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Structural Equation Modeling Made Simple

Preface to Version 2.5

The current manual describes STREAMS Version 2.5, which also supports the Arbuckle
and Wothke (1999) Amos 4 program. STREAMS takes advantage of the programmability
features of Amos 4 and generates and interprets Amos Basic code. The user thus specifies
the model in the MB language as usual and needs not write any Amos Basic code.
STREAMS also has an interface to Amos Graphics so one-group MB models are auto-
matically drawn. The model may then be edited and estimated in Amos Graphics. After
the model has been edited in Amos Graphics it may be translated back to the MB lan-
guage. 

STREAMS 2.5 also offers a new user interface to the data management and data prepara-
tion functions. It is hoped that these new features in STREAMS will be appreciated, and
both positive and negative feedback is solicited.

Mölndal May 22, 2000

Jan-Eric Gustafsson tel: +46 31 773 24 20
fax: +46 31 773 24 62
e-mail: Jan-Eric.Gustafsson@ped.gu.se.

Address:

MultivariateWare
P. O. Box 300
SE-405 30 Göteborg
SWEDEN
www.mwstreams.com
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Preface to Version 2.1

The current manual describes STREAMS Version 2.1, which also supports the Muthén
and Muthén (1998) Mplus program. This program offers a wide range of new and excit-
ing methods and techniques, which should be of particular interest to the advanced SEM
user. It is hoped that the inclusion of Mplus in the STREAMS modeling environment
will allow wider and easier access to the functionality of Mplus. 

Mölndal July 18, 1999

Jan-Eric Gustafsson 
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Preface to Version 2.0

Structural equation modeling (SEM) is an invaluable tool for analyzing data involving
multiple observations on a set of individuals, and particularly so when the observations
are not perfectly valid and reliable. However, anyone who has applied SEM techniques to
an actual large-scale set of data is also likely to have experienced some frustration,
because these techniques are complex and computationally cumbersome. Thus, for a
model involving many variables and groups of cases model-specification is tedious and
error-prone, even with a sophisticated path diagram interface. Sometimes the iterative
solution of the non-linear equations implied by the model fails to converge, or converges
only slowly. And when the researcher is applying a complex and specialized approach to
deal with a particular class of problems, such as multilevel or growth curve problems,
these problems are aggravated by the increased complexity of model specification, and
the need for optimal start values for the iterations.

Such frustrations were experienced very strongly when I, along with Ingrid Munck, Ing-
var Lundberg, Monica Rosén, Anna Lindbom, Kjell Härnqvist and others, embarked on a
project aiming to reanalyze the IEA (the International Association for the Evaluation of
Educational Achievement) Reading Literacy (RL) study (Elley, 1994), using the multi-
level latent variable modeling approach developed by Muthén (1989, 1990, 1994). Hav-
ing applied these techniques in a previous study (Härnqvist, Gustafsson, Muthén, &
Nelson Goff, 1994) we knew how to specify the model, but we stumbled at the practical
problems of getting the specification (which typically amounted to a couple of thousands
of lines of LISREL code) right, and of getting good enough start values for the iterations.

To get around these problems I wrote, in 1994, a pre-processor program, which combined
a simple school-level model and a simple student-level model into a two-level model, and
constructed the LISREL code, complete with start values. With this tool we managed to
get some meaningful work done (e. g., Lundberg & Rosén, 1995; Munck, 1995), but most
users experienced the program as unfriendly, and some even as being hostile, so it did not
really encourge use. The next step, however, was to develop a full-fledged language,
called MB (Model Building language), for describing one- and two-level models in one
or more populations. Through the heroic efforts of Per Arne Stahl, the system was also
put into the Windows environment to improve user friendliness. In further steps of devel-
opment support for other types of complex data (i. e., structurally missing data) were
added, as well as data handling facilities, and often Per Arne was a chief contributor of
ideas and code. This tool was used, with quite interesting results, in the final phases of the
reanalysis of  the IEA data (e. g., Gustafsson, 1997, in press; Rosén, 1997, in press).

In June 1995 STREAMS 1.0 was released, This was a fairly simple program, which only
supported LISREL, and it had its problems and limitations, so it was fairly rapidly
replaced by a sequence of new releases. About a year later STREAMS 1.5 was released,
and by that time it was obvious that the program does fill a great need. In January 1997,
STREAMS 1.7, which supported Amos, EQS and LISREL, and which included a fairly
rich set of utility routines. was published, and was distributed internationally by ProG-
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AMMA in The Netherlands. Now STREAMS 2.0, which is a 32-bit version with consid-
erably extended capabilities (among others, a path diagram interface, and support for the
Mx program) is being released, and I hope that it will prove to be even more useful than
its predecessors.

The STREAMS system thus has been created in an attempt to improve the usefulness of
structural equation modeling for the kinds of data and problems that are encountered in
large-scale educational research. However, the system should be useful in many other
areas of social and behavioral research as well. There is, however, room for further
improvements and extensions of the system, and I hope to see a further rapid development
through what has proven to be a main source of improvements, namely suggestions from
users for how to augment the usefulness of the system.

Mölndal January 31, 1999

Jan-Eric Gustafsson tel: +46 31 773 24 20
fax: +46 31 773 24 62
e-mail: Jan-Eric.Gustafsson@ped.gu.se.

Address:

MultivariateWare
P. O. Box 300
SE-405 30 Göteborg
SWEDEN
www.ped.gu.se/mw

Some Practical Information

The present manual describes STREAMS 2.5, which supports Amos, EQS, LISREL® 8,
Mplus and Mx. Observe that STREAMS will not work unless Amos 3.5-4.0, EQS 4 or 5,
LISREL® 8.03-8.30, Mplus 1.0, and/or Mx 1.44- is installed on the computer. 

Amos, EQS, LISREL and STREAMS may all be ordered from: 
ProGamma bv
P. O. Box 841
9700 AV Groningen
The Netherlands
Tel: +31 503 63 6900
Fax: +31 503 63 6687
www.gamma.rug.nl

The Mx program, which has been authored by Michael Neale at Virginia Commonwealth
University, may be downloaded without cost from http://griffin.vcu.edu/mx.
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Amos may be ordered from:
SmallWaters Corporation
1507 E. 53rd Street, #452
Chicago, IL 60615
Tel +1 773 667 8635
Fax +1 773 955 6252
www.smallwaters.com

EQS may be ordered from:
Multivariate Software, Inc.
4924 Balboa Blvd., # 368
Encino, CA 9136
Tel +1 818 906 0740
Fax +1 818 906 8205
www.mvsoft.com

LISREL may be ordered from:
Scientific Software International, Inc.
1525 East 53rd Street, Suite 530
Chicago, IL 60615-4530
Tel: +1 312 684 4920
Fax: +1 312 684 4979
www.ssicentral.com

Mplus may be ordered from:
Muthén & Muthén  
11965 Venice Blvd., Suite 407  
Los Angeles, CA 90066  
Fax: (310) 391-8971
www.statmodel.com

LISREL, PRELIS and SIMPLIS are trademarks of Scientic Software International, Inc
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Structural Equation Modeling Made Simple

Structural equation modeling (SEM) is a versatile and powerful statistical tool, which has
proven useful for analyzing a wide range of phenomena within many disciplines (see text-
book presentations by, e. g., Bollen, 1989; Byrne, 1994; Hayduk, 1987; Hoyle, 1994;
Jöreskog & Sörbom, 1993c; Loehlin, 1992; Maruyama, 1998; Schumacker & Lomax,
1996). SEM thus is a general statistical method, which includes many other methods as
special cases (e. g., regression analysis, path analysis, factor analysis, simultaneous equa-
tions, ANOVA, MANOVA), but it also goes far beyond these. Above all, SEM gains its
strength from the idea of latent variables. 

Several excellent computer programs, each of which has its unique strengths, are availa-
ble for specifying and estimating structural equation models. The power and flexibility of
the approach, along with the differences among the programs may, however, make SEM
seem inaccessible to novices, and it may be forbiddingly complex even for experienced
users. STREAMS (Structural Equation Modeling Made Simple) has been developed with
the purpose of making SEM easily available to a broad range of users. Both novices and
experienced SEM users will find STREAMS useful, because the program offers:

• One language and one interface for five SEM Programs. STREAMS offers a
consistent interface to four SEM programs (Amos, EQS, LISREL, Mplus and Mx),
with generation of model statements, control of program execution and post-
processing of program output.

• User-friendly tools for model specification. Model specification may be done with a
simple and powerful language and/or through path diagrams. The user interface is
equipped with numerous tools designed to support specification, estimation, and
interpretation of models.

• Automatic data setup. STREAMS takes care of the minute details of data
specification and setup for all the estimation programs, relieving the user the burden
of dealing with program specific rules and conventions for data management.

�
Introduction
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• Models for complex data. Easy specification of complex models for multiple groups
of cases, multi-level data and incomplete data.

• Efficiency. In STREAMS start values are automatically copied from previously
estimated models, which usually yields substantial improvements in program
execution time. It is also trivial to switch between different estimation programs, so as
to take advantage of their respective strengths.

• Data management tools. STREAMS performs preparation of data for modeling,
including computation of matrices for two-level analysis and structurally missing
data.

• Project management. Efficient functions for management of data and models are
included in the system.

The present manual presents the basic procedures and functions of the system.

Basic Ideas of STREAMS

STREAMS is based on two fundamental ideas: the idea of representing models in a
generic system, and the idea of assembling both models and data within a project. Sche-
matically, the process of model representation and model estimation may be represented
in the following way:

The model is specified in terms of a general meta-language for SEM (the Model Build-
ing language, MB), and for this process STREAMS offers a large set of tools and func-
tions. When the model is to be estimated it is translated into the language of the selected
estimation program. Often the model specification may be furnished with good starting
values from one or more previously estimated models. When the model has been esti-
mated, the output is translated back into the MB language, and the model parameters are
stored for future use.

STREAMS thus relieves the user of the burden of having to remember syntactical details
of one or more program specific modeling lagnuages, and of generating large amounts of
complex, error-prone, instructions. However, what is often equally important is that
STREAMS takes care of all the details of data specification (e. g., file management, var-
iable labels, missing data codes, and so on). This can be done because different data sets
(typically either in the form of covariance matrices or in the form of raw data files) are

Amos

EQS

LISREL

Mplus

Mx

MB

Input Output

MB
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stored in a data base, which also contains meta-information (e. g., variables, code labels,
and number of cases) about the data sets. This allows STREAMS to prepare both the
data and the description of the data in the ways expected by the different SEM programs.

The combination of powerful modeling functions with sophisticated data handling facili-
ties makes STREAMS a powerful data analytic environment for both advanced and nov-
ice users.

Functions of STREAMS

STREAMS presents users of the SEM technique with an environment for specifying, esti-
mating, and evaluating models:

• Model specification is done with the MB language and/or through construction of
path diagrams with the Amos 4 AmosGraphics system. This Amos system (which
requires Amos 4 to be installed) offers advanced editing and presentation tools. A
model specified in terms of the MB language can be transformed into a path diagram,
and a model drawn as a path diagram is automatically translated into MB statements.
The user can thus move between the MB language and the path diagram
representation. The MB language is simple and powerful, and particularly so for
specifying models involving many variables and/or groups. The language also has
extensions for specifying two-level models, and models for incomplete data. For
model editing, the system also offers a large set of tools and functions, such as
procedures for combining several models into one, and for imposing different kinds
of constraints.

• Model estimation is done in a three-step process. In the first step (the pre-processor
step) the MB language statements are translated into instructions for one of several
different SEM estimation programs. The instructions are also typically supplied with
start values from one or more previously estimated models. The current version of
STREAMS (2.5) supports Amos (3.51, 3.6 and 4.0), EQS (4 and 5, along with an
experimental interface to the not yet released version 6 of EQS), LISREL (8.03-8.30),
Mplus 1.0 and Mx (1.44-). In the second step (the estimation step) the chosen
estimation program is run, and in the third step (the post-processor step) the output
from the estimation program is translated back into the MB language. These three
steps are transpararent to the user.

• Model evaluation involves scrutiny of the results produced in the post-processor step,
which may be presented both in the form of listings, as a path diagram, or as charts.
Sometimes there is also reason to consult the output listing from the estimation pro-
gram, which is also easily available. Model fit statistics are also available for scrutiny,
as is diagnostic information about reasons for model misfit. Often this information
results in a decision to respecify the model, in which case the process of model speci-
fication, estimation, and evaluation is repeated once again.

STREAMS also includes functions for preparing data for modeling, such as:

• Computation of covariance matrices from raw data for one or more groups of cases.

• Computation of matrices for two-level analysis, which is useful when the
observational units (e. g., individuals) are clustered (e. g., into schools).
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• Computation of matrices for analysis of systematically missing data, which is useful,
for example, when the data to be analyzed has been generated by a matrix sampling
design.

• Preparation of raw data for use in SEM programs which require raw data input.

• Preparation for analysis of matrices computed outside the STREAMS system.

The use of these functions, and other basic STREAMS functions, is documented and
described in the following chapters of this guide. 

Overview of the User’s Guide

Chapters 2 and 3 introduce, in the form of a quick-start guide, the basic functions of the
system, as well as the basic principles of the MB lanuguage. A user with some previous
knowledge of structural equation modeling should be able to use STREAMS after having
studied these chapters.

Chapters 4 to 6 present how to use STREAMS for specifying and estimating more com-
plex models, such as multiple-group models (Chapter 4), missing-data models (Chapter
5), and two-level models (Chapter 6). These chapters treat specialized issues of rather
great complexity, so novice users are adviced to skip these until the need arises. Chapter
7 discusses how to improve the possibility of obtaining estimates, and how the functions
for copying start values may be used to avoid non-convergence in model estimation,

Chapters 8 to 11 present the tools available for data and project management. Chapter 8
describes the construction of the projects in STREAMS and how data should be prepared
before starting a modeling project. Chapter 9 presents how to use the built-in function for
computing covariance matrices, and Chapter 10 the functions for importing matrices.
Chapter 11 describes the tool available for maintaining projects.

Chapters 12 and 13 are reference chapters which provide more complete presentations of
different aspects of the system. Chapter 12 presents the MB language and Chapter 13 the
interface to the different estimation programs. 

Chapter 14, finally, describes how to install STREAMS, and how to connect STREAMS
to the estimation programs.
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Part 1 

Specifying and Estimating 

Models

The first part of the User’s Guide presents the how to
specify and estimate structural equation models with
STREAMS. Chapters 2 and 3 are intended to serve as
a quick start guide for how to use the program.
Chapters 4 to 6 deal with specification of specialized
types of models, and novice users are adviced to skip
these chapters. Chapter 7 is devoted to a short dis-
cussion of issues of efficiency in using structural
equation modeling techniques. All chapters also
present concrete examples of models.
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This chapter introduces one fundamental part of STREAMS, namely the project. It is
shown how projects in STREAMS may be opened and inspected, and how models within
an existing project are estimated. The basics of the MB language are also introduced.

The STREAMS Project

For most operations in STREAMS the project plays an essential role. A STREAMS
project may be described as a collection of related datasets (raw data and/or matrices) and
models. Within the project the datasets are organized into project folders. The project also
stores information about the matrices and data files (e. g., number of cases, variable
names, code labels, missing data codes, and so on) in a project dictionary. Most actions
related to projects are done with the Project window, which is always presented when
STREAMS is started and which is always available on the desktop:

�
Using Projects and 
Estimating Models
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The Project window has four tabs. One of these is the Project tab, which is used to open
and close projects. The Models tab is used to open previously created models, and the
Model files tab to manage the files that are associated with different models. The Data
tab offers functions for managing data, such as computing matrices and importing data
into the project.

Opening and Inspecting an Existing Project

Almost all STREAMS activities require an active or open project. If a project has been
created previously (see Chapter 8) it must be opened to make the information in the
project available. For purposes of illustration we will be using one of the projects (hpg) in
which are supplied with the system. The project includes data from a study of 579 12th
grade students who had taken the Swedish Scholastic Aptitude Test (SweSAT; "Hög-
skoleprovet"), along with some other tests. The present version of SweSAT consists of 6
subtests which measure both verbal and non-verbal abilities, the capacity to make use of
information, and general knowledge: 

• Vocabulary (WORD), which measures understanding of words and concepts. 

• Data Sufficiency (DS), which aims to measure numerical reasoning ability.

• Reading Comprehension (READ), which measures reading comprehension in a wide
sense. 

• Diagrams, Tables and Maps (DTM), which is a problem-solving test with
information presented in tables, graphs, and/or maps. 

• General Information (GI), which measures knowledge and information from many
different areas. 

• English Reading Comprehension (ERC), which measures reading comprehension in
English

In addition, four standard psychometric tests were administered:

• Synonyms (SYNONY), which is a vocabulary test.

• Visualization (VIZUAL), which is a spatial visualization test.

• Figural Reasoning (FIGRES), which is a non-verbal reasoning test.

• Number Series (NUMSER), which is an inductive reasoning test with numerical con-
tent.

There is also information about student gender (GENDER), and program of study: the
Humanistic (HUM), Science (SCI), Social (SOC), Economic (ECO; ), or Technical (TEC)
program. The variables indicating program belongingness are dummy variables, with the
Economic program taken to be the reference group. The data set also includes a variable
(MRK) which represents the mean grade awarded when leaving grade 12.

Decompressing the project

When STREAMS is installed all the examples projects discussed in this guide are copied,
in compressed form, into the STREAMS installation directory (usually C:\STREAMS, but
this may be changed during the installation). These compressed files have the name of the
project (e. g., hpg), and .zip as suffix. The compression or "packing" of a project implies
that all the files and directories associated with a project are stored in compact format in
one file (an "archive"). The STREAMS archives are stored in zip 2.04g-format, and can
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be opened with the WinZip program, but this program is not needed because STREAMS
has its own routines for compressing and decompressing projects. Apply the following
steps to use the STREAMS procedure to decompress the hpg project:

• Start the STREAMS program.

• If the Project window is not shown, make it appear through clicking the F9 function
key.

• Click the Project tab on the Project window:

• Click the Decompress button, which produces the Decompress project form:

• Use the dialogue box on the left side to select the STREAMS installation directory
(here c:\STREAMS; if the hpg.zip file is not in this directory it may be downloaded
from www.mwstreams.com). This causes the compressed project files to be displayed
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in the list-box to the right. Select the hpg.zip file and click the Open file button (or
double-click the file name). This opens the archive and presents the contents in the
large list-box:

• To actually copy the files from the archive into the project the Decompress files
button must be clicked. This restores the project, using the pathname that the project
had when it was compressed. In this case the project will be restored to
C:\STREAMS\EXAMPLES\HPG.

Opening the Project

After the HPG project has been decompressed it must be opened, which is done in the fol-
lowing way:

• Start the STREAMS program.

• If the Project window is not shown, make it appear through clicking the F9 function
key.

• Click the Project tab on the Project window.

• Click the Open button. This presents the standard open dialogue form. Use this form
to locate either the file hpg.dct or the file hpg.mdp in the STREAMS\EXAM-
PLES\HPG directory. The .dct suffix is used for dictionary files created with
STREAMS versions up to 2.1, while the .mdp suffix is used for dictionary files cre-
ated with STREAMS 2.5-. When a .dct dictionary is opened with STREAMS 2.5 it is
automatically converted into an .mdp dictionary. The original .hpg project is automat-
ically compressed for backup purposes, but it should be observed that an .mdp dictio-
nary cannot be converted back to a .dct dictionary.
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When the Open button is clicked the hpg project is opened. 

Getting Information about the Project

More specific information about the data in the project is obtained if the Data tab of the
Project window is clicked:

There are several datasets (e. g., covariance matrices, correlation matrices, or raw data-
sets) in the project, which are subsumed under several folders. Folders are identified by
the icon , which signifies an open folder to which additional datasets may be
included, or by the icon  which signifies a closed folder to which no new datasets may
be added. This is a simple way of organizing datasets in a two-level hierarchical system.
For example, when a dataset is split up in several disjoint subsets they may naturally be
organized in a folder. The folder is assigned by the user when the matrix is computed or
the data set is imported into the project. When the + sign next to the folder icon is clicked,
the Dataset labels for the datasets subsumed under the folder are shown, next to an icon
identifying the nature of the data set (e. g., covariance matrix: , raw data file: ).
The first folder is Gender:
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When the + sign next to Gender is clicked it is seen that in this folder, there are two cov-
ariance matrices, one with the dataset label Males and the other with the dataset label
Females.

A particular set of data may be selected through clicking on the icon or the dataset label,
which gives information about the number of observations and variables. The matrix for
Males thus encompasses 16 variables and it is computed on 246 observations; for Females
the number of observations is 333. In the Program folder there are 5 matrices (Eco, Hum,
Sci, Soc and Tec) which represent different lines of study. The Gendprog folder includes
9 matrices, where the total sample has been divided by gender and program (there were
too few males in the Hum program to compute a matrix; otherwise there would, of course,
have been 10 covariance matrices).

This way of organizing the data is quite useful when dealing with multiple groups of
cases. The folder and the dataset label is assigned when the matrix is computed or
imported (see Chapters 8 to 10). 

A STREAMS project may include several kinds of data. A dataset label may, thus, refer
to, among other things, a:

• Covariance matrix and a mean vector.

• Polychoric correlation matrix.

• Covariance matrix with either a diagonal or a symmetric weight matrix.

• Polychoric correlation matrix with either a diagonal or a symmetric weight matrix.

• Raw data matrix.

In the present case the Matrix type  field says Covariance matrix, and if the View selected
dataset button is clicked for, e. g., the females, or the icon for females is double-clicked,
the matrix is displayed:
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When the Exit  button is clicked, the form presenting the covariance matrix is closed and
the Project window appears again.

Often the data in a project are stored in the form of a symmetric covariance matrix, but
frequently it is also necessary to store raw data in the project. Such data are stored in a
rectangular matrix with the observations (individuals) as rows, and the variables as col-
umns. In the Raw folder there are three sets of data (Males, Females and Tot). If the Males
dataset label is selected and the View selected dataset button is clicked, the raw data is
displayed:

The form offers different ways of scrolling. The horisontal scroll bar may be used to select
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other variables, and the arrows in the upper-left corner of the form may be used to scroll
among the observations. Clicking the Exit  button returns control to the Project window
again.

The Data tab offers several functions for adding data to the project, and for removing
data, but we will not go inte these here (see instead Chapters 8-10). In addition to data,
however, a project also includes models, and we will take a closer look at one of these.

Opening and Estimating a Previously Created Model

A STREAMS project not only includes data, but typically there also are models as well.
These models are specified in terms of the MB (Model Building) language which is a
part of the STREAMS system. We will first demonstrate how an existing model can be
opened, inspected and estimated. 

Opening the Model

If the HPG project has not already been opened, this should first be done, using the pro-
cedure described above. When the project has been opened, the Models tab on the Project
window should be clicked: 

The Project window presents a list of directories, and there is also a list-box where a list
of model files, which have the suffix .mbi, may be shown. Here the list is empty, because
all the model files reside in subdirectories under the HPG directory, there being one direc-
tory for each estimation program and a few others as well. Any number of subdirectories
may be created under the directory in which the project dictionary is stored. 

For purposes of illustration the Amos 4 program will be used, so the Amos4 folder under
the HPG folder should be double-clicked. 
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A particular model may be opened, either through selecting it from the list, and clicking
the button labeled Open model, or through double clicking the model name. One of the
models is g1.mbi, and when this model is opened a set of statements is displayed in the
Model Building window:

The actual appearance of the screen may be somewhat different from what is shown here,
because a choice may be made which editor tools are to be presented (this is done with the
Preferences option under the File menu, but is of no importance here). The size of the
Model Building window may be increased so that it fills the entire screen through clicking
the Maximize button in the upper right corner of the window. This will make the Project
window, and possibly also other open Model Building windows disappear. These other
windows may, however, be brought in the foreground with the Windows menu. The
Project window can also always be produced by clicking the Project window button on
the modeling toolbar, or through using the F9 function key.

Menus

Modeling
toolbar

toolbars

Edit area

Edit 
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At the top of the Model Building window there is a set of drop-down menus (e. g., File,
Model, Edit , ...), which, among other things, include tools for opening, specifying, edit-
ing, estimating and inspecting models. Beneath is a set of buttons on the Modeling tool-
bar, with the Run button in the left-most position, and the SCL button in the right-most
position. These buttons provide short-cuts to functions which are available in the menus
as well, and most of these are also available through the function keys on the keyboard.
The buttons on the Modeling toolbar are used for specifying and editing models. Beneath
the Modeling toolbar are the Edit toolbars, which include standard text-editing tools,
which also may be used for editing model statements. Below the toolbars is the edit area,
where the model statements are displayed.

The model is defined by a series of statements, which are formulated in the MB language,
which is presented in full in Chapter 12. Some statements concern basic aspects of the
model, such as its name and description, which estimation program is to be run, which
matrix is to be analyzed, and so on. The following three lines define the actual model
through specifying the manifest and latent variables and their relations:

MVR WORD READ GI DS DTM ERC
LVR g
REL g -> WORD READ GI DS DTM ERC

With the MVR statement the six manifest variables in the model are declared, and the
LVR statement declares the single latent variable (g) of the model. The g1.mbi model thus
specifies a simple one-factor model.

The MB language includes four basic statements: REL, VAR, COV and MEA. Through
applying these statements on four different kinds of variables (manifest, latent, and resid-
uals in manifest and latent variables) almost any structural equation model can be speci-
fied with ease.

Except for the declaration statements MVR and LVR, the g1.mbi model is defined by the
single REL statement. This statement says that the 6 manifest variables are influenced by
(or are indicators of) the single latent variable g. By default the program also assigns a
residual to each dependent variable, and assumes that each independent variable has a var-
iance. Thus, to specify the model a single REL statement suffices. 

The MB statements can be constructed in several different ways, such as through the text
editor, or with a path diagram editor, or through clicking buttons and filling in forms, or
through combinations of these methods. Chapter 3 describes the different functions avail-
able for specifying and editing models.

We will experiment with this model, and the very first thing to be done is to change the
name of the model, so that the g1.mbi file remains unchanged. The change of name can
be accomplished in several different ways, but the easiest method is to just move the cur-
sor to the line 

MO PR=hpg NAME=g1

and edit the old name (g1) into a new name. Another way to do this is to click the Model
button on the modeling toolbar, and change the Model name field on the Model Descrip-
tion tab. Here the new name g1n has been chosen, but it is recommended that users who
follow these steps select another name.

In the upper right part of the window is a button with the label Path diagram, which is
enabled if Amos 4 is used as the estimation program. If this button is clicked, the model
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is represented as a path diagram in Amos Graphics: 

The diagram displays the manifest variables as squares, and the latent variable as a cricle.
For each manifest variable, which here are dependent variables, there is a residual, which
has the same label as the manifest variable, but with an ampersand added (e. g.,
WORD&). This is a general principle of the MB language (see Chapter 12).

The path diagram may be edited so that it attains a more aesthetically pleasing appearance,
and it may also be edited in such a way that the model itself is changed. Manifest and
latent variables may, for example, be added and deleted; relations and covariances may
be added; and constraints of different kinds may be imposed. The methods for doing that
are described in Chapters 3 and 12.

Let us assume, however, that we are satisfied with the model. We may now click the
Model Building button in the upper right corner of the window to go into MB mode, and
run (i. e., estimate) the model from there. 

Estimating the Model

Let us go through the sequence of estimating the model. The estimation program selected
is Amos, which is shown on the button beneath the Run button:

If other estimation programs (e. g., EQS, LISREL, Mplus or Mx) are installed they may
be selected through clicking the Amos button. This produces a form which presents the
available estimation programs:
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The currently selected estimation program is marked by a blue wrench, available pro-
grams by a grey wrench, the selected default program by a green wrench, and non-avail-
able programs by a crossed-over wrench (see Chapter 14 for information how to make
STREAMS aware of installed estimation programs). To swith to another program or pro-
gram version the program name is selected and the Use program button is clicked. Here,
however, we will stick to the Amos 4 program.

When the Run button is clicked (or the Run item under the Run menu is selected) the
pre-processor, which translates the MB instruction into instructions for the choosen esti-
mation program, is started. This is shown by the message “Running pre-processor ...”
which is displayed in the status line at the bottom of the window. 

When the pre-processor has finished its work, the estimation program automatically
starts. The estimation program runs in its own window, and the message “Running Esti-
mation ...” is displayed in the status line.

When the estimation process is completed STREAMS starts the post-processor and the
message “Running post-processor ...” is displayed. When this process is completed, the
result is presented in an output file, which is shown in an editor window:
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The text in the output file may be scrolled and browsed, and it may also be printed, using
the Print  function under the File menu. It is also possible to search for a specified string
of text, either through selecting one of the pre-entered strings, or through writing a string
in the field, and then clicking the Find button.

The post-processor output file (which has the suffix .prt) includes several sections of out-
put: after the model statements have been listed, basic goodness-of-fit information is pre-
sented. Then follows a section presenting unstandardized parameter estimates, after that
t-values are presented, and finally the standardized estimates are presented. In this case
the following standardized estimates are obtained:

As may be seen there are high standardized relations between the latent variable and all
the manifest variables, but the relations do seem to be particularly high for the verbal sub-
tests (i. e., WORD, READ, GI and ERC).

There also are several other ways to display the estimation results. On the toolbar there is
a button labeled Amos Output (the label changes when another estimation program is
selected) and when this button is clicked the program presents the listing file from the esti-

Standardized estimates: 
  
WORD     =    +0.80*g          +0.60*WORD&     
DS       =    +0.55*g          +0.84*DS&       
READ     =    +0.74*g          +0.67*READ&     
DTM      =    +0.52*g          +0.85*DTM&      
GI       =    +0.67*g          +0.74*GI&       
ERC      =    +0.80*g          +0.60*ERC& 
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mation program. There is often a need to consult this file, for example to inspect the com-
plete set of modification indices.

There is also a button labeled Model fit,  which may be clicked to obtain results from the
goodness-of-fit tests:

In this case the test-statistic is highly significant, and the RMSEA measure also indicates
a poor fit of the model to data. These results thus indicate that a one-factor model does not
reproduce the observed covariance matrix particularly well.

If the button labeled Graph & Grid is clicked a grid is presented:

When the Graph button on this form is clicked a chart is shown, which displays the stand-
ardized loadings on the latent variables (using a different color for each latent variable)
for each manifest variable:
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This chart often is useful for spotting patterns and trends in the relations among manifest
and latent variables. The window also includes buttons labeled Relations, Covariances
and Means. When the Relations button is clicked the grid shown above is presented.
Clicking the Covariances button yields the following results:

Here the estimated variances and covariances are presented, and the drop-down menu
may be used to select whether unstandardized estimates, t-values or standardized esti-
mates are to be presented. 

After the results have been inspected the model may be changed and reestimated. The
post-processor listing file is left through clicking the Model Building button (or clicking



36 Using Projects and Estimating Models  

Structural Equation Modeling Made Simple

the F8 function key, or selecting the Model Building  item under the Window menu). The
model may then be edited and reestimated. It should be observed, however, that unless the
model name is changed the edited version will overwrite the original version of the model,
which thus will be lost. To keep the old version of the model, the name should be changed
by clicking the Model button, and entering a new name in the Model Name field under
the Model Description tab.
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The present chapter describes the techniques for specifying models with the MB language
and with path diagrams created with Amos 4.0. It will be assumed that a new model is to
be created, but often an existing model is taken as a starting point, as is described in Chap-
ter 2.

We will continue using the example discussed in Chapter 2. Having found that a one-fac-
tor model does not fit the 6 subtests of the SweSAT, we will instead try a model with two
correlated factors, as is shown in the path diagram below:

�
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READ& READ

Verb

GI& GI

ERC& ERC

DS& DS

Reas

DTM& DTM

1

1

1

1

1

1
1

1



38 Specifying and Editing Models  

Structural Equation Modeling Made Simple

One factor is hypothesized to be a reasoning factor (Reas) related to the two manifest var-
iables DS and DTM, and the other factor is taken to be a verbal knowledge factor (Verb),
with relations to WORD, READ, GI, and ERC. 

The first step is to open the HPG project using the procedure described in Chapter 2. The
Models tab on the Project Window is then clicked. Next an appropriate folder is opened
or selected. There is already a folder named Practice, and this is where we will put the
new model. The Practice folder is thus double-clicked, and then the New Model button
on the Model tab is clicked. This opens up the Model Building form, and a blank edit area:

When a new model is to be specified the user typically clicks each of the buttons on the
Modeling toolbar, starting with the Model button and going right. 

Specifying a Model with the MB language

Whether the model is to be specified as a path diagram, or as a set of MB statements, some
basic information about the model needs to be given, and options concerning the estima-
tion need to be specified. This is done through two forms (The Model form and the
Options form), which are common to the two modes. We will go through these quickly,
only bringing up the most essential information.

The Model Form

When the Model button on the Modeling toolbar is clicked the Model form is presented:
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The Model form has five tabs:

• Model Description
• Model Type
• Start Values
• Matrix Type
• Comparison Model

Model Description
On the Model Description tab the name of a new model may be entered into the Model
Name field (1-64 characters). Here we enter the name VR1. If an existing model is edited,
a name that has previously been entered into this field may be changed. This corresponds
to the Save Model as ... function under the Model menu. 

A description of the model must also be provided in the Model Description field. This
information is used by STREAMS to construct the TI statements. Here a short description
of the nature of the model is provided (“Oblique model with two factors ...”).

Model Type
When the Model Type tab is selected the Model form presents options concerning the
basic structure of the model. 
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Here we can use the default options, which are that means will be included in the model,
and that a one-group model will be fitted. 

In a one-group model inclusion of means does not affect the results in any way if con-
straints of equality are not imposed over the means, because the means of the manifest
variables are treated as free parameters to be estimated, and there are as many parameters
as there are manifest variables. If the model in a later step is to be developed into a mul-
tiple-group model these estimates may, however, be useful as a source of start values.
When the model comprises multiple groups, different kinds of models are created depend-
ing on whether means are included or not. The decision whether to include means or not
must thus be made on the basis of the nature of the substantive problem that is being stud-
ied.

