
50 Digital Technical Journal Vol. 9 No. 3 1997

As we learn better ways to express our thoughts in the
form of computer programs and to take better advan-
tage of hardware resources, we incorporate these ideas
and paradigms into the programming languages we
use. Fortran 901,2 provides mechanisms to operate
directly on arrays, e.g., A=2*A to double each element
of A independent of rank, rather than requiring the
programmer to operate on individual elements within
nested DO loops. Many of these mechanisms are natu-
rally data parallel. High Performance Fortran (HPF)3,4

extends Fortran 90 with data distribution directives to
facilitate computations done in parallel. Debuggers, in
turn, need to be enhanced to keep pace with new fea-
tures of the languages. The fundamental user require-
ment, however, remains the same: Present the control
flow of the program and its data in terms of the original
source, independent of what the compiler has done or
what is happening in the run-time support. Since HPF
compilers automatically distribute data and computa-
tion, thereby widening the gap between actual execu-
tion and original source, meeting this requirement is
both more important and more difficult.

This paper describes several of the challenges HPF
creates for a debugger and how an experimental debug-
ging technology, internally code-named Aardvark, suc-
cessfully addresses many of them using techniques that
have applicability beyond HPF. For example, program-
ming paradigms common to explicit message-passing
systems such as the Message Passing Interface (MPI)5–7

can benefit from Aardvark’s methods.
The HPF compiler and run time used is DIGITAL’s

HPF compiler,8 which produces an executable that
uses the run-time support of DIGITAL’s Parallel
Software Environment.9 DIGITAL’s HPF compiler
transforms a program to run as several intercommuni-
cating processes. The fundamental requirement, then,
is to give the appearance of a single control flow and a
single data space, even though there are several indi-
vidual control flows and the data has been distributed.
In the paper, I introduce the concept of logical entities
and show how they address many of the control flow
challenges. A discussion of a rich and flexible data
model that easily handles distributed data follows. I
then point out difficulties imposed on user interfaces,
especially when the program is not in a completely

Challenges in Designing
an HPF Debugger

David C. P. LaFrance-Linden

High Performance Fortran (HPF) provides
directive-based data-parallel extensions to
Fortran 90. To achieve parallelism, DIGITAL’s HPF
compiler transforms a user’s program to run as
several intercommunicating processes. The ulti-
mate goal of an HPF debugger is to present the
user with a single source-level view of the pro-
gram at the control flow and data levels. Since
pieces of the program are running in several dif-
ferent processes, the task is to reconstruct the
single control and data views. This paper pre-
sents several of the challenges involved and
how an experimental debugging technology,
code-named Aardvark, successfully addresses
many of them.

Digital Technical Journal Vol. 9 No. 3 1997 51

consistent state, and indicate how they can be over-
come. Sections on related work and the applicability of
logical entities to other areas conclude the paper.

Logical Entities

From the programmer’s perspective, an HPF program
is a single process/thread with a single control flow
represented by a single call stack consisting of single
stack frames. A debugger should strive to present the
program in terms of these single entities. A key
enabling concept in the Aardvark debugger is the defi-
nition of logical entities in addition to traditional phys-
ical entities. Generally, a logical entity collects several
physical entities into a single entity. Many parts of
Aardvark are unaware of whether or not an entity is
logical or physical, and a debugger’s user interface uses
logical entities to present program state.

A physical entity is something that exists some-
where outside the debugger. A physical process exists
within the operating system and has memory that can
be read and written. A physical thread has registers
and (through registers and process memory) a call
stack. A physical stack frame has a program counter, a
caller stack frame, and a callee stack frame. Each of
these has a representation within the debugger, but
the actual entity exists outside the debugger.

A logical entity is an abstraction that exists within the
debugger. Logical entities generally group together
several related physical entities and synthesize a single
behavior from them. In C++ terms, a process is an
abstract base class; physical and logical processes are
derived classes. A logical process contains as data mem-
bers a set of other (probably physical) processes. The
methods of a logical process, e.g., to set a breakpoint,
bring about the desired operations using logical algo-
rithms rather than physical algorithms. The logical
algorithms often work by invoking the same operation
on the physical entities and constructing a logical entity
from the physical pieces. This implies that some opera-
tions on physical entities can be done in isolation from
their logical containers. Aardvark makes a stronger
statement: Physical entities are the building blocks for
logical entities and are first-class objects in their own
right. This allows physical entities to be used for tradi-
tional debugging without any additional structure.10

A positive consequence of this object-oriented design
is that a user interface can often be unaware of the physi-
cal or logical nature of the entities it is managing. For
example, it can set a breakpoint in a process or navigate a
thread’s stack by calling virtual methods declared on the
base classes.

Some interesting design questions arise: What is a
process? What is a thread? What is a stack frame? What
operations are expected to work on all kinds of processes
but actually only work on physical processes? Experience
to date is inconclusive. Aardvark currently defines the

base classes and methods for logical entities to include
many things that are probably specific to physical enti-
ties. This design was done largely for convenience.

Sometimes a logical entity is little more than a con-
tainer of physical entities. A logical stack frame for
threads that are in unrelated functions simply collects
the unrelated physical stack frames. Nevertheless, logi-
cal stack frames provide a consistent mechanism for
collecting physical stack frames, and variants of logical
stack frames can discriminate how coordinated the
physical threads are. The concept of logical entities
does not apply to all cases, though. Variables have val-
ues, and there does not seem to be anything logical or
physical about values. Yet, if a replicated variable’s val-
ues on different processors are different, there is no
single value and some mechanism is needed. Rather
than define logical values, Aardvark provides a differ-
ing values mechanism, which is discussed in a later sec-
tion of the same name.

Controlling an HPF Process

Users want to be able to start and stop HPF programs,
set breakpoints, and single step. From a user interface
and the higher levels of Aardvark, these tasks are sim-
ple to accomplish—ask the process or thread, which
happens to be logical, to perform the operation.
Within the logical process or thread, however, the
complexity varies, depending on the operation.

Starting and Stopping
Starting and stopping a logical thread is straightfor-
ward: Start or stop each component physical thread.
Some race conditions require care in coding, though.
For example, starting a logical thread theoretically starts
all the corresponding physical threads simultaneously.
In practice, Aardvark serializes the physical threads. In
Figure 1, when all the physical threads stop, the logical
thread is declared to be stopped. Aardvark then starts
the logical thread at time “+” and proceeds to start each
physical thread. Suppose the first physical thread (thread
0) stops immediately, at time “*.” It might appear that
the logical thread is now stopped because each physical
thread is stopped. This scenario does not take into
account that the other physical threads have not yet
been started. Timestamping execution state transitions,
i.e., ordering the events as observed by Aardvark, works
well; a logical thread becomes stopped only when all its
physical threads have stopped after the time that the
logical thread was started. An added complexity is that
some reasons for stopping a physical thread should stop
the other physical threads and the logical thread. In this
case, pending starts should be cancelled.

Breakpoints
Setting a breakpoint in a logical process sets a break-
point in each physical process and collects the physical

52 Digital Technical Journal Vol. 9 No. 3 1997

breakpoint representations into a logical breakpoint.
For HPF, any action or conditional expression is
associated with the logical breakpoint, not with the
physical breakpoints. Consider the expression
ARRAY(3,4).LT.5. Even if the element is stored in
only one process, the entire HPF process needs to stop
before the expression is evaluated; otherwise, there is
the potential for incorrect data to be read or for
processes to continue running when they should not.
This requires each physical process to reach its physical
breakpoint before the expression can be evaluated.
Once evaluated, the process remains stopped or con-
tinues, depending on the result. For HPF, a break-
point in a logical process implies a global barrier of the
physical processes.

