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Sammanfattning 
 
I och med den växande trenden av trådlösa tekniska lösningar avsedda för korta avstånd, 
intresserade sig Tritech för en tillämpning med den trådlösa teknologin, Bluetooth. Visionen 
är att utveckla en produkt med en så generell lösning som möjligt, där nätverk, fältbussar och 
egentligen vilka enheter som helst kan kopplas samman via en trådlös länk. Utvecklingen av 
denna produkt startar med detta examensarbete. Projektet och även produkten går under 
namnet Bluebus. Examensarbetet behandlar hur överföring olika protokoll/standarder kan 
realiseras med Bluetooth. Fokus ligger i att utreda en teknisk lösning och implementera en 
Bluebus-enhet, som i par bildar en brygga för utbyte av data. 
 
Kärnan i examensarbetet var Bluetooth teknologin som har studerats ingående. De 
protokollstandarder som utretts är Controller Area Network (CAN), RS-232 och Keyword 
Proctocol 2000 (KWP-2000). Slutsatsen av arbetet är att RS-232 och KWP-2000 lämpar sig 
väl för trådlös tillämpning i Bluebus. En CAN tillämpning är möjlig, men full transpararens 
kommer inte kunna uppnås. Bluebus utbyter data över en asynkron länk med omsändning av 
korrupta meddelanden. Med en asymmetrisk konfiguration där data sänds med DH5 paket i en 
riktning skulle Bluebus kunna användas i en loggningsapplikation i CAN nätverk med 
överföringshastigheter upp till 500 kbps. Meddelanden kommer att skickas om en med en viss 
fördröjning. För att hantera dataöverföring, konvertering och kontroll i Bluebus anses ett 
RTOS vara nödvändigt. En fördjupningsstudie resulterade i att realtidsoperativsystemet, eCos 
valdes. Försök gjordes för att porta eCos till Atmel AT91EB01 som tyvärr inte lyckades fullt 
ut. Tills portningen blir tillgänglig hanteras istället alla processer i Bluebus av mjukvara i den 
samma. 
 
I arbetet ingick även att ta fram en fungerande prototyp. Prototypen består av två 
huvudkomponenter; ett Atmel ARM processorkort och ett Ericsson Bluetooth 
utvecklingskort. Den första versionen stödjer RS232 i både hårdvara och mjukvara. Två 
Bluebus-enheter kan koppla upp sig mot varandra och bildar tillsammans en virtuell serielänk. 
I prototypen kommunicerar processor och Bluetooth-modul med överföringshastigheten 57,6 
kbps och radiolänken med 108,8 kbps. Dessa hastigheter kan givetvis konfigureras. Den 
maximala praktiska överföringshastigheten (bit rate) in till Bluebus från periferienheter är 
230,4 kbps. En egen kompaktare hårdvara har designats med Bluetooth-modul, processor, 
minnen, RS232-anslutning och en kontakt för expansionskort. 
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Abstract 
 
The trend for short-range wireless technical solutions have made Tritech interested of an 
implementation with the wireless technology, Bluetooth. The vision is to develop a general 
product solution, were networks, standard protocols and virtually any devices are connected 
over a wireless link. The development of this product starts with this thesis work. The project 
and consequently the product name have been settled to Bluebus. The focus was to investigate 
a technical solution and implement a Bluebus prototype, which in pair form a bridge for 
wireless data exchange. 
 
The core in the project is the Bluetooth technology, which has been studied firmly. The 
protocol standards that have been investigated are the Controller Area Network (CAN), RS-
232 and the Keyword Protocol 2000 (KWP-2000). KWP-2000 and RS-232 are well suited for 
a wireless implementation in Bluebus. A CAN implementation is obtainable, but full 
transparency will not be achieved. Bluebus operates over an asynchronous link, where corrupt 
messages are re-transmitted. In an asymmetric configuration where data is transmitted with 
DH5 packets in one direction, Bluebus could be used in a log application retrieving messages 
from a CAN network operating with up to 500 kbps. Messages will with high certainty be 
transmitted though with a slight delay. In order to handle data transmission, conversion and 
control in Bluebus a RTOS is preferred. A study resulted in the choice of the RTOS, eCos. A 
profound attempt was made to port eCos to the chosen processor evaluation board, Atmel 
AT91EB01. Unfortunately the porting work was never successfully completed. Until the port 
is available Bluebus processes are handled by Bluebus software. 
 
The project also included developing a working prototype. The prototype consists of two 
main components, an Atmel ARM processor circuit board and an Ericsson Bluetooth 
development board. The first version supports RS232 in both software and hardware. Two 
Bluebus devices can connect and form a virtual serial link. In the prototype the processor and 
Bluetooth module, and the radio link communicate with the data rate 57,6 kbps and 108,3 
kbps, respectively. A more compact hardware has been designed, with Bluetooth module, 
processor, memory, RS-232 connector and an expansion connector. 
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1 Terminology 
Authentication  A procedure where a unit requests another to prove itself 

to be the entity it claims to be. 
 
Baseband The digital part of the Bluetooth module. 
 
Baseband Packet The smallest unit of data that is transmitted from one  
 Bluetooth device to another. 
 
Baud Number of times a physical transmission medium can 
  change state per second. 
 
BD_ADDR The unique 48-bit Bluetooth device address. The address  
 Is divided into three parts: 

= LAP: Lower Address Part (24 bits) 
= UAP: Upper Address Part (8 bits) 
= NAP: Non-significant Address Part (16 bits) 

 The address is derived from the IEEE802 standard with  
 48-bits, but of these essentially 32 bits are used. 
 
Bluebus Project work name and consequently product name. The  
 device supports conversion and wireless transmission of  
 several network protocols, over Bluetooth. 
 For example, one Bluebus on two separate networks  
 would connect these making them appear as one network. 
 
Bridge Designed to connect two physically separate LANs,  
 operating at the Media Access Sublayer. The bridge  
 checks the packet destination address, sends it along to the  
 other side if the address is found at that side, if not the  
 packet is ignored (Jordan, Churchill, 1990). Here: A  
 bridge denotes the functionality of two Bluebus devices,  
 each connected to one of two separate networks, allowing  

 exchange of data between the two networks, over the 
 bridge. 

 
Channel The Bluetooth channel represents a pseudo-random  
 hopping sequence through 79 or 23 RF channels (23  
 channels in Japan, Spain and France). The channel is  

 divided into time slots where each slot corresponds to an  
 RF hop frequency. 

 
Data Link Layer Describes the logical organization of data bits transmitted  
 on a particular medium. Ex: this layer defines the framing,  
 addressing and checksumming of Ethernet packets. 
 
Fieldbus Communication network with associated protocol(s). 
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Host The Host denotes the user, e.g. a PC, mobile phone or a  
 processor that uses a Bluetooth module to communicate  
 with a remote system. 
 
Host Controller Denotes the controller inside the Bluetooth module that    
 communicates with the Host via the Host Controller  
 Interface (HCI). 
 
J1587 Joint SAE/TMC electronic data interchange between  

 microcomputer systems in heavy-duty vehicle  
 applications. The physical hardware is specified in the  
 standard J1708. 
 
KWP-2000 (KeyWord Protocol) communications protocol and  
 services for vehicle diagnostics. The physical medium 
 used  is referred to as K-line. 
 
OSI Open System Interconnection. A model for how open data  
 communication is conducted. Used to define interfaces  
 and protocols (Ewert 1999) 
 
Physical Layer Describes the physical properties of various  
 communications media, as well as the electrical properties  
 and interpretation of the exchanged signals 
 
Piconet A collection of devices connected via Bluetooth in an ad  
 Hoc fashion. In a piconet one unit acts a master and the  
 other(s) as slave(s). All devices share the same physical  
 channel defined by the master device parameters (clock  
 and BD_ADDR). 
 
RTOS Real Time Operating System 
 
Scatternet Multiple independent and non-synchronised piconets form  
 a scatternet. 
 
Tester Diagnostic unit. Here, connected to the KWP-2000  
 diagnostics bus 
 
Time Slot In the Bluetooth protocol each slot is 625 µs long,  
 numbered according to the Bluetooth clock of the piconet  
 master. The slot numbering ranges from 0 to 227-1 and is  
 cyclic with a cycle length of 227. In the time slots, master  
 and slave can send data. 
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Transparent A process that exists, but does not appear to (Jordan,  
 Churchill, 1990). Here: The transparency is a logical  
 process or activity that cannot be seen or touched. For  
 some networks 100 % transparency is not possible.  
 However, a bridge can appear transparent to some extent.  
 If 100% is not obtained this should be pointed out. 
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2 Introduction 

2.1 CAN Bridge 

The Controller Area Network is widely used in the automotive industry today, and 
its popularity is growing. In a network with separate CAN-busses, a bridge 
between them would be desirable. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. CAN bridge 
 
Using Bluetooth for this application has its drawbacks. CAN is not suited for 
packet radio transmission, one of the reasons for this being that CAN relies on 
simultaneous transmission and reception of bits to achieve arbitration. This 
demands that the nodes are synchronised to each other within a fraction of a bit 
time. Also, a node on the bus must acknowledge that it has received a package 
correctly within a very short time, typically from 2µs and up depending on the bit 
rate used. This is simply impossible to achieve using Bluetooth as a transfer 
medium. In non-realtime applications such as automotive diagnostics this is not a 
problem, and guaranteeing that messages reach their destination, preferably within 
a certain time, is sufficient. Unfortunately some of the built-in error handling 
features of the CAN protocol will be lost or degraded. 
 
The original project idea was to design and implement a universal converter that 
with the Bluetooth technology connected to an arbitrary communication network, 
could communicate wirelessly with a remote unit. In this thesis project the 
possibility to bridge data is investigated for networks, in a point-to-point 
connection with the same network protocol on each end of the connection. 
 
As for any great product there is a need of a name. The project work name and 
consequently the product name, has after consideration been settled to: Bluebus. 

2.2 Problem and Objective 

As the Thesis description evolved, the project was aimed for a specific industry, 
the automotive industry, and initially for the heavy vehicle industry. The 
advantage of aiming for a specific market is to get a fast response on interest and 

node

node

node
CAN bus 

node

CAN bus 

Bluetooth

Bridge 
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feedback on customer needs. After contact with Volvo and a Tritech consultant 
working for the Swedish company Autodiagnos, the decision was made to 
investigate the possibilities to bridge the Controller Area Network (CAN), KWP-
2000 and RS232, which are all widely used in the vehicle industry today. The 
standard J1587 was also mentioned and should be considered for future 
expansions. 
 
To limit the scope of the thesis work, a software implementation will only cover a 
wireless serial interface with RS232. However, considerations are made to allow 
future expansion of software to cover protocols mentioned above. 
 
The objective of the project was to supply the customer with a prototype able to 
connect and sustain a wireless serial connection. The hardware could consist of 
development board circuitry, but schematics for the first compact version should 
be submitted. In addition, thought should be given on in what context this kind of 
product could appear. 

2.3 Method of Attack 

The Bluetooth technology was to be used as medium for the wireless link. This 
was stated by the employer and is a core requirement for this project. The 
Bluetooth technology and protocol was studied extensively and is described in 
chapter four. Different communication networks used in the vehicle industry have 
been overviewed. In this thesis the CAN, KWP-2000 and RS232 protocols are 
covered in chapters five, six and seven. In these chapters an understanding of how 
the protocols work is governed. The possibilities, requirements and limitations for 
bridging these protocols are extracted and discussed. Moreover, a study had to be 
conducted to select appropriate hardware. Among other things a Bluetooth module 
and microcontroller had to be chosen, where the microcontroller handles control 
and data conversion. The hardware study is presented in chapter nine. For the 
software implementation the possibility of using an RTOS is investigated in 
chapter eight. The architecture and operation of the software for packet conversion 
and Bluetooth control is presented in chapter ten. 
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3 Product Idea  
The vision is to design a small device, cheap and small enough to be fitted in a 
vehicle or virtually any industrial product, allowing a wireless link for short-range 
data communication. The device would supply a logically transparent connection 
between two separate networks of the same type making them appear as one. In a 
future perspective the device may even be able to bridge information between two 
or more entirely different communication networks. In this scenario Bluebus 
would have the characteristics of a gateway. As described by Jordan and 
Churchill, (1990) the function of a gateway is to allow two or more dissimilar 
networks to communicate as a single logical entity. Dissimilar means that the 
transport protocols and the underlying physical networks are different. According 
to Ewert (1999) a gateway is essentially a bridge. The difference is that a bridge 
operates in the data link layer (layer 2) in the OSI model (Ewert 1999, page 110), 
were as a gateway operates in layers 4 to 7. Bluebus may operate, though most 
often in the data link layer, in any layer. No matter in which layer it does operate, 
Bluebus is considered by the authors to bridge information and the term bridge 
will be used in this thesis report. 

3.1 Specification 

3.1.1 Hardware 
The hardware shall… 
= have a Bluetooth interface. 
= have an RS232 physical interface. 
= be designed so that it is easily expandable. It shall be possible to add more 

physical interfaces to the hardware if necessary. 
= be optimised for low price and small size. 

 
The hardware should… 
= have CAN, J1708, and K-Line physical interfaces. 
= have low power consumption. 

3.1.2 Software 
The software shall… 
= be able to set up and sustain a connection with one remote Bluebus unit. 
= be able to wirelessly send and receive serial data to/from a remote device. 
= be designed so that more protocols can be added. 
= not affect other connected nodes in a negative way. It shall not disturb 

communications between other nodes or by itself initiate communication with 
a node. 
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The software should… 
= transfer CAN messages between two fieldbusses via the Bluetooth interface. 

In the future, transferring messages between three or more busses is desirable. 
= also be able to transfer the J1587 and KWP-2000 protocols. 
= configure itself as much as possible. It should be able to determine which 

physical bus/busses are in use at the moment. 
= be “self-learning”. In the case of a CAN bridge, some information about the 

connected nodes will be necessary. The system should collect as much of this 
information as possible by itself. Self-learning in this context means that the 
unit would be able to filter messages that is not intended to be transmitted 
over the air. 

3.2 Scenarios 

In order to avoid or at least minimize built-in limitations when designing the 
product it is important to think through the possible scenarios the product may be 
involved in. A bunch of implementations could be thought of for this kind of 
product. Here, four of the most interesting and likely scenarios for Bluebus are 
presented. 

3.2.1 Raw Data Exchange 
Imagine two mobile units within relatively short range (10-100 m) from each 
other. In each of these units there is a network, for instance a Controller Area 
Network. There are possibly a number of nodes in each, exchanging data over the 
internal network. Now, if information were to be exchanged between the units, 
how would this be realized? The simplest solution would be to hardwire them to 
each other with a cable. Thus, the two essentially becomes one network, but the 
mobility is lost. The two units would have to follow each other around, so that the 
cable between them is not broken. In this scenario two Bluebus units could be 
connected, one on each mobile unit. The information would be bridged between 
them and mobility and flexibility would be saved. 
 
Along the same lines, Volvo has expressed interest in using Bluebus for an even 
simpler matter (initially). Volvo would like to use Bluebus as a wireless serial 
link. Instead of having a physical RS-232 line for raw data exchange, Bluebus 
could accomplish the same thing but over the air. 

3.2.2 Automotive Diagnostics 
In most of today’s vehicles, different kinds of communication networks are 
incorporated. Such a network could be an onboard diagnostics bus, which is used 
to obtain vehicle status information. The information is transmitted by a physical 
connection, with a cable, between the vehicle and the receiving diagnostic unit. It 
would be desirable to break this connection, and instead use wireless 
communication. This way the diagnosis could be made both easier and more 
flexible. An interesting application could be, for example, if a car or truck broke 
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down, the driver could connect his cellular phone to the diagnostic system and 
send information to a service station. Right away, the driver could get information 
about if there is anything he can do himself to fix the problem, or he could find 
out where the closest repair shop is located. If a service truck has to be sent out, 
they would know what tools and spare parts to bring. In this scenario, our product 
would be fitted into the vehicle, and in modified form in a mobile phone or in a 
diagnostic unit. 
 
Work developing a diagnostics application has already been initiated at Tritech 
Mekatronik AB, as a thesis project. In this scenario a Bluebus unit would be 
connected as a node on a diagnostic bus and another, possibly, in a PC (diagnostic 
unit). 

3.2.3 Bluebus in Line Production 
Cars and trucks contain software to a large extent, which is downloaded at the end 
of the production line. A cable is connected for download. A Bluetooth 
application would be ideal. This idea is shared with (Lars-Berno Fredriksson) who 
describes how this could be implemented in a car production line. 
“When car on line gets connected to the Bluetooth base station, it uploads it serial 
number. The production computer then downloads the software for this very car 
via the fieldbus to the basestation, who in turn transmit to the car…” 
(Fredriksson, 2000). 

3.2.4 Ethernet Implementation 
Imagine connecting an Ethernet circuit to the product, opening the opportunity to 
access a network via Internet. In this scenario an OS would have to be considered, 
preferably supplying a software stack for TCP/IP. 

3.3 Proposed Solution 

3.3.1 Method 
The general idea is to design a simple universal protocol common for 
communication between all networks supported by the system. All information  
exchanged between Bluebus modules should be packaged in a standard Bluebus 
packet frame. In this way, Bluebus becomes independent of which protocol is 
being used by the network it is connected to, i.e. Bluebus would not care which 
protocol a specific network is using. All communication could be conducted by 
means of the Bluebus packet (specified in section 3.3.4). In context form the 
situation is sketched in figure 3.1 for CAN. The situation would be the same for 
any network protocol. 
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Figure 3.1. Bluebus context diagram 
 
Alternatively, messages from different protocols could be individually 
programmed for in Bluebus. The protocol message would be sent to the Bluetooth 
module (when using the Bluetooth unit for means of transportation) and then 
packaged into a Bluetooth packet. This means that the Bluetooth unit needs 
knowledge about the protocol structures for each protocol supported by the 
system. 
 
