
© Motorola, Inc., 2002. All rights reserved.

Embedded SDK
(Software Development Kit)

Voice Recognition (VRLite-1) Library

SDK129/D
Rev. 2, 07/23/2002

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Table of Contents i

About This Document

Audience . ix
Organization . ix
Suggested Reading . ix
Conventions . x
Definitions, Acronyms, and Abbreviations . x
References. xi

Chapter 1
Introduction

1.1 Quick Start .1-1
1.2 Overview of VRLite-1 .1-1
1.2.1 Background. .1-1
1.2.2 Features and Performance. .1-4

Chapter 2
Directory Structure

2.1 Required Core Directories .2-1
2.2 Optional (Domain-Specific) Directories. .2-2

Chapter 3
VRLite-1 Library Interfaces

3.1 VRLite-1 Services. .3-1
3.2 Interface .3-1
3.3 Specifications .3-5
3.3.1 vrlite1Create .3-6
3.3.2 Vrlite1Init .3-11
3.3.3 vrlite1FrontendProcess .3-15
3.3.4 vrlite1TrainingProcess .3-16
3.3.5 vrlite1RejAnalysisProcess .3-17
3.3.6 vrlite1RecognitionProcess .3-18
3.3.7 vrlite1Control .3-21
3.3.8 vrlite1Destroy .3-22

Contents

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

ii VRLite-1 Library MOTOROLA

Chapter 4
Building the VRLite-1 Library

4.1 Building the VRLite-1 Library .4-1
4.1.1 Dependency Build. .4-1
4.1.2 Direct Build. .4-2

Chapter 5
Linking Applications with the VRLite-1 Library

5.1 VRLite-1 Library .5-1
5.1.1 Library Sections .5-1

Chapter 6
VRLite-1 Applications

6.1 Test and Demo Applications. .6-1

Chapter 7
License

7.1 Limited Use License Agreement .7-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA List of Tables iii

Table 3-1 vrlite1Create Arguments. 3-6

Table 3-2 vrlite1Init Arguments . 3-11

Table 3-3 Description of the fields of VrControlFlag. 3-12

Table 3-4 vrlite1FrontendProcess Arguments. 3-15

Table 3-5 vrlite1TrainingProcess Arguments . 3-16

Table 3-6 vrlite1RejAnalysisProcess Arguments . 3-17

Table 3-7 vrlite1RecognitionProcess Arguments . 3-18

Table 3-8 vrlite1Control Arguments . 3-21

Table 3-9 vrlite1Destroy Arguments. 3-22

List of Tables

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

iv VRLite-1 Library MOTOROLA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA List of Figures v

Figure 1-1 Typical Speaker-Dependent Speech Recognition Block Diagram 1-2

Figure 1-2 Training Flow Diagram . 1-3

Figure 1-3 Recognition Flow Diagram. 1-4

Figure 2-1 Core Directories . 2-1

Figure 2-2 DSP56824 Directories . 2-2

Figure 2-3 vrlite1 Directory Structure . 2-2

Figure 4-1 Dependency Build for VRLite-1 Project . 4-1

Figure 4-2 vrlite1.mcp Project . 4-2

Figure 4-3 Execute Make . 4-2

List of Figures

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

vi VRLite-1 Library MOTOROLA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA List of Examples vii

Code Example 3-1 C Header File vrlite1.h . 3-1

Code Example 3-2 Use of mem Library in vrlite1Create function . 3-6

Code Example 3-3 Use of vrlite1Create Interface. 3-7

Code Example 3-4 Sample Callback Procedure for Training . 3-13

Code Example 3-5 Sample Callback Procedure for Recognition . 3-13

Code Example 3-6 Use of vrlite1RecognitionProcess Interface . 3-18

Code Example 3-7 Use of vrlite1Destroy Interface. 3-22

Code Example 5-1 linker.cmd File . 5-2

List of Examples

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

viii VRLite-1 Library MOTOROLA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Preface ix

About This Document
This manual describes the Voice Recognition (VRLite-1) algorithm for use with Motorola’s Embedded
Software Development Kit (SDK).

Audience
This document targets software developers implementing the voice recognition function within software
applications.

Organization
This manual is arranged in the following sections:

• Chapter 1, Introduction—provides a brief overview of this document
• Chapter 2, Directory Structure—provides a description of the required core directories
• Chapter 3, VRLite-1 Library Interfaces—describes all of the VRLite-1 Library functions
• Chapter 4, Building the VRLite-1 Library—tells how to execute the system library project build
• Chapter 5, Linking Applications with the VRLite-1 Library—describes organization of the

VRLite-1 Library
• Chapter 6, VRLite-1 Applications—describes the use of VRLite-1 Library through test/demo

applications
• Chapter 7, License—provides the license required to use this product

Suggested Reading
We recommend that you have a copy of the following references:

• DSP56800 Family Manual, DSP56800FM/AD
• DSP56824 User’s Manual, DSP56824UM/AD
• Inside CodeWarrior: Core Tools, Metrowerks Corp.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

x VRLite-1 Library MOTOROLA

Conventions
This document uses the following notational conventions:

Definitions, Acronyms, and Abbreviations
The following list defines the acronyms and abbreviations used in this document. As this template
develops, this list will be generated from the document. As we develop more group resources, these
acronyms will be easily defined from a common acronym dictionary. Please note that while the acronyms
are in solid caps, terms in the definition should be initial capped ONLY IF they are trademarked names or
proper nouns

DSP Digital Signal Processor or Digital Signal Processing

FE Front End

HMM Hidden Markov Model

I/O Input/Output

Typeface, Symbol
or Term

Meaning Examples

Courier
Monospaced Type

Commands, command
parameters, code examples,
expressions, data types, and
directives

...*Foundational include files...

...a data structure of type vrlite1_sConfigure...

Italic Calls, functions, statements,
procedures, routines,
arguments, file names and
applications

...the pConfig argument...

...defined in the C header file, vrlite1.h...

...makes a call to the Callback procedure...

Bold Reference sources, paths,
emphasis

...refer to the Targeting DSP56824 Platform
manual....

... see: C:\Program Files\Motorola\Embedded
SDK\help\tutorials

Bold/Italic Directory name, project name ...and contains these core directories:

applications contains applications software....

...CodeWarrior project, 3des.mcp, is.....

Blue Text Linkable on-line ...refer to Chapter 7, License...

Number Any number is considered a
positive value, unless preceded
by a minus symbol to signify a
negative value

3V

 -10

ALL CAPITAL
LETTERS

Variables, directives, defined
constants, files libraries

INCLUDE_DSPFUNC

#define INCLUDE_STACK_CHECK

Brackets [...] Function keys ...by pressing function key [F7]...

Quotation marks “... “ Returned messages ...the message, “Test Passed” is displayed....

...if unsuccessful for any reason, it will return
“NULL”....

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Preface xi

LSB Least Significant Bit

MIPS Million Instructions Per Second

MSB Most Significant Bit

OnCE™ On-Chip Emulation

OMR Operating Mode Register

OOV Out Of Vocabulary

RA Rejection Analysis

SDK Software Development Kit

SDSR Speaker Dependent Speech Recognition

SRC Source

VRLite-1 Voice Recognition-1

References
The following sources were referenced to produce this book:

1. DSP56800 Family Manual, DSP56800FM/AD
2. DSP56824 User’s Manual, DSP56824UM/AD
3. Embedded SDK Programmer’s Guide, SDK101/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

xii VRLite-1 Library MOTOROLA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Introduction 1-1

Chapter 1
Introduction
Welcome to Motorola’s Family of Digital Signal Processors (DSPs). This document describes the Voice
Recognition (VRLite-1) Library, which is a part of Motorola’s comprehensive Software Development Kit
(SDK) for its DSPs. In this document, you will find all the information required to use and maintain the
VRLite-1 Library interface and algorithms.