This form also offers check-boxes for identifying an Incomplete Data Model, Two Level
Model and H1 model. These options may be used to specify certain types of models for
complex observational data. More information about these advanced models is given in
Chapters 4, 5 and 6. The Model Type tab also offers possibilities for requesting three dif-
ferent types of muItiple group models. The meaning of these options are explained in
Chapters 4 and 12. 

Start Values
When the Start Values tab is selected the Model form offers several options about proce-
dures for determining start value for free parameters.
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The three options are: 

• Computed by Estimation Program. This option implies that STREAMS will rely
on the procedures, if any, which may be available in the estimation programs to
compute start values. 

• Copy from Previously Estimated Models. When this option is selected the Add
Models and Remove Models buttons are enabled, which makes it possible to identify
one or more models from which start values will be copied. Here, however, we will
assume that no such models are available.

• Copy from Previous Model with Same Name. When this option is selected an
instruction is generated to take start values from a previous version of the current
model. It is recommended that this option is regularly used. 

More information about how the system of copying start values works and may be used
is given in Chapter 13.

Matrix Type
When the Matrix Type  tab is clicked, three options concerning the type of matrix to be
analyzed are presented: Covariance Matrix, Pearson Correlation Matrix, or Poly-
choric Correlation Matrix . The default is Covariance Matrix , which kind of matrix
will be used in the present example. 

Comparison Model
The Comparison Model tab may be used to select a model with which the goodness-of-
fit of the model to be estimated will be compared. This option will not be used in the
present example, however.
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Constructed Statements
When the OK  button is clicked on the Model form STREAMS writes a set of MB state-
ments into the edit area:

STREAMS has constructed TI, MO, STA and OP statements, which provide basic infor-
mation about the name of the model, the project, start values, estimation program and so
on. These MB statements are more or less self-explanatory, but are more fully explained
in Chapter 12. The OP statement specifies default options for the Amos program.

The default OP statement may be changed, however. One way to do this is to double-click
on the OP statement, and another way is to press the Options button. Both these methods
bring forward the Options form which is appropriate for the selected estimation program:
Amos Options, EQS Options, LISREL 8 Options, Mplus Options or Mx Options. Full
information about these options is given in Chapter 13, so here we will just take a quick
look at the Amos Options form.

The Options Form

Clicking the Options button (which is to the right of the Model button) produces the fol-
lowing form, when Amos has been selected as the estimation program:
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This form has three tabs:

• Input
• Estimation
• Bootstrap
• Output

The options available on these tabs are described in Chapter 13.

Selecting the Data to be Analyzed

The next step in the model specification sequence is to identify data for one or more
groups to be included in the model. This is done through clicking the DAT button. When
this is done the Datasets form is shown:
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The list-box on the left-hand side presents the folders that have been defined for the
project, and when one of these is selected the dataset labels which have been defined for
this folder are displayed. To identify a dataset both the folder and the dataset label must
be selected. When this has been done for one or more datasets the button marked with an
arrow may be clicked, which causes the selected datasets to be moved to the list-box on
the right-hand side. Datasets may also be deselected through moving them back again.
Here we want to analyze the covariance matrix for the total group of cases, which is in the
folder Group and has the dataset label T73.

When the OK  button is clicked one or more DAT statements corresponding to the selec-
tions made are constructed. Thus, in the present case STREAMS inserts the following
statement into the edit area:

DAT FOLDER=Group DATLAB=T73

If we want to add or remove datasets, the DAT button may be clicked at any time to
retrieve the Datasets form. Double-clicking on a DAT line will also produce this form.

Selecting Manifest Variables

The MB language requires that all manifest variables are declared, which is done with the
MVR statement. To select all variables or a subset of variables from the project the MVR
button is clicked. When this is done the Manifest Variables form is shown:
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Variables are identified through selecting one or more variables in the list on the left-hand
side and when the arrow button is clicked these variables are moved to the list on the right-
hand side. This process may be repeated any number of times, and the same procedure
may also be used to move variables from the right-hand side to the left-hand side.

When the OK  button is clicked an MVR statement is put into the edit area by STREAMS.
For example, if the variables WORD, DS, READ, DTM, GI and ERC were selected the
MVR statement would be: 

MVR WORD DS READ DTM GI ERC

To change the selection of variables the MVR button may be clicked again, or an MVR
statement may be double-clicked.

Identifying the Latent Variables

The latent variables must be declared as well, and because these are unknown to
STREAMS, labels of the latent variables must be supplied. This is done on the Latent Var-
iables form, which is presented when the LVR  button is clicked.



46 Specifying and Editing Models  

Structural Equation Modeling Made Simple

Labels of the latent variables are entered in the top white field, and then the ADD button
is clicked, which moves the new label to the list of latent variables. This process is
repeated as many times as there are labels to be entered. To delete an already entered label,
select it in the list and click the Delete button. When the list contains the labels for the
latent variables to be included in the model, click the OK  button. This will cause
STREAMS to construct an LVR statement, and add it to the edit area.

If, for example, the latent variables Verb and Reas are entered, STREAMS inserts the line: 

LVR Verb Reas

Latent variables may be added and deleted at any time, through double-clicking on the
LVR statement, or through clicking the LVR  button.

Specifying the Model

When groups have been selected, and the manifest and latent variables have been
declared, the actual model specification may be started. The Model Building toolbar
offers a set of buttons (REL, VAR, COV, MEA and SCL) some or all of which may be
used in the process of model building. 

Most models involve one or more relations, and to specify these the Relations form is
used. Clicking on the REL  button causes this form to be shown:
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This form displays the variables available for modeling in the Variables list on the left
hand side. This list includes the declared manifest and latent variables, along with residual
variables for those manifest and latent variables that have previously been defined as
dependent variables. The residual variables have the same label as the dependent varia-
bles, but with an ampersand (&) added to the label. 

The form also presents one list-box for independent variables, and one list-box for
dependent variables. Initially these are empty (unless the Relations form has been opened
by double-clicking on a REL statement) but variables in the Variables list may be moved
to either of these list boxes. This is done through selecting one or more variables in the
list using the standard techniques, and then clicking the appropriate button with an arrow.
The same technique may be used to move variables from the lists of independent or
dependent variables to the Variables list.

Next to the list boxes for independent and dependent variables are check boxes labeled
Equality . When these are checked (through clicking) equality constraints are imposed for
the marked category of variables. 

When the relations have been specified as desired the OK  button on the Relations form is
clicked. This causes STREAMS to contruct a REL statement which is inserted with the
other statements in the edit area. 

To define the relations between the two latent variables and the manifest variables we may
thus use this technique to construct the following two REL statements

REL Verb -> WORD READ GI ERC
REL Reas -> DS DTM

In order to change an existing REL statement the REL word in the statement may be dou-
ble-clicked. To introduce another REL statement, the REL button should be clicked
again.
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In order to complete the specification of the oblique two-factor model we also need to
specify a covariance between Verb and Reas. When the COV button is clicked the Cov-
ariances form is shown:

This form is used to select a set of variables among which covariances are estimated. In
the Variables list box on the left hand side the complete list of available variables, includ-
ing residuals in manifest and latent variables, are shown. Using the procedure described
above two or more of these variables may be moved to the empty list box on the right hand
side. The selected variables will be included in a COV statement which is constructed
when the OK  button is clicked.

Thus, if the Verb and Reas variables are moved to the right hand side and the OK  button
is clicked the following statement is produced:

COV Verb Reas

This statement implies that the two latent variables Verb and Reas are allowed a covari-
ance, because STREAMS by default assumes all variables to be uncorrelated.

The model specification is now complete, and the model may be estimated in the manner
described in Chapter 2. If that is done we will find that the model has a reasonably good
fit (χ2 (8) = 19.11, p < .01, RMSEA = .049) and that the parameter estimates seem to be
in order.

Editing the Instructions

It has now been demonstrated how the command buttons on the Model Building form may
be used to construct the MB statements. However, the editor may also be used as any ordi-
nary editor to enter and edit the MB instructions. For keyboard editing the standard set of
editing tools is available (e. g., cut, copy, and paste). It should also be observed that the
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characters /*  function as comment characters when put in positions 1-2 of the line. These
characters thus cause the pre-processor to disregard the line in its entirety. 

When an MB statement is double-clicked, the appropriate form is brought up with the
information contained in the statement. Another method to accomplish the same thing is
to put the insertion point on the statement to be edited, and click the Edit Line  button. The
functions on the form may then be used to edit the statement, and when the OK button on
the form is clicked the edited line is written back to the edit area.

Advanced Editing Tools

In MB mode STREAMS also offers some advanced editing tools.

Joining models

The function for combining two or more models into one is an extremely useful editing
tool, and particularly so when several large submodels are to be joined into one model.
Here we will illustrate the procedure with two small models. 

Suppose that we want to combine the two-factor model for the SweSAT (vr1.mbi), with
a model for the cognitive tests also included in the HPG project. A separate one-factor
model (Gf.mbi) has been tested for the three tests VIZUAL FIGRES NUMSER, which are
assumed to measure the broad non-verbal reasoning dimensions Fluid Intelligence (Gf;
see, e. g., Carroll, 1993; Gustafsson & Undheim, 1996). A one-factor model with only
three manifest variables is just-identified, so the fit of this submodel cannot be tested.
However, the type of tests employed here have in many other studies been shown to be
good measures of the Gf-dimension.

In order to combine the vr1.mbi and the gf.mbi models the menu item Join Models on the
Edit  menu is selected, which produces the Join Models form:
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The field labeled New model name should be completed with a name for the combined
model (here vrgf). The models to be joined should then be identified, one by one, which
is done through clicking the Add Model button. This produces the standard file open dia-
logue box, which allows selection of an .mbi-file in one of the folders belonging to the
project. After a model has been added it may be removed. To do that the model should be
selected, and the Remove Model button clicked.

When all model files have been added, the OK  button is clicked, which combines the
models in such a way that all manifest variables and all latent variables in the models are
included in the joined model, along with the structural relations identified. After the
joined model has been constructed, it must be opened, using either the Models tab on the
Project window, or the Open model function on the Model menu. In our example the fol-
lowing model results:

The joined model statements may require some editing. Thus, if the different models have
been fitted to different matrices, the resulting statements will include multiple DAT state-
ments, but a one-group model may only include a single DAT statement. It will, of course,
also be necessary to add statements which relate variables in the original models to one
another. Here, for example, we might consider expanding the COV statement to include
all three latent variables, i. e.:

COV Reas Verb Gf

If this is done, the three-factor model achieves a very good fit ( χ2 (24) = 40.42, p < .02,
RMSEA = .034), with the following standardized estimates: 

There is, thus, a very high correlation between the Reas-dimension, and the Gf-dimension.

MB instructions for the combination of the vr1 and Gf models

DAT FOLDER=Group DATLAB=T73
MVR DTM DS WORD READ GI ERC VIZUAL FIGRES NUMSER 
LVR Reas Verb Gf 
REL Verb -> WORD READ GI ERC
REL Reas -> DS DTM
REL Gf -> VIZUAL FIGRES NUMSER
COV Reas Verb

Standardized estimates for the combined model

Standardized estimates: 
  
DTM      =    +0.75*Reas       +0.66*DTM&      
DS       =    +0.80*Reas       +0.60*DS&       
WORD     =    +0.82*Verb       +0.58*WORD&     
READ     =    +0.74*Verb       +0.67*READ&     
GI       =    +0.67*Verb       +0.74*GI&       
ERC      =    +0.80*Verb       +0.60*ERC&      
VIZUAL   =    +0.66*Gf         +0.75*VIZUAL&   
FIGRES   =    +0.74*Gf         +0.67*FIGRES&   
NUMSER   =    +0.49*Gf         +0.87*NUMSER&   
  
  
Cov(Verb,Reas)        =    0.63 
Cov(Gf,Reas)          =    0.87 
Cov(Gf,Verb)          =    0.44 
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Set Constraints

The MB language allows simple and efficient means of imposing equality constraints
over variables and groups (see Chapter 12). This is useful for model testing purposes, and
as demonstrated in Chapter 7, imposing strong constraints on a model is also an efficient
way of achieveing a solution, which then provides start values for the final, less con-
strained, model. This kind of application makes it useful, however, to have a method for
imposing constraints, and relaxing constraints, for many statements at the same time.

One way of doing this is the following. Select a range of MB statements, and then chose
the Set constraints option on the Edit  menu. This produces the Set constraints form:

The form offers options for the REL statement in one set of check-boxes, and options for
the other statements in separate check-boxes. When a check-box is marked, this implies
that constraints of equality will be imposed over a particular part of the statement, such as
the one referring to groups or the dependent variables in a relation. 

In the example shown here, equality constraints are imposed over the dependent variables
of the selected REL statements. When the OK  button is clicked, the following result is
produced:

REL Verb -> (WORD READ GI ERC)
REL Reas -> (DS DTM)
REL Gf -> (VIZUAL FIGRES NUMSER)

To remove the equality constraints, the statements are selected again, the check-box on
the Set constraints form is unchecked, and the OK  button clicked.

Auto-Removal of Manifest and Latent Variables

When variables are removed from the MVR and LVR statements it often is a good idea
to delete the removed variables from all statements in which they appear, and to delete
all the statements which have lost their meaning when these variables have been
removed. STREAMS offers such a function, which by default is enabled. The function
may, however, be disabled, which is done with the Preferences option on the File menu.
The General tab offers a check-box labeled Autoremove variables on change, which
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should be unchecked to disable the function.

If, for example, the Gf-factor in the vrgf.mbi model is deleted from the LVR form, this
causes the REL statement with Gf as an independent variable to be deleted from the
model, and it causes Gf to disappear from the COV statement. It should be observed, how-
ever, that the three manifest variables which were related to Gf are still in the MVR state-
ment, and if they are not to be used in any other statement, they must be removed from
the MVR statement.

Using Amos Graphics with STREAMS

STREAMS 2.5 takes advantage of the programmability features of Amos 4 (Arbuckle &
Wothke, 1999), which, among other things, makes it possible to generate a path diagram
from an MB specification, use the Amos Graphics editing tools to edit the path diagram,
and then translate the edited model back to the MB language. This brings several advan-
tages:

• The MB model is effortlessly transformed into a publication quality path diagram.

• The powerful and user friendly editing tools available in Amos 4 are made available
to the STREAMS user. This makes, indirectly, Amos Graphics available as a user
interface for all SEM programs.

• The MB model and the path diagram are aligned with one another, and the user may
freely swith between the two modes of representation, which makes it easy to take
advantage of the relative strengths of the two ways of model specification. The MB
language thus is efficient for specifying and editing large models with many vari-
ables, while the path diagram representation is useful for presenting complex model
structures.

When the Path diagram button is clicked Amos Graphics is started and the path diagram
is created. Amos Graphics is only available for one-group models. To return from Amos
4, the user must transfer control to STREAMS, either through clicking the STREAMS
program button on the Windows taskbar, or through using the Alt Tab function. The allo-
cation of control between STREAMS and Amos 4 is somewhat more complex than usual
because two programs are involved. However, if the simple rules and principles described
below are followed, the user should be able to take advantage of the great benefits and
synergies obtainable by having two collaborating programs.

Creating an Amos Path Diagram from an MB specification

When a path diagram is to be created with Amos Graphics, the model should first be spec-
ified in the MB language. This is necessary because latent or manifest variables may not
be added in Amos Graphics. After the diagram has been created it may, however, be
edited in several different ways: latent and manifest variables may be deleted; relations
and covariances among variables may be added and deleted; and equality constraints may
be imposed or removed, and so on.

Let us assume that the model shown below has been specified:
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When the Path diagram button is clicked, Amos Graphics starts (if it is not already
active) and in STREAMS the Project window is put on top of the model windows:

After Amos Graphics has started, the path diagram is constructed and immediately dis-
played. However, if Amos Graphics is already active, the path diagram is constructed in
the background and it is not displayed until the user clicks the Amos program button on
the taskbar:



54 Specifying and Editing Models  

Structural Equation Modeling Made Simple

When the Amos program button is clicked Amos Graphics becomes the active program
and the path diagram is shown:

The path diagram created by STREAMS may need some further editing to be aesthetically
pleasing and some aspects of the diagram, such as whether the page orientation should be
portrait or landscape, cannot be controlled from STREAMS. However, Amos Graphics
offers a rich set of powerful and easy-to-use editing tools (see Arbuckle & Wothke, 1999).
Thus, to change the page orientation the Interface properties... option under the View/
Set menu may be used:
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For a description of all the other useful editing facilities available in Amos Graphics the
documentation and/or help functions of Amos 4 should be consulted.

As has already been mentioned the model may edited quite freely in Amos Graphics,
except that addition of latent and/or manifest variables prevents the model from being
transformed back into the MB representation. If there is no need to bring the model back
to STREAMS again, the model may, of course, be edited completely freely.

Suppose that we have used the Amos Graphics function to resize the path diagram to fit
on one page, and that we have used the double-headed arrow tool to add a covariance
between READ& and ERC&. This will have caused the path diagram to take on the fol-
lowing appearance:
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Estimating the Model in Amos Graphics

After the model has been created and edited in Amos Graphics the user may wish to esti-
mate the model. One reason for doing this is to have the parameter estimates in the model
for purposes of publication, or simply to use the convenient Amos Graphics modeling
environment. 

STREAMS can, however, not connect the name of the data file to be analyzed with the
model, so the user has to do this manually. This is done in the following way:

First the Data Files ... option under the File menu is selected, which produces the follow-
ing dialogue:

Then click the File Name button, which produces the standard file open dialogue:

If the directory presented is not the directory where the project dictionary is located, this
directory should first be located. The file name is constructed by combining the folder
label and the dataset label and the suffix always is .txt, except for raw data files for which
the suffix is .sav. In the current example the file name thus is Group_T73.txt. 

After the file has been opened, some descriptive information is presented in the Data Files
dialogue (i. e., file name and N):
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After the OK  button has been clicked the estimates may be calculated by clicking the Cal-
culate estimates icon (the abacus) on the Amos Graphics toolbar or through selecting the
Calculate Estimates option under the Model-Fit  menu. To select computation of stand-
ardized estimates or other options (e. g., modification indices) the Analysis Properties
dialogue under the View/Set menu may first be used:

Having selected standardized estimates for presentation, this yields the following result:
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The model may then be edited, and estimated anew.

Translating an Amos Graphic Model into the MB Language

If we want to have this model translated back into the MB language, in order, for example,
to estimate it with a different SEM program than Amos, we can go back to STREAMS.
This is done through clicking first the STREAMS program button on the Windows task-
bar and then clicking the model window from which the current Amos model originates.
When that is done, STREAMS interprets the Amos Graphics model file (here o2.amw)
and translates it into MB statements. After the translation has been completed, STREAMS
issues the message:

This message is obtained whether the model has actually been changed or not. The
instructions from which the original Amos Graphics model was created are kept
unchanged in the file name given in the message box. Should the changes made in Amos
Graphics not be wanted, or incorrectly interpreted by STREAMS, the original instructions
may easily be brought up again, just through opening the model.

In this case the following MB instructions are created by STREAMS from the edited
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Amos Graphics model:y

The covariance between the residuals of ERC and READ is thus added to the MB instruc-
tions.

Let us now assume that the o2.mbi model is edited in MB mode, for example, through
deletetion of the line: 

COV ERC& READ&

If the Path diagram button is clicked anew, the Amos Graphics o2 model is edited, with
the following result:

If there is already an Amos Graphics model with the same same as the MB model, the
Amos Graphics model is edited in such a way that changes are made to the existing model.
This is sometimes inconvenient, because the changes made in STREAMS may not fit well
into the edited Amos Graphics model. In such instances it is recommended that the name
of the MB model is changed into a new one, which causes STREAMS to create a new
Amos Graphics model.

Using the procedures described above a model a model may thus be transferred back and
forth between STREAMS and Amos Graphics. It should just be remembered that when

TI A two-factor model for the SweSAT subtests
MO PR=hpg NAME=o2
MO Create instructions for: Amos     Matrix: CM
MO Means included in model     One-group model
MO Amos 4.0
OP $ml;
DAT FOLDER=Group DATLAB=T73
MVR WORD READ GI ERC DS DTM
LVR Verb Reas
REL Verb -> WORD READ GI ERC
REL Reas -> DS DTM
COV Reas Verb
COV ERC& READ&
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going from STREAMS to Amos Graphics the Path Diagram button must always be
clicked, and when going from Amos Graphics to STREAMS, the STREAMS program
button on the Windows taskbar should be clicked.

Examples of Models

Below some additional examples of simple one-group models are presented. One purpose
is to show how different types of models, including some non-standard models, may be
specified in the MB language. Another purpose is to show that there is often reason to con-
sider using more than one estimation program. It is recommended that the user opens the
projects, and tries the different models, and modifications of them. 

The example project directories are available as compressed files in the STREAMS instal-
lation directory. Thus, first of all the compressed file should be decompressed, using the
technique shown in Chapter 2. Every model has been estimated with all estimation pro-
grams (with a few exceptions), and the models are available in a separate subdirectory
with the name of the estimation program (e. g., Amos, EQS, ...). After decompression of
the compressed project file it is, of course, possible to delete those model directories
which are of no interest.

Multivariate Regression Analysis: Ambition and Attainment

As has already been pointed out, regression analysis may be regarded as a special case of
SEM, and such models may easily be specified with MB. The simplest form of regres-
sion analysis involves one or more manifest independent variables and a single depend-
ent manifest variable. Regression analysis is applied in many different situations, and
with different aims, but in a rough classification a distinction may be made between stud-
ies where the main purpose is to predict the dependent variable as well as possible (esti-
mation of missing data values through imputation may be an example), and studies
where the aim is to determine the relative amount of influence on the dependent variable
due to different independent variables. In SEM the latter type of purpose tends to be the
primary one. Estimating a regression model thus involves estimating the regression coef-
ficients (γι) which express the change in the dependent variable associated with a unit
increase in each independent variable, with all other independent variables held constant.

The term multiple in multiple regression analysis usually refers to the number of inde-
pendent variables. It is easy to generalize regression analysis to allow multiple dependent
variables, however, and we will consider a simple example.

The AMB project in STREAMS\EXAMPLES\AMB (or the compressed file AMB.ZIP in
the Streams directory; see “Decompress”, page 175, for information how to unpack the
file) contains data from a study by Kerchoff (1974), which comprised 767 12th-grade
males. Among the variables measured were intelligence (INTEL), number of siblings
(SIBS), father’s education (FEDUC), father’s occupation (FOCCUP), high-school grades
(GRADES), educational expectations (EDEXP), and occupational expectations
(OCCEXP). In the project there is one folder (Grp), and one dataset label (Tot). 

These data have been reanalyzed by Kenny (1979) and Jöreskog and Sörbom (1989a, Ch.
4). The reanalyses have used the data to illustrate path analysis (see below) and this will
be done here too, but first we will consider a simpler multivariate regression model.
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A multivariate regression model includes one or more correlated manifest independent
variables, just as an ordinary multiple regression model, and it includes two or more
dependent variables, with correlated residuals. In the AMB project it is natural to regard
GRADES, EDEXP and OCCEXP as dependent variables, and the other variables as inde-
pendent variables. The MB statements for this model (mreg.mbi) are shown below:

This model may be estimated with all the programs, and the following post-processor out-
put is obtained:

This model is just-identified, and it has zero degrees of freedom. It may also be demon-
strated that a multivariate regression model of this kind can be estimated with identical
results as three separate models in which the three dependent variables are entered one at
a time. 

Here a correlation matrix has been analyzed so the unstandardized estimates of the γ -coef-
ficients are the same as the standardized estimates. Almost all coefficients are significant,
and several of them are of considerable magnitude. It may also be noted, however, that
there are some differences in the pattern of results for the three dependent variables:
INTEL has, for example, its strongest relation with GRADES and its lowest relation with

MB instructions for the multivariate regression model for the AMB data

TI Multivariate regression with  GRADES, EDEXP and OCCEXP as dep vars
MO PR=amb NAME=mreg
MO Matrix: KM     One-group model
MO Means not included in model
MO LISREL DOS/Extender 8.14
OP OU ME=ML AD=OFF
DAT FOLDER=Grp DATLAB=Amb
MVR INTEL SIBS FEDUC FOCCUP GRADES EDEXP OCCEXP
REL INTEL SIBS FEDUC FOCCUP -> GRADES EDEXP OCCEXP
COV INTEL SIBS FEDUC FOCCUP
COV GRADES& EDEXP& OCCEXP&

Post-processor output (edited) for the multivariate regression model

Goodness of Fit Test:  
  
Chi-square = .00, df = 0, p < 1.00 
  
Unstandardized estimates: 
  
GRADES   =    +0.53*INTEL      -0.03*SIBS       +0.12*FEDUC     
              +0.04*FOCCUP     +1.00*GRADES&   
EDEXP    =    +0.37*INTEL      -0.12*SIBS       +0.22*FEDUC     
              +0.17*FOCCUP     +1.00*EDEXP&    
OCCEXP   =    +0.25*INTEL      -0.09*SIBS       +0.10*FEDUC     
              +0.20*FOCCUP     +1.00*OCCEXP&   
  
Var(GRADES)  =    1.00   Var(GRADES&) =    0.65   Expl var =   34.90 %  
Var(EDEXP)   =    1.00   Var(EDEXP&)  =    0.62   Expl var =   37.65 %  
Var(OCCEXP)  =    1.00   Var(OCCEXP&) =    0.81   Expl var =   19.30 %  
  
Cov(EDEXP&,GRADES&)   =    0.26 
Cov(OCCEXP&,GRADES&)  =    0.25 
Cov(OCCEXP&,EDEXP&)   =    0.38 
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OCCEXP, while FOCCUP has its strongest relation with OCCEXP and its lowest relation
with GRADES. These patterns of results are more easily seen in the graph of standardized
estimates (and particularly so in colour on the computer screen), which may be produced
by first clicking the Grid & Graph  button, and then the Graph button:

Path Analysis: Ambition and Attainment

In the multivariate regression example discussed above, the residuals of the three
dependent were taken to be freely correlated. But it could also be argued that there is a
logical ordering of the dependent variables such that grades affect educational and occu-
pational aspirations, but not vice versa, and that educational aspirations affect occupa-
tional aspirations, but not the other way around. Kenny (1979, pp. 47-73) reanalysed the
AMB project data under such assumptions of a causal or logical ordering of the depend-
ent variables. The resulting model is a so called “path model” (see the path diagram
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below). Path analysis was invented by the geneticist Sewall Wright (1917, 1934) as a
technique to investigate the amount of influence exerted of one variable on another in a
non-experimental situation.

Figure 1. A Path Model for the AMB data

Specification and estimation of path models is straightforward in MB and all the structural
equation modeling programs. In the AMB project there is a model labeled path.mbi which
expresses the model in the MB language:

INTEL

SIBS

FEDUC

GRADES GRADES&
1.0

FOCCUP

OCCEXP OCCEXP&
1.0

EDEXP EDEXP&
1.0

MB instructions for the path model for the AMB data

TI Path model the AMB data
MO PR=amb NAME=path
MO Matrix: KM     Means not included in model
MO One-group model     LISREL DOS/Extender 8.14
OP OU ME=ML AD=OFF 
DAT FOLDER=Grp DATLAB=Amb
MVR INTEL SIBS FEDUC FOCCUP GRADES EDEXP OCCEXP
REL INTEL SIBS FEDUC FOCCUP -> GRADES EDEXP OCCEXP
REL GRADES -> EDEXP OCCEXP
REL EDEXP -> OCCEXP
COV INTEL SIBS FEDUC FOCCUP
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In edited form the post-processor output from this model is:

The present path model, which only involves manifest variables and which does not
impose any restrictons on the observed covariance matrix, also is just-identified, so the
goodness-of-fit test has zero degrees of freedom. In the path model there are no covari-
ances among residuals because the pattern of relations among the dependent variables
account for these. It may be noted, however, that the amount of explained variance tends
to be higher in the path model than in the multivariate regression model.

In this model there is a rather weak direct relation between INTEL and EDEXP of .16,
which may be compared with the considerably stronger relation of .37 in the multivariate
regression model. But there is also an indirect effect of INTEL on EDEXP through
GRADES. According to Wright’s path rules (see, e. g., Loehlin, 1992, Ch. 1) the indirect
effect of INTEL on EDEXP is the product of the γ -coefficients on the path in the path
diagram between INTEL and EDEXP (i. e., .53 x .41 = .21). The sum of the direct effect
and the indirect effect is the total effect. The total effects of INTEL on EDEXP thus is .16
+ .21 = .37. Some of the estimation programs (e. g., EQS and LISREL) may be used to
compute the direct and indirect effects.

In the path model the flow of causation is in one direction only, and there are no “loops”
such that a variable is indirectly influencing itself. Such models are known as “recursive
models” (see e. g., Jöreskog & Sörbom, 1989a, p. 121).

Post-processor output (edited) for the path modelfor the AMB data

Unstandardized estimates: 
  
GRADES   =    +0.53*INTEL      -0.03*SIBS       +0.12*FEDUC     
              +0.04*FOCCUP     +1.00*GRADES&   
EDEXP    =    +0.16*INTEL      -0.11*SIBS       +0.17*FEDUC     
              +0.15*FOCCUP     +0.41*GRADES     +1.00*EDEXP&    
OCCEXP   =    -0.04*INTEL      -0.02*SIBS       -0.04*FEDUC     
              +0.10*FOCCUP     +0.16*GRADES     +0.55*EDEXP     
              +1.00*OCCEXP&   
  
Var(GRADES)  =    1.00   Var(GRADES&) =    0.65   Expl var =   34.90 %  
Var(EDEXP)   =    1.00   Var(EDEXP&)  =    0.52   Expl var =   48.33 %  
Var(OCCEXP)  =    1.00   Var(OCCEXP&) =    0.56   Expl var =   44.34 %  
  

t-values: 
  
GRADES   =   +17.21*INTEL      -1.01*SIBS       +3.17*FEDUC     
              +1.10*FOCCUP    +19.57*GRADES&   
EDEXP    =    +5.00*INTEL      -4.24*SIBS       +5.14*FEDUC     
              +4.60*FOCCUP    +12.59*GRADES    +19.57*EDEXP&    
OCCEXP   =    -1.17*INTEL      -0.68*SIBS       -1.16*FEDUC     
              +2.87*FOCCUP     +4.30*GRADES    +14.65*EDEXP     
             +19.57*OCCEXP&   
  
Var(GRADES&) =   19.57     
Var(EDEXP&)  =   19.57     
Var(OCCEXP&) =   19.57 
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Confirmatory Factor Analysis: Nine Psychological Variables

We will next consider another example of a confirmatory factor analysis model, which is
classical in the literature on factor analysis and structural equation modeling, namely the
“nine psychological variables” data set from Holzinger and Swineford’s (1939) study of
the structure of human cognitive abilities (see also Gustafsson, 1998). This example has
been discussed at length by, for example, Jöreskog & Sörbom (1989a, pp. 97-104; 1993c,
pp. 23-27). It will be shown that several alternative models may be fitted to the data, and
that the model modifications suggested by different estimation programs may be quite
diverse.

The data comprise a subset of 9 tests from a test-battery of 26 tests administered to 145
7th- and 8th-grade children in the Grant-White school in Chicago. The 9 tests were
selected to measure three hypothesized ability factors: Visual Perception ability, Verbal
ability and Speed, with three indicators of each ability. The path model in the figure
presents the labels of the tests, and the hypothesized pattern of relations between latent
variables and manifest variables.

Figure 2. The hypothesized model for nine psychological variables.

It should be observed that the labels of some of the variables have been changed to con-
form to the syntactical requirements of MB. As may be seen from the path diagram the
CFA model, just as the one considered earlier in the chapter, takes the latent variables to
be independent variables and the manifest variables to be dependent variables in a kind of
regression model. For each manifest variable there is thus a residual, which in the path
diagram has been labeled according to the MB language conventions. 

This model is an example of an oblique, simple-structure, model which was first intro-
duced by Thurstone (1931, 1938, 1947) in the context of exploratory factor analysis. Such
models also are referred to as congeneric models by Jöreskog (1971) and they are the first
choice when measurement models are fitted.

A project labelled NINE has been created in the directory STREAMS\EXAMPLES\NINE.

VISPERC

CUBES
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PARCOMP

SENCOMP

WORDME

ADDIT

CNTDOT

SCCAPS
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PARCOMP&
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Visual

Verbal

Speed



66 Specifying and Editing Models  

Structural Equation Modeling Made Simple

The correlation matrix (see, e. g., Jöreskog & Sörbom, 1993c, p. 23) has been imported
into this directory, with the labels shown in the path diagram. The folder is called Group,
and the dataset label for the correlation matrix is Grwh (for Grant-White school). The
models estimated for the different estimation programs are in directories beneath the
NINE directory with the same name as the estimation program (e. g., Amos, EQS, ...), and
within these directories the same model name is used for corresponding models.

The MB model for the path model shown above (obl1) may be specified in the following
way:

Observe that the COV statement must be included, because otherwise an orthogonal
model will be generated. Estimating this model with Amos, EQS, LISREL, Mplus or Mx,
yields essentially the same results. However, according to the goodness of fit test and the
various fit indices the fit of the model to data is not so good. When LISREL is run the
following results are obtained:

Both the χ2 -test and the RMSEA-measure indicate that the model has an unacceptably
poor fit.

The largest modification index (25.1) is obtained for the covariance between the errors of
CNTDOT and ADDIT. It may be hypothesized that this covariance is due to an element
of simple arithmetic in these tests, which both are highly speeded. Jöreskog and Sörbom
(1989a, p. 101; 1993c, p. 26) observed that there is also another almost equally high mod-
ification index (24.7) which suggests that there should be a path between the SCCAPS test
and the Visual factor. They hypothesized that such a relation may be accounted for by the
fact that the SCCAPS test requires a Visual Perceptual ability in the rapid differentiation
between straight and curved capitals. 

MB instructions for the oblique three-factor model for nine psychological variables

TI Three oblique factors
MO PR=nine NAME=obl1
MO Means not included in model
MO Matrix: KM     One-group model
MO LISREL DOS/Extender 8.12
OP OU ME=ML AD=OFF MI SC 
DAT FOLDER=Group DATLAB=Grwh
MVR VISPERC CUBES LOZENG PARCOMP SENCOMP WORDME ADDIT CNTDOT SCCAPS
LVR Visual Verbal Speed
REL Visual -> VISPERC CUBES LOZENG
REL Verbal -> PARCOMP SENCOMP WORDME
REL Speed -> ADDIT CNTDOT SCCAPS
COV Visual Verbal Speed

Results from the goodness of fit test for the oblique three-factor model.