The advantage of using a standard frame is the flexibility. Additional networks, or 
rather protocol standards, could easily be added to the Bluebus system. A newly 
added protocol only needs software for conversion to the Bluebus format, and of 
course appropriate hardware. This modularized thinking is also applied to means 
of transportation. As mentioned earlier, network information should not solely be 
communicated over Bluetooth, adding other means of transport should also be 
possible. By adding destination information, i.e. for example in figure 3.2 the 
destination information would determine whether the packet is transported via 
Bluetooth or the Serial box in the figure. The destination information would also 
determine which Bluebus unit may receive the transmitted packet. Moreover, 
these two boxes would only have to be able to transmit Bluebus packets. On the 
other hand, if each protocol message were to be transmitted in their original 
format, the software would become very large and inflexible, supporting all these 
separate protocols. Essentially, the entire program in Bluebus would have to be re-
programmed in order to support a new protocol. To gain flexibility and to assure 
ease of expansion, the first alternative using a standard Bluebus packet frame 
seems to be the most appropriate solution. 
 
A third appealing solution would be to transmit data bit-by-bit over a radio 
interface. For a CAN implementation this solution would have the advantage of 
making it possible for message acknowledgement as described in the CAN 
specification. The Bluetooth radio could theoretically be used with gross rate of 1 
Mbit/s. However, bit-by-bit transmission is not supported by the Bluetooth 
standard. Therefore, this method cannot be used. 

 
Bluebus 

 
Bluebus 

CAN message A in CAN message A out 

CAN message B in CAN message B out 
Bridge 
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3.3.2 Universal Packet Example 
Suppose a CAN message was to be communicated from one network to another. 
In this scenario, Bluebus would be connected as a node on each Controller Area 
Network. When Bluebus retrieves the message, relevant information is extracted 
and packaged into the Bluebus packet frame. The protocol includes information 
regarding its destination, or means of transportation. In this case, the message is to 
be transmitted over Bluetooth (It should be possible to transmit the message by 
other means, such as over a serial interface). In the Bluetooth Module, the Bluebus 
message is in itself also packaged in a standard Bluetooth packet and transmitted 
over the air. On the other end, the Bluetooth module of the receiving Bluebus unit 
receives the message. The message is unpacked and consequently in Bluebus 
format again. The message is passed along to the application, were it is 
interpreted. It becomes apparent that the received message was a CAN message. 
The content is extracted and a CAN message is formed and transmitted on the 
local Controller Area Network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.2. Bluebus concept idea 
 
The switch process is basically an array with destination information, steering 
Bluebus packets along the right track, i.e. it makes sure the packets are transmitted 
with the desirable means of transportation (in this case over Bluetooth or the serial 
interface). At this point, in the implementation part of the thesis work, Bluetooth 
alone is used for means of transportation. 

3.3.3 Additional Aspects 
Additional aspects are configuration capabilities, reliability and filtering. 
Depending on connection the demand for flawless versus fast transmission may 
vary. For flawless connections, Bluebus should be able to re-transmit corrupt 
messages. Bluebus should also be configurable for faster transmission with high 
data rate, if a connection is relatively error free and high data rate is required. The 
question whether to use an RTOS should also be raised and will be discussed in 
chapter 8. Do tasks need to be scheduled? Can we get extra functionality for free, 
using an RTOS? 
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Bluebus could be programmed for raw data exchange and take no consideration to 
if a message is intended for the remote network, or if it is local message only. A 
filtering mechanism should be considered so that only relevant information is 
passed along to a remote destination. Filtering would increase performance and 
efficiency since time is not wasted on unnecessary transmissions. 

3.3.4 Proposed Packet Frame 
The Bluebus packet frame could consist of Source, Target, Data length, Data and 
Checksum. The Source field would provide a receiver with information what 
Bluebus device sent a specific message. If there are several Bluebus units active, 
the source information would allow the receiver to respond to a specific Bluebus 
device. 
 
The second field, Target, would provide destination information, i.e. targeted 
Bluebus unit. This segment could possibly include what type of message is being 
transmitted: CAN, KWP-2000, and J1587 etc. A question is if protocol type 
should be included in the Bluebus frame or if that information should be a 
configuration aspect? 
 
The remaining fields are essentially mandatory. A data length field is needed to be 
able to interoperate the data field, which is of variable length. The data field 
includes the actual message being transmitted, i.e. appropriate parts of for 
example a CAN, KWP-2000 or J1587 message. To conclude the frame a 
checksum may be added to provide means for error checking. The maximum 
overall size of the packet is 64K, which is the maximum allowed L2CAP payload. 
The layout is sketched in figure 3.2. 
 

 
 
 
 

Figure 3.3. Bluebus packet frame 
 
Segments could be included or excluded and this proposal should be seen as 
foundation on which further work is based. 
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3.4 Test Specification 

For initial testing and verification of product functionality, the converter will go 
through the test procedures described in the subsections below. As a first step for 
the thesis implementation wireless transmission of serial data will be tested. 
Moreover, a proposal for CAN implementation tests is presented. 
 
 
 
 

 
Figure 3.4. Ericsson’s Graphical User Interface 

3.4.1 Bluebus to PC 
Included in the Bluetooth development kit is a graphical user interface (GUI) 
allowing the user to send HCI commands directly via the PC’s serial port to the 
Bluetooth device. The program also displays received data and informs the user 
when connection or disconnection occurs. Chapter 8 will cover the choice of 
Bluetooth development tool. The GUI is a very useful tool to confirm a 
connection, i.e. that Bluebus software is able to perform a connection. Once the 
connection is up data may be sent from Bluebus. If data is sent successfully the 
GUI will display the received data on the PC screen. This setup can also be used 
to perform endurance tests, i.e. test if a connection can be sustained when data is 
sent over a longer period of time. 
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3.4.2 HyperTerminal Test 
The HyperTerminal program is a PC program that is included on most PCs. The 
terminal can be used to send serial data on a PC’s COM port. Typically, a serial 
cable is connected to another computer in the room. Data, for instance keyboard 
input, can be sent to the other computer showing up on the HyperTerminal 
window. Two Bluebus units replace this physical cable. The data exchange could 
then be tested wirelessly. The HyperTerminal can also send complete files and this 
would be the ultimate test for Bluebus. 

3.4.3 PC/CANAlyzer Test 
The GUI allows the user to send HCI commands directly, via the PC’s serial port, 
to the Bluetooth device. One can simulate a CAN message by sending the contents 
of it in a Bluetooth packet from the GUI command line. The message is sent over 
the air and received by the device on the other end of the connection. Inside 
Bluebus the received data packet is unpacked. The CAN content is extracted and 
re-assembled in CAN message format and then transmitted on the local CAN bus. 
Hence, a CAN message from one network has been transmitted to another. 
 
In order to analyze the message and verify its content, a CAN analyser, called 
CANAlyzer may be used. The CAN analyser is connected directly on the outgoing 
CAN port of Bluebus listening to all outgoing traffic. The CANAlyzer consist of a 
CAN-PC-card and an application program. The application passively retains 
messages and displays their contents on the screen. The situation is depicted in 
figure 3.5. 

 
Figure 3.5. PC/ CANAlyzer test setup 

RS-232 CAN message 
from GUI 

Bluebus 

CAN message 

PC with CANAlyzer PC with Bluetooth GUI
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3.4.4 LP transducer/ PC Test 
A device, developed by Tritech, called LP transducer with CAN bus interface 
(LP), may be used to send CAN messages (represents a CAN network). The LP is 
a depth-sensing device developed for Atlas Copco’s drill rigs. The depth is 
determined by measuring an electrical field, which is dependent on the position of 
a magnetic ring on a steel rod. The value is transmitted on the bus and a host node 
with a graphical interface displays the current depth, among several other things. 
Additionally, our device could be connected as a node, transmitting the “depth” 
wirelessly to a remote unit. The receiving unit may, as a first step, be the GUI 
included in the Bluetooth starter kit, displaying the contents of received messages. 
As a second step, there would be one Bluebus on each end. The receiving Bluebus 
once again packs the user data into a CAN message frame and transmits it on the 
local CAN network. Again, the CANAlyzer may be used to verify functionality. 
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4 Bluetooth 
Bluetooth is the name of a new standard for short- range radio communication. 
Mobile phone and computer manufacturers developed the technology. Companies 
interested in developing their own Bluetooth application are members of the 
Bluetooth Special Interest Group (SIG). The group include founding members 
Ericsson, Nokia, IBM, Intel and Toshiba. Since its formation in May 1998, close 
to 1800 companies (May 2000) have joined the Bluetooth SIG. Members get free 
access to the technology, which in some aspects is protected by patent. As a 
member, the company commits to not block or limit the Bluetooth technology. 
The company is still permitted to develop and patent applications, of which 
Bluetooth is a part. Originally, the objective was to form a standard for short-
range radio communication, to provide an easier connection between mobile 
phones and mobile computers. Nevertheless, a wide range of companies and 
industries has embraced the technology. Bluetooth will cut the wire or cable 
connection between different devices such as mobile phones, headsets, fax 
machines, printers, mobile computers, or to almost any digital peripheral device. 
Only the imagination sets the limit. 
 
The Bluetooth unit is a small, ready to mount, circuit for a wide range of products. 
The connection is achieved by radio with a carrier frequency of 2.4-2.5 GHz. This 
frequency band is globally designated for similar purposes. A binary FM 
modulation is used, which minimizes transceiver complexity. The gross data rate 
is 1 Mb/s. The standard uses frequency hopping, which means that the sending 
unit sends one data packet, changes frequency, sends a new packet, and changes 
frequency again. The procedure is then repeated over and over. The advantage of 
this technique will be discussed in a subsequent section. 
 
The following sections in this chapter will cover how data information is 
communicated between Bluetooth units. Voice transmission is beyond the scope 
of this paper and will not be described in any detail. In addition, essential Packet 
structures and protocol architecture will be discussed. 

4.1 Network Topology 

A Bluetooth unit can establish a point-to –point connection, or a point-to-
multipoint connection. In the later case, several Bluetooth units share the same 
channel (see section 4.2). Two or more units sharing the same channel form a 
piconet. In a piconet, one unit acts as master and the others as slaves. Up to seven 
slaves can be active in one piconet. However, more slaves can be locked and 
synchronized to the master, but they have to be inactive, in park mode. The master 
for both active and parked slaves solely controls the access to the channel. 
 
When different piconets are connected, a scatternet is formed. The options are 
shown in figure 4.1 below. Slaves can participate in different piconets and a 
master in one piconet can be a slave in another net. The piconets are not time-or 
frequency synchronized, and each piconet has its own hopping channel. 
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  Figure 4.1. Bluetooth connections. 

 (a) Point-to-point piconet, (b) multislave operation, (c) Scatternet 
 
A device participating in several piconets apply time multiplexing, where it 
reserves time for each net. As a result of this, its performance will be slightly 
decreased. For further information, please refer to (SIG 1999, section 10.9, pp. 
122-125). 

4.2 The Baseband 

The Baseband circuit is the digital part of the Bluetooth module, controlling radio, 
Bluetooth clock, radio frequency, frequency hopping, and the hop sequence. 
Information is exchanged using packets. Each packet is transmitted at a different 
hop frequency in a Bluetooth channel. The channel is defined by a unique 
sequence of frequency changes, hopping at a maximum rate of 1600 hops/sec.  
 
The technique used is called Frequency Hop Spread Spectrum (FHSS). The 
spectrum allows up to 79 channels with a channel bandwidth of 1 MHz. The 
sequence is determined by the Bluetooth device address of the master. All 
Bluetooth units participating in a piconet are synchronized to this channel. The 
channel is divided into time slots, where each slot corresponds to an RF hop 
frequency. The frequency stays the same for one slot time, which is 625 ←s long, 
provided that the packet does not occupy more than one slot. Packets covering 
one, three, or five time slots are defined. In each case the frequency remains fixed 
for the duration of the packet.  
 
The advantages of using frequency hopping are that several transmitters can send 
at the same time and a connection is tolerable to interference. The data throughput 
might be degraded, but the connection will, with high certainty, not collapse. The 
challenge with Spread spectrum is to find the hop sequence, which most certainly 
is a reason for why the military has used this technique for safe communication. 
 
The Bluetooth standard supports one asynchronous channel, up to three 
simultaneous synchronous channels, or a channel that supports an asynchronous 
and a synchronous channel at the same time. Each synchronous channel can 
transmit 64 kb/s full duplex, which mainly is used for voice transmission. Each 
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asynchronous channel can transmit up to 723.2 kb/s in one direction and up to 
57.6 kb/s in the return direction. In the case of symmetric transmission the data 
rate is up to 433.9 kb/s. In order to limit the impact of noise on the Bluetooth 
radio, forward error correction (FEC) can be used. This reduces the number of 
retransmissions, but also decreases the data rate. For detailed information about 
the Baseband and the Bluetooth channel, see (SIG 1999, part B). 

4.3 Network Configurations 

There are two types of links defined in the Bluetooth specification. 
= ACL-Asynchronous Connectionless Link 
= SCO-Synchronous Connection Oriented Link 

4.3.1 ACL Link 
In an ACL link most ACL packet types are retransmitted, if not transmitted or 
received correctly. Therefore, this is considered to be a reliable link. The ACL link 
provides a packet switched connection with one or all slaves in the piconet. The 
master transmits packets, on a per slot basis, at “even” time slots. Independent of 
the packet length, one, three, or five slots, a slave is only allowed to respond in the 
next “odd” time slot, provided that it was addressed in the preceding master-to-
slave time slot. An ACL packet with the Active member Address (AD_ADDR) 0 
is interpreted as a broadcast message and is received by all connected slaves. In 
case of a broadcast message, no slave is allowed to return a packet (an exception 
is found in the access window for access requests in Park mode, see SIG 1999, 
section 10.8.4, pp. 115). As implied in part of the name, connectionless, no 
transmission shall take place if there is no data to send. 
 
The associated packets are listed in table 4.1 

 
Packet 
Type 

Number 
of Slots 

User 
Payload 
(bytes) 

FEC1 Symmetric 
Max. Rate 
(kb/s) 

Asymmetric Max. Data Rate 
(kb/s) 
Forward         Reverse 

Overhead2  
In (%) 

DM1 1 17 2/3 108.8 108.8 108.8 62.8 

DH1 1 27 No 172.8 172.8 1727.8 41.0 

DM3 3 121 2/3 258.1 387.2 54.4 40.1 

DH3 3 183 No 390.4 585.6 86.4 9.4 

DM5 5 224 2/3 286.7 477.8 36.3 37.5 

DH5 5 339 No 433.9 723.2 57.6 5.4 

AUX1 1 29 No 185.6 185.6 185.6 36.6 

 
Table 4.1. ACL data packets 

                                                 
1 FEC: Forward Error Correction 
2 Number of overhead bits by the total number of bits in respective packet type 
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The ACL data packets use CRC (Cyclic Redundancy Check), with exception for 
the AUX 1 packet, to check for error. Hence, in case of an error a packet is 
retransmitted. Except for the AUX 1 packet, there are two types of packets: The 
DM (Data Medium Rate) and DH packet (Data High Rate). The difference is that 
DM packets use FEC (Forward Error Correction), for which the data rate is 
slightly reduced. One the other hand the FEC allows the payload to be 
reconstructed if corrupted, for instance, by random noise. As indicated by the 
packet name, a packet occupies one, three or five time slots. The slot length is 625 
µs, and up to 366 µs is used for transmission. The remaining time is needed to 
switch to the next frequency in the hop sequence. If both master and slave sends 
packets covering a single time slot the time division scheme in figure 4.2 is 
obtained. 
 
 
 
 
 
 
 
 
 
Figure 4.2. Slot timing, using one slotted packets. 
 
The example is seen in the eyes of the master and DM1 or DH1 packets are used 
(AUX1 packets could also be used). In figure 4.3 an asymmetric situation is 
shown. 
 
 
 
 
 
 
 
Figure 4.3. Slot timing (master: 3 slots, slave: 1 slot) 
 
In this case the master starts transmission on an even time slot using a DH3 
packet, or a DM3 packet. The slave responds with a 1 slotted packet. The selection 
of high-rate data or medium-rate data shall depend on the quality of the link. 
When the quality is good, the FEC in the data payload can be omitted, resulting in 
a DH packet. Otherwise, DM packets must be used. 
 
From the examples the effective data rates in table 4.1 can be derived. Consider 
the case when the master sends DH3 packets with up to 183 bytes every 2500 µs 
and the slave responds with DH1 packets, with up to 27 bytes. The maximum 
forward asymmetric data rate for DH3 packet is 183·8 bits/2500 µs= 585.6 kb/s 
and in reverse with DH1 packets 27·8 bits/2500 µs = 86.4 kb/s. The remaining 
fields are determined in the same manner. Detailed information about all data and 
control packets can be found in (SIG 1999, section 4.4, pp.54-61). 

625 µs 

1250 µs 

366 µs 

TX slot RX slot

2500 µs 

TX slot1 TX slot 2 TX slot 3 RX slot 

625 µs 
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4.3.2 SCO Link 
The SCO link operates on reserved time slots. This provides a fast transmission of 
packets with a guaranteed time interval, but is not considered a reliable link since 
the SCO packets are never retransmitted. The SCO link is a symmetric, point-to-
point connection between the master and a specific slave. This type of connection 
is considered to be circuit-switched since it operates on reserved slots. The SCO 
link typically supports time bound information like voice. As for the ACL link an 
addressed slave may respond to the master in the next slave-to-master time slot.  
Even if the SCO slave fails to decode the slave address in the packet header, it is 
still allowed to return an SCO packet in the reserved SCO slot. The SCO link is 
not used in this project and will not be further discussed. For additional 
information on the SCO link, refer to (SIG 1999, section 3.2, pp.45, 46). 

4.4 The Baseband Packet 

This section describes in more detail the format of the baseband packet and is not 
crucial to understand how Bluetooth operates. Therefore, the reader may skip to 
the next section if not particularly interested in the baseband packet format. 
 
All information is physically transported via the baseband, and the baseband 
packet. The standard frame is shown in figure 4.4. The packet can consist of, the 
access code only and is used in paging and inquiry procedures, access code and 
header, or of access code, header and payload. The access code is used for 
synchronization; DC offset compensation, and identification. 
 
 
 
 
 
 
 
Figure 4.4. Standard packet frame 
 
Three different access codes are defined. 

= Channel Access Code (CAC) 
= Device Access Code (DAC) 
= Inquiry Access Code (IAC) 

 
The different codes are used depending on operation mode. The channel access 
code defines the channel of a piconet, and is include in all packets sent by the 
master. The code is derived from the lower address part of the master Bluetooth 
address (BD_ADDR). The device access code is used during page, page scan and 
page response substates. This code is derived from the unit’s BD_ADDR. Finally, 
the IAC is used for inquiry operations. The code can be of two kinds: First, the 
General Inquiry Access Code (GIAC), which is used to discover all Bluetooth 
units within range. The second is the Dedicated Inquiry Access Code (DIAC), 
which is used to discover a group of units sharing a common characteristic. 

LSB MSB 

ACCESS 
CODE HEADER PAYLOAD 

72 54 0-2745 bits 
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As indicated by the figure the length of the access code is 72 bits. However, if a 
DAC or IAC is sent no header is present and the access code field can be reduced. 
A part called the trailer (4 bits) of the field is excluded. In this scenario the length 
of the access code is reduced to 68 bits. For further detail, refer to the Bluetooth 
baseband specification (SIG 1999, part B). 
 
The next part of the frame is the header field; see figure 4.5 showing its content 
 
 
 
 
 
Figure 4.5. Header content (lengths in bits) 
 
AM_ADDR Active member address, which is used to distinguish between 

 the members of a piconet. This address is included both in  
 master-to-slave and slave-to-master communication. For 

broadcast messages this field is set to all zeros. 
TYPE There are sixteen packets defined. Firstly, the type determines if 

a packet is sent on a SCO link or an ACL link. Secondly, it 
determines how many slots the packet occupies. The sixteen 
packets are divided into four segments. The first segment 
contains four packets that are common for both ACL and SCO 
packets. Segment two includes six packets, all occupying only 
one time slot. Segment three and four are for packets occupying 
three and five time slots, respectively. 

FLOW When the receiver buffer is full and not emptied a stop 
indication is returned (FLOW=0) to stop the transmission 
temporarily. Packets including only link information (ID, POLL 
and NULL packets) or SCO packets may still be received 

 
ARQN ARQN is an acknowledge indication used to inform the source 

of a successful transfer of payload data. The success is checked 
with a CRC code and the acknowledge is piggybacked in the 
header of a return packet. 

SEQN This is used to distinguish between retransmitted packets and 
new packets. Each time a packet containing data with CRC, the 
SEQN bit is inverted. If a retransmission is made due to a failing 
ACK the destination receives the same packet twice. By 
comparing the SEQN of consecutive packets, correctly received 
retransmissions can be discarded. 

HEC 8-bit header error check (see section 4.5 error correction). 
 

LSB 

AM_ADDR TYPE FLOW ARQN SEQN HEC 

MSB3 4 1 1 1 8 
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The last field is the payload field, which can include ACL or SCO payload  
information. Here, only the data field structure will be handled. The field consists  
of three segments: a payload header, a payload body and a CRC code. See figure  
4.6. 
 
 
 
 
 
 
 
Figure 4.6. Payload segment 
 
L_CH Logical Channel Field, see table 4.2 
 
 
 
 
 
 
 
 
 
Table 4.2. Logical channel field 
 
 
FLOW Controls flow on the L2CAP level. The Link manager is  
 responsible for setting this bit. (FLOW=0; flow off) 
LENGTH Number of bytes in the payload body. 
 
The information in this section is extracted from (SIG 1999, chapter 4, pp.47-66). 
 

4.5 Error Correction 

4.5.1 FEC Coding 
The Data Medium rate ACL packets are protected by a 2/3 Forward Error 
Correction code (FEC). The scheme is a (15,10) shortened Hamming code. The 
generator polynomial used is g (D) = (D+1)(D4+D+1). Essentially a 15-bit code 
word is used to represent 10 bits. The code is able to correct all single errors and 
detect all double errors in each codeword. For a connection not producing many 
errors the FEC only impose unnecessary overhead, reducing the data rate to 2/3. 
 
The packet header is also protected. The header is always protected by 1/3 FEC 
because it contains important link information and needs to be sustained. The code 
is implemented by simply repeating each bit in the header three times. 

L_CH Code Logical  
Channel Information 

00 NA Undefined 

01 UA/UI Continuation fragment of an L2CAP 
message 

10 UA/UI Start of an L2CAP message or no 
fragmentation 

11 LM LMP message 

L_CH FLOW LENGT PAYLOAD BODY CRC 

Header

2 1 5 16 



Bluebus – Protocol Conversion for Wireless Data Exchange 

 27

4.5.2 ARQ (Automatic Repeat reQuest) Scheme 
All the ACL data packets, except the AUX1 packet, include a 16-bit Cyclic 
Redundancy Check (CRC) for the packet payload. The polynomial used to 
generated the CRC is g (D) = D16+D12+D5+1. Furthermore, the packet header is 
checked with an 8-bit checksum called Header Error Check (HEC). The HEC is 
generated by the polynomial g (D) = D8+D7+D5+D2+D+1. For detailed 
information on checksum generation, see (SIG 1999, Chapter 5, pp.66-76). 
 
Upon reception of a packet these checksums are calculated and confirmed. If the 
checksum for the payload fails the receiver requests a retransmission of the 
packet. Bluetooth uses an unnumbered acknowledge scheme, where an ACK or a 
NAK is returned in the packet header of the responding packet of the slave. The 
response is transmitted on the next slave-to-master slot following the reception of 
the packet from the master. The master will respond the next time it addresses the 
slave, which may be after addressing several other slaves. 
 
The ARQ scheme is only applicable to links using packets including CRC. The 
data payload is retransmitted until a positive acknowledge is received or a time out 
is exceeded. For some communication links only a limited delay is allowed and 
new payload must be allowed. In case of timeout, the old packet is flushed and the 
controller is forced to consider the next data instead. Details on the ARQ Scheme 
may be found in (SIG 1999, Section 5.3, pp.68-77). 



Bluebus – Protocol Conversion for Wireless Data Exchange 

 28

4.6 Error Checking 

Packets are checked for errors or wrong delivery using the channel access code, 
the HEC in the header, and the CRC in the payload. At packet reception the access 
code is checked first. Since the 64-bit sync word in the access code is derived 
from the 24-bit master LAP (Lower Address Part of Bluetooth Device Address), 
this checks if the LAP is correct, and prevents the receiver to accepting packet of 
another piconet. The HEC and CRC are used to check both for errors and wrong 
address. For detailed information of how the HEC and CRC is generated please 
refer to (SIG 1999, section 5.4, pp.73). 

4.7 The Bluetooth Connection 

The steps for connection between units can be summarized like: 
 

= Initialisation of Bluetooth units 
= Inquiry Phase- discovering units within radio range 
= Connection set-up 

o Includes Page phase 
= Data and/or voice transfer 
= Disconnection 

4.7.1 The Inquiry Procedure 
The first step after initialisation, to create a connection, is the inquiry phase.  
A unit waiting to be discovered periodically enters the Inquiry scan state, listening 
for an inquiry messages from the master. The unit scans over a sequence of 32 hop 
frequencies and when it detects an IAC it can respond to the inquiring (master) 
unit. As response the device sends a FHS packet containing its address and clock 
value. The scanning unit can either be listening for general access codes (any unit) 
or for dedicated inquiry access codes (a specific type of unit). 
 
The master sends ID packets continuously over a range of hop frequencies and 
scans for response after each transmission. The inquiring unit does not 
acknowledge any inquiry responses it receives. The Inquiry continues until it is 
terminated by the Link Manager (enough responses received) or a timeout occurs. 

4.7.2 The Page Procedure 
As explained in the Bluetooth specification, paging is used to set up a connection 
with a known unit. To connect to an unknown unit, the slave must respond to the 
inquiry message as explained above. Once the unit is known a connection can be 
established by paging the unit. The page procedure is very similar to the inquiry 
procedure. 
 
During this phase the master estimate the slave clock offset, and uses this to start 
the page on frequencies close to this estimate by sending ID packets containing the 
slave’s address. To ensure connection the master uses a “Train” that is 10ms long 
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consisting of 16 time slots at different frequencies. The train include the estimate; 
eight preceding frequencies and seven frequencies post the estimate. If this would 
not be enough a second train of additional 16 frequencies will be used. Eight 
frequencies placed on each side of the first train, broadening the frequency range 
even more. 
 
The slave is in Page Scan state and listens for its device access code i.e. a page 
message from the master. The slave stays fixed at one hop frequency, at least 18 
consecutive slots, while looking for its Device Access Code (DAC). The scan 
frequency is derived from the unit’s address (BD_ADDR) and its native clock. 
Every 1.28 s the scanning frequency is changed. Once the slave recognizes its ID 
packet it responds. Upon response, the master sends a Frequency Hop Sequence 
(FHS) packet supplying the slave with the master’s clock offset and Bluetooth 
address. Furthermore, the master assigns an active member address to the slave 
that is used for the remainder of the connection. The slave can now start hopping 
with the master. For more information about access procedures refer to (SIG 1999, 
section 10.6, pp.99-107). Figure 4.7 below displays the connecting states 
discussed above and other possible states of a Bluetooth unit. 
 

 
Figure 4.7. Bluetooth device states 

4.7.3 Active States 

In the Active state mode, a Bluetooth device actively participates on the channel. 
The master schedules all transmissions to the slaves. Active slaves listen in the 
master-to-slave slots for packets. If not addressed at the time, the slave may sleep 
until the master transmits again. However, periodic transmission is needed to keep 
the slave synchronized to the channel. This is easily obtained since only the channel 
access code is needed for synchronization, which is included in all messages sent by 
the master. 
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4.7.4 Park Mode 
If a slave does not need to participate in a channel, at the time, it can be placed in 
park mode. The slave gives up its Active Member Address, but still stays 
synchronized to the master. The slave can wake up again at a master beacon 
instant. The beacon is repeated periodically and the master can activate the slave, 
transmit broadcast information, or change park mode parameters at the beacon 
instant. 

4.7.5 Hold Mode 

An ACL link between two Bluetooth devices can be placed in hold mode for a 
specific hold time. The master will send no ACL packets during this time. This 
mode can be entered if no data needs to be transmitted for a long time. The 
transceiver can then be turned off to save power. 

4.7.6 Sniff Mode 

When a link is in sniff mode the master can only start a transmission in a sniff 
slot. The interval of these slots is a result of a negotiation between the master and 
the slave. Both units, must agree to enter sniff mode, and can request to enter sniff 
mode. 
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4.8 Bluetooth Software Stack 

The essential Bluetooth software stack is shown in Figure 4.8. The Bluetooth host 
denotes the user, e.g. a PC or a processor that uses the Bluetooth module to 
communicate with a remote system. The bottom layer of the Bluetooth module 
provides means for the physical transmission of packets as described in section 
4.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8. Bluetooth software stack 
 
The Link Manager (LM) is responsible for link set-up, security and control. LM 
messages have higher priority than user data, and are transferred in the payload 
instead of data. The message is distinguished by a reserved value in the payload 
header. Messages are filtered out and interpreted by the Link Manager on the 
receiving end and is not propagated to higher layers. How the Link Manager 
actually works inside is not essential and is left for the reader to learn about. 
Information can be found in (SIG 1999, part C, pp.191-239). 
 
The Host Controller Interface (HCI) is the programming interface to access the 
Bluetooth device and will be handled in section 4.8.1. The Host controller 
represents the controller inside the Bluetooth module that communicates with the 
host. Via the HCI the host can set up and maintain a link with a remote system 
over Bluetooth. 
 
The Logical Link Control and Adaptation Layer Protocol (L2CAP) is layered in 
the data link layer and is only used for ACL links, i.e. there is no support for SCO 
links. The purpose of L2CAP is protocol multiplexing, enabling usage of higher 
layer protocols such as RFCOMM, HID and TCP/IP. Essentially, L2CAP hide the 
data link packet lengths for higher layer protocols. Moreover, it segments higher 
layer packets (up to 64k bytes) into appropriate data link packets and reassembles 
them again on the receiving end. Channels as described, recognize connections 
between devices. The end points of an L2CAP channel have its own channel 
identifier (CID), which provide the end points with a local name. Each channel 
can only use one higher-level protocol and is recognized by L2CAP. In other 
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words multiple channels can use the same protocol, but a channel cannot be used 
by multiple protocols. 
 
Only a portion of L2CAP will be used in this project. The reason is that the 
Ericsson Bluetooth module requires the use of the L2CAP packet format when 
sending data. Except from this all control of the Bluetooth module is handled with 
HCI commands. This deviation from the Bluetooth specification is further 
discussed in section 9.2. For details on L2CAP refer to (SIG 1999, part D, pp. 
245-313). 

4.8.1 Host Controller Interface (HCI) 
The Host Controller Interface, part of the Bluetooth firmware, provide a format to 
reach the Bluetooth hardware capabilities. It is a command interface to the 
baseband, the Link Manager, and to various host controller registers. In this 
project all control of the Bluetooth device is done using HCI commands. The 
functionality could be fully implemented in the host software, but then losing the 
advantages of a flexible and structured layered software. 
 
The HCI is divided into Command and Event. Typically, the host sends a 
command to the host controller and when the controller has carried out its task, it 
responds with a command complete event. The HCI driver converts commands 
into HCI packets and the packets are transported by underlying software to the 
Bluetooth module. The use of HCI packets makes the layer independent of means 
of physical transportation. In the Bluetooth specification USB, UART and RS-232 
are mentioned for physical transportation. Once in the Bluetooth module the 
physical bus driver converts the data back into HCI packets. The packets are 
transported to the HCI firmware, where the commands are interpreted and actions 
are taken accordingly. 
 
HCI commands may take different amounts of time to carry out. For this reason, 
the host controller responds with the result of the command in form of an event. 
To detect errors on the physical link a time out shall be defined. The Host 
Controller Interface Functional Specification recommends a default time out of 
one second; from the time a command is received to the moment a response is 
sent. 

4.8.2 HCI Packets 
The Host can send HCI commands, ACL data and SCO data to the Host 
Controller. In the opposite direction the Host controller can send HCI events, ACL 
data and SCO data to the Host. All parameter values, unless noted, are sent in 
"Little Endian" format, i.e. the least significant byte is transmitted first. The 
parameters in non-arrayed and all elements in an arrayed parameter have fixed 
size. Parameters are noted: parameter A[i]. If multiple arrays are used the order of 
the parameters are as follows: Parameter A[0], Parameter B[0], Parameter A[1], 
Parameter B[1], … Parameters A[n], Parameters B[n]. 
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4.8.3 HCI Command Packet 

The format of the HCI Command packet is sketched in figure 4.9. Each command 
contains an Opcode (2 bytes), uniquely identifying different commands. The 
OpCode consist of two components. First, the OpCode Group Field (OGF) 
identifying a specific cluster of commands, such as Link Control Commands, Link 
Policy Commands, Host Controller & Baseband Commands, etc. Secondly, the 
OpCode Command Field (OCF) defines the commands in a specific cluster. The 
OGF occupies the upper six bits and the OCF the remaining lower ten bits of the 
OpCode. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9. HCI command packet. 
 
The Parameter Total Length (1 byte) field defines the number of bytes in the 
following parameters, and not the number of parameters. The Host Controller 
must be able to receive up 255 bytes of parameters plus the three-byte header. 
 
In most cases, when a command has been executed, the Host Controller returns a 
Command Complete Event to the Host. However, some commands are not 
verified with a Complete Event. Instead a Command Status event is sent back 
when the command execution has started. In case of an error the cause of the error 
will be included in the Command Status event. Later on when the command is 
carried out, a command complete event may be sent. Each command is specified 
in (SIG 1999, parts 4.5-4.10, pp. 540-702) with command parameters, return 
parameters and associated events generated for that command.  
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4.8.3.1 An Example 

As an example one command, the HCI_Inquiry command, can be defined in short 
(extracted from the Host Controller Interface Functional Specification): 
 
Description: 
The HCI_Inquiry command causes a device to enter inquiry mode to discover 
units within range. The command belongs to a group named Link control 
Commands with the OGF 0x01. The OpCode Command Field for this command 
is 0x0001. 
 
 
Command parameters: 

= LAP (3 bytes): The value from which the inquiry access code will be 
generated. 

= Inquiry_Length (1 byte): Maximum amount of time before the inquiry 
procedure is stopped. Range: N = 0x01-0x30. Time = N*1.28 seconds. 

= Num_Responses (1 byte): Maximum number of responses accepted before 
the inquiry process is halted. Range: 0x01-0xFF. 

 
Return parameters: 

= None 
 
Events generated: 

= Command Status Event, when inquiry is started. 
= Inquiry Result Event, when a device responds. 
= Inquiry Complete Event, when the inquiry procedure is finished in 

compliance with the command parameters. 

4.8.4 HCI Event Packet 
The format of the HCI Event packet is shown in figure 4.10. Each Event is 
distinguished with an Event Code (1 byte) in the first segment of the packet. The 
number and kind of parameters are specific for the respective event. The possible 
events are defined in (SIG 1999, chapter 5, pp. 703-744). 
 
 
 
 
 
 
 
 
 
 
Figure 4.10. HCI event packet 
 
The Host must be able to accept HCI Event packets with up to 255 bytes of data 
excluding the packet header. 
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4.8.5 The HCI ACL Data Packet 
The HCI Data Packet is used to exchange data between the host and the host 
controller and is sketched in figure 4.11 below. Here, only the ACL data packet 
will be described. The SCO data packet is defined in (SIG 1999, section 4.4.3, 
pp.538, 539). 
 
 
 
 
 
 
 
 
 
 
Figure 4.11. HCI ACL data packet 
 
The Connection Handle, a 12-bit identifier for transmitting and receiving voice or 
data, is used to identify a connection between two Bluetooth devices. An assigned 
connection handle is used by the host Controller for the remainder of the present 
connection. The Packet Boundary Flag (PB Flag, 2 bits) indicate weather or not 
the packet contains a continuing fragment of a higher layer message or if it is the 
first part of a higher layer packet (so far only a L2CAP message). The Broadcast 
Flag (BC Flag, 2 bits) set to 00 indicate a point-to-point transmission, 01 means 
the packet will be sent to all active slaves (Active Broadcast), 10 indicates that the 
packet will be sent to all the slaves, including slaves in ‘Park’ mode (Piconet 
Broadcast). The Data Total Length (2 bytes) gives the number of bytes in the Data 
segment. 

4.9 Data Transfer using L2CAP 

A master can transfer information to a slave whenever it wishes to. However, if a 
slave wishes to transfer data the master must have addressed it. If the master has 
no data to send to the slave, it invokes a polling mechanism by sending Poll 
Packets to the slave. This way the slave is given the opportunity to transfer data. 
 
To explain the transfer procedure and how two devices interact, consider the 
following example: 
 
Host 1 (local) wants to transfer 26 bytes of information to host 2 (remote). A 
connection is established and the packet type used for the session is the DM1 
packet. The 26 bytes of data represent the L2CAP messages and do not fit into one 
DM1 packet. Therefore the data is segmented and sent in two DM1 packets. 
The situation is sketched in figure 4.12. 
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Figure 4.12. segmentation of L2CAP packet. 
 
The first HCI packet includes the L2CAP header, namely Length and CID (4 
bytes) and 13 bytes of data in the HCI data payload. The Packet boundary flag 
(PB-flag) is set to “first packet of higher layer message”. The second HCI packet 
includes the remaining 13 bytes of data in the HCI data payload. This time the PB-
flag is set to “continuation of higher layer message”. On the receiving end the host 
software will re-assemble the two packets in order to create the 26 bytes of 
information packet originally sent. 

4.10 Bluetooth Security 

The Bluetooth standard provide two types of security measures, authentication and 
encryption. Authentication is used to verify, before information is exchanged, that 
a counter part really is the individual it claims to be, and not an intruder. 
Encryption is the process where sent information is encoded in such way that only 
the addressed device is able to decode it. Other units shall not be able to listen to 
this private information. The system is not airtight and with high effort an intruder 
could decode an encoded messages, and/or illegally pass the authentication. For 
most applications the security is considered to be satisfactory. The security is 
adjustable by a variable key used for encryption. The size of key may vary 
between 1 and 16 octets. If further security is needed this shall be implemented at 
the application layer. For the first connection between two devices, the security 
procedure is depicted in figure 4.13. 
 

 
Figure 4.13. Security, first connection 
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The PIN code can be a fixed number provided with the Bluetooth the user could 
arbitrarily change unit, or it if a Man Machine Interface (MMI) is present. In the 
later case the number is entered in both units and later matched. The security 
procedure for following connections between the same units is depicted in figure 
4.14. 
 
 
 
 
 
 
 
 
Figure 4.14. Security procedure (following connections)  
 
The link key is a 128-bit random number, which is shared between two or more 
parties and is the base for all security transactions between these parties. The link 
key is used in the Authentication routine. Furthermore, it is used as one of the 
parameters when the encryption key is derived. 

4.10.1 Authentication 
The authentication is based on a challenge-response scheme. The unit requesting 
another unit to prove himself is called the verifier and the requested unit, claimant. 
For the authentication to succeed, the procedure requires that both units share the 
same secret key. The verifier, e.g. unit A, sends a random number AU_RANDA to 
the claimant, unit B. The situation is displayed in figure 4.15. Both units calculate 
an authentication code, SRES, using the algorithm E1 with the inputs AU-
RANDA, BD_ADDRB and Link key (128-bits). The verifier compares its result 
with the claimant’s, and if they coincide, the authentication is a success. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.15. Challenge-response  
 
In some peer-to-peer communications, mutual authentication might be 
appropriate. In this case, unit a first request unit B to authenticate as described 
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number, AU_RANDB, and BD_ADDRA is used to determine SRES. The order in 
which to authenticate is decided by the link managers. 
 
If an authentication fails, the time between attempts will be increased. For each 
subsequent authentication failure with the same Bluetooth address, the waiting 
interval is increased exponentially and decreased if new attempts do not fail. This 
procedure prevents an intruder to repeat the authentication procedure with a large 
number of different keys. For greater detail about Authentication, see (SIG 1999, 
section 14.4, pp. 169-171). 

4.10.2 Encryption 
Protecting user data is done through encryption, where ciphering bits are bit-wise 
modula-2 added to the data stream. The cipher is symmetric, meaning that the 
deciphering is done exactly the same as encryption with the identical key. The 
payload is ciphered, including the CRC bits, but not the forward error correction 
code. Each packet payload is ciphered separately with the cipher key, K Cipher. The 
cipher key is determined by the algorithm E0, using the master Bluetooth address, 
26 bits of the master real-time clock and the encryption key, Kc, as inputs. The 
effective cipher key length can be set to any multiple of eight between one and 
sixteen (8-128 bits). The situation is sketched in figure 4.16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.16. Encryption procedure 
 
Before the master enters encryption mode, the master sends a 128 bit random 
number, EN_RANDA, allowing the slave to determine Kc together with the current 
link key and a 96-bit Cipher Offset number (COF). Since at least the clock value 
changes for each transmission, the cipher key is continuously changed, making it 
hard for an intruder to encode a message. The cipher algorithm is defined in (SIG 
1999, section 14.3, pp.159-169). 
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4.11 Observations 

The data throughput and error tolerance can be set using different packet types. If 
a connection is relatively error free the DH packet should be used, providing the 
highest data rate. Depending on the amount of data DH1, DH3, or DH5 may be 
chosen. For instance a CAN message would fit into a DH1 packet, providing the 
fastest possible transmission of that particular message. On the other hand 
accumulated packets, if heavy traffic on the CAN network, could be bridged using 
a DH3 or DH5 packet, providing a much higher data rate (see table 4.1, pp.14). 
 
When a connection has to work in a noisy environment, the forward error 
correction code (FEC) can be added, increasing error tolerance. Using FEC will 
reduce the data rate, but effectively the throughput may be increased since the 
FEC decreases the number of re-transmissions due to packet errors. 
 
The Bit Error Rate (BER) is important to keep in mind while designing a 
Bluetooth implementation. According to the specification the BER is set to 0.1% 
at range limit. Consider the case when the longer packets are used. For instance 
the DH3 and DH5 packets contain about 1500 and 2700 bits, respectively. With 
BER at 0.1%, i.e. one out of a thousand bits are corrupt; the consequence will be 
that these packets will essentially be retransmitted infinitely. The cure for this 
problem is simply to send data in shorter packets. 
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5 The Controller Area Network 
BOSCH developed the Controller Area Network (CAN) in the early eighties for 
the car industry. CAN offer a high-level safety, reliable and robust data link, over 
a two wire serial bus. The acceptance today is worldwide and CAN is used in a 
wide range of products. Industrial examples are marine control and navigation 
systems, agricultural machinery, medical systems and textile production 
machinery. Two of the most important features of CAN are the automatic error 
handling, done by hardware and the guaranteed latency for bus access, which 
especially makes it very suitable for real-time applications. 
 
CAN covers layers 1 and 2 in the ISO/OSI model and are described in the 
international standard ISO 11519-2 for low speed applications and ISO 11898 for 
high speed applications. Enhancements of the original specification are available 
for the application layer such as CAN Kingdom, SDS, CANopen and DeviceNet. 
 
The data link layer services are implemented in the Logical Link Control (LLC) 
and Medium Access Control (MAC) sub-layers of the CAN controller. The LLC 
handles acceptance filtering and services for data transfer and data requests. 
Furthermore, it provides overload notification and recovery management. The 
MAC is responsible for frame creation, error detection, error signalling, and 
acknowledgement and controls the access to the bus. The physical layer provides 
means for transmission of dominant and recessive bits, where the dominant bit 
overwrites the recessive bit if transmitted at the same time.  

5.1 Physical Layer 

The CAN bus basically consist of two lines CAN_H and CAN_L with terminating 
resistors in both ends as shown in figure 5.1. 
 

  
Figure 5.1. Network setup 
 
However, CAN do not require a specific medium. Optic fibre or even radio could 
be used, but the most common is the use of twisted pair cables, as described in the 
specification ISO/WD11898-2 (1999). 
 
Whichever medium, the bit level is always interpreted by the differential between 
CAN_H and CAN_L. The bus state can either be dominant (normally referred to 
as a logical 0) or recessive (normally logical 1). See figure 5.2. 
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Figure 5.2. Nominal bus levels. 
 
A recessive bit is detected when CAN_ H is less than 0.5 V higher than CAN_L. 
If the CAN_H is more than 0.9 V higher than CAN_L a dominant bit is detected. 
 
The differential nature for bit representation provides a great advantage against 
electromagnetic interference. Bus lines exposed are both affected, but the 
differential is still unaffected. 
 
A disadvantage however is the limited bus length. At maximum bit rate of 1Mbit/s 
the overall bus length may not exceed 40 meters and connecting stubs should not 
exceed 0.3 meters, for proper functionality. The reason for this is that all nodes in 
the network checks the bit value simultaneously and therefore a transmitted bit 
must be allowed to propagate throughout the system before a second bit can be 
sent. At lower bit rates the bus length and number nodes can be increased. Refer to 
ISO/WD11898-2 (1999) for further information. 

5.2 Message Frames 

Every CAN message consists of a number of bits divided into fields. The message 
can be one of two kinds. The difference is basically the length of the message 
identifier. The standard message frame consists of an 11-bit identifier (CAN 2.0A) 
allowing 2032 different logical addresses, i.e. 2032 communication objects or 
messages can be present in Standard CAN. In the other case the message has an 
extended identification field of 29 bits, allowing 229 (536,870,912) unique CAN 
messages (CAN 2.0B). 
 
Four kinds of frames are defined for CAN: 

= Data Frames 
= Remote Frames 
= Error Frames 
= Overload Frames 

5.2.1 Data Frame 
A data frame is created by a node when it wishes to transmit data or if it has been 
requested to do so by another node. The frame format, as described in 
(ISO/WD11898-1, 1999, pp.24-30), can be seen in figure 5.3 below. 
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 Figure 5.3. CAN data frame 
 
SOF 
The data frame starts with a dominant Start of Frame (SOF) bit for hard 
synchronization of all nodes. Hard synchronization is performed whenever there is 
a recessive-to-dominant edge during bus idle, suspend transmission or during the 
last bit of intermission. 
 
Arbitration Field 
The arbitration field looks different depending on if it is a standard or extended 
data frame. The difference can be seen in figure 5.4. 
 
 

 
 
Figure 5.4. Arbitration field 
 
The arbitration field determines the priority of a message if more than one node 
wants to send a message. The lower the numerical value the higher the priority. 
The standard frame arbitration field contain an 11 bit identifier, which mask 
incoming messages in order to determine if a message is relevant, or not, to this 
node. The following field is the RTR (Remote Transmission Request) bit. The 
RTR bit is used to distinguish between data frames, in which case the bit is 
dominant, and remote frames, where a remote node requests data. 
 
In the extended format the 11-bit base ID is followed by the Substitute Remote 
Request (SRR) bit, Identifier Extension (IDE), extended ID bits and the RTR. The 
SRR is always recessive in the extended format and only replaces the RTR bit in 
the standard frame. This way a standard frame always gets priority over an 
extended frame if a collision occurs. The IDE bit indicate weather a frame is of 
standard or extended format. 
 
Control Field 
In the standard frame format the IDE bit is included in this field followed by r0 
and the Data Length Code (DLC). Bit r0 is reserved for future use and the DLC 
indicate the number of bytes in the data field. The frame size is in this way not 
made any larger than it needs to be. The Control Field for the Extended Frame 
Format has two reserved bits r1 and r2 before the DLC bits. 
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Data Field 
The data field contain the application data of the message. The field can be zero to 
eight bytes long. A frame containing no data (zero bytes) could be used to indicate 
some event defined by the data frame identifier. 
 
Cyclic Redundancy Check Field 
The Cyclic Redundancy Check (CRC) field is a 15-bit checksum calculated for the 
preceding bits of the message. The checksum is used for detection only, i.e. no 
correction will be made. The sixteenth bit of this field is the CRC Delimiter, 
which is fixed formatted recessive. This bit is checked by the receiver and 
indicates whether the frame is legal or not. 
 
ACK Field 
The Acknowledgement Field is two bits long and an ACK slot and an ACK 
Delimiter (figure 5.4). 
 

  
 
Figure 5.4. Acknowledge field 
 
The transmitting node sends a recessive bit in the ACK slot of the message. Every 
node receiving the message correctly overwrites the ACK slot with a dominant bit. 
The transmitter reads the ACK slot back and if a dominant bit is sensed the node 
can be sure the message was transmitted correctly and at least one node got the 
message correctly. 
 
End Of Frame Field 
EOF closes the frame with seven recessive bits. Normally, after the fifth bit of 
equal polarity an additional bit with reversed polarity is stuffed into the bitstream, 
referred to as bitstuffing. During EOF this service is turned off, which would 
otherwise generate a bit stuffing error. 
 
Intermission Field 
The intermission field is used to separate two message frames. However, Error or 
Overload frames are allowed to be transmitted in this region. 

5.2.2 Remote Frame 
The remote frame is almost identical to the data frame. The difference is that the 
remote frame contains no data and the RTR-bit is set recessive to indicate a data 
request. A node can request data from a source by sending a Remote Frame with 
an identifier that matches the identifier of the required data frame. The 
corresponding node responds by send the required Data Frame. 
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5.2.3 Error Frame 
A detected error is notified using an Error Frame (figure 5.5). The first field 
contain six consecutive dominant bits, which violates the rule of bit stuffing. This 
will cause all other nodes to realise the error and will start sending active Error 
frames them selves. 
 

  
Figure 5.5. Error frame 
 
All the nodes will ignore the originally corrupted message in the system and the 
transmitter will attempt to re-send the message as soon as the bus becomes 
available again. The Error Delimiter consists of eight recessive bits and allows 
restart of communication after an error. 

5.2.3 Frame Coding 
CAN use the method of Non-Return to Zero (NZR) for bit representation. During 
one bit time the signal stays constant and there are no edges between consecutive 
bits of the same level. To ensure synchronization of all nodes, CAN use bit 
stuffing. After five consecutive bits of the same polarity, a complementary bit is 
added into the bitstream. At the receiving end the bitstream is de-stuffed, i.e. 
added bits are removed. 
 
The frame segments CRC delimiter, ACK field and EOF are fields of fixed format 
and are not coded with bit stuffing. 

5.3 Arbitration 

In a CAN network all nodes have their own unique identifier. The node identifier 
is assigned during the design phase and also indicates its priority in respect to the 
other nodes in the network. The lower the numerical value of the identifier the 
higher the priority. If more than one node wants to access the bus at one time the 
node with the highest priority will automatically gain bus access with no delay. 
This is one of the real advantages of CAN and is achieved by a non-destructive, 
bitwise arbitration process. 
 
The arbitration process is well described as an example, as in Bagschik (2000). 
Consider the case in figure 5.6 where two nodes start transmitting at the same 
time. As long as the bits from the two are identical, nothing happens. The first 
time there is a difference the recessive (logical 1) bit of Node B will be 
overwritten by the dominant (logical 0) bit of Node A. Both nodes are at the same 
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time listening to the traffic on the bus. As soon as Node B does not receive the 
same bit it transmitted it realises that a message of higher priority requests access 
to the bus and directly stops transmitting. Node B has lost the arbitration and is in 
receive mode for the remainder of the message. When the bus becomes free again 
Node B will make another attempt to transmit and the same procedure will be 
repeated in case of simultaneous transmission. 
 

 
Figure 5.6. CAN arbitration 
 
This technique enables all nodes to listen to every message on the bus. The 
identifier of a message could be said to work as a key. The message will only be 
let in if the key fits, i.e. the node determines if the message is relevant, if not the 
message is simply ignored. The acceptance evaluation can either be handled by the 
application, i.e. software, which is a Basic CAN feature or automatically by 
hardware (CAN controller), which is a Full CAN feature. 

5.4 The Error Process 

Errors are detected and handled by the error management unit of the CAN 
controller. The advantage of hardware management is that application software is 
relieved of this task, otherwise putting extra burden on the application processor. 
 
In the event that a node sends erroneous messages repeatedly, error counters in the 
system guarantee that the bus traffic will not be permanently disturbed. For 
detailed information about error handling, please see (ISO/WD11898-2, 1999, 
pp.32,33) and Bagschik (2000). 
The error handling procedure happens as follows: 

= Error detection 
= An error frame is transmitted 
= The message is discarded by every network node 
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= The error counters of every bus node are incremented 
= The message is retransmitted automatically 

5.4.1 Error Detection 
The CAN controller can detect five different errors. 
 
Bit Error 
A transmitter monitors the bits present on the bus and compares them with the bits 
transmitted. A bit error is raised if there is a mismatch and an error frame is 
generated. However, no error can occur during the Arbitration Field and the 
Acknowledge slot. In order to achieve arbitration and acknowledgement these 
fields need to be able to be overwritten by a dominant bit. 
 
Bit Stuffing Error 
In the areas where bit stuffing is applied, a Bit Stuffing Error is signalled if a node 
detects six consecutive bits of the same polarity. 
 
Acknowledgement Error 
Upon transmission the ACK Slot is recessive and will be overwritten with a 
dominant bit by the first node to receive the message correctly. If the transmitter 
does not read back a dominant bit an error frame will be generated. 
 
CRC Error 
The receiver also calculates the CRC code transmitted in a message. If they differ 
a CRC Error will be signalled. 
 
Form Error 
Parts of the CAN frame has predefined values such as the CRC delimiter, ACK 
delimiter and EOF field. If the bit values differ a Form Error is signalled. 

5.4.2 Error Limitation 
In order to prevent permanent disturbance by error frames, a node can enter states 
that limits the influence on the bus. The three possible states are Error Active, 
Error passive and Bus Off, as shown in figure 5.7. Two counters, a Receive Error 
Counter (REC) and a Transmit Error Counter (TEC) keep track of in which state 
the node is in. Depending on the error the counters are incremented by a specified 
value as described in CAN specification. Furthermore, if a message is transmitted 
and received correctly the counters will be decremented by predefined values. 
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Figure 5.7. CAN error states 
 
Error Active 
This is the normal state of operation. The node will send Active Error frames upon 
a detected error. The node will stay Error Active as long as both TEC and REC are 
below 127. 
 
Error Passive 
This state is entered if the REC or TEC counter exceeds 128. In this state the node 
can still take part of the bus communication and sends Error Passive frames, 
which contain eight recessive flag bits, when an error occurs. Also, the node has to 
wait eight bits in between two transmissions. In order to get back to Error Active 
state, both counter need to be below 128. 
 
Bus Off 
A node, where the transmit error counter exceeds 255, is switched into bus off 
state. In the Bus Off state, a node can neither receive nor transmit any frames. 
Once in Bus Off the node has to be reinitialised to be able to become Error Active 
again. 

5.5 Bit Timing and Synchronization 

Four time segments construct one bit time: The Synchronization segment, 
propagation segment, Phase Segment 1 and Phase Segment 2. Each segment 
comprise of an integer multiple of the so-called Time Quantum. The Time 
Quantum is the smallest discrete programmable time resolution possible. The 
number of Time Quantum in each segment can be programmed, but the overall 
range for a bit time is 8 to 25 Time Quanta. The bit time is displayed in figure 5.8. 
 

  
Figure 5.8. Bit segments 
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= The SYNC_SEG is one Time Quantum and is used to synchronize the 
nodes on the bus. An edge is expected to occur during this segment. 

= The purpose of the PROP_SEG segment is to compensate for signal delays 
in the system. CAN controllers, transceivers and cables all add delay to the 
network and has to be compensated for. The programmable range is one to 
eight Time Quanta. 

= PHASE_SEG1 and PHASE_SEG2 are used to compensate for phase shifts 
between the transmitting and the receiving node(s). In the former case the 
field length may be shortened and in the later lengthened.  

 
Each node in a CAN network has its own individual oscillator. And when 
receiving a CAN frame there may be a phase shift. This offset is compensated for 
through resynchronization by the receiving controller (soft synchronization). 
Consider a slow transmitter, where the signal is not detected until in the 
PROP_SEG instead of in SYNC_SEG. For compensation PHASE_SEG1 is 
lengthened so that the sampling occurs at the right moment in time, see figure 5.9. 
 

  
Figure 5.9. Resynchronization 
 
In the event that a frame edge is early, i.e. occurs during a previous Phase Segment 
2, PHASE_SEG2 is shortened so that the input signal seems o appear at 
SYNC_SEG. Only one resynchronization is allowed during a bit time. 
 
The sample point always occurs at the end of PHASE_SEG1. At this point the 
actual bit value is interpreted, i.e. dominant or recessive. Because of this 
synchronization is important to sample at the right position in the bit segment. The 
recommended sample point is at 60 percent of the total bit time. 
 
In addition to resynchronisation there is hard synchronization. As stated in the 
CAN specification, hard synchronization is performed during interframe space 
whenever there is a recessive to dominant edge. When it occurs the bit time is 
restarted and the edge will fall into the Synchronization segment. The physical 
signalling is explained in detail in (ISO/WD11898-2, 1999, pp. 35-40). 
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5.6 Converter Considerations 

Due to the fact that Bluetooth does not support bitwise transmission, the bridge 
can never be made completely transparent over Bluetooth, i.e. two CAN networks 
connected via a Bluetooth link would never appear as exactly one network. The 
physical layer of CAN demands an acknowledgement of a sent message from the 
other node(s) within fractions of a CAN bit time. Hence, the receiver would have 
to be able to receive and acknowledge a message in a time window of 1 µs, at a bit 
rate of 500 kb/s (bit rate for CAN). Even if the bitrate was set as low as 10 kb/s, 
the Bluetooth link would still not be able to acknowledge in time. 
 
In order to make the link as transparent as possible, one solution would be to let 
the converter in a first step receive and acknowledge the message. Then 
interesting information would be extracted from the message, namely the 
Arbitration, Control, and Data field. The maximum possible number of bytes in 
these fields together is 13 bytes. These bytes plus three bytes overhead from the 
converter packet fit nicely into a Bluetooth DM1 packet, allowing a payload of up 
to 17 bytes. If traffic is not too intense on the CAN network the Bluetooth link 
would after all exchange data reasonably fast. If one slotted Bluetooth packet was 
used for transmission in each direction, a CAN message could be transmitted 
every 1.25 ms assuming that the master transmits every second time slot (one time 
slot is 625 µs). 
 
Several CAN messages could also be transmitted at one time using DH3 or DH5 
Bluetooth packets, if traffic is intense. The converter would buffer a few messages 
and send them in a bundle, increasing the data rate but also the latency of the link. 
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6 The Keyword Protocol 2000 
The Keyword Protocol (KWP2000) is specified in the international standard 
ISO/DIS 14230-1. Saab Automobile AB, Scania AB, Volvo Car Corp., Volvo Bus 
Corporation and Mecel AB have further developed the standard for Swedish 
implementations. All information in this chapter, regarding KWP-2000, is 
extracted from the Swedish implementation specifications SSF14230-1 (1997) 
and SSF14230-2 (1997). 

6.1 Physical Layer 

The Keyword protocol includes two lines, the K-line and the L-line. In the 
Swedish implementation only the K-line is used. The K-line is bi-directional and 
used for diagnosis, test or maintenance only. 
 

  
Figure 6.1. K-line configuration 
 
The battery voltage, VB can be either 12 or 24 V depending on the vehicle. 
The signal levels on the bus are then expressed as percentages of VB expressed as: 
 

Shape Transmit Receive 
Logical 1 
Logical 0 

80% 
20% 

70% 
30% 

Table 6.1. Logical levels (KWP-2000) 
 
Voltage levels between 30% and 70% of VB may according to the KWP2000 
specification be detected as either a logical 1 or logical 0. 
 
The bus operates with a standard bit rate of 10400 bit/s. 
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6.2 Message Structure 

The message structure includes header, data bytes and a checksum, as shown in 
figure 6.2. 
 
 
 
 
 
 
Figure 6.2. KWP2000 message structure 
 
The Format field (Fmt) is 1 byte and contain 6-bit length information and 2-bit 
mode information. The mode can be one of two kinds, either indicating a header 
with physical address information or one with functional address information. The 
six remaining bits can be used to indicate message data length of 1 to 63 bytes, not 
including the checksum. In this case the Header could be decremented to 3 bytes 
taking away the Length field (Len). However, in the Swedish implementation 
these 6 bits shall all be set to zero (except in the StartCommuncationRequest 
message). The length is solely expressed in the Length field, allowing message 
lengths up to 255 bytes. Thus, the overall largest possible message is 260 bytes 
long. 
 
The Target field (Tgt) contain the address of the receiver of a message. This 
address may be either physical or functional. Each ECU and Tester has a unique 
address and may be programmed by software. Physical addressing can be used for 
both request and response messages. Upon a request the target has the physical 
address of a specific node in the network and the source has the physical address 
of the tester. 
 
The Functional addressing can only be used for request messages. In this case the 
request is aimed for a group of nodes. The address of the tester is still physical. 
Actually this is the only instant where the addressing is not physical. When a 
group request is inquired the nodes need to respond in an orderly manner. To 
obtain this the system must support arbitration. 
 
The last part of the message is the Checksum field (CS) that is defined as an 8-bit 
sum series of all bytes in the message, excluding the checksum. 

Fmt Tgt Src Len Data bytes, max. 255 byte CRS 

Header
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6.2.1 Key Bytes 
The Format of the Header is specified by the Keybyte, which is sent to the tester 
by an ECU upon start of communication. The structure of the Keybyte is as 
follows: 
 

KB1 
(Low byte) 

 =0 =1 

Bit 0 AL0 Length inf. In format byte 
not supported 

Length inf. In format byte 
supported 

Bit 1 AL2 Add. Length byte not 
supported 

Add. Length byte supported 

Bit 2 HB0 1 byte header not supported  1 byte header supported 

Bit 3 HB1 Tgt/Src addr. In header not 
supported 

Tgt/Src address in header 
supported 

Bit 4 TP0 Normal timing parameter set Extended timing parameter 
set 

Bit 5 TP1 Extended timing parameters 
set 

Normal timing parameter set 

Bit 6 1 - - 

Bit 7 Parity (odd) - - 

 
Table 6.2. The low key byte 
 
In the Swedish implementation the keybytes have fixed values as: 
KB1 (Low Byte)= 0xEA 
KB2 (High Byte)= 0x8F 
 
Thus, the header supports additional length bytes, header with target and source 
address information, and normal timing. The timing parameters may be changed, 
but it is then the responsibility of the designer to ensure proper functionality. Refer 
to the Data Link Layer specification for details. 

6.3 Timing 

There are four time slots identified in the KWP-2000 specification:  
 
P1 Inter byte time in ECU response 
 
P2 Time between the end of the tester request an the start of the ECU response or 
 Time between the end of ECU response and start of the next ECU response 
 
P3 Time between the end of the ECU response and the start of the tester request 
 Or Time between the end of the tester request and the start of the next tester  
 request if the ECU fails to respond 
 
P4 Inter byte time for tester request. 
 
Figure 6.3 shows the timing scheme of an example message stream. 
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Figure 6.3. Message timing 
 
Table 6.3 below shows the standard timing values (in ms). 
 
Timing Parameter Min. values default Max. values default 
P1 0 20 
P2 
P2* 

25 
25 

50 
5000 

P3 55 5000 
P4 5 20 

Table 6.3. Standard timing parameters 
 
Note: the timing parameter P2* becomes active if server (ECU) respondes with 
negative response or receives a specific response code (refer to ISO 14230-2). 

6.4 Initialisation 

6.4.1 Communication Startup 
The tester starts the communication with a node by sending a wake up pattern. 
Before the pattern is transmitted the K-line must have been in idle. The K-line is 
set low for 25 ms±1 ms and then high for (50-low time) ms. once the node is 
awake the tester transmits a Start Communication Request. The ECU responds 
with a Start Communication positive Response. All information for 
communication is included in this response. 
 
 
 
 
 
 
 
Figure 6.4. Fast initialisation 
 
 
The initialisation can be functional. In that event arbitration, similar to the CAN 
arbitration, is applied to avoid collisions. For more detail refer to the SSF 14230-2 
specification. 
 
The connection to one node is active until the ECU detects a timeout or the node 
sends a Stop Communication Positive Response. If the tester does not send a 

P2TWuP

Tinil. 

TIdle
StartCommunication 
Service request 

StartCommunicatio
n 
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request within P3max the connection is terminated instantly. P3max is typically 5 
seconds. In order to re-connect the fast initialisation procedure has to be repeated. 

6.5 Converter Considerations 

The Keyword 2000 protocol is a serial like protocol operating at a slow pace. The 
Bluetooth radio will have no problem matching the bit rate 10400 bps on the K-
line. Since the Keyword 2000 message can be fairly large (260 bytes) it could be 
sent over Bluetooth using a DH5 packet, which allow up to 339 bytes of user 
payload. Alternatively the message can be sent in a L2CAP message, were the 
L2CAP layer segments the message into appropriate DM1, DH1, DM3 or DH3 
packets. On the receiving end the original packet is re-assembled. The data rate 
will be slightly reduced. On the other hand the probability for successful 
transmission is increased. 
 
The challenging issue with KWP-2000 is rather the wake up procedure (WUP). 
When a Tester requests startup the WUP pattern will appear. However, a message 
has to be sent to the other end of the wireless connection, instructing the Bluebus 
module to perform the wake up procedure on that local bus. During “wake up” the 
state changes from idle to logical 0 for 25 ms and then to logical 1 for 25 ms. The 
bus will not start up until this sequence is present on the bus. To obtain this the 
UART would have to be set at a baud rate of 40. The UART on the present 
Bluebus hardware is not adjustable to this slow rate. A solution could be to let a 
timer control an I/O pin on the processor reconstructing the WUP pattern. 
 
A transparent bridge between KWP-2000 networks is considered possible. The 
Bluetooth module is fast enough and several packet configurations can be used. A 
KWP-2000 implementation however does not have high priority. Potential 
customers Volvo and Berifors have shown greater interest in particularly a RS232 
implementation and after that a CAN diagnostics application. For this reason not 
too much effort has been made to investigate the KWP-2000 in depth. 
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7 RS-232 

7.1 Introduction 

RS232 is a serial interface that was developed by today’s Electronic Industries 
Association (EIA) in the early 60’s. The standard interface use Sub-D 25 or 9 pin 
connectors or RJ45 connectors. A similar standard is available in Europe 
developed by the CCITT (Comité Consultatif International de Telegraphique et 
Telephonique). RS232 is an EIA/TIA norm, which specifies both the mechanical 
and electrical interface, and is equivalent to the standards V.24/V.28 from CCITT. 
V.24 is known as the functional description and V.28 is the electrical 
specifications (Koren 2000). The serial interface was developed for a single 
purpose, well stated by the title of the RS-232-C Standard: 
 
“Interface Between Data Terminal Equipment and Data Communications 
Equipment Employing Serial Binary Data Interchange.” 
 
The device that connects to the interface is called the Data Communications 
Equipment (DCE) and the device to which it connects (computer for example) is 
called a Data Terminal Equipment (DTE). It is a single ended interface with one 
lead for every signal and a ground reference. Personal computers are most often 
equipped with a Sub-D9 male for serial connections. In that case the interface is 
referred to as RS232-D as apposed to RS232-C with 25 pin connectors. The entire 
TIA/EIA-232 standard may be ordered from Global Engineering Documents. 
 
Although EIA-232 is still the most common standard for serial communication, 
the EIA has recently defined successors to EIA-232 called RS-422 and RS-423. 
The new standards are backward compatible so that RS-232 devices can connect 
to an RS-422 port. 
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7.2 Serial Asynchronous operation 

Independent channels offer two-way full-duplex communication. The signals are 
represented with respect to a common ground. Positive 3 to 15 volts represents a 
logical zero and negative 3 to 15 volts indicate a logical 1, which is the “idle” 
state. The Sub-D9 pin-out is sketched in figure 7.1 below. Data is transmitted and 
received on pin two and three, respectively. The “dead area” between +3 and –3 
volts is designed to protect against line noise. This interval may vary for different 
RS-232-like definitions, but the purpose remains. 

 

 
Figure 7.1. Sub-D9 Pin-out 

 
RS232 has numerous handshaking lines, which are primarily used with modems. 
The Data Set Ready (DSR) indicates to the computer that the modem is turned on. 
Similarly, Data Terminal Ready (DTR) is an indicator to the modem that the 
computer is turned on. Data Carrier Detect (DCD) indicates that a good carrier is 
being received from the remote modem. For control, signals Request to Send 
(RTS) and Clear to Send (CTS) are used. When a computer wants to transmit data 
RTS is raised. However, data is not transmitted until the modem confirms by 
raising CTS. Once transmission in done, RTS is dropped. In most asynchronous 
situations, RTS and CTS are constantly on throughout the communication session. 
The serial data is sent one byte at a time. For example consider the case when an 
ASCII character A is transmitted, see figure 7.2. 
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Figure 7.2. One byte of Asynchronous data 
 
The transmitting line (line 3) is at first idling at negative 12 volts. The output 
signal usually swings between positive and negative 12 volts. The transmission 
starts with a start bit where a logical zero is put out. Following are seven bits of 
data representing in this example an A. An extra parity bit is frequently added for 
purposes of error detection. This extra bit is added to each group of seven bits 
such that the total number of ones in each block of eight bits is odd. When the 
total number of one bits in the block is odd, the parity is said to be “odd”. 
Alternatively, the parity bit could be chosen such that the total number of ones in 
the block is even, in which case the parity is “even”. Thus, if any single error bit 
error occurs during transmission this would be detected on the receiving end. 
Finally the byte is ended with two intermission bits, in the figure referred to as 
stop bits. 
 
In this thesis project a simple three-line setup will be used for serial 
communication with a nine pin Sub-D connector. The lines used are numbers two 
and three for data exchange, and line five is used as common ground, which is 
mandatory. 
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7.3 Converter Considerations 

The communication between the processor and the Bluetooth module is currently 
operating at the bit rate 57.6 kbps. The radio interface is configured for a data rate 
of 108.8 kbps (DM1 packet). This setup works fine in the Bluebus prototype. In 
general, the bit rate between processor and module must be higher than for the 
external serial communication and should be higher than for the ACL link since 
HCI packets and commands add overhead. Otherwise, a continous stream of data 
might cause serial buffer overflow. Additionaly, higher bit rates will also yield 
lower overall latency. The Bluetooth module informs the processor of buffer status 
and if there are no empty buffers, the processor must stop transmission until a 
buffer becomes available (the Ericsson Bluetooth module has eight transmit 
buffers). 
 
The DH5 packet yields the maximum possible data rate of 433.9 kbps over the 
radio interface. However, the maximum usable bit rate for the external RS232 
interface is considered to be 230.4 kbps. This should not be a significant 
shortcoming, PCs seldom operate faster than this and if higher data rates are 
required, RS232 is probably not the way to go. In the above configuration serial 
data are sent in large bundles. The stream of data would be somewhat irregular, 
but this should not cause any implications for the RS232 implementation. For 
other applications the issue should be kept in mind if there are latency 
requirements at hand. 
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8 The Real-Time Operating System 
In order to make the development process easier and in order to make the system 
as flexible as possible, an operating system (OS) of some sort was needed. 
 
The performance of our system is sensitive to timing issues and needs good and 
easily programmable interrupt handling, as it can be very I/O intensive and will 
potentially need quite a few different device drivers. 
 
As a comparison, general purpose OS are often large and do not fit our cost and 
size constraints. They tend to have very flexible but cumbersome models for 
programming device drivers, and low latency between an interrupt and the start of 
a task, no matter how high priority it has, can not be guaranteed. (It can be 
statistically very low, though.) 
 
On the other hand, many real-time operating systems (RTOS) are available with 
very modest memory and processor requirements. Device drivers for them are 
simple constructs with little or no abstraction of the actual hardware. This is of 
course less flexible and makes the application harder to port, but it is also a lot 
easier to program for. RTOS are almost always optimised for low latency interrupt 
handling. 
 
Here, an RTOS was clearly the best choice. 

8.1 What is an RTOS? 

A classical quote referred to in many recent texts on real time computing is: 
 
A real-time system is one in which the correctness of the computations not only 
depends upon the logical correctness of the computation but also upon the time at 
which the result is produced. If the timing constraints of the system are not met, 
system failure is said to have occurred. [Donald Gillies] 
 
This serves well as a definition of the term real-time system but says little of what 
is needed for an OS to be considered an RTOS. The FAQ (Frequently Asked 
Questions) for the newsgroup comp.realtime (http://www.faqs.org/faqs/realtime-
computing/faq/) has this to say on the subject: 

 
1. A RTOS (Real-Time Operating System) has to be multi-threaded and 

preemptible. 
2. The notion of thread priority has to exist as there is for the moment no 

deadline driven OS. 
3. The OS has to support predictable thread synchronisation mechanisms 
4. A system of priority inheritance has to exist 
5. OS Behaviour should be known 
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So the following figures should be clearly given by the RTOS manufacturer: 
1. the interrupt latency (i.e. time from interrupt to task run) : this has to be 

compatible with application requirements and has to be predictable. This value 
depends on the number of simultaneous pending interrupts. 

2. for every system call, the maximum time it takes. It should be predictable and 
independent from the number of objects in the system; 

3. the maximum time the OS and drivers mask the interrupts. 
 

The following points should also be known by the developer: 
1. System Interrupt Levels. 
2. Device driver IRQ Levels, maximum time they take, etc. 

8.1.1 Our criteria for choosing an RTOS 
In deciding what RTOS to use, there are many things to consider. This list is by no 
means complete, but contains the things that were important in this particular case. 
Some inspiration for this was derived from Embedded Systems Programming, 
March 1999 issue and a special issue of Dedicated Systems Magazine titled 
"RTOS Evaluation", March 2000. 
 
Processor support 
The RTOS had to support our processor of choice, preferably several others in 
order to ease porting the application if needed. 
 
Memory requirements 
In order to keep size and cost down, neither the ROM nor RAM memory can be 
very large. 
  
Hardware support (drivers) 
Drivers for different field busses or rather standard integrated circuits for field bus 
interfaces would be a definite advantage. (For example, in the CAN case, a driver 
for the Philips SJA1000 would be desirable.) 
 
Standards compliance 
An application written for a standard API (such as POSIX) can more easily be 
moved to a different OS. This reduces the dependency on a particular OS and 
makes code reuse much more feasible. 
 
Scheduling methods 
The choice of scheduling method used in the RTOS. For many RTOS, there is a 
choice of several different scheduling methods. 
 
Number of priority levels 
A high number of priority levels is desirable since it is probable that the system 
will have many tasks running simultaneously, and with very different demands on 
latency. 
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Priority inversion handling 
Priority inversion is an event where a task is preventing a higher priority task from 
running, thus inverting the threads’ priorities. It can be bounded or unbounded. 
An example of bounded priority inversion is where a low priority task is holding a 
shared resource that a high priority task wants. This is bounded in time as the high 
priority task can continue to run as soon as the low priority task releases the 
resource (the time required for this to happen is short, or there is something 
seriously wrong with the design of the program). 
Unbounded priority inversion can occur in a similar manner; a low priority task is 
holding a shared resource that a high priority task wants. In the meantime, a 
middle priority task is preventing the low level task from running. 
Here, the middle level task gets the highest effective priority and could continue to 
run indefinitely. 
 
The first case is rather impossible to avoid in a preemptive multitasking system 
where there are shared resources, while the second must be avoided (Mason, 
1998). If/how this is handled in the RTOS is of great interest. 
 
Interprocess communication / Synchronization 
The methods available for interprocess communication and for synchronizing the 
activity of different tasks should preferably be many. In a large selection it is more 
probable to find one that fits a particular case. 
 
Interrupt handling 
How interrupts are handled are of great interest. Are nested interrupts allowed? 
Can interrupt handlers have priorities too, or are all other interrupts masked when 
in an interrupt handler? 
 
Reaction time 
How long is the worst-case time between an external event and the start of a task? 
 
Memory protection 
Is there memory protection preventing a thread from destroying another threads 
code/data? 
 
Development tools 
What kinds of development environments are available for the RTOS? Ideally, it 
should be possible to use toolsets from different vendors for development. 
 
Access to source code 
Many RTOS are delivered as a precompiled library that is linked with the 
application, preventing access to the source code. In some cases it is possible to 
get access to the source for a large sum of money. The ideal here would be free 
access to the source. 
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Availability of add-ons 
Are there add-ons available for the RTOS? TCP/IP stack and a HTTP-server 
would be especially interesting to us as these are very time consuming to 
implement. 
 
Cost 
The ideal cost would be zero, of course. The cost for a developer’s license could 
be fairly high, but royalty payments are totally out of the question. 
 
Reputation 
A rather big part of choosing any OS or development tool is the reputation it has 
amongst its users. 

8.2 eCos 

eCos started out as "Embedded Cygnus Operating System", developed by Cygnus 
Solutions. When Cygnus was later acquired by Red Hat, Inc. the name was 
slightly adjusted to "Embedded Configurable Operating System". 
 
As the name suggests, it is geared towards embedded systems. It was also 
designed to be highly configurable i.e. it is possible to choose how much or which 
kind of functionality is included in the kernel. 
 
From the beginning it has been an open source operating system and as such, 
rather unusual in the RTOS world. Open source is a broad term and can mean 
many different things depending on whom you ask. In this case it is taken to mean 
that you… 
 
= have free access to the source. 
= can change the source as you please. 
= can distribute the source further. 
 
For further information, see http://www.opensource.org/ 
 
Something to look out for when using open source software is the licensing 
scheme used. In some cases (as in the GNU Public License or GPL, a very popular 
licensing scheme), an application including open source code must in itself be 
open source (or released under the GPL in that particular case). 
 
This could prove to be problematic for companies that prefer to keep the details of 
their applications secret. Therefore, eCos is released under a special license called 
'Red Hat eCos Public License' (RHEPL). 
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The highlights of this license are: 
= The sources are totally free (as in free access and free of charge). 
= It is not required to release the source code of any applications using eCos. 
= Changes to sources covered by the RHEPL must be made public. 
= Such changes will also fall under the RHEPL. 
= It is not necessary to obtain a license from Red Hat, nor even to inform them 

that eCos is being used. It is, however, necessary that a small notice is 
included in the documentation of the product stating that it uses eCos. 

8.2.1 eCos features 
It is not easy to describe which features are implemented in eCos, as it is highly 
configurable. It is said to have more than 200 configuration points and this can be 
a bit overwhelming at first. The configuration options are organised in a tree-like 
structure however, which enables control on a high level as well as detailed 
control when needed. It is further helped by a configuration tools that keeps track 
of dependencies and incompatibilities between options. The feature list also 
differs some depending on the capabilities of the underlying hardware platform. 

8.2.2 Is eCos an RTOS? 
Many operating systems are marketed as real-time operating systems where the 
term real-time means: “We’ll do this as soon as the OS is done processing things. 
It’ll be real soon, but we can’t say when exactly.” Examples of this might be 
Windows NT Embedded or an ordinary Linux distribution with real-time 
extensions. 
 
This is not the case with eCos, though. It should be quite possible to write 
applications with it that are deterministic in their behaviour and have defined 
maximum response times. Priority inversion is handled and the multitasking is 
preemptive in nature. There are not as many priority levels as one might wish for, 
but overall eCos should be considered a ‘real’ RTOS. 

8.2.3 How well did it fit this application? 
As our application is very cost-sensitive, the fact that eCos is license and royalty 
free is a definite advantage. 
 
However, in some areas it is very clear that eCos is still under development. New 
features are introduced at a very rapid pace and bugs are fixed at an even more 
rapid pace. This is of mostly a good thing, but it may take a while for things to 
settle down and reach a steady state. In addition, at the time when we first tried to 
port eCos to our platform, the documentation for doing this was in a rather sad 
state. It has improved a great deal since and porting should prove much easier 
now, were we to try again. 

8.3 eCos in comparison to other RTOS 
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In order to get a relevant comparison for our application, some RTOS that run on 
an ARM7 platform are compared in categories that were seen as important during 
the selection process. The different RTOS are: 
 
eCos 
See 8.2. 
 
OSE 
Is used in the Ericsson Bluetooth module and seems to be popular for use with 
ARM7 type microcontrollers. Marketed as a highly fault tolerant OS and is well 
suited for distributed systems. It is targeted at the telecom industry. There are 
several variants of OSE, OSE for high availability systems, OSE for DSP and 
OSE for small to midsize applications. The small to midsize variant, which is the 
only one that runs on an ARM7 processor, will be referred to as just OSE below. 
 
VxWorks 
Has the biggest market share of all RTOS worldwide. It is available for many 
different platforms, and is also claimed to be highly portable. The whole 
development system is now referred to as Tornado, VxWorks is the runtime 
component. 
 

Name Ecos OSE VxWorks 
Processor 
support 

ARM7, ARM9, 
PowerPC, 

StrongARM, 
Fujitsu SPARClite, 

Hitachi SH, 
80386, Matsushita 
MN10300, NEC 

V800, MIPS, Toshiba 
TX39 

 
 

ARM7(TDMI), 
Infineon C16x, 

NEC V850,  
Atmel AVR, 

Mitsubishi MELPS 
7700, 8051, 68HC11 

PowerPC, Motorola 
68K/CPU32/ColdFire/ 
MCORE, 80x86 and 
Pentium, i960, ARM, 

StrongARM, MIPS, Hitachi 
SH, SPARC, NEC V8xx, 

M32 R/D, RAD6000, 
ST 20, TriCore 

Minimum 
memory 

requirements 

3kB ROM, 1kB 
RAM 

5-6 kB ROM, 
unknown amount of 

RAM 

15 kB ROM, 5 kB RAM 

Scheduling 
methods 

Bitmap, multi-level 
queue, random 

Cyclic, priority based, 
round robin 

Rate monotonic, round 
robin 

Priority levels Configurable, 64 max 32 256 
Priority 

inversion 
handling 

Priority inheritance   

TCP/IP 
available 

Yes, but it is large Yes, but as an addon Yes, but as an addon 

Addons 
available 

None really. If a 
feature is available, it 
is already included. 

Bluetooth host stack, 
web server, WAP 

server. 

Almost anything imaginable

Standard APIs 
supported 

µITRON, EL/IX 
(POSIX subset) 

POSIX file system POSIX 1003.1b 
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Name Ecos OSE VxWorks 
Initial cost $0 n/a $16500 
Royalties No Yes Yes 
Vendor Red Hat Enea OSE Systems Wind River Systems 

Table 8.1. RTOS comparison 
 
Comments to table 8.1: 
 
= In the case of eCos (and probably OSE also), the minimum memory 

requirements can’t be taken at face value. It is highly unlikely that an 
application doing any work will get by with a kernel of that size. 
 

= The TCP/IP implementation for eCos is based on the OpenBSD networking 
stack (http://www.openbsd.org/), which is very complete and well tested. 
Unfortunately, it is also quite a bit too large for this application as OpenBSD is 
geared towards server/desktop use where size is a minor issue. It probably 
can’t be used with the Bluebus hardware without adding external RAM. 

 
= The table is a bit sparse. This derives from the fact that some RTOS 

companies are not too forthcoming when it comes to price and performance 
information. It is not clear why this should be so, as it can’t possibly benefit 
them in the long run. 
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8.4 Experiences from the porting effort 

Since eCos wasn’t available for our particular variant of ARM7, we had to try to 
port it somehow. It was seen as a difficult but definitely possible task since eCos 
is already available for several other ARM7-based microcontrollers and the ‘only’ 
thing we had to do was fix the startup code and replace some peripheral drivers. 
The startup part is typically the toughest part in getting any embedded system to 
run and when that is done, adding the drivers is nowhere near as hard. The better 
part of a month was spent trying to get eCos to even start and it proved to be 
impossible to manage within the timeframe of the thesis. 
 
In retrospect it is clear that trying to port eCos before using it in our application 
was a bit too ambitious and it would have been far better to use a microcontroller 
for which there was a finished port or possibly to have used a different RTOS 
altogether. Some advice to give to anyone trying to port an RTOS is: 
 
= Know the processor architecture. It is highly unlikely that the startup code can 

be written in C alone, and quite a bit of knowledge of assembly language is 
needed. It is possible to learn as you go along, but it is very hard to debug an 
application before the hardware platform it runs on is set up properly. Do not 
try to port an RTOS as your first project on a new architecture. 

 
= Make sure to collect as much documentation as possible about the processor 

and the RTOS and read it. 
 
= Check errata sheets for the processor and possibly other hardware as well. The 

main problem when trying to get eCos to run was that the evaluation board 
reset itself rather randomly (or so it seemed). At the time, we had no idea how 
to fix this and it was only later that it became clear that this was caused by a 
hardware bug. 

 
= Use a hardware debugger or even a processor emulator. Debugging by serial 

port, or even by flashing LEDs, is not recommended. 
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9 Hardware 
A part of the thesis was to develop a hardware platform for our application. The 
specification of this hardware platform was very vague at the beginning so there 
was a great degree of freedom in choosing a solution. 

9.1 Microcontroller choice 

The application would hardly have been possible without a microcontroller. A 
hardware solution in programmable logic would be theoretically possible but not 
very practical. In deciding what microcontroller to use, the most important factors 
were: 
 
Expandability 
The microcontroller had to be fairly fast, i.e. it shouldn't just barely manage our 
application but rather have a respectable amount of spare 'power', so that features 
can be added without running into performance problems. The same goes for the 
memory requirements, of course. 
 
I/O capabilities 
The microcontroller had to have at least two serial ports built in, preferably more. 
Built in interfaces/controllers for different fieldbusses (e.g. CAN) would be a 
major bonus. 
 
Price 
Our intended customer, the automotive industry, is very price sensitive and price 
was therefore an important factor. 
 
Size 
The physical size of the microcontroller itself is not a very important factor as 
most different types are of comparable size, but the amount of support circuitry is 
(external RAM, flash memory, I/O circuits). It is also often preferable from a cost 
perspective to minimize the number of external circuits. 
 
Availability 
Many electronic components are very hard to come by in smaller quantities these 
days. The situation is not likely to improve in the near future and controllers had 
to be checked for availability. 
 
Power consumption 
As the device is likely to be battery powered, its current draw should be as low as 
possible. Many recent microcontrollers can enter an idle state or temporarily shut 
down unused parts to conserve energy. This is of course a preferable feature. 
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Development support 
It was felt that a reasonably priced evaluation kit had to be available for the 
microcontroller as it speeds up the software development process. A cheap or 
even free software development environment would also be ideal. 
 
OS support 
The microcontroller should be supported by several operating systems. 
 
 
Many of these factors contradict each other, so the microcontroller chosen needn't 
necessarily be the best in all categories. 
 
During the first stages of the hardware development, mainly two different 
microcontrollers (or rather two different types of microcontroller) were 
considered: 
 
= An Infineon C167-type microcontroller, probably the C167CR. The 

advantages of this choice would have been that a development system was 
already available at Tritech and also C167 variants with a built in CAN 
interface are available. 

 
= An ARM7-based microcontroller. The ARM7 is a 32-bit RISC core developed 

by ARM Limited (http://www.arm.com). It is licensed to other companies who 
then add peripherals and memory interfaces to it. Therefore, there are many 
variants available for applications where I/O demands differ and they are also 
available in many different speed grades from about 20 up to 150Mips. 
There is a large selection of development tools for ARM7-based 
microcontrollers and there are evaluation boards available from many different 
vendors. 
 

The Bluetooth module from Ericsson (and indeed most other Bluetooth solutions 
from other vendors) is built around an ARM7 core and in order to make it possible 
to migrate the application to a one-chip solution in the future, it was best to choose 
a code compatible processor. We were also concerned that the C167 parts would 
be a little too slow to cope with future applications. 
 
As mentioned above, there are quite a lot of different microcontrollers that have 
an ARM7 core. All have relatively low power consumption, comparable size and 
most of them fulfil the I/O requirements. Therefore, the main factors in deciding 
which one to use were price, availability and development/OS support. 
 
The choice fell on an Atmel AT91R40807.  



Bluebus – Protocol Conversion for Wireless Data Exchange 

 69

 

 
Figure 9.1. The AT91M40400 
(The 40400 is very similar to the 40807 and was used in the evaluation kit for this 
entire family of controllers.) 
 
The Atmel AT91R40807 has 8kB + 128kB internal RAM, a hardware multiplier, 
two serial ports, three 16-bit timers, one watchdog timer, 32 general purpose I/O-
lines, 8-level interrupt controller and a very configurable external memory 
interface. It is available in a TQFP-100 package, which occupies a board area of 
approximately 16x16mm. The power consumption depends highly on how busy 
the processor is and what peripherals are used at the moment, but a fair estimate 
would be 4,7mW/MHz maximum (Atmel, AT91R40807 Electrical 
Characteristics). 
At 33MHz, this would come to around 150mW or 45mA current draw from a 
3,3V rail. The clock to the processor core and the peripherals can be shut down 
when they aren’t needed, which can drastically decrease the power consumption. 
 
The AT91R40807 is based on a variant of the ARM7 core, ARM7TDMI. This 
features a strategy called THUMB, which makes it possible for the processor to 
switch between a normal 32-bit and a compact 16-bit instruction set. This 
technique reduces the code size to about 65% of normal, but also decreases 
performance when running from the internal 32-bit memory. When running from 
slower external 16-bit memory, performance is actually increased when using the 
THUMB instruction set, as the average time to fetch a new instruction is reduced 
by almost half. Both instruction sets can be used in different parts of the same 
program but there is a minor time penalty for switching between them. 
 
This controller fits the functional demands nicely, but is perhaps a bit expensive. 
In addition, internal flash memory would have been better. Another part in the 
AT91 series, the AT91FR4081, has internal RAM and internal flash but was not 
available at the time. 
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9.2 The prototype 

An absolute must in the thesis work was to develop a prototype and the best way 
to achieve this was by purchasing already working hardware so that the 
development effort could be focused on getting the software right first. 

9.2.1 Atmel AT91EB01 
The AT91EB01 is a kit for evaluation of Atmel’s AT91M40400 family of 
microcontrollers. It is available from many different vendors, e.g. Acte and 
Hatteland in Sweden as well many foreign companies. 

 
Figure 9.2. AT91EB01 block diagram 

 
It has two serial ports, 512kB 16-bit SRAM (upgradeable to 2048kB), 128kB 16-
bit Flash (of which 64kB is available for user software), 20-pin connector for 
connecting a JTAG debugger. It also has an expansion bus connector that makes it 
possible to develop add-on cards for more I/O, memory etc. 
 
Furthermore, it has built in monitor software that makes it possible to download 
and debug programs via one of the onboard serial ports. This is of course a very 
cheap and sometimes quite adequate solution and all that is needed on the host 
platform is a free serial port. It was not very good in this case as both the on board 
serial ports were needed for the application, making debugging impossible. It was 
therefore only good for downloading new code. In the beginning when source 
debugging was an absolute must, one serial port had to be simulated. 
Since then, we have purchased a debugger that connects via JTAG to a built in 
debug cell in the processor. This has sped up the development process a great 
deal, board startup routines can now be debugged and downloading of new code is 
now accomplished in under one second.  
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Unfortunately, the AT91M40400 that is on our two evaluation boards is of an 
early silicon revision and hence has a few bugs. This was not obvious from 
reading the user manual and one bug cost us at least one week, probably much 
more, in debugging time. First for finding out that there was indeed a bug in the 
hardware and second to find a way to get around it. 
Since this bug was unknown at the time, the porting effort also suffered and time 
was lost assuming all the problems resulted from programming errors. 

9.2.2 Ericsson EBSK 
The Ericsson Bluetooth Starter Kit is basically an ROK 101 007/1 Bluetooth 
module equipped with all possible physical connectors and interfaces. It is 
intended as a relatively low-cost tool for developing Bluetooth host applications 
and can be purchased from Ericsson Microelectronics. 
 

Figure 9.3. Ericsson Bluetooth evaluation kit 
 

The interfaces used to control the EBSK are either RS-232 or USB and the 
connectors for these are located on the bottom board together with an audio 
coder/decoder (codec) for voice communication, jumpers for configuration, the 
power supply and also some glue logic. The top board is connected to this via a 
pin header and houses the Bluetooth module and antenna. An external antenna 
connector is also available. 
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9.3 Bluebus hardware 

The actual hardware to be used in production of the Bluebus device. Descriptions 
of the hardware will be in the form of an overview, since this is somewhat 
classified. 

9.3.1 Block schematic 
The schematic very much resembles the prototype (Figure 10.2). This is no 
coincidence, as there aren’t many other ways to connect the different parts 
together. The main differences are the fact that the microcontroller has RAM built 
in and no RS-232 level translators are needed for the serial link between to 
Bluetooth module and the controller. 
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Bluetooth Module
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Figure 9.4. Bluebus hardware block schematic 
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9.3.2 Physical Layout 
The size of the card was chosen, rather arbitrarily, as the same size as a normal 
calling card, or 90*55mm. It may seem like a strange way to design, but it has 
been very efficient for describing the hardware as it is a size that everyone can 
relate to. 
 

 
 
Figure 9.5. Bluebus board/component outline (actual size) 

9.4 Discussion and experiences 

So, how well does the hardware implementation fit the specification? 
Rather well, which is hardly surprising as we wrote it. 
 
One experience from this is that things take more time. The hardware design itself 
did not necessarily take longer time than planned but since the software 
development took up all available time for several months, the hardware design 
had to be postponed. 
 
Another is to always check availability of components. The current situation with 
regards to this is simply horrible with lead times of up to 30 weeks for one of the 
components used. The solution will most likely be to redesign that part of the 
circuit. 
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10 Prototype Software 
In this paragraph, the software structure when using Bluetooth as means of 
transportation will be described. The prototype software consists of several layers, 
which comply with the suggested Bluetooth architecture described in the 
Bluetooth specification. The layer structure is shown in figure 10.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.1. Software architecture with Bluetooth 
 
The left box in the figure represents the Bluebus module and the right box 
represents the Bluetooth module. The two are interconnected via a serial interface 
between two UARTs. The development prototype consists of two connected 
evaluation boards and in block diagram form Bluebus could be sketched as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.2. Block diagram of development prototype 
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Some source code for the different Bluetooth stack layers is included in the 
Bluetooth Starter kit from Ericsson. However, the code is written in C++, is not 
complete and would have to be adapted, to quite a large extent, to fit into this 
project. In order to govern proper understanding and to have the same software 
language throughout the system, the software for the project was mostly written in 
C. Some parts where precise control of the hardware is needed, such as the startup 
code and a few peripheral drivers, are written in ARM7 assembly language. 

10.1 Bluebus in the OSI Model 

The International Standards Organization (ISO) has developed the Open Systems 
Interconnection (OSI) networking suite. The model is mostly used as a reference 
model, which, as shown in figure 10.3, is divided into seven layers. 
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Figure 10.3. The ISO/OSI model 
 
The model is sometimes hard to use when defining how a product fits into the 
model. It may not have been considered at all during the design phase and 
software layers may later be interpreted to fit into more than one of the OSI layers. 
However, the model offers a convenient standard for describing a software design. 
 
Bluebus would, in the OSI model, fit into the two lower layers, namely the data 
link and physical layer. The data link layer describes the logical organization of 
data bits transmitted on a particular medium. The physical layer describes the 
physical properties of the various communications media, as well as the electrical 
properties and interpretation of the exchanged signals. 

Bluebus 
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10.2 Remarks and Deviations 

The actual code for this project will not be included in this report since the 
employer has stated this as classified material. 
 
The Bluetooth specification specifies a bundle of HCI commands, which are to be 
implemented in firmware from Bluetooth module suppliers. However, in the early 
version of the Ericsson ROK 101 007/1 Bluetooth module the firmware only 
include partitions of the specified commands. The commands used in this thesis 
are listed in appendix B and firmware implemented commands are specified in 
(Ericsson, 2000, pp. 5-12). 
 
The highest layer for the project was supposed to be the HCI layer. Portions of the 
L2CAP layer had to added though. In (Ericsson, 2000, pp.4) it is stated that all 
ACL data that is sent in HCI data packets must have L2CAP format. For this 
reason functions sending and receiving L2CAP packets had to be implemented. 
 
As an additional remark it should be noted that the parameter, 
Allow_Role_Switch, in the HCI command, Create_Connection is not included in 
the Ericsson firmware as specified in the Bluetooth specification 1.0B. Thus, this 
parameter has to be left out for proper functionality. Further shortcomings do 
exist; please refer to (Ericsson, 2000). 

10.3 Development Tools 

Two PCs and the following tools were used during the development work: 
 
Compiler: GNU gcc 2.9.2 
Assembler: GNU as (development snapshot from 20000412) 
Linker: GNU ld 2.10.90 
Make program: GNU make 3.77 
Debugger: GNU gdb (development snapshot from 20000428) 
Editor: Emacs for Windows NT version 20.6 
Version handler: Microsoft Visual Source Safe 

10.4 HCI Driver 

The Bluetooth module is solely controlled using HCI commands. To send and 
receive data, HCI functions are used indirectly through the higher L2CAP layer. 
All names in the HCI driver have the same names as in the specification (SIG, 
1999) and the same order of parameters is used. The most essential functions have 
been implemented and all functions belonging to the HCI layer start with HCI. 
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10.4.1 HCI Commands 
When a HCI function is called it checks for parameter errors before the command 
or data is passed on to the transport layer. The functions return a boolean value, if 
the packet was passed along successfully the functions return true, otherwise false.  
 
As an example, consider the command, HCI_Create_Connection. The command is 
used to create a connection to a device with a known Bluetooth address. The exact 
meaning of function parameters can be found in SIG 1999, page 542 - 741. As a 
response, the host controller will return specific events depending on issued 
command. Each command has a set of expected returning events. 

10.4.2 HCI Events 
Events are received from the HCI UART transport layer and function parameters 
are copied into the event parameters. The transport layer is responsible for loading 
the right information into the proper event. In the example, the host is expecting a 
command status event, which is returned as soon as the controller receives the 
create connection command. This event informs the host of command status, 
which is expected to be 0x00 (command pending). Other status values indicate an 
error and (SIG 1999,pp. 745, table 6.1) lists associated error codes. The other 
event parameters inform the host of number of packets it is allowed to send to the 
host controller at the time and what command caused this event. Finally, a 
connection complete event including event parameters is sent from the host 
controller to the host indicating whether the command was successful or not. 

10.5 HCI UART Transport Layer 

As mentioned in section 4.8.2, there are four kinds of HCI packets: The HCI 
command packet, HCI event packet, HCI ACL data packet and HCI SCO data 
packet. However, HCI does not provide the ability to differentiate between the 
four packets. For this reason, an 8-bit indicator is appended to the beginning of the 
HCI packet when it is sent over the transport layer. The indicators are listed in 
table 10.1. 
 
 

HCI packet type HCI packet indicator 
HCI Command Packet 0x01 
HCI ACL Data Packet 0x02 
HCI SCO Data Packet 0x03 
HCI Event Packet 0x04 

 
Table 10.1. HCI packet indicator 
 
The transport layer adds packet indicators to the HCI commands or data packets 
coming from the HCI driver, and passes the information on to the physical layer. 
In the opposite direction, the indicators are removed before being passed on to the 



Bluebus – Protocol Conversion for Wireless Data Exchange 

 78

HCI driver (this procedure is valid for the HCI UART Transport Layer, see SIG 
1999, part H: 4). 
 
In the Bluetooth specification a difference is made between the HCI UART 
transport layer and the HCI RS232 transport layer. They are very similar, but the 
RS232 transport layer provides means for synchronization and error correction. 
The HCI UART transport layer assumes that the communication is error free. In 
the Bluebus case, this serial interface connects two UARTs on the same PCB with 
short trace lengths and the probability for errors is very low. Hence, the Bluetooth 
HCI UART transport layer will be used according to the specification (SIG 1999, 
part H: 4) and layered in the serial driver field, as shown in figure 10.1. 

10.6 Main Program Structure 

The Bluebus system consists of a number of processes. Originally, these processes 
were supposed to be handled by the real-time operating system, eCos. 
Since eCos was not ported for the Atmel evaluation board, and this work proved 
to be much too extensive for the scope of this thesis, a kind of scheduling had to 
be implemented by hand. Some operations involve the system waiting for a 
command response. If the processor were tied up with this operation alone, it 
might miss some other important event. For this reason it is important for a 
process to be able to return control to the main application, allowing the processor 
to handle multiple operations at a time. In order to achieve this, the processes are 
constructed as state machines. Each time a process returns the control to the main 
application the state is remembered and operations will be continued at the same 
place the next time processor resources are available. All processes are stepped 
through in this manner in an infinite while loop: 
 
 
while(running == TRUE) { 
 
 if(inquiry_requested == TRUE) 
   Inquiry(); 
 
 if(connection_requested == TRUE) 
  Create_Connection(); 
 
 Send_Data(); 
 Receive_Data(); 
 
} /* while */ 
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10.6.1 The Inquiry Process  
The inquiry process is entered when Bluebus wishes to find new unidentified 
devices within range. The state machine is shown in figure 10.4 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.4. Inquiry state machine 
 
When entering the start of the process the HCI command, HCI_Inquiry() is issued. 
The inquiry is finished when three associated events are returned from the host 
controller to the host. The higher layer is informed of the state machine status each 
time it releases control. The possible return values are: ERROR, BUSY, or 
READY. Another Inquiry attempt cannot be made until the present process is 
ready or an error occurs and the state is reset to Inquiry start state. If the process is 
processing, BUSY is returned implying that once processor resources are available 
the process should be allowed to continue where it previously left off. 
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10.6.2 The Create Connection Process 
If a connection is required the create connection state machine is entered. The 
functionality is similar to that of the inquiry state machine. Figure 10.5 below 
displays the situation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.5. Create connection state machine 
 
As the state machine is entered, the HCI command HCI_create_connection is 
issued. The command has two associated events to it: connection status and 
connection complete event, sent from the host controller to the host. 

10.6.3 Data Handling 
On the Atmel development board there are two RS232 serial ports, both operating 
with interrupt driven software. Each time a byte from an external device has been 
received by the serial port (refer to figure 10.2), an interrupt is generated. The 
interrupt routine stores the received byte in a ring buffer, which the main 
application then checks periodically for available data. When there are one or 
more bytes available, the L2CAP output function is called to send the information 
through all the underlying layers and over the air to a receiving Bluetooth module. 
If necessary, the L2CAP output function breaks the information into adequate 
sizes depending on which ACL data packet is used for transmission. The packet 
type (DM1, DH1, DM5) is determined during the connection phase, but can also 
be adjusted during the life of the connection. In the opposite direction incoming 
ACL data packets over the air are transmitted via the serial interface to the Atmel 
board, were it is temporarily stored in the incoming ring buffer. The received ACL 
packets are then sent up to the L2CAP layer, were a function assembles the 
smaller ACL data packets into the original message sent by a remote device. The 
assembled data is then sent, passing the outgoing ring buffer, to the external serial 
port. The Send_Data() function handles the case when external serial data is 
transmitted over the air and Receive_Data() manages data coming in from a 
remote Bluetooth device and outputs it via the external serial port. Both processes 
work as state machines, in the same manner as Inquiry() and Create_Connection(). 

Connection start state

Connection status state 

Connection complete state 

Error [return ERROR] 

Requested event [return READY] 

Error [return ERROR] 

HCI_create_connection() == TRUE [return BUSY] 

No data [return BUSY] 

No data [return BUSY] 

Requested event [return BUSY]
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11 Test Procedure and Response Time 
The first important implementation step was to create a Bluetooth ACL 
connection with project designed software. One Bluetooth development board was 
connected to a PC (RS232). This module was controlled by the Ericsson GUI 
application and was configured as a slave. The counterpart, the Bluebus prototype, 
was set up to execute inquiry and create connection, i.e. to become the master. 
Since the GUI responds with a message for a successful connection, connect 
procedure in the Bluebus software was confirmed. With a working connection, the 
next obvious step was to transmit data. The same setup was used and successfully 
transmitted data over the ACL link is displayed on the GUI. Endurance tests were 
made transmitting data to the GUI overnight, verifying a sustainable connection. 
 
From this point on the goal was to exchange remote serial data over the wireless 
link between two Bluebus units. Remote serial data was transmitted via the COM 
port of a PC using a terminal program. The data was sent over the air and the 
received data was forwarded to the outgoing serial port also connected to a PC 
running the same terminal program. As of now, serial data can be wirelessly 
exchanged both ways between two PCs. Attempts to send files have been made, 
but so far without success. The probable reason for this is that data is sent without 
any consideration of buffer status in the Bluetooth module. Most likely buffer 
overflow occurs in the Bluetooth module. The result is that the communication 
between the module and the processor is halted. 
 
To verify response time for different packet type configurations a Tektronix TLA 
704 logic analyzer was used. Two PCs, both running a terminal program (Tera 
Term Pro v2.3), were connected via a Bluebus bridge. The test is simply 
conducted by sending one character from terminal A to terminal B. Two probes 
from the logic analyser are connected, one on the pin receiving data from the PC 
and another probe connected to the transmit pin sending the character to terminal 
B. The setup is sketched in figure 11.1. 
 
 
 
 
 
 
 
 
 
 
Figure 11.1. Response time test setup 

 
When the first bit appears at the incoming serial port on Bluebus a timer in the 
logic analyser is triggered. The timer is stopped when the data ha propagated 
through and appears on the outgoing serial port of the receiving Bluebus unit. 
Hence, response time is measured. One such experiment is plotted in figure 11.2 
below, where the status of the two lines is displayed. The lower of the two graphs 

Bluebus Bluebus Serial out
Serial in 

Probe A 
Probe B 

Terminal B Terminal A 
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show when a character is received from terminal A and the upper displays when 
the transmission from Bluebus to terminal B begins.  
 
 

 
 
Figure 11.2. Response measured with logic analyzer (DM1). 
 
The test was carried out for three cases with the packet type set to DM1, DM3 and 
DM5. During the test, the packet type was held constant. The DH packets were 
not tested since they cover the same amount of time over the air as the 
corresponding DM packet. 
 
Theoretically the response time consists of mainly two components, the time for 
the UART to transfer the data from the host processor to the Bluetooth module, 
times two, taking the receiver into account and the time over the air. However, the 
time from that the byte is detected on the receive line until the data is entirely 
received by the processor has to be accounted for since the computer bit rate is 
only 9600 bps. Processor instruction time is considered insignificant and is not 
included in this estimation. 
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An excerpt from the output_data function shows how data is transmitted to the 
Bluetooth module. Each appearance of tx_char represents one byte sent. 
 
 
tx_char((uint8) 0x02); 
tx_char((uint8) Connection_Handle); 
temp = (uint8)(Connection_Handle>>8) & 0x0f; 
temp |= ((Packet_Boundary_Flag<<4) & 0x30); 
temp |= ((Broadcast_Flag<<6) & 0xc0); 
tx_char(temp); 
 
tx_char((uint8) Length_HCI_Payload); 
tx_char(((uint8)((Length_HCI_Payload)>>8))); 
 
for(i=0; i < Length_HCI_Payload; i++) 
 tx_char(Data[i]); 
 
 
The transmitted data (tx_char(Data[i])) include the L2CAP header, which 
is 4 bytes long. Thus, the total number of bytes to be transmitted from the 
processor to the Bluetooth module is 10 bytes. 
 
The serial interface between module and processor is operating at 57600 baud. 11 
bits represent each byte: One start bit, eight data bits, one stop bit and one 
intermission bit. The DM1 packet is a one slotted packet. The corresponding time 
is 625 microseconds over the radio interface. In summary the response time when 
using the DM1 packet would be: 
 
Tresponse = [(10 * 11) bits * (1/ 57600) s/bit] *2 + (11/9600) + 625 ←s = 5.59 ms 
 
 
 
 
 
 
The exact same procedure applies for the other two cases, when DM3 and DM5 
packets are used. Practically a series of at least thirty response measures were 
made. The response time was averaged and the result presented in table 11.1. 
 

Packet Type Theory  Practice 
(on average) 

DM1 5.59ms 8.98 ms 

Table 11.1. Response time result 
 
The practical value show some deviation from the theoretical. The deviation 
probably depends on latency in the Bluetooth link, but this has not been verified. 
From these tests it is obvious that the response time suffers from the relatively 
slow serial interface. For a CAN implementation the bit rate would have to be 
increased. Using the an USB interface instead of the HCI UART transport layer 

Time elapsed for serial communication 
between processor and Bluetooth module.

Time elapsed from 
when the first bit 
enters Bluebus till 
the entire byte is 
received. 

Time over 
the air. 
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would not add any particular value, since the Bluetooth radio will be the limiting 
factor. An even better solution would be to achieve a one-processor solution 
where both the implementation and the Bluetooth stack are handled by the same 
processor. As of now this solution is not supported by the Ericsson Bluetooth 
module. 
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12 Conclusions 
The core of this thesis project was to understand and use the Bluetooth technology 
to enable data transfer between two networks over a wireless link. An essential 
part was to implement a working prototype, in both hardware and software. CAN, 
KWP-2000 and RS232 were investigated to find out if these standards are suitable 
for a wireless implementation. The serial protocols RS232 and KWP-2000 were 
found to be well suited to be incorporated in Bluebus. The CAN protocol is going 
to be more challenging to incorporate. It is considered possible. However, the 
CAN acknowledgement procedure makes it impossible to achieve full 
transparency. In an asymmetric configuration using the DH5 packet (723.2 kbps) a 
CAN bridge implementation operation at 500 kbps is achievable. Messages will 
be bridged, but with some delay. This configuration could be used for example for 
a log application where traffic is essentially traveling in one direction. 
 
Initial work included choosing hardware and writing necessary parts of the 
Bluetooth software stack. In this project the parts of the L2CAP layer that handle 
segmentation and re-assembly were written. Large portions the Host Controller 
Interface and the entire UART transport layer were implemented, as described in 
the Bluetooth specification. It is recommended that data transfer be done in a 
generic packet format as proposed in this report. The idea of adding additional 
network standards by writing new driver routines will make the product 
conveniently expandable. As a result the product may be tailor made, with respect 
to hardware and drivers, to meet customer needs. The Bluebus prototype as of 
now consists of two development boards. The prototype is capable of creating a 
point-to point connection between two Bluebus units. The link is then used as a 
wireless serial interface, i.e. a virtual RS232 link. Schematics and a PCB layout 
for the production prototype have been designed and a circuit board has been 
manufactured, although lack of components has prevented testing so far. The 
product “shall” requirements, as stated in the specification, have consequently 
been satisfied. Low power consuming components have been chosen. Apart from 
that, all the “should requirements” are yet to be fulfilled. 
 
Bluetooth is a technology that has great potential to become a recognized world 
wide standard. Major telecommunication companies such as Ericsson, Nokia, 
Toshiba and the software company Microsoft are supporting the technology. 
Bluetooth offers a flexibility that cables and for example infrared technology 
could never hope to achieve. Cable connections require connectors and sometimes 
a mishmash of harnesses. For example, IrDA is wireless and can even exchange 
data at a higher pace than Bluetooth, but only works well over short distances. It is 
also essential that there is a line of sight between the transmitter and the receiver. 
The Bluetooth specification 1.0B presents an impressive functionality. However at 
this point only portions of this functionality is available. For Bluetooth to succeed 
the manufacturers need to implement support for piconet configurations, service 
discovery possibilities where devices automatically can connect ad hoc and the 
essential software stack need to be made available for product developers. In a lot 
of applications the bit rate of 1 Mbit/s and range of 10 meters may not be enough. 
Even if all these shortcomings are overcome it is essential that modules are made 
available for large-scale production. The price for Bluetooth modules needs to 
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decrease substantially for companies to adopt the technology and for end users to 
be able to afford Bluetooth products.  
 
This thesis project involved lots of “hands on”, which made the time schedule 
most sensitive for problems with hardware and late deliveries of components. On 
the other hand the fact that the project was of a practical nature made the learning 
experience even more dramatic. A critical element was to acquire the Bluetooth 
module. After weeks of repeated phone calls to the supplier, urging them to 
deliver, the modules were delivered after twice the promised delivery time. 
Problems with delays of getting modules to the market seem to be a common 
difficulty for the Bluetooth module suppliers. Incorporating the RTOS, eCos, on 
the system proved to be a complicated task. Usually one would choose a processor 
and development board with support for the intended RTOS, or the other way 
around. For this project the chosen processor and evaluation board was found to 
be well suited for Bluebus, but was not ported for eCos. Therefore, effort was 
made to port eCos for the evaluation board. The attempt was partially successful, 
but we never made it all the way. Instead the program tasks had to be managed by 
Bluebus software. As always with software development lots of time was spent 
debugging, not only our on code but also figuring out shortcomings in the 
delivered hardware. Two major obstacles were first figuring out the fact that the 
Ericsson Bluetooth module could only send and receive data in L2CAP format, 
even though the standard suggested that data could be transmitted in HCI format. 
Secondly, the processor on the Atmel evaluation board turned out to contain an 
early version of the silicon, which contains bugs related to interrupt handling. 
 
The development of Bluebus continues as a Tritech project. Additional software 
and hardware support will in a first step be added for CAN and KWP-2000 will be 
implemented upon customer request. Moreover, eCos needs to be ported for the 
AT91R40807 processor in order to handle more complicated matters than RS232 
traffic. In conclusion this has been an interesting and successful thesis project. 
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Abbreviations 
 
ACK Acknowledgement 
ACL link Asynchronous Connection-Less link 
AM_ADDR Active Member Address, 3-bit number to each active slave in a piconet 
API Application Programming Interface 
ARQ Automatic Repeat reQuest 
 
BD_ADDR Bluetooth Device Address 
BER Bit Error Rate 
bps Bits per second 
BT Bluetooth 
 
CAC Channel Access Code 
CAN Controller Area Network 
COF Ciphering Offset 
CRC Cyclic Redundancy Check 
CTS Clear To Send 
 
DAC Device Access Code 
DH Data High rate 
DIAC Dedicated Inquiry Access Code 
DLC Data Length Code 
DM Data Medium rate 
 
ECU Electrical Control Unit 
 
FEC Forward Error Correction code 
FHS Frequency Hop Synchronization 
Flash Non-volatile memory that is electrically erasable 
FW Firmware 
 
GIAC General Inquiry Access Code 
GUI Graphical User Interface 
 
HEC Header Error Check 
HCI Host Controller Interface 
HID Human Interface Device 
HW Hardware 
 
IAC Inquiry Access Code 
IDE Identifier Extension Bit 
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IEEE Institute of Electronic and Electrical Engineering 
ISM Industrial, Scientific, Medical 
 
JTAG Joint Test Access Group. Commonly used name for IEEE 1149.1 
 
KWP Key Word Protocol 
 
L2CAP Logical Link Control and Adaptation Layer 
LAP Lower Address Part 
LED Light Emitting Diode 
L_CH Logical Channel 
LC Link Control 
LM Link Manager 
LMP Link Manager Protocol 
LSB Least Significant Bit 
 
MAC Medium Access Control (sub-layer of the data link layer) 
MMI Man Machine Interface 
MSB Most Significant Bit 
 
NAK Negative Acknowledgement 
NAP Non-significant Address Part 
 
PCB Printed Circuit Board 
PIN Personal Identification Number 
 
RAND Random number 
REC Receiver Error Counter 
RF Radio Frequency 
RFCOMM Serial Cable Emulation protocol based on ETSI TS 07.10. 
RS-232 Standard for serial communication 
RTR bit Remote Transmission Request bit 
RTS Request To Send 
RXD Receive Data 
 
SCO Synchronous Connection-Oriented link 
SEQN Sequential Numbering scheme 
SIG Special Interest Group 
SOF bit Start Of Frame bit 
SRR bit Substitute Remote Request bit 
SW Software 
 
TCP/IP Transport Control Protocol/ Internet protocol 
TDD Time-Division Duplex 
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TEC Transmitter Error Counter 
TQFP Thin Quad Flat Pack 
TXD Transmit Data 
 
UA User Asynchronous 
UI User Isochronous 
UAP Upper Address Part 
UART Universal Asynchronous Receiver/Transmitter 
USB Universal Serial Bus 
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Implemented HCI Commands and Events 
 
A brief description is given of each HCI command and event used in this thesis project. A full 
definition is given in SIG 1999, part H:1. At the end of the appendix there is a list of error 
codes submitted, which is also extracted from the Bluetooth specification. This list gives a 
good idea of which the most essential commands are, in a Bluetooth implementation. 
 
HCI Commands 
 
Inquiry 
The Inquiry command will cause the Bluetooth device to enter Inquiry Mode. Inquiry Mode is 
used to discovery other nearby Bluetooth devices. 
 
Inquiry_Cancel 
The Inquiry_Cancel command will cause the Blue-tooth device to stop the current Inquiry if 
the Bluetooth device is in Inquiry Mode. 
 
Create_Connection  
The Create_Connection command will cause the link manager to create an ACL connection to 
the Bluetooth device with the BD_ADDR specified by the command parameters. 
 
Disconnect 
The Disconnect command is used to terminate an existing connection. 
 
Accept_Connection_Request 
The Accept_Connection_Request command is used to accept a new incoming connection 
request. 
 
Reject_Connection_Request 
The Reject_Connection_Request command is used to decline a new incoming connection 
request. 
 
Change_Connection_Packet_Type 
The Change_Connection_Packet_Type command is used to change which packet types can be 
used for a connection that is currently established. 
 
Remote_Name_Request 
The Remote_Name_Request command is used to obtain the user-friendly name of another 
Bluetooth device. 
 
Set_Event_Mask 
The Set_Event_Mask command is used to control which events are generated by the HCI 
for the Host. 
 
Reset 
The Reset command will reset the Bluetooth Host Controller, Link Manager, and the radio 
module. 
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Set_Event_Filter 
The Set_Event_Filter command is used by the Host to specify different event filters. The Host 
may issue this command multiple times to request various conditions for the same type of 
event filter and for different types of event filters. 
Flush 
The Flush command is used to discard all data that is currently pending for transmission in the 
Host Controller for the specified connection handle, even if there currently are chunks of data 
that belong to more than one L2CAP packet in the Host Controller. 
 
Change_Local_Name 
The Change_Local_Name command provides the ability to modify the user-friendly name for 
the Bluetooth device. 
 
Write_Connection_Accept_Timeout 
The Write_Connection_Accept_Timeout will write the value for the Connection_Accept_ 
Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny 
a connection request after a specified period has occurred, and to refuse a new connection. 
 
Write_Connection_Accept_Timeout  
The Write_Connection_Accept_Timeout will write the value for the Connection_Accept_ 
Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny 
a connection request after a specified period has occurred, and to refuse a new connection. 
 
Write_Page_Timeout 
The Write_Page_Timeout command will write the value for the Page_Reply_Timeout 
configuration parameter, which allows the Bluetooth hardware to define the amount of time a 
connection request will wait for the remote device to respond before the local device returns a 
connection failure. 
 
Write_Scan_Enable 
The Write_Scan_Enable command will write the value for the Scan_Enable configuration 
parameter, which controls whether or not the Bluetooth device will periodically scan for page 
attempts and/or inquiry requests from other Bluetooth devices. 
 
Write_Page_Scan_Activity 
The Write_Page_Scan_Activity command will write the value for Page_Scan_Interval and_ 
Page_Scan_Window configuration parameters. Page_Scan_Interval defines the amount of 
time between consecutive page scans. Page_Scan_Window defines the duration of the page 
scan. 
 
Write_Inquiry_Scan_Activity 
The Write_Inquiry_Scan_Activity command will write the value for Inquiry_Scan_Interval 
and Inquiry_Scan_Window configuration parameters. Inquiry_Scan_Interval defines the 
amount of time between consecutive inquiry scans. Inquiry_Scan_Window defines the 
amount of time for the duration of the inquiry scan. 
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Write_Inquiry_Scan_Activity 
The Write_Inquiry_Scan_Activity command will write the value for Inquiry_Scan_Interval 
and Inquiry_Scan_Window configuration parameters. Inquiry_Scan_Interval defines the 
amount of time between consecutive inquiry scans. Inquiry_Scan_Window defines the 
amount of time for the duration of the inquiry scan. 
 
Write_Authentication_Enable 
The Write_Authentication_Enable command will write the value for the 
Authentication_Enable parameter, which controls whether the Bluetooth device will require 
authentication for each connection with other Bluetooth devices. 
 
Read_Buffer_Size 
The Read_Buffer_Size command returns the size of the HCI buffers. These buffers are used 
by the Host Controller to buffer data that is to be transmitted. 
 
Read_BD_ADDR 
The Read_BD_ADDR command will read the value for the BD_ADDR parameter. The 
BD_ADDR is a 48-bit unique identifier for a Bluetooth device. Inquiry Complete event The 
Inquiry Complete event indicates that the Inquiry is finished. 
 
 
HCI Events 
 
Inquiry Result event 
The Inquiry Result event indicates that a Bluetooth device or multiple Bluetooth devices have 
responded so far during the current Inquiry process. 
 
Connection Complete event 
The Connection Complete event indicates to both of the Hosts forming the connection that a 
new connection has been established. 
 
Connection Request event 
The Connection Request event is used to indicate that a new incoming connection is trying to 
be established. 
 
Disconnection Complete event 
The Disconnection Complete event occurs when a connection has been terminated. 
 
Remote Name Request Complete event 
The Remote Name Request Complete event is used to indicate a remote name request has 
been completed. The Remote_Name event parameter is a UTF-8 encoded string with up to 
248 bytes in length. 
 
Command Complete event 
The Command Complete event is used by the Host Controller to pass the return status of a 
command and the other event parameters for each HCI Command. 
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Command Status event 
The Command Status event is used to indicate that the command described by the 
Command_Opcode parameter has been received and the Host Controller is currently 
performing the task for this command. 
 
Hardware Error event 
The Error event is used to indicate some type of hardware failure for the Bluetooth device. 
 
Flush Occurred event 
The Flush Occurred event is used to indicate that, for the specified Connection Handle, the 
current user data to be transmitted has been removed. 
 
Number Of Completed Packets event 
The Number Of Completed Packets event is used by the Host Controller to indicate to the 
Host how many HCI Data Packets have been completed for each Connection Handle since the 
previous Number Of Completed Packets event was sent. 
 
Connection Packet Type Changed event 
The Connection Packet Type Changed event is used to indicate the completion of the process 
of the Link Manager changing the Packet Types used for the specified Connection_Handle. 