Motorola provides these algorithms to you for use on the Motorola Digital Signal Processors to expedite
your application development and reduce the time it takes to bring your own products to market.

Motorola’s Voice Recognition Library is licensed for your use on Motorola processors. Please refer to the
standard Software License Agreement in Chapter 7 for license terms and conditions; please consult with
your Motorola representative for premium product licensing.

1.1 Quick Start
Motorola Embedded SDK is targeted to a large variety of hardware platforms. To take full advantage of a
particular hardware platform, use Quick Start from the Targeting DSP568xx Platform documentation.

For example, the Targeting DSP56824 Platform manual provides more specific information and
examples about this hardware architecture. If you are developing an application for the DSP56824EVM
board or any other DSP56824 development system, refer to the Targeting DSP56824 Platform manual
for Quick Start or any other information specific to the DSP56824.

1.2 Overview of VRLite-1
VRLite-1 is a memory-optimized, isolated-word, speaker-dependent speech recognition system. This
means that the system must be trained to the voice of a particular user and that it can recognize only
isolated words. For example, if the user trained the words “call” and “Bob”, the algorithm can recognize
both “call” and “Bob”, but not the phrase “call Bob”.

1.2.1 Background
Many products, such as a mobile phone, require a voice recognition system to operate the phone through
voice. VRLite-1 provides a solution for this requirement.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

1-2 VRLite-1 Library MOTOROLA

Introduction

Figure 1-1 shows the entire system in the context of a product and emphasizes the scope of the VRLite-1
software algorithm.

Figure 1-1. Typical Speaker-Dependent Speech Recognition Block Diagram

Handset: The input is a signal (through a microphone) containing speech, and will output a symbol that
represents the recognized utterance or perform some task associated with the recognized speech. The
display might be used to prompt the user for different inputs or to flag-out messages to the user.

Controller1: This part consists of host processor, A/D, and D/A converters. The input speech is filtered
and digitized. The host software supplies one frame at a time to the front end of the VRLite algorithm.
Note that front end processing in VRLite is real time. After front end processing, the host appropriately

1. The APIs provided in Chapter 3 are not for the “Handset” user but for the user who writes the “host software”. The test files provided in the
library somewhat serve as “controller”.

BPF
(0.25-3.8kHz)

ADC
(8kHz)

Host Software
(Product specific)DISPLAY

DAC
(8kHz)

Microphone

Handset Controller Core Algorithm

VRLite-1

Algorithm

(Front end

+

Back end)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Overview of VRLite-1

MOTOROLA Introduction 1-3

invokes the back end for either training or recognition. The flow involved in training is shown in
Figure 1-2; the flow involved in recognition is shown in Figure 1-3. Note that training requires two
utterances of a word to be trained, while recognition requires only one utterance.

Core Algorithm: The core algorithm consists of frontend and backend of VRLite-1. The frontend is
filter-bank based and extracts the features from the speech frames. The backend consists of HMM based
training and recognition algorithms.

Figure 1-2. Training Flow Diagram

Yes

No

Prompt user for word to
train

User says word

Utterance OK? Display error message

Display error message

Prompt user for word to
train

User says word

Utterance OK?
No

No

Yes

Yes

Display error message

Train word

Successful?

Display training
success message

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

1-4 VRLite-1 Library MOTOROLA

Introduction

Figure 1-3. Recognition Flow Diagram

1.2.2 Features and Performance
Features:

• Speaker-dependent; isolated word recognition
• Reduced memory implementation
• Can train any number of models, as long as there is no constraint on host memory.

Note: The higher the number of trained models, the slower the recognition.

Performance:

For details on Memory and MIPS for a particular DSP, refer to the Libraries chapter of the appropriate
Targeting manual.

Yes

No
Display error message

Prompt User for word

User says word

Model found?

Search for best
matching model for

the word

Display matching word
and/or play back

matching word to user

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Directory Structure 2-1

Chapter 2
Directory Structure

2.1 Required Core Directories
Figure 2-1 details required platform directories:

Figure 2-1. Core Directories

As shown in Figure 2-1, DSP56824EVM has no operating system (nos) support and contains these core
directories:

• applications contains applications software that can be exercised on this platform
• bsp contains board support package specific for this platform
• config contains default hardware/software configurations for this platform
• include contains SDK header files which define the Application Programming Interface
• sys contains required system components
• tools contains utilities used by system components

There are also optional directories that include domain-specific libraries.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

2-2 VRLite-1 Library MOTOROLA

Directory Structure

2.2 Optional (Domain-Specific) Directories
Figure 2-2 demonstrates how the VRLite-1 algorithm is encapsulated in the domain-specific directories
under the directory speech.

Figure 2-2. DSP56824 Directories

The speech directory includes speech recognition-specific algorithms. Figure 2-3 shows the vrlite1
directory structure under the speech directory.

Figure 2-3. vrlite1 Directory Structure

The vrlite1 directory includes the following sub-directories:

• API_Sources contains APIs for VRLite-1
• asm_sources includes asm sources required for VRLite-1
• test includes C source files and configuration necessary for testing VRLite-1 library modules

— c_sources contains example test code for both training and recognition

— configextram contains the configuration files appconfig.c, appconfig.h and linker.cmd
specific to VRLite-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA VRLite-1 Library Interfaces 3-1

Chapter 3
VRLite-1 Library Interfaces

3.1 VRLite-1 Services
The VRLite-1 library supports voice recognition functionality through two services: Training and
Recognition. The data to be supplied must be in 16-bit word, fixed point (1.15) format, as shown below:

i = information bit

s = sign bit

3.2 Interface
The C interface for the VRLite-1 library services is defined in the C header file vrlite1.h, shown in Code
Example 3-1 as a reference.

Code Example 3-1. C Header File vrlite1.h

#ifndef __VRLITE1_H
#define __VRLITE1_H

/**
 Foundational Include Files
**/

#include "port.h"

s
MSB

i i i i i i i i i i i i i i i
LSB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-2 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

/**
 Flags
 ***/

/* VrControlFlag Bits. Please see user manual for details */

#define VR_ABORT 0x0001 /* Not used */
#define VR_TRAINING 0x0002
#define VR_RECOGNITION 0x0004
#define VR_REJECTION_ANALYSIS 0x0008
#define VR_RECOGNITION_LAST 0x0010 /* Not used */
#define VR_REJECTION_ANALYSIS_LAST 0x0020 /* Not used */
#define VR_OUT_OF_VOCAB 0x0040 /* Not used */
#define VR_HANDSFREE 0x0080

/* Flags which indicate the return status */

#define VR_FE_BUSY 0x0001 /* Frontend busy flag */
#define VR_RA_BUSY 0x0002 /* RA busy flag */
#define VR_RECOG_BUSY 0x0004 /* Recog. busy flag */

/* Training returns 91 HMM values for every word trained along
 * with 4 global noise mean values. These values MUST be stored
 * by the user in his callback function */

#define HMM_SIZE 91 /* Size of packed HMM buffer */
#define GLBL_STAT_SIZE 4 /* Size of global noise mean buffer */

/* After the recognition is complete, two values are returned through
 * callback. These values are the indices of the first best match
 * and the second best match, from the list of previously trained
 * words */

#define BW_SIZE 2 /* Size of best word table */

/**
 PASS/Error messages
**/

#define VR_FE_PASS 0 /* Frontend PASS */
#define VR_TRAIN_PASS 1 /* Training PASS */
#define VR_RA_PASS 2 /* RA PASS */
#define VR_RECOG_PASS 3 /* Recognition PASS */
#define VR_ACCEPT_MODEL 4 /* Accept the current model */

