB(JOB.PRIORITY, MEMORY.REQUIREMENT, PROCESSING.TIME)

 define START.TIME as a real variable

 START.TIME = TIME.V

 if AVAILABLE.UNITS(MEMORY) >= MEMORY.REQUIREMENT and
 (QUEUE(MEMORY) is empty or PRIORITY(F.QUEUE(MEMORY)) < JOB.PRIORITY)
 add MEMORY.REQUIREMENT to ACQUIRED.UNITS(MEMORY)
 else
 call WAIT.FOR(MEMORY)(MEMORY.REQUIREMENT, JOB.PRIORITY)
 always

 if AVAILABLE.UNITS(CPU) > 0
 add 1 to ACQUIRED.UNITS(CPU)
 else
 call WAIT.FOR(CPU)(1, JOB.PRIORITY)
 always

 work PROCESSING.TIME minutes

 subtract MEMORY.REQUIREMENT from ACQUIRED.UNITS(MEMORY)
 subtract 1 from ACQUIRED.UNITS(CPU)

 JOB.TIME = (TIME.V - START.TIME) * MINUTES.V

end

process method JOB.GENERATOR
 given MEAN.INTERARRIVAL.TIME, MEAN.PROC.TIME, STOP.TIME

 until TIME.V >= STOP.TIME
 do
 schedule a JOB
 given RANDI.F(1, 10, 1), RANDI.F(1, TOTAL.UNITS(MEMORY), 2),
 MIN.F(EXPONENTIAL.F(MEAN.PROC.TIME, 4), 2 * MEAN.PROC.TIME) now
 wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 3) minutes
 loop

end

process method STOP.SIMULATION

 skip 6 lines
 print 9 lines with TIME.V, UTILIZATION(CPU), UTILIZATION(MEMORY),
 AVG.QLEN(MEMORY), MAX.QLEN(MEMORY), AVG.QLEN(CPU), MAX.QLEN(CPU),
 NO.PROCESSED, AVG.JOB.TIME thus

 107

A F T E R **.** HOURS
THE CPU UTILIZATION WAS *.** %
THE MEMORY UTILIZATION WAS *.** %
THE AVG QUEUE FOR MEMORY WAS *.** JOBS
THE MAX QUEUE FOR MEMORY WAS *.** JOBS
THE AVG QUEUE FOR A CPU WAS *.** JOBS
THE MAX QUEUE FOR A CPU WAS *.** JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS ***
WITH AN AVERAGE PROCESSING TIME OF *.*** MINUTES

 '' stop

end

method COMPUTER.RESOURCE'UTILIZATION

 return with 100 * AVG.USED / TOTAL.UNITS

end

process JOB ''scheduled externally

 define JOB.PRIORITY, MEMORY.REQUIREMENT as integer variables
 define PROCESSING.TIME as a real variable

 read JOB.PRIORITY, MEMORY.REQUIREMENT, PROCESSING.TIME
 call COMPUTER'JOB(JOB.PRIORITY, MEMORY.REQUIREMENT, PROCESSING.TIME)

end

main

 define MEAN.INTERARRIVAL.TIME, MEAN.PROCESSING.TIME, STOP.TIME
 as real variables

 open unit 7 for input, name is "ex7_x.dat"
 open unit 1 for input, name is "ex7.dat"
 use unit 1 for input

 create COMPUTER'CPU
 create COMPUTER'MEMORY
 read TOTAL.UNITS(COMPUTER'CPU), TOTAL.UNITS(COMPUTER'MEMORY),
 MEAN.INTERARRIVAL.TIME, MEAN.PROCESSING.TIME, STOP.TIME

 print 6 lines with TOTAL.UNITS(COMPUTER'CPU),
 TOTAL.UNITS(COMPUTER'MEMORY), 60 / MEAN.INTERARRIVAL.TIME,
 MEAN.PROCESSING.TIME, STOP.TIME thus
 A C O M P U T E R C E N T E R S T U D Y
 NO. OF CPU'S ** STORAGE AVAILABLE ****
 SMALL JOBS ARRIVE AT THE RATE OF *** / HOUR
 AND HAVE A MEAN PROCESSING TIME OF ***.*** MINUTES
 LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
 THE SIMULATION PERIOD IS **.** HOURS