Recognizing and processing a thread reaching a
logical breakpoint is somewhat involved. Aardvark’s
general mechanism for breakpoint determination is to
ask the thread’s operating system model if the initial
stop reason could be a breakpoint. If this is the case,
the operating system model provides a comparison key
for further processing.

For physical DIGITAL UNIX threads, a SIGTRAP
signal could be a breakpoint, with the comparison key
being the program counter address of the potential
breakpoint instruction. This comparison key is then
used to search the breakpoints installed in the physical
process to determine which (if any) breakpoint was
reached. If a breakpoint was reached, the stop reason is
updated to be “stopped at breakpoint.” All this physi-
cal processing happens before the logical algorithms
have a chance to notice that the physical thread has
stopped. Therefore, by the time Aardvark determines
that a logical thread has stopped, any physical threads
that are stopped at a breakpoint have had their stop
reasons updated.

For a logical thread, the initial (logical) stop reason
could be a breakpoint if each of the physical threads is
stopped at a breakpoint, as shown in Figure 2. The
comparison key in this case is the logical stop reason
itself. The breakpoints of the component stop reasons
are then compared to the component breakpoints of
the installed logical breakpoints to determine if a logi-
cal breakpoint was reached. If there is a match, the
logical thread’s stop reason is updated.

Aardvark achieves the flexibility of vastly different
types of comparison keys (machine addresses and logi-
cal stop reasons) by having the comparison key type be
the most basic Aardvark base class, which is the equiv-
alent of Java’s Object class, and by using run-time
typing as necessary.

Single Stepping
Single stepping a logical thread is accomplished by
single stepping the physical threads. It is not sufficient
to single step the first thread, wait for it to stop, and
then proceed with the other threads. If the program
statement requires communication, then the entire
HPF program needs to be running to bring about the
communication. This implies that single stepping is a
two-part process—initiate and wait—and that the ini-
tiation mechanism must be part of the exposed inter-
face of threads.

As background, running a thread in Aardvark
involves continuing the thread with a run reason. The

2132-0 LL L0 031 1–2–3

EXECUTION STATES:

TIME

LOGICAL RUNNING

PHYSICAL RUNNING

STOPPED
+ *

*

KEY:
LOGICAL THREAD L STARTS.
PHYSICAL THREAD 0 STOPPED.

+

Figure 1
Determining When a Logical Thread Stops

STOPPED AT COLLECTION
P0: STOPPED AT
P1: STOPPED AT
P2: STOPPED AT

INITIAL LOGICAL STOP REASON PHYSICAL PROCESSES
AND THEIR BREAKPOINTS

STOPPED AT

PROCESSED STOP REASON

LOGICAL
PROCESS’
LOGICAL
BREAKPOINTS

•
•
•

•

Figure 2
Logical Breakpoint Determination

Digital Technical Journal Vol. 9 No. 3 1997 53

run reason is empowered to take the actions (e.g., set-
ting or enabling temporary breakpoints) necessary to
carry out its task. In this paper, the word empowered
means that the reason has a method that will be called
to do reason-specific actions to accomplish the rea-
son’s semantics. This relieves user interfaces and other
clients from figuring out how to accomplish tasks. As a
result, Aardvark defines a “get single-stepping run rea-
son” method for threads. Clients use the resulting run
reason to continue the thread, thereby initiating the
single-step operation.

Therefore, single stepping a logical thread in
Aardvark involves calling the (logical) thread’s “get
single-stepping run reason” method, continuing the
thread with the result, and waiting for the thread to
stop. The “get single-stepping run reason” method for
a logical thread in turn calls the “get single-stepping
run reason” method of the component (physical)
threads and collects the (physical) results into a logical
single-stepping run reason. When invoked, the logical
reason continues each physical thread with its corre-
sponding physical reason.

Single stepping dramatically demonstrates the
autonomy of the physical entities. When continuing
a (logical) thread with a (logical) single-stepping run
reason, the physical threads can start, stop, and be
continued asynchronously to each other and without
any intervention from a user interface, the logical enti-
ties, or other clients. This is especially true if the thread
was stopped at a breakpoint. In this case, continuing
a physical thread involves replacing the original
instruction, machine single stepping, putting back the
breakpoint instruction, and then continuing with the
original run reason. Empowering run reasons (and
stop reasons) to effect the necessary state transitions
enables physical entities to be autonomous, thus
relieving the logical algorithms from enormous poten-
tial complexity.

Coordinating Physical Entities
The previous discussion describes some logical algo-
rithms. The section “Starting and Stopping” describes
using timestamps to determine when a logical thread
becomes stopped (see Figure 1), and the section
“Breakpoints” describes a logical thread possibly
reaching a breakpoint (see Figure 2). The physical
entities need to be coordinated so that the logical
algorithms can be run. In Aardvark, this is done with a
process change handler. A process change handler is a
set of callbacks that a client registers with a process and
its threads, allowing the client to be notified of state
changes. For example, if a user interface is notified that
a thread has stopped and that the reason is a UNIX
signal, the user interface can look up the signal in a
table to determine if it should continue the thread
(possibly discarding the actual signal) or if it should
keep the thread stopped.

In the context of HPF, a user interface registers its
process change handler with the logical HPF process.
During construction of the logical process, Aardvark
registers a physical-to-logical process change handler
with the physical processes. It is this physical-to-logical
handler that coordinates the physical entities. When the
first physical thread stops, as at time “*” in Figure 1, the
handler is notified but notices that the timestamps do
not indicate that the logical thread should be considered
to have stopped. When the last physical thread stops,
the handler then synthesizes a “stopped at collection”
logical stop reason, as in Figure 2, and informs the
(logical) thread that it has stopped.

Aardvark defines some callbacks in process change
handlers that are for HPF and other logical paradigms.
These callbacks allow a user interface to implement
policies when a thread or process goes into an interme-
diate state. For example, at time “*” in Figure 1 a
physical thread has stopped but the logical thread is
not yet stopped. Whenever a physical thread stops, the
handler’s “component thread stopped” callback is
invoked. A possible user interface policy is11

■ If the component thread stopped for a nasty rea-
son, such as an arithmetic error, try to stop all the
other component threads immediately in order to
minimize divergence among the physical entities.

■ If this is the first component thread that stopped for
a nice reason, such as reaching a breakpoint, start a
timer to wait for the other component threads to
stop. If the timer goes off before all the other com-
ponent threads have stopped, try to stop them
because it looks like they are not going to stop on
their own.

■ If this is the last component thread, cancel any timers.

The user interface can provide the means for the user
to define the timer interval, as well as other attributes
of policies. These policies and their control mecha-
nisms are not the responsibility of the debug engine.

Examining an HPF Call Stack

When an HPF program stops, the user wants to see a
call stack that appears to be a single thread of control.
Sometimes this is not possible, but even in those cases, a
debugger can offer a fair amount of assistance. The HPF
language provides some mechanisms that also need to
be considered. The EXTRINSIC(HPF_LOCAL) proce-
dure type allows procedures written in Fortran 90 to
operate on the local portion of distributed data. This
type is useful for computational kernels that cannot be
expressed in a data-parallel fashion and do not require
communication. The EXTRINSIC(HPF_SERIAL)

procedure type allows data to be mapped to a single
process that runs the procedure. This type is useful for
calling inherently serial code, including user interfaces,

54 Digital Technical Journal Vol. 9 No. 3 1997

which may not be written in Fortran. DIGITAL’s HPF
compiler also supports twinning, which allows serial
code to call parallel HPF code. All these mechanisms
affect the call stack or how a user navigates the call
stack. They require underlying support from the
debugger as well as user interface support.