#define VR_TIME_OUT_ERROR -2 /* Time out error from FE */
#define VR_BAD_SIGNAL_QUALITY_ERROR -3 /* Sig. Q. error from FE */
#define VR_CONFIG_ERROR -4 /* Configuration error */
#define VR_TRAINING_ERROR -5 /* Error in core training */
#define VR_REJECT_MODEL -6 /* Reject the current model */

/**
 Structures for VRLite-1
**/

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Interface

MOTOROLA VRLite-1 Library Interfaces 3-3

/* User configurable structure */

/* Call back structure */

typedef struct
{
 void (*pCallback) (void *pCallbackArg, void *pResult,
 UWord16 NumResult);
 void *pCallbackArg;
} vrlite1_sCallback;

/* This structure must be used by the user
 * to configure VRLite-1 */

typedef struct
{
 UInt16 VrControlFlag; /* Control flags, the bits are explained
 above */
 Word16 GlobalStats[4]; /* Global statistics buffer; contains
 4 words, namely, numModels, numReps,
 MSW of NoiseMean, and LSW of
 Noise Mean */
 vrlite1_sCallback Callback;
 /* Callback structure */
} vrlite1_sConfigure;

/* VR-LITE1 handle structure */

/* This structure is used internally by VR-LITE1 for its
 * operation. The user should not set up this structure */

typedef struct
{
 UInt16 VrControlFlag; /* Control flags, the bits are explained
 above */
 UInt16 VrInitFlag; /* Flag indicating the status of inits;
 see possibilities above */
 UInt16 UtteranceNo; /* Utterance number; first or second */
 Word16 *pGlobalStats; /* Pointer to Global statistics; contains
 4 words, namely, numModels, numReps,
 MSW of NoiseMean, and LSW of
 Noise Mean */
 Word16 *pContextBuf; /* Context Buffer of length 80 */
 UWord16 ContextLen; /* Length of context (<=80) */
 UInt16 NumPrevModels; /* No. of previous models */
 UInt16 TempVar; /* Temporary variable used as scratch */
 vrlite1_sCallback *Callback;
} vrlite1_sHandle;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-4 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

/**
 Commands for VRLite-1 Control
**/

#define STOP_VRLITE1 1 /* Not used as of now */

/**
 Function Prototypes
**/

EXPORT vrlite1_sHandle *vrlite1Create (vrlite1_sConfigure *pConfig);

EXPORT Result vrlite1Init (vrlite1_sHandle *pVrlite1,
 vrlite1_sConfigure *pConfig);

EXPORT Result vrlite1FrontendProcess (vrlite1_sHandle *pVrlite1,
 Word16 *pSamples,
 UWord16 NumSamples);

EXPORT Result vrlite1TrainingProcess (vrlite1_sHandle *pVrlite1);

EXPORT Result vrlite1RejAnalysisProcess (vrlite1_sHandle *pVrlite1,
 Word16 *pPrevModels);

EXPORT Result vrlite1RecognitionProcess (vrlite1_sHandle *pVrlite1,
 Word16 *pPrevModels);

EXPORT Result vrlite1Control (vrlite1_sHandle *pVrlite1,
 UWord16 Command);

EXPORT void vrlite1Destroy (vrlite1_sHandle *pVrlite1);

#endif

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-5

3.3 Specifications
The following pages describe the VRLite-1 library functions.

Function arguments for each routine are described as in, out, or inout. An in argument means that the
parameter value is an input only to the function. An out argument means that the parameter value is an
output only from the function. An inout argument means that a parameter value is an input to the function,
but the same parameter is also an output from the function.

Typically, inout parameters are input pointer variables in which the caller passes the address of a
preallocated data structure to a function. The function stores its results within that data structure. The
actual value of the inout pointer parameter is not changed.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-6 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

3.3.1 vrlite1Create
Call(s):

vrlite1_sHandle *vrlite1Create (vrlite1_sConfigure *pConfig);

Required Header: vrlite1.h

Arguments:

Table 3-1. vrlite1Create Arguments

Description: The vrlite1Create function creates an instance of VRLite-1. During the vrlite1Create call,
any dynamic resources required by the VRLite-1 algorithm are allocated.

The memory allocation is:

External Memory: 91 words

Internal Memory: 0 words

The pConfig argument points to the vrlite1_sConfigure structure used to configure VRLite-1
operation; for details on this structure, see Section 3.3.2.

The vrlite1Create function allocates memory dynamically using the mem library routines as shown in
Code Example 3-2.

Code Example 3-2. Use of mem Library in vrlite1Create function

#include “port.h”
#include "vrlite1.h"
#include "mem.h"

vrlite1_sHandle *vrlite1Create (vrlite1_sConfigure *pConfig)
{
 vrlite1_sHandle *pVrlite1;

 /* Memory allocation for Handle */
 pVrlite1 = (vrlite1_sHandle *) memMallocEM (sizeof (vrlite1_sHandle));
 if (pVrlite1 == NULL) return (NULL);

 /* Force the pointers of members to NULL */
 pVrlite1->pContextBuf = NULL;
 pVrlite1->Callback = NULL;

 /* Allocate memory for context buffer */
 pVrlite1->pContextBuf = (Word16 *) memMallocEM (FRM_SIZE * sizeof (Word16));
 if (pVrlite1->pContextBuf == NULL)
 {
 vrlite1Destroy (pVrlite1);
 return (NULL);
 }

pConfig in Points to the configuration data for VRLite-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-7

 /* Allocate memory for callback structure pointer */
 pVrlite1->Callback = (vrlite1_sCallback *) memMallocEM (sizeof

(vrlite1_sCallback));
 if (pVrlite1->Callback == NULL)
 {
 vrlite1Destroy (pVrlite1);
 return (NULL);
 }

 vrlite1Init (pVrlite1, pConfig);
 return (pVrlite1);
}

For details on the vrlite1_sHandle structure and constants used in Code Example 3-2, please refer to
Code Example 3-1.

If the vrlite1Create function is called to create an instance, then vrlite1Destroy (see Section 3.3.8) should
be used to destroy the instance.

Alternatively, the user can allocate memory statically, which requires duplicating all statements in the
vrlite1Create function. In this case, the user can call the vrlite1Init function directly, bypassing the
vrlite1Create function. If the user dynamically allocates memory without calling the vrlite1Create
function, then the user himself must destroy the memory allocated.

Returns: Upon successful completion, the vrlite1Create function will return a pointer to the specific
instance of VRLite-1created. If vrlite1Create is unsuccessful for any reason, it will return “NULL”.

Special Considerations:

• The VRLite-1 library is not re-entrant
• If vrlite1Create is called, then the user need not call vrlite1Init function, as it is called internally in

the vrlite1Create function.

In Code Example 3-3, the application creates an instance of VRLite-1.

Code Example 3-3. Use of vrlite1Create Interface

#include “vrlite1.h”
#include “mem.h”

#define FRAME_LEN 80 /* NOTE: Frame length is defined to be 80 samples for
illustration purposes only. This value could be user’s
choice */

/* Function prototype */
void testVrlite1Training ();

/* The function below is an example for testing training with rejection analysis */

/* Input and output buffers */
Word16 inputTrn[FRAME_LEN]; /* Input buffer containing FRAME_LEN samples */
Word16 prevModelBuf[HMM_SIZE]; /* Each HMM model is always of size 91 */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-8 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

/* Note: The structure of type WriteOutputTrn below is given here for illustration
* purposes only. The structure is to be decided by the user (who must write this
* kind of test file) depending on the callback function. This example assumes that the
* callback function just copies the output given by the VRLite-1 library to the
* hmmParam buffer in the structure below. */

typedef struct
{
 Word16 hmmParam[HMM_SIZE + GLBL_STAT_SIZE];
 UWord16 offset;
} WriteOutputTrn; /* used in callback for collecting the output */

void testVrlite1Training ()
{

vrlite1_sHandle *pVrlite1;
vrlite1_sConfigure *pConfig;
Int16 i;
Result res;
WriteOutputTrn hmmParamOut;

hmmParamOut.offset = 0;
/* Set up the configuration */
pConfig = (vrlite1_sConfigure *) memMallocEM (sizeof (vrlite1_sConfigure));
if (pConfig == NULL) assert (!"Out of memory");

/* When there are no words trained, all the values of GlobalStats will
* be zeros. These values are updated by the VRLite-1 algorithm
* and returned to the calling function through callback. It is up to
* the calling module (which calls Training API) to store these
* returned values. The user (calling module) can define a buffer of
* length 4 words, and keep overwriting with the latest returned
* values. During configuration for VRLite-1 through pConfig
* structure, these stored values must be assigned as shown below.
* The values below are not zeros because there are some previously
* trained models stored in the file prev_models.in located at
* ...\nos\speech\vrlite1\test\io\ */

pConfig->VrControlFlag = VR_TRAINING + VR_REJECTION_ANALYSIS;
pConfig->GlobalStats[0] = 0x007e;
pConfig->GlobalStats[1] = 0x000e;
pConfig->GlobalStats[2] = 0x0000;
pConfig->GlobalStats[3] = 0x00e0;
pConfig->Callback.pCallback = CallbackTrain;
pConfig->Callback.pCallbackArg = (WriteOutputTrn *) (&hmmParamOut);

/* Vrlite1 instance creation and initialization */
pVrlite1 = vrlite1Create (pConfig);
if (pVrlite1 == NULL) assert (!"Out of Memory");

/* Frontend processing for utterance 1 */
....
res = VR_FE_BUSY;
while (res == VR_FE_BUSY)
{

 /* Read FRAME_LEN samples at a time into inputTrn (from file or codec) */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-9

 res = vrlite1FrontendProcess (pVrlite1, inputTrn, FRAME_LEN);
}
....

/* Only if processing of first utterance is proper, process
* the second utterance */

if (res == VR_FE_PASS)
{

 /* Frontend processing for utterance 2 */

 res = VR_FE_BUSY;
 while (res == VR_FE_BUSY)
 {

 /* Read FRAME_LEN samples at a time into inputTrn
 * (from file or codec) */

 res = vrlite1FrontendProcess (pVrlite1, inputTrn, FRAME_LEN);

 }

}

if (res == VR_TIME_OUT_ERROR)
{
 /* Time out Error. Take appropriate action */

 vrlite1Destroy (pVrlite1);

 return;
}
else if (res == VR_BAD_SIGNAL_QUALITY_ERROR)
{

 /* Bad signal quality. Take appropriate action */

 vrlite1Destroy (pVrlite1);
 return;

}

/* If there is no error in frontend processing, continue
* with training */

/* Training */
res = vrlite1TrainingProcess (pVrlite1);

if (res != VR_TRAIN_PASS)
{

if (res == VR_TRAINING_ERROR)
{

 /* Error in core training */
}

/* Take appropriate action */
....
vrlite1Destroy (pVrlite1);
return;

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-10 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

else
{

/* Training over. Take appropriate action */
....

}

/* NOTE: If training fails, there is no point in going
* ahead with rejection analysis */

/* Rejection Analysis */
....
for (i = 0; i < pConfig->GlobalStats[0]; i++)
{

/* Fill prevModelBuf buffer with ONE previous model */
....
res = vrlite1RejAnalysisProcess (pVrlite1, prevModelBuf);
if (res != VR_RA_PASS)
{

break;
}

}

if (res == VR_CONFIG_ERROR)
{

/* Configuration error. Take appropriate action */
....

}
else if (res == VR_REJECT_MODEL)
{

/* Reject the current model, i.e., do not add the current model
 * to the list of previous models */
....

}
else if (res == VR_ACCEPT_MODEL)
{

/* If VR_ACCEPT_MODEL, the HMM sent by training
 * module can be accepted (i.e., add the current model
 * to the list of previous models and increment the number of
 * models, i.e., the first value in the global statistics must
 * reflect this increment in the number-of-models) */
....

}
....

}

For details on structures used in Code Example 3-3, see Code Example 3-1.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-11

3.3.2 Vrlite1Init
Call(s):

Result vrlite1Init (vrlite1_sHandle *pVrlite1, vrlite1_sConfigure *pConfig);

Required Header: vrlite1.h

Arguments:

Table 3-2. vrlite1Init Arguments

Description: The vrlite1Init function will initialize the VRLite-1 algorithm. During the initialization, all
resources will be set to their initial values in preparation for VRLite-1 operation. Before calling the
vrlite1Init function, a VRLite-1 instance must be created. The VRLite-1 instance (pVrlite1) can be created
either by calling the vrlite1Create function (see Section 3.3.1) or by statically allocating memory, which
does not require a call to the vrlite1Create function.

The parameter pConfig points to a data structure of type vrlite1_sConfigure; its fields initialize
VRLite-1operation in the following manner:

VrControlFlag - The bits of the control flag are shown below. The numbers inside the box
indicate the bit number.

pVrlite1 in Handle to an instance of VRLite-1

pConfig in A pointer to a data structure containing data for initializing the
VRLite-1 algorithm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(LSB)

VR_HANDSFREE

VR_RECOGNITION_LAST

VR_REJECTION_ANALYSIS

VR_RECOGNITION

VR_TRAINING

VR_ABORT

VR_OUT_OF_VOCAB

VR_REJECTION_ANALYSIS_LAST

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-12 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

GlobalStats - Global statistics buffer of size 4. Each location in the buffer is explained below.

GlobalStats[0] = Number of previously trained models

GlobalStats[1] = Number of utterances for which noise update is done

GlobalStats[2] = Most Significant Word of Noise Mean

GlobalStats[3] = Least Significant Word of Noise Mean

This buffer must be filled by the host and given to API. These values must be zeros
before training any model. The VRLite algorithm then updates these values during
the training of every new model and returns them to the host through the callback
function. The host stores the values given by the VRLite algorithm and ensures that
these values are not altered outside the VRLite algorithm.

Callback - A structure of type vrlite1_sCallback; it describes the procedure which
VRLite-1 will call once the training or recognition is complete. The training calls
back twice, outputting 91 HMM values and 4 global noise mean values. The
recognition does callback to output 2 best word values. The callback procedure has
the following declaration:

void (*pCallback) (void *pCallbackArg, void *pResult,
UWord16 NumResult);

Table 3-3. Description of the fields of VrControlFlag

Bit Name Bit Status Description

VR_ABORT set Indicates that VRLite must be
aborted; currently, this feature is
not applicable

VR_TRAINING set Indicates that VRLite is
configured for training

VR_RECOGNITION set Indicates that VRLite is
configured for recognition

VR_REJECTION_ANALYSIS set Indicates that VRLite is
configured for Training as well
as Rejection Analysis; this bit
cannot be set without setting
the VR_TRAINING bit

VR_RECOGNITION_LAST Not Applicable

VR_REJECTION_ANALYSIS_LAST Not Applicable

VR_OUT_OF_VOCAB Not Applicable The feature of OOV rejection is
permanently enabled in the
library

VR_HANDSFREE set Indicates that training or
recognition is done in handsfree
mode

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-13

The callback procedure parameter, pCallbackArg, is supplied by the user in the
vrlite1_sCallback structure; this value is passed back to the user during the
call to the callback procedure. Typically, pCallbackArg points to context information
used by the callback procedure, which the user must write.

An example callback procedure for training is shown in Code Example 3-4 for reference. You must write
your own callback procedure. This callback procedure stores the result in a buffer specified by the user or
the host through a pCallbackArg pointer.

Code Example 3-4. Sample Callback Procedure for Training

void CallbackTrain (void *pCallbackArg, void *pResult, UWord16 NumResult)
{

Int16 i;
WriteOutputTrn *pTemp = (WriteOutputTrn *) pCallbackArg;
Word16 *pTempIn = (Word16 *) pResult;
for (i = 0; i < NumResult; i++)
{

pTemp->hmmParam[(pTemp->offset) + i] = pTempIn[i];
}
pTemp->offset += NumResult;
return;

}

Code Example 3-4 is the callback function, to be written by the user, to collect the output given by the
vrlite1TrainingProcess function (Training thread) of the VRLite-1 library. Training returns 91 HMM
values, then returns 4 Global Statistics values through callback, which should be collected by the user1. In
this example, WriteOutputTrn is a structure, illustrating one of the simple ways of collecting these
outputs. In an embedded system environment, these outputs must be stored in non-volatile memory; the
user can do this directly in the callback function if Rejection Analysis is Off. If Rejection Analysis is
required (On), then the user can first copy the outputs into a temporary buffer as shown in Code
Example 3-4, then copy them into non-volatile memory, depending upon the results of Rejection Analysis.
In this example, during the first callback from the vrlite1TrainingProcess function, the CallbackTrain
function stores the 91 values in the hmmParam buffer of the WriteOutputTrn structure, during which
the pTemp->offset would be zero. While going out of this function, the offset would be incremented,
so that during the next callback, the 4 Global Statistics output values are written from the 92nd location
onwards.

An example callback procedure for recognition is shown in Code Example 3-5 for reference.

1. In this case, “user” refers to the host function and not to the end user.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-14 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

Code Example 3-5. Sample Callback Procedure for Recognition

void CallbackRecog (void *pCallbackArg, void *pResult, UWord16 NumResult)
{

Int16 i;
Word16 *pTemp = (Word16 *) pCallbackArg;
Word16 *pTempIn = (Word16 *) pResult;
for (i = 0; i < NumResult; i++)
{

pTemp[i] = pTempIn[i];
}
return;

}

Code Example 3-5 is the callback function, to be written by the user, which collects the output given by
the vrlite1RecognitionProcess function (Recognition thread) of the VRLite-1 library. Recognition returns
two values (first best word and second best word indices) through callback, which should be collected by
the user1. This example illustrates just one of the simple ways of collecting these outputs. In an embedded
system environment, these outputs can be used to take appropriate further action. During the callback, the
CallbackRecog function stores the two values in the BestWordOut buffer pointed to by pCallbackArg.

Returns: Upon successful completion, VRliteInit returns “PASS”; VRliteInit returns
“VR_CONFIG_ERROR” to indicate an error in the configuration of pconfig structure.

Special Considerations:

• If vrlite1Create is called, then the user need not call vrlite1Init function as it is called internally in
the vrlite1Create function.

Code Example: See Code Example 3-3 to learn how to use the vrlite1Init function.

1. In this case, “user” refers to the host function and not to the end user.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-15

3.3.3 vrlite1FrontendProcess
Call(s):

Result vrlite1FrontendProcess (vrlite1_sHandle *pVrlite1,
Word16 *pSamples,
UWord16 NumSamples);

Required Header: vrlite1.h

Arguments:

Table 3-4. vrlite1FrontendProcess Arguments

Description: The vrlite1FrontendProcess function processes samples to generate feature vectors for the
utterance. These feature vectors will be used in training/recognition. The user must call the
vrlite1FrontendProcess function in a loop as long as the “VR_FE_BUSY” flag is returned from
vrlite1FrontendProcess function.

Returns: The following are the return values:

• “VR_TIME_OUT_ERROR” indicates time out when valid speech cannot be found in the utterance
for approximately the first 2 seconds

• “VR_BAD_SIGNAL_QUALITY_ERROR” indicates that the signal quality of the utterance is bad
• “VR_FE_PASS” indicates that the front end processing is complete
• “VR_FE_BUSY” indicates that the front end processing is not finished, and more samples are

required to complete the front end processing

Special Considerations:

• For Training, this API must be invoked for two utterances; for Recognition, this API can be invoked
for only one utterance

• To maximize the performance of recognition in noisy environments, the environment must be as
quiet as possible for training.

Code Example: See Code Example 3-3 to learn how to use the vrlite1FrontendProcess function.

pVrlite1 in Handle to an instance of VRLite-1

pSamples in Pointer to speech samples (samples of the uttered word)

NumSamples in The number of samples to be processed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-16 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

3.3.4 vrlite1TrainingProcess
Call(s):

Result vrlite1TrainingProcess (vrlite1_sHandle *pVrlite1);

Required Header: vrlite1.h

Arguments:

Table 3-5. vrlite1TrainingProcess Arguments

Description: The vrlite1TrainingProcess function will generate the HMM model representation for the
uttered word. Training requires two utterances of the same word to generate the HMM model. The user
must call the vrlite1TrainingProcess function after front end processing.

Returns: Upon successful completion, vrliteTrainingProcess will return “VR_TRAIN_PASS”; if there is
a failure in the core training module, vrliteTrainingProcess returns “VR_TRAINING_ERROR”.

Special Considerations: None

Code Example: See Code Example 3-3 to learn how to use the vrlite1TrainingProcess function.

pVrlite1 in Handle to an instance of VRLite-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-17

3.3.5 vrlite1RejAnalysisProcess
Call(s):

Result vrlite1RejAnalysisProcess (vrlite1_sHandle *pVrlite1,
Word16 *pPrevModels);

Required Header: vrlite1.h

Arguments:

Table 3-6. vrlite1RejAnalysisProcess Arguments

Description: The vrlite1RejAnalysisProcess function decides whether the HMM model and global noise
mean values given by the vrlite1TrainingProcess function should be retained or rejected. Rejection
Analysis requires the previously-trained models to do the analysis. The user must call the
vrlite1RejAnalysisProcess function after Training, and it must be called for each previously-trained model.

Returns: The following are the return values:

• “VR_CONFIG_ERROR” indicates an error in the configuration of the pConfig structure, because
Rejection Analysis cannot work without training

• “VR_REJECT_MODEL” indicates that the model is rejected; i.e., a similar model might already
exist in the vocabulary (the set of previously trained models)

• “VR_RA_PASS” indicates that Rejection Analysis passed and the next model is to be supplied for
analysis

• “VR_ACCEPT_MODEL” indicates that the rejection analysis is complete and the current model
must be accepted

Special Considerations: One previous model is to be passed at a time. This implies that this API must be
called previous-model-number-of-times from the calling module.

Code Example: See Code Example 3-3 to learn how to use the vrlite1RejAnalysisProcess function.

pVrlite1 in Handle to an instance of VRLite-1

pPrevModels in Pointer to previously-trained models

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-18 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

3.3.6 vrlite1RecognitionProcess
Call(s):

Result vrlite1RecognitionProcess (vrlite1_sHandle *pVrlite1,
Word16 *pPrevModels);

Required Header: vrlite1.h

Arguments:

Table 3-7. vrlite1RecognitionProcess Arguments

Description: The vrlite1RecognitionProcess function recognizes the word uttered with respect to the
vocabulary (i.e., previously-trained models). Unlike training, recognition requires only one utterance for
its operation. After configuring for recognition, the user must call the vrlite1RecognitionProcess function
for each previously-trained model; see Code Example 3-6.

Returns: Upon successful completion of the recognition process, vrlite1RecognitionProcess returns
“VR_RECOG_PASS”; if recognition is busy and the next previous model should be supplied,
vrlite1RecognitionProcess returns “VR_RECOG_BUSY”.

Special Considerations: Only one previous model can be passed at a time. This implies that this API is to
be called previous-model-number-of-times from the calling module; see Code Example 3-6.

Code Example 3-6. Use of vrlite1RecognitionProcess Interface

#include “vrlite1.h”
#include “mem.h”

#define FRAME_LEN 80 /* NOTE: Frame length is defined to be 80 samples for
illustration purposes only. This value could be user’s
choice */

/* Function prototype */
void testVrlite1Recog ();

/* The function below is an example for testing recognition */

/* Input and output buffers */
Word16 inputRecog[FRAME_LEN]; /* Input buffer containing FRAME_LEN samples */
Word16 prevModelBuf[HMM_SIZE]; /* Each HMM model is always of size 91 */

void testVrlite1Recog ()
{

vrlite1_sHandle *pVrlite1;
vrlite1_sConfigure *pConfig;
Int16 i;
Result res;
Word16 BestWordOut[BW_SIZE];

pVrlite1 in Handle to an instance of VRLite-1

pPrevModels in Pointer to previously-trained models

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-19

/* Set up the configuration */
pConfig = (vrlite1_sConfigure *) memMallocEM (sizeof (vrlite1_sConfigure));
if (pConfig == NULL) assert (!"Out of memory");

/* When there are no words trained, all the values of GlobalStats will
* be zeros. These values are updated by the VRLite-1 algorithm
* and returned to the calling function through callback. It is up to
* the calling module (which calls Training API) to store these
* returned values. The user (calling module) can define a buffer of
* length 4 words, and keep overwriting with the latest returned
* values. During configuration for VRLite-1 through pConfig
* structure, these stored values have to be assigned as shown below.
* The values below are not zeros because we have some previously
* trained models stored in the file prev_models.in located at
* ...\nos\speech\vrlite1\test\io\ */

pConfig->VrControlFlag = VR_RECOGNITION;
pConfig->GlobalStats[0] = 0x007e;
pConfig->GlobalStats[1] = 0x000e;
pConfig->GlobalStats[2] = 0x0000;
pConfig->GlobalStats[3] = 0x00e0;
pConfig->Callback.pCallback = CallbackRecog;
pConfig->Callback.pCallbackArg = (Word16 *) (&BestWordOut);

/* Vrlite1 instance creation and initialization */
pVrlite1 = vrlite1Create (pConfig);
if (pVrlite1 == NULL)
{

assert (!"Out of Memory");
}

/* Frontend processing for utterance */
....
res = VR_FE_BUSY;
while (res == VR_FE_BUSY)
{

/* Read FRAME_LEN samples at a time into inputRecog buffer
 * (either from file or codec) */
....
res = vrlite1FrontendProcess (pVrlite1, inputRecog, FRAME_LEN);

}

if (res == VR_TIME_OUT_ERROR)
{
 /* Time out Error. Take appropriate action */

 vrlite1Destroy (pVrlite1);

 return;
}
else if (res == VR_BAD_SIGNAL_QUALITY_ERROR)
{

 /* Bad signal quality. Take appropriate action */

 vrlite1Destroy (pVrlite1);
 return;

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-20 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

/* Recognition */
....

for (i = 0; i < pConfig->GlobalStats[0]; i++)
{

/* Get ONE previously trained model, which is always of size 91
 * into prevModelBuf buffer */
....
res = vrlite1RecognitionProcess (pVrlite1, prevModelBuf);
if (res == VR_CONFIG_ERROR)
{

break;
}

}

if (res == VR_CONFIG_ERROR)
{

/* Configuration error, take appropriate action */
....

}
else if (res == VR_RECOG_BUSY)
{

/* Error: All prev. models are not supplied. Take appropraite action */
....

}
else
{

/* Recognition complete. Take appropraite action */
....

}

/* Destroy the VR-LITE1 instance */
vrlite1Destroy (pVrlite1);
return;

}

For details on structures used in Code Example 3-6, see Code Example 3-1.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Specifications

MOTOROLA VRLite-1 Library Interfaces 3-21

3.3.7 vrlite1Control
Call(s):

Result vrlite1Control (vrlite1_sHandle *pVrlite1, UWord16 Command);

Required Header: vrlite1.h

Arguments:

Table 3-8. vrlite1Control Arguments

Description: Reserved for future use

Returns: None

Special Considerations: None

pVrlite1 in Handle to an instance of VRLite-1 generated by a call to vrlite1Create

Command in Command for controlling VRLite-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

3-22 VRLite-1 Library MOTOROLA

VRLite-1 Library Interfaces

3.3.8 vrlite1Destroy
Call(s):

void vrlite1Destroy (vrlite1_sHandle *pVrlite1);

Required Header: vrlite1.h

Arguments:

Table 3-9. vrlite1Destroy Arguments

Description: The vrlite1Destroy function destroys the instance of VRLite-1 originally created by a call to
vrlite1Create. If the user bypassed the vrlite1Create function to create an instance on his own, the
vrlite1Destroy function should not be called.

Returns: None

Special Considerations: None

Code Example 3-7. Use of vrlite1Destroy Interface

#include “vrlite1.h”
#include “mem.h”

See Code Example 3-3 and Code Example 3-6 to learn how to use the vrlite1Destroy function.

pVrlite1 in Handle to an instance of VRLite-1 generated by a call to vrlite1Create

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Building the VRLite-1 Library 4-1

Chapter 4
Building the VRLite-1 Library

4.1 Building the VRLite-1 Library
The VRLite-1 library combines all of the components described in previous chapter into one library:
vrlite1.lib. To build this library, a Metrowerks CodeWarrior project, vrlite1.mcp, is provided. This project
and all the necessary components to build the VRLite-1 library are located in the ...\nos\speech\vrlite1
directory of the SDK directory structure.

There are two methods to execute a system library project build: dependency build and direct build.

4.1.1 Dependency Build
Dependency build is the easiest approach and requires no additional work on the user’s part. If you add the
VRLite-1 library project, vrlite1.mcp, to your application project, as shown in Figure 4-1, the VRLite-1
library will automatically build when the application is built.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

4-2 VRLite-1 Library MOTOROLA

Building the VRLite-1 Library

Figure 4-1. Dependency Build for VRLite-1 Project

4.1.2 Direct Build
Direct build allows you to build the VRLite-1 library independently of any other build. Follow these steps:

Step 1. Open vrlite1.mcp project, as shown in Figure 4-2.

Figure 4-2. vrlite1.mcp Project

Step 2. Execute the build by pressing function key [F7] or by choosing the Make command from the
Project menu; see Figure 4-3.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

Building the VRLite-1 Library

MOTOROLA Building the VRLite-1 Library 4-3

Figure 4-3. Execute Make

At this point, if the build is successful, the vrlite1.lib library file is created in the
...\nos\speech\vrlite1\Debug directory.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

4-4 VRLite-1 Library MOTOROLA

Building the VRLite-1 Library

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Linking Applications with the VRLite-1 Library 5-1

Chapter 5
Linking Applications with the VRLite-1
Library

5.1 VRLite-1 Library
The library includes APIs, which define the interface between the user application and the VRLite-1
modules. As the VRLite-1 APIs are not a direct interface to the end user (for example, a handset user), the
user application must be like host software. To invoke VRLite-1, APIs must be called in this order:

— vrlite1Create (.......);
— vrlite1Init (.......);
— vrlite1FrontendProcess (.......);
— vrlite1TrainingProcess (.......);
— vrlite1RejAnalysisProcess (.......);
— vrlite1RecognitionProcess (.......);
— vrlite1Destroy (.......);

5.1.1 Library Sections
The VRLite-1 Library contains the following sections:

• FRONTEND_ROM, a data ROM section
• VR_COMMON_ROM, a data ROM section
• VR_RECO_ROM, a data ROM section
• VR_Y_1_MEM_SHARE, a data RAM section
• VR_Y_2_MEM_SHARE, a data RAM section
• VR_Y_3_MEM_SHARE, a data RAM section
• VR_Y_4_MEM_SHARE, a data RAM section
• VR_Y_5_MEM_SHARE, a data RAM section
• VR_X_MEM_SHARE, a data RAM section
• VR_LONG_MEM_SHARE, a data RAM section

See Code Example 5-1 for an example linker.cmd file used in the test application.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

5-2 VRLite-1 Library MOTOROLA

Linking Applications with the VRLite-1 Library

Code Example 5-1. linker.cmd File

Linker.cmd file for DSP56824EVM External RAM
using both internal and external data memory (EX = 0)
and using external program memory (Mode = 3)

#***
MEMORY {

.pInterruptVector (RWX) : ORIGIN = 0x0000, LENGTH = 0x002C

.pExtRAM (RWX) : ORIGIN = 0x002C, LENGTH = 0xFFD4

.xAvailable (RW) : ORIGIN = 0x0000, LENGTH = 0x0030

.xCWRegisters (RW) : ORIGIN = 0x0030, LENGTH = 0x0010

.xIntRAM_DynamicMem1 (RW) : ORIGIN = 0x0040, LENGTH = 0x07C0

.xIntROM (R) : ORIGIN = 0x0800, LENGTH = 0x0800

.xIntRAM_DynamicMem2 (RW) : ORIGIN = 0x1000, LENGTH = 0x0600

.xHole (R) : ORIGIN = 0x1600, LENGTH = 0x0A00

.xExtRAM (RW) : ORIGIN = 0x2000, LENGTH = 0xC000

.xExtRAM_DynamicMem (RW) : ORIGIN = 0xE000, LENGTH = 0x1000

.xStack (RW) : ORIGIN = 0xF000, LENGTH = 0x0F80

.xPeripherals1 (RW) : ORIGIN = 0xFF80, LENGTH = 0x0040

.xPeripherals2 (RW) : ORIGIN = 0xFFC0, LENGTH = 0x0040

.xExt1Vrlite1 (RW) : ORIGIN = 0x4000, LENGTH = 0x0000

.xExt2Vrlite1 (RW) : ORIGIN = 0x4300, LENGTH = 0x0000

.xExt3Vrlite1 (RW) : ORIGIN = 0x4900, LENGTH = 0x0000

.xExt4Vrlite1 (RW) : ORIGIN = 0x4D00, LENGTH = 0x0000

.xExt5Vrlite1 (RW) : ORIGIN = 0x4E00, LENGTH = 0x0000

.xExt6Vrlite1 (RW) : ORIGIN = 0x5400, LENGTH = 0x0000
}

#***
FORCE_ACTIVE {FconfigInterruptVector}
SECTIONS {
#***

#
Data (X) Memory Layout
#
_EX_BIT = 0;

Internal Memory Partitions (for mem.h partitions)
_NUM_IM_PARTITIONS = 2; # .xIntRAM_DynamicMem1 and .xIntRAM_DynamicMem2

External Memory Partition (for mem.h partitions)
_NUM_EM_PARTITIONS = 1; # .xExtRAM_DynamicMem

#***
.ApplicationInterruptVector :
{

vector.c (.text)

} > .pInterruptVector
#***

.ApplicationCode :
{

Place all code into External Program RAM
* (.text)
* (rtlib.text)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

VRLite-1 Library

MOTOROLA Linking Applications with the VRLite-1 Library 5-3

* (fp_engine.text)
* (user.text)

} > .pExtRAM
#***

.ApplicationData :
{

Define variables for C initialization code

F_Xdata_start_addr_in_ROM = ADDR(.xIntROM) + SIZEOF(.xIntROM) / 2;
F_StackAddr = ADDR(.xStack);
F_StackEndAddr = ADDR(.xStack) + SIZEOF(.xStack) / 2 - 1;
F_Xdata_start_addr_in_RAM = .;

Define variables for SDK mem library

FmemEXbit = .;
WRITEH(_EX_BIT);
FmemNumIMpartitions = .;
WRITEH(_NUM_IM_PARTITIONS);
FmemNumEMpartitions = .;
WRITEH(_NUM_EM_PARTITIONS);
FmemIMpartitionList = .;
WRITEH(ADDR(.xIntRAM_DynamicMem1));
WRITEH(SIZEOF(.xIntRAM_DynamicMem1) / 2);
WRITEH(ADDR(.xIntRAM_DynamicMem2));
WRITEH(SIZEOF(.xIntRAM_DynamicMem2) / 2);
FmemEMpartitionList = .;
WRITEH(ADDR(.xExtRAM_DynamicMem));
WRITEH(SIZEOF(.xExtRAM_DynamicMem) /2);

Place all data into External RAM

* (.data)
* (fp_state.data)
* (rtlib.data)

F_Xdata_ROMtoRAM_length = 0;

F_bss_start_addr = .;
_BSS_ADDR = .;

* (rtlib.bss.lo)
* (.bss)

F_bss_length = . - _BSS_ADDR; # Copy DATA

} > .xExtRAM
#***

FArchIO = ADDR(.xPeripherals2);
#***

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

5-4 VRLite-1 Library MOTOROLA

Linking Applications with the VRLite-1 Library

.Vrlite1Data1 :
{

Place all code into External Data RAM
.=ALIGN(0x10);
* (FRONTEND_ROM.data)
* (VR_COMMON_ROM.data)
* (VR_RECO_ROM.data)
.=ALIGN(0x10);
* (VR_Y_1_MEM_SHARE.data)

} > .xExt1Vrlite1

.Vrlite1Data2 :
{

Place all code into External Data RAM
.=ALIGN(0x100);
* (VR_Y_2_MEM_SHARE.data)

} > .xExt2Vrlite1

.Vrlite1Data3 :
{

Place all code into External Data RAM
.=ALIGN(0x10);
* (VR_Y_3_MEM_SHARE.data)

} > .xExt3Vrlite1

.Vrlite1Data4 :
{

Place all code into External Data RAM
.=ALIGN(0x10);
* (VR_Y_4_MEM_SHARE.data)

} > .xExt4Vrlite1

.Vrlite1Data5 :
{

 # Place all code into External Data RAM
.=ALIGN(0x20);
* (VR_LONG_MEM_SHARE.data)

} > .xExt5Vrlite1

.Vrlite1Data6 :
{

 # Place all code into External Data RAM
* (VR_X_MEM_SHARE.bss)
* (VR_Y_5_MEM_SHARE.bss)

} > .xExt6Vrlite1
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA VRLite-1 Applications 6-1

Chapter 6
VRLite-1 Applications

6.1 Test and Demo Applications
To verify the VRLite-1 algorithm, test and demo applications have been developed. Refer to the Targeting
Motorola DSP568xx Platform Manual for the DSP you are using to see if the test and demo applications
are available for your target.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

6-2 VRLite-1 Library MOTOROLA

VRLite-1 Applications

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA License 7-1

Chapter 7
License

7.1 Limited Use License Agreement
LIMITED USE LICENSE AGREEMENT

PLEASE READ THIS AGREEMENT CAREFULLY BEFORE USING THIS SOFTWARE. BY USING
OR COPYING THE SOFTWARE, YOU AGREE TO THE TERMS OF THIS AGREEMENT.

The software in either source code form ("Source") or object code form ("Object") (cumulatively
hereinafter "Software") is provided under a license agreement ("Agreement") as described herein. Any use
of the Software including copying, modifying, or installing the Software so that it is usable by or
accessible by a central processing unit constitutes acceptance of the terms of the Agreement by the person
or persons making such use or, if employed, the employer thereof ("Licensee") and if employed, the
person(s) making such use hereby warrants that they have the authority of their employer to enter this
license agreement,. If Licensee does not agree with and accept the terms of this Agreement, Licensee must
return or destroy any media containing the Software or materials related thereto, and destroy all copies of
the Software.

The Software is licensed to Licensee by Motorola Incorporated ("Motorola") for use under the terms of this
Agreement. Motorola retains ownership of the Software. Motorola grants only the rights specifically
granted in this Agreement and grants no other rights. Title to the Software, all copies thereof and all rights
therein, including all rights in any intellectual property including patents, copyrights, and trade secrets
applicable thereto, shall remain vested in Motorola.

For the Source, Motorola grants Licensee a personal, non-exclusive, non-assignable, revocable,
royalty-free right to use, copy, and make derivatives of the Source solely in a development system
environment in order to produce object code solely for operating on a Motorola semiconductor device
having a central processing unit ("Derivative Object").

For the Object and Derivative Object, Motorola grants Licensee a personal, non-exclusive, non-assignable,
revocable, royalty-free right to copy, use, and distribute the Object and the Derivative Object solely for
operating on a Motorola semiconductor device having a central processing unit.

Licensee agrees to: (a) not use, modify, or copy the Software except as expressly provided herein, (b) not
distribute, disclose, transfer, sell, assign, rent, lease, or otherwise make available the Software, any
derivatives thereof, or this license to a third party except as expressly provided herein, (c) not remove
obliterate, or otherwise defeat any copyright, trademark, patent or proprietary notices, related to the
Software (d) not in any form export, re-export, resell, ship or divert or cause to be exported, re-exported,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

7-2 VRLite-1 Library MOTOROLA

License

resold, shipped, or diverted, directly or indirectly, the Software or a direct product thereof to any country
which the United States government or any agency thereof at the time of export or re-export requires an
export license or other government approval without first obtaining such license or approval.

THE SOFTWARE IS PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MOTOROLA BE LIABLE FOR
ANY LIABILITY OR DAMAGES OF ANY KIND INCLUDING, WITHOUT LIMITATION, DIRECT
OR INDIRECT OR INCIDENTAL OR CONSEQUENTIAL OR PUNITIVE DAMAGES OR LOST
PROFITS OR LOSS OF USE ARISING FROM USE OF THE SOFTWARE OR THE PRODUCT
REGARDLESS OF THE FORM OF ACTION OR THEORY OF LIABILITY (INCLUDING WITHOUT
LIMITATION, ACTION IN CONTRACT, NEGLIGENCE, OR PRODUCT LIABILITY) EVEN IF
MOTOROLA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THIS
DISCLAIMER OF WARRANTY EXTENDS TO LICENSEE OR USERS OF PRODUCTS AND IS IN
LIEU OF ALL WARRANTIES WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.

Motorola does not represent or warrant that the Software is free of infringement of any third party patents,
copyrights, trade secrets, or other intellectual property rights or that Motorola has the right to grant the
licenses contained herein. Motorola does not represent or warrant that the Software is free of defect, or
that it meets any particular requirements or need of the Licensee, or that it conforms to any documentation,
or that it meets any standards.

Motorola shall not be responsible to maintain the Software, provide upgrades to the Software, or provide
any field service of the Software. Motorola reserves the right to make changes to the Software without
further notice to Licensee.

The Software is not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Software could create a situation where personal injury or death may
occur. Should Licensee purchase or use the Software for any such unintended or unauthorized application,
Licensee shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or
manufacture of the Software.

The term of this Agreement is for as long as Licensee uses the Software for its intended purpose and is not
in default of any provisions of this Agreement. Motorola may terminate this Agreement if Licensee is in
default of any of the terms and conditions of this Agreement.

This Agreement shall be governed by and construed in accordance with the laws of the State of Arizona
and can only be modified in a writing signed by both parties. Licensee agrees to jurisdiction and venue in
the State of Arizona.

By using, modifying, installing, compiling, or copying the Software, Licensee acknowledges that this
Agreement has been read and understood and agrees to be bound by its terms and conditions. Licensee
agrees that this Agreement is the complete and exclusive statement of the agreement between Licensee and
Motorola and supersedes any earlier proposal or prior arrangement, whether oral or written, and any other
communications relative to the subject matter of this Agreement.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA Index i

B

Background 1-1

D

Dependency Build 4-1
Direct Build 4-2
DSP x
DSP56800 Family Manual xi
DSP56824 User’s Manual xi

E

Embedded SDK Programmer’s Guide xi

F

FE x
Features and Performance 1-4

H

HMM x

I

I/O x

L

linker.cmd File 5-2
LSB x

M

MIPS xi
MSB xi

N

Notational Conventions x

O

OMR xi
OnCE xi
OOV xi
Overview of VRLITE-1 1-1

R

RA xi

S

SDK xi
SDSR xi
SRC xi

V

VRLite-1 xi
vrlite1 Directory Structure 2-2
vrlite1.h 3-1
vrlite1Create 3-6
vrlite1Destroy 3-22
vrlite1FrontendProcess 3-15
vrlite1Init 3-10
vrlite1RecognitionProcess 3-18
vrlite1RejAnalysisProcess 3-17
vrlite1TrainingProcess 3-16

Index

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their

respective owners. © Motorola, Inc. 2002.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors/

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola,
Inc. is an Equal Opportunity/Affirmative Action Employer.

SDK129/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
A

R
C

H
IV

E
D

 B
Y

 F
R

E
E

S
C

A
L

E
 S

E
M

IC
O

N
D

U
C

TO
R

, I
N

C
. 2

00
5

	Embedded SDK (Software Development Kit)
	About This Document
	Chapter�1 Introduction
	1.1 Quick Start
	1.2 Overview of VRLite-1
	1.2.1 Background
	1.2.2 Features and Performance

	Chapter�2 Directory Structure
	2.1 Required Core Directories
	2.2 Optional (Domain-Specific) Directories

	Chapter�3 VRLite-1 Library Interfaces
	3.1 VRLite-1 Services
	3.2 Interface
	3.3 Specifications
	3.3.1 vrlite1Create
	3.3.2 Vrlite1Init
	3.3.3 vrlite1FrontendProcess
	3.3.4 vrlite1TrainingProcess
	3.3.5 vrlite1RejAnalysisProcess
	3.3.6 vrlite1RecognitionProcess
	3.3.7 vrlite1Control
	3.3.8 vrlite1Destroy

	Chapter�4 Building the VRLite-1 Library
	4.1 Building the VRLite-1 Library
	4.1.1 Dependency Build
	4.1.2 Direct Build

	Chapter�5 Linking Applications with the VRLite-1 Library
	5.1 VRLite-1 Library
	5.1.1 Library Sections

	Chapter�6 VRLite-1 Applications
	6.1 Test and Demo Applications

	Chapter�7 License
	7.1 Limited Use License Agreement