Goodness of Fit Test:  
 
Chi-square = 52.63, df = 24, p < .00 
  
RMSEA = .091, p-value for RMSEA < 0.05 = .02  
  
Fit Indices: GFI = .93, AGFI = .87, NFI = .89, NNFI = .91, CFI = .94  

Maximum Modification Index is   25.1 for:  
COV CNTDOT& ADDIT& 
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The Mplus modification indices agree closely with those computed by LISREL. Amos
also computes modification indices, but they tend to be somewhat different from those
computed by LISREL. The following message is obtained when the oblique three-factor
model (obl1) is fitted with Amos:

The multivariate LM test computed by EQS (with the GFV and PEE sets selected) sug-
gests that two parameters should be freed: the CNTDOT& and ADDIT& covariance, and
a covariance between LOZENG& and CUBES&. The latter two tests have (often along
with the Flags test) frequently been found to identify a narrow spatial factor (S or SR-O,
see Gustafsson, 1977; see also Carroll, 1993) which reflects the ability rapidly to rotate
simple figures in three-dimensional space, so there may be a basis for a covariance
between the errors of these tests. Several suggestions how to modify the originally
hypothesized model are thus offered by the programs, and we will attempt some different
alternatives.

To use the same approach as Jöreskog & Sörbom we just add an MB statement which
specifies a relation from Visual to SCCAPS, i. e.:

REL Visual -> SCCAPS

When this model (obl2) is estimated the following goodness of fit statistics are computed
by LISREL:

The χ2 -test now is non-significant and the RMSEA-measure is below the recommended
critical value .05. It is also interesting to note that the modified model now identifies the
covariance between LOZENG& and CUBES& as the second largest source of misfit, as
was indeed done by the multivariate LM test computed by EQS for the obl1 model. A fur-
ther modification of the model may be made through adding the statement:

COV LOZENG& CUBES&

This model (obl3) has a χ2 value which is about 6 units lower than the obl2 model (χ2 (22)
= 22.94, p < .41, RMSEA=.017). The fit of this model is so good that no further modifi-
cations should be made.

As an alternative to invoking the relation between Visual and SCCAPS the covariance
between CNTDOT& and ADDIT& might be allowed. When this is done and the model
is reestimated we again get the message that the maximum modification index is due to
COV LOZENG& CUBES&. If this covariance between errors is allowed as well (obl4)

Maximum Modification Index is   15.30 for:  
REL VISPERC -> SCCAPS 

Results from the goodness of fit test for the modified oblique three-factor model (obl2l).

Goodness of Fit Test:  
  
Chi-square = 28.86, df = 23, p < .18 
  
RMSEA = .042, p-value for RMSEA < 0.05 = .57  
  
Fit Indices: GFI = .96, AGFI = .92, NFI = .94, NNFI = .98, CFI = .99  

Maximum Modification Index is    6.2 for:  
COV LOZENG& CUBES& 
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the goodness-of-fit test is very close to the obl3 model (χ2 (22) = 22.95, p < .40, RMSEA
= .017).

There is also a third approach to modify the poor-fitting original model. The modification
indices and the multivariate LM test which identify covariances between the errors of
manifest variables are in fact really saying the there is systematic covariance between
manifest variables which is not accounted for by the latent variables. Another way to
account for these covariances is to introduce further latent variables. As is shown by Her-
shberger (1994) models with correlated errors may be reformulated into so called equiv-
alent models with additional latent variables, and vice versa. It has already been
hypothesized that the covariance between CNTDOT& and ADDIT& is due to a numerical
factor (Num), and that the covariance between LOZENG& and CUBES& is due to a spa-
tial factor (S). We may thus introduce these latent variables in the following way (obl5):

Two new latent variables (Num and S) are hypothesized, and these factors are assumed to
be orthogonal to the three original latent variables. Constraints of equality are imposed on
the relations between the new latent variables and the manifest variables, which is neces-
sary because otherwise the model will be unidentified. When this model (obl5) is esti-
mated it gives exactly the same value of the test-statistic as does the model with two
correlated errors. The standardized estimates are presented in the table on the next page.

The sequence of models fitted here very clearly demonstrates that it is possible to fit alter-
native models which equally well account for the relations among the observed variables,
but which carry quite different interpretations and implications. Thus, the models which
improve fit through allowing covariances between errors in manifest variables in a sense

MB instructions for the five-factor model for nine psychological variables

MVR VISPERC CUBES LOZENG PARCOMP SENCOMP WORDME ADDIT CNTDOT SCCAPS
LVR Visual Verbal Speed Num S
REL Visual -> VISPERC CUBES LOZENG
REL Verbal -> PARCOMP SENCOMP WORDME
REL Speed -> ADDIT CNTDOT SCCAPS
REL Num -> (ADDIT CNTDOT)
REL S -> (CUBES LOZENG)
COV Visual Verbal Speed

Standardized estimates for the five-factor model for nine psychological variables

Standardized estimates: 
  
VISPERC  =    +0.74*Visual     +0.67*VISPERC&  
CUBES    =    +0.41*Visual     +0.42*S          +0.81*CUBES&    
LOZENG   =    +0.60*Visual     +0.42*S          +0.69*LOZENG&   
PARCOMP  =    +0.87*Verbal     +0.50*PARCOMP&  
SENCOMP  =    +0.83*Verbal     +0.56*SENCOMP&  
WORDME   =    +0.82*Verbal     +0.57*WORDME&   
ADDIT    =    +0.41*Speed      +0.60*Num        +0.68*ADDIT&    
CNTDOT   =    +0.53*Speed      +0.60*Num        +0.59*CNTDOT&   
SCCAPS   =    +0.97*Speed      +0.26*SCCAPS&   
  
  
Cov(Verbal,Visual)    =    0.55 
Cov(Speed,Visual)     =    0.66 
Cov(Speed,Verbal)     =    0.38
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make the source of misfit invisible, while the models in which additional latent variables
are introduced make the sources of misfit very visible indeed. It is also interesting to
observe that the different estimation programs tend to differ with respect to suggested
modifications, and that, in particular Amos differs from the others. This suggests that it
may not be wise to rely on one program alone.

Stability of Alienation

We will next consider a path-model for longitudinal data. The model by Wheaton,
Muthén, Alwin, & Summers (1977) on the stability of alienaton is a another classical
example in text-books on structural equation modeling. Data on scales designed to meas-
ure the constructs anomia and powerlessness were collected from a sample of 932 persons
in 1966, 1967, and 1971, in order to study the stability of attitudes and their relation to
education and occupation. The covariance matrix for a subset of the variables in this study
is presented by, among others, Jöreskog & Sörbom (1993c, p. 29). These data have been
imported into a project called Alien, which is available in the directory STREAMS\EXAM-
PLES\ALIEN (or in the compressed file ALIEN.ZIP in the STREAMS directory).

The hypothesized model is shown in the path-diagram:

Figure 3. The hypothesized model for stability of alienation

It is hypothesized that there is a relation between alienation measured in 1967 and in 1971,
and one of the research questions concerns how strong this relationship is. It is also
hypothesized that the Ses variable affects alienation at both occasions of measurement.
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The MB specification of this model is:

This model (St1) may easily be estimated with Amos, EQS, Mx, LISREL or Mplus. The
fit of the model is not very good, however (χ2 (6) = 71.47, p < .00, RMSEA = .108). The
misfit is, according to the modification indices, caused by covariances among the errors
of residuals in manifest variables, and particularly so for ANOM67& and ANOM71&. It
is, of course, reasonable to expect an auto-regressive structure of relations among the sys-
tematic components of the residuals in the manifest variables over time. To account for
these we may add the following two statements:

COV ANOM67& ANOM71&
COV POWL67& POWL71&

When this is done the model (St2) fits very well (χ2 (4) = 4.73, p < .32, RMSEA = .014).
The standardized estimates are presented below:

The estimates presented here agree with those obtained by Jöreskog & Sörbom (1993c).
About 50 % of the variance in Alien71 is accounted for by Alien67 and Ses. It should be
noted that even though the relation between Ses and Alien71 in absolute terms is lower
than the relation between Ses and Alien67, this indicates that the effect of SES increases
over time. This is because for Alien71 there is both an indirect effect of Ses through
Alien67, and a direct effect from Ses.

Covariances among errors of measurement over time is a standard procedure to account
for the effects of due to repeated measuring instruments. It could be asked, however, if it
would not be equally reasonable to have a relation from the residual in the manifest vari-
able at the earlier time point to the manifest variable at the later time point. The relations
over time between latent variables are typically specified as regressions, and the same

MB instructions for the hypothesized model for stability of alienation

DAT FOLDER=None DATLAB=Alien
MVR ANOM67 POWL67 ANOM71 POWL71 EDUC SEI
LVR Ses Alien67 Alien71
REL Ses -> EDUC SEI
REL Alien67 -> ANOM67 POWL67
REL Alien71 -> ANOM71 POWL71
REL Ses -> Alien67 Alien71
REL Alien67 -> Alien71

Standardized estimates from the model for stability of alienation with correlated errors

Standardized estimates: 
  
Alien67  =    -0.56*Ses        +0.83*Alien67&  
Alien71  =    -0.21*Ses        +0.57*Alien67    +0.71*Alien71&  
ANOM67   =    +0.77*Alien67    +0.63*ANOM67&   
POWL67   =    +0.85*Alien67    +0.52*POWL67&   
ANOM71   =    +0.81*Alien71    +0.59*ANOM71&   
POWL71   =    +0.83*Alien71    +0.55*POWL71&   
EDUC     =    +0.84*Ses        +0.54*EDUC&     
SEI      =    +0.64*Ses        +0.77*SEI&      
  
  
Cov(ANOM71&,ANOM67&)  =    0.13 
Cov(POWL71&,POWL67&)  =    0.04 
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could be done with the residuals. An alternative specification would thus be:

REL ANOM67& -> ANOM71
REL POWL67& -> POWL71

This model (St3) may be estimated with EQS, Mx or LISREL, but not with the other pro-
grams. Amos regards the model as being unidentified. Mplus estimates the model, but
because no distinction is made in the Mplus language between the residual and the corre-
sponding variable, the intended model is not obtained. Instead Mplus estimates the regres-
sion onto the manifest variable itself, which is not what we want here. 

The fit of the model estimated by the three succesful programs is identical with that of the
model with correlated errors. Most of the parameter estimates are identical in the two
models but some of them are not:

The residual variances in ANOM71 and POWL71 thus are smaller in this model than in
the model with correlated errors. The main difference between the different ways of for-
mulating the models thus seems to be conceptual: when the new tests are regressed on the
residuals the earlier administration is seen as affecting performance on the instrument at
a later occasion, while the correlated errors approach does not make any assumption about
direction of effect.

Standardized estimates from the model for stability of alienation with regression on errors

Standardized estimates:  
  
Alien67  =    -0.56*Ses        +0.83*Alien67&  
Alien71  =    -0.21*Ses        +0.57*Alien67    +0.71*Alien71&  
ANOM67   =    +0.77*Alien67    +0.63*ANOM67&   
POWL67   =    +0.85*Alien67    +0.52*POWL67&   
ANOM71   =    +0.81*Alien71    +0.21*ANOM67&    +0.55*ANOM71&   
POWL71   =    +0.83*Alien71    +0.07*POWL67&    +0.55*POWL71&   
EDUC     =    +0.84*Ses        +0.54*EDUC&     
SEI      =    +0.64*Ses        +0.77*SEI& 
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Part 2

Specifying and Estimating 

Complex Models

The second part of the User’s Guide shows how to specify
and estimate some specialized, and often quite complex
structural equation models with STREAMS. Chapter 4
deals with multiple-group models, Chapter 5 with missing-
data models, and Chapter 6 with models for twolevel data.
Novice users are adviced to skip these chapters and return
to them as the need arises to deal with these specialized
types of models. Chapter 7 is devoted to a short discussion
of issues of efficiency in using structural equation model-
ing techniques. 
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SEM is a powerful tool for analyzing data from multiple samples, because it allows inves-
tigation of group differences in a large number of respects, such as differences in meas-
urement characteristics, differences in means on latent and manifest variables, and
differences in strengths of relationship among variables within groups. Such models may
easily be specified and estimated within the STREAMS environment. 

The MB Language for Multiple-Group Modeling

In MB the user may choose to impose two different types of default equality constraints
over groups, which apply if no other statements are made. One possibility is to have
default constraints of equality imposed on every parameter over every group of cases. The
other option is that no contraints of equality are imposed by default. The syntax of the MB
language supports, furthermore, reference to group membership within the statements,
which makes it easy to specify models which impose constraints, or relax constraints, on
subsets of the parameters of the model.

If, for example, the default option of constraints over groups has been chosen, the follow-
ing statement relaxes the constraints of equality on factor loadings for males and females:

REL Males Females Verb -> READ ERC WORD GI

If, to take another example, the default option of no constraints over groups has been cho-
sen, the following statement imposes constraints of equality on factor loadings for males
and females:

REL (Males Females) Verb -> READ ERC WORD GI

Below a concrete example is presented how to specify a two-group model, and what infor-
mation is obtained from the program.

�
Specifying Models for 
Multiple Groups



76 Specifying Models for Multiple Groups  

Structural Equation Modeling Made Simple

Specifying Multiple-Group Models

In most respects a multi-sample model is specified in the same way as a one-group model
(see Chapter 3), except that path diagrams are not available for multiple-group models. 

It is often a good idea to specify and estimate a one-group model in a first step, either for
the pooled set of cases, or for one of the sub-samples. The one-group model is easier to
estimate than is the more complex multi-sample model, and after it has been estimated,
start values may be copied from this model to the multi-group model (see also Chapter 7).
It is also a trivial task to transform a one-group model to a multiple-group. 

Let us, as an example, take a starting point in the two-factor model for the SweSAT data
specified in the previous chapter, and specify this model as a two-group model for males
and femles. Thus, the first step is to open the HPG project. Then go down to the MultGrp
directory and further down to the folder with the preferred estimation program. Then open
the two-factor model, which is here called vr1.mbi. The name of the model should then
immediately be changed, to o2mf.mbi, for example. 

In order to specify the type of model the Model button should be clicked, and the Model
Type tab clicked:

The Group(s) frame offers four radio buttons to identify type of model:

• One-group model
• Constraints over groups
• No constraints over groups
• Separate one-group models

The Constraints over groups option implies that by default every parameter is con-
strained to be equal over every group of cases, while the No constraints over groups
option implies that no parameter is constrained to be equal over groups. The Separate
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one-group models option implies that the pre-processor specifies as many models as
there are groups of cases. This option is, however, only available when LISREL is used
as the estimation program.

It is recommended that the Constraints over groups option is used in the first step,
because a more highly constrained model is easier to estimate (see Chapter 7), and, at least
if the fit is good, a more constrained model is to be preferred over a less constrained
model. This is also the option chosen here. The default option to Include means in model
is also chosen.

In order to transform the one-group model to a two-group model we also need to remove
the DAT statement which refers to the pooled group of cases and instead include DAT
statements which refer to covariance matrices for males and females, respectively. This is
done through clicking the DAT button which produces the Datasets form. First the T73
group is removed from the Selected datasets box. Then the Gender folder is clicked, and
the Males and Females groups selected and transferred to the Selected datasets box:
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When the OK  button is clicked the following MB statements are generated:

It will be remembered that the fit of the oblique two-factor model was quite excellent for
the total set of data. However, the two-group model has a very poor fit (χ2 (35) = 138.62,
p < .00, RMSEA = .072). This indicates that there are differences between males and
females with respect to one or more of the parameters of the oblique two-factor model.
The differences could, however, pertain to one or more of the different parameters of the
model, such as means of latent variables, intercepts of manifest variables, variances of
latent variables, residual variances of manifest variables, and/or covariances among latent
variables. In order to clarify in what respects the models for males and females differ it is
necessary to investigate models which impose fewer constraints of equality over groups.

Testing Differences Between Groups

An overall test of equality of the models for males and females is obtained if the fit of the
model which imposes full constraints over groups is compared with the model which
imposes no constraint of equality. The test-statistic for the model with no constraints of
equality (o2mf0.mbi) over groups is χ2 (16) = 28.94, p < .02, RMSEA = .037, which
implies that the difference test is highly significant (difference χ2 (19) = 109.68).

In order to investigate more closely in what part of the model the gender differences are
located the following sequence of successively more relaxed models may be fitted (cf
Gustafsson, 1997):

1. No constraints on latent variable means.

2. No constraints on intercepts of manifest variables (i. e., remove means from model
altogether).

3. No constraints on variances of residuals in manifest variables.

4. No constraints on variances of latent variables.

5. No constraints on covariances of latent variables.

6. No constraints on relations between latent and manifest variables.

MB instructions for a completely constrained two-group model

TI A two-factor model for the SweSAT subtests by gender
MO PR=hpg NAME=o2mf
MO Create instructions for: LISREL Y-model     Matrix: CM
MO Means included in model     Multiple groups with constraints
MO LISREL DOS/Extender 8.20
STA NAME=h:\fkod\examples\hpg\Amos\g1ml.mbi
OP OU ME=ML AD=OFF XM 
DAT FOLDER=Gender DATLAB=Males
DAT FOLDER=Gender DATLAB=Females
MVR DTM DS WORD READ GI ERC
LVR Reas Verb
REL Verb -> WORD READ GI ERC
REL Reas -> DS DTM 
COV Reas Verb
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Between each of these steps a difference χ2 test may be computed to assess the signifi-
cance of the group difference.

In order to relax the constraint of equality on the latent variable means, the following
statement may be added to the o2mf model (model o2mf1):

MEA Females Verb Reas

This may be done in several different ways, such as entering the command line via the
keyboard. Another possibility is to click the MEA  button and select the Verb and Reas
variables. The Groups button on the Means form is then clicked, which produces the
Groups form. On this form the Females group should be selected:

After the OK  button is clicked on the Groups form, as well as on the Means form, the
command line is written into the editor area.

It should be observed that the mean cannot be estimated in both groups, and the program
assumes by default that the mean of all latent variables is zero in the first group (here the
Males group). Should, however, reference be made to the first group in a MEA statement,
the program takes no action unless the check box Always allow latent variable means
on the Model Type tab of the Model form has been clicked. When the check box has been
clicked the program allows estimation of latent variable means in the first group of mul-
tiple-group models, as well as in one-group models. This option must be used when cer-
tain kinds of models, such as growth-curve models, are specified.

The test statistic for model o2mf1 is χ2 (33) = 68.63, p < .00, RMSEA = .043, so this model
fits considerably better than does the compeletely constrained model o2mf (difference χ2

(2) = 69.99) (observe, however, that the different programs tend to yield marginally dif-
ferent χ2 statistics; from Mplus the value 69.0 thus was obtained). However, the model
which only relaxes constraints of equality over groups on the latent variable means does
not fit as well as does the model without any constraints of equality over groups (differ-
ence χ2 (17) = 39.69). It may thus be concluded that there are significant differences with
respect to the means for one or both of the two latent variables, and that there also are
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smaller differences between one or more of the other parameter estimates of the models
for males and females. 

In step 2 of the recommended sequence constraints on means are removed altogether. This
can be done in different ways: One possibility is to uncheck the check box Include means
in model on the Model Type tab of the Model form and remove the MEA statement from
the model. Another possibility, which produces equivalent results, is to replace the MEA
statement which refers to the latent variables with one which refers to all the manifest var-
iables (or their residuals, which also gives the same results):

MEA Females WORD DS READ DTM GI ERC

This statement may be constructed with the forms or through using the editor.

This model (o2mf2) has a χ2 of 53.54, with 29 df, which is significantly better than the
o2mf1 model (difference χ2 (4) = 15.09). Thus, over and above the gender difference with
respect to latent variable means there is a gender difference with respect to the intercepts
of one or more of the manifest variables. It should be noted, however, that the differences
with respect to intercepts seem trivially small compared to the difference with respect to
the latent variable means.

According to the RMSEA measure both models which relax constraints on the means for
males and females have an acceptable degree of fit. We could, thus, stop the investigation
of group differences here, concluding that there are gender differences with respect to
level of performance on the SweSAT, but not with respect to other characteristics. How-
ever, in order both to illustrate the procedures of multi-group modeling, and to account
for the remaining gender difference, we will continue testing for group differences.

In step 3 constraints are removed with respect to error variances. This may be done
through adding the following statement to model o2mf2 (model o2mf3):

VAR Males Females WORD& DS& READ& DTM& GI& ERC&

This statement may, for example, be constructed through clicking first the VAR  button,
selecting the residual variables, then clicking the Groups button on the VAR form and
selecting all groups.

The test statistic for this model is χ2 (23) = 36.76, p < .03, RMSEA = .032, which implies
a significant improvement of fit (difference χ2 (6) = 16.78). It may, thus, be concluded
that for one or more of the six residuals in manifest variables there is a significant gender
difference with respect to variance.

In step 4 gender differences with respect to the variance of the latent variables is investi-
gated, through adding the following statement (model o2mf4):

VAR Males Females Reas Verb

The test statistic of this model is χ2 (21) = 36.35, p < .02, RMSEA = .036, which implies
that there is no significant difference with respect to variances in latent variables for males
and females (difference χ2 (2) = 0.41).

In step 5 gender differences with respect to the covariance among the latent variables is
investigated, through transforming the statement COV Verb Reas to the following state-
ment (model o2mf5):

COV Males Females Verb Reas
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This model achieves almost the same value on the test statistic as did the previous model
(χ2 (20) = 36.34, p < .01, RMSEA = .038), so it may be concluded that there is no gender
difference with respect to the covariance between the two latent variables.

In the final step we may test the homogeneity of regressions of the manifest variables on
the latent variables, through changing the two REL statements in the following way
(model o2mf6):

REL Males Females Verb -> WORD READ GI ERC
REL Males Females Reas -> DS DTM

The test statistic of this model is χ2 (16) = 28.94, p < .02, RMSEA = .037, which is, of
course, the same as the completely unconstrained model (o2mf0). The difference between
this model and the previous model is not significant (difference χ2 (4) = 7.40), so it may
be concluded that there are no gender differences with respect to the relations between
manifest and latent variables of the model.

Output from Multiple-Group Models

The output from multiple-group models may be presented in several different ways: as a
listing file (post-processor output), in a grid and as a graph, and some of these options will
be illustrated below. Results will be presented from model o2mf3, which fits as well as
the model without any constraints. 

The post-processor listing output from multiple-group models is arranged in the same way
as output from one-group models (i. e., goodness-of-fit information, unstandardized esti-
mates, t-values, and standardized estimates), except that the results from different groups
are presented adjacently, to allow easy comparison. The table below presents unstandard-
ized estimates of the relations between manifest and latent variables:

The estimates in the two groups are all identical, which is, of course, because of the con-
straints of equality. It should also be pointed out that even though there are differences
between the coefficients for different variables these are not interpretable because they are
influenced by the scales of the manifest variables.

Unstandardized estimates of relations from the o2mf4 two-group model for the SweSAT

Unstandardized estimates: 
  
  
Males    DTM      =    +0.74*Reas       +1.00*DTM&      
Females  DTM      =    +0.74*Reas       +1.00*DTM&      
  
Males    DS       =    +1.00*Reas       +1.00*DS&       
Females  DS       =    +1.00*Reas       +1.00*DS&       
  
Males    WORD     =    +1.00*Verb       +1.00*WORD&     
Females  WORD     =    +1.00*Verb       +1.00*WORD&     
  
Males    READ     =    +0.71*Verb       +1.00*READ&     
Females  READ     =    +0.71*Verb       +1.00*READ& 
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The unstandardized estimates of residual variances are presented below:

It may be observed that for most of the variables the residual variances are quite similar.
For DTM, however, the residual variance is higher for females than for males, and there
is a tendency in the same direction for DS. It would, of course, be easy to conduct statis-
tical tests of the equality of these parameters but it must also be warned that such tests
need to be replicated on a new sample, because the significance levels are disturbed by
the large number of tests being conducted.

The o2mf3 model does not include the means of the manifest variables, so to see the esti-
mates of the group differences in latent variable means we need to consider instead the
o2mf1 model (or a modified version of this model which takes into account the other dif-
ferences found). The results with respect to the latent variable means, in edited form, are
presented below:

For both latent variables the Female group has a lower estimated mean than has the Male
group because the estimates are negative. These differences are, however, expressed on a
scale which does not allow comparison between the latent variables and which is difficult

Estimates of residual variances for males and females from the o2mf3 two-group model

Males    Var(DTM)     =    7.94   Var(DTM&)    =    3.17  Expl var =   60.06%  
Females  Var(DTM)     =   10.51   Var(DTM&)    =    5.74  Expl var =   45.41%  
  
Males    Var(DS)      =   13.44   Var(DS&)     =    4.73  Expl var =   64.78%  
Females  Var(DS)      =   14.55   Var(DS&)     =    5.85  Expl var =   59.82%  
  
Males    Var(WORD)    =   23.47   Var(WORD&)   =    8.18  Expl var =   65.15%  
Females  Var(WORD)    =   22.39   Var(WORD&)   =    7.10  Expl var =   68.29%  
  
Males    Var(READ)    =   13.84   Var(READ&)   =    6.10  Expl var =   55.90%  
Females  Var(READ)    =   13.64   Var(READ&)   =    5.90  Expl var =   56.72%  
  
Males    Var(GI)      =   13.37   Var(GI&)     =    7.28  Expl var =   45.54%  
Females  Var(GI)      =   13.93   Var(GI&)     =    7.84  Expl var =   43.71%  
  
Males    Var(ERC)     =   16.48   Var(ERC&)    =    5.87  Expl var =   64.35%  
Females  Var(ERC)     =   16.80   Var(ERC&)    =    6.20  Expl var =   63.11% 

Estimates of latent variable means for males and females from the o2mf1 model

Unstandardized estimates:  
...
Females  Mean(Reas)         =   -2.46 
Females  Mean(Verb)         =   -0.97 
...
t-values:  
... 
Females  Mean(Reas)         =   -8.22 
Females  Mean(Verb)         =   -2.74 
...
Standardized estimates:
...
Males    Mean(Reas)         =    0.00 
Females  Mean(Reas)         =   -0.84 
  
Males    Mean(Verb)         =    0.00 
Females  Mean(Verb)         =   -0.25 
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to interpret. The t-values indicate that there is a significant difference with respect to both
latent variables, but most highly so for the Reas variable. The standardized estimates
present the group differences in terms of the pooled within-group standard deviations (or
z-scores). For the Reas variable there is a considerable difference which amounts to no
less than .84 sd units, while for the Verb variable there is a smaller difference of .25 sd
units. These differences seem to a large extent to be due to differential processes of selec-
tion among males and females into the group of test-takers.

Let us now return to the o2mf3 model again. When the Grid & Graph  button on the post-
processor tool-bar is clicked the results are presented in a grid instead, which presents the
unstandardized estimates, t-values, and standardized estimates at the same time:

Clicking the Graph button presents a graph of the standardized estimates for all the
groups for one latent variable at a time:
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The drop-down menu may be used to switch from one variable to another. It should be
observed that the standardized estimates are not exactly equal in spite of the fact that con-
straints of equality were imposed on the unstandardized estimates. This is because the
standardization is done in such a way that the standard deviations of the manifest variables
is taken into account, and with respect to these there are some differences between males
and females.
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Normally SEM requires valid data on every variable for every case. However, often the
data is incomplete in the sense that observations on one or more variables are missing for
a smaller or larger proportion of the cases. There are many ways to deal with missing data,
and one of these, which has appeared in recent years, is to take the missingnes into account
in modeling of the data. Such procedures are now becoming available in SEM programs.
Thus, Amos, EQS, Mplus and Mx offer procedures which compute ML estimates from
rawdata with missing observations, and the programs may also be used to compute ML
estimates from covariance matrices for groups of cases with different patterns of observed
variables. This chapter describes how these procedures may be used in STREAMS. It
should be observed that the modelling techniques presented in this chapter tend to be
somewhat complex, so the novice SEM user is adviced to skip this chapter until the need
arises to deal with missing data.

Types of Missing Data and Methods of Solution

It may be noted that missing data may occur for different reasons, but a basic distinction
is between structurally missing data, and accidentally missing data. Structural missing-
ness (or missingness by design) is the consequence of decisions not to observe all varia-
bles for all subjects, such as when different subsets of cases are given partially different
sets of tasks, or when a longitudinal design is used in which a subset of cases only is fol-
lowed up. Accidental missingness occurs when the planned set of observations could not
be obtained for reasons such as non-response or coding errors, just to mention two exam-
ples. These two types of missing data should be dealt with in different ways.

There are five basic procedures for dealing with missing data:

�
Specifying Models for 
Incomplete Data
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• Modeling incomplete data. The modeling approach implies that the estimation
algorithms in structural equation modeling are adapted to deal with missing
observations. Until recently no practical modeling procedures were available, but now
Amos, Mplus and Mx offer procedures which compute ML estimates from rawdata
with missing observations (this procedure will be referred to as the rawdata-based
procedure of missing-data modeling), and Amos, LISREL and Mx may all be used to
compute ML estimates from covariance matrices for groups of cases with different
patterns of observed variables (Allison, 1987; Muthén, Kaplan, & Hollis, 1987). The
latter approach requires a separate covariance matrix and mean vector for each subset
of cases with a particular pattern of missing observations, and a special multigroup
specification (this procedure will be refered to as the matrix-based procedure; this
procedure is implemented internally into Mplus). STREAMS offers full support for
this approach, through an automatic procedure for computing separate matrices for all
existing combinations of missing values, and through automatic specification of the
multigroup model for Amos, LISREL and Mx. Because accidental missing data tend
to generate a very large number of different missing data patterns, this approach
works best for structurally missing data, while the procedure built into Amos, Mplus
and Mx may be most useful for accidental missing data. 

• Estimation of the complete covariance matrix. Recently techniques have been
developed which provide maximum likelihood estimates of the covariance matrix
with the so called EM algorithm (Little & Rubin, 1987). There are several programs
available for obtaining such a covariance matrix (e. g., the EMCOV program, written
by John Graham at Pennsylvania State University). After the covariance matrix has
been estimated, it may be imported into STREAMS using methods described in
Chapter 10, and modeled in the same way as any matrix based on complete data. 

• Imputation. This procedure implies that missing observations are replaced with
estimates of likely observed values. There are numerous imputation procedures to
choose among, and some are implemented in EQS, SPSS and PRELIS. The simplest
procedure is to replace missing observations with the mean for the variable. This
procedure is available in STREAMS, and one or more stratification variables may be
used to do the imputation for subgroups of cases (see Chapter 9). But other
procedures are also available (see, e. g., Little & Rubin, 1987), in which the
information available in the data is used to predict the missing scores. It is
recommended that imputation is used to solve the problem of (limited extents of)
accidental missing data, while structurally missing data is probably best dealt with
through the modeling approach. It should also be emphasized that the imputation
techniques are based on strict assumptions of randomness of missingness, and that
they cause variances and covariances for the variables with many imputed values to
be underestimated. There may be reason to quote a word of warning from Dempster
and Rubin (1983) here: 

The idea of imputation is both seductive and dangerous. It is seductive
because it can lull the user into the pleasurable state of believing that
the data are complete after all, and it is dangerous because it lumps
together situations where the problem is sufficiently minor that it can
be legitimately handled in this way and situations where standard esti-
mators applied to the real and imputed data have substantial biases.
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• Pairwise deletion. This procedure implies that only those combinations of variables
for which one or both observations are missing for a case are excluded when matrices
are computed. PRELIS 2 offers this procedure when computing certain matrices (e.
g., covariance matrices without asymptotic matrices). One problem with this
approach is uncertainty about the number of cases on which the matrix has actually
been computed, and another problem is that the matrix may occasionally not be
possible to analyze, because it is not positive definite.

• Listwise deletion. This procedure implies that cases with missing observations on one
or more variables are excluded from computations. STREAMS and PRELIS offer this
method for dealing with missingness when matrices are computed, and data imported.
The problem with this approach is that a large proportion of the sample may be
excluded when there are many accidentally missing observations and many variables
are analyzed. When there are structurally missing observations this approach may not
be at all applicable. It is, of course, also likely that the cases with complete data are
systematically different from the cases for which one or more variables are missing.
Simulation studies indicate, furthermore, that listwise deletion is often an inefficient
method for dealing with missing data (see Roth, 1994, for a review; Wothke, in
press).

Often the best solution is to apply different missing data treatment methods in combina-
tion. Thus, when the modeling approach is used to solve the problem of structurally miss-
ing observations, the accidentally missing observations should first be replaced with
imputation techniques. It is, of course, also possible to combine imputation methods and
listwise deletion in such a way that cases with many missing values are excluded, while
cases with few missing values are retained.

There is also reason to make a distinction in statistical terms between different missing-
data mechanisms. Data on a particular variable Y may, thus, be “missing completely at
random” (MCAR), which means that those cases which lack scores on Y are no different
from cases who have scores on Y (Rubin & Litte, 1987). When the MCAR assumption is
valid listwise deletion, pairwise deletion, and the simple imputation methods described in
Chapter 9 provide correct parameter estimates (but generally not correct standard errors
or goodness-of-fit tests). However, data on Y may also be “missing at random” (MAR),
which means that the pattern of missingness is random given a set of other variables.
Thus, if the sample (in theory at least) can be divided into subsamples on the basis of
scores on other varables and the MCAR assumption holds within these groups, the data
are MAR. When the data are MAR, but not MCAR, the procedures of listwise deletion,
pairwise deletion, and simple imputation lead to biased estimates, as well as incorrect esti-
mates of standard errors and goodness-of-fit statistics.

The modeling procedures are based on the assumption that data are MAR, and when this
assumption (along with the other assumptions) is true, unbiased estimates and correct
standard errors are obtained. The MAR assumption is considerably less restrictive than is
the MCAR assumption, but it is not easy to test the validity of the MAR assumption in
any particular situation (see Little & Rubin, 1987). However, even though the MAR
assumption is not easily tested, and even though it may be incorrect in many situations,
the MAR estimates may, nevertheless, be expected to be less biased than estimates which
rely on the MCAR assumption. 