Logical Stack Frames
Aardvark’s logical entity model applies to stack frames:
logical stack frames collect several physical stack frames
and present a synthesized view of the (logical) call
stack. Currently, Aardvark defines four types of logical
stack frames to represent different scenarios that can
be encountered:

1. Scalar, in which only one physical thread is semanti-
cally active

2. Synchronized, in which all the threads are at the
same place in the same function

3. Unsynchronized, in which all the threads are in the
same function but at different places

4. Multi, in which no discernible relationship exists
between the corresponding physical threads

Aardvark’s task is to discover the proper alignment
of the physical frames of the physical threads, deter-
mine which variant of logical frame to use in each case,
and link them together into a call stack. Ideally, all log-
ical frames are synchronized, which means that the
program is in a well-defined state. This is true most of
the time with HPF; the Single Program Multiple Data
(SPMD) nature of HPF causes all threads to make the
same procedure calls from the same place, and break-
points are barriers causing the threads to stop at the
same place.

Aardvark’s alignment process starts at the outer-
most stack frames of the physical threads (the ones
near the Fortran PROGRAM unit) and then progres-
sively examines the callees (toward where the program
stopped). Starting from the innermost frames is an
error-prone approach. If the innermost frames are in
different functions, Aardvark might construct a multi-
frame when the frames are actually misaligned because
the physical stacks have different depths. As discussed
in the section on twinning, depth is not a reliable
alignment mechanism either. Starting at the outer-
most frames follows the temporal order of calls and
also correctly handles recursive procedures. The dis-
advantage of starting at the outermost frames is that
each physical thread’s entire stack must be determined
before the logical stack can be constructed. Usually
the programmer only wants the innermost few frames,
so time delays in the construction process can reduce
the ease of use of the debugger.12

Much of the time, the physical stack frames are at
the same place because the SPMD nature of HPF
causes the physical threads to have the same control

flow. When a procedure is called, each thread executes
the call and executes it from the same place. A logical
breakpoint is reached when the physical threads are
stopped at the same place at the corresponding physi-
cal breakpoints. These cases lead to synchronized
frames. The most common cause of an unsynchronized
frame is interrupting the program during a computa-
tion. Even in this case, the divergence is usually not very
large. One reason for a multiframe is the interruption of
the program while it is communicating data between
processes. In this case, the code paths can easily diverge,
depending on which threads are sending, which are
receiving, and how much data needs to be moved.
Scalar frames are created because of the semantic flow of
the program: the main program unit is written in either
a serial language or an HPF procedure called an
EXTRINSIC(HPF_SERIAL) procedure type.

The result of the alignment algorithm is a set of
frames collected into a call stack. The normal naviga-
tion operations (e.g., up and down) apply. Variable
lookup and expression evaluation work as expected,
also. Variable lookup works best for synchronized
frames and, for HPF, works for unsynchronized frames
as well. For multiframes, variable lookup generally fails
because a variable name VAR may resolve to different
program variables in the corresponding physical
frames or may not resolve to anything at all in some
frames. This failure is not because of a lack of informa-
tion from the compiler but rather because multiframes
are generally not a context in which a string VAR has a
well-defined semantic.

Experience to date suggests that multiframes are of
interest largely to the people developing the run-time
support for data motion. Nevertheless, the point of
transition from synchronized to unsynchronized to
multi tells the user where control flows diverged, and
this information can be very valuable.

Narrowing Focus
Using the previously mentioned techniques sometimes
results in a cluttered view of the state of the entire pro-
gram and difficulty in finding relevant information.
Aardvark provides two ways to help. The first aid is a
Boolean focus mask that selects a subset of the processes
and then re-applies the logical algorithms. For properly
chosen subsets, this can turn a stack trace with many mul-
tiframes into a stack trace with synchronized frames.
A narrowed focus can also look behind the scenes of the
twinning mechanism described in the next paragraph.
The second aid is to view a single physical process in
isolation, effectively turning off the parallel debugging
algorithms. This technique is useful for debugging
EXTRINSIC(HPF_LOCAL)and EXTRINSIC(HPF_SERIAL)
procedures. The ability to retrieve the physical processes
from a logical process is the major item that enables view-
ing a process in isolation; as mentioned before, physical
entities are first-class objects.

Digital Technical Journal Vol. 9 No. 3 1997 55

or the line number, may not be valid. Nevertheless, a
user interface can provide useful information about
the state of the program. The program used for the
following discussion has a serial user interface written
in C and uses twinning to call a parallel HPF procedure
named HPF_FILL_IN_DATA (see Figure 3). The
HPF procedure uses a function named MANDEL_VAL
as a non-data-parallel computational kernel. The pro-
gram was run on five processes. (Twinning is a DIGITAL
extension. Most HPF programs are written entirely in
HPF. This example, which uses twinning, was chosen
to demonstrate the broader problem.)

Figure 4 shows the program interrupted during com-
putation. Line 2 of the figure contains a single function
name, MANDEL_VAL. Line 3 contains the function’s
source file name but lists five line numbers, implying
that this is an unsynchronized frame. In fact, the user
interface discovered that Aardvark created an unsyn-
chronized logical frame. Instead of trying to get a single
line number, the user interface retrieved the set of line
numbers and presented them. In lines 4 through 10,
the user interface also presented the range of source
lines encompassing the lines of all the component
processes. This user interface’s up command (line 21)
navigates to the calling frame. In this example, the frame
is synchronized, causing the user interface to present the
function’s source file and single line number (line 26),
followed by the single source file line (line 27).

Figure 5 shows a summary of the program’s call stack
when it was interrupted during computation. The sum-
mary is a mix of unsynchronized, synchronized, and
scalar frames. Frame #0 (line 2) is unsynchronized, and
the various line numbers are presented. Its caller, frame
#1 (line 3), is synchronized with a single line number.
All this is consistent with the previous discussion. Frame
#1 is the HPF twin of the scalar twin in frame #2. The
scalar twin of frame #2 is expected to be called by scalar
code, confirmed by frames #3 and #4. Frame #5 is part
of the twinning mechanism; process 0 is at line 499,
while the other processors are all at line 506.

Narrowing the focus to exclude process 0 shows a
different call stack summary (lines 9 through 16 of
Figure 5). The new frame #0 (line 11) continues to be
unsynchronized, but all the other frames are synchro-
nized. The twinning dispatch loop (line 14) replaces
the scalar frames of the global focus (lines 5 and 6).
This replacement causes the new call stack, corre-
sponding more closely to the physical threads, to have
fewer frames than the global call stack.

Interrupting the program while idle within the user
interface shows more about twinning and also shows a
multiframe (see Figure 6). Most of the frames are
scalar except for the twinning mechanism (frame #7,
line 9) and the initial run-time frame (frame #8, line
10). Narrowing the focus to exclude process 0 shows
the twinning mechanism while waiting. The twinning

Twinning
DIGITAL’s HPF provides a feature called twinning
in which a scalar procedure can call a parallel HPF
procedure. This allows, for example, the main pro-
gram consisting of a user interface and associated
graphics to be written in C and have Fortran/HPF
do the numerical computations. The feature is called
twinning because each Fortran procedure is com-
piled twice. The scalar twin is called from scalar code
on a designated process. Its duties include instruct-
ing the other processes to call the scalar twin, distrib-
uting its scalar arguments according to the HPF
directives, calling the HPF twin from all processes,
distributing the parallel data back onto the desig-
nated process after the HPF twin returns, and finally
returning to its caller. The HPF twin is called on all
processes with distributed data and executes the
user-supplied body of the procedure.

