
Formal Specification and Analysis of an e-Voting System

Komminist Weldemariam1,3

1Dept. of Eng. and Comp. Science
University of Trento

Trento, Italy
Email: sisai@fbk.eu

Richard A. Kemmerer2
2Dept. of Comp. Science
University of California

Santa Barbara, USA
Email: kemm@cs.ucsb.edu

Adolfo Villafiorita3

3Center for Information Technology,
Fondazione Bruno Kessler (FBK-irst)

Trento, Italy
Email: adolfo@fbk.eu

Abstract—Electronic voting systems are a perfect example
of security-critical computing. One of the critical and complex
parts of such systems is the voting process, which is responsible
for correctly and securely storing intentions and actions of the
voters. Unfortunately, recent studies revealed that various e-
voting systems show serious specification, design, and imple-
mentation flaws.

The application of formal specification and verification can
greatly help to better understand the system requirements of
e-voting systems by thoroughly specifying and analyzing the
underlying assumptions and the security specific properties.

This paper presents the specification and verification of the
electronic voting process for the Election Systems & Software
(ES&S) system. We used the ASTRAL language to specify
the voting process of ES&S machines and the critical security
requirements for the system. Proof obligations that verify
that the specified system meets the critical requirements were
automatically generated by the ASTRAL Software Develop-
ment Environment (SDE). The PVS interactive theorem prover
was then used to apply the appropriate proof strategies and
discharge the proof obligations.

Keywords-Electronic Voting Systems, ES&S system, Formal
Specification and Verification, Critical Requirements.

I. INTRODUCTION

Electronic voting systems are increasingly replacing the
traditional paper-based voting systems. These systems can
make the voting process more convenient and may, therefore,
lead to improved turnout. Electronic recording and counting
of votes could be faster, more accurate, and less labor
intensive. However, as witnessed in [1], [2], [3], [4], [5], e-
voting systems often share critical failures in their design and
implementation, which render their technical and procedural
controls insufficient to guarantee trustworthy voting. In
California, these studies resulted in the Secretary of State
allowing the use of e-voting machines only in special situa-
tions and with various changes to the electoral procedures.
Several such changes shift the implementation of security
requirements from e-voting systems to poll workers. For
instance, [6] states that “no poll worker or other person may
record the time at which or the order in which voters vote
in a polling place”. It is quite evident that a new generation
of more carefully designed and engineered machines could
move various checks currently performed by poll workers
back to hardware and software.

However, the success of this new generation of machines
depends on our ability to capitalize from the lessons we
learned using and analyzing the systems currently deployed.
The work we present in this paper is one way in which
we can get a better understanding of the strengths and the
weaknesses of existing systems and thus lay the foundations
for engineering and deploying a new generation of more
secure and robust technologies for polling stations.

We do so by presenting the formal specification of
the voting process for the Election System & Software
(ES&S) voting system as documented in the EVEREST
project report [7]. We treated the ES&S voting system
as a complex, real-time embedded system, consisting of a
direct recording election machine (DRE), a real-time audit
log printer (RTAL), a personalized election ballot (PEB),
and a Compact Flash Card (CF). We mapped each of
these components to ASTRAL [8] process instances, and
we also specified critical security requirements to prove
the correctness and integrity of the election results. The
consistency of the specification was validated using the
ASTRAL validation engine, and PVS [9] proof obligations
were automatically generated by the ASTRAL Software
Development Environment (SDE). When proved, these proof
obligations verify that the specified system meets the critical
security requirements. The PVS interactive theorem prover
was used to apply the appropriate proof strategies and
discharge each of the proof obligations.

This paper is structured as follows. The next section
presents the motivation for this work. In Section III, we
summarize the main components of the ES&S system and
the voting process when using this system. The section
also presents samples of critical security requirements that
the system should meet. The ASTRAL specification of the
system and its critical security requirements and the status
of the PVS formal verification is presented in Section IV
Finally, we discuss related work and draw our conclusions
in Sections V and VI.

II. MOTIVATION

Fairness and security of electronic elections depend upon
a careful allocation of requirements to the procedures and
to the systems used. In fact the correct behavior of the

!000111000 IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn AAAvvvaaaiiilllaaabbbiiillliiitttyyy,,, RRReeellliiiaaabbbiiillliiitttyyy aaannnddd SSSeeecccuuurrriiitttyyy

!777888-­-­-000-­-­-777666!555-­-­-333!666555-­-­-222///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///AAARRREEESSS...222000111000...888333

111666444

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

electronic systems can be guaranteed only when they are
used according to their operating specifications. This has to
be guaranteed by the procedures and the people responsible
for executing them. For example, there is no way for an
e-voting machine to prohibit the same person from casting
multiple ballots, if the poll workers enable the machine for
voting multiple times. This behavior can be prevented (or
revealed after the election) only by enforcing and verifying
the procedures that the poll workers are supposed to follow.

In contrast, there are other fundamental properties that
the procedures can only partially assure. In this case, the
e-voting systems must guarantee that these properties are
satisfied. Using the example we just made, the machine must
ensure that a voter can cast at most one vote, given that the
poll workers follow the prescribed procedures.

Analyzing such requirements and their allocation is there-
fore important in two respects. First, it helps to ensure that
the systems meet the necessary reliability and dependability
goals. Second it helps to better understand how a different
allocation of requirements between systems and procedures
could improve the overall security of the election process so
that we can build the next generation of e-voting machines.
However, in order to achieve these goals, we need an
approach that allows us to easily experiment and reason
about, for example, different allocations of requirements.
At the same time, it has to be precise and exhaustive, so
that security and dependability consequences of any specific
choice are highlighted.

formalizes

describe

nominal

behavior of

ES&S

Checklist

Manuals

ES&S Machine Next Generation

Voting machine

ES&S

Operational

Videos

ASTRAL

Specication

EVEREST

Report

describes

non nominal

behavior of

formalizes

Formal

Specication

Generic DRE

based on

designed

using

Figure 1. Overview of our approach. Labels nominal and non nominal
refer to the actual and undesired behaviors of the system, respectively.

Formal techniques clearly fit both needs, and the goal
of this work is to demonstrate how their use can help to
ensure fair elections. More specifically, we derive formal
specifications along with critical security requirements for
one of the currently deployed e-voting systems (i.e., ES&S
system) using the ASTRAL language. The specification
of the system and the critical requirements are mainly

derived from available information sources: the EVEREST
report [7], the ES&S election day checklist manual [10], a
video1 that shows how the ES&S system works on election
day, and other requirements suggested in the literature (e.g.,
[11], [12]). Using formal analysis tools, we can assess
the strengths and weaknesses of the system. Results or
feedback gained from the formal analysis can be a basis for
specifying and analyzing generic requirements from which
the next generation of voting machines can be built (see also
Figure 1).

III. ELECTRONIC VOTING SYSTEMS

A. ES&S Voting System Components
For the purposes of this work (see [7] for a more detailed

and complete view) the ES&S voting system is composed
of:

• DRE: Direct Recording Electronic voting machine,
called the iVotronic. It is equipped with a touch-screen
where the voter casts his/her votes. The information
shown by the touch-screen changes in real-time to
match the voter’s choices. The iVotronic also stores the
audit data.

• RTAL: Real-Time Audit Log Printer, which performs
the function of a VVPAT (Voter-Verified Paper Audit
Trail) for the ES&S system. It produces a paper-based
record of the choices selected by the voter. The RTAL
is plugged into the DRE and the paper record is
viewable by the voter. The voter’s choices are under a
transparent cover so that they cannot be modified other
than through the normal voting process.

• PEB: Personalized Electronic Ballot. This is a device
used by the poll worker to load a ballot, initialize the
next ballot, and collect tabulated data and audit infor-
mation. Each time a PEB is inserted, its authenticity is
checked by the DRE using a four-digit code (election
qualification code, EQC), which is assigned prior to
election day.

• CFC: Compact Flash Card. This device holds files too
large to fit in the PEB and also audit data. The card
must be present to open and close the polls. At poll
closing, the audit data is automatically dumped into
the card.

B. Voting Process for a DRE based System
In short, running an election on election day using the

ES&S system is as follows (see [7] for further detail). Prior
to opening the polls, a poll worker unpacks and sets up the
DRE and plugs in the RTAL printer and power cables. Poll
workers must also ensure that a properly programmed CF
card is installed before powering on the DRE. A Master PEB
is inserted into the terminal to load the ballot and later to
open the terminal for voting. The same master PEB must

1http://www.essvote.com/HTML/voter outreach/ivotronic flash.html

111666555

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

be used to close the terminal after the polls have closed.
Removing the PEB turns the terminal’s current mode to sleep
mode.

Once the polls are opened, a poll worker initializes the
ballot for a qualified voter by inserting a supervisor PEB,
which can be the same Master PEB used to open the polls,
into the machine. The terminal mode changes from sleep to
poll worker mode, the EQC code of the PEB is checked,
and the ballot is initialized, provided that the EQC of the
PEB matches with the one the terminal was configured for.
The poll worker removes the supervisor PEB and leaves the
terminal for the voter.

After the ballot is activated, the machine takes the voter
through each contest. DRE machines automatically forbid
overvoting, but not undervoting. When a voter selects or
cancels a candidate for a particular contest, an appropriate
indication is printed on the RTAL record. If the voter selects
a candidate, the RTAL record is marked as “Selected” and
scrolled out of sight; otherwise, it is marked as “Canceled”
and scrolled out of sight. The voter is eventually given the
opportunity to review his ballot, and if the voter commits to
it (confirms it), it is recorded to local storage. The process
continues in this way for all qualified voters.

After the official poll closing time is reached and there is
no qualified voter waiting in line, the poll worker inserts the
master PEB to collect and store tabulated data, copies of the
ballot image, and some other information. Upon closing the
terminal, the DRE firmware automatically uploads the audit
data onto the CF card. The results tape from the RTAL is
also collected. The results tape, CF card, and master PEB
from each polling place are then returned to election central.

C. Informal Requirements for the ES&S System
A number of requirements that the ES&S system must

satisfy are enumerated in the ES&S system manual [10] and
a corresponding video. Below we present a sample of the
most important requirements (see [13] for more details).

A correctly functioning DRE must satisfy the following
properties.

• D-Req1: The DRE must authenticate the PEB using the
EQC, and the same master PEB must be used to open
and close the terminal;

• D-Req2: Display screens presented to the voter must
accurately reflect the ballot downloaded from the PEB
and the selections made by the voters;

• D-Req3: The DRE terminal only allows two valid ac-
tions for the voter until he/she reaches the final review
(vote summary) screen: (1) select or cancel a candidate
on the screen, or (2) move forward or backward through
the ballot;

• D-Req4: For each valid voter action (i.e., starting to
vote, making a select or cancel, and finishing a vote)
the DRE must enable the RTAL to record the action on
the RTAL tape accordingly;

The RTAL must satisfy the following properties:
• R-Req1: The RTAL should scroll up a minimum dis-

tance after the summary has printed;
• R-Req2: The RTAL must update the paper tape after the

voter pushes the start button, makes a choice (select or
cancel), confirms the vote, or when a poll worker rejects
the ballot of a fleeing voter.

The PEB must satisfy the following properties:
• P-Req1 The election-specific secret code (EQC), which

is a 32-bit (4 digit) code, must be present on a PEB
and must always match with the one stored inside the
DRE; otherwise, the PEB should be rejected by the
DRE terminal whenever the poll worker attempts to
insert it;

• P-Req2 At the end of the election, the copy of the
ballot images downloaded from the DRE must be the
same as the ballot images that were loaded into the
DRE prior to starting the election.

The CF card should satisfy the following property:
• C-Req The poll closing procedures must copy the audit

information (such as the event log) accumulated in the
local storage to the CF card.

The following global properties must be ensured by the
system components all together:

• G-Req: No discrepancy should be observed among
the following: (1) the individual cast ballot records
(or ballot images) recorded by the machines; (2) the
summary tape generated on Election Day at the close
of polls on individual machines; (3) the totals that were
accumulated and reported by the DRE and RTAL.

The above requirements (and those that are not listed in
this paper) are converted into ASTRAL invariants, sched-
ules, and constraints.

IV. SPECIFICATION OF THE ES&S VOTING SYSTEM

The complete ASTRAL specification of the ES&S is
approximately 30 pages long. In this section, therefore, we
are able to present only a sampling of the specification to
provide a flavor of the work (see [13] for detailed discussion
of the specification)

A. ASTRAL Specification of the ES&S
We specify each component of the electronic voting

process as an ASTRAL process instance. Four process types
are declared in the global specification of the ASTRAL
model of the ES&S. Below is an example of a process
declaration:
PROCESSES
the_DRE: array [1..Number_Of_DRE]

of DRE_Process [...],

We defined user defined types and constants to represent
useful concerns about the ES&S system inputs and outputs,
like in the following snippet specification:

111666666

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

TYPE
PrintValue/*Unspecified type*/,
Candidates IS SET OF Candidate,
Race_Candidate_Pair IS STRUCTURE OF

(Contest: Race, Nominees: Candidates),
Ballot IS SET OF Race_Candidate_Pair,
Decision IS (Selected, Canceled),

CONSTANT
Plugged_In_RTAL(DRE_ID): RTAL_ID,
Make_Print_VoteEntry(Name, Title,

Decision): PrintValue,
[...]

1) Modeling the DRE Process: The ES&S DRE de-
vice is modeled by the process type DRE_Process.
To model permissible operations on the DRE machine,
we need to capture the phases of the election and the
various modes of the terminal during election day. We
use the variables Which_Phase, Terminal_Mode, and
DRE_State of types Election_Phase, Mode and
Terminal_State, respectively. These indicate, respec-
tively, the phase of the election (pre-voting, during-voting,
and post-voting), the terminal mode (poll worker, voter,
sleep, or chirping), and the state of the poll (opening,
opened, closing, or closed).

When a voter casts a vote, s/he is actually interacting
with the system by navigating from one screen to another
using an appropriate button. We modeled such interaction
by assigning an integer number to each screen shown to
the voter and by defining specification functions that take
as input a screen number and return the information to be
displayed and the buttons available.

The behavior of the DRE is modeled by ASTRAL
transitions. Twelve transitions are specified to model the
possible operations of the DRE machine. For instance, the
Insert_PEB exported transition models the insertion of a
qualified PEB device in order to allow various operations to
run the election, and the Initialize_Ballot transition
models the initialization of a ballot when a qualified voter
comes.

In a touch-screen based voting system, a voter makes
a choice or changes a previous choice by touching the
candidate name on the display. In either case, the DRE must
capture and process the touch correctly. Make_Selection
is an exported transition, which must be called by the voter.

TRANSITION Make_Selection (cName: Name)
ENTRY [TIME : M_S_Dur]
Which_Phase = during_voting
& Terminal_Mode = voter_mode
& Race_Screen (scrNumber)
& currentRace = Which_Race(scrNumber)
& EXISTS C: Candidate (C ISIN
Displayed_Candidates (currentRace)
& Candidate_Name (C) = cName)
& Display(scrNumber) = Display_Contest(

Race_Title (currentRace)
,Displayed_Candidates(currentRace)

,Screen_Buttons (scrNumber))
& ˜Signal_Enabled & Which_signal = NoSignal

specifies the occurrence of a screen touch on a particular
candidate’s name. On entry, the DRE checks that the voter
is voting during voting period, the terminal is in voter
mode, the current screen is a race screen displaying both the
current race with its candidates and the button(s) required to
navigate through the screen, the touched candidate cName
belongs to the displayed candidates, and that the DRE
is not currently sending a signal to the RTAL. We used
Picked variable to determine whether the candidate has
been previously selected. This variable will eventually be
used to update the totalTallyCount for the selected
candidate name cName when the ballot is confirmed. The
exit assertion for the Make_Selection transition is
EXIT
IF ˜Picked’(cName,Race_Title(currentRace’))
THEN
IF Number_Of_Selected’ (currentRace’) + 1
<= Max_Choice_Per_Race (currentRace)
THEN /*over-vote is not attempted.*/
Number_Of_Selected (currentRace’) BECOMES
Number_Of_Selected’ (currentRace’) + 1
& Picked (cName, Race_Title(currentRace’))
BECOMES TRUE
& Display (scrNumber’) BECOMES
Update (Display’ (scrNumber’),cName,Marked)
& tempVoteRecord (currentRace’) BECOMES
tempVoteRecord’ (currentRace’) UNION
{ SETDEF C: Candidate (

Candidate_Name (C) = cName) }
/*set variable value for the RTAL to print.*/
& pickedName = cName & pickedValue = Selected
& Signal_Enabled & Which_Signal = Vote_Signal
& currentRace = currentRace’
ELSE /*else over-vote is attempted.*/
Min_Display (scrNumber’) BECOMES
Display_Info (OverVote_Prohibited, NoButton)
FI

ELSE
/*else, cancel the previous choice.*/
Number_Of_Selected (currentRace’) BECOMES
Number_Of_Selected’ (currentRace’) - 1
& Picked (cName,Race_Title(currentRace’))
BECOMES FALSE
& Display (scrNumber’) BECOMES
Update (Display’(scrNumber’),cName,UnMarked)
& tempVoteRecord (currentRace’) BECOMES
tempVoteRecord’ (currentRace’) SET_DIFF
{ SETDEF C: Candidate (

Candidate_Name (C) = cName) }
[...]

There are two possible cases when a voter marks a
candidate on the screen:

• Making a selection. The following scenario oc-
curs: i) as long as there is no overvote attempted
the number of selections for this candidate for
the current race is incremented by one, Picked

111666777

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

is set to true, the current screen is updated, and
cName is included in tempVoteRecord, which
will be used to display the voter’s final selection
when the voter requests a preview. In addition, the
exported variables pickedName, currentRace,
pickedValue and Which_Signal receive new
values, and the signaling variable is set to true. This
indicates that the RTAL can now print the selection
expressed in these exported variables. ii) Otherwise, the
voter attempted to overvote and the DRE will display
the appropriate message on the screen.

• Canceling a previous selection. In this case, the exit
assertion specifies that the number of selected can-
didates for the current race is decremented by one,
Picked is reset to false, and cName is removed from
the tempVoteRecord. The rest of the variables are
updated accordingly and cancellation expressed in these
exported variables information are sent to the RTAL.

2) Modeling the Other Processes: The RTAL, PEB
and CF Card are respectively specified by the in-
stances of types RTAL_Process, PEB_Process and
CFCard_Process.

The RTAL prints vote actions exported by the DRE on a
paper tape. The tape contains a list of voter records, where
each voter record is a sequence of voter actions. The Tape
variable represents the RTAL paper tape where the start
information, vote selection, and summary information are
continuously printed for each voter. After each print, the
RTAL tapePosition is incremented appropriately. The
variables RTAL_State and summaryPrinted, respec-
tively, are used for keeping track of the current state of the
RTAL and determining whether the summary information
has been printed.

Two transitions model the behavior of the RTAL printer.
Namely, the Print_Selection transition models behav-
ior of the printing activity, whereas the behavior of the
printer after printing the summary information is performing
by the transition Scroll_Forward.

As mentioned earlier, the PEB device is used to
transfer election specific data between Election Cen-
tral and poll locations, which is indicated by the vari-
ables Candidates_Of_Race tabulatedData, and
copyOfBallotImages. While all PEBs are internally
identical in construction, they are discernible from one
another by the read only information burned in the PIC:
their serial number, and more importantly by their PEB kind,
namely either “master” or “supervisor”.

The most important aspect to specify about the PEB
process is that after the terminal is closed, the poll worker
uses the master PEB to collect and store the tabulated data
and copies of the ”images” of the ballots. This is specified
by the transition Download_Results.

When the polls are closed, an audit file is
saved automatically to the CF Card (by using the

Download_AuditData transition). From a formal
specification point of view, however, we are only interested
in the audit log file, which contains the undervoted races
and the number of fleeing voters. These concerns and other
behaviors of the CF Card are captured and specified (see
the detail in [13]).

B. Critical Security Requirements

Once we specify the relevant information of the system
model we need to specify what security requirements the
system should meet given the assumptions about the behav-
ior of the system and the external environment that interacts
with the system.

In particular, we specified the following concerns:
1) Environmental/Procedural Assumptions. We have

specified a number of behaviors about the external
environment that the e-voting system relies on. For in-
stance, the behavior of the people (voters, pollworkers,
and election officials) who interact with the system.
This is outside the ES&S system, but it influences how
the system operates.

2) Security Requirements. We have specified 25 critical
requirements (expressed as invariants, constraints, and
schedules) that must be satisfied by the system given
all the possible assumptions about the environment.
In the ES&S system, for instance, the DRE should
correctly handle vote selection and the RTAL should
update the paper tape after the voter pushes the start
button, makes a selection, confirms a vote, or when a
poll worker rejects the ballot of a fleeing voter.

We further refine the requirement G-Req (see Section III)
into the following election result integrity requirements:

• G-Req1: The vote entries printed on the RTAL tape
during the election must be equal to the cast ballot
records plus the rejected vote in the DRE;

• G-Req2: After the voting is closed, the results down-
loaded into the master PEB must be equal to the sum
of the results collected from each DRE; furthermore,
it must be equal to the sum of the printed paper tapes
from all RTALs;

• G-Req3: The number of fleeing voters recorded in the
audit log file, which is downloaded into the CF card,
must be equal to the number of rejected ballots printed
on the RTAL tape;

• G-Req4: The undervoted races in the audit log file,
which is downloaded into the CF card, must be equal
to the undervoted races that have been reported on the
RTAL tape.

Due to space limitations, we can include only one invari-
ant. G-Req2 is expressed by the following global invariant:

EXISTS p: PEB_Number
(the_PEB [p].Kind = Master
& FORALL d: DRE_Number

111666888

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

(the_PEB[p].ResultDownload_Completed
(the_DRE [d].Self)

& the_DRE [d].Which_Phase = Post_Voting
& the_DRE [d].DRE_State = Closed
& FORALL C: Candidate, R: Race
(C ISIN
the_DRE [d] .Race_Candidates (R)
-> the_PEB [p].tabulatedData
(C,R, the_DRE [d].Self) =

the_DRE [d].TotalTallyCount(C,R)))))
&
EXISTS p: PEB_Number
(the_PEB [p] .Kind = Master
& FORALL d: DRE_Number, rt: RTAL_Number
(the_RTAL [rt] =

Plugged_In_RTAL (the_DRE [d])
& the_PEB [p].ResultDownload_Completed

(the_DRE[d].Self)
& the_DRE [d].Which_Phase = Post_Voting
& the_DRE [d].DRE_State = Closed
& FORALL C: Candidate, R: Race
(C ISIN
the_DRE [d] .Race_Candidates (R)
-> the_PEB[p].tabulatedData
CountCanceled(C,R,the_RTAL[rt])))

the first conjunct of the invariant says that there exists a PEB
p, such that for every DRE d in the precinct, if p is the
master PEB used in d’s terminal to download the election
results after the d terminal is closed and the election has
ended (i.e., Post_Voting phase), then the election results
for each candidate C who ran for race R stored in p is exactly
equal to the total tally counted on d’s terminal for candidate
C. Similarly, the second conjunct specifies that for every
RTAL printer rt and DRE d in the precinct, if rt is the
printer used by d during the voting period, then the election
result for each candidate C who ran for race R stored in p
is the difference between the total number of selected and
the total number of canceled votes printed on rt.

The rest of the requirements for each process and global
specification are specified similarly (refer [13] for more
critical requirements).

C. PVS Verification
The specification was first constructed and type-checked

using the ASTRAL SDE [14]. We validated the specifica-
tion and generated the corresponding proof-obligations for
the critical requirements. Moreover, the specification was
automatically translated into its PVS [9] counterpart using
the ASTRAL SDE, which enabled the specification to be
passed to the PVS theorem-prover for verification.

Before invoking the theorem prover, the ASTRAL split
engine was used to split and classify the ASTRAL speci-
fication into collections of simpler properties that infer the
whole clause so that the proof of each property could be
tackled separately. Table I shows the number of invariants,
schedules, and constraints for each of the four processes and
the global invariants. It also shows the number after they are
split by the ASTRAL SDE.

Table I
NUMBER OF PROOF OBLIGATIONS.

Proof Obligations After Splitting
Invar, Constr, Sched Invar, Constr, Sched

DRE 4, 6,1 10, 9, 2
RTAL 1, 1, 3 1, 1, 3
PEB 1, 0, 1 2, 0, 1
CFCard 0, 0, 1 0, 0, 2
Global 6, 0, NA 9, 0, NA

Total 12, 7, 6 22, 10, 8

Using the PVS interactive theorem-prover and the tech-
niques discussed in [15] we have proved 13 of the 22
invariants, 3 of the 8 schedules, and 7 of the 10 constraints.
We expect that the other global and local properties can
be proved using the same or similar proof techniques and
strategies.

V. RELATED WORK

Scientific literature on e-voting is wide and multi-
disciplinary. Sticking to the topic of this paper, we organize
previous work in three different areas: understanding the
risks posed by the introduction of e-voting systems in the
polling stations; assessing existing systems; designing better
e-voting systems using formal techniques.

With respect to the first area, work in the past has focused
on understanding what changes could be introduced in the
“traditional” voting procedures to allow a secure transition
to electronic elections. For instance, [16], [17] discuss risks
and difficulties related to the introduction of e-voting, [18],
[19] suggest possible improvements to existing procedures,
and [20], [21], [22] introduce techniques to formally analyze
what security breaches may be derived by executing the
procedures in the wrong way. Our work complements those
presented above, by helping, e.g., understand how to allocate
requirements between procedures and systems to provide
more secure electronic elections.

With respect to the second area, assessing existing systems
some e-voting systems currently deployed in elections have
recently undergone a thorough and independent scrutiny
to evaluate their quality. See, for instance, [23], [24], [3],
[5], where the authors highlight some serious design and
implementation flaws, which could be exploited to compro-
mise elections. The papers also suggest a drastic change in
the way in which electronic voting systems are designed,
developed, and tested.

With respect to the third area, several works describe the
use of formal methods to specify, model, analyze, and assess
complex and safety-critical systems (see, for instance, [25],
[26], [27], [28] and [29], [30], [31]). The application of
formal methods in the e-voting area, however, has been, so

111666!

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

far, limited. We mention [32], [33], that present the formal
specification and verification of an electronic voting protocol
using π-calculus and [34], [35] where the authors present
a tool, FSMC+, that has been used to specify and verify
the control logic of an e-voting machine. Our work builds
upon and improves those presented above by widening the
scope of the analysis and by taking into account aspects
related to the procedures and interaction of the system with
its environment.

VI. DISCUSSION AND CONCLUSION

In spite of the potential advantages e-voting might bring to
the polling station, such as improved turn out, accessibility
for impaired people, and improved accuracy and speed, its
adoption in various countries has been slow and/or the cause
of great debates and controversies.

One of the reasons is that e-voting machines are com-
plex real-time embedded systems required to operate in a
(possibly) hostile environment. Another and more relevant
reason is the poor design and implementation of (some
of) the systems currently deployed for elections in the US
and other countries, as different studies have reported and
demonstrated. Such weaknesses expose e-voting systems,
and consequently elections, to threats and attacks, whose
effects vary from a “denial of service” (e.g., stopping the
election in a polling station by sabotaging some e-voting
machines) to alteration of the results (e.g., by successfully
changing votes in some key precincts).

In this paper we have shown how formal verification
techniques can be used to model and reason about the
security of e-voting systems. The specification was con-
structed and type-checked using the ASTRAL SDE [14].
The automatically translated specification was passed to the
PVS [9] analysis tool. So far we have managed to formally
verify that the specification satisfies many of the critical
requirements that we discussed in this paper. The proofs
were achieved by following the techniques presented in [15].
For instance, we applied the try-untimed and try-untimed-
con proof strategies to prove some of the local invariants and
constraints of the system. In general, the proof is carried out
first by splitting the critical requirements and applying the
appropriate proof strategies developed to support ASTRAL
analysis (see [15]).

Although this paper does not consist of a novel specifi-
cation technique nor a novel voting system, it shows how
formal methods can be effectively used for the specification
and verification of e-voting systems. In the following para-
graphs we discuss two main lessons drawn from this work
and some future directions.

The first is that formal methods helps get a better under-
standing of the security “boundaries” of e-voting systems.
In the case of the ES&S, for instance, various security re-
quirements could not be proved without making assumptions
about the procedures and about the environment. (Notice

that we expect this result to equally apply to other e-voting
systems.) Formalizing such hypotheses helps to delineate the
necessary conditions for the secure use of systems.

The second is the role open specifications could play
for the development of more secure e-voting systems. The
formal specification of the ES&S, for instance, required the
collection of information from different sources, such as
configuration instructions, the user’s manual, and videos.
The adoption of an open-standardized specification could
help simplify, extend, and generalize the results we have
found to other systems.

Future work moves along the lines outlined above. Based
on the current results, we would like to provide a generic
specification for DRE-based e-voting machines. This generic
specification could then be used as a basis for the specifica-
tion and design of a new generation of systems (e.g., [36]).

REFERENCES

[1] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach,
“Analysis of an Electronic Voting System,” Security and
Privacy, IEEE Symposium on, vol. 0, p. 27, 2004.

[2] J. W. Bryans, B. Littlewood, P. Y. A. Ryan, and L. Strig-
ini, “E-voting: Dependability Requirements and Design for
Dependability,” in ARES ’06: Proceedings of the First Inter-
national Conference on Availability, Reliability and Security.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
988–995.

[3] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kem-
merer, W. Robertson, F. Valeur, and G. Vigna, “Are Your
Votes Really Counted? Testing the Security of Real-world
Electronic Voting Systems,” in Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
2008, pp. 237–248.

[4] Matt Bishop and David Wagner, “Risks of e-voting,” Com-
mun. ACM, vol. 50, no. 11, pp. 120–120, 2007.

[5] Ryan Gardner and Sujata Garera and Aviel D. Rubin, “On
the Difficulty of Validating Voting Machine Software with
Software,” in EVT’07: Proceedings of the USENIX/Accurate
Electronic Voting Technology. Berkeley, CA, USA: USENIX
Association, 2007, pp. 11–11.

[6] S. of California Secretary of State, “Withdrawal of
approval of diebold election systems, inc., gems
1.18.24/accuvote-tswaccuvote-os dre & optical scan
voting system and conditional re-approval of use of
diebold election systems, inc., gems 1.18.24/accuvote-
tsx/accuvote-os dre & optical scan voting system,”
http://www.sos.ca.gov/elections/voting systems/ttbr/
diebold 102507.pdf, October 2007.

[7] P. McDaniel, M. Blaze, and G. Vigna, “EVEREST: Evaluation
and Validation of Election-Related Equipment, Standards and
Testing,” Ohio Secretary of State’s EVEREST Project Report,
December 2007.

[8] A. Coen-Porisini, C. Ghezzi, and R. A. Kemmerer, “Speci-
fication of Realtime Systems Using ASTRAL,” IEEE Trans.
Softw. Eng., vol. 23, no. 9, pp. 572–598, 1997.

111777000

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

[9] S. Owre, N. Shankar, and J. M. Rushby, The PVS Specifica-
tion Language, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, February 1993.

[10] E. S. . S. Inc. (ES&S), “iVotronic TM Voting System,”
Revision Date: January 2007, version 9.1.x Election Day
Operations Checklist.

[11] M. McGaley, “E-voting: an Immature Technology in a Critical
Context,” Ph.D. dissertation, Dept. of Computer Science, NUI
Maynooth, 2008.

[12] R. T. Mercuri and L. J. Camp, “The Code of Elections,”
Communication ACM, vol. 47, no. 10, pp. 52–57, 2004.

[13] K. Weldemariam, R. A. Kemmerer, and A. Villafiorita, “Spec-
ification and Analysis of the Electronic Voting Process for
the ES&S Voting System,” Department of Computer Science,
University of California, Santa Barbara, Tech. Rep., March
2009.

[14] P. Z. Kolano, “ASTRAL Software Development Environment
User”s Manual,” Santa Barbara, CA, USA, Tech. Rep., 1997.

[15] P. Kolano, “Tools and Techniques for the Design and Sys-
tematic Analysis of Real-Time Systems,” Ph.D. dissertation,
University of California, Santa Barbara, 1999.

[16] A. Xenakis and A. Macintosh, “G2G Collaboration to Support
the Deployment of e-Voting in the UK: A Discussion Paper,”
in EGOV, ser. Lecture Notes in Computer Science. Springer,
2004, pp. 240–245.

[17] ——, “Levels of difficulty in introducing e-voting,” in EGOV,
ser. Lecture Notes in Computer Science. Springer, 2004, pp.
116–121.

[18] M. Volkamer and R. Krimmer, “Independent audits of remote
electronic voting – developing a common criteria protection
profile.” in Proceedings der EDEM 2007 – Elektronische
Demokratie in Österreich, 2007.

[19] A. Prosser, R. Kofler, R. Krimmer, and M. K. Unger, “Secu-
rity assets in e-voting,” in Electronic Voting in Europe, 2004,
pp. 171–180.

[20] A. Xenakis and A. Macintosh, “Procedural Security Analysis
of Electronic Voting,” in ICEC ’04: Proceedings of the 6th
international conference on Electronic Commerce. New
York, NY, USA: ACM Press, 2004, pp. 541–546.

[21] K. Weldemariam, A. Villafiorita, and A. Mattioli, “Assessing
Procedural Risks and Threats in e-Voting: Challenges and
an Approach,” in VOTE-ID, ser. Lecture Notes in Computer
Science. Springer, 2007, pp. 38–49.

[22] K. Weldemariam and A. Villafiorita, “Modeling and Analysis
of Procedural Security in (e)Voting: The Trentino’s Approach
and Experiences,” in EVT. Berkeley, CA, USA: USENIX
Association, 2008.

[23] N. Ansari, P. Sakarindr, E. Haghani, C. Zhang, A. K. Jain,
and Y. Q. Shi, “Evaluating electronic voting systems equipped
with voter-verified paper records,” IEEE Security and Privacy,
vol. 6, no. 3, pp. 30–39, 2008.

[24] A. Aviv, P. Cerny, S. Clark, M. S. Eric Cronin, Gaurav Shah,
and M. Blaze, “Security Evaluation of ES&S Voting Ma-
chines and Election Management System,” in In Proc. of
the USENIX/ACCURATE Electronic Voting Technology Work-
shop, 2008.

[25] Z. Dang and R. A. Kemmerer, “A Symbolic Model Checker
for Testing ASTRAL Real-Time Specifications,” Real-Time
Computing Systems and Applications, International Workshop
on, vol. 0, p. 174, 1999.

[26] R. Corin, S. Etalle, P. H. Hartel, and A. Mader, “Timed model
checking of security protocols,” in FMSE ’04: Proceedings
of the 2004 ACM workshop on Formal methods in security
engineering. New York, NY, USA: ACM, 2004, pp. 23–32.

[27] N. Markey and P. Schnoebelen, “Tsmv: A symbolic model
checker for quantitative analysis of systems,” Quantitative
Evaluation of Systems, International Conference on, vol. 0,
pp. 330–331, 2004.

[28] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso, “NuSMV 2: An Open Source Tool for Symbolic
Model Checking,” in Proc. of International Conference on
Computer-Aided Verification, 2002.

[29] M. Lowry and D. Dvorak, “Analytic Verification of Flight
Software,” IEEE Intelligent Systems, vol. 13, no. 5, pp. 45–
49, 1998.

[30] Z. Dang and R. A. Kemmerer, “Using the ASTRAL model
checker to analyze mobile IP,” in ICSE ’99: Proceedings of
the 21st international conference on Software engineering.
Los Alamitos, CA, USA: IEEE Computer Society Press,
1999, pp. 132–141.

[31] C. Braghin, N. Sharygina, and K. Barone-Adesi, “Automated
Verification of Security Policies in Mobile Code,” in IFM,
ser. Lecture Notes in Computer Science. Springer, 2007, pp.
37–53.

[32] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying Privacy-
type Properties of Electronic Voting Protocols,” Laboratoire
Spécification et Vérification, ENS Cachan, France, Research
Report LSV-08-01, Jan. 2008, 55 pages.

[33] S. Kremer and M. D. Ryan, “Analysis of an electronic voting
protocol in the applied pi-calculus,” in ESOP’05, vol. 3444.
Springer, 2005, pp. 186–200.

[34] R. Tiella, A. Villafiorita, and S. Tomasi, “Fsmc+, a tool for
the generation of java code from statecharts,” in PPPJ ’07:
Proceedings of the 5th international symposium on Principles
and practice of programming in Java. New York, NY, USA:
ACM, 2007, pp. 93–102.

[35] Adolfo Villafiorita, Komminist Weldemariam and Roberto
Tiella, “Development, Formal Verification and Evaluation
of an eVoting System with VVPAT,” IEEE Transaction on
Information Forensics and Security, vol. 4, December 2009.

[36] Cynthia Sturton and Susmit Jha and Sanjit A. Seshia and
David Wagner, “On voting machine design for verification
and testability,” in ACM Conference on Computer and Com-
munications Security, Ehab Al-Shaer and Somesh Jha and
Angelos D. Keromytis, Ed., vol. 463-476. ACM, 2009.

111777111

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:25:55 UTC from IEEE Xplore. Restrictions apply.