But even though the modeling of incomplete data with maximum-likelihood techniques
represents major progress, these procedures have some disadvantages as well. Thus, both
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the rawdata-based estimation procedures in Amos, Mplus and Mx, and the matrix-based
procedure are computationally much more intensive than are the ordinary estimation
methods. When the sample is large this is, in particular, true for the rawdata-based proce-
dure, and when there are many patterns of missing observations the matrix-based proce-
dure becomes tedious because there is one matrix for each pattern. Another problem, is
that the model specification is complex and lengthy, which has prevented general appli-
cation of the matrix-based procedure since it was first developed by Allison (1987) and
Muthén, Kaplan, & Hollis (1987). With STREAMS most of these problems are solved,
but it is still a fact that the model specifications may become quite lenghty. A third prob-
lem is that many of the standard test statistics och diagnostic tools are not easily available
when modeling incomplete data. Thus, the goodness-of-fit test is more difficult to com-
pute when modeling incomplete data, than when modeling complete data, and the descrip-
tive fit statistics, as well as the modification indices, can normally not be obtained. It is,
thus, in most cases advisable to combine the simpler MCAR-assuming deletion and impu-
tation techniques with the maximum-likelihood etimation methods, in such a way that the
simpler technqies are used in the first steps of modeling, and the more complex techniques
are applied in the later modeling phases.

The Rawdata-Based Estimation Procedures

When rawdata with missing data are available, Amos and Mx can employ special maxi-
mum-likelihood estimation procedures (Arbuckle, 1996, 1997; Neale, 1995) which use all
the information available in the record of each case. Mplus too estimates missing data
models directly from rawdata, through using all the observed missing data patterns. As
long as missing data codes are defined in the raw data input files, STREAMS uses this
information to automatically specify missing data models for Amos 4, Mplus and Mx. In
Amos 3.6 the missing-data estimation procedure is invoked when the $missing = code
directive is supplied. Here code is a value (e. g., -1), common to all variables, which indi-
cates a missing value. In STREAMS this directive is available on the Input  tab of the
Amos Options form. In other respects the model is specified as an ordinary model. In Mx
the Raw Maximum Likelihood (RM) procedure is invoked whenever raw data is input.
On the Input tab of the Mx Options form it is also possible to supply a missing data code
(e. g., -1.00) common to all variables. Observe that in Mx the missing data code must be
entered exactly as it appears in the raw data. This implies that if -1.0 is given as the miss-
ing code, the data values -1 and -1.00 will be used as valid data. It is thus essential that the
raw data is inspected and that the correct code string is entered.

A missing-data model estimated with the rawdata-based procedure does not, however,
yield the standard χ2 goodness-of-fit test unless some further computations are made.
Amos 3.6 and Mx only present the minimum of the fitting function, along with the number
of estimated parameters, and when comparing two models this information may be used
to compute a difference test, which yields the ordinary χ2 difference test. When a model
is compared to the “saturated” model or “H1-model” (i. e., a model which estimates all
variances and covariances for a set of observed variables, and where thus the number of
estimated parameters is the same as the number of elements in the covariance matrix) the
ordinary χ2 goodness-of-fit test is obtained. Thus, to obtain this test two models must be
run. The steps involved in this procedure are described in greater detail below. When
Mplus is used it is also necessary to compute the H1 model to obtain the χ2 goodness-of-
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fit test, but this is taken care of automatically by Mplus when the H1 model is requested.

Preparing Rawdata for Analysis

In order to use the rawdata estimation procedures the rawdata must be imported into a
STREAMS project, using the procedures described in Chapter 9. This is true also for the
SPSS version of Amos 3.6, which thus cannot access SPSS .sav files when run under
STREAMS. However, STREAMS can access the .sav file and import the data into the
project. 

Before the data is imported there is reason, however, to make some preparations. Thus,
variable labels should be changed so that they are at most 7 characters long (or 6 charac-
ters if two-level models are to be fitted). 

Estimating the Saturated Model

In order to obtain the standard χ2 goodness-of-fit test it is necessary first to run the so
called “saturated” model, or the “H1-model” (Muthén, Kaplan & Hollis, 1987). This is a
model which simply fits all variances and covariances for a set of manifest variables.

The process of estimating the saturated model is best described with an example.
Arbuckle (1997) presents (Example 17) a small set of cases (N=73) and variables from
the Holzinger and Swineford (1939) study (see Chapter 3), in which some 27 % of the
information has been made missing artificially. The six variables in the dataset
(grnt_x.sav in the Amos Examples directory) have been imported (after renaming some
of the variables, and after recoding sysmis to -1) into a project called GRNT which is avail-
able in the directory STREAMS\EXAMPLES\GRNT (or in the GRNT.ZIP file in the
STREAMS installation directory).

In the first step the satuarated model has been fitted. The MB instructions for estimating
this model with Amos 3.6 are:

The model specification consists of two statements: one COV statement, and one VAR
statement. It must thus be observed that the COV statement does not imply that variances
will also be estimated. Observe also that the means are included in the model, which
always must be done when estimating missing-data models. It should also be emphasized
that the model type is an ordinary one-group model when using the rawdata-based esti-
mation procedure. 

Estimation of this model required 14 iterations, and the only output produced by the post-

TI Saturated model for Amos Example 17
MO PR=grnt NAME=satur
MO Create instructions for: Amos     Matrix: CM
MO One-group model     Means included in model
MO Amos 3.6
OP $missing=-1
DAT FOLDER=Raw DATLAB=Tot
MVR VISPERC CUBES LOZENG PARAGR SENTEN WORDME
COV VISPERC CUBES LOZENG PARAGR SENTEN WORDME
VAR VISPERC CUBES LOZENG PARAGR SENTEN WORDME
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processor is the following:

The post-processor only retrieves the minimum of the fitting function and the number of
estimated parameters from the Amos output. Thus, no parameter estimates are presented,
because the post-processor only presents estimates of relations. However, the Amos list-
ing file gives estimates of all parameters. 

If the estimated covariance matrix is requested (see the Output category of the Amos
Options form) it is written, along with other information, to a file with .amp as suffix and
the model name as prefix. From this file the estimated covariance matrix may be retrieved
and imported into the project, and could thus be used for further modeling. (Observe,
however, that the post-processor must be turned off when this is done, because the post-
processor deletes the .amp file after it has been used.) Analysis of this matrix will not,
however, yield the correct standard errors for parameter estimates and the goodness-of-fit
test will be incorrect. However, approximate modification indices will be computed,
which at times may be quite useful. Normally, however, the continued modeling would
be done from rawdata, as is described below.

Mx may also be used to estimate the saturated model, using the same specification as that
shown for Amos above. When this is done the following output is obtained:

Thus, with Mx a different minimum of the estimation function is obtained, which is
because the Raw Maximum Likelihood function in Mx is somewhat differently defined
than is the estimation function used in Amos. As will be demonstrated below the programs
do nevertheless yield the same results.

Estimating the Restricted Models

The models which impose restrictions are specified as ordinary MB-models, using the
same technique as when estimating a saturated model. If, however, a saturated model has
been estimated for a set of data, it is possible (but not necessary) to refer to this model as
a comparison model, which makes it possible for the post-processor to compute the χ2

goodness-of-fit test. To identify a saturated model to be used as a comparison model, the
Comparison Model tab on the Model form is used to identify the model. Make sure, how-
ever, that the comparison model has been fitted to exactly the same variables and group
of cases that the restricted model is fitted to, because otherwise the test will be incorrect.
The comparison model must also have been estimated with the same program, because
the estimation functions are somewhat differently defined.

The MB specification for fitting a two-factor model with one Verbal and one Spatial fac-

Goodness of Fit Test:  
  
Minimum for H0-model = 1363.59, number of parameters 27 

Goodness of Fit Test:  
  
Minimum of function = 1893.97, number of parameters = 27 
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tor to the six variables is:

This is the same model as Arbuckle’s (1997) Model B for Example 17. Estimation of this
model required 14 iterations, and now the post-processor presents the following good-
ness-of-fit information, along with parameter estimates identical to those obtained by
Arbuckle:

The χ2 test statistic is 11.55, and with 8 df this is nonsignificant. There is, thus, no reason
to reject the two-factor model.

The restricted model may also be estimated with Mx, using the same model specification
as for Amos. When supplied with start values, Mx produces the same parameter estimates
as those obtained with Amos. The following goodness-of-fit test is computed by Mx:

Thus, Mx gives a χ2 test statistic of 11.71, which is very close to the value obtained with
Amos (i. e., 11.55). The fact that quite different minima of the estimation function are
obtained with the two programs is thus not important. It is obvious, however, that a model
estimated with one of the programs may not be used as a comparison model for the other
program.

Here the saturated model was selected as comparison model. It is not necessary, however,
to use the saturated model as a comparison model. Any less restricted model may be
selected, in which case the difference χ2 test is computed.

The same model may also be estimated with Mplus, and when this program is used the χ2

test statistic may be obtained in a single run. To do that the options Incomplete data
model and H1 on the Model Type tab of the Model form must both be checked.
STREAMS automatically takes care of the specification of missing data codes in the
Mplus setup, granted that missing data codes have been defined in the data file. Thus, the

TI Two oblique factors
MO PR=grnt NAME=o2a
MO Comparison model: Satur
MO Create instructions for: Amos     Matrix: CM
MO One-group model     Means included in model
MO Amos 3.6
OP $missing=-1
DAT FOLDER=Raw DATLAB=Tot
MVR VISPERC CUBES LOZENG PARAGR SENTEN WORDME
LVR Verb Spat
REL Verb -> PARAGR SENTEN WORDME
REL Spat -> VISPERC CUBES LOZENG
COV Verb Spat

Test-statistic for the model = 1375.13, df = 19. 
  
Test-statistic for comparison model = 1363.59, df = 27. 
Chi-square difference test = 11.55, df = 8. 

Minimum of function = 1905.68, number of parameters = 19 

Test-statistic for comparison model = 1893.97, df = 27. 
Chi-square difference test = 11.71, df = 8. 



92 Specifying Models for Incomplete Data  

Structural Equation Modeling Made Simple

following instructions should be used;

When this model is estimated with Mplus the following goodness-of-fit statistics are
obtained:

The test statistic thus is identical with that obtained with Mx, and the parameter estimates
also are identical with those obtained with Amos and Mx. 

The Matrix-Based Estimation Procedure

There is also an alternative, matrix-based, procedure for obtaining maximum-likelihood
estimates of model parameters from missing data. This procedure, which has been
described by Allison (1987) and Muthén, Kaplan & Hollis (1987), and which is also the
procedure implemented in Mplus, assumes that one covariance matrix and one mean vec-
tor is computed for each pattern of missing data. When there are many such patterns this
approach is, of course, less useful, but when there is a limited number of patterns it may
be considerably more efficient than the rawdata-based procedure. Another advantage of
the matrix-based procedure is that it is not restricted to the Amos, Mplus and Mx pro-
grams. STREAMS supports it for Amos, LISREL and Mx. EQS is not supported, because
EQS does not write information to an output file when multiple-group models are fitted.
However, the EQS manual (Bentler, 1995, pp. 197-200) describes how such models may
be specified in EQS as well.

The matrix-based procedure thus works best when there is a limited number of missing-
data patterns, which is more often the case when there are structurally missing data than
when there is accidentally missing data. Data to be modeled often consists of several iden-
tifiable subgroups of cases for which partially different sets of variables have been
observed. Observations may, thus, be missing by design for a large number of reasons,
such as because:

TI Two oblique factors
MO PR=grnt NAME=o2
MO Create instructions for: Mplus     Matrix: CM
MO Means included in model     One-population model
MO Model Type: Incomplete Data H1
MO Mplus 1.0
OP ANAL ESTIMATOR=ML;
OP ANAL TYPE=MEANSTRUCTURE MISSING H1;
POP Raw
DAT FOLDER=Raw DATLAB=Tot POP=Raw
MVR VISPERC CUBES LOZENG PARAGR SENTEN WORDME
LVR Verb Spat
REL Verb -> PARAGR SENTEN WORDME
REL Spat -> VISPERC CUBES LOZENG
COV Verb Spat

Goodness of Fit Test:  
  
Chi-square = 11.71, df = 8, p < .16 
  
RMSEA = .080, p-value for RMSEA < 0.05 = .27  
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• A matrix sampling design was used so that different subsets of cases were given
different combinations of items.

• The subjects were divided into groups according to level of performance, and were
given different forms of a test, matched to their level of performance.

• A high-performing subset of cases was selected from a larger population, and was fol-
lowed up with respect to achievement in an education.

The basic principle of the matrix-based technique for modeling incomplete data is that the
different categories of cases with different combinations of valid variables are regarded
as being samples, although not necessarily representative, from the same population (Alli-
son, 1987; Muthén, Kaplan, & Hollis, 1987). The model is specified in such a way that
equality constraints over groups are imposed on each and every parameter, including
means of observed variables, which must be included in the model. The LISREL program
expects all input matrices to have the same number of variables, so when this program is
used some special preparations are made. In the covariance matrix, missing variables are
thus replaced with dummy variables which have zero covariance with every other variable
and unit variance. In the model these dummy variables are not subject to any constraints.

The model estimated in this way gives, under certain assumptions, the correct estimates,
but the χ2 test is incorrect, as is the reported df. This is because the χ2 test is not only sen-
sitive to deviations between model and data, but also to differences in the covariance
matrices and mean vectors between the different groups that form each population. The
dummy variables in the covariance matrices also cause LISREL to overestimate the
degrees of freedom for the model (see Jöreskog & Sörbom, 1989a). As is demonstrated
by Muthén et al. (1987) it is, however, possible to correct for both those problems through
estimating another model (i. e., the H1 model) which is the saturated model, and which
essentially tests the homogeneity of the covariance matrices and mean vectors for groups
belonging to the same population. Because the deviations between model and data (the
H0 model) and the differences between subgroups (the H1 model) are additive, the correct
test statistic is obtained through taking the difference between the two test statistics. Thus,
the same procedure as used in the rawdata approach must be employed.

Below the different steps are described in more concrete terms.

Preparing Data for Modeling

Chapter 9 describes how STREAMS may be used to compute covariance matrices, and
how these procedures may be used when preparing matrices for incomplete data mode-
ling. The data should be prepared in such a way that all variables for all cases are collected
in one large data file, with as many variables as the union of variables over groups. This
data file may be used as an input file to STREAMS, which sorts the cases into different
groups according to the pattern of missing values, and computes a covariance matrix and
a mean vector for each group which is larger than a specified minimum number of cases.
Because this procedure may generate a very large number of groups when there are many
variables and accidental missingness it may be wortwhile to consider replacement of
some of the missing values with mean values.

Missing variables are not kept in the matrix in the project dictionary, but when the matrix
is retrieved to be included in a model for incomplete data it is automatically expanded
with the missing variables, through addition of dummy variables which have unit variance
and zero covariance with all other variables.
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The MB Language for Modeling Incomplete Data with Multiple Matrices

All the basic MB statements are identically the same when modeling incomplete data as
when ordinary data is modeled, but the DAT statement has a slightly different appearance.
When ordinary multiple-group models are fitted each group of cases (i. e., each DAT line)
corresponds to a population. However, when incomplete data is modeled with the matrix-
based procedure each population is represented by more than one group of cases, and
STREAMS must be informed about which groups of cases belongs to which population.
First the population labels must be declared, which is done with the POP statement. This
statement has the following syntax:

POP labels

The population labels may be freely chosen, and may contain 1-8 alphanumeric charac-
ters. An example could be:

POP Males Females

The population labels are used in the DAT statements to assign each dataset to a particular
population. Suppose, for example, that the POP statement above was used to declare the
Males and Females populations, and that there are two datasets within each population.
The DAT statements could then be:

DAT FOLDER=Males DATLAB=BOOK1 POP=Males
DAT FOLDER=Males DATLAB=BOOK2 POP=Males
DAT FOLDER=Females DATLAB=BOOK1 POP=Females
DAT FOLDER=Females DATLAB=BOOK2 POP=Females

Normally these statements are generated by STREAMS, in ways described below.

Creating a Model for Incomplete Data with the Matrix-Based Procedure

In order to obtain a model for incomplete data the check-box labeled Incomplete Data
Model on the Model Type tab of the Model form must be clicked. To specify an H1
model the Incomplete Data Model and H1 Model check-boxes must be selected.
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When the Incomplete Data Model option has been selected the Datasets form takes on
a somewhat different appearance.

The Datasets Form
The Datasets form, which is produced when the DAT  button is clicked, now also displays
population label:

When incomplete data is modeled two or more groups represent the same population. It
thus is necessary to inform STREAMS that different groups belong to the same popula-
tion. This is simply done through assigning these groups to the same population.
STREAMS assumes by default that the population labels are the same as the label of the
folder. This may, however, easily be changed by first selecting one or more datasets in the
Selected datasets list, then writing a new population label in the field labeled Population
and finally clicking the Change button.

Creating and Estimating the Model
In most respects the specification and estimation of models for incomplete data is done in
the same way as for complete data. As has been described above, it is, however, necessary
to specify the population to which each of the groups of cases belongs. The population
labels are then used in the MB statements in the same way as the group labels are used in
modeling of complete data.

In order to get the correct value of the test statistic the H1 model (see below) for any par-
ticular combination of groups and variables must first be estimated. This model is then
used as the comparison model, in the same way as in the rawdata-based procedure.

We will illustrate the different steps and procedures involved in estimating a model for
incomplete data through considering a classical example presented by Allison (1987) and
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which is also discussed at some length by Jöreskog & Sörbom (1989a, pp. 258-261).

The example relies on data collected by Bielby et al. (1977), who used a sample of 2020
black men to estimate the correlation between father’s occupational status (FAOC) and
father’s educational attainment (FAED). However, in order to correct the estimate of the
correlation for attenuation due to errors of measurement they took a subsample of 348
subjects from the original sample and reinterviewed them some three weeks after the orig-
inal data collection. In this way the subsample obtained two measures of father’s occupa-
tional status (FAOC and FAOC2) and two measures of father’s educational attainment
(FAED and FAED2). One subsample (N=348) thus has complete data, and one subsample
(N=1672) has incomplete data.

The covariance matrices and mean vectors for the two samples have been imported into a
project called Bielby in the directory STREAMS\EXAMPLES\BIELBY. The two datasets
have group labels Compl and Incompl, which are both in the project folder Tot. The
imported matrix for the Compl group has four variables, while the imported matrix for the
Incompl group has two variables (the missing variables should thus not be included in the
matrix).

In order to estimate the disattenuated correlation between father’s occupation and educa-
tion we may fit the following model (CCompl) for the subset of cases with complete data:

This model fits excellently (χ2 (1) = 1.96, p < .16) and gives the following standardized
estimates according to all the estimation programs:

The observed correlation between FAOC and FAED is .43, so the estimated disattenuated
correlation of .62 is considerably higher.

To use all data to estimate the disattenuated correlation we have to select an Incomplete
Data Model in the Model Type category of the Model form. On the Datasets form we
then select both the Compl and the Incompl datasets, which by default will be assigned to

MB instructions for the model with two latent variables for cases with complete data

DAT FOLDER=Tot DATLAB=Compl
MVR FAOC FAOC2 FAED FAED2
LVR FaOcc FaEd
REL FaOcc -> FAOC FAOC2
REL FaEd -> FAED FAED2
COV FaOcc FaEd

Standardized estimates from the model with two latent variables for cases with complete data

Standardized estimates:  
  
FAOC     =    +0.73*FaOcc      +0.68*FAOC&     
FAOC2    =    +0.87*FaOcc      +0.49*FAOC2&    
FAED     =    +0.94*FaEd       +0.33*FAED&     
FAED2    =    +0.97*FaEd       +0.24*FAED2&    

Cov(FaEd,FaOcc)       =    0.62 
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the population Tot. The MB specification for this model (CTot) thus is:

When estimated with Amos the test-statistic is χ2 (6) = 7.70. When estimated with LIS-
REL and Mx, the goodness-of-fit test for this model is χ2 (15) = 7.69. These statistics are,
however, incorrect. One reason for this is that the degrees of freedom are overestimated
by LISREL and Mx because the missing elements in the matrix for the group with missing
variables are included in the count of elements. Another reason is that the model is spec-
ified as a two-group model by all programs, which causes the degrees of freedom to be
overestimated, and the χ2 statistic to be influenced by differences between the observed
data for groups. Both these problems are solved, however, if the so called H1-model is
estimated (Muthén et al., 1987). This is, essentially, a model which constrains all corre-
sponding and actually existing elements in the covariance matrices and mean vectors to
be equal over groups. The χ2 statistic of this model thus is sensitive to the amount of dif-
ferences between groups, and the degrees of freedom reflect the actual number of ele-
ments in the matrices. To obtain a correct test statistic for the model, the test statistic for
the H1 model should be subtracted from the test statistic computed by the estimation pro-
gram for the model. This is done by STREAMS if an H1 model has been estimated for a
particular combination of groups and variables, and if this model is selected as a compar-
ison model. 

To estimate the H1 model we select the options H1 Model and Incomplete Data Model
on the Model Type tab of the Model form. This specification causes STREAMS to disre-
gard all MB statements, and to set up an H1 model instead. When such a model is esti-
mated for the present data (CTotH1) the only message from the post-processor when
LISREL and Mx are used is:

Chi-square for H1-model = 6.11, df = 14 

When Amos 3.6 is used the following result is obtained:

Test-statistic for the model = 6.12, df = 5. 

If the CTot model is reestimated after the CTotH1 model has been estimated the following
results are obtained from the goodness-of-fit test from LISREL and Mx:

MB instructions for the incomplete data model with two latent variables

POP Tot
DAT FOLDER=Tot DATLAB=Compl POP=Tot
DAT FOLDER=Tot DATLAB=Incompl POP=Tot
MVR FAOC FAOC2 FAED FAED2
LVR FaOcc FaEduc
REL FaOcc -> FAOC FAOC2
REL FaEduc -> FAED FAED2
COV FaOcc FaEduc

Goodness of Fit Test:  
  
Chi-square = 7.69, df = 15, p < .94  
  
Test-statistic for comparison model = 6.11, df = 14. 
Chi-square difference test = 1.58, df = 1. 
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When Amos 3.6 is used the following result is obtained:

Thus, after the correction the test statistic for the incomplete data model is the same for
all the estimation programs. It may also be observed that the result is close to the test sta-
tistic for the model for the complete data. 

All programs achieve the same estimates. The standardized estimates are presented
below:

These estimates are similar to those obtained in the model for complete data only. How-
ever, even though both the standardized and the unstandardized estimates are very similar,
the standard errors and the t-values are not. Thus, in the incomplete data model the t-value
for the covariance between the two latent variables is 17.82, while in the model for com-
plete data the t-value is only 7.44. The introduction of the entire sample into the model
thus causes the precision of estimates to improve. 

The reason why the estimates are the same whether an incomplete data model is estimated
or not is that in this case the subsample with complete data is a random sample of the com-
plete sample. Here the data thus are MCAR. When the MCAR assumption is fulfilled the
modeling of incomplete data may be seen as an optimal combination of data from differ-
ent subgroups of cases, and no further assumption about the missing data mechanism is
needed. But even when there are differences between the groups of cases it is often pos-
sible to arrive at estimates of a high quality. 

To summarize, the following steps should thus be taken when a model for incomplete data
is estimated with the matrix-based procedure:

1. Estimate an H1 model for a particular selection of variables and groups of cases.

2. Estimate the model for the same observed variables and groups of cases and subtract
the test-statistic for the H1 model from the restricted model, in order to obtain the cor-
rect test statistic.

Test-statistic for the model = 7.70, df = 6. 
  
Test-statistic for comparison model = 6.12, df = 5. 
Chi-square difference test = 1.58, df = 1. 

Standardized estimates from the incomplete data model

Standardized estimates:  
  
FAOC     =    +0.74*FaOcc      +0.67*FAOC&     
FAOC2    =    +0.89*FaOcc      +0.45*FAOC2&    
FAED     =    +0.94*FaEd       +0.34*FAED&     
FAED2    =    +0.97*FaEd       +0.23*FAED2&    
  
  
Cov(FaEd,FaOcc)       =    0.62 
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Phenomena studied in social and behavioral research often have a hierarchical structure,
where individuals define one level of observation and groups or social organisations
define one or more higher levels of observation. In educational research, for example,
there is an interest in determining effects of characteristics of the school, the teacher, and
the teaching on the development of individual students. However, classrooms are nested
within schools, and students are nested within classrooms, so the observational structure
is unavoidably hierarchical.

Hierarchical data structures are exceedingly difficult to analyze properly (Bock, 1989),
and as yet there does not exist a fully developed methodology for how to analyze such
data with structural equation modeling techniques (Hox, 1994). However, Muthén (1989,
1990, 1991, 1994) has shown how approximate maximum likelihood estimates of param-
eters in a two-level model may be obtained with standard software for structural equation
modeling, such as Amos, LISREL and LISCOMP. The resulting model specification is
quite complex, however, so there have only been few applications of this approach so far
(see, however, Gustafsson, 1997, 1998; Härnqvist, Gustafsson, Muthén, & Nelson, 1994;
Muthén, 1990, 1991, 1994).

The MB language is, however, easily extended to allow two-level modeling, so with
STREAMS two-level models are only marginally more difficult to specify and estimate
than are ordinary one-level models. The recently presented Mplus program (Muthén &
Muthén, 1998) also supports two-level structural equation modeling in an implementation
of the same estimation principles as those used in STREAMS. However, STREAMS also
supports the Mplus two-level model specification, so it is possible to take advantage of
the general advantages of STREAMS (e. g., starting values and a common modeling envi-
ronment) here too. The present chapter provides a self-contained description of the steps
and procedures involved in preparing data for analysis, and in specifying and estimating
two-level models. 

�
 Specifying Models for  
Two-Level Data
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Basic Principles and Concepts of Two-Level Structural 
Equation Modeling

Structural models for multilevel data have been proposed by, among others, McDonald
(1993), Goldstein & McDonald (1988), McDonald & Goldstein (1989), Muthén (1989,
1990), and Muthén & Satorra (1989), and this literature makes it quite clear that a general
multilevel structural equation model is too complicated to be practically feasible for the
time being. It is, however, possible to formulate less than perfectly general models which
are quite interesting. One such approach allows formulation of models for differences in
means and intercepts between groups, but not for differences in regression coefficients. A
simple version of this model was formulated by Cronbach (1976; see also Härnqvist,
1978), but the model was extended and put within a framework of maximum likelihood
estimation by Muthén (1989, 1990).

The Two-Level Model

In its two-level form the model assumes that there is a set of N individuals (e. g., students)
who belong to G groups (e. g., classes). The individuals have scores on P variables (Y1,
Y2, ..., Yp) (e. g., ability and achievement variables) which for each individual are assem-
bled into the vector Yi. We may also (but need not) have observed variables at the group
level (Z1, Z2, ..., Zq) (e. g., class size and teacher characteristics). From these data two
matrices of relations among a set of P observed variables may be computed. One is the
pooled-within covariance matrix (Spw):

This matrix thus is computed as an ordinary covariance matrix except that deviations of
the individual scores are computed from group means rather than from the grand means.
For this matrix the actual number of observations is N-G. The other matrix is the between
groups covariance matrix (SB):

The between groups matrix is basically computed from the group means, and their devi-
ations around the grand means. This matrix thus is based on G observations. 

As is shown by Muthén (1989, 1990) the SPW estimates the population matrix ΣPW. How-
ever, it is not possible to model SB in order to understand the structure of between-group
differences. This is because the observed SB matrix is actually a function of both the pop-
ulation between matrix (ΣB) and the population pooled within matrix (ΣPW). Thus, the

SPW N G–( ) 1– Ygi Yg–( ) Ygi Yg–( )'

i 1=

Ng

∑
g 1=
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expectation of ΣB is ΣPW + cΣBwhere

The constant c thus is a function of the group sizes. When all group sizes are equal c is
equal to the common group size, and when group sizes are unequal c tends to be close to
the mean group size. 

Thus, a proper model for the SB matrix must capture both the within-group and the
between-group structure, but because SPW is an unbiased estimate of ΣPW it is possible to
devise reasonably simple estimators of both the within- and between-group structures. As
was shown by Muthén (1989, 1990) a solution may be formulated in terms of a two-group
model, where the SB matrix is treated as one group, and the SPW matrix is treated as
another group.

When all group sizes are equal Muthén (1989, 1990) shows that the estimates obtained are
maximum likelihood estimates, but when group sizes are unequal this estimator (labeled
Muthén’s Approximate Maximum Likelihood estimator, MUML) yields only approxi-
mate maximum likelihood estimates (even though they are consistent), so standard errors
and tests of model fit are not quite correct. It has been shown, however, that the amount
of error is quite small in normal situations (see, e. g., Muthén, 1990, 1994). As is shown
by Muthén (1990) it is also possible to construct a full information maximum likelihood
estimator, but this requires a model with as many groups as there are group sizes, which
makes this estimator quite unpractical. 

To correctly understand the meaning of two-level structural equation modeling it must be
realized that the two-group model specification is just a convenient procedure to obtain
the estimates with standard structural equation modeling software. Conceptually, how-
ever, the model refers to the total covariance matrix, and the model should be conceived
of as a model for one population, with observations at two levels of aggregation (i. e., the
individual level and the group level). This may be more clear from a path diagram for a
simple two-level confirmatory factor analysis. In the model shown on the next page there
are four observed variables (Y1, ..., Y4), and it is assumed that there is one general factor
at the individual level (GenW) and one general factor at the group level (GenB). There also
are three group-level observed variables (Z1, Z2, and Z3), but we first discuss the Y-var-
iables.

The individual level variation is captured by GenW and for each observed variabble there
is also a residual at the individual level which is, as usual, identified with an ampersand
as a suffix to the variable name (e. g., Y1&). The group level variation in observed scores
is represented by the latent variables which have a 2 as a prefix (i. e., 2Y1, ..., 2Y4). These
variables may be thought of as representing group means on observed variables, and in
the model they are related to the observed variables (i. e., Y1, ..., Y4) with paths assigned
the fixed value . The group level variation is modeled in terms of the latent variable
GenB, which accounts for variance in the 2Y1, ..., 2Y4 variables. However, for each group
level variable there is also a residual variable (2Y1&, ..., 2Y4&) which represents the
group level variability which remains after the GenB factor has been taken into account.

At first sight the two-level path diagram may appear somewhat complicated, and it may, 

c
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2
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G
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Figure 4. A path diagram for a hypothetical two-level model

in particular, be difficult to reconcile with the pooled-within and between-group matrices.
If, however, it is realized that the diagram represents the latent sources of variance in the
total observed variation (i. e., for the sum of the pooled-within and between matrices) for
one population, the path diagram is easier to understand. Thus, for the present model the
path diagram basically says that the total variability in the observed variables may be
decomposed into four orthogonal sources of variance: individual variability common to
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all observed variables (i. e., the GenW contribution), individual variability specific to each
observed variable (i. e., the Y1&, ..., Y4& contributions, which represent a mixture of ran-
dom error and specificity), group variability common to all observed variables (i. e., the
GenB contribution), and, finally, group variability specific to each observed variable (i.
e., the 2Y1&, ..., 2Y4& contributions which represent a mixture of random error and
group level specificity). With larger sets of observed variables it may, of course, be pos-
sible to identify several latent variables at both individual and group levels.

So far we have only discussed the P individual variables, and their corresponding group
means. But there also may be manifest variables which are only observed at the group
level (e. g., teacher experience, measured in terms of number of active years, and class
size) and which may be invoked as potential explanatory variables. Such group level var-
iables have been referred to as Z-variables by Muthén (1990) and will here be referred to
as “group-level manifest variables.” 

In this model there are three observed group-level variables (Z1, Z2, and Z3), which are
indicators of a latent group-level variable (GenZ). The GenZ variable is hypothesized to
be an independent variable in relation to GenB. In the same way as for the Y-variables,
the Z-variables are connected to latent variables with 2 as a prefix (e. g., 2Z1), with the
value of the path coefficient fixed at . Only these scaled versions of the group-level
manifest variables may be involved in models, either as independent or dependent varia-
bles. The group-level manifest variables may thus be used in a way which corresponds to
using manifest variables in regression analysis, or, as is the case here, as indicators of
latent variables.

The MB Language for Two-Level Modeling

In order to allow formulation of two-level models the MB language requires some simple
extensions, which follow directly from the path diagram presented above. The ordinary
statements refer to the individual level (level 1), but some new statements (MV2, LV2)
have been introduced to refer to the group level (level 2) (see Chapter 12). Thus, when a
two-level model has been specified as the model type (which is done on the Model Type
tab on the Model form), the Model Building toolbar includes two additional buttons, MV2
and LV2 :

The MV2 statement is used to identify the group-level manifest variables to be included
in the model. This statement should not be used to declare variables which have been
observed at the individual level, because these variables are always automatically availa-
ble at the group level in the form of group means. Thus, the MV2 statement should only
declare variables measured at the group-level but not at the individual level. 

In the MB language the group-level variables (both aggregated variables and variables
measured at group-level) only are referred to with a “2” as a prefix to the variable name.
For example, if an individual variable is called TEST1, the corresponding group level var-

c
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iable is called 2TEST1. It is also important to observe that when a manifest variable has
been declared as a group-level manifest variable this variable must also have the “2” as a
prefix when it is referred to in MB statements. This is because the MV2 statement refers
to the manifest variables in the project dictionary where no distinction is being made
between variables at different levels of observation, while the MB statements in a two-
level model refer to structures at two levels. 

The fact that the character “2” is used as a prefix in variable labels to separate group level
variables from individual level variables implies that at most 6 characters may be used in
variable labels when two-level modeling will be done.

The LV2 Statemen is used to declare the latent variables at the group level in the two-level
model. The names of latent variables may be freely chosen, but it is recommended that
they should contain at least one lower-case letter, and at least one letter which indicates
that this is a group-level latent variable. It may thus be good practice to use the letter W
as a suffix in labels for the individual latent variables, and the letter B as a suffix in labels
for the latent variables at group level. 

