
Introduction to NetLogo
Intelligent Systems, Interaction and Multimedia Seminar

2012/2013

Outline

 Introduction to NetLogo

 Turtles, Patches, and others

 GUI

 Programming Concepts

 Extensions & Tools

 A simple example

Introduction to NetLogo (I):
What is NetLogo

 A programmable modelling environment for simulating

natural and social phenomena (Uri Winlensky 1999)

 Agent-based M&S tool

 Well suited for modelling complex systems

 Hundreds or thousands of independent agents operating

concurrently

 Exploring the connection between the micro-level behaviour

of individuals and the macro-level patterns that emerge from

the interaction of many individuals

Introduction to NetLogo (I):
What is NetLogo

 Easy-to-use application development environment

 Quickly testing hypotheses about self-organized

systems

 Open simulations and play with them

 Large collection of pre-written simulations in natural

and social sciences that can be used and modified

 Simple scripting language

 User-friendly graphical interface

Introduction to NetLogo (II):
The World of NetLogo

 NetLogo consists of agents living in a 2-D world divided
into a grid of patches

 Three different type of agents plus one more

 Turtles, are the agents that move around the world

 Patches, are the pieces of “ground” on which turtles can
move

 Links, are agents that connect two turtles

 Observer, is an agent without location that oversees
everything going on in the world.

 Ask agents to perform a command

 Collects data from models

Patches, Turtles, System
 Patches: Elements of space

 Change

 Do not move

 Turtles: “Social” actors

 Change

 Mobile

 All turtles and patches put together

 Typically, we wish to observe the system

 How many turtles are sick? Alive?

“Rules”

 Turtles and patches have rules that can

 Change themselves (reflexive)

 Change other turtles

 Change other patches

Rules for Turtles
 Reflexive behaviour

 ask turtles [forward 1]

 Reflexive state

 ask turtles

 [if (sick?) [set color blue]]

 Change other turtles

 If (sick?) [ask turtles here [set sick? true

 set color blue]]

 Change patches

 ask turtles if (sick?)

 [ask patch-here [set grass grass – 5]]

Rules for Patches

 Reflexive state: patches change themselves

 ask patches [set grass grass + 1]

 Change other patches

 ask patches in-radius 1 [set grass 0.1 * my-grass]

 Change turtles

 ask turtles-here [set sick? true

 set color blue]

in Summary
 Tself

 Pself

 T-to-T

 P-to-P

 T-to-P

 P-to-T

Introduction to NetLogo (III):
GUI - Controls, Settings, Views

Introduction to NetLogo (III):
GUI - Controls, Settings, Views

 controls (BLUE) - allow to run and control the flow of

execution

 buttons

 command centre

 settings (GREEN) - allow to modify parameters

 sliders

 switches

 choosers

 views (BEIGE) - allow to display information

 monitors

 plots

 output text areas

 graphics window

Introduction to NetLogo (III):
GUI - Controls

 Controls - allow to run and control the flow of execution

 Buttons

 Command center

 Buttons - initialize, start, stop, step through the model

 “Once” buttons execute one action (one step)

 �“Forever” buttons repeat the same action

 Command center - ask observer, patches or turtles to

execute specific commands during the execution

Introduction to NetLogo (IV):
GUI - Settings

 Settings - allow to modify parameters

 Sliders

 Switches

 Sliders - adjust a quantity from min to max by an increment

 Switches - set a Boolean variable (true/false)

 Choosers - select a value from a list

Introduction to NetLogo (V):
GUI - Views

 Views - allow to display information

 Monitors

 Plots

 Graphics window

 Monitors - display the current value of variables

 Plots - display the history of a variable’s value

Introduction to NetLogo (V):
GUI - Views

 Graphics window - The main view of the 2-D NetLogo world

right-click brings up

turtle/patch inspector

Adjust speed

Introduction to NetLogo (VI):
Programming Concepts

 Agents

 Procedures

 Variables

 Ask

 Agentsets

 Breeds

 Synchronization

Introduction to NetLogo (VI):
Programming Concepts - Agents

 Each agent can carry out its own activity, all simultaneously

 Patches

 Form the 2D world – They don’t move, but they sense

 They have integer coordinates (pxcor, pycor)

 Can generate turtles

 Turtles

 move on top of the patches

 have decimal coordinates (xcor, ycor) and orientation (heading)

 Observer

 Can create new turtles

 Can have read/write access to all the agents and variables

Introduction to NetLogo (VI):
Programming Concepts - Procedures

 Procedures tell agents what to do

 Command is an action for an agent to carry out

 Usually begin with verbs

to setup

 clear all

 create 10

end

to draw-polygon [num-sides size]

 pd repeat num-sides

 [fd size rt (360 / num-sides)]

end

Introduction to NetLogo (VI):
Programming Concepts - Procedures

 Reporter computes a result and report it

 Usually begin with nouns or nouns-phrases

 Procedures: Commands or Reporters implemented by the

user

 Primitives: Commands or Reporters built into

NetLogo(language keywords)

to-report absolute-value [number]

 ifelse number >= 0

 [report number]

 [report 0 - number]

end

Introduction to NetLogo (VI):
Programming Concepts – Variables (i)

 Variables

 Global variables

 Turtle & patch variables

 Local variable

 Global variables

 Every agent can access it

 Only one value for the variable

 Turtle & Patch variables

 Each turtle/patch has its own value for every turtle/patch variable

 Local variables

 Defined and accessible only inside a procedure

 Created by the command let

Introduction to NetLogo (VI):
Programming Concepts – Variables (ii)

 Built-in:

 Turtle variables: color, xcor, ycor, heading, etc

 Patch variables: pcolor, pxcor, pycor, etc

 Defining global variables:

 global [clock]

 Defining turtle/patch variables:

 turtles-own [energy speed]

 patches-own [friction]

 Defining a local variable:

 to swap-colors [turtle1 turtle2]

 let temp color-of turtle1

 ….

Introduction to NetLogo (VI):
Programming Concepts - Ask

 Ask - specify commands to be run by turtles or patches

 Examples

 asking all turtles:

 ask turtles [fd 50 ...]

 asking one turtle:

 ask turtle 5 [...]

 asking all patches

 ask patches [diffuse ...]

 Only the observer can ask all turtles or all patches

Introduction to NetLogo (VI):
Programming Concepts – Agentsets (i)

 Agentset - definition of a subset of agents

 Contain either turtles or patches

 Is in a random order

 Allows to construct agentsts that contain some turtles or patches

 Example:

 all red turtles:
 turtles with [color = red]

 all red turtles on the patch of the current caller (turtle or patch):
 turtles-here with [color = red]

 all patches on right side of screen:
 patches with [pxcor > 0]

 all turtles less than 3 patches away from caller (turtle or patch):
 turtles in-radius 3

Introduction to NetLogo (VI):
Programming Concepts – Agentsets (ii)

 Using agentsets

 ask such agents to execute a command

 ask <agentset> [...]

 check if there are such agents

 show any? <agentset>

 count such agents

 show count <agentset>

 example: remove the richest turtle (with the maximum

“assets” value)

 ask max-one-of turtles [sum assets] [die]

Introduction to NetLogo (VI):
Programming Concepts - Breeds

 Breed - a “natural” kind of agentset

 Different breeds can behave differently

 breed [wolves wolf]

 breed [sheep a-sheep]

 A new breed comes with automatically derived primitives:

 create-<breed>, create-custom-<breed>, <breed>-here, <breed>-at

 Breed is a turtle variable

 ask turtle 5 [if breed = sheep ...]

 A turtle agent can change breed

 ask turtle 5 [set breed sheep]

Introduction to NetLogo (VI):
Programming Concepts - Synchronization

 Agents run in parallel (each agent is an independent thread)

 asynchronous commands:

 ask turtles [fd random 10

 do-something]

 Agent threads wait and “join” at the end of a block

 synchronous commands:

 ask turtles [fd random 10]

 ask turtles [do-something]

René Doursat, 2008

René Doursat, 2008

Introduction to NetLogo (VII):
Extensions & Tools

 Extensions Guide

 Sound

 Robotics/NetLogoLab

 GIS

 Bitmap

 Quicktime for Java

 BDI architecture FIPA

 Applets

 Shapes Editor

 Behaviour Space

 System Dynamics

 HubNet

 Logging

 Controlling

 Mathematica link

 NetLogo 3D

NetLogo References

 NetLogo user manual http://ccl.northwestern.edu/netlogo/docs/

 Agent-based and Individual-based Modeling: A Practical Introduction, by

Steven F. Railsback and Volker Grimm (NetLogo v5.0)

 NetLogo Learning Lab

http://www.professorgizzi.org/modelingcomplexity/netlogo/index.html

 NetLogo 5.0 – Quick Guide, Luis R. Izquierdo

 Fundamentals of Multi-agent Systems with NetLogo Examples, José M.

Vidal

http://multiagent.com/p/fundamentals-of-multiagent-systems.html

 Origins of Life: From Geochemistry to the Genetic Code

http://origins.santafe.edu/tutorials/netlogo

http://ccl.northwestern.edu/netlogo/docs/
http://www.professorgizzi.org/modelingcomplexity/netlogo/index.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://multiagent.com/p/fundamentals-of-multiagent-systems.html
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo
http://origins.santafe.edu/tutorials/netlogo

A simple tutorial

 Create via “File/New”, a new NetLogo program

 Save it, via “File/Save as” with the name

MushroomHunt.nlogo

 From the “Settings” button

 view of the World’s geometry

 To initialize the World and run the model

 setup procedure

 go procedure

1

 “Interface” tab -> “Button”

 create setup button

 similarly create a go button

2

 In “Code” tab

 Create the skeleton of setup & go

 Change setup to

 Create the clusters of mushrooms (patches).

 The cluster can be a model parameter

 Define a global variable num-clusters

 Modify the setup to turn in red randomly a “num-cluster”

patches

3

 create the turtles

 use the primitive create-turtles

4

 In the go procedure

 Tell to turtles what to do. In this case to search for mushrooms

 So we need a search procedure

 Let’s define search.

 After globals statement define

5

 We update the setup procedure

6

 and the search procedure as well as

7

The modelling cycle for the Mushroom-hunter problem

1. Formulate the problem

 What search strategy maximizes the rate of finding items if are

distributed in clusters?

2. Formulate hypothesis for essential processes and structures

 process switches from large-scale movements to small-scale

searching depending on previous

 discoveries

3. Choose scales, entities, state variables, processes and

parameters

4. Implement the model

5. Analyse, test and revise the model

 we could the model by trying different search algorithms and

parameter values analyse to see which produces the highest rates