 HOURS.V = 1 ''one hour per simulation time unit

 schedule a COMPUTER'JOB.GENERATOR
 given MEAN.INTERARRIVAL.TIME, MEAN.PROCESSING.TIME, STOP.TIME now
 schedule a COMPUTER'STOP.SIMULATION in STOP.TIME hours

 start simulation

 read as / using unit 5 ''to keep text window open

 108

end

 109

public preamble for the RESOURCE subsystem

 begin class RESOURCE

 every RESOURCE
 has a TOTAL.UNITS,
 an ACQUIRED.UNITS,
 an AVAILABLE.UNITS method,
 a WAIT.FOR method,
 and a CLEAN.UP method, and
 owns a REQUEST'QUEUE

 define TOTAL.UNITS as an integer variable
 define ACQUIRED.UNITS as an integer variable monitored on the left
 define AVAILABLE.UNITS as an integer method
 define WAIT.FOR as a method
 given 2 integer values ''requested units and priority
 before destroying a RESOURCE, call CLEAN.UP

 end

 begin class REQUEST

 every REQUEST
 has a UNITS,
 a PRIORITY,
 and a PROCESS.NOTICE, and
 belongs to a QUEUE

 define UNITS, PRIORITY as integer variables
 define PROCESS.NOTICE as a pointer variable
 define QUEUE as a set ranked by high PRIORITY

 end

end

methods for the RESOURCE class

left method ACQUIRED.UNITS

 define ACQ as an integer variable
 define REQ as a REQUEST reference variable

 enter with ACQ

 while QUEUE is not empty and UNITS(F.QUEUE) <= TOTAL.UNITS - ACQ
 do
 remove first REQ from QUEUE
 add UNITS(REQ) to ACQ
 schedule the PROCESS.NOTICE(REQ) now
 destroy REQ
 loop

 move from ACQ

end

method AVAILABLE.UNITS

 return with TOTAL.UNITS - ACQUIRED.UNITS

 110

 111

end

method WAIT.FOR(REQ.UNITS, REQ.PRIORITY)

 define REQ as a REQUEST reference variable

 create REQ
 UNITS(REQ) = REQ.UNITS
 PRIORITY(REQ) = REQ.PRIORITY
 PROCESS.NOTICE(REQ) = PROCESS.V
 file REQ in QUEUE
 suspend

end

method CLEAN.UP

 define REQ as a REQUEST reference variable

 while QUEUE is not empty
 do
 remove first REQ from QUEUE
 destroy PROCESS.NOTICE(REQ)
 destroy REQ
 loop

end

All example programs from this manual are in the SIMSCRIPT sub directory
sim3_examples.

	1 Introduction to SIMSCRIPT III
	1.01 Language Basics
	1.02 Character Set
	1.03 Comments
	1.04 Scientific Notation and Punctuation
	1.05 Named and Enumerated Constants
	1.06 Basic Data Types
	1.07 Text and Alpha
	1.08 Variables and Arrays
	1.09 Expressions
	1.10 Basic Statements
	1.11 Loops
	1.12 Functions and Subroutines
	1.13 Argument Checking
	1.14 Reference Mode

	2 Object-Oriented Programming
	2.01 Classes and Objects
	2.02 Attributes
	2.03 Methods
	2.04 Grouping Objects in Sets
	2.05 Arrays of Sets
	2.06 Inheritance

	3 Object-Oriented Discrete Simulation
	3.01 Process Method
	3.02 Random Number Generation
	3.03 Statistics

	4 Modularity
	4.01 Subsystems
	4.02 Source Code Organization

	5 Library.m
	5.01 Mode Conversion
	5.02 Numeric Operations
	5.03 Text Operations
	5.04 Input/Output
	5.05 Random-Number Generation
	5.06 Simulation
	5.07 Miscellaneous

	6 Example Programs
	6.01 Example 1 - Gas Station
	6.02 Example 2 – Simple Gas Station with 2 attendants
	6.03 Example 3 – A Bank with Separate Queue for Each Teller
	6.04 Example 4 – A Harbor Model
	6.05 Example 5 – The Modern Bank
	 (Single-Queue-Multiple-Server)
	6.06 Example 6 – A Job Shop Model
	6.07 Example 7 - A Computer Center Study