Preparing Data for Two-Level Modeling

To use the MUML estimator for two-level modeling it is first of all necessary to compute
the pooled-within and between-group covariance matrices, and also to compute the c con-
stant, which plays an important role in the model specification. These preparations may
be done with STREAMS (see Chapter 9), which includes a rewritten version of the public
domain program BW constructed by Muthén (see Nelson & Muthén, 1991; the BW pro-
gram is also available with Hox, 1994). The code has been rewritten to read the data twice,
which implies that the program accepts non-sorted data and does not require information
about group sizes as input. The revision also has reduced the problems of numerical insta-
bility which afflict BW in some circumstances. The practical procedure for preparing
matrices for two-level analysis is described in Chapter 9.

When Mplus is used for two-level modeling only rawdata is accepted as input. Thus, in a
first step the individual rawdata must be imported into the STREAMS project (see Chap-
ter 10). However,  the current version of STREAMS does not support multiple-group two-
level modeling for Mplus, so if data is imported for subsets of cases, these may only be
analyzed in separate one-group models.  

Specifying and Estimating Two-Level Models

In most respects STREAMS is used in the same way when two-level models are specified
and estimated as when ordinary one-level modeling is being conducted. Below the proce-
dures are illustrated with a concerete example.

Hox (1994) presents an example of a two-level confirmatory factor analysis of data orig-
inally collected by van Peet. The data are scores on six measures of cognitive ability for
187 children from 37 families. The six measures are: Word List (WRDLST), Cards
(CARDS), Matrices (MATR), Figures (FIGUR), Animals (ANIMAL) and Occupations
(OCCUP). The exact characteristics of these tests are not clear from the information sup-
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plied, but it seems that there are verbal, spatial, reasoning and perceptual speed tests rep-
resented in the list. The variable FAMILY represents family belongingness.

Chapter 9 describes how the matrices needed for two-level analysis of these data may be
prepared.

Below a model will be specified which includes one general factor both at individual and
at family level, as shown in the path diagram below:

Specifying the Two-Level Model

In order to obtain a two-level model the check-box labeled Two Level Model on the
Model Type tab of the Model form should be checked.
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It may be observed that the references to groups are replaced with references to popula-
tions. This is because a two-level model always involves two matrices for each popula-
tion, which makes the term group ambigous.

When Mplus has been selected as estimation program the Model Type tab has a some-
what different appearance:

Next to the Two level model check box is a drop down menu which is labeled Cluster
variable. The menu is used to select the variable in the raw data set (which must be iden-
tified on the Datasets form which is produced by the DAT  button, see below) which iden-
tifies the group membership variable (here FAMILY). This is because with Mplus only
raw data input is allowed.
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After possible options for the estimation program have been specified with Options but-
ton, the DAT  button should be clicked. This reveals that the Datasets form is somewhat
different as compared with one-level modeling:

Two-level modeling involves, just as modeling of incomplete data, specification of a mul-
tiple-group model, but where in fact two or more groups represent the same population. It
thus is necessary to inform STREAMS that both the between-group matrix and the
pooled-within matrix are different aspects of a sample from one population. This is done
through assigning these matrices (“groups”) to the same population. In two-level mode-
ling STREAMS assumes by default that the common prefix part of the dataset label is the
population name (e. g., All). Thus, both for one- and multiple-population model this spec-
ification is practically always handled automatically by STREAMS, and the user rarely
needs to change anything. Population labels may, however, easily be changed by first
selecting one or more groups in the Selected datasets list, then writing a new population
label in the field labeled Population, and finally clicking the Change button.

It is necessary to select both the between-group matrix and the pooled-within group
matrix for a two-level model, and in the MB specification the between-group matrix must
always precede the within-group matrix within each population. When STREAMS gen-
erates the DAT statements this is (mostly) done the proper way. However, if the MB state-
ments are edited, or generated through some other procedure, it is essential that the DAT
statements are properly ordered.

Next the MVR  button is clicked and the individual (i. e., level one) variables are selected
as usual. In the present example this results in the statement:

MVR WRDLST CARDS MATR FIGS ANIMAL OCCUP

The individual level latent variable is defined on the Latent Variables form produced by
the LVR  button. Here a single individual latent variable (g) is hypothesized:

LVR g



108 Specifying Models for Two-Level Data  

Structural Equation Modeling Made Simple

The family level latent variable is defined on the Latent Variables Level Two form which
may be produced by clicking the LV2  button:

Here a single family level latent variable (gB) is hypothesized, and when the OK  button
is clicked the following statement is created:

LV2 gB

It should be observed that the present model does not include any group-level (i. e., Z)
variables, so there is no MV2 statement.

After manifest and latent variables at both levels have been declared, the specification of
the two-level model in the MB language may begin. The same MB statements are avail-
able for specifying a two-level model as for specifing a one-level model, but these state-
ments operate upon a broader set of variables than when a one-level model is specified.
The lists of variables thus include both the individual level variables and the group level
variables, and as has already been described the latter have a “2” as a prefix. 

Thus, when the REL  button is clicked the list-boxes on the Relation form have the fol-
lowing content:
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In order to specify the model we need two REL statements, one for the individual level
relation, and one for the family level relation. These may easily be specified with the REL
form:

REL g -> WRDLST CARDS MATR FIGS ANIMAL OCCUP
REL gB -> 2WRDLST 2CARDS 2MATR 2FIGS 2ANIMAL 2OCCUP

Estimating and Interpreting the Two-Level Model

The complete set of MB statements for the two-level model with one general factor at both
levels for the van Peet data thus is:

Amos, LISREL, Mplus or Mx may be used to estimate a two-level model and normally
the three-step procedure is run in the ordinary fashion (observe, however, that multiple-
population models cannot be specified for Mplus, and that models with means and/or
group-level variables cannot be specified for Mx). It must be emphasized, however, that
two-level models may be more difficult to estimate than one-level models, and this is par-

MB instructions for the two-level one-factor model for the van Peet data

TI One general factor, between and within
MO PR=vpeet NAME=g1
MO Create instructions for: LISREL Y-model     Matrix: CM
MO One-group model
MO Model Type: Two Level
MO Means not included in model     LISREL DOS/Extender 8.14
OP OU ME=ML AD=OFF MI
POP All
DAT FOLDER=None DATLAB=AllB POP=All
DAT FOLDER=None DATLAB=AllW POP=All
MVR WRDLST CARDS MATR FIGS ANIMAL OCCUP
LVR g
LV2 gB
REL g -> WRDLST CARDS MATR FIGS ANIMAL OCCUP
REL gB -> 2WRDLST 2CARDS 2MATR 2FIGS 2ANIMAL 2OCCUP
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ticularly true for large, multiple-population models which include means. One reason for
this is that LISREL is not able to produce optimal start values for this type of models, and
Mplus also needs to be supplied with start values. When working with two-level models
it is, therefore, more essential than ever that the strategies for obtaining convergence
described in Chapter 7 are adopted. It is in particular recommended that equality con-
straints are imposed on loadings over all manifest variables for both level one and level
two latent variables. 

The output from the estimation program is quite difficult to interpret for two-level models,
so the post-processor plays a more important role here. The post-processor output from
two-level models also is partially different from that of one-level models. 

Goodness-of-fit Statistics
The following goodness-of-fit results were obtained:

The goodness-of-fit measures for this type of two-level model may be interpreted in the
usual way, so it may be concluded that the hypothesized model with one general factor at
both levels of observation does not fit the data. It should be observed, however, that even
though the programs agree on the χ2 test (Mplus had a somewhat higher value of 58.21,
though) they differ widely in their estimates of RMSEA (Amos .109, LISREL .154,
Mplus .100 and Mx .132). There may be reason to have more trust in the Mplus RMSEA
estimate than in the other ones because this program has been designed for the two-level
model.

When Mplus is used to estimate the two-level model there is also a choice of two addi-
tional, robust, estimators: the MLM estimator with robust standard errors and mean-
adjusted chi-square and the MLMV estimator with robust standard errors and mean-and
variance adjusted χ2. These estimators produce the same estimates as does the ordinary
ML estimator, but the standard errors and the χ2 statistic are adjusted to compensate for
deviations from multivariate normality. For the one-factor model the MLM estimator
gives χ2 (18) = 62.43,  p < .00 and the MLMV estimator χ2 (11) = 38.15,  p < .00. It should
thus be observed that use of the MLMV estimator reduces the degrees of freedom. The
two robust estimators do not result in any different conclusion than the ML estimator, but
it should be observed that the t-values tend to be lower for the MLM and MLMV estima-
tors.

When means are included in the model, the degrees of freedom determined by LISREL
are incorrect, which is also true when group-level manifest variables are included in the

Goodness-of-fit statistics for the two-level one-factor model for the van Peet data

Goodness of Fit Test:  
  
Chi-square = 57.57, df = 18, p < .00 
  
RMSEA = .109, p-value for RMSEA < 0.05 = .00  
  
Fit Indices: GFI = .91, NFI = .70, NNFI = .60, CFI = .76 

Maximum Modification Index is   29.1 for:  
COV OCCUP& ANIMAL& 



 Chapter 6  111 

Structural Equation Modeling Made Simple

model. In these cases the pre-processor determines the correct degrees of freedom and
adds a DF-statement on the LISREL OU line which corrects the degrees of freedom. This
cannot be done for Mx, however, so two-level models with means and/or group-level
manifest variables are not supported for this program.

Unstandardized Estimates
The unstandardized estimates, which are identical for all estimation programs, are pre-
sented first for the individual level:

The estimated relations at the individual level are presented first, and then the variance
accounted for in the manifest variables is analyzed. This analysis is based on the estimated
pooled within-group covariance matrix and the estimated error variances in the level one
model. The regression coefficients are of course not directly comparable because the var-
iables are measured on different scales. It may be noted, however, that the amount of var-
iance explained by the general factor at the individual level varies considerably between
the manifest variables.

The estimated relations at the group level are then presented, and these of course involve
the manifest variables with a “2” as prefix. Again it must be observed that the coefficients

Individual level estimates for the two-level one-factor model for the van Peet data

Unstandardized estimates:  
  
WRDLST   =    +1.00*g          +1.00*WRDLST&   
CARDS    =    +2.33*g          +1.00*CARDS&    
MATR     =    +2.19*g          +1.00*MATR&     
FIGS     =    +1.00*g          +1.00*FIGS&     
ANIMAL   =    +0.75*g          +1.00*ANIMAL&   
OCCUP    =    +0.33*g          +1.00*OCCUP&    
  
Var(g)       =    1.54 
Var(WRDLST)  =    9.54   Var(WRDLST&) =    8.00   Expl var =   16.12%  
Var(CARDS)   =   18.74   Var(CARDS&)  =   10.42   Expl var =   44.41%  
Var(MATR)    =   14.05   Var(MATR&)   =    6.68   Expl var =   52.50%  
Var(FIGS)    =   18.10   Var(FIGS&)   =   16.55   Expl var =    8.55%  
Var(ANIMAL)  =   17.75   Var(ANIMAL&) =   16.89   Expl var =    4.87%  
Var(OCCUP)   =   15.20   Var(OCCUP&)  =   15.03   Expl var =    1.11%  
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are not directly comparable across variables:

The post-processor also computes and presents estimates of the contributions of variabil-
ity between groups and within groups to the total variance of each manifest variable:

The estimated covariance matrices at the both levels are computed, and from these the
estimates of variance are derived. It is, of course, interesting to compare these estimates
with the total variances and intraclass correlations computed from raw data by
STREAMS. The general patterns of result agree quite well but there also are some slight
deviations. These deviations are presumably due to the fact that the model does not fit the
data particularly well.

For certain types of models STREAMS then presents a decomposition of sources of var-

Unstandardized family level estimates for the two-level one-factor model for the van Peet data

2WRDLST  =    +1.00*gB         +1.00*2WRDLST&  
2CARDS   =    +1.13*gB         +1.00*2CARDS&   
2MATR    =    +0.74*gB         +1.00*2MATR&    
2FIGS    =    +0.49*gB         +1.00*2FIGS&    
2ANIMAL  =    +1.02*gB         +1.00*2ANIMAL&  
2OCCUP   =    +0.53*gB         +1.00*2OCCUP&   
  
Var(gB)      =    4.30 
Var(2WRDLST&)=    1.56 
Var(2CARDS&) =    4.14 
Var(2MATR&)  =    0.00 
Var(2FIGS&)  =    2.06 
Var(2ANIMAL&)=    0.72 
Var(2OCCUP&) =    5.27 

 Estimates of sources of variance in manifest variables for the two-level one-factor model

Est var WRDLST    Total   15.40, between    5.86, within    9.54  
Est var CARDS     Total   28.33, between    9.60, within   18.74  
Est var MATR      Total   16.43, between    2.38, within   14.05  
Est var FIGS      Total   21.18, between    3.08, within   18.10  
Est var ANIMAL    Total   22.95, between    5.20, within   17.75  
Est var OCCUP     Total   21.67, between    6.48, within   15.20  
  
Per cent var      WRDLST         between   38.07, within   61.93  
Per cent var      CARDS          between   33.87, within   66.13  
Per cent var      MATR           between   14.48, within   85.52  
Per cent var      FIGS           between   14.53, within   85.47  
Per cent var      ANIMAL         between   22.65, within   77.35  
Per cent var      OCCUP          between   29.88, within   70.12 
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iance in the sum of scores:

The algorithms for computing the sources of variance in the sum of scores are the same
as those used in ordinary one-level analysis, i. e. the contribution of a latent variable is a
function of the square of the sum of unstandardized factor loadings and the factor vari-
ance. The error variance of the sum is the sum of the residual variances of the components
(Reuterberg & Gustafsson, 1992). Because the individual and group levels are orthogonal
the estimated total variance is simply the sum of the estimated variances at the two levels. 

The post-processor also estimates an individual level (within) reliability, which is defined
as the ratio of true individual variance and observed individual variance, and a group level
(between) reliability, defined as the ratio of true group variance and observed group var-
iance (see Gustafsson, 1997). It should be observed that these values are meaningful only
when it is reasonable to construct an aggregate score which is the unweighted sum of the
observed variables.

t-values
Next t-values for the significance of the estimates of free parameters are presented (note,
however, that t-values are not available with Mx).

 Estimates of sources of variance in the sum of scores for the two-level one-factor model

Estimated components of variance in sum of scores   
 Within: 
  g           88.83  
  Error       73.56  
 Between 
  gB         103.50  
  Error       13.75  
  
 Estimated total within variance:   162.38  
 Estimated total between variance:  117.25  
 Estimated total variance:          279.64  
  
 Estimated within reliability:        0.55  
 Estimated between reliability:       0.88 

 t-values for individual level estimates in the two-level one-factor model

t-values:  
  
CARDS    =    +3.71*g         
MATR     =    +3.63*g         
FIGS     =    +2.56*g         
ANIMAL   =    +2.04*g         
OCCUP    =    +1.06*g         
  
Var(g)       =    2.11 
Var(WRDLST&) =    7.87     
Var(CARDS&)  =    4.74     
Var(MATR&)   =    3.73     
Var(FIGS&)   =    8.27     
Var(ANIMAL&) =    8.43     
Var(OCCUP&)  =    8.59 
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The t-values inform us that almost all the estimated coefficients for relations between
latent and manifest variables are significant. 

For the group-level part of the model, however, only two of the residual variances of man-
ifest variables are significant.

This indicates that one general family factor accounts for almost all variance at the group
level. 

Standardized Estimates
Finally, the standardized estimates are presented, first for the individual level, and then
for the group level.

The standardization is done with reference to the total variance in observed variables,
which implies that the contributions from the two levels are expressed on the same scale.
When all latent variables are orthogonal, as is the case here, the squares of the standard-
ized coefficients should sum to unity, and it is easy to verify that this is true here. This
standadization is thus not the same as that computed by Mplus and the other programs,
which computes the standardized solution separately for the within- and the between-
group matrices. However, as has been argued above, the two-level modeling approach
should be conceived of as a variance decomposition of the total covariance matrix, which

 t-values for family level estimates in the two-level one-factor model

2CARDS   =    +3.43*gB        
2MATR    =    +3.78*gB        
2FIGS    =    +2.03*gB        
2ANIMAL  =    +3.45*gB        
2OCCUP   =    +1.82*gB        
  
Var(gB)      =    2.26 
Var(2WRDLST&)=    1.41 
Var(2CARDS&) =    2.29 
Var(2MATR&)  =    0.00 
Var(2FIGS&)  =    1.51 
Var(2ANIMAL&)=    0.51 
Var(2OCCUP&) =    2.57 

 Standardized estimates for the two-level one-factor model

Standardized estimates:  
  
WRDLST   =    +0.32*g          +0.72*WRDLST&   
CARDS    =    +0.54*g          +0.61*CARDS&    
MATR     =    +0.67*g          +0.64*MATR&     
FIGS     =    +0.27*g          +0.88*FIGS&     
ANIMAL   =    +0.19*g          +0.86*ANIMAL&   
OCCUP    =    +0.09*g          +0.83*OCCUP&    

2WRDLST  =    +0.53*gB         +0.32*2WRDLST&  
2CARDS   =    +0.44*gB         +0.38*2CARDS&   
2MATR    =    +0.38*gB         +0.01*2MATR&    
2FIGS    =    +0.22*gB         +0.31*2FIGS&    
2ANIMAL  =    +0.44*gB         +0.18*2ANIMAL&  
2OCCUP   =    +0.24*gB         +0.49*2OCCUP& 
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implies that this matrix should be used in standardization. If this is not done, the differing
amounts of variance accounted for by the group and individual levels in different varia-
bles is not taken into account. 

When inspecting the results it may be observed that at individual level the MATR and
CARDS tests have the highest relations with g, while at the family level WRDLST has
the highest relation with gB. This suggests that the nature of the general factor may be dif-
ferent at individual and family level (see Härnqvist, et al., 1994). The fact that the model
does not fit particularly well indicates that interpretations should be cautious, however,
and that a better-fitting model should be found.

Modifying the Model
For purposes of comparison, it is interesting first of all to make an ordinary confirmatory
factor analysis of the total covariance matrix. Such a matrix has been computed for the
entire set of cases, which is in the folder Group, and has the dataset label Tot. A model
with one general factor (model t1) does not fit the data (χ2 (9) = 37.49, p < .00, RMSEA
= .130), and according to modification indices the misfit is mainly caused by a covariance
between  ANIMAL& and OCCUP&. This may, tentatively, be interpreted in terms of a
perceptual speed factor running through these tests. When such a factor (P) is introduced,
the largest modification index identifies a relation between P and FIGS. When this rela-
tion is allowed as well, a very good fit is obtained for the two-factor model (model t2: χ2

(6) = 5.14) The standardized estimates are presented below:

The pattern of loadings on the general factor indicates that this factor may be interpreted
as a Fluid Intelligence factor (see Gustafsson & Undheim, 1996), and both ANIMAL and
OCCUP have quite substantial loadings on P. It is, thus, reasonable to try a model which
at the individual level identifies the same two factors as were found in the analysis of the
total matrix. A path diagram for this model is shown below:

 Standardized estimates for the two-factor model for the  total matrix

Standardized estimates:  
  
WRDLST   =    +0.56*g          +0.83*WRDLST&   
CARDS    =    +0.73*g          +0.68*CARDS&    
MATR     =    +0.74*g          +0.67*MATR&     
FIGS     =    +0.35*g          +0.22*P          +0.91*FIGS&     
ANIMAL   =    +0.38*g          +0.66*P          +0.64*ANIMAL&   
OCCUP    =    +0.14*g          +0.53*P          +0.83*OCCUP&    



116 Specifying Models for Two-Level Data  

Structural Equation Modeling Made Simple

Figure 5. A path diagram for the modified two-level model for the van Peet data

The MB specification for this model is:
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MB instructions for the two-level two-factor model

POP All
DAT FOLDER=None DATLAB=AllB POP=All
DAT FOLDER=None DATLAB=AllW POP=All
MVR WRDLST CARDS MATR FIGS ANIMAL OCCUP
LVR g P
LV2 gB
REL g -> WRDLST CARDS MATR FIGS ANIMAL OCCUP
REL gB -> 2WRDLST 2CARDS 2MATR 2FIGS 2ANIMAL 2OCCUP
REL P -> ANIMAL OCCUP FIGS
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This model (g2) fits the data excellently (χ2 (15) = 15.89, p < .39, RMSEA = .018) and
the standardized estimates are presented below:

The pattern of relations between the cognitive tests and the two general factors is quite
interesting. At the individual level the non-verbal reasoning test MATR has the highest
relation with the general factor, but at the family level the verbal test WRDLST test has
the highest relation with the general factor. It thus seems that at the individual level the
general factor has an interpretation which comes close to the dimension labeled Fluid
Intelligence, while at the family level the general factor is closer to the dimension labeled
Crystallized Intelligence. Härnqvist et al. (1994) report a similar finding in an analysis of
ability structures at class and individual levels. It should be observed, however, that when
the standardization is done separately for the between- and within-group matrices this pat-
tern of results does not appear. In the standardization computed by Mplus, for example,
the 2MATR variable thus 

When two-level models are fitted it is often practical to work with one level at a time. In
order not to impose any structure at the between level, the variables at this level may be
taken to be freely correlated, i. e:

This model has, of course, a very good fit (χ2 (6) = 4.18, p < .65). This baseline model
may also be used to test if one general family factor is sufficient to account for the covar-
iances at the family level, through taking the difference between test statistics in the usual
way. This test is not significant (χ2 (9) = 11.71), so the hypothesis that a one-factor model
is sufficient cannot be rejected.

It must be observed, however, that because the number of families and the number of tests

Standardized estimates:  
  
WRDLST   =    +0.31*g          +0.72*WRDLST&   
CARDS    =    +0.55*g          +0.60*CARDS&    
MATR     =    +0.68*g          +0.63*MATR&     
FIGS     =    +0.24*g          +0.25*P          +0.85*FIGS&     
ANIMAL   =    +0.15*g          +0.65*P          +0.57*ANIMAL&   
OCCUP    =    +0.04*g          +0.50*P          +0.67*OCCUP&    
  

2WRDLST  =    +0.53*gB         +0.32*2WRDLST&  
2CARDS   =    +0.45*gB         +0.38*2CARDS&   
2MATR    =    +0.39*gB         +0.00*2MATR&    
2FIGS    =    +0.20*gB         +0.33*2FIGS&    
2ANIMAL  =    +0.43*gB         +0.22*2ANIMAL&  
2OCCUP   =    +0.19*gB         +0.51*2OCCUP& 

MB instructions for the two-level two-factor model without any structure at the family level

POP All
DAT FOLDER=None DATLAB=AllB POP=All
DAT FOLDER=None DATLAB=AllW POP=All
MVR WRDLST CARDS MATR FIGS ANIMAL OCCUP
LVR g P
REL g -> WRDLST CARDS MATR FIGS ANIMAL OCCUP
REL P -> ANIMAL OCCUP FIGS
COV 2WRDLST 2CARDS 2MATR 2FIGS 2ANIMAL 2OCCUP
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is so limited in the present data it is not possible to draw any strong conclusions about the
number of factors at the family level. Several attempts have been made to impose a two-
factor model at the family level as well, but all these attempts were unsuccessful, either
because the model did not converge, or because negative estimates were obtained of the
factor variance. It is, however, the case that for three of the tests (CARDS, FIGS, and
OCCUP) there remains a significant amount of variance at the family level which is not
accounted for by the gB factor. This residual variance may be due to errors of measure-
ment or to systematic sources of variance, but with the present data it does not seem pos-
sible to get any further information.

Hox (1994, pp. 90-91) also arrived at a model with two factors at the individual level, and
one factor at the family level. Hox fitted, however, an oblique two-factor model at the
individual level, and interpreted one factor as “reasoning” and the other as “fluency.” The
general factor at the family level was interpreted as a factor of general intelligence. The
interpretation of this factor was, however, based on the within-group completely stand-
ardized solution computed by LISREL (and Amos and Mplus), under the assumption that
a two-group model has been specified. This standardization is quite different from that
computed by STREAMS, which is based on the total estimated variance of the manifest
variables. According to the two-group standardization solution the highest loading on gB
is obtained for 2MATR (1.02), next highest for 2ANIMAL (.86), and the third highest for
2WRDLST (Hox, 1994, p. 93). These results are very different from those presented
above, both in terms of the absolute level of the estimates, and in terms of the rank-order-
ing of the tests. The reason for this is, of course, that the two-group standardization com-
puted by Amos, LISREL and Mplus does not take into account the different amounts of
variance contributed by family variability in the different tests. For the proper interpreta-
tion of results it seems, however, that the intraclass correlations must be taken into
account.

Examples of Two-Level Models

We will now briefly present some further examples of two-level models.

Two-Level Confirmatory Factor Analysis

Two-level confirmatory factor analysis models are of great interest in themselves, and
they are also important as measurement models in two-level structural equation models.
The model for the van Peet data which has already been described is an example of a two-
level confirmatory factor model, and we will discuss some further examples of such mod-
els. The first set of examples illustrate modeling of data from multiple populations, and it
should be remembered that STREAMS does not support such models for Mplus. It should
also be observed that Amos 4 does not estimate two-level models with means. This is
because the program checks to see if a mean vector is supplied for each group, which is
not the case for the pooled-within matrices. Nor does Mx estimate two-level models with
means.

A Two-Level Measurement Model in Multiple Populations
As another confirmatory factor analysis example we will consider a measurement model
fitted in three populations, and here too we will rely on data from Hox (1994). He presents
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an example of a two-level path analysis using data collected by Schijf and Dronkers in
1971 (references missing in Hox), and we will use these data in several examples.

The Schijf and Dronkers study comprised 1379 pupils in 58 schools of three different
denominations (Protestantic, Nondenominational, and Catholic). The major purpose of
the study was to see if school denomination affects pupil achievement and teacher’s
advice to students about secondary education, controlling for the home background of the
students. At the pupil level the following variables are available: father’s occupational sta-
tus (FOCC) and education (FEDUC), mother’s education (MEDUC), family size (FSIZE)
gender (SEX), number of repeated classes (REPEAT), score on an achievement test
(GALO), and teacher’s advice (ADVICE). At the school level only the denomination var-
iable is available (DENOM, protestant=1, nondenominational=2, catholic=3). These data
(copied from Hox, 1994) are available in the directory STREAMS\EXAMPLES\DENOM
(or in the DENOM.ZIP file in the installation directory) in a file under the name
denom.raw along with a data dictionary.

A project called Denom has also been created in this directory. In the folder None matrices
for two-level analysis have been computed for the total set of data, with the group label
Tot. The between school matrix is based on 58 observations, and the pooled within matrix
on 1321 observations. The between matrix includes the group-level manifest variable
DENOM. In the folder Den separate sets of matrices have also been computed for each of
the three denominations. The Prot group comprises 10 schools, and 192 individual obser-
vations; the NonD group 39 schools and 921 individual observations; and the Cath group
9 schools and 208 individual observations. The number of schools is much smaller than
the minimum recommended number (30-50) so the analyses reported here should mainly
be seen as illustrations of the technique.

We will first consider the four variables which are hypothesized to measure a latent soci-
oeconomic status (Ses) variable (i. e., FOCC, FEDUC, MEDUC, and FSIZE), and inves-
tigate if the measurement model is invariant over the three populations of schools. A
model with one Ses variable at the individual level and a 2Ses variable at the school level
(bt1) was first fitted to the entire set of schools, and this model fits very well (χ2 (4) =
4.93, p < .29, RMSEA = .013). All four programs produce the same results, except that
the LISREL RMSEA estimate is higher (.018) than the estimate computed by Amos and
Mx (0.13), and by Mplus (.010). 

In the next step a three-population model without means was fitted, with constraints of
equality over populations on every parameter (bpi):

MB instructions for the two-level one-factor model for three populations

POP Prot NonD Cath
DAT FOLDER=Den DATLAB=ProtB POP=Prot
DAT FOLDER=Den DATLAB=ProtW POP=Prot
DAT FOLDER=Den DATLAB=NonDB POP=NonD
DAT FOLDER=Den DATLAB=NonDW POP=NonD
DAT FOLDER=Den DATLAB=CathB POP=Cath
DAT FOLDER=Den DATLAB=CathW POP=Cath
MVR FOCC FEDUC MEDUC FSIZE
LVR Ses
LV2 2Ses
REL Ses -> FOCC FEDUC MEDUC FSIZE
REL 2Ses -> 2FOCC 2FEDUC 2MEDUC 2FSIZE
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This model does not fit quite as well (χ2 (44) = 89.86, p < .00, RMSEA = .028; χ2 = 91.49
was obtained with Amos), which indicates that there may be differences in the measure-
ment model over the populations. The same model without constraints over populations
(bpf) has an excellent fit (χ2 (12) = 9.49, p < .66; χ2 = 9.78 with Amos), and the standard-
ized estimates from that model are presented below:

It is interesting to see that both at the individual level and at the school level the pattern
of relations is, in spite of the small samples, similar over populations. At both levels there
is a tendency for the FSIZE variable to be less highly related to the latent variable in the
Cath population than in the other two populations, which may be reasonable given the dif-
ferent views on family planning within the populations. We may subject this observation
to a more formal statistical test with the following model (bpff):

 Standardized estimates for the two-level one-factor model for three populations

Standardized estimates: 
  
Prot     FOCC     =    +0.58*Ses        +0.70*FOCC&     
NonD     FOCC     =    +0.49*Ses        +0.71*FOCC&     
Cath     FOCC     =    +0.61*Ses        +0.67*FOCC&     
  
Prot     FEDUC    =    +0.82*Ses        +0.34*FEDUC&    
NonD     FEDUC    =    +0.75*Ses        +0.33*FEDUC&    
Cath     FEDUC    =    +0.79*Ses        +0.44*FEDUC&    
  
Prot     MEDUC    =    +0.65*Ses        +0.68*MEDUC&    
NonD     MEDUC    =    +0.51*Ses        +0.70*MEDUC&    
Cath     MEDUC    =    +0.57*Ses        +0.74*MEDUC&    
  
Prot     FSIZE    =    -0.18*Ses        +0.93*FSIZE&    
NonD     FSIZE    =    -0.07*Ses        +0.97*FSIZE&    
Cath     FSIZE    =    -0.05*Ses        +0.99*FSIZE&    

Prot     2FOCC    =    +0.41*2Ses       +0.06*2FOCC&    
NonD     2FOCC    =    +0.49*2Ses       +0.10*2FOCC&    
Cath     2FOCC    =    +0.41*2Ses       +0.13*2FOCC&    
  
Prot     2FEDUC   =    +0.45*2Ses       +0.12*2FEDUC&   
NonD     2FEDUC   =    +0.59*2Ses       +0.00*2FEDUC&   
Cath     2FEDUC   =    +0.40*2Ses       +0.17*2FEDUC&   
  
Prot     2MEDUC   =    +0.32*2Ses       +0.11*2MEDUC&   
NonD     2MEDUC   =    +0.51*2Ses       +0.07*2MEDUC&   
Cath     2MEDUC   =    +0.39*2Ses       +0.00*2MEDUC&   
  
Prot     2FSIZE   =    -0.12*2Ses       +0.29*2FSIZE&   
NonD     2FSIZE   =    -0.10*2Ses       +0.23*2FSIZE&   
Cath     2FSIZE   =    +0.03*2Ses       +0.14*2FSIZE& 

MB instructions for testing invariance of loadings over populations

MVR FOCC FEDUC MEDUC FSIZE
LVR Ses
LV2 2Ses
REL Ses -> FOCC FEDUC MEDUC FSIZE
REL 2Ses -> 2FOCC 2FEDUC 2MEDUC 2FSIZE
REL (Prot NonD Cath) Ses -> FSIZE
REL (Prot NonD Cath) 2Ses -> 2FSIZE
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This model fits as well as the model without any constraints of equality (χ2 (16) = 12.93,
p < .68; χ2 = 13.33 with Amos), so there are not any significant differences over popula-
tions in the size of the loadings of FSIZE on Ses. Further analyses reveal, however, the
significant difference between populations to be due to the error variance in FSIZE at the
individual level. When the following statement is added to the completely constrained
model a good fit is obtained (χ2 (42) = 37.13, p < .68):

VAR Prot NonD Cath FSIZE&

The difference between the test statistic for the completely constrained model and this test
statistic gives a test of the differences over populations in the individual level error vari-
ance of FSIZE (χ2 (2) = 52.73, p < .00).

Differences in Means on Latent Variables
We will use the same data to illustrate how differences in means on latent variables may
be modeled in multiple-population two-level models (see also Muthén, Khoo, & Gustafs-
son, in press). In the first step means were simply added to the model arrived at in the pre-
vious section, through clicking the check-box Include Means in Model on the Model
Type tab on the Model form. Estimating this model (bpm) with Amos produces the fol-
lowing goodness of fit information from the post-processor:

It should be observed that Mx does not handle two-level models with means, and also that
a somewhat lower value of the test statistic is obtained with LISREL (66.86). 

The value of the test statistic is close to the degrees of freedom, which indicates that there
are no important differences in the means. A formal statistical test of the population dif-
ferences in means on the latent variable Ses may, however, be obtained through compar-
ison with a model in which the constraints on the latent variable means have been relaxed
(bpmf):

MEA NonD Cath 2Ses

Observe that in two-level models there only are differences in means for variables at the
group level. The test statistic for this model (χ2 (48) = 65.49 with LISREL and χ2 (48) =
69.26 with Amos) is, however, close to the test statistic for the constrained model, so we
may conclude that there is no significant difference in means with respect to Ses over the
populations.

We may, however, again suspect that there are differences between the populations with
respect to FSIZE, even though there are no differences between populations with respect
to the other three observed variables. To allow differences in family size between popu-
lations we may add the statement:

MEA NonD Cath 2FSIZE

Goodness-of-fit test when means are included in the two-level model

Goodness of Fit Test:  
  
Chi-square = 70.79, df = 50, p < .03 
  
RMSEA = .017, p-value for RMSEA < 0.05 = 1.00  
  
Fit Indices: NFI = .96, NNFI = .99, CFI = .99 
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This statement causes the model (bpmf2) to have a much better fit (χ2 (46) = 38.29 with
LISREL and χ2 (46) = 39.98 with Amos) which thus supports the hypothesis. The follow-
ing unstandardized estimates are obtained:

As expected the means are higher in the Cath population.

