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Abstract

We present a new foreign-function interface for SML/NJ. It is based on the iddataf
level interoperability—the ability of ML programs to inspect as well as manipulate C data
structures directly.

The core component of this work is an encoding of the alfasimplete C type sys-
tem in ML types. The encoding makes extensive use of a “folklore” typing trick, taking
advantage of ML's polymorphism, its type constructors, its abstraction mechanisms, and
even functors. A small low-level component which deals witlstlict andunion
declarations as well as program linkage is hidden from the programmer’s eye by a simple
program-generator tool that translates C declarations to corresponding ML glue code.

1 Anexample

Suppose you are an ML programmer who wants to link a program with some C rou-
tines. The following example (designed to demonstrate data-level interoperability
rather than motivate the need for FFls in the first place) there are two C functions:
input reads a list of records from a file afiddmin  returns the record with
the smallest in a given list. The C library comes with a header fkdb.h  that
describes this interface:

typedef struct record *list;

struct record { int i; double x; list next; };

extern list input (char *);
extern list findmin (list);

Our ml-nlffigen tool translatesxdb.h  into an ML interface that corre-
sponds nearly perfectly to the original C interface. Moreover, we hookied
nlffigen into the compilation manager CN2J[ of SML/NJ [1] in such a way

2 Variable-argument functions are the only feature of the C type system that we do not handle very
well yet.
1 e-mail:blume@research.bell-labs.com
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that C header files likexdb.h  can be used as conveniently as any other source
code.
We now show some ML codiethat reads a list of records from some file and
finds thex corresponding to the smalldast The code produced byl-nlffigen
has the form of an ML functor (a module parameterized by the handle to the shared
library object) which we must first instantiate:
structure IXDB = IxdbFn ( val library = DynLink.openlib "ixdb.so")
Client code interacts with the C library by referring to structl(®B as defined
above. In addition to that, a client can use the predefined structuhech provides
the basic encoding of C types and many common operations over them:
fun minx () = let
val | = IXDB.fn_input (C.dupML "ixdb1")
val m = IXDB.fn_findmin |

in C.ml_double (C.get_double (IXDB.S_record.f x (C.|*| m)))
end

In this code,C.dupML allocates a C character array of sufficient size and copies
the given ML string into it)XDB.fn _input represents functiomput that was
declared inxdb.h ,IXDB.fn _findmin representindmin ,C.|*| derefer-
ences a pointetXDB.S _record.f  _x selects fielk from astruct record
object,C.get _double fetches the contents ofdouble object, and a concrete
ML equivalent of typereal is obtained from its abstract version by applying
C.ml _double .

To add a final twist, suppose we also want to find the record with the laxgest
The C interface does not provide such a function, but we shall not despair because

we can write its equivalent directly in ML.:
fun maxx | = let
fun x | =
C.ml_double (C.get _double (IXDB.S record.f x (C.[*| 1))
fun loop (m, I) =
if (C.isNull 1) then m
elseloop ( if x| > x m then | else m,
C.get_ptr (IXDB.S_record.f_next (C.|*| 1))
in loop (I, 1)
end

2 Introduction

Modern type-safe, higher-order languages such as ML have many advantages, but
their usability often depends on how well existing code can be integrated into a
project. Since existing code is usually not written in ML but rather in C or perhaps
some other low-level language that has a C-like appearance, any serious implemen-
tation of a high-level languages must provide a foreign-function interface (FFI).

An FFI between ML and C must bridge not only the semantic gap between the
languages but also mediate between different data formats and calling conventions.

3 To avoid too much detail we show ML code that corresponds to our actual implementation only
in spirit but not in letter.
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One fairly popular approach is to ustub functions For the ML side to call a C
functionf of arbitrary type, it really invokes a helper routihestub that

» hasalso been coded in C but whose type is limited to a small set of types (possible
a single type) which the ML compiler or its runtime system has been taught to
handle

« translates ML data to C data to pass arguments from the ML sifle to

« invokesf on behalf of its caller

« translates C data to ML data to pass results ffoback to the ML side

This takes care of some of the data conversion issues, but the main problem of
calling C from ML still remains to be addressed. Moreovestub will not be
able to deal with high-level abstract data, so in all likelihood there will be more
stub code on the ML side to translate between layers of abstraction.

Much off-the-shelf C code is unaware of the existence of an ML client and, thus,
has no a-priori need to understand or handle ML data structures. In this situation,
the only reason for exposing the state of the ML world to the “C side” is to be able
to performmarshaling (Marshaling often involves heap allocation and can lead to
invocations of the garbage collector.) Thus, if one can avoid C-side stubs, one can
also avoid this exposure and make it much easier for an ML compiler’s backend to
generate instructions for calling C functions of any type directly.

2.1 Data-level interoperability

The stub-routine approach (like any marshaling scheme) also suffers from the prob-
lem that translating large data structures can be very expensive and might dominate
the savings from calling a fast C routine. Since marshaling of data usually involves
copying, useful properties such as sharing might also be lost in the process.

A solution to these problems is to rely data-level interoperability5] which
avoids all marshaling operations as well as the need for C-side stubs. The high-level
language is augmented with abstract types to represent low-level C data. ML code
can then call C functions without help from any intermediary, passing arguments
and receiving results directly.

One lesson from our work is that it is possible to encode the entire C type system
using ML types, and that this can be done entirely within ML itself, requiring
(almost) no support from the compiler. Based on this encoding, ML programs can
traverse, inspect, modify, and create any C data struetith®ut marshaling Our
FFI provides a glue code generatal-nlffigen that automatically deals with
“new” C types 6truct - andunion -declarations). It furthermore enables the ML
compiler to generate correct calling sequences for any fixed-arity C function and
puts the mechanisms for dynamic linkage in place.

The encoding of the C type system is provided as a CM library, rakd
nlfigen  can be hooked up with CM in such a way that it gets invoked automat-
ically whenever necessary. The resulting system has the following characteristics:

e The human programmer sees ML code only. (Some of this ML code will act
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much like C code, and it is remarkable that ML can be made to do that.)

» No knowledge of ML's or C’s low-level representations is required.

» The types in an ML interface faithfully reflect the types in the original C interface
represented by it.

« If the C interface changes, then these changes will be propagated automatically
to the ML side. Any resulting inconsistencies show up as ordinary ML type
errors and can be fixed as such.

ML aspires to being a “safe” language where, for example, no integer can be
mistaken for a pointer. C is not a safe language, so using our interface (which
embeds C into ML) makes ML unsafe as well. But since the very act of linking
with C code already compromises ML's safety guarantees, this should not be seen
as a problem. In practice, we believe that using our system will be more robust than
many of the alternatives because it at least respects and enforces the types of the
original C code within its ML clients.

3 Encoding the C type system

The encoding of C types in the ML type system is mostly based on the following
“folklore” trick: Invariants for values of a given typ& are enforced by making
this type the representation type of a new abstraaty type constructof’ (where

n > 0) and adding cleverly chosen type constraints on its instantiations. The type
arguments o€’ are calledohantom types

3.1 Array dimensions

As an example, let us consider static array dimensions. This is not a toy example
but part of the larger picture because we will later need precise size information for
all C types to be able to perform pointer arithmetic or array subscript correctly.

ML'’s built-in array type constructor does not express array size. In contrast, a
C compiler will statically distinguish between typ@st[3]) and(int[4])

Still, it is not impossible to get the same effect in ML. We define a new type con-
structor( 7, ¢) arr that also includes dimensioncomponent, and arrays of
different size must instantiatedifferently.

Of courseyp must be a type, not a number. Thus, we need a new type for every
new dimension value. We should also make sure that no more than one type is
used for any dimension value, so we set uprdimite familyof types that once and
for all time establishes a fixed mapping between its members and the non-negative
integers.

3.1.1 Aninfinite family of types

Consider the following ML signature:
type dec and « dg0 and ... and a dg9 and a dim

Its type constructors can be seen as a “little language” for writing numbers in deci-
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mal notation? For exampledec dgl dg3 dim stands for3,, anddec dgl
dg0 dg2 dg4 dim can be read a$024,,.” This provides more than enough
types to work with. To prevent the formation of values with unintended types such

as(real * int) dim we restrict value constructors to these:
val dec: dec dim
val dg0 : « dim -> « dg0 dim

val dg9 : « dim -> « dg9 dim
For example, the expressialg0 (dg2 (dg3 dec)) produces thelim -value
corresponding t320. The value forany non-negative integet = didj_; . .. doy
Is constructed bylgdy (--- (dg d,_; (dg d,, dec)) ---). Induction on the
number of applications ofigd shows that aldim -values will have types of the
formdec dgd; dgd, --- dgd, dim.

If we can rule out leading zeros, then (by uniqueness of decimal number rep-
resentation) the mapping between non-negative integers and types of dimension
values becomes bijective. Since we are working with strictly positive dimensions,
we could replace the singldec constructor (representing with nine new con-
structors representing 1 through 9. Our actual implementation avoids such extra
constructors and makes types “smarter”. an additional type parameter tracks “ze-
roness” andigo is restricted to non-zero argumersis.

Let us now show an implementation of the above type family. The only type
that requires non-trivial representationdsn, all other types ar@hantom types
without meaningful values; we arbitrarily use theit type for them:

structure Dim > sig ... (* asbefore¥ end = struct
type dec = unit
type « dg0 = unit and ... and « dg9 = unit

type o dim = int
val dec = 0
local fun dg d n =10 *n +d in

val (dgO, dgi, ..., dg0) = (dg O, dg 1, ..., dg 9)
end
fun toint n = n
end

The opaque signature matck is crucial: it is ML's way of giving a fresh iden-

tity to each of the type constructodec, dgd, anddim. Their representation
types (and any type equalities between representation types) do not shine through.
Thanks to polymorphism, we can extract the integer underlying any gliran

value using functiortoint .” Because of how we implemented our value con-
structors, its numeric value will always be the one that is spelled out in decimal by
thedim -value’s type.

4 Binary notation requires fewer constructors but is less convenient for human programmers.

5 Type constructor application is left-associative in SML.

5 The original typing convenience is provided by a type abbreviation. But notice that dimension
types do not have to be spelled out very often because the ML compiler can usually infer them.

7 The inversdromint  cannot be added without breaking our type construction.
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3.1.2 Dimension-carrying array types
To fill the dimension component of oarr type we use thé component of the
0 dim type that corresponds to the array’s size:

type (7, 0) arr

val create : 6 Dimdim -> 7 -> (7, §) arr
Thus, the type of &12-element integer array int, dec dg5 dgl dg2)
arr ; aninstance could be createddrgate (dg2 (dgl (dg5 dec))) O

The expressiveness of these array types goes slightly beyond that of C’s because
one can write functions that are polymorphic in an array’s dimension and even
enforce simple constraints (e.g., “two arrays have the same length”). But we shall
not overstate the usefulness of this because the extra power is still very limited.

3.2 Pointers, objects, and Ivalues

Our implementation represents every C pointer by a simple address (using a suffi-
ciently wide word type as its concrete representatdrQf course, exposing this
representation directly would make programming very error-prone.

C’'s “*” type constructor tracks two facts about each address: the type of value
pointed to and whether or not this value is to be considered mutable. We do the
same in ML and dress up our low-level pointer representation with an abstract type:

type ro and rw

type (7, &) ptr
Here,ro andrw are phantom types used to instanti&t& hey indicate whether or
not the object pointed to has been declacedst in C. The instantiation of is
more complicated; it describes the C type of the value the pointer points to.

Assignment to memory-stored objects need to know the address of that object.
In C, however, one does not provide a pointer value on the left-hand side of the
assignment. Instead, the left-hand side is one of a restricted class of expressions
calledlvaluesand the compiler will implicitly insert the necessagdress-obper-
ation for it. In ML, where the compiler will never insert any implicit operators, we
essentially have no choice but to use explicit pointer values. In our implementation,
we create the illusion of a distinction between objects and pointers by providing a
separate type constructolbj , which (among other things) is used on the left-hand
side of assignments. Internallpir andobj are the same and conversions be-
tween them are identity functions.

type (7, &) ptr and (7, &) obj

val I}l : (7, & ptr > (71, £ obj (* dereferenceY

val |& @ ( 7, & obj > ( 7, & ptr (* address-of ¥
C’s conceptual “subtyping” relation governing constant and mutable objects is
modeled by providing a polymorphic injection function (internally implemented
by an identity):

val ro : (7, & obj -> ( 7, ro) obj

8 Code samples where word size matters assume a 32-bit architecture. Different machines require
different representation types, but our technique still works.
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3.3 Memory fetches and stores

Fetching from memory does not work the same way for all types because it depends
on the size of the representation. In ML we cannot provide a polymoffelib
function that takes objects of tyer, &) obj to values of typer because the
representations of the values involved are not uniform.

On the other hand, C itself cannot fetch from arbitrary objects (arrays are the
primary example), essentially distinguishing betwéest-classvalues which can
be fetched and stored and othsecond-classalues. In ML, we can cover the
whole range of C's first-class types with a relatively small, finite set of individ-
ual fetch- and store-operations: we only need to cover base types sutth as
double as well as pointers.

Fetch operations are polymorphic in the object®st -ness, store operations
requirerw . Fetching and storing of pointers is polymorphic in the pointer’s target

type because the underlying operations on address values are uniform.
type sint and ... and double (* base types*)

val get_t: (t, & obj > ¢ (* for base typesg*)
val get ptr: (( T, K) ptr, £ obj > (7, k) ptr

val set_ ¢ ( t, rw) obj * t -=> unit (* for base types*)

val set_ptr: (( T, k) ptr, rw) obj * ( T, K) ptr -> unit
We can now state more precisely what thé/pe parameter means: For types of
first-classC values the parameteris instantiated to the (ML-side) abstract type of
that value. For second-class values, however, there are no values of speis
a true phantom type in this case.

3.4 Arrays

As we have explained, there are no array values, only array objects. The phantom
type constructof 7, 0) arr works exactly as shown earlier: we use the types
and values from th®im module to statically specify the number of elements in
each array.
In C, one can explain most operations over arrays using operations over pointers

because in almost all contexts an array wékcayinto a pointer to its first element.
In ML, we make this explicit by providing a functiotlecay (which internally is
yet another identity):

val decay: (( 7, 9) arr, &) obj > ( 7, &) ptr
Array subscript could be explained in terms of pointer arithmetic (see below),
but our implementation provides a separate function that—unlike C—performs a
bounds check at runtime:

val sub: (( 7, §) arr, &) obj * int -> ( T, &) obj

9 If ML had programmer-defined overloading, then these operations could be presented using a
single, uniform-looking interface.
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3.5 Pointers, pointer arithmetic, and runtime type information

We would like to define an operation with the following signature for adding point-
ers and integers:

val ptr_add: (7, &) ptr * int -=> ( T, &) ptr
Suppose we internally let some word type repregent) ptr . Incrementing
such a pointer means adding tkige of the target typw the address value. How
can we communicate size information (which depends on-h@nstantiated) to
theptr _add operation?

3.5.1 Explicit type parameters
One approach to modeling “functions over types” such asisof operator is
to use explicit passing aftintime type informatiofRTTI). In the simplest case we
just need a single integer that specifies the number of bytes occupied by an object
of the given type.
But using a single static typgefor all RTTI is dangerous because pointer arith-

metic would then have to be typed as:

val ptr_add : t -> ( T, &) ptr * int -> ( T, &) ptr
The problem with this is that nothing would stop us from passing the size of one
object and use it in an operation on another, differently-sized one. To prevent such
misuse we givestatic types to dynamic type valtieRTTI for type 7 will have
type 7 typ . Individual operators such gdr _add can then enforce a correct
match-up:

val ptr_add: 7 typ -=> ( 7, &) ptr * int -> ( T, &) ptr
Our implementation provides RTTI values for all of C’s base types and value con-
structors for all of C’s type constructors:

type 7 typ

val sint_typ : sint typ

val ptr_typ : T typ -=> (7, rw) ptr typ

val arr_typ : T typ * (4, ¢) Dimdim -> ( 7, §) arr typ

Internally, typ isjusta synonym fomt :

type 7 typ = int

val sint_typ = 4

fun ptr_typ _ = 4

fun arr_typ (s, d) = s * Dim.toint d
Since types (in C-like code) are statically known, so can be their corresponding
RTTI values. A modicum of cross-module inlinin@][will transport size con-
stants from their definitions to wherever they are being used. This enables the ML
compiler to generate code for pointer arithmetic that is just as efficient as its C
counterpart.

Thus, we have the somewhat paradoxical situation that the ML compiler is un-
able to infer size information and, thus, forces the programmer to help out, but it
does have enough information to stop the programmer from making mistakes in the
process. In languages with programmable acces#éasionaltype information,
for example Haskell'sype classe$g], it might be possible to hide explicit RTTI
arguments, creating more of an illusion of automatic “size inference.”
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3.5.2 Keeping RTTI “behind the scenes”

If we are willing to sacrifice some of the low-level efficiency, then we can eliminate

explicit type arguments even in the ML case. We change our concrete representa-

tion of objects and pointers so that addresses are paired up with their RTTI. But

we must also change the representation of that RTTI itself since it is no longer

sufficient to pass simple size constants. Instead, RTTI will have to be structured.
To see this, consider fetching from a pointer object. The object is represented as

a pair consisting of the object’s address and the stored value’s RTTI, i.e., the RTTI

of a pointer. Once we fetch from the object we get the addresssthia pointer,

and we must pair it up with RTTior the object the pointer points taOur only

hope to recover the latter is to have it be part of the pointer’s RTTI. This leads to

the following implementation:
datatype tinfo = BASE of int | PTR of tinfo | ARR  of tinfo * int
type 7 typ = tinfo
val sint_typ = BASE 4 ... * base types)
fun ptr typ t = PTR t
fun arr_typ (t, d) = ARR (t, Dim.toInt d)
fun sizeof (BASE s) = s
| sizeof (PTR ) = 4
| sizeof (ARR (t, d)) = d * sizeof t
Here is the corresponding implementation for type construgtoys £) obj and
(7, & ptr
type (7, &) obj = addr * T typ
type (7, &) ptr = addr * T typ
fun fetch_ptr (a, PTR t) = (load_addr a, t)
| fetch_ptr _ = raise Impossible

By reasoning about types, a compiler could prove thatiitipgossible  case is

truly impossible or thasizeof(t) can be reduced to a constant for anyf
ground type. However, such reasoning is complex and unlikely to benefit “or-
dinary” ML code. Thus, there is no realistic hope for these optimizations to be
implemented in real ML compilers. Aside from the obvious representational over-
head, this is the reason why keeping type information behind the scenes is less
efficient than explicit RTTI passing. Our implementation provides both the explicit
and the implicit version of RTTI and lets the programmer decide which trade-off
between performance and ease-of-use is best in each situation.

3.6 void *

We modeloid* as a separate ML type calledidptr . Sincevoidptr  acts as

a supertype of alptr types, we provide the corresponding polymorphic injection
function. A pointer “cast” takes us in the opposite direction—just as unsafely as
in C, of course! RTTI is passed to the cast function as a way of specifying the

desired target type.
val ptr_inject : ( 7, &) ptr -> voidptr
val ptr_cast : ( T, &) ptr typ -> voidptr -> ( T, &) ptr

10 Notice that some uses wbid* can be expressed safely using polymorphism in ML.
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3.7 Function pointers

Function pointers are first-class C values whose abstract ML-side typdps
where ¢ will be instantiated to somé&->B. Their low-level representation is a
machine address. A polymorplgall instruction dispatches C function calls:

val call: ( «a -> ) fptr * a > f
The exact sequence of machine instructions necessary to invoke a C function de-
pends on how andj are instantiated. We encapsulate this aspect into the corre-
sponding RTTI. Here is how we would like to revise the definition of tiye :

datatype ¢ tinfo = (* ... asbefore¥ | FPTR of addr -> ¢

type 7 typ = ¢ tinfo
Unfortunately, this code will not compile. The type abbreviatiortyp cannot
silently drop the type parameterfor ¢ tinfo . To make the design work, we
either must ad@ as another type parametertygp and therefore also tptr and
obj (which would “infect” almost all types with seemingly gratuitogs), or we
must “cheat.” Our implementation avoids the type argumeand define$PTR
as:

. | FPTR of Unsafe.Object.object

Internally, the library then uses ML “casts” wherever necessary to make the types
work out. Fortunately, thanks to the the public interface, this is in fact still safe: no
“unsafe object” will ever be forced into a type other than its original type.

3.8 Function arguments and results

The type of a function pointer s -> () fptr  wherea will be instantiated to

some tuple type whose elements correspond to the arguments of the C function and
where will be instantiated to the type of the function’s result (which is always a
first-class value)?

Arguments that are first-class C values use the by now familiar ML encod-
ing. Since we modedtruct s andunion s as second-class values, we represent
them usingobj types when they appear as function arguments. Function results
of struct - or union -type are handled by taking an additional mutable object
argument that the result is written into.

4 Handling struct and union

C programs usually declare their own “new” types usstrgict  andunion . Let
us focus orstruct  types (nion is handled in a very similar way) and discuss
how ML can model them.

11 A rigorous proof for this can be derived from the fact that a typing for the same implementation
(but without casts) using the aforementioned cumberspip@rameters exists.
12 C functions “returning’void become ML functions returningnit .
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4.1 Fully definedstruct s

It is tempting to view the mention of a €truct as agenerativetype declara-
tion like ML's datatype . However, this is not quite correct. An ML compiler
that encounters two syntactically identical instances of a generative declaration will
construct two distinct types that are not considered equal by the type checker. This
runs counter to how C’struct  declarations work.
One way of modeling C in ML is to use a predefined infinite familygwotict
tags where each individual program selects some of the members of this family and
chooses an abstract interface for the corresponding typesstrudt  declaration
does notreatea new type, it takes aexistingtype anddefines an interfactor it.
The responsibility for setting up the ML code for this lies witi-niffigen L
Lets_node be the tag type for som&ruct node . The phantom type de-
scribing (second-class) values is tleemode su , and objects holding such values
can be accessed using the interface implemented by a stri&nwde . Most of
this interface consists of field access operators that correspond to C's “.”-notation
and map atruct  object to the object that represents the selected field. Example:

struct node { const int i; struct node *next; };

becomes

type s_node = ... (* selecttag from tag type family *

val typ : s_node su typ

val f i : (s_node su, £) obj -> (sint, ro) obj

val f next : (s_node su, §) obj ->

((s_node su, rw) ptr, &) obj

Notice howconst qualifiers are properly taken into account by the types of field
accessors.

4.2 Incompletestruct s

In C, a pointer type can act as a form of “abstract type” if its target is a so-called
incomplete typd.e., astruct  that is only known by its tag but whose fields have

not been declared. Unfortunately, there is no sufficiently close correspondence with
ML'’s abstract types for the latter to model C’s incomplete pointers. The problem

is that the same C type can be abstract in one part of the program and concrete in
another, but abstract and concrete version of the type must be considered equivalent
where they meet.

A proper ML solution to this puzzle is based on parameterized modules (“func-
tors”) and handles everything from simple incomplete types, incomplete types that
get “completed,” and even mutual recursion among incomplete types (and their re-
spective completions). Since we wanted to support as much of C as posdible,
nlffigen  actually implements all that. But the solution is rather complicated and
handles just a small corner of the language, so we will not discuss its details here

13 The infinite family of tag types is similar to thdim -type family. Both families are provided by
our support library.
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but ask the interested reader to consulidbeumentation of our implementation at
http://cm.bell-labs.com/cm/cs/what/sminj/

5 Low-level implementation

5.1 Two-stage encoding of C types

The code that actually implements the encoding of C types defines a structure
C.lnt . A second structure calle@d is obtained fromC_Int by applying a more
restrictive signature match. We use the library mechanism of CM to Qitle

from the ordinary programmer. The extensiongtgontained inC_Int would
invalidate many of the invariants that struct@evas designed to guarantee. But
some low-level code generated by-nlffigen must be able to accessint

directly. The implementation is done entirely within ML, the ML compiler has no
a-priori understanding of the C type system.

5.2 Raw memory access

We modified the SML/NJ compiler to provide primitive operatiopsirfiopg for
fetching from and storing into raw memory. Our representation of memory ad-
dresses is simply a sufficiently wide word type. Memory access primops are pro-
vided forchar -, short -, int -, andlong -sized integral types, for pointers (ad-
dresses), and for single- as well as double-precision floating point numbers.

5.3 Representing first-class values

SML/NJ currently does not have the full variety of precisions for integral and
floating-point types that a typical C compiler would provide. Therefore, the same
ML type must often represent several different C types. For example, fetching a
Cfloat value (i.e., a 32-bit floating point number) from memory yields an ML
Real64.real . Implicit promotions and truncations are built into the respective
memory access operations.

The high-level interface makes types suchflasat and double distinct
even though their representations are the same. Otherwise incompatible types like
(float, &) ptr  and(double, &) ptr  would be considered equal and,
e.g., size information for the two could be confused. Client programs must use a
set of separately provided conversion functions to translate from abstract C types to
concrete ML types and vice versa. These conversion functions exist only for typing
reasons. On the implementation side they are identities.

5.4 Field access

Access to astruct  field translates thetruct  address to the field address by
adding the field'soffset Offsets are machine- and compiler-specific. Thke
nlffigen tool mainly consists of a C compiler’s front end (implemented by
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SML/NJ’s CKIT library), so it can easily calculate offset values which are then
used to specialize a generic field-access function provided by structinte .

5.5 Function calls

Implementing direct calls to C functions from ML code required somewhat more
extensive changes to the ML compiler. To avoid the need for outright syntax
changes, C calls were added as yet another new primop. However, some con-
siderable “magic” was needed in its implementation.

5.5.1 C function prototypes and calling protocol
The code generator must know the prototype of any C function to be called. This
prototype happens to be encoded in the correspondifigtr  type but the com-
piler has no knowledge of this encoding. The trick is to code the prototype into the
type of an otherwise unused argument of the/ccall  primop. This primop is
pro-forma polymorphic but any actual use must be monomorphically constrained.
One of its arguments is the address of the function to be called, another one is a
tuple of ML values representing the actual parameters of the C function. The C
function’s return value is then similarly represented by the return valuaved-
call

The value of the third (extra) argumentr@wccall  will be ignored at run-
time, what's important is its type. We defined a “little language” expressed in ML
types' that describes certain ML values which are used internally (at compile-
time) by MLRISC [7] for describing C function prototypes. In the process of
translating instances ahwccall , the type gets decoded and a corresponding
MLRISC value is formed. This enables the backend to generate correct code for
the C call.

5.5.2 Efficient signal handling
When a SML/NJ program is interrupted by an asynchronous signal, then execution
must first advance to the nesafe pointbefore an ML signal handler can be in-
voked. Low-level signal handlers (which are part of the C runtime system) record
the arrival of a sighal and code generated by the ML compiler checks for this condi-
tion at regular intervals. A popular technique that eliminates extra runtime overhead
for signal polling is to make thlaeap-limit checldo double duty: The C handler
records the arrival of a signal by setting the current heap-limit to zero. This causes
the next heap-limit check to fail, and subsequent tests (which are no longer on the
critical path) can then distinguish between genuine heap overflows and signals.
But the heap-limit is often implemented as a register. Blindly setting this regis-
ter to zero while anything but ML code is executing is dangerous. Therefore, setting
up a C call from ML involves temporarily turning off this form of signal handling.

14 and spoken exclusively between-niffigen and the SML/NJ compiler
15 The type encoding was chosen in such a way that we were able to avoid any runtime penalty for
passing the extra parameter.
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In SML/NJ, this is done by setting theML -flag to 0 before the call and back to

1 after its return. The old FFI avoids losing signals by branching into a special
runtime routine after returning from the C call. The routine checks for interrupts
that may have arrived while signal handling was suspended. This technique is safe
but expensive.

Our new implementation avoids much of the runtime penalty because it does
not need to check for pending signals explicitly and can fully rely on the next heap-
limit check: Before performing a C call, a few instructions of in-line code first set
the (new)imitPtrMask to the all-ones bit pattern amdML to 0. After the call
returns,inML is restored to 1. A final instruction then atomically performs:

limitPtr <- bitwise-and (limitPtr, limitPtrMask)

The low-level signal handler stores O intmitPtr (as before) iinML is set but
also stores 0 inttmitPtrMask regardlessof the state ofnML . This arrange-
ment guarantees that any signal eventually calisestr to be 0 no matter
when it arrives. The atomicity of the bit operation is key to avoiding races.

5.6 Dynamic linking

Dynamic linking is currently done using an interfacedilopen . Thus, one can
painlessly link with existing shared libraries and no longer needs to alter the run-
time system in the process.

Unfortunately, libraries loaded usirdjopen do not stay alive across heap
exports. Therefore, our ML-side dynamic linkage module represents dynamically
loaded libraries and addresses obtained from them as abstract handles and automat-
ically re-validates them whenever necessary. The C encoding represents all global
variables as ML “thunks” (functions takingnit as an argument and returning the
actual value). Exported functions are represented by similarly “thunkified” func-
tion pointers, but the generated interface also contains wrapper functions to invoke
them more conveniently.

6 Related work

Virtually all implementations of high-level languages provide some form of FFlI,
and it would be difficult to list even just a small fraction of them here. There are
many IDL-based approaches where the programmer writes a specification of the
interface and uses a special compiler to generate glue code on both the C- and the
high-level language side. Examples include H/Dir@tgdnd Camlidl [LC]. (Our
approach also falls in here: the IDL is C, and C-side stub generation is trivial.)
Much closer in spirit as well as implementation is the work on data-level inter-
operability for Moby B], although Moby takes a less ambitious approach to mod-
eling the full C type system. On the implementation side, Moby’s FFI takes advan-
tage of the fact that the compiler’s intermediate represent8i@nhas been specif-
ically designed with data-level interoperability in mind. In contrast, we showed
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here that C types can also be modeled with only very limited compiler support,
using the abstraction facilities of the high-level language.

The phantom typérick that we used so extensively has come up many times in
the past, even in other FFI designs such as H/Di#jcivhere it is used to model
a subtyping relationship between COM interfaces. New, perhaps, is the extreme to
which we have taken an old trick: modeling everything from size information and
pointer arithmetic over run-time types and function prototypes to array dimensions
and incomplete types.

7 Preliminary results and conclusions

The current implementation is fully operational on x86/Linux and on Sparc/Solaris.
Work is under way to fill in the missing pieces for all other backends supported by
SML/NJ. Benchmarking results are still very preliminary.

C function calls perform well as the following numbers will show. We looked at
four different versions of th#&lath structure. These versions differ in how square
root, sine, cosine, and arctangent are being implemented: 1.using the corresponding
Pentium machine instructions (our baseline for comparison), 2. using the C library
via the old FFI, 3. using the C library via the new FFI, and 4. using portable
ML code. We compiled the relatively short but floating-point intensiueleic
benchmark using thedéath implementations and ran the resulting code 100 times
in succession on a lightly loaded 800 MHz Pentium Ill system running the Linux
2.2.14 kernel. These are the cumulative timing results (elapsed time in seconds):

machine: 2.64 old FFI: 3.75 new FFIl: 2.95 ML:5.50

Calling C- or assembly-code using either of the two mechanisms wins over the
native ML solution, but call overhead eats up nearly half of the advantage in the
case of the old FFI. The new FFI incurs less than one third of that penalty and
could be even better had SML/NJ’s cross-module inlidd} peen working. Most
concrete operations over abstract C types are very simple, and inlining those is
essential to performance. This becomes even more apparent when we look at data-
level interoperability: We found that traversing a 16-level deep complete binary tree
generated by a C program is almost 3 times slower in ML than in C while hand-
inlining all operations brings the overhead to within 30%. These are the numbers
that we shall expect once the cross-module inliner has been debd$ged.

We conclude that we have already succeeded in provided an FFI that is faster
and much easier to use than its predecessors. Itis unique in the way it fully encodes
C’s type system within ML. Nearly everything a C programmer can do has a direct
(although perhaps sometimes clumsy-looking) equivalent on the ML side.

Missing from our type encoding is a way of fully handling variable-argument

16 The remaining 30% are probably due to unrelated effects such as SML/NJ's habit of allocating
stack frames on the heap. In arecent test, the Moby compiler (which also uses an MLRISC backend)
achieved better performance than C on this simple benchihrk [
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functions such as CPprintf  , a shortcoming that we intend to address soon. We
also chose not to encodmum types and simply uset in their place. Our
implementation currently does not suppoatlbacks—calls of ML functions from

C. Callbacks require that the state of the ML world is accessible from the C side, so
at some point we will probably add a second versionas¥ccall ~ which would

then save the ML state in a well-defined way, probably at the expense of being
somewhat slowet’
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