Introduction to NetLogo

Intelligent Systems, Interaction and Multimedia Seminar
2012/2013

Outline

® Introduction to NetLogo

Turtles, Patches, and others
GUI

Programming Concepts
Extensions & Tools

®* Asimple example

Introduction to NetLogo (I):
What is NetLogo

A programmable modelling environment for simulating
natural and social phenomena (Uri Winlensky 1999)

Agent-based M&S tool
Well suited for modelling complex systems

Hundreds or thousands of independent agents operating
concurrently

Exploring the connection between the micro-level behaviour
of individuals and the macro-level patterns that emerge from
the interaction of many individuals

Introduction to NetLogo (1):
What is NetLogo

® Easy-to-use application development environment

® Quickly testing hypotheses about self-organized
systems

® Open simulations and play with them

® Large collection of pre-written simulations in natural
and social sciences that can be used and modified

® Simple scripting language

® User-friendly graphical interface

Introduction to NetLogo (II):
The World of NetLogo

® NetLogo consists of agents living in a 2-D world divided
Into a grid of patches

® Three different type of agents plus one more
® Turtles, are the agents that move around the world

® Patches, are the pieces of “ground” on which turtles can
move

® |inks, are agents that connect two turtles

® Observer, is an agent without location that oversees
everything going on in the world.

® Ask agents to perform a command

® Collects data from models

Patches, Turtles, System

® Patches: Elements of space
® Change
® Do not move

® Turtles: “Social”’ actors
® Change
® Mobile

¢ All turtles and patches put together
® Typically, we wish to observe the system
® How many turtles are sick? Alive?

"Rules”

® Turtles and patches have rules that can
® Change themselves (reflexive)
® Change other turtles
® Change other patches

Rules for Turtles

® Reflexive behaviour
® ask turtles [forward 1]

® Reflexive state
® ask turtles
[if (sick?) [set color blue]]

® Change other turtles
® |f (sick?) [ask turtles here [set sick? true
set color blue]]

® Change patches
® askturtles if (sick?)
[ask patch-here [set grass grass — 5 |]

Rules for Patches

® Reflexive state: patches change themselves
® ask patches [set grass grass + 1 |

® Change other patches
® ask patches in-radius 1 [set grass 0.1 * my-grass |

® Change turtles

® ask turtles-here [set sick? true
set color blue]

IN Summary

* Tself
* Pself
® T-to-T
¢ P-to-P
¢ T-to-P
¢® P-to-T

. >

Introduction to NetLogo (l1):
GUI - Controls, Settings, Views

- - o Intel ocedures
. { Interface Information ~ Procedures } P v
Gl @it I I ! Indent automatic:

' ' + — —y Evlmupdates
abe Button = I -
Edit Delete Add normal speed ! anticks ':, globals [grass] ;; keep track of how much grass there is

;3 Sheep and wolves are both breeds of turtle.
smp i 2

breed [sheep a-sheep] ;; sheep is its own plural, so we use "a-sheep” os the singular.
Grass settings

breed [wolves wolf]
|_
-

turtles-own [energy] ;3 both wolves and sheep have energy
Sheep settings Wolf settings

patches-own [countdown]

1o setup

clear-all

ask patches [set pcolor green]

11 check GRASS? switch.

53 if it is true, then grass grows and the sheep eat it

;3 if it false, then the sheep don't need to eat

if grass? [

ask patches [

set countdown random grass-regrowth-time ;; initialize grass grow clocks randomly
set pcolor one-of [green brown]

]

1
set-default-shape sheep "sheep”
create-sheep initial-number-sheep ;; create the sheep, then initialize their variables
[
set color white
set size 1.5 ;; easier to see
set label-color blue - 2
set energy random (2 * sheep-gain-from-food)
setxy random-xcor random-ycor

]
set-default-shape wolves "wolf"

populations create-wolves initial-number-wolves ;; create the wolves, then initiclize their varicbles
h
293 .5 eep set color black
M wolves set size 1.5 ;; easier to see
.grass /4 set energy rondom (2 * wolf-gain-from-food)

setxy random-xcor random-ycor
1
display-labels
update-plot

pop.

Introduction to NetLogo (l1):
GUI - Controls, Settings, Views

controls (BLUE) - allow to run and control the flow of
execution

® puttons
® command centre

settings (GREEN) - allow to modify parameters
® gliders

® switches

® choosers

views (BEIGE) - allow to display information
® monitors

® plots

® output text areas

Introduction to NetLogo (l1):
GUI - Controls

Controls - allow to run and control the flow of execution
® Buttons
® Command center

Buttons - initialize, start, stop, step through the model

® “Once” buttons execute one action (one step)

e ‘Forever” buttons repeat the same action i

Command center - ask observer, patches or turtles to
execute specific commands during the execution

O> ask patches [set pcolor yellow]

§sk turtles [set color brown]

Introduction to NetLogo (1V):
GUI - Settings

Settings - allow to modify parameters
® Sliders
® Switches

Sliders - adjust a quantity from min to max by an increment

Switches - set a Boolean variable (true/false)

Choosers - select a value from a list

Raatclvarkl raow i

Beats/rockl ,csw

Beatssethl . csw

Beats/sethz ., csw

Introduction to NetLogo (V):

GUI - Views
® Views - allow to display information
® Monitors
® Plots

® Graphics window

® Monitors - display the current value of variables

time-ticks sheep wolves grass [4

] 0 a a

® Plots - display the history of a variable’s value

Turtles at Peaks Pens

39.6

3
=
=

o

Introduction to NetLogo (V):
GUI - Views

Graphics window - The main view of the 2-D NetLogo world

_—> Adjust speed

! wiew updares

" " Settings...
normal speed on ticks — =T

- right-click brings up
turtle/patch inspector

who 12
color 15
heading 277
Meor -3 .4542373460098778
yoor -11. 76447347 2488127
shape "bug
label
label-color 9.2
breed turtles
hidden? false
size ¢
pen-size 1

pen-mode “up

Introduction to NetLogo (VI):

Programming Concepts
® Agents
® Procedures
® Variables
® Ask
® Agentsets

® Breeds

~ ® Synchronization

Introduction to NetLogo (VI):

Programming Concepts - Agents

® Each agent can carry out its own activity, all simultaneously

® Patches

® Form the 2D world — They don’t move, but they sense

® They have integer coordinates (pxcor, pycor)

® Can generate turtles
® Turtles

® move on top of the patches

® have decimal coordinates (xcor, ycor) and orientation (heading)
® Observer

® Can create new turtles

® Can have read/write access to all the agents and variables

Introduction to NetLogo (VI):

Programming Concepts - Procedures

® Procedures tell agents what to do

® Command iIs an action for an agent to carry out
¢ Usually begin with verbs

to setup to draw-polygon [num-sides size |
clear all pd repeat num-sides
create 10 [fd size rt (360 / num-sides)]

end end

Introduction to NetLogo (VI):
Programming Concepts - Procedures

® Reporter computes a result and report it
® Usually begin with nouns or nouns-phrases

to-report absolute-value [number]
ifelse number >= 0
[report number]
[report O - number |
end

® Procedures: Commands or Reporters implemented by the
user

® Primitives: Commands or Reporters built into
NetLogo(language keywords)

Introduction to NetLogo (VI):

Programming Concepts — Variables (i)

® Variables
® (lobal variables
® Turtle & patch variables
® | ocal variable

® Global variables
® Every agent can access it
® Only one value for the variable

® Turtle & Patch variables
® Each turtle/patch has its own value for every turtle/patch variable

® Local variables

® Defined and accessible only inside a procedure
~ Created by the command let

Introduction to NetLogo (VI):

Programming Concepts — Variables (ii)

® Built-in:
® Turtle variables: color, xcor, ycor, heading, etc
¢ Patch variables: pcolor, pxcor, pycor, etc

® Defining global variables:
® global [clock]

® Defining turtle/patch variables:
® turtles-own [energy speed]
® patches-own [friction]

® Defining a local variable:
® to swap-colors [turtlel turtle2]
let temp color-of turtlel

Introduction to NetLogo (VI):

Programming Concepts - Ask

® Ask - specify commands to be run by turtles or patches

® Examples
® asking all turtles:
® ask turtles [fd 50 ...]
® asking one turtle:
® askturtle5][...]
® asking all patches
® ask patches [diffuse ...]

® Only the observer can ask all turtles or all patches

Introduction to NetLogo (VI):

Programming Concepts — Agentsets (i)

Agentset - definition of a subset of agents

® Contain either turtles or patches

® |sin arandom order

® Allows to construct agentsts that contain some turtles or patches

Example:

all red turtles:
® turtles with [color =red]

all red turtles on the patch of the current caller (turtle or patch):
® turtles-here with [color =red]

all patches on right side of screen:
® patches with [pxcor >0]

all turtles less than 3 patches away from caller (turtle or patch):
® turtles in-radius 3

Introduction to NetLogo (VI):

Programming Concepts — Agentsets (ii)

® Using agentsets
® ask such agents to execute a command
® ask <agentset>] ...]
® check if there are such agents
® show any? <agentset>
® count such agents
® show count <agentset>

® example: remove the richest turtle (with the maximum
“assets” value)

® ask max-one-of turtles [sum assets] [die |

Introduction to NetLogo (VI):

Programming Concepts - Breeds

Breed - a “natural” kind of agentset
® Different breeds can behave differently
® preed [wolves wolf]

® Dreed [sheep a-sheep]

A new breed comes with automatically derived primitives:
® create-<breed>, create-custom-<breed>, <breed>-here, <breed>-at

Breed is a turtle variable
® askturtle 5] if breed =sheep ...]

A turtle agent can change breed
® ask turtle 5[set breed sheep |

Introduction to NetLogo (VI):

Programming Concepts - Synchronization

® Agents run in parallel (each agent is an independent thread)

® asynchronous commands:

® ask turtles [fd random 10
do-something]

turtle 1 EEEEEEET I
turtle 2 FEEEEET I
turtle 3 ISR I e

® Agent threads wait and “join” at the end of a block

René Doursat, 2008

® synchronous commands:
® ask turtles [fd random 10]
® ask turtles [do-something]

turtle 1 EEEEEEE 7 NN 7/
turtle 2 [N 77
turtle 3 [N N 7

Introduction to NetLogo (VII):

Extensions & Tools

Extensions Guide
Sound
Robotics/NetLogolLab
GIS

Bitmap

Quicktime for Java
BDI architecture FIPA

Applets

Shapes Editor
Behaviour Space
System Dynamics
HubNet

Logging
Controlling

Mathematica link
NetLogo 3D

NetLogo References

NetLogo user manual http://ccl.northwestern.edu/netlogo/docs/

Agent-based and Individual-based Modeling: A Practical Introduction, by
Steven F. Railsback and Volker Grimm (NetLogo v5.0)

NetLogo Learning Lab
http://www.professorqgizzi.org/modelingcomplexity/netlogo/index.htmi

NetLogo 5.0 — Quick Guide, Luis R. lIzquierdo

Fundamentals of Multi-agent Systems with NetLogo Examples, Jose M.
Vidal

http://multiagent.com/p/fundamentals-of-multiagent-systems.html

Origins of Life: From Geochemistry to the Genetic Code
http://origins.santafe.edu/tutorials/netlogo

http://ccl.northwestern.edu/netlogo/docs/
http://www.professorgizzi.org/modelingcomplexity/netlogo/index.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo

A simple tutorial

® Create via “File/New”, a new NetLogo program

® Save i, via “File/Save as” with the name
MushroomHunt.nlogo

® From the “Settings” button
® view of the World’s geometry

® To initialize the World and run the model
® setup procedure
® go procedure

“Interface” tab -> “Button”

create setup button

L] ™ Button

similarly create a go button

Agent(s) [observer |5

| Disable until ticks start

Commands

ad|

Display name

Action key [

Forever

Cancel) {

oK b |

NetLogo
[Interface Info ~ Code
"7“ i + P— V! view updates P
abe Button w v == Settings...
\Edit] Delete Add normal speed continuous —
ﬁ{)# ticks ﬂ
| |
B osewp A
| |
ano Button

Agent(s) observer _Cj I Forever

[Disable until ticks start

Commands
ketup

Display name

Action key

| Cancel (0K)

Command Center | Clear

ohserver> v

® |n “Code” tab
to setup to go
® (Create the skeleton of setup & go ca
reset-ticks and
end
Y to setup
Change setup to ask potches
I
set pcolor red
]
end

® Create the clusters of mushrooms (patches).
® The cluster can be a model parameter
 Define a global variable num-clusters ~ 9tobals [num-clusters]

® Modify the setup to turn in red randomly a “num-cluster”
patches to setup

ca
ask n-of num-clusters paotches

C
ask n-of 28 patches in-radius S

L
set pcolor red
1

a1
reset-ticks
- end

create-turtles 2

create the turtles :

® use the primitive create-turtles set size ¢

set color vellow

v [rreen
[Interface | Info Code
+ - ¥ @view updates [=
abe Button = e = == Setting
Add normal speed continuous '+ -
tup 90
Zommand Center | Clear

Jbserver> =

® Inthe go procedure
® Tell to turtles what to do. In this case to search for mushrooms

® So we need a search procedure to go
ask turtles [search]

end
to search
end
® | et’s define search.
to search
ifelse time-since-last-found <= 28
[right (random 181) - 9&]
[right (random 21) - 1@]
forward 1
end
® After globals statement define globals [num-clusters]

turtles-own [time-since-last-found]

5

® We update the setup procedure

to setup
ca
set num-clusters 4
ask n-of num-clusters patches

[
ask n-of 20 patches in-radius 5

L
set pcolor red
1
1

create-turtles 2
L
set size 2
set color yellow
set time-since-last-found 999

1

reset-ticks
end

6

® and the search procedure as well as

to search
ifelse time-since-last-found == 28
[right (random 181) - 9&]
[right (random 21) - 1@&]

forward 1

ifelse pcolor | red

L
set time-since-last-found @

set pcolor yellow

1
[set time-since-last-found time-since-last-found + 1]

end

globals [num-clusters]
turtles-own [time-since-last-found]

to setup

an

ca
set num-clusters 4
ask n-of num-clusters patches
L
ask n-of 2@ patches in-radius 5
L

set pcolor red

]
]
create-turtles 1
C

set size 2

set color yellow

set time-since-last-found 999
]
reset-ticks
il

to go

an

tick
ask turtles [search]
il

to search

m

ifelse time-since-last-found <= 28
[right (random 181) - 9]
[right {random 21) - 1@]

forward 1

ifelse pcolor = red
C
set time-since-last-found @
set pcolor yellow

]

]

4

s
-

ticks: 200

[set time-since-last-found time-since-last-found + 1]

1.

2.

i

4.

5.

The modelling cycle for the Mushroom-hunter problem

Formulate the problem

® What search strategy maximizes the rate of finding items if are
distributed in clusters?

Formulate hypothesis for essential processes and structures

® process switches from large-scale movements to small-scale
searching depending on previous

® discoveries

Choose scales, entities, state variables, processes and
parameters

Implement the model

Analyse, test and revise the model

® we could the model by trying different search algorithms and
parameter values analyse to see which produces the highest rates