Two-Level Models Involving Structural Relations

We now will consider some examples of models which involve relations at the group
level, either with aggregated individual variables, or with group-level manifest variables.

A Two-Level Model with Relations Among Latent Variables
In order to illustrate how a two-level model with relations among latent variables may be
formulated we will bring in some other variables in the Denom project as well. These anal-
yses are conducted with all schools pooled.

Hox (1994) presents a rather elaborate path model which involves both manifest and
latent variables. The between-school part of this model presents great problems in estima-
tion, however, so here a simpler approach is taken. Socio-economic status (Ses) is repre-
sented at both individal and school level, using the three indicators FOCC, FEDUC
MEDUC. Achievement (Ach) is measured by two indicators: GALO and ADVICE. In the
model Ach is regressed upon Ses at both school and individual level as is shown in the
path diagram below. 

Figure 6. A path diagram for the two-level regression model

Estimates of means on the family size variable 

Prot     Intercept(2FSIZE)  =    3.66 
NonD     Intercept(2FSIZE)  =    3.03 
Cath     Intercept(2FSIZE)  =    4.13 
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The MB statements for this model (str1) are:

These simple and straightforward instructions create a model which also is easy to esti-
mate, and which fits quite well (χ2 (8) = 20.75, RMSEA = .034 for LISREL; χ2 (8) = 20.81
for Amos; χ2 (8) = 20.84, RMSEA = .030 for Mplus). The following standardized esti-
mates are obtained:

It should be observed that the standardization is done in different ways for manifest and
for latent variables. For manifest variables the standardization is done with reference to
the total variance (i. e., the sum of squares of standardized loadings over both levels sum
to unity), while for latent variables the standardization is done within each level. 

The standardized estimate of the relation between Ses and Ach is .37 at the individual
level, which is close to what has been found in other studies. At the school level, however,
the relation is much higher (.89) so a considerable part of the variability in level of per-
formance at the school level is correlated with the socio-economic level of the students.
Quality of scholing may, of course, also be expected to be correlated with both socio-eco-
nomic level and achievement, so the present data do not allow any strong conclusions
about causality.

MB instructions for the two-level regression model with latent variables

POP Tot
DAT FOLDER=None DATLAB=TotB POP=Tot
DAT FOLDER=None DATLAB=TotW POP=Tot
MVR FOCC FEDUC MEDUC GALO ADVICE
LVR Ses Ach
LV2 2Ses 2Ach
REL Ses -> FOCC FEDUC MEDUC
REL 2Ses -> 2FOCC 2FEDUC 2MEDUC
REL Ach -> GALO ADVICE
REL 2Ach -> 2GALO 2ADVICE
REL 2Ses -> 2Ach
REL Ses -> Ach

Standardized estimates for the two-level regression model with latent variables

Standardized estimates:  
  
Ach      =    +0.37*Ses        +0.93*Ach&      
FOCC     =    +0.53*Ses        +0.70*FOCC&     
FEDUC    =    +0.73*Ses        +0.40*FEDUC&    
MEDUC    =    +0.56*Ses        +0.69*MEDUC&    
GALO     =    +0.82*Ach        +0.42*GALO&     
ADVICE   =    +0.85*Ach        +0.38*ADVICE&   

2Ach     =    +0.89*2Ses       +0.45*2Ach&     
2FOCC    =    +0.46*2Ses       +0.11*2FOCC&    
2FEDUC   =    +0.55*2Ses       +0.00*2FEDUC&   
2MEDUC   =    +0.46*2Ses       +0.07*2MEDUC&   
2GALO    =    +0.37*2Ach       +0.15*2GALO&    
2ADVICE  =    +0.39*2Ach       +0.00*2ADVICE& 
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A Two-Level Model with a Group-level Manifest Variable
So far the two-level models have only included aggregated individual variables at the
group level. As has already been mentioned it is, however, also possible to include man-
ifest variables which are only observable at the group level, such as characteristics of
schools and teachers. Such group-level manifest variables may be invoked as observed
independent or dependent variables, or they may be used to define group-level latent var-
iables.

Hox (1994) used the DENOM variable as a group-level manifest variable, and we will do
that here too, even though this variable with its three categories is perhaps not optimal as
an independent variable. We will start with the simplest possible model in which DENOM
is used as a group-level manifest variable to predict the latent Ach variable. Because there
are only two indicators of Ach (i. e., GALO and ADVICE) it is necessary to impose equal-
ity constraints on the relations between Ach and the two manifest variables. A path dia-
gram is shown below:

Figure 7. A path diagram for a model with an observed group-level variable as 
independent variable

The MB instructions for this model are:

It should be observed that the DENOM variable in the MB statements is referred to as
2DENOM, which is because this variable is only observed at the group level. This model

2ADVICE&

DENOM 2DENOM

GALO 2GALO

2GALO&GALO&

ADVICE 2ADVICE

ADVICE&Ach 2Ach

MB instructions for the two-level regression model with a group-level manifest variable

MVR GALO ADVICE
LVR Ach
LV2 2Ach
MV2 DENOM
REL Ach -> (GALO ADVICE)
REL 2Ach -> (2GALO 2ADVICE)
REL 2DENOM -> 2Ach
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(slr) fits excellently:

When the model is estimated with Amos a marginally higher test-statistic is, as usual,
obtained (χ2 (1) = 1.70), which value is also arrived at by Mplus. The estimate of the rela-
tion between 2DENOM and 2Ach is .30, with a t-value of 2.41. This result thus indicates
that there is a difference in level of performance of schools of different denominations,
with Catholic schools achieving the best results. The following standardized estimates are
obtained:

The standardized coefficient for the regression of 2Ach on 2DENOM is .33, which implies
that about 11 % of the variability in school performance is due to denomination. 

We may, however, also extend the model to control for socio-economic differences
between schools:

This model (slraa) too fits reasonably well (χ2 (11) = 25.27 with LISREL, χ2 (11) = 25.40
with Amos, and χ2 (11) = 25.44 with Mplus). In this model, however, the coefficient for
the regression of 2Ach on 2DENOM is lower (.12 unstandadized, .15 standardized) and
not significant (t = 1.76). This indicates that it is not the school’s denomination itself that
is important for achievement but the socio-economic characteristics of the students that
attend the different categories of schools.

Goodness-of-fit statistics for the two-level regression model with a group-level manifest variable

Goodness of Fit Test:  
  
Chi-square = 1.67, df = 1. 
  
RMSEA = .022, p-value for RMSEA < 0.05 = .71  
  
Fit Indices: GFI = 1.00, NFI = 1.00, NNFI = 1.00, CFI = 1.00 

 Standardized estimates for the two-level regression model with a group-level manifest variable

Standardized estimates:  
  
GALO     =    +0.87*Ach        +0.30*GALO&     
ADVICE   =    +0.79*Ach        +0.47*ADVICE&   

2Ach     =    +0.33*2DENOM     +0.94*2Ach&     
2GALO    =    +0.40*2Ach       +0.00*2GALO&    
2ADVICE  =    +0.36*2Ach       +0.13*2ADVICE& 

MB instructions for the two-level model with a group-level manifest variable and control for Ses

MVR FOCC FEDUC MEDUC GALO ADVICE
MV2 DENOM
LVR Ses Ach
LV2 2Ses 2Ach
REL Ses -> FOCC FEDUC MEDUC
REL 2Ses -> 2FOCC 2FEDUC 2MEDUC
REL Ach -> GALO ADVICE
REL 2Ach -> 2GALO 2ADVICE
REL 2Ses -> 2Ach
REL Ses -> Ach
REL 2DENOM -> 2Ach
COV 2Ses 2DENOM
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Some Issues in Two-Level Modeling

The STREAMS implementation of Muthén’s solution of the two-level modeling problem
makes it possible to address a whole new class of questions in empirical research. This
should make for more powerful and interesting analyses of phenomena in many fields,
such as education, sociology, organization and political science.

It must be realized, however, that there is only limited experience how to fit and interpret
two-level models, and it also must be realized that the estimation techniques are approx-
imate only. Thus, one typical characteristic of two-level models is that there is an assy-
metric amount of information on the two levels, there often being a large amount of
observation at the individual level, and only few observations at the group level. This
causes difficulties when goodness-of-fit statistics are interpreted, and there is also the
problem that the estimation technique is a large sample technique. Another problem has
to do with the assumption that group sizes are equal, and there is as yet only very little
information available how robust the estimator is against violations of this assumption. It
would seem, however, that the most essential next step is to apply the two-level modeling
techniques to a wide range of empirical data in order to gain experience of the possibilities
and problems of this new method of analysis.
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Whenever the number of variables and/or groups is large in relation to the capacity of the
computer that is being used, issues of efficiency do become central. Modeling is typically
a highly interactive activity, and when execution times get too long, or the estimation
process fails too often, this activity may become more frustrating than rewarding. The
present chapter presents some ways in which STREAMS may be used to avoid such frus-
trations.

The iterative solution of the equations sometimes fails to converge on the correct solu-
tion, and this seems at present to be one of the major problems facing users of SEM pro-
grams. For large and complex models in particular the user may have to spend many
hours trying to obtain a solution. STREAMS offers, however, some facilities for coming
to grips with this problem. This is based on the functions for copying start values from
previously estimated models into the setup for a new model. However, this is no fail-safe
mechanism for obtaining convergence, and to use these facilities it is necessary to be
aware of their intended use and ways of operating. 

Reasons for Non-Convergence

The iterations may fail to converge for several different reasons, so different types of
actions may have to be taken.

Unidentified model

In an unidentified model unique estimates cannot be obtained for all parameters. The esti-
mation programs are able to identify at least some problems of non-identification, and if
there is a message about non-identifiability of a certain parameter this problem must be
solved through respecifying the model.

�
Issues of Efficiency
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Over-parameterized model

When the model is over-parameterized there is, in principle, a unique estimate of each
parameter in the model, but the number of parameters is large in relation to the number of
elements in the matrix analysed. This makes it difficult to find a proper solution even
when good start values are available. In most cases the best solution is to reduce the
number of parameters to be estimated by imposing stronger constraints on the model,
even at the expense of a somewhat poorer nominal fit. At any rate, models with a large
number of parameters should be avoided in the early stages of modeling.

Poor start values

When the start values which are supplied to the estimation program, or which are com-
puted internally in the estimation program, are too far away from the actual parameter val-
ues, the program may fail to find a solution within the maximum number of iterations
allowed. Increasing the maximum number of iterations may solve the problem, but even
with a very large number of iterations the program may be unable to find the solution.

Small sample of cases

Simulation studies by Boomsma (1985) indicate that fitting a model to a small sample of
cases (N < 100, say) entails an increased risk of nonconvergence.

Strategies to be Followed

A large number of steps and actions may be taken to increase the likelihood of obtaining
a correct solution.

Equalize variances

Observed variables which are measured on widely different scales make it more difficult
for the iterations to converge. When data is prepared for analysis it is therefore good prac-
tice to ensure that the variances of the observed variables are not too different.  Those var-
iables which have a large variance should be rescaled by dividing the score for each
person with a constant (c, say). Optimally every observed variable should have a variance
around 1. Observe that the square of c determines the variance of the transformed variable.
For example, if an observed variable has a variance of 100, choosing c to be 10 will cause
the rescaled variable to have a variance of unity. 

When matrices are computed from raw data, the most easy way to accomplish the rescal-
ing is to change the number of implied decimal points (see Chapter 3) either in SPSS or
in the Define Variables form. For example, if a variable has values that range between 100
and 859 it may be a good idea to declare 2 implied decimals. This will cause the value 100
to be interpreted as 1.0 and the value 859 to be interpreted as 8.59. When Mplus is used
with raw data as input, the Define command on the Options form may be used to rescale
a variable (e. g., VAR1 = VAR1/100).
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Redefine the scale of the latent variable

The manifest variable chosen to define the scale of a latent variable should optimally be
the manifest variable with the highest relation to the latent variable. If the scaling variable
has a low relation to the latent variable, estimates of the coefficients for the other manifest
variables will be high, and difficult to compute. This problem may be identified through
inspecting the estimates of the intermediate solution. If high estimates are observed for all
free parameters which express relations between manifest and observed variables, another
scaling variable should be selected. This is done through clicking the SCL button and
selecting an appropriate pair of manifest and latent variables. Remember also that
STREAMS uses the first manifest variable which is defined to have a relation to a latent
variable as the scaling variable. Thus, when the Relations form is used, the first manifest
variable to be moved to the box for dependent variables should be the one with the highest
expected relationship with the latent variable.

Impose equality constraints

One extremely useful strategy is to impose strong constraints on the first model through
having equality constraints over variables and groups. This will cause poor model fit, but
it will greatly improve chances that iterations will converge. Once a solution has been
obtained, the parameter estimates of the constrained model furnish start values for a less
constrained model if one of the “copying” options on the Start Values tab of the Model
form has been chosen. Even an extremely poor-fitting model will usually provide start
values which are useful when the constraints on the model are relaxed. The copying of
start values functions automatically and transparently to the user. It is recommended,
however, that once a solution has been obtained, and occasionally thereafter, a new model
name is chosen, and that the option Copy from Previously Estimated Models is chosen.
If a model does not converge, the parameter estimates may get corrupted, and if this hap-
pens it is no longer possible to copy start values from this model. In this case the check-
box labelled Copy from Previous Model with Same Name should be deselected, and not
be clicked again until the proper estimates have been obtained. If this situation should
occur it is, of course, good to have one or more other models available from which start
values may be copied. 

Develop the model incrementally

Another possibility is to add latent and/or manifest variables successively. In this way
start values may be copied from one or more smaller models which have been fitted pre-
viously. This strategy is not successful, however, unless the same labels are used for cor-
responding latent variables from one model to another. This is because the pre-processor
relies on the labels of latent and manifest variables when the program determines for
which parameters start values may be copied. When the pre-processor determines that no
start value is available for a parameter it supplies a more or less arbitrary start value. At
present .7 is used for relations and variances, and .1 is used for covariances. These guesses
may be quite far off, however, and a few poor guesses may cause the iterative solution to
fail. If this happens the guessed start values may be edited in the instruction file created
by the pre-processor, and a new attempt may be made to run the estimation program.
(Remember to turn the pre-processor off before clicking Run because otherwise the
newly produced file will destroy the file of edited instructions.) The incremental modeling
strategy is particularly useful when a large model may be broken down into several sub-
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models. When the submodels are put together only a few parameter values for relations
between the submodels need to be guessed. Here too it is useful to combine submodels in
a step-wise fashion.

Fit the model in one group first

When the model comprises several groups of cases, or if a one-group model is to be rep-
licated in several groups, it is always a good idea to fit the model in a single group first,
because a one-group model is smaller and easier to estimate. The estimates for this group
are then automatically applied to the other groups, when one of the copying options is
selected.

Avoid over-fitting

One of the most important principles of successful structural equation modeling is that
models should not be over-fitted. When parameters are added in order to achieve “good
model fit” this often causes the modeler to go too far, and introduce parameters which
only represent trivial or random sources of variance. Such over-fitting not only causes the
model to fail to replicate in a new sample, but it also causes the model to be unstable and
difficult to estimate. There is thus a trade-off between the fit and the stability of models,
and generally a somewhat poorer model fit is to be preferred to an over-fitted model.
Recently a set of very useful statistics has been developed which assist the modeler in
making the decision when to stop modeling (see Bollen & Long, 1993; Jöreskog & Sör-
bom, 1993c, Chapter 4).

Select Another Estimation Program

It is often the case that a model which is difficult to estimate with one estimation program
is quite easily estimated with another program. With STREAMS it is trivial to switch
between estimation programs, and once a solution has been obtained with one program,
that solution may be used as source of start values for another program.

An Example

Some of the recommendations mentioned above will be illustrated with an example. In
order to create difficulties for the estimation program a variable is used which has an
extremely large variance in comparison with the other observed variables. Raw data on
the six sub-tests in the Swedish Scholastic Aptitude Test have been imported into hpg
project in the Examples directory under the categorization variable Raw and the group
label Tot. Along with these six variables (i. e., WORD, DS, READ, DTM, GI and ERC)
the measure of mean grade from secondary school has been included (MRK). The MRK
variable is measured on a scale between 1 and 5 with 2 decimals. The decimal point is,
however, implied in the data values, and here 0 decimals have been assumed. When
interpreted this way the variable has a variance which is 10 000 times as large as when 2
decimals are assumed.

Let us assume that we want to fit a model with two orthogonal factors, one general (Gen)
and one verbal (Verb) to the 7 variables. This may be done with the following MB state-
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ments:

REL Gen -> WORD DS READ DTM GI ERC MRK 
REL Verb -> WORD READ GI ERC MRK

This model has been estimated with the Mplus 1.0 program. When the default start values
supplied by Mplus are relied upon the model does not converge within 5000 iterations. In
order to obtain a set of start values which may be copied into other models, constraints of
equality have therefore been imposed on the relations between each of the latent variables
and all the manifest variables. In order to impose equality constraints for the relations
between both latent variables and all the manifest variables, the following statements may
be used:

REL Gen -> (WORD DS READ DTM GI ERC MRK) 
REL Verb -> (WORD READ GI ERC MRK)

The statements for the unconstrained relations are, of course, easily transformed into the
statements with equality constraints through clicking the appropriate Equality  check-box
on the Relations form. Another possibility is to use the Set Constraints form on the Edit
menu (see “Set Constraints”, page 51). The table presents results from a series of attempts
to fit the model with Mplus under the different approaches.

Note. NC means that no convergence of iterations was obtained

As may be seen in the table the iterations converge when equality constraints are imposed
on all relations between latent and manifest variables, even though no less than 907 iter-
ations are required. When the model is estimated once again using start values from this
solution, convergence is, as may be expected, immediately obtained. When the equality
constraints are relaxed for Gen but kept for Verb the model does not converge when not
given start values, but only 38 iterations are needed when start values are copied from the
previous model. When there are equality constraints for Gen but not for Verb the model
also fails converge without start values, which is also true when no equality constraints
are imposed. However, with start values from the highly constrained model 1, the model
with equality constraints on Gen converges in just 38 iterations, while the model without
any equality converges in 48 iterations. It is interesting to observe that the model without
any constraints fits quite well, which is not true for the other models. However, the con-
strained and poor-fitting models seem to be extremely useful in the process of obtaining
a well-fitting model.

One of the reasons why Mplus fails to converge when it is not supplied with good start
values is that a less than optimal scaling variable (WORD) was used for the latent varia-
bles. When MRK is taken to be the scaling variable for both latent variables Mplus does
indeed converge after 3137 iterations without start values. This demonstrates the impor-

TABLE 1. Results from comparisons of different methods for computing start values

Model 

No start values
Number of 
iterations

Copying from 
model 1
Number of 
iterations Chi-square df

1. Equality constraints for Gen and Verb 907 1 292.8 19

2. Equality constraints for Verb NC 38 124.0 13

3. Equality constraints for Gen NC 38 201.0 15

4. No equality constraints NC 48 44.11 9
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tance of using a manifest variable with a high relation to the latent variable as the scaling
variable. 
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Part 3

Managing Projects and Data

The third part of the User’s Guide presents the functions for managing projects and data
includes in the STREAMS system. 
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STREAMS stores the data to be analyzed in a data base, along with descriptive informa-
tion about the data. This makes it possible for STREAMS to take care of the practical
details of data specification for the different SEM programs.

STREAMS uses the project dictionary to store information about:

• Labels of codes values, variables and data sets.

• Missing data codes.

• Number of cases in data sets.

• Types of data (i. e., rawdata or different types of matrices).

• Variables included in a particular matrix or data set.

To store and retrieve the datasets STREAMS uses a simple two-level hierarchical system,
with one or more folders (e. g., Gender), each of which may contain one or more datasets,
which are identified with dataset labels (e. g., Males and Females). Addition of data to a
STREAMS project thus involves tasks such as assigning labels to folders, datasets and
variables.

The SEM programs typically analyze matrices of measures of interrelationships (e. g.,
covariances, correlations, or polychoric correlations) between the variables, and often
they do not require access to rawdata. It is thus often convenient and efficient to prepare
these matrices in a first step. 

Forms of Data

Unless the estimation program specifically requires rawdata as input (such as, for exam-
ple, the robust estimation procedures in EQS and Mplus, or the missing data estimation
algorithms), it is usually preferable to compute covariance matrices in a first step. This is

�
Preparing Data and 
Creating Projects
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more efficient because the matrix needs not be recomputed each time a model is fitted for
a set of variables. The matrix to be analyzed may, of course, also already be available,
because it has been computed previously. 

There are several different ways to compute a matrix from rawdata:

• Through programs in SPSS, SAS and other systems for statistical analysis. If this
method is used, the matrix to be analyzed must be imported into STREAMS using
procedures described in chapter 10. The same is true if the matrix is copied from
another source, such as a book or a journal.

• Through the PRELIS2 program. This program, which is a part of the LISREL system,
may be used to compute a wide range of measures of association between variables
(e. g., covariances, correlations, polychoric correlations) and other input which is
needed for the different estimators supported by LISREL 8. PRELIS2 may also be
used to describe data, control for missing values, transform variables, sum variables,
impute missing data, along with a wide range of other data handling tasks. After
matrices have been computed with PRELIS2 they must be imported into the
STREAMS project.

• Through STREAMS. There are facilities in STREAMS which may be used to compute
covariance matrices for subsets of cases and variables in an easy fashion and also to
compute the special matrices needed for two-level analyses and missing-data models.
STREAMS also automatically imports the matrices into the project dictionary so they
are immediately accessible for analysis.

Below the different forms of input to STREAMS are described.

External Matrices

Often a correlation or a covariance matrix is available, but not the rawdata. The matrix
may thus have been published in a book or journal, or it may have been located in an old
computer printout. Such a matrix may can be imported using procedures described in the
chapter “Importing Raw Data and Matrices” on page 163. 

Rawdata in Text Format

If the rawdata only exists as a text-file (which should have the suffix .raw) information
about the variables (labels, location in data file, missing data codes, and so on) should be
entered. STREAMS offers procedures, which are described below, through which a so
called STREAMS data dictionary may be created. The information is stored in a file
which has the same prefix as the rawdata file, and which has the suffix .sdd. After the data
file has been described, several different procedures may be used to compute covariance
matrices or other types of matrices. Covariance matrices and matrices for two-level anal-
ysis may be computed with the built-in functions which also store the computed matrices
in the project dictionary. Alternatively, subsets of cases and/or variables may also be
imported as rawdata into the project dictionary. In  the project dictionary the data in text
format is automatically transformed into the SPSS .sav format, and stored in that form.
These files are stored externally to the database, and they have a name which consists of
the folder label and the dataset label connected with an underscore (e. g.,
gender_males.sav).
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Rawdata in SPSS or PRELIS2 Format

If the rawdata have been read into SPSS or PRELIS2, STREAMS can access the SPSS
.sav file and the PRELIS2 .psf file directly. Thus, matrices may be computed and imported
into the project dictionary, or rawdata may be imported into the project dictionary, in the
same way as is described above.

Rawdata in Other Statistical Systems

If SPSS or PRELIS2 is available but the data is stored in another format it may be possible
to transfer the data directly into one of these programs, and from there to STREAMS.
SPSS thus reads several different types of files, such as EXCEL and dBASE formats, and
through the GET SAS command, SAS tables are automatically transformed to SPSS sys-
tem files. PRELIS2 allows input from a very large number of different file formats.

If SPSS or PRELIS2 is not available one possible solution is to export the data from the
statistical system to a text file (e. g., in SAS the PUT command may be used). Then the
procedures described above for “Rawdata in Text Format” are used. Another possibility
is to use a conversion program, which transforms data into SPSS format. One such system
is the Stat/Transfer program (see http://www.stattransfer.com) which can read data in a
large number of formats (e. g., Access, Excel, Foxpro, Gauss, Matlab, SAS, Systat, and
S-Plus)

The Project Dictionary

Below the nature of the project dictionary is described somewhat more closely. 

Project Name

Each project has a project name (projname), which is given when the project dictionary
is first defined. A projname may consist of 1-8 characters. When the project is established
by STREAMS it is written into a file with the name "projname.mdp". This file should
never be deleted, moved or changed in any way. For earlier versions of STREAMS the
project dictionary was stored in file called "projname.dct". When such a dictionary is
opened by STREAMS it is automatically converted into an .mdp project and for backup
purposes the old dictionary and its associated files is compressed into a file called "pro-
jname.zip".

Each project dictionary must be kept in its own subdirectory in the filesystem. STREAMS
produces a considerable amount of files of different types (see Chapter 11) but these are
not explicitly associated with a particular project. Thus, if the same model name is used
in different projects which reside in the same directory there will be a conflict. It is also
much more convenient to clean up unnecessary files, and to back up projects and their
associated files if projects have their own directories. 

Variable Labels

Variable labels may consist of 1 to 7 characters (or 1 to 6 characters if two-level modeling
is to be used). EQS, LISREL and Mx allow variable labels which are 8 characters long,
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but to identify a residual variable STREAMS automatically appends an ampersand (”&”)
to variable names. It may be noted that Amos supports longer labels, but in the interest of
compatibility of model specifications over all four programs the 7-character limit is main-
tained.

Almost all tools in STREAMS are case sensitive, so lowercase and uppercase letters are
interpreted as different characters. Thus, the labels VAR1 and Var1 refer to different var-
iables. It is therefore essential that labels of variables and datasets are chosen in a consist-
ent manner. It is recommended that uppercase characters are used for observed variables
(e. g., GENDER, AGE, WORD).

Folders and Dataset Labels

Rawdata and computed matrices must be uniquely identifiable and easily retrieved from
the project dictionary. This is done through assigning a label (a so called dataset label) to
each of the data sets and matrices included in the dictionary. However, because a project
dictionary may include a very large number of group labels, it is also possible to subsume
logically related group labels under a project folder. Thus, each data set or matrix is iden-
tified with two labels, one for the folder and one to identify the dataset within the folder.

There are two kinds of folders: open folders and closed folders. An open folder (for which
the icon is used) allows the user to add more datasets. A closed folder (which is iden-
tified by the icon ) does not allow addition of any more datasets after it has been cre-
ated. Most folders are of the open type, but folders containing several datasets generated
by STREAMS in a single run (e. g., matrices for two-level analysis; separate matrices for
each code value; covariance matrices for each missing data pattern) typically are closed.
STREAMS decides whether a folder will be open or closed.

There are many ways in which one or more datasets may be organized into folders. Sup-
pose that we want to fit a model for a group of subjects and that we also want to compare
models fitted separately for males and females. Three covariance matrices are thus com-
puted: one for the total group of subjects, and separate matrices for the two genders. These
matrices may be subsumed under a default folder (which could be labeled None) for which
three groups are identified with the labels Total, Males and Females. Another possibility
would be to use two folders (called None and Gender, for example). The None folder
would then have one dataset (Total), and the Gender folder would have two datasets with
labels Males and Females, respectively. The latter approach is the recommended one,
because it is more flexible and well-structured. 

If, for example, in a later step we want to do a further analysis of gender differences using
the polychoric correlation matrices, these matrices may be brought into the project in a
new folder (e. g., GendPCM, with dataset labels Males and Females). We may, of course,
also create new sets of matrices for subsets of cases selected according to other criteria,
such as social background, or combinations of different criteria, such as gender and social
background, and put these in one or more new folders. 

There is no limitation to the number of folders or the number of datasets in a project.

Labels for folders may contain 1-8 characters. It is recommended that the first letter is in
upper-case and the following in lower-case (e. g., Gender, Trtmnt). Group labels may also
consist of 1-8 characters, and it is recommended that these too have the first letter in
upper-case and the following in lower-case (e. g., Boys, Girls, Grp1, Grp2).
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Preparing Data for Analysis

Before starting the process of bringing data into a STREAMS project, it is essential that
some preparatory work is done. 

Data Exploration

In a first step the distributional characteristics of the variables should be investigated.
Characteristics such as skewness and the presence of outliers should thus be investigated.
One useful tool for such data screening is the PRELIS2 program and EQS also offers
excellent facilities for description and exploration of data. These programs offer good
guides for how to explore data, so there is little reason to repeat that information here.

Missing Data

The problem of missing data has already been discussed at length in Chapter 5 so that dis-
cussion will not be repeated here. Suffice it to point out that often the best solution is to
apply different missing data treatment methods, such as imputation and list-wise deletion,
in combination. 

Length of Variable Labels

When data is stored in SPSS and is to be accessed directly by STREAMS it is also neces-
sary to make sure that the length of variable labels keeps within the limits. Thus, for ordi-
nary modeling variable names may not be more than 7 characters long, and for two-level
modeling the variable labels may only be 6 characters long.

Polarity of Variables

The estimation programs typically have greater problems finding a solution which
includes negative parameter estimates. To prevent unnecessary problems it is, therefore,
good practice to reflect variables, such as Likert-type questions which mix positive and
negative wordings, in such a way that a high score consistently reflects a high level on a
hypothesized latent variable. Another way to put this is that negative elements should be
avoided in the covariance matrix.

Homogeneity of Variance

Another frequent cause of problems in model estimation is that variables have different
variances. As has already been pointed out in Chapter 7 there are simple techniques which
may be used to correct for this.

Creating a Project

A new project needs occasionally to be created. It should be observed, however, that new
projects should not unnecessarily be introduced, and that it is typically easier to work
with a few large projects, rather than with many small projects. A project can keep a
large number or datasets, variables, and models, and there is nothing, in principle, which
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prevents a user from using one single project for modeling several different sets of data.
However, for purposes of overview and manageability it is adviced that project size is
kept within reasonable bounds, and that each project is restricted to a particular set of
variables.

A new project is created through the function Create a new project on the Data tab of
the Project window:

When the button is clicked (or the corresponding menu item under the Data menu is
selected) a form is presented for entering information about the new project:

In the Name field a name (1-8 characters) of the new project should be entered. Here the
name New is entered, but users are adviced to use more descriptive names for their own
projects. The Description field should be used for entering a descriptive text about the
project. The new project will be put in a newly created folder which will have the same
name as the assigned project name, and which will be put under the selected folder. Here
the HPG folder has been selected, so the project will be in a subfolder labeled New under
HPG.

When the OK button on the Define new project form is clicked, a new, but as yet empty,
project is created. After the project has been created the STREAMS Data Wizard is auto-
matically started. The Data Wizard is used to add data to a project, and if that is not to be
done at this point in time, the Exit  button should be clicked. Use of the Data Wizard is
described in the next two chapters.
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It is often advantageous first to compute a covariance matrix from raw data and store it in
the project, where STREAMS can access it. In this way the covariance matrix needs to be
computed once only, and the additional output associated with the computations is
avoided. At other occasions it is necessary to input raw data into the estimation programs,
for which STREAMS also offers support.

Addition of datasets to a project is done with the STREAMS Data Wizard. The Wizard
guides the user through the steps necessary for specifying different types of data imports,
performs the computations, and adds the new dataset(s) to the project. To start the
STREAMS Data Wizard the button Add a new dataset on the Data tab of the Project
window is clicked. For the example that we will follow it will be assumed that a dataset
will be added to the HPG project, so this project should be open when the button is
clicked:

This causes the first screen of the Data Wizard to be presented:

	
Computing Covariance 
Matrices
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In this step a choice is to be made of what kind of dataset is to be added to the project: an
externally computed matrix, raw data, or one or more covariance matrices computed
from raw data. The procedures for importing raw data and external matrices are
described in greater detail in Chapter 10, while the present chapter describes how to
compute matrices from raw data. 

First we describe in some detail all the steps involved in computing an ordinary covari-
ance, and after that the other cases are described in less detail.

Here we want to compute a matrix, which is also the default, so we click Next.

In this step the Data Wizard wants information about what kind of computation is
requested, among four different choices:
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We will first of all deal with the case when a covariance matrix is to be computed for
either all cases or for a subset of cases. At this step we thus select the option Covariance
matrix and means.

Computing a Covariance Matrix

When the Next button is clicked a form for labling the dataset is presented. 

Labling the Dataset

The labling of the dataset is done through assigning one "Folder" label and one "Dataset
label". The folders are the top-nodes in the two-level hierarchical system for storing
datasets in STREAMS, while the dataset labels are the bottom-level units. The choice of
both the name of the folder and the dataset label is completely in the hands of the user,
and any label (up to 8 characters) may be assigned. Clicking the icon for an existing
folder will present the name in the field for the folder name. This label may be kept, or it
may be edited to create a new top-node in the hierarchical system. When the icon for an
existing dataset label is clicked its name will also be copied to the field for entering the
dataset label. It must be observed, however, that STREAMS will not allow the user to
assign the same combination of folder name and dataset label as for an existing data set.
If the existing data set is to be replaced with a new one, the old one must first be deleted.

For purposes of demonstration we will compute a covariance matrix for a subsample of
boys who have a score of 15 or higher on the DTM test. A suitable new folder may be
Demo, and we assign Boyshigh as the dataset label. After this information has been
entered the form thus looks as follows:
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Input File

In the next step the data input file is specified:

STREAMS reads SPSS files (suffix .sav), comma-separated files (suffix .csv), PRELIS2
files (suffix .psf) as well asci-files (suffix .raw) equipped with a special data dictionary
(see “The STREAMS Rawdata Format”, page 235). 

When a .raw file is opened the Define variables... button is enabled. To add descriptions
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of variables in a rawdata file, or to update previously given information, the Define Var-
iables button may be clicked, and information entered in ways described in greater detail
in Appendix A (page 235).

To specify the file the Select datafile button is clicked, which presents a standard file
open dialogue. The file type must be specified with the drop-down menu labeled Files of
type:. Here the file hpg.raw in the HPG directory is selected:

STREAMS reads information about the file and the variables and presents some descrip-
tive information about the file:
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At this step it may also be specified which subset of cases should be included in the com-
putations. It will be assumed that boys with a score higher than 15 on the DTM test are to
be included. To specify rules for selection the Select cases ... button is clicked, which
presents the Condition form:

On this form one of the variables in the file may be selected at a time, and one or more
code values may be selected for inclusion. To be included in the computations an indi-
vidual must fulfill the inclusion criteria for all specified variables. 

If the GENDER variable is clicked any existing code values and value labels are shown
in the Existing value labels list-box. Here two value labels have previously been
defined, boys and girls. To select boys this value label is selected and then the arrow is
clicked to move the selection to the list-box labeled Selected value labels. Should there
be other code values to be included for a variable they may also be added to the list of
selected value labels. After all the code values for a variable have been selected the Add
selection button is clicked, which transfers the selection or selections to the grid at the
bottom of the form. Thus after boys have been selected the form looks as follows:
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However, in this hypothetical example we also want to impose the restriction that only
boys with a score of 15 or higher on the DTM test are to be included. If the DTM varia-
ble is selected it is seen that for this variable no value labels have been defined, so we
cannot use the same procedure as before. Instead we introduce a new (temporary) value
label, which comprises the scores 15 to 20 (which is the highest possible score on the
DTM subtest). This is done through entering the score interval and a label (e. g., High) in
the frame labeled New value label as shown below:
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Next the defined range of scores is transfered to the Selected value labels list and then
the Add selection button is clicked. This causes the Condition form to take on the fol-
lowing appearance:

If the OK  button is clicked next, the covariance matrix will be computed only for boys
with scores between 15 and 20 on DTM.
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Select Variables

Whe Next button on the Wizard form is clicked a form for selecting the variables in the
matrix is presented:

 

All the available variables are presented in the list-box to the left, and those to be
included in the computed matrix are to be moved to the list-box to the right. 

Missing Data

In the last step it is specified how missing data should be dealt with:
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This form offers three main methods for dealing with missing data: Include all cases,
Listwise deletion and Impute missing values. 

The Include all cases option implies that all variable values are treated as valid data, and
are included in the computations. This option is not available when computing covariance
matrices, but it is useful when data are imported for further analysis with the missing data
procedures offered by Amos, Mplus and Mx. 

The Listwise deletion option implies that a case with missing data on one or more varia-
bles will be excluded from computations. It should be observed, however, that when there
are many variables this option may cause an unacceptably large proportion of the cases to
be excluded. 

The Impute missing values option implies that the missing data codes are replaced with
estimates of data values (so called “imputation”) when computing covariance matrices.
Within STREAMS, missing data may thus be replaced with the mean for the total group,
or with the mean of a subgroup of cases identified through one or more stratification var-
iables. It should be observed, however, that this option should be used with care, because
the procedure will cause systematic disturbance to the covariance matrix (e. g., the vari-
ances will be underestimated) when more than a limited number of values is replaced.

Selection of the Impute missing values option causes further options to become availa-
ble. The list-box labeled Stratification Variables  thus is highlighted, as is the list-box
labeled Excluded variables.  

One or more (up to five) variables may be moved into the Stratification Variables list-
box. These variables are used to classify the sample into subsets according to combina-
tions of values on the variables, and the substitution of missing values is then based on the
mean for the subset to which an individual belongs. When no stratification variable is
selected the grand mean is used to replace missing values. Conditioning upon stratifica-
tion variables causes the replacement of missing observations to be more precise, to the
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extent that there is a relationship between the stratification variables and the variables in
which missing data are replaced. However, when stratification variables are used, there is
a greater risk that the imputation will fail, because it may not have been possible to com-
pute a mean for the particular subset to which the individual belongs. 

Variables to be used for purposes of stratfication are not so likely to be among those
selected to be included in the matrix. When the option labeled Show All is selected all the
variables included in the data file is therefore displayed.

The Exclude Variables list-box is used to exclude single variables from imputation. Var-
iables for which no imputation is to be made should be moved into this list-box. 

In this case there are no missing data so the option Listwise deletion may be used.

Finish

When the Finish button is clicked the program performs the computations and when
these are completed the updated Project window is presented:

A covariance matrix with 12 variables has been computed for 165 cases. If we want to
inspect the matrix this can be done with the procedures previously described in this chap-
ter. We also may click the button View output for selected dataset, which presents a
listing file concerning the computations and some other output such as means:



152 Computing Covariance Matrices  

Structural Equation Modeling Made Simple

This file may be closed through clicking the close button, and then modeling may begin.
To start modeling, the Project window button is first clicked, and then the Models tab is
selected. The button New Model may then be clicked, after which model specification
may start, using the procedures described in Chapter 3.

Computing Separate Matrices for each Code Value

It will be remembered that after the Data Wizard has been started and the option Compute
and import matrices has been selected four options are presented, one of which is Sep-
arate matrices for each code value. This procedure is highly similar to the one described
above, except that multiple matrices are computed and imported.  STREAMS thus com-
putes a separate covariance matrix and mean vector for each code value of a classification
variable. Thus, if a variable has 300 different code values, 300 covariance matrices will
be computed if this variable is used as classification variable. The classification variable
must only contain integer values (i. e., alphabetical characters or decimal numbers are not
allowed)

We will demonstrate how to use this procedure, assuming that separate matrices will be
computed for boys and girls in the HPG data. When the Next button is clicked the form
for labling the dataset is presented. 
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 Labling the Dataset

The labling of the resulting datasets is done very much in the same way as when a single
matrix is computed, except that the Dataset label supplied is used only as a prefix. Each
dataset thus is assigned a label which is a combination of this prefix and the code value of
the classification variable. The Dataset label must thus be short enough to leave room for
this code value. It is strongly recommended that a new project folder is introduced for
each new set of matrices that is computed. This keeps the datasets well organized, and
because all the datasets in a folder may be removed in a single operation this also makes
it easy to maintain the dictionary. After the matrices have been computed the folder will
be a closed folder. It should be observed that the groups are introduced in the dictionary
in the order they appear in the data. Thus, if a particular order among the groups is
required, the data should be sorted in ascending or descending order on the classification
variable before the computations.

For our example we will label a new folder DemoGend, and the dataset label is Gend.
This will cause the matrix for boys to be labeled Gend1 and the matrix for girls to be
labeled Gend2, because boys have the code value 1 and girls the value 2 on the variable
GENDER. After this information has been entered the form thus looks as follows:

Input File

In the next step the data input file is specified, which is done in the same way as when a
single matrix is computed. Selection of a subset of cases may also be specified in the
same way as was described above.

Select Classification Variable

When the Next button is clicked a form for selecting the classification variable is pre-
sented:
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The drop down menu is used to identify which variable in the dataset is to be used as
classification variable. It must be remembered that only integer values are allowed in the
classification variable (i. e., decimal numbers or alphabetical characters are not allowed).

Select Variables

Next the variables to be included in the matrix are selected, which is done in the same
way as when a single matrix is computed.

 Missing Data

Specification of how missing data should be dealt with is also done in the same way as
presented above.

Finish

When the Finish button is clicked the program performs the computations and when
these are completed the updated Project window is presented:
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It may be observed that the folder DemoGend is a closed folder, which implies that no
more dataset may be added to this folder. This is because the folder has been created with
option "Separate matrices for each code value" which makes it natural to treat all the
matrices in the folder as a unit.

Computing Matrices for Two-Level Analysis

The option Matrices for two level analysis prepares two matrices, a pooled-within and a
between-group matrix, which are used in two-level modeling (see Chapter 6 for a descrip-
tion of two-level modeling). Except for some minor differences this procedure is identical
to the one used in computing separate matrices for each code value of a variable.

Labling the Matrices

When the Next button is clicked the form for labling the datasets is displayed. Assignment
of the folder name and the dataset labels is done in the same way as when ordinary matri-
ces are computed. However, when matrices for two-level analysis have been requested,
two matrices are computed, one pooled-within covariance matrix and one between-group
covariance matrix. To separate these matrices, the program uses the supplied dataset label
as a prefix, the suffix W for the pooled-within matrix, and the suffix B for the between-
group matrix. Here the dataset label Family is assigned, which implies that the two matri-
ces will be labeled FamilyW and FamilyB. For folder the label DemoTwo is assigned:
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Input File

Next the input file is selected, which is done in the same way as in the cases described
above. Observe that all the data must reside in one file, which has as many rows as the
number of individual observations. All the group level variables must be copied down to
the individual level, and must be repeated for all individuals belonging to the same
group.

In the present example the file vpeet.raw is selected.

Classification Variable

On the next screen the drop-down box labeled Classification Variable is shown. This is
used to identify the observed variable which contains information about group member-
ship. The classification variable must only contain integer values (i. e., alphabetical char-
acters or decimal numbers are not allowed). In the present example the FAMILY
variable is selected:
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Select Variables

Next the variables to be included are to be specified. When matrices are computed for
two level analysis it is necessary to specify both which individual- and which group-
level variables are to be included. All available variables are shown in the left-most list-
box, and those variables which are to be included as individual (level one) variables are
moved to the top-most list-box on the right, while those variables which are measured at
the group level are moved to the bottom list-box on the right:
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Missing Data

Specification of how missing data should be dealt with is also done in the same way as
presented above.

Finish

When the Finish button is clicked the program performs the computations and when
these are completed the updated Project window is presented:

Computing Covariance Matrices for Each Missing Data 
Pattern

Yet another choice among the four types of computations is to generate one Covariance
matrix for each missing data pattern. When incomplete data is modeled with the pro-
cedures described in Chapter 5, input of a separate covariance matrice for each subset of
cases with a particular combination of missing data is required. For any particular set of
variables and cases, STREAMS can sort the cases into the different combinations and pro-
duce a covariance matrix and mean vector for each such group which includes a certain
minimum number of cases. It must be observed, however, that when the number of vari-
ables is large and there is much accidental missingness, a very large number of missing-
data patterns will result, and many of them will be represented by one case only. It is,
therefore, strongly recommended that most of the accidental missingness is first taken
care of through imputation of missing values, so that a limited number of missing-data
patterns remain.

We will illustrate this procedure by an example in which matrices are computed for a
matrix-sampling design in which different subsets of a sample have been given 3 blocks
of reading tasks out of a total of 7 blocks. The data are in the BLCK project, so this project
should first of all be opened. After the option Compute and import matrices has been
selected the Compute matrices form is presented:
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When the option Covariance matrix for each missing data pattern has been selected a
minimum number of cases may be selected for each group, which is done in the field
labeled Minimum number of cases in each pattern. Only patterns which include at least
this number of cases (with a default value of 5) are retained. It is also possible to specify
a maximum number of missing-data patterns, which is done in the field labeled Maxi-
mum number of patterns. When the number specified here (the default value is 100) is
exceeded during the reading and classification of data, program execution is halted, and
the project dictionary is left unchanged. It is then necessary to rerun the program, either
with a higher value set for this parameter, or with some missing values replaced with
imputed values. 

Labling the Dataset

It is strongly recommended that a new folder is assigned whenever this option is used. A
very large number of matrices may be produced, and because all the matrices in a certain
folder may be deleted in one step this makes it easier to maintain the project. Here the
folder DemoBlck is assigned. For the Dataset label a prefix is assigned. Each matrix is
assigned a label which is a combination of this prefix and the ordinal number of the miss-
ing-data pattern. The Dataset label must thus be kept sufficiently short so that there is
room to affix the ordinal number. Here the Dataset label Grp is assigned.
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Input File

In the next step the data input file is specified, which is done in the same way as when a
single matrix is computed. Here an SPSS-file (Blck.sav) is to be read, so the file type
must be changed:

Selection of a subset of cases may also be specified in the same way as was described
above.
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Select Variables

Next the variables to be included in the matrix are selected, which is done in the same
way as when a single matrix is computed. All the variables to be included in the compu-
tations are specified, and STREAMS keeps track of which variables are present in which
group:

 Missing Data

On the Missing data form the Include all cases option is selected: 
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Finish

When the Finish button is clicked the program performs the computations and when
these are completed the updated Project window is presented.
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There are several situations when STREAMS needs other data than covariance matrices
computed from raw data, such as:

• Raw data, to be input to an algoritm which requires individual observations (e. g., the
robust estimation procedures in EQS and Mplus, or the missing-data estimation
algoritm in Mplus).

• A covariance matrix with a weight matrix computed by PRELIS to be used in WLS
estimation.

• A matrix of polychoric correlations among ordinal level variables computed by
PRELIS which also are to be used in WLS estimation.

• A previously computed matrix (e. g., a published covariance matrix) for which raw
data is not available.

This chapter describes how to import such data into a STREAMS project.

Importing Raw Data

To specify that raw data is to be imported the option Import rawdata  on the main form
of the STREAMS Data Wizard is specified:

�

Importing Raw 
Data and Matrices
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The next form presents two choices: either to import a single file, or to import one subset
of data for each code value of a classification variable:

These two options are highly similar, and the only difference is that when separate raw-
data files are imported a classification variable is asked for (see the procedure for com-
puting one covariance matrix for each code value of a classification variable in Chapter
9). We will, therefore, only illustrate how to import a single rawdata file. It is assumed
that rawdata is to be imported into the HPG project, so this project needs to be opened first
of all.
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Labling the Dataset

Next the form for labling the imported data set is presented:

Here the label DemoRaw is assigned as the categorization variable, and Tot as the Group
label.

Input File

Next the input file is identified, which is done in the same way as is described in the sec-
tion “Input File” on page 144 in Chapter 9. Should only a subset of cases be imported,
conditions for selection may also be specified.

Here the Hpg.raw file is opened.

Select Variables

Next the variables to be imported are specified. Here all the variables in the input file are
selected.

Missing Data

The same options for dealing with missing data are offered here as when a covariance
matrix is computed. In the present example the option Include all cases is selected.
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Finish

When the Finish button is clicked the data is read from the input file, and after any selec-
tion of cases the data is stored in the project. Imported data is stored in SPSS-format, and
the project dictionary contains information about which variables are included in the data
set.

Importing an External Matrix

The procedure for importing an external matrix offers functions both for entering the
matrix elements manually into a grid, and for reading a matrix file into the grid. It is, how-
ever, recommended that a large matrix which only exists in non-computer readable form
(e. g., in a published paper) is first entered into a file. Any text editor can be used for doing
that but it must be observed that the file must be saved in text (or asci) format. Thus, if the
Word program is used, for example, the Save as ... function must be used, and the file for-
mat specified to be .txt. 

Matrices to be imported must be in lower triangular form, and must include the diagonal.
However, the program reads the values in free format so the actual physical layout of the
file is unimportant. For example, the correlation matrix: 

may be entered as is shown above. But the matrix may also be entered as a string of values,
separated by blanks, in the following order:

The elements may also be written on any number of lines, as long as the order among the
elements is preserved. When the matrix is read the program checks that the file includes

1.00
0.10 1.00
0.20 0.30 1.00
0.40 0.50 0.60 1.00

1.00 0.10 1.00 0.20 0.30 1.00 0.40 0.50 0.60 1.00
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the correct number of elements. A matrix with k variables consists of k(k+1)/2 elements,
and if there are fewer or more elements in the file STREAMS produces an error message.

Suppose that we want to import an externally computed covariance matrix for the 6 sub-
tests of the SweSAT (in the order WORD READ GI ERC DS DTM)

 

This matrix is stored under the name swesub.cov in the NEW subdirectory under the
STREAMS\EXAMPLES\HPG directory. There is also a vector of means, which is stored
under the name swesub.mea in the same directory.

To import the covariance matrix and the means into the new project this project should be
opened. On the Data Wizard form the option Import external matrix  should be selected.

Labling the Matrix 

Next the form for labling the dataset is presented, and it is completed in the same way as
when raw data is imported, or a covariance matrix is computed. Here the categorization
variable DemoImp is assigned, and the Group label is Subtst.

22.975
10.7517 13.7564
10.4216 6.52787 13.9127
12.9611 9.28106 8.06925 17.1139
6.98265 5.70548 5.46148 6.76535 15.6176
5.4772 4.6835 3.50274 5.31043 7.67652 10.378

17.8791 15.5786 17.7668 17.4076 12.6425 14.8117
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Add Variables

The variable labels are then to be supplied, which is done through entering them on the
next form:

The variable labels may be entered in the text field, and are then transfered with the arrow
into the list-box. The order of variables in the list-box must match the order of variables
in the matrix. Should there be a need to change the order of variable labels, this may be
done with the up and down arrows. 

Variable labels may also be read from a file (which should  have the suffix .lab). This is
done through clicking the button Variables from file ... . The labels in the file should be
entered one label on each line. 

Number of Observations

On the next screen the number of observations is entered:



 Chapter 10  169 

Structural Equation Modeling Made Simple

The number of observations is entered in the field (here 579).

Type of Matrix

Next the type of matrix should be identified:
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Matrix to Import

When the Next button is clicked, an empty form with variable labels on rows and col-
umns is shown:

This grid may be used to enter matrix elements. The WORD variance element is first
selected, and the matrix element is entered. After carriage return or the tab key is hit, the
insertion point moves to the next element, which here is the READ WORD covariance
element. In this way all 21 elements of the covariance matrix may be entered.

Another possibility is to read the matrix from file. This is done through clicking the button
Add matrix , which presents a standard file-open dialogue:
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There is a choice of two types of files: .cov and .cor files. 

When the swesub.cov file is opened, the grid takes on the following appearance:

It should be observed that means are entered as well. This is because these are available
in a file with the name swesub.mea which is in the same directory as the swesub.cov file.
It is, of course, possible to enter the means directly into the grid as well. Should there be
a need to enter standard deviations along with correlations this is also done automatically,
if the standard deviations are in a file with the same name as the corelation matrix, but
with the suffix .std. When the matrix is imported STREAMS computes a covariance
matrix from the correlations and the standard deviations.



172 Importing Raw Data and Matrices  

Structural Equation Modeling Made Simple

Finish

When the Finish import  button is clicked, the matrix is added to the dictionary:

The matrix is now ready to be used for modeling purposes.

Importing Weight Matrices

Some estimators require more information than is contained in the covariance matrix.
Thus, when the Weighted Least Squares (WLS) estimator in LISREL is to be used an
Asymptotic Covariance Matrix (ACM) must also be computed; and when the Diago-
nally Weighted Least Squares (DWLS) estimator is to be used an Asymptotic Variance
Matrix  (AVM) must be computed. When polychoric correlations are analysed it is rec-
ommended that either the WLS or the DWLS estimator is used. These matrices may be
computed with the PRELIS2 program (see, e. g., Jöreskog & Sörbom, 1998). 

When PRELIS2 is used to compute the matrices, one or both of the asymptotic matrices
may be requested. In order for STREAMS to be able to import these matrices they should
be given the same name as the covariance matrix, but assigned a different suffix. Thus,
the asymptotic covariance matrix should be given the suffix .acm, and the asymptotic var-
iance matrix should be given the suffix .avm. If these files are present is the same directory
as the matrix to be imported, they are automatically imported into the project, and when
an estimation method is selected which requires the weight matrices, they are included in
the model specification. It should be observed, however, that when the WLS or DWLS
estimator is used it is not possible to make a model for a subset of the variables in the
matrix, but a new matrix must be computed for each particular selection of observed var-
iables to be modeled.

It should also be noted that computation of the asymptotic matrices (and particularly the
ACM) is associated with some problems:

• When the number of variables is large the ACM matrix is tedious to compute and
requires considerable space for storage. 

• The WLS estimates can only be computed when the number of cases is large.

Thus, even though maximum likelihood estimates computed for an ordinary covariance
matrix may not be theoretically optimal they do have certain practical advantages.
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Use of STREAMS tends to result in a large number of models, each of which is associ-
ated with several files. There is, therefore, often a need for ’housekeeping’ and
STREAMS offers a set of utility routines for such tasks. 

The utility routines are accessed via the Project Window and several will be discussed
here:

• Compress and Decompress Project

• Model files

• Data

Compressing and Decompressing Projects

A STREAMS project consists of a large number of files, which makes it space-consum-
ing and unwieldy to transport from one computer to another. In order to solve these prob-
lems STREAMS 2.5 offers a built-in function for compressing an entire project into a
single (zip 2.04g compatible) file, as well as a function for decompressing such a file.

Compress

The compress function is accessed from the Project tab of the Project Window. When no
project is open the Compress button is disabled, but as soon as a project is open, the but-
ton is enabled:

��
Inspecting and 
Maintaining 
Projects
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When the Compress button is clicked, the Compress project form is presented:

The form presents all the files (e. g., data and model files) associated with the open
project. Information is also presented about the total size of the files. When the Com-
press files button is clicked a compressed file is created which includes all the files in
compressed form. The compressed file is assigned the name of the project, with .zip as
suffix (e. g., hpg.zip). This file is located in the folder above the .mdp file. Thus, when
the hpg.dct project in STREAMS\EXAMPLES\HPG is compressed, the hpg.zip file is put
in the STREAMS\EXAMPLES folder.
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There is a choice whether the original files are to be kept or be deleted. To delete files the
check-box labeled Remove files after compression should be clicked. This alternative
is, of course, useful when a project is to be moved or put in an archive, while the alterna-
tive to keep the files may be useful when a copy is to be made of a project for purposes of
distribution.

Decompress

The Decompress button on the Project tab is always enabled. When this button is
clicked the Decompress project window is presented:

A dialogue box for selecting folders is presented, and in the list-box to the right all files
with the suffix .zip is presented. One of these may be selected, and when the Open but-
ton is clicked the content in the compressed file is presented in the list box. In order to
copy the files from the zip-file, the Decompress files button is clicked.

After decompression the files will be assigned the same pathnames as they had when the
compression was done, and if the folders in the pathname do not exist they will be cre-
ated. Thus, the project hpg.zip in the example above will be restored into the folder
STREAMS\EXAMPLES\HPG. This is true also if the hpg.zip file is transferred to another
computer where the STREAMS program has been installed in another folder. Decom-
pression may also be done with the WinZip program, in which case there are better pos-
sibilities for controlling the placement of the project in the file structure.

The Decompress project form also presents a check-box labeled Remove compressed
file after decompression. 
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Model Files

For each new model which is estimated STREAMS and the estimation programs jointly
produce several files. In this section we describe tools, such as the Model files tab on the
Project window, for managing models and their associated files. 

Table 2 presents a summary of the types of files and their characteristics.It should be noted

that the column labeled Recreatable has a yes for those files which are so easy to recreate
that a simple rerun, but with optimal start values, of the .mbi file suffices. If start values
are not to be copied from an existing version of the model all files except the .mbi file may
in fact be erased, and all the other files may still be recreated. 

The column labeled Size presents a rough estimate of the expected size of each file. The
size estimates are made in terms of three rough categories (small, medium and large) and
are quite approximate. It nevertheless seems to be quite a general rule that the output files
from the estimation program and the post-processor consume most space on the hard disk.
The output files from the pre- and post-processors also require quite a lot of space com-
pared to the work files needed for start values and post-processing. 

To take a concrete example, all the files for 9 models in one project together required 282
Kb. The 9 .out files required the major share of the space (171 Kb) and together the three

TABLE 2. Model Files in STREAMS

Suffix Description Recreateable Size

MBI MB instructions No Small

STR Binary file with estimates and model description No Small

LOG Log file for error messages Yes Small

MOD Description of the model produced by the pre-processor Yes Small

MLD Description of the previous model which is used for backup 
purposes if no estimates are obtained for the new model.

Yes Small

COV All matrices (of all types) for all groups to be analyzed. The 
matrices only include the observed variables included in the 
model.

Yes Small to medium

LIS LISREL 8 instructions created by the pre-processor Yes Small to medium

EQS EQS instructions created by the pre-processor Yes Small to medium

MPI Mplus instructions created by the pre-processor Yes Small to medium

MXI Mx instructions created by the pre-processor Yes Small to medium

OUT LISREL 8 output file Yes Large

EQO EQS output file Yes Large

MXO MX output file Yes Large

MPI MPlus output file Yes Large

AMP Amos parameter estimates Yes Small

DAT EQS parameter estimates Yes Small

EST LISREL 8 parameter estimates Yes Small

GFT LISREL 8 goodness of fit statistics Yes Small

SVT LISREL 8 standard errors Yes Small

PVT LISREL 8 estimates of free parameters Yes Small

SIT LISREL 8 Sigma matrix Yes Small

PRT Post-processor output Yes Medium
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most easily recreatable files (.lis, .out, and .prt) took no less than 243 Kb. There is thus a
need for tools which control models and file types. 

Most of the files which are not needed for future use are automatically removed by
STREAMS, but in some situations (such as when a program aborts its operations unex-
pectedly) files may, nevertheless, be left in the model folder. As is described below the
Model files tab on the Project window may be used to delete such files.

This tab presents three check-boxes, which may be used to specify whether the pre-proc-
essor, estimation and post-processor file is to be kept after model estimation is complete.
Thus, if none of these check-boxes are checked no output, except for the information in
the .str file, will be kept.

The Model files tab on the Project Window may be used to investigate which files are
available in a model folder, what amount of space different types of files require, and
facilities for removing files are also offered.

The list-box on the left-hand side is used to select one or more models through clicking,
shift-clicking, and so on. The files associated with the selected models are presented in
the list-box on the right-hand side, and the total amount of space occupied by the files is
presented on the status line (e. g., 24 file(s) selected 86.07 kb).

However, only those files are presented which satisfy the file type criteria which may be
imposed with the drop-down menu. The following may be selected:

• All files
• All files but .mbi
• Recreatable files 
• Pre-processor output 
• Estimation output
• Post-processor output

When the Remove button is clicked the selected files are deleted. This is an irreversible
process, so it is necessary to be careful. 

There are, of course, many reasons why models and files should be removed. One useful
strategy is to start by deleting those models which should be taken away entirely. Any
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modeling activity typically yields a considerable number of intermediate models which
serve no function after the model generating phase has been completed. If there is a need
to inspect the MB code before a model is selected for removal the Model tab may be
clicked, and the model opened with the check-box Preview model before opening
checked. 

After all files associated with the unwanted models have been removed, it may be a good
idea to take away the output files from the estimation programs, which tend to be the most
bulky files, and which sometimes only contain information which is available in the post-
processor output file. If there is a need to recapture more hard disk space, the pre-proces-
sor and post-processor files may then be removed. The next step would be to take away
all the recreatable files. Then all files, except the .mbi file, could be removed. This would
make it possible to estimate the model again, but this step will remove the .str file, so if
the process of estimation relies on better start values than those which may be produced
by the estimation program, nonconvergence of the iterations may be a problem. If, finally,
the MB instructions in the .mbi file are removed the whole model has been removed, and
cannot be recovered.

Data

The Data tab on the Project Window allows inspection of the data imported into the
project:

The different folders are shown and when they are expanded the dataset labels are listed
along with their icons. When a dataset is selected the form presents the number of varia-
bles, number of observations and matrix type.  Chapter 2 (see “Opening and Inspecting an
Existing Project”, page 22) presents more information about how to inspect projects.§

Sometimes there is a need to take away data from the project. This is done when the
Remove selected dataset button is clicked. The dataset to be removed from the project is
identified in the usual manner, through selecting first the folder and then the dataset label.
A complete folder with all its datasets may also be removed in the same way. When the
Remove selected dataset button is clicked,  the dataset or folder is removed from the
project. There is no undo function for this function, so care needs to be excercised.
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Part 4

Principles of Design and 

Operation

The fourth part of the User’s Guide presents the MB
language in detail. The interfaces to the different
estimation programs are also documented, and it is
described how STREAMS is installed.
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Previous chapters have introduced the basic elements of structural equation modeling
with the MB language. This chapter presents the MB language in greater detail.

Basic Characteristics of the Model Building Language

The Model Building (MB) language has been constructed to take advantage of the posi-
tive characteristics of the other languages for specification of structural equation models
(see Chapter 13 “Estimation Program Interfaces” on page 211), and it also aims to
improve upon these in certain respects. The following are some characteristics of MB:

• Four types of variables may be used as independent and dependent variables: manifest
and latent variables, and residuals in manifest and latent variables.

• Four types of statements about relations, variances, covariances and means of the
variables allow easy specification of a wide range of models.

• In multiple group modeling, groups are refered to with labels in the MB statements.

• Constraints of equality over groups and variables are specified through enclosing lists
of variable and group names in parentheses.

• A general equality constraining statement may be used to impose constraints of
equality on any two free parameters.

• Fixed parameter values are assigned through supplying the parameter value in the
statement.

• The MB instructions are translated into statements in the Amos, EQS, LISREL,
Mplus or Mx languages, and the model is estimated with one of these programs.

• If one or more previously estimated models are available which involve the same
relations, start values may be copied from these.

��
The Model Building 
Language
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• Model specification is done with an intelligent editor, offering push buttons for choice
of commands,  list boxes for choice of variables, and forms for choice of options.

The MB language is described in greater detail below.

Categories of Variables in MB

As has already been mentioned MB differentiates between four categories of variables:
manifest variables, latent variables, errors in manifest variables, and residuals in latent
variables. These categories are described below.

Manifest variables

Manifest variables, or observed variables, are variables which may be directly observed,
such as scores on a vocabulary test and gender, just to take two examples. Variables in
this category are referred to with labels of at most 7 letters or digits. It is recommended
that capital letters are used, e. g. VOC, GENDER. In path diagrams manifest variables are
drawn as rectangles.

Latent variables

Latent variables, or unobserved variables, or factors, are variables which cannot be
directly observed. Such variables typically represent abstract aspects, and phenomena
which cannot be directly observed. A latent variable may, however, be defined in models
if there are enough manifest variables which are indicators of the latent variable. Varia-
bles in this category are referred to with labels of at most 7 letters. It is recommended that
at least one letter in the label is lower-case (e. g., Gf and Gc). In path diagrams latent var-
iables are drawn as ellipses.

Residuals in manifest variables

Residuals in manifest variables, or errors, is a category of variables which is created when
manifest variables are used as dependent variables, for example through being used as
indicators of one or more latent variables. The latent variable is conceived of as an inde-
pendent variable which accounts for scores in the manifest variables, which thus are
dependent variables. However, all variance in the manifest variables is not being
accounted for, because in each manifest variable there are additional sources of influence
beyond the latent variable. These additional sources of variance thus are the errors in man-
ifest variables, and for each manifest variable which is an indicator of a latent variable,
such a residual variable an principle exists. The residual variable may represent pure ran-
dom error, which is not of any interest for model building purposes, or it may represent
systematic sources of variance of potential interest for the model. Variables in this cate-
gory are referred to by adding an ampersand (‘&’) to the name of the manifest variable,
e. g., VOC&. This is done automatically by the MB program, and as soon as a manifest
variable has been used as a dependent variable, the residual variable may be referred to.
The residuals in manifest variables are drawn as ellipses.
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Residuals in latent variables

Residuals in latent variables, or disturbances, exist for latent variables which are used as
dependent variables in structural equation models. In almost all dependent variables there
are additional sources of influence beyond the independent variables included in the
model. It is sometimes desirable to include these residual sources of variance as independ-
ent variables (and sometimes also as dependent variables) in structural equation models.
Variables in this category are formed in the same way as the residuals in manifest varia-
bles, i. e. by adding an ampersand (‘&’) to the name of the latent variable, e. g. Gc&. This
category of variables too is automatically created by MB. In path diagrams residuals in
latent variables are drawn as ellipses.

The MB Statements

MB offers four types of instructions for making statements about RELations, VARiances,
COVariances and MEAns of a set of variables. However, before any of these statements
may be issued it is necessary to describe the problem, and to declare variables and groups.
This is done through a set of statements which are described below.

The TI Statement

This command provides one line with descriptive information about the problem, the
model and the data. The command may be repeated up to 10 times, e. g.

TI Three-factor model for girls, 
TI cognitive variables

The MO Statement

This statement allows specification of several keyword parameters. This is done typically
through filling out the forms under the Model button.

PR=pname The pname  (1-8 characters) is the project name, and is nor-
mally automatically supplied by STREAMS.

NAME=mname The mname (1-60 characters) is the name of the model. If a
model with mname already exists it will be replaced by the
new model.

The MO statements also allow several longer text expressions, which are more or less
self-explanatory, to direct the program operation. These text strings are normally gener-
ated by STREAMS, but if they are entered with an editor, they must be entered exactly as
they are presented here. Different sets of expressions concern different categories of
options as described below.

Start values
Start values: computed by estimation program

Start values may also be copied from previously estimated models (see below)
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Type of matrix to be analyzed
Matrix: CM( Covariance matrix)
Matrix: KM( Correlation matrix)
Matrix: PM( Polychoric correlation matrix)

The default is that the covariance matrix is to be analyzed. If a CM or KM is requested
when the matrix referred to is PM, the statement is disregarded. If a CM is requested when
the matrix in the project is a correlation matrix the statement is also disregarded.

Means
Means not included in model
Means included in model
Always allow latent variable means

The latter alternative implies that no restrictions are imposed on estimation of latent var-
iable means. If this option is not given the means and intercepts of latent variables are
always constrained to zero in the first groups of cases, which is the normal specification
in multiple-group modeling. In certain situations, such as in growth-curve modeling,
means of latent variables need, however, to be estimated in all groups, and in these situa-
tions the option Always allow latent variable means must be supplied.

Means are by default included in the model.

Model type
Model Type: Two Level
Model Type: Incomplete Data 
Model Type: Incomplete Data H1

These options indicate that specialized types of models are to be set up (see Chapters 5
and 6), and when none of these is selected an ordinary model is created.

Multiple groups
One-group model
Separate one-group models
Multiple groups without constraints
Multiple groups with constraints

The option Separate one-group models is only available when LISREL is used as estima-
tion program.

The default is a one-group model, or a multiple-group model with constraints of equality
applied to all parameters.

When models for incomplete or two-level data are fitted the term group  is not adequate,
so the term population  is used instead. In these cases the following options are availa-
ble:

One-population model
Multiple populations without constraints
Multiple populations with constraints

The default is a one-population model, or a multiple-population model with constraints of
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equality applied to all parameters.

Type of model to be generated
Create instructions for: Amos
Create instructions for: EQS
Create instructions for: Mplus
Create instructions for: Mx
Create instructions for: LISREL Y-model
The default is that instructions are generated for the LISREL model formulated in terms
of Y-variables.

Program version
Amos 3.5
Amos 3.6
Amos 4.0
EQS 4
EQS 5
EQS 6
Mplus 1.0
Mx 1.4
LISREL DOS 8.03
LISREL DOS/Extender 8.03
LISREL DOS 8.12
LISREL DOS/Extender 8.12
LISREL DOS/Extender 8.14
LISREL DOS/Extender 8.20
LISREL DOS/Extender 8.30

The LISREL DOS Extender 8.30 program is currently the default, but the default estima-
tion program may be changed. 