At the run-time level, the program’s entry point is
normally called on a designated process (process 0),
and the other processes enter a dispatch loop waiting
for instructions. Conceptually, such a program starts
in scalar mode and at some point transitions into paral-
lel mode. An HPF debugger should represent this
transition. Aardvark accomplishes this by having
knowledge of the HPF twinning mechanism. When it
notices physical threads entering the dispatch loop,
Aardvark creates a scalar logical frame corresponding
to the physical frame on process 0. It then processes
procedure calls on process 0 only, creating more scalar
frames, until it notices that the program transitions
from scalar to parallel. This transition happens when
all processes call the same (scalar twin) procedure:
process 0 does so as a result of normal procedure calls;
processes other than 0 do so from their dispatch loops.
At this point, a logical frame is constructed that will
likely be synchronized, and the frame processing
described previously applies. The result is the one
desired: a scalar program transitions to a parallel one.

DIGITAL’s HPF goes a step further: it allows
EXTRINSIC(HPF_SERIAL) procedures to call HPF
code by means of the twinning mechanism. When an
EXTRINSIC(HPF_SERIAL) procedure is called,
processes other than 0 call the dispatch loop. When
the scalar code on process 0 calls the scalar twin, the
other processes are in the necessary dispatch loop.
Aardvark tracks these calls in the same way as in the
previous paragraph, noticing that processes other than
0 have called the dispatch loop and eventually call a
scalar twin.

User Interface Implications
User interfaces and other clients must be keenly aware
of the concept of logical frames and the different types
of logical frames. Depending on the type of frame,
some operations, such as obtaining the function name

56 Digital Technical Journal Vol. 9 No. 3 1997

mechanism at frames #5 and #6 (lines 23 and 24) is
similar to the mechanism at frames #3 and #4 (lines 14
and 15) of Figure 5. In Figure 6, they do not call a
scalar twin but rather call the messaging library to
receive instructions from process 0. The messaging
library, however, is often not synchronized among the
peers, and frame #2 (line 15) shows a multiframe. This
user interface shows a multiframe as a collection of
one-line summaries of the physical frames (lines 16
through 20).

Examining HPF Data

Examining data generally involves determining where
the data is stored, fetching the data, and then present-
ing it. HPF presents difficulties in all three areas.
Determining where data is stored requires rich and
flexible data-location representations and associated
operations. Fetching small amounts of data can be
done naively, one element at a time, but for large
amounts of data, e.g., data used for visualization, faster

Figure 3
HPF_FILL_IN_DATA Procedure (Source Code for Figures 4 and 5)

subroutine hpf_fill_in_data(target, w, h, ccr, cci, cstep, nmin, nmax)
integer, intent(in) :: w, h
byte, intent(out) :: target(w,h)
real*8, intent(in) :: ccr, cci, cstep
integer, intent(in) :: nmin, nmax

!hpf$ distribute target(*, cyclic)

integer :: cx, cy
cx = w/2
cy = h/2

forall(ix = 1:w, iy = 1:h) &
target(ix,iy) = mandel_val(CMPLX(ccr + ((ix-cx)*cstep), &

cci + ((iy-cx)*cstep), &
KIND=KIND(0.0D0)), &

nmin, nmax)

contains

pure byte function mandel_val(x, nmin, nmax)
complex(KIND=KIND(0.0D0)), intent(in) :: x
integer, intent(in) :: nmin, nmax

integer :: n

real(kind=KIND(0.0D0)) :: xorgr, xorgi, xr, xi, xr2, xi2, rad2
logical :: keepgoing

n = -1
xorgr = REAL(x)
xorgi = AIMAG(x)
xr = xorgr
xi = xorgi

do
n = n + 1
xr2 = xr*xr
xi2 = xi*xi
xi = 2*(xr*xi) + xorgi
keepgoing = n < nmax
rad2 = xr2 + xi2
xr = xr2 - xi2 + xorgr
if (keepgoing .AND. (rad2 <= 4.0)) cycle
exit

end do

if (n >= nmax) then
mandel_val = nmax-nmin

else
mandel_val = MOD(n, nmax-nmin)

end if

end function mandel_val

end subroutine hpf_fill_in_data

Digital Technical Journal Vol. 9 No. 3 1997 57

methods are needed. Displaying data can usually use
the techniques inherited from the underlying Fortran
90 support, but some mechanism and corresponding
user interface handling is needed when replicated data
has different values.

Data-Location Representations
Representing where data is stored is relatively easy
to do in languages such as C and Fortran 77: the data
is in a register or in a contiguous block of memory.
Fortran 90 introduced assumed-shape and deferred-
shape arrays,13 where successive array elements are not
necessarily adjacent in memory. HPF allows the array

to be distributed so that successive array elements are
not necessarily stored in a single process or address
space. These lead to data that can be stored discon-
tiguously in memory as well as in different memories.

Fortran 90 also introduced array sections, vector-
valued subscripts, and field-of-array operations,14

which further complicate the notion of where data is
stored. Although evaluating an expression involving
an array can be accomplished by reading the entire
array and performing the operations in the debugger,
this approach is inefficient, especially for a result that is
sparse compared to the entire array. A standard tech-
nique is to perform address arithmetic and fetch only

Figure 4
Program Interrupted during Computation

1 Thread is interrupted.
2 #0: MANDEL_VAL(X = <<differing COMPLEX(KIND=8) values>>, NMIN = 255, NMAX = 510)
3 at mb.hpf.f90:45,44,45,40,39
4 39 xr2 = xr*xr
5 40 xi2 = xi*xi
6 41 xi = 2*(xr*xi) + xorgi
7 42 keepgoing = n < nmax
8 43 rad2 = xr2 + xi2
9 44 xr = xr2 - xi2 + xorgr
10 45 if (keepgoing .AND. (rad2 <= 4.0)) cycle
11
12 debugger> print x
13 $1 = #<DIFFERING-VALUES
14 #0: (-0.66200000000000003,-0.114)
15 #1: (-0.59599999999999997,-0.113)
16 #2: (-0.65300000000000002,-0.112)
17 #3: (-0.93799999999999994,-0.10600000000000001)
18 #4: (-0.56600000000000006,-0.11)
19 >
20
21 debugger> up
22 #1: hpf$hpf_fill_in_data_(TARGET = <<non-atomic= INTEGER(KIND=1), DIMENSION(1:400, 1:400)>>,
23 W = 400, H = 400,
24 CCR = -0.76000000000000001, CCI = -0.02, CSTEP = 0.001,
25 NMIN = 255, NMAX = 510)
26 at mb.hpf.f90:14
27 14 forall(ix = 1:w, iy = 1:h) &
28
29 debugger> info address target
30 #<locative_to_hpf_section 5 peers of type INTEGER(KIND=1), DIMENSION(1:400,1:400) >
31 type INTEGER(KIND=1), DIMENSION(1:400,1:400)
32 phys_count 5
33 addresses
34 0: 0x11fff71f0
35 1: 0x11fff7000
36 2: 0x11fff7000
37 3: 0x11fff7000
38 4: 0x11fff7000
39 arank 2
40 trank 2
41 diminfos dlower dupper plower pupper ... dist_k
42 0 1 400 1 400 ... collap
43 1 1 400 1 80 ... cyclic
44
45 debugger> info address target(100,100)
46 #<locative_in_peer in peer 4 ... >
47 type INTEGER(KIND=1)
48 peernum 4
49 locative #<locative_to_memory at dmem address 0x11fff8e13 of type INTEGER(KIND=1) >

58 Digital Technical Journal Vol. 9 No. 3 1997

derived classes implement the data-location represen-
tations needed.

DIGITAL’s Fortran 90 implements assumed-shape
and deferred-shape arrays using descriptors that con-
tain run-time information about the memory address
of the first element, the bounds, and per-dimension
inter-element spacing.15 Aardvark models these types
of arrays almost directly with a derivation of the loca-
tive class that holds the same information as the
descriptor. Performing expression operations is rela-
tively easy. An array section expression adjusts the
bounds and the inter-element spacing. A field-of-array
operation offsets the address to point to the compo-

the actual data result at the end of the operation. The
usual notion of an address, however, is that it describes
the start of a contiguous block of memory.

Richer data-location representations are necessary.
These representations can include registers and con-
tiguous memory, but they also need to include discon-
tiguous memory and data distributed among multiple
processes. The representations should also include the
results of expressions involving array sections, vector-
valued subscripts, and field-of-array operations,
thereby extending address arithmetic to data-location
arithmetic. Aardvark defines a locative base class that
has a virtual method to fetch the data. A variety of

Figure 5
Control Flow of a Twinned Program Interrupted during Computation

1 debugger> where
2 > #0(unsync) MANDEL_VAL at mb.hpf.f90:45,44,45,40,39
3 #1(synchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
4 #2(synchr) hpf_fill_in_data_ at mb.hpf.f90:1
5 #3(scalar) mb_fill_in_data at mb.hpf.c:45
6 #4(scalar) main at mb.c:421
7 #5(unsync) _hpf_twinning_main_usurper at [...]/libhpf/hpf_twin.c:499,506,506,506,506
8 #6(synchr) __start at [...]/alpha/crt0.s:361
9 debugger> focus 1-4
10 debugger> where
11 > #0(unsync) MANDEL_VAL at mb.hpf.f90:<none>,44,45,40,39
12 #1(synchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
13 #2(synchr) hpf_fill_in_data_ at mb.hpf.f90:1
14 #3(synchr) _hpf_non_peer_0_to_dispatch_loop at [...]/libhpf/hpf_twin.c:575
15 #4(synchr) _hpf_twinning_main_usurper at [...]/libhpf/hpf_twin.c:506
16 #5(synchr) __start at [...]/alpha/crt0.s:361

Figure 6
Control Flow of a Twinned Program Interrupted While Idle in Scalar Mode

1 debugger> where
2 > #0(scalar) __poll at <<unknown name>>:41
3 #1(scalar) <<disembodied>> at <<unknown>>:459
4 #2(scalar) _XRead at <<unknown name>>:1110
5 #3(scalar) _XReadEvents at <<unknown name>>:950
6 #4(scalar) XNextEvent at <<unknown name>>:37
7 #5(scalar) HandleXInput at mb.c:58
8 #6(scalar) main at mb.c:452
9 #7(unsync) _hpf_twinning_main_usurper at [...]/libhpf/hpf_twin.c:499,506,506,506,506
10 #8(synchr) __start at [...]/alpha/crt0.s:361
11 debugger> focus 1-4
12 debugger> where
13 > #0(unsync) __select at <<unknown name>>:<none>,41,<none>,41,41
14 #1(unsync) TCP_MsgRead at [...]/libhpf/msgtcp.c:<none>,1057,<none>,1057,1057
15 #2(multi)
16 <none>
17 _TCP_RecvAvail at [...]/libhpf/msgtcp.c:1400
18 swtch_pri at <<unknown name>>:118
19 _TCP_RecvAvail at [...]/libhpf/msgtcp.c:1400
20 _TCP_RecvAvail at [...]/libhpf/msgtcp.c:1400
21 #3(unsync) _hpf_Recv at [...]/libhpf/msgmsg.c:<none>,434,488,434,434
22 #4(synchr) _hpf_RecvDir at [...]/libhpf/msgmsg.c:509
23 #5(synchr) _hpf_non_peer_0_to_dispatch_loop at [...]/libhpf/hpf_twin.c:563
24 #6(synchr) _hpf_twinning_main_usurper at [...]/libhpf/hpf_twin.c:506
25 #7(synchr) __start at [...]/alpha/crt0.s:361

Digital Technical Journal Vol. 9 No. 3 1997 59

nent field and changes the element type to that of the
field. A vector-valued subscript expression requires
additional support; the representation for each dimen-
sion can be a vector of memory offsets instead of
bounds and inter-element spacing.

All arrays in HPF are qualified, explicitly or implic-
itly, with ALIGN, TEMPLATE, and DISTRIBUTE direc-
tives.16 DIGITAL’s HPF uses a superset of the Fortran
90 descriptors to encode this information. Aardvark
models HPF arrays with another derivation of the
locative class that holds information similar to the HPF
descriptors. The most pronounced difference is that
Aardvark uses a single locative to encode the descrip-
tors from the set of processes. Aardvark knows that the
local memory addresses are potentially different on
each process and maintains them as a vector, but cur-
rently assumes that processor-independent informa-
tion is the same on all processes and only encodes that
information once.

Referring again to Figure 4, line 22 shows that the
argument TARGET is an array, and line 29 is a request
for information about the location of its data. (See also
Figure 3 for the full source, including the declaration
and distribution of TARGET.) Figure 4, line 32 shows
that there are five processes, and lines 34 through 38
show the base address within each process. The
addresses for processes 1 through 4 happen to be the
same, but the address for process 0 is different. Lines
39 and 40 show that the rank of the array (arank) and
the rank of the template (trank) are both 2. Lines 42
and 43 show the dimension information for the array.
The declared bounds are 1:400,1:400, but the local
physical bounds are 1:400,1:80 and the distribu-
tion is (*,CYCLIC). This is all accurate; distributing
the second dimension on five processes causes the
local physical size for that dimension (80) to be one-
fifth the declared bound (400).

Performing expression operations on HPF-based
locatives is more involved than for Fortran 90.
Processing a scalar subscript not only offsets the base
memory address but also restricts the set of processors
determined by the dimension’s distribution information.
Processing a subscript triplet, e.g., from:to:stride,
involves adjusting the declared bounds and the align-
ment; it does not adjust the template or the physical lay-
out. As in Fortran 90, processing a vector-valued
subscript in HPF requires the locative to represent the
effect of the vector. For HPF, the representation is pairs
of memory offsets and processor set restrictions.
Processing a field-of-array operation adjusts the element
type and offsets each memory address.

When selecting a single array element by providing
scalar subscripts, another type of locative is useful. This
locative describes on which process the data is stored
and a locative relative to that selected process. For
example, line 45 of Figure 4 requests the location
information of a single array element. The result

shows that it is on process 4 at the memory address
indicated by the contained locative.

Fetching HPF Data
As just mentioned, locatives provide a method to fetch
the data described by the locative. For a locative that
describes a single distributed array element (e.g.,
Figure 4, lines 45 through 49), the method extracts
the appropriate physical thread from the logical thread
and uses the contained locative to fetch the data rela-
tive to the extracted physical thread. For a locative that
describes an HPF array, Aardvark currently iterates
over the valid subscript space, determines the physical
process number and memory offset for each element,
and fetches the element from the selected physical
process. For small numbers of elements, on the order
of a few dozen, this technique has acceptable per-
formance. For large numbers of elements, e.g., for
visualization or reduction operations, the cumulative
processing and communication delay to retrieve each
individual element is unacceptable. This performance
issue also exists for locatives that describe discontigu-
ous Fortran 90 arrays. The threshold is higher because
there is no computation to determine the process for
an element, and the process is usually local rather than
remote, eliminating communication delays.

The primary bottleneck is issuing many small data
retrieval requests to each (remote) process. This
involves many communication delays and many delays
related to retrieving each element. What is needed is to
issue a smaller number of larger requests. The smaller
number reduces the number of communication trans-
actions and associated delays. Larger requests allow
analysis of a request to make more efficient use of
the operating system’s mechanisms to access process
memory. For example, a sufficiently dense request can
read the encompassing memory in a single call to the
operating system and then extract the desired ele-
ments once the data is within the debugger.

Although not implemented, the best solution, in
my opinion, is to provide a “read (multidimensional)
memory section” method on a process in addition to
the common “read (contiguous) memory” method. If
the process is remote, as it usually is with HPF, the
method would be forwarded to a remote debug server
controlling the remote process. The implementation
of the method that interacts with the operating system
would know the trade-offs to determine how to ana-
lyze the request for maximum efficiency.

Converting a locative describing a Fortran 90 array
section to a “read memory section” method should be
easy: they represent nearly the same thing. For a loca-
tive that describes a distributed HPF array, Aardvark
would need to build (physical) memory section
descriptions for each physical process. This can be
done by iterating over the physical processes and
building the memory section for each process. It is

60 Digital Technical Journal Vol. 9 No. 3 1997

also possible to build the memory sections for all the
processes during a single pass through the locative, but
the performance gains may not be large enough to
warrant the added complexity.

Differing Values
Using HPF to distribute an array often partitions its
elements among the processes. Scalars, however, are
generally replicated and may be expected to have the
same value in each process. There are cases, though,
where seemingly replicated scalars may not have the
same value. DO loops that do not require data to be
communicated between processes do not have syn-
chronization points and can become out of phase,
resulting in their indexes and other privatized variables
having different values. Functions called within a
FORALL construct often run independently of each
other, causing the arguments and local variables in
one process to be different from those in another.
A debugger should be aware that values might differ
and adjust the presentation of such values accordingly.

Aardvark’s approach is to define a new kind of value
object called differing values to represent a value from
a semantically single source that does not have the
same value from all its actual sources. A user interface
can detect this kind of value and display it in different
ways, for example, based on context and/or the size of
the data.

Referring again to Figure 4, the program was inter-
rupted while each process was executing the function
MANDEL_VAL called within a FORALL. Line 2 shows
that the argument X was determined to have differing
values. This user interface does not show all the values
at this point; a large number of values could distract
the user from the current objective of discovering
where the process stopped. Instead, it shows an indica-
tion that the values are different along with the type of
the variable. Notice that the other two arguments,
NMIN and NMAX, are presented as integers; they have
the same value in all processes. Line 12 requests to see
the value of X. Line 13 again shows that the values are
different, and lines 14 through 18 show the process
number and the value from the process.

To build a differing values object, Aardvark reads
the values for a replicated scalar from each process. If
all the values are bit-wise equal, they are considered to
be the same and a standard (single) value object is
returned. Otherwise, a differing values object is con-
structed from the several values. For numeric data, this
approach seems reasonable. If the value of a scalar inte-
ger variable INTVAR is 4 on all the processes, then 4 is
a reasonable (single) value for INTVAR. If the value of
INTVAR is 4 on some processors and 5 on others, no
single value is reasonable. For nonnumeric data and
pointers, there is the possibility of false positives and
false negatives. The ideal for user-defined types is to
compare the fields recursively. Pointers that are seman-

tically the same can point to targets located at different
memory addresses for unrelated reasons, leading to
different memory address values and therefore a false
positive. To correctly dereference the pointers, though,
Aardvark needs the different memory address values.
In short, it is reasonable to test numeric data and cre-
ate a single value object or a differing values object,
and it appears reasonable to do the same for nonnu-
meric data, despite the possibility of a technically false
kind of value object.

Currently, differing values do not participate in arith-
metic. That is, the expression INTVAR.LT.5 is valid if
INTVAR is a single value but causes an error to be sig-
naled if INTVAR is a differing value. Many cases could
be made to work, but some cases defy resolution. In the
INTVAR.LT.5 case, if all values of INTVAR are less than
5 or all are greater than or equal to 5, then it is reason-
able to collapse the result into a single value, .TRUE. or
.FALSE., respectively. If some values are less than 5
and some are not, it also seems reasonable to create a
differing values object that holds the differing results.
What if INTVAR.LT.5 is used as the condition of a
breakpoint and some values of INTVAR are less than 5
and some are not? The breakpoint should probably
cause the process (and all the physical processes) to
remain stopped. It is unclear whether arithmetic on
differing values would be useful to users or if it would
lead to more confusion than it would clear up.

Unmet Challenges

HPF presents a variety of challenges that Aardvark
does not yet address. Some of these challenges are not
in common practice, giving them low priority. Some
are recent with HPF Version 2.0 and are being used
with increasing frequency. Some of the challenges, for
example, a debugger-initiated call of an HPF proce-
dure, are tedious to address correctly.

Mapped Scalars
It is possible to distribute a scalar so that the scalar is not
fully replicated.17 The compiler would need to emit suffi-
cient debugging information, which would probably be
a virtual array descriptor with an array rank of 0 and a
nonzero template rank. Aardvark would probably model
it using its existing locative for HPF arrays, also with an
array rank of 0 and appropriate template information.

Replicated Arrays
Unless otherwise specified, DIGITAL’s HPF compiler
replicates arrays. It is possible to replicate arrays explic-
itly and to align arrays (and scalars) so that they are
partially replicated. Currently, Aardvark does not
detect a replicated array, despite the symbol table or
run-time descriptor indicating that it is replicated. As a
result, Aardvark determines a single process from
which to fetch each array element. For fully replicated

Digital Technical Journal Vol. 9 No. 3 1997 61

arrays, Aardvark should read the array from each
process and process them with the differing values
algorithms. Correctly processing arrays that are par-
tially replicated is not as easy as processing unrepli-
cated or fully replicated arrays. If the odd columns are
on processes 0 and 1, while the even columns are on
processes 2 and 3, no single process contains the entire
array. The differing values object would need to be
extended to index the values by a processor set rather
than a single process.

Update of Distributed and Replicated Objects
Aardvark currently supports limited modification of
data. It supports updating a scalar object (scalar vari-
able or single array element) with a scalar value, even if
the object is distributed or replicated. Even this can be
incorrect at times. Assigning a scalar value to a repli-
cated object sets each copy, which is undesirable if the
object has differing values. Assigning a value that is a
differing values object is not supported. More impor-
tantly (and more subtly), Aardvark is not aware of
shadow or halo copies of data that are stored in multi-
ple processes, so updating a distributed object updates
only the primary location.

Distributed Array Pointers
HPF Version 2.0 allows array pointers in user-defined
types to be distributed and allows fully replicated
arrays of such types. For example, in

type utype
integer, pointer :: compptr(:)
!hpf$ distribute compptr(block)

end type

type (utype) :: scalar, array(20)

the component field compptr is a distributed array
pointer. Aardvark does not currently process the array
descriptor(s) for scalar%compptr at the right place
and as a result does not recognize the expression as
an array. As mentioned earlier, Aardvark reads a repli-
cated array element from a single process. To process
array(1)%compptr, all the descriptors are needed,
e.g., for the base memory addresses in the physical
processes. The use of this relatively new construct is
growing rapidly, elevating the importance of being
supported by debuggers.

Ensuring a Consistent View
A program can have its physical threads stop at the
same place but be in different iterations of a loop.
Aardvark mistakenly presents this state as syn-
chronized and presents data as if it were consistent.
This is what is happening in Figures 4 and 5;
hpf$hpf_fill_in_data (frame #1) is in different
iterations of the FORALL. With compiler assistance, it
is possible to annotate each thread’s location with iter-
ation counts in addition to traditional line numbers.18

The resulting set of locations can be compared to a
location in the conceptually serial program to deter-
mine which threads have already reached (and perhaps
passed) the serial location and which have not yet
reached it. A debugger could automatically, or under
user control, advance each thread to a consistent serial
location. For now, Aardvark’s differing values mecha-
nism is the clue to the user that program state might
not be consistent.

Calling an HPF Procedure
Having a debugger initiate a call to a Fortran 90 pro-
cedure is difficult in the general case. One difficulty is
that copy-in/copy-out (making a temporary copy of
array arguments and copying the temporary back to its
origin after the call returns) may be necessary. HPF
adds two more difficulties. First, the data may need to
be redistributed, which amounts to a distributed copy-
in/copy-out and entails a lot of tedious (but hopefully
straightforward) bookkeeping. Second, an HPF
thread’s state is much more complex than a collection
of physical thread states. When a debugger initiates a
uniprocessor procedure call, it generally saves the reg-
isters, sets up the registers and stack according to the
calling convention, lets the process run until the call
returns, extracts the result, and finally restores the
registers. The registers are generally the state that is
preserved across a debugger-initiated procedure call.
For HPF, and in general for other paradigms that use
message passing, it may be necessary to preserve the
run-time state of the messaging subsystem in each
process. This preservation probably amounts to mak-
ing uniprocessor calls to messaging-supplied save/
restore entry points, allowing the messaging sub-
system to define what its state is and how it should
be saved and restored. Although logical entities would
be used to coordinate the physical details, this is a lot
of work and has not been prototyped.

Related Work

DIGITAL’s representative to the first meeting of
the HPF User Group reported a general lament
among users about the lack of debugger support.19,20

Browsing the World Wide Web reveals little on the
topic of HPF debugging, although some efforts have
provided various degrees of sophistication.

Multiple Serial Debuggers
A simplistic approach to debugging support is to start
a traditional serial debugger on each component pro-
cess, perhaps providing a separate window for each
and providing some command broadcast capability.
Although this approach provides basic debugging, it
does not address any of the interesting challenges of
HPF debugging.

62 Digital Technical Journal Vol. 9 No. 3 1997

Prism
The Prism debugger (versions dating from 1992), for-
merly from Thinking Machines Corporation, provides
debugging support for CM Fortran.21,22 The run-time
model of CM Fortran is essentially single instruction,
multiple data (SIMD), which considerably simplifies
managing the program. The program gets compiled
into an executable that broadcasts macroinstructions
to the parallel machine, even on the CM-5 synchro-
nized multiple instruction, multiple data (MIMD)
machine. Prism primarily debugs the single program
doing the broadcasting. Therefore, operations such as
starting, stopping, and setting breakpoints can use the
traditional uniprocessor debugging techniques. Prism
is aware of distributed data. When visualizing a distrib-
uted array, however, it presents each process’s local
portion and conceptually augments the rank of the
array to include a process axis. For example, a two-
dimensional 400 x 400 array distributed (*,CYCLIC)
on five processes is presented as a 400 x 80 x 5 array.
For explicit message sending programs, Prism controls
the target processes and provides a “where graph,”
which has some of the visual cues that Aardvark’s logi-
cal frames provide.

TotalView
Recent (1997) versions of the TotalView debugger,
from Dolphin Interconnect Solutions, Inc., provide
some support for the HPF compiler from The Portland
Group, Inc.23,24 TotalView provides “process groups,”
which are treated more like sets for set-wide operations
than like a synthesis into a single logical entity. As a
result, no unified view of the call stacks exists. TotalView
can “dive” into a distributed HPF array and present it as
a single array in terms of the original source. Distributed
data is not currently integrated into the expression
system, however, so a conditional breakpoint such as
A(3,4).LT.5 does not work. TotalView is being
actively developed; future versions will likely provide
more complete support for HPF.

Applicability to Other Areas

Many of the techniques that Aardvark incorporates can
apply to other areas, including the single program,
multiple data (SPMD) paradigm, debugging optimized
code, and interpreted languages.

Single Program, Multiple Data
Logical entities can be used to manage and examine
programs that use the SPMD paradigm. This is true for
process-level SPMD, which is commonly used with
explicit message sending such as MPI,5,6 and for
thread-level SPMD such as directed decomposi-
tion.25–27 Aardvark’s twinning algorithms can be used
in both cases. Process-level SPMD is similar to

DIGITAL’s HPF; the equivalent of twinning requires a
stylistic way of coding and declaring a dispatch loop.
Thread-level SPMD usually has a pool of threads wait-
ing in a dispatch loop, requiring Aardvark to know
some mechanics of the run-time support.

The differing values mechanism can apply to data in
SPMD paradigms. DIGITAL’s recent introduction of
Thread Local Storage (TLS),28 modeled on the Thread
Local Storage facility of Microsoft Visual C++29 with
similarities to TASKCOMMON of Cray Fortran,30 provides
another source of the same variable having potentially
differing values in different thread contexts.

Debugging Optimized Code
Aardvark’s flexible locative subsystem and its aware-
ness of nonsingular values (i.e., differing values) can be
the basis for “split-lifetime variables.” In optimized
code, a variable can have several simultaneous lifetimes
(e.g., the result of loop unrolling) or no active lifetime
(e.g., between a usage and the next assignment). New
derivations of the locative class can describe the multi-
ple homes or the nonexistent home of a variable.
Fetching by means of such a locative creates new kinds
of values that hold all the values or an indication that
there is no value. User interfaces become aware of
these new kinds of values in ways similar to their
awareness of differing values.

Aardvark’s method of asking a thread for a single-
stepping run reason and empowering the reason to
accomplish its mission can be the basis for single step-
ping optimized code. Optimized code generally inter-
leaves instructions from different source lines, rendering
the standard “execute instructions until the source line
number changes” method of single stepping useless.
If instead the compiler emits information about the
semantic events of a source line, Aardvark can construct
a single-stepping run reason based on semantic events
rather than line numbers. Single stepping an optimized
HPF program immediately reaps the benefits since logi-
cal stepping is built on physical stepping.

Interpreted Languages
Logical entities can be used to support debugging
interpreted languages such as Java31 and Tcl.32 In this
case, the physical process is the operating system’s
process (the Java Virtual Machine or the Tcl inter-
preter), and the logical process is the user-level view
of the program. A logical stack frame encodes a pro-
cedure call of the source language. This is accom-
plished by examining virtual stack information in
physical memory and/or by examining physical
stack frames, depending on how the interpreter is
implemented. Variable lookup within the context of
a logical frame would use the interpreter-managed
symbol tables rather than the symbol tables of the
physical process.

Digital Technical Journal Vol. 9 No. 3 1997 63

Summary

HPF presents a variety of challenges to a debugger,
including controlling the program, examining its call
stack, and examining its data, and user interface impli-
cations in each area. The concept of logical entities can
be used to manage much of the control complexity,
and a rich data-location model can manage HPF arrays
and expressions involving arrays. Many of these ideas
can apply to other debugging situations. On the sur-
face, debugging HPF can appear to be a daunting task.
Aardvark breaks down the task into pieces and attacks
them using powerful extensions to familiar ideas.

Acknowledgments

I am grateful to Ed Benson and Jonathan Harris for
their unwavering support of my work on Aardvark.
I also thank Jonathan’s HPF compiler team and Ed’s
Parallel Software Environment run-time team for
providing the compiler and run-time products that
allowed me to test my ideas.

References and Notes

1. Programming Language Fortran 90, ANSI X3.198-
1992 (New York, N.Y.: American National Standards
Institute, 1992).

2. J. Adams, W. Brainerd, J. Martin, B. Smith, and
J. Wagener, Fortran 90 Handbook (New York, N.Y.:
McGraw-Hill, 1992).

3. High Performance Fortran Forum, High Performance
Fortran Language Specification, Version 2.0. This
specification is available by anonymous ftp from soft-
lib.rice.edu in the directory pub/HPF. Version 2.0 is
the file hpf-v20.ps.gz.

4. C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr.,
and M. Zosel, The High Performance Fortran Hand-
book (Cambridge, Mass.: MIT Press, 1994).

5. MPI Forum, “MPI-2: Extensions to the Message-Passing
Interface,” available at http://www.mpi-forum.org/
docs/mpi-20-html/mpi2-report.html or via the Forum’s
documentation page http://www.mpi-forum.org/docs/
docs.html.

6. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI: The Complete Reference (Cambridge,
Mass.: MIT Press, 1995).

7. W. Gropp, E. Lusk, and A. Skjellum, Using MPI
(Cambridge, Mass.: MIT Press, 1994).

8. J. Harris et al., “Compiling High Performance Fortran
for Distributed-memory Systems,” Digital Technical
Journal, vol. 7, no. 3 (1995): 5–23.

9. E. Benson et al., “Design of Digital’s Parallel Software
Environment,” Digital Technical Journal, vol. 7, no. 3
(1995): 24–38.

10. It is possible to always use logical entities, but some-
times it is easier to work with the building blocks when
additional structure might be cumbersome. In a simi-
lar vein, Fortran could eliminate scalars in favor of
arrays of rank 0, but Fortran chooses to retain scalars
because of their ease of use.

11. In this policy, nasty and nice are generic names for
categories. Which particular stop reasons fall into
which category is a separate design question. Once the
category is determined, the policy presented can be
performed.

12. Debuggers often build a (physical) call stack from
innermost frame to outermost frame, interleaving con-
struction with presentation. The interleaving gives the
appearance of progress even if there are occasional
delays between frames. The total time required to
reach the outermost frames of each physical thread,
which must occur before construction of a logical call
stack can begin and before any presentation is possible,
could be noticeable to the user.

13. An assumed shape array is a procedure array argument
in which each dimension optionally specifies the lower
bound and does not specify the upper bound. For
example,

REAL :: ARRAY_ARG_2D(:,4:)

A deferred shape array has either the ALLOCATABLE or
POINTER attribute, specifies neither the lower nor
upper bound, and often contains local procedure vari-
ables or module data. For example,

REAL, ALLOCATABLE :: ALLOC_1D(:)
REAL, POINTER :: PTR_3D(:,:,:)

14. An array section occurs when some subscript specifies
more than one element. This can be done with a sub-
script-triplet, which optionally specifies the lower and
upper extents and a stride, and/or with an integer vec-
tor, for example,

ARRAY_3D(ROW1:ROWN , COL1::COL_STRIDE , PLANE_VEC)

A field-of-array operation specifies the array formed
by a field of each structure element of an array, for
example,

TYPE (TREE) :: TREES(NTRESS)
REAL :: TREE_HEIGHTS(NTREES)
TREE_HEIGHTS = TREES%HEIGHT

In general, each of these specifies discontiguous
memory.

15. “DEC Fortran 90 Descriptor Format,” DEC Fortran
90 User Manual (Maynard, Mass.: Digital Equipment
Corporation, June 1994).

16. The HPF array descriptor for the variable ARRAY in the
HPF fragment

!HPF$ TEMPLATE T(NROWS,NCOLS)
!HPF$ DISTRIBUTE T(CYCLIC,BLOCK)
REAL :: ARRAY(NCOLS/2,NROWS)
!HPF$ ALIGN ARRAY(I,J) WITH T(J,I*2-1)

64 Digital Technical Journal Vol. 9 No. 3 1997

contains components corresponding to each of the
ALIGN, TEMPLATE, and DISTRIBUTE directives. Often
an array is distributed directly, causing the ALIGN and
TEMPLATEdirectives to be implicit, for example,

REAL :: MATRIX(NROWS,NCOLS)
!HPF$ DISTRIBUTE MATRIX(BLOCK,BLOCK)

17. The variable SCALAR in

!HPF$ TEMPLATE T(4,4)
!HPF$ DISTRIBUTE T(CYCLIC,CYCLIC)
!HPF$ ALIGN SCALAR WITH T(*,2)

is partially replicated and will be stored on the same
processors that the logical second column of the tem-
plate T is stored.

18. R. Cohn, Source-Level Debugging of Automatically
Parallelized Programs, Ph.D. Thesis, Carnegie Mel-
lon University (October 1992).

19. HPF User Group, February 23–26, 1997, Santa Fe,
New Mexico. Information about the meeting is avail-
able at http://www.lanl.gov/HPF/.

20. In a trip report, DIGITAL’s representative Carl Offner
reported the following: “Many people complained
about the lack of good debugging support for HPF.
Those who had seen our [Aardvark-based] debugger
liked it a lot…. [An industrial HPF user] complained
emphatically about the lack of good debugging sup-
port…. [Another industrial HPF user’s] biggest con-
cern is the lack of good debugging facilities.”

21. Prism User’s Guide (Cambridge, Mass.: Thinking
Machines Corporation, 1992).

22. CM Fortran Programming Guide (Cambridge, Mass.:
Thinking Machines Corporation, 1992).

23. TotalView: User’s Guide (Dolphin Interconnect Solu-
tions, Inc., 1997). This guide is available via anony-
mous ftp from ftp.dolphinics.com in the totalview/
DOCUMENTATION directory. At the time of writing
the file is TV-3.7.5-USERS-MANUAL.ps.Z.

24. PGHPF User’s Guide (Wilsonville, Ore.: The Portland
Group, Inc., 1997).

25. KAP Fortran 90 for Digital UNIX (Maynard, Mass.:
Digital Equipment Corporation, October 1995).

26. “Fine-Tuning Power Fortran,” MIPSpro POWER For-
tran 77 Programmer’s Guide (Mountain View, Calif.:
Silicon Graphics Inc, 1994–1996).

27. “Compilation Control Statements and Compiler
Directives,” DEC Fortran 90 User Manual (Maynard,
Mass.: Digital Equipment Corporation, forthcoming
in 1998).

28. Release Notes for [Digital UNIX] Version V4.0D (May-
nard, Mass.: Digital Equipment Corporation, 1997).

29. “The Thread Attribute,” in Microsoft Visual C++: C++
Language Reference (Version 2.0) (Redmond, Wash.:
Microsoft Press, 1994): 389–391.

30. CF90 Commands and Directives Reference Manual
(Eagan, Minn.: Cray Research, Inc., 1993, 1997).

31. J. Gosling and H. McGilton, The Java Language Envi-
ronment: A White Paper (May 1996). This paper is
available at http://www.javasoft.com/docs/white/
langenv/ or via anonymous ftp from ftp.javasoft.com
in the directory docs/papers, for example, the file
whitepaper.ps.tar.Z.

32. J. Ousterhout, Tcl and the Tk Toolkit (Reading, Mass:
Addison-Wesley, 1994).

Biography

David C. P. LaFrance-Linden
David LaFrance-Linden is a principal software engineer
in DIGITAL’s High Performance Technical Computing
group. Since joining DIGITAL in 1991, he has worked
on tools for parallel processing, including the HPF-capable
debugger described in this paper. He has also contributed
to the implementation of the Parallel Software Environment
and to the compile-time performance of the HPF compiler.
Prior to joining DIGITAL, David worked at Symbolics,
Inc. on front-end support, networks, operating system
software, performance, and CPU architecture. He received
a B.S. in mathematics from M.I.T. in 1982.