The OP Statement

The OP statement is used to transfer options to the estimation program. When the Option
button is clicked the appropriate Option form is produced and may be filled out. The LIS-
REL OU statement (see Jöreskog & Sörbom, 1993a, b), for example, is constructed by
STREAMS and put on the OP statement, from where it is transferred into the LISREL
instructions generated by the pre-processor. The OP statement also transfers options con-
cerning estimation method, goodness-of-fit tests, output, and so on to the Amos, EQS,
Mplus and Mx programs (see Chapter 13).

The STA Statement

One or more previously estimated models may be referred to in one or more STA state-
ments, from which MB copies starting values. Only one model is referred to in each STA
statement. These statements are prepared by STREAMS when the Start Values option on
the Model form is selected. It is possible to use a model estimated with any program as a
source of starting values for any other program. Observe, however, that multi-group EQS
models do not generate start values.
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NAME=mname The mname is the name of a previously estimated model.
The  model should, of course, as far as possible include the
same manifest and latent variables as the model to be esti-
mated.

The DAT Statement

This statement is used to identify the datasets to be included in the model. At least one
DAT statement must be given and it may refer either to a set of raw data, or to a matrix of
relations among observed variables:

FOLDER=label Label is the name of the project folder to be used for selec-
tion of the dataset for which the model is to be estimated
(e. g., Gender).

DATLAB= label Label refers to the dataset to be selected (e. g., boys).

For example:

DAT FOLDER=Gender DATLAB=Boys
DAT FOLDER=Gender DATLAB=Girls

These statements identify two groups of cases, boys and girls, to be included in the model.

The MVR Statement

This command is used to identify the manifest variables to be included in the model. The
MVR statements are created by STREAMS when the MVR  button is clicked. The syntax
of this command is: 

MVR variable list

The variables are referred to with the labels given in the dictionary. Each MVR statement
may only comprise one line, but any number of single-line MVR statements may be used.
The variables will be included in the model in the order listed on the MVR statement. An
example is: 

MVR TEST1 TEST2 TEST5 TEST4

This statement selects four observed variables from the dictionary, and specifies the order
in which they will appear in the model.

The MV2 Statement

This command is used to identify the group-level manifest variables to be included in a
two-level model (see Chapter 6). The MV2 statement is created by STREAMS when the
MV2  button is clicked. The syntax of this command is: 

MV2 variable list

This statement is used to declare variables which have been observed at the group level,
but not at the individual level. If there are no such group-level manifest variables no MV2
statement should be used. Observe that the individual level variables are always available
at the group level in the form of group means, and these variables are always automati-
cally available in STREAMS. The aggregated variables are at the group level referred to
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with a “2” as a prefix to the variable name at the individual level. For example, if an indi-
vidual variable is called TEST1, the corresponding group level variable is called 2TEST1. 

When a manifest variable has been declared as a group-level manifest variable this vari-
able also must have the “2” as a prefix when it is referred to in MB statements. This is
because the MV2 statement refers to the manifest variables in the project dictionary where
no distinction is being made between variables at different levels of observation, while the
MB statements in a two-level model refer to structures at two levels. For example, assume
that the following statement has been made to declare teacher gender, teacher age, and
teacher experience as group-level manifest variables:

MV2 TGEND TAGE TEXP

To use these as independent variables to predict class achievement (2ACH, say), the fol-
lowing REL statement must be used:

REL 2TGEND 2TAGE 2TEXP -> 2ACH

The fact that the character “2” is used as a prefix in variable labels to separate group level
variables from individual level variables implies that at most 6 characters should be used
in variable labels when two-level modeling will be done.

The LVR Statement

This command is used to declare the latent variables in the model and is prepared by
STREAMS when the LVR  button is clicked. The syntax is:

LVR variable list

The names of latent variables may be freely chosen, but it is recommended that they
should contain at least one lower-case letter. If upper-case letters are used for manifest
variables this makes it easier to separate the two categories of variables both in input and
in output. An example is: 

LVR g Gc Gv

The LV2 Statement

This command is used to declare the latent variables at the group level in a two-level
model (see Chapter 6) and is prepared by STREAMS when the LV2 button is clicked. The
syntax is:

LV2 variable list

The names of latent variables may be freely chosen, but it is recommended that they
should contain at least one lower-case letter, and at least one letter which indicates that
this is a group-level latent variable. It may thus be good practice to use the letter W as a
suffix in labels for the individual latent variables, and the letter B as a suffix in labels for
the latent variables at group level. Another possibility is to use the “2” as a prefix for the
group level latent variable labels as well. Thus, two examples could be: 

LV2 gB GcB GvB

or

LV2 2g 2Gc 2Gv
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The REL Statement

The REL statement expresses a relation between one or more independent variables and
one or more dependent variables for one or more groups. The general form of the com-
mand is:

REL [ Value ] [(Grp1 Grp2 ...)] (Indep1 Indep2 ...) -> (Dep1 
Dep2 ...)

Several of the components of the statement are optional:

• If a Value is given immediately after the command name, this is interpreted as a fixed
parameter value which applies to all the relations implied by the statement. If Value is
omitted, coefficients for the relations are estimated as free or constrained parameters.

• If one or more group labels are supplied the REL statement is interpreted to apply to
these groups of cases. If no group labels are included, the statement is interpreted to
apply to all groups of cases included in the model. The Model form allows the user to
determine whether the default is to have all parameters constrained over groups, to
have no constraints over groups, or if separate one-group models are to be generated.

• If variable or group labels are enclosed in parentheses, equality constraints are
imposed over these variables or groups of cases. If parentheses are omitted there are
no equality constraints.

• The REL statement must include at least one independent variable, and at least one
dependent variable.

• By default variances of independent variables and residuals are automatically
introduced as free parameters.

The simplest possible REL statement thus identifies a relation between one independent
variable, which may belong to any one of the four categories of variables, and one depend-
ent variable, which may be a manifest or a latent variable (residuals may be used as
dependent variables as well, but such models are usually equivalent with models that
specify the variables themselves to be dependent variables, and they may be difficult to
conceptualize). An example of a single REL statement is:

REL g -> TEST1

Here the independent variable is a latent variable and the dependent variable is a manifest
variable. Because latent variables do not have a scale, a manifest variable is typically used
to define the scale of the latent variable through a fixed relation of unity. The first manifest
variable encountered in a REL statement for an independent latent variable is used to
define the scale of the latent variable, through assigning a fixed value of unity for this rela-
tion. Thus, TEST1 will be the standardization variable if this is the first statement in which
the latent variable g is used. If another manifest variable is preferred as the standardization
variable for g we can achieve that through the SCL statement (see below). 

Manifest variables may also be used in REL statements, e. g.:

REL GENDER -> TEST1

In this example both the independent variable and the dependent variable are manifest
variables. Because manifest variables may not be directly involved in relations with one
another in LISREL the MB program automatically creates one latent variable for each
manifest variable.
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In the following example the residual in TEST1 is used as an independent variable:

REL TEST1& -> TEST2

Here too the MB program creates a latent variable to represent the residual.

Latent variables may also be used as independent and dependent variables, e. g.:

REL g -> Gc

Once a latent variable has been used as a dependent variable, a residual is made available
for use in further modeling statements, e. g.:

REL Gc& -> TEST2

If we want to assign the fixed parameter value of 2.5 to the coefficients for the relations
between g and three manifest dependent variables we can do that with the statements:

REL 2.5 g -> TEST1 
REL 2.5 g -> TEST2 
REL 2.5 g -> TEST3 

A more efficient way to accomplish this would be to list the three dependent variables in
the same statement, i. e.:

REL 2.5 g -> TEST1 TEST2 TEST3

When more than one independent variable and more than one dependent variable is spec-
ified there will be one relation for each combination of variables. For example, if GEN-
DER and AGE are independent variables and TEST1, TEST2 and TEST3 are dependent
variables, the following statement specifies six relations:

REL GENDER AGE -> TEST1 TEST2 TEST3

The coefficients for the six relations are estimated as free parameters. We may, however,
wish to impose equality constraints on some of the relations. The following statement
imposes constraints of equality over the three dependent variables.

REL GENDER AGE -> (TEST1 TEST2 TEST3)

This statement thus specifies two coefficients to be estimated for the six relations: one for
the regression of the three dependent variables on GENDER, and one for the regression
of the three dependent variables on AGE. If we want to impose equality constraints for
only two dependent variables (TEST2 and TEST3, say), more than one REL statement
must be used, because the syntax of the REL statement does not allow for a mixture of
constrained and unconstrained relations. We could thus write:

REL GENDER AGE -> TEST1
REL GENDER AGE -> (TEST2 TEST3)

These two statements will specify four different coefficients to be estimated for the six
relations.

Constraints of equality may also be imposed on the independent variables. Thus, the fol-
lowing statement specifies six relations to be estimated, but with constraints of equality
imposed on the coefficients for the two independent varibles:

REL (GENDER AGE) -> TEST1 TEST2 TEST3
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If constraints of equality are imposed both on dependent and on independent variables the
six relations will have one common estimated coefficient.

So far it has been assumed that there is only one group of cases but some examples of mul-
tiple group modeling will now be considered. Assume that two groups of cases have been
selected from the dictionary through the statements: 

DAT FOLDER=Gender DATLAB=Boys
DAT FOLDER=Gender DATLAB=Girls

If the REL statement does not include any group label the relations will apply in both
groups, and the parameters will be estimated under constraints of equality over the two
groups if that has been selected as the default, or without any constraints of equality if that
option has been selected as the default.. The following statement also estimates the param-
eters without any equality constraints over groups:

REL Boys Girls g -> TEST1 TEST2 TEST3

Another way to express this is to use the following two statements:

REL Boys g -> TEST1 TEST2 TEST3
REL Girls g -> TEST1 TEST2 TEST3

It should be observed that these alternative statements do not produce exactly the same
model. This is because in the latter case there are no equality constraints imposed on the
residuals of the manifest variables, while such are imposed in the former specification.

If we want to impose constraints of equality for an identified (sub)set of groups, this can
be done through enclosing the list of group labels in parentheses, e. g.:

REL (Boys Girls) g -> TEST1 TEST2 TEST3

Observe that it is not possible to use more than one set of parentheses for identifying group
constraints in the same statement; nor is it possible to mix different types of expressions
in the same statement. Thus, more complex patterns of constraints over different subsets
of groups must be expressed on several different REL statements.

The VAR Statement

This command identifies a list of variables the variances of which are to be estimated as
free, fixed or constrained parameters in the model. The statement is constructed by
STREAMS when the VAR  button is clicked. The syntax is:

VAR [ Value] [(Grp1 Grp2 ...)] (variable list)

The optional constant is used to assign Value to one or more fixed parameters in the same
way as in the REL statement. The rules described for reference to multiple groups in the
REL statement also apply to the VAR statement. As is true for all the other statements,
the parentheses around lists of variable or group labels indicate constraints of equality and
are optional.

For example, the following two statements imply that the variances of errors in manifest
variables are constrained to be equal over grades 8 and 9, but unconstrained in grade 7:

VAR Grade7 TEST1& TEST2& TEST3& 
VAR (Grade8 Grade9) TEST1& TEST2& TEST3& 
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As has already been mentioned each independent variable referred to in a REL statement
is by default assumed to have a variance to be estimated as a free model parameter, and
each dependent variable is assumed to have a residual variance to be estimated. Thus in
many cases the VAR statement may be omitted. 

The COV Statement

This command identifies a list of variables the covariances of which are to be estimated
as free, fixed or constrained parameters in the model. The command is constructed by
STREAMS when the COV button is clicked. The syntax is: 

COV [ Value] [(Grp1 Grp2 ...)] (variable list)

The rules for identifying fixed parameters and constraints over groups which have been
described for the REL and VAR commands apply here too. For example:

COV Males Females Gf Gc Gv

specifies the model to estimate covariances among the independent latent variables Gf
and Gc, Gc and Gv, and Gf and Gv, in such a way that the two identified groups obtain
unconstrained estimates. 

The statement

COV TEST1& TEST3&

specifies a covariance to be estimated between the errors of the manifest variables TEST1
and TEST3. 

It should be observed that the COV statement does not imply any effect with respect to
the variances of the variables.

The MEA Statement

This statement identifies a list of variables the means of which are to be estimated as free,
fixed or constrained parameters in the model, and it is constructed by STREAMS when
the MEA  button is clicked. The syntax is:

MEA [ Value] [(Grp1 Grp2 ...)] (variable list)

For example, the statement:

MEA Gf Gc Gv

specifies the model to estimate means of the latent variables Gf, Gc, and Gv. It must be
observed, however, that normally means of latent variables may only be estimated when
the analysis comprises two or more groups of cases. In a one-group analysis where means
are available the means on observed variables are estimated as free parameters, and means
on latent variables are constrained to be zero (unless the option "Always allow latent var-
iable means" has been selected, see page 184). As in the other MB statements the optional
constant is used to identify fixed parameters, and the rules for identifying constraints over
groups are the same as in the other MB statements.
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The EQ Statement

The EQ statement is used to constrain any two free parameters to be equal. The syntax is:

EQ Statement1  AND Statement2

where the two statements identify one free parameter each. To impose constraints of
equality over more than two parameters the EQ statement is repeated the necessary
number of times with the same Statement1 and another Statement2.

It should be observed that the parentheses which are available to impose constraints of
equality in all statements generally is the most simple and convenient method to impose
constraints of equality. This method is not general, however, and there are many situations
where it is not possible to express the needed constraints with the parentheses. If, for
example, we need to express constraints of equality on the regressions of two different
manifest variables on two different latent variables this cannot be done with the parenthe-
ses. Or if, to take another example, we want to constrain a variance in a latent variable to
be equal to regression coefficient this cannot be done with the parenthesis method. 

The EQ statement is general, however, and may be used to express any kind of equality
constraint. Suppose, for example, that we want to constrain a series of regressions
between six variables (y1-y6) in a simplex model to be equal. This may be done with the
following set of EQ statements:

EQ REL y1 -> y2  AND  REL y2 -> y3
EQ REL y1 -> y2  AND  REL y3 -> y4
EQ REL y1 -> y2  AND  REL y4 -> y5
EQ REL y1 -> y2  AND  REL y5 -> y6

An EQ statement to constrain the error variance of the manifest variable X1 to be equal
to the regression coefficient for the regression of X1 on x would be:

EQ VAR X1&  AND  REL x -> X1

Defining Scales

The SCL statement may be used to identify one variable as the scaling variable for a latent
variable. This thus implies that there will be a fixed relation of unity between these vari-
ables. The SCL command is issued when the SCL button is clicked. The syntax is: 

SCL variable1 variable2

where variable2 is used to define the scale of variable1. For example, the command:

SCL g NUMSER

implies that the latent variable g will have its scale defined by the observed variable
NUMSER. The command

SCL Gv Vz

causes the latent variable Gv to have its scale defined by the latent variable Vz. 

Limitations of the MB language

Even though the MB language allows a wide range of models to be formulated, not all
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types of model may be expressed. Thus, the general non-linear constraints which are sup-
ported both by LISREL and EQS cannot be expressed in MB. 

It should also be observed that the automatic assignment of scales to latent variables
causes some order dependency among MB statements. Thus, in a full structural equation
model the measurement models must be specified first, because otherwise the latent var-
iables will be used as scaling variables.

To formulate models which are not supported by MB, the language may be used to specify
a model which is as close as possible to the intended one. After the instructions have been
generated, they may be edited into the final model.

Constructing the MB instructions

As has already been described the actual production of the MB statements is typically
done by STREAMS, and it has also been described how the user directs the process
through interaction with an intelligent editor and/or through drawing path diagrams. Here
more information is given about how to use the forms of the graphical user interface.

The Model form

When the Model button on the Modeling toolbar is clicked the Model form is presented:

The Model form has five tabs:

• Model Description
• Model Type
• Start Values
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• Matrix Type
• Comparison Model

Model Description
The Model Description tab allows the user to give a name to a new model by simply writ-
ing the name into the Model Name field (1-8 characters). If an old model is edited, a name
that has previously been entered into this field may be changed. This corresponds to the
Save Model as ... function under the Model menu.

A description of the model must also be provided in the Model Description field. This
information is used by STREAMS to construct the TI statements. 

Model Type
When the Model Type tab is selected the Model form presents options concerning the
basic structure of the model. 

There is a choice of including or not including means on manifest and latent variables in
the model. The default is that means will be included if means are available in the project. 

There is also an option labelled Always Allow Latent Variable Means. When this option
is not checked, which is the default, the program prevents estimation of models with latent
variable means in one-group models. This is because in most cases such models are not
identified. However, in some types of models, such as growth curve models (e. g., Willett
& Sayer, 1994), latent variable means must be estimated, so for this type of models this
option must be used. 

In a one-group model inclusion of means does not affect the results in any way if con-
straints of equality are not imposed over the means, because the means of the manifest
variables are treated as free parameters to be estimated, and there are as many parameters
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as there are manifest variables. If the model in a later step is to be developed into a mul-
tiple-group model these estimates may, however, be useful as a source of start values.
When the model comprises multiple groups different kinds of models are created depend-
ing on whether means are included or not. The decision whether to include means or not
must thus be made on the basis of the nature of the substantive problem that is being stud-
ied.

This form also offers check-boxes for identifying an Incomplete Data Model, Two Level
Model and H1 model. These options may be used to specify certain types of models for
complex observational data. Detailed information about these advanced models is given
in Chapters 5 and 6.

In the Group(s) frame four options are offered, three of which are of any relevance only
when a multiple group model is to be specifed:

• One-group model. The model comprises one group of cases only.

• Constraints over Groups. This option implies that by default parameters will be
constrained to be equal over groups. Thus if no explicit reference is made to group
labels in REL, VAR, COV or MEA statements, equivalence restrictions will be
imposed.

• No Constraints over Groups. When this option is selected the default is to have no
constraints of equality over groups. To constrain parameters over all groups, or over a
subset of groups, the group labels must be explicitly listed in the MB statements and
enclosed in parentheses. 

• Separate One-Group Models. This option implies that as many one-group models
will be generated as there are groups, and there are, of course, no constraints over
groups. This option is available only when LISREL is used as the estimation program.

When an Incomplete Data Model or a Model for Two Level Data is fitted the model
always includes more than one group of cases, even though they may represent one pop-
ulation only. However, such models may be fitted to multiple populations as well, so
when such models are requested the term population is used instead of the term group
(e. g., Constraints over Populations).

Start Values
When the Start Values tab is selected the Model form offers several options about proce-
dures for determining start value for free parameters.



196 The Model Building Language  

Structural Equation Modeling Made Simple

The three options are: 

• Computed by Estimation Program. This option implies that STREAMS will rely
on the procedures in Amos, EQS, LISREL and Mx for computing start values and will
make no attempt to copy or guess start values. LISREL uses an elaborate procedure
for determining start values (or “initial estimates”, as these are called in the LISREL
output), and for many models these are very close to the final estimates (see Jöreskog
& Sörbom, 1989b, pp. 17-18 for a description of the procedure used to compute the
initial estimates).

• Copy from Previously Estimated Models. When this option is selected the Add
Model button is enabled, and when this button is clicked a file open dialogue allows a
model to be identified. One or more of models may identified this way. On the basis
of names of manifest and latent variables STREAMS determines which sections of
the previous model overlap with the current model, and copies start values accord-
ingly. When manifest and/or latent variables are added, or new relations are intro-
duced, start values will of course not be available in the previous model and in these
cases STREAMS guesses start values (at present the guessed value is .7 for all param-
eters except for covariances which are guessed to be .1). If no estimates are available
STREAMS will rely on the estimation program’s start value procedures instead as
described below (see Chapter 7 for an extended discussion about how to run
STREAMS optimally).

• Copy from Previous Model with Same Name. When this option is selected, which
is done through clicking the check-box, an instruction is generated to take start values
from a previous version of the current model. This instruction may be used in
combination with the other two. If Copy from Previously Estimated Models and
Copy from Previous Model with Same Name are both used, the order of the
statements is such that start values from the current model, when available, will
override start values from other models. It is recommended that this option is
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regularly used. Sometimes, however, a previous model may have generated parameter
estimates which will make it difficult to find the correct solution, and in this case this
option must be disabled. Because this may happen it is important that a new model
name is chosen now and then, and a reference to the previous model is included.

Matrix Type
When the Matrix Type  tab is clicked, three options concerning the type of matrix to be
analyzed is presented: Covariance Matrix , Pearson Correlation Matrix, or Polychoric
Correlation Matrix are offered. 

The default is Covariance Matrix. 

These matrices and the implications for estimation of choice of the different matrices is
discussed at length by Jöreskog & Sörbom (1989a, 1993b), so this discussion will not be
repeated here. It must be emphasized, though, that different estimators are differentially
appropriate for the different types of matrices. 

With maximum-likelihood estimation the covariance matrix is the recommended choice,
and when a polychoric correlation matrix is used Generally Weighted Least squares esti-
mation is recommended. In the latter case a weight matrix must be available as well (see
Chapter 10).

Comparison Model
The Comparison Model tab may be used to select a model with which the goodness-of-
fit of the model to be estimated will be compared. 
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Use of a comparison model is of the greatest value when missing-data models are esti-
mated (see Chapter 5). However, a comparison model may also be used when ordinary
models are fitted, in order to test if there is a significant difference between a more con-
strained and a less constrained model.

The Options form

When the OK  button is clicked on the Model form a set of MB instructions is written into
the editor area if MB mode is used. If PD mode is used the same statements are con-
structed, but are not displayed. One of the statements is the OP statement which specifies
options for the selected estimation program. Thus, if LISREL is used the OP statement
includes a standard LISREL OU statement (Jöreskog & Sörbom, 1993b). When the pro-
gram is run this statement is transferred to LISREL, with some further information added
to it. It is possible to change the default OU statement, however. One way to do this is to
double-click on the OP statement, and another way is to press the Options button. Both
these methods bring forward the Options form which is appropriate for the selected esti-
mation program: Amos Options, EQS Options, LISREL 8 Options, Mplus Options or Mx
Options. Detailed information about these options is given in Chapter 13 “Estimation Pro-
gram Interfaces” on page 211.

The Datasets form

The groups to be included in the model are identified with the Datasets form. No default
is available, so a choice has to be made. This is done through clicking the DAT button.
When this is done the Datasets form is shown.
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The list-box on the left-hand side presents the folders that have been defined for the
project, and when one of these is selected the dataset labels which have been defined for
this folder are displayed. To identify a dataset both the folder and the dataset label must
be selected. When this has been done for one or more datasets, the button marked with an
arrow may be clicked, which causes the selected datasets to be moved to the list-box on
the right-hand side. Datasets may also be deselected through moving them back again.

When the OK  button is clicked DAT statements corresponding to the selections made are
constructed. For example, if the folder Gender has been chosen and the two datasets with
labels Males and Females have been selected, STREAMS inserts the following two state-
ments into the edit area:

DAT FOLDER=Gender DATLAB=Males
DAT FOLDER=Gender DATLAB=Females

If we want to add or remove datasets the DAT button may be clicked at any time to
retrieve the Datasets form. Double-clicking on a DAT line will also produce this form.

When a two-level model or an incomplete data model has been requested the Datasets
form also offers facilities for assigning datasets to populations.
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For each group there is a default classification into populations. For two-level models this
is done on the basis of the common prefix of the dataset label, and for incomplete data
models it is done on the basis of the folder name.

If, however, the default classification is not the correct one the population assignment is
easily changed: Select one or more datasets from the Selected datasets list, enter a pop-
ulation label in the Population field, and click the Change button. This process is then
repeated until all datasets have been assigned to the correct population.

The Manifest Variables form

The MB language requires that all manifest variables are declared, which is done with the
MVR statement. To select all variables or a subset of variables from the project the MVR
button is clicked. When this is done the Manifest Variables form is shown.
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Variables are identified through selecting one or more variables in the list on the left-hand
side and when the arrow button is clicked these variables are moved to the list on the right-
hand side. This process may be repeated any number of times, and the same procedure
may also be used to move variables from the right-hand side to the left-hand side.

When the OK  button is clicked one or more MVR statements are put into the edit area by
STREAMS. For example, if the variables WORD, DS, READ, DTM, GI and ERC were
selected the MVR statement would be:

MVR WORD DS READ DTM GI ERC

If there are more variable lables than may be fit into one line, STREAMS uses more than
one statement. To change the selection of variables the MVR button may be clicked again,
or an MVR statement may be double-clicked.

When the option Autoremove variables on the General tab of the Preferences menu is
checked variables which are removed from an MVR statement will also be removed from
all the MB statements.

The Latent Variables form

The latent variables must be declared as well, and because these are unknown to
STREAMS labels of the latent variables must be supplied. This is done on the Latent Vari-
ables form, which is presented when the LVR  button is clicked.
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Labels of the latent variables are entered in the top white field, and then the ADD button
is clicked, which moves the new label to the list of latent variables. This process is repeat-
ed as many times as there are labels to be entered. To delete an already entered label, se-
lect it in the list and click the Delete button. When the list contains the labels for the latent
variables to be included in the model, click the OK  button. This will cause STREAMS to
construct an LVR statement, and add it to the edit area. 

If, for example, the latent variables Verb and Reas are entered, STREAMS inserts the line: 

LVR Verb Reas

Latent variables may be added and deleted at any time, through double-clicking on the
LVR statement, or through clicking the LVR  button.

When the option Autoremove variables on the General tab of the Preferences menu is
checked variables which are removed from an LVR statement will also be removed from
all the MB statements in which they appear.

The Relations form

When groups have been selected, and the manifest and latent variables have been
declared, the actual model specification may be started. The Model Building toolbar
offers a set of buttons (REL, VAR, COV, MEA and SCL) some or all of which may be
used in the process of model building. The buttons may be used both in MB mode and in
PD mode.

Most models involve one or more relations, and to specify these the Relations form is
used. Clicking on the REL  button causes this form to be shown.
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This form displays the variables available for modeling in the Variables list on the left
hand side. This list includes the declared manifest and latent variables, along with residual
variables for those manifest and latent variables that have previously been defined as
dependent variables. The residual variables have the same label as the dependent varibles,
but with an ampersand (&) added to the label. 

The form also presents one list-box for independent variables, and one list-box for
dependent variables. Initially these are empty (unless the Relations form has been opened
by double-clicking on a REL statement) but variables in the Variables list may be moved
to either of these list boxes. This is done through selecting one or more variables in the
list using the standard techniques, and then clicking the appropriate button with an arrow.
The same technique may be used to move variables from the lists of independent or
dependent variables to the Variables list.

Next to the list boxes for independent and dependent variables are check boxes labeled
Equality . When these are checked (through clicking) equality constraints are imposed for
the marked category of variables as has previously been described. 

The Relations form also offers two buttons: Groups and Fixed Value. The Fixed Value
button is used to assign a common fixed value to all the relations defined by the REL state-
ment. When this button is clicked the Fixed Value form is shown:
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This form offers the options Zero, Unity  and a user-specified
value. If the Other option is chosen any number may be en-
tered in the field. Clicking OK  causes the Relations form to
appear again.

The Groups button causes the Groups form to be shown.

This form is used to select one or more groups
for which the REL statement is to apply. The
default is that the REL statement applies to all
the groups identified through GRP statements.
However, even when all groups are to be in-
cluded it is often useful to mention the groups
explicitly in the REL statement. This is effect-
ed either through the check box labeled Select
All  or through identifying all groups in the list
as selected. To select a sub-set of groups these
are high-lighted in the list. When the OK  but-
ton is clicked the Relations form appears again.

When the relations have been specified as desired the OK  button or the Add button on the
Relations form is clicked. This causes STREAMS to contruct a REL statement which is
inserted with the other statements in the edit area. When OK  is clicked the Relations form
is closed, but when Add is clicked it stays open. An example is:

REL (Males Females) Verb -> WORD READ GI ERC

In order to change an existing REL statement it may be double-clicked, or the button Edit
Line may be clicked, with the insertion point on the line to be edited. To introduce another
REL statement the REL button should be clicked again.

The Covariances form

Covariances among manifest variables, latent variables, residuals in latent variables, or
among errors in manifest variables are essential aspects of many structural equation mod-
els. When the COV button is clicked the Covariances form is shown:
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This form is used to select a set of variables among which covariances are estimated. In
the Variables list box on the left hand side the same set of variables as was described in
connection with the Relations form are shown. Using the procedure described above two
or more of these variables may be moved to the empty list box on the right hand side. The
selected variables will be included in a COV statement which is constructed when the OK
button, or the Add button (which leaves the form open), is clicked.

The Covariances form also includes a button labeled Grid . When this button is clicked,
with some or all of the variables in the Variables list selected, the Set Covariances form
is shown:
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A grid is presented with the selected variables as rows and columns. The cells of the
matrix may be clicked, in which case a 0 is entered. Each cell marked in this way will gen-
erate a COV statement when the OK  buttons on the Set covariances form and the Covar-
iances form are clicked.

The Covariances and the Set covariances forms also offer Group and Fixed Value but-
tons. These call up the Group and Fixed Value forms described above, and these forms
have the same function here.

An example of a COV statement produced by STREAMS may be:

COV Verb Reas

This statement implies that the two latent variables Verb and Reas are allowed a covari-
ance, because STREAMS by default assumes all variables to be uncorrelated.

The Variances form

Every independent variable introduced in a REL statement is in STREAMS assumed to
have a variance which is estimated as a free parameter, and every dependent variable is
assigned a residual, which also has a variance. The VAR statement may thus often be ex-
cluded from the MB instructions. 

However, there also often are situations in which the VAR statement must be included,
because variances are to be constrained to be equal over groups or variables, or because
they are to be assigned a fixed value. The Variances form, which is presented when the
VAR  button is clicked, is used to accomplish these tasks. It looks exactly like the Covar-
iances form, and it is used in the same way.
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If, for example, we want to constrain the variances of the errors in the manifest variables
DS and DTM to be equal, this is accomplished with the statement:

VAR (DS& DTM&)

The Means form

Means on latent variables are by default assumed to have a mean of zero in all groups
when general constraints of equality are imposed over groups. When no constraints of
equality are imposed the means on latent variables are fixed to zero in the first group, and
are left free to be estimated in the other groups. Means on residuals in latent and manifest
variables are by default assumed to be zero in all groups. In a one-group analysis means
on manifest variables are by default left free to be estimated, and in multiple-group anal-
yses constraints of equality are imposed on the means of manifest variables.

Statements about means are made with the Means form, which is presented when the
MEA  button is clicked. This form has the same appearance as have the Covariances and
Variances forms, and it is operated in the same way as these:
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For example, to set the means on the latent variables Verb and Reas free for the group of
females the following command would be issed:

MEA Females Verb Reas

The Equality Constraints Form

As has already been emphasized the EQ command needs only rarely be used, because
most of the time the options for equality constraints available in all statements may be
used. But in some cases a more general equality constraining statement is needed, which
is obtained with the Equality Constraints form.
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The list-box to the left shows all, or a subset of, the free parameters in the model expressed
in terms of an MB statement for one parameter. The check-boxes at the top of the form
may be used to restrict the list of statements to comprise only certain categories of state-
ments (relations, covariances, variances and means). The parameters for which the equal-
ity constraints are to apply are selected using the ordinary techniques and moved to the
list-box to the right. From this information one or more EQ statements are generated when
the OK  button is clicked. Equality constraints for two parameters requires one EQ state-
ment, constraints for three parameters requires two EQ statements, and so on. An example
could be:

/* Start EQ Block
EQ REL Gsc -> SDQGSC AND REL Esc -> SDQESC
EQ REL Esc -> SDQESC AND REL Msc -> SDQMSC
/* End EQ Block

The Scale Form

STREAMS assumes that the first manifest variable to which a latent variable has a rela-
tion will be used to set the scale of the latent variable through a fixed relation of unity. In
higher-order models the first lower-order factor to which a higher-order factor has a rela-
tion is in a similar fashion used to set the scale of the higher-order factor. These choices
are not necessarily the best, however, and the Scale form may be used to select another
variable for establishing a scale in a latent variable. The Scale form is presented when the
SCL button is clicked:
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The variable list is presented in a list-box, and the form allows selection of one Variable
to be scaled (i. e., the latent variable) and one Scaling variable (i. e., the manifest variable
or another latent variable). For example, to use READ instead of WORD as the scaling
variable for the latent variable Verb the following statement would be issued: 

SCL Verb READ
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The present chapter provides some further information about the SEM estimation pro-
grams with which STREAMS communicates, and describes characteristics of the inter-
face.

Languages for Structural Equation Modeling

Several excellent computer programs are available to specify, estimate, and test structural
equation models, such as Amos (Arbuckle, 1997), EQS (Bentler, 1995), LISREL (LInear
Structural RELations; Jöreskog & Sörbom, 1989a, b; 1996b, c), Mplus (Muthén &
Muthén, 1998) and Mx (Neale, 1995). LISREL offers two languages for model specifica-
tion. One is the LISREL language (Jöreskog & Sörbom, 1989), and the other is a language
with a simplified syntax called SIMPLIS (Jöreskog & Sörbom, 1996c). 

Current releases of all SEM program offer a "path diagram" interface, with which models
may be specified and respecified, and results are displayed. However, the diagram repre-
sentation is translated into a text-based language, which is interpreted by the computer.
The different programs have their own languages, the characteristics of which are impor-
tant for what kinds of models may be formulated, and also for the amount of effort needed
to specify a model. Because the path diagram interfaces are of limited utility in many situ-
tations, and particularly so when large and complex models are specified, the SEM user
needs to learn at least one language.

The LISREL language

The LISREL language offers a set of 13 parameter matrices which are used to specify
relations between variables of different kinds (e. g., latent independent variables and man-
ifest independent variables, latent dependent variables and manifest dependent variables;
and latent dependent and latent independent variables) and variances and covariances for
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different categories of variables (e. g., covariance matrices for latent independent variab-
bles, and for residuals in manifest and latent variables). This languge allows models to be
created with great freedom and precision. The resulting models also tend to be efficiently
estimated by the LISREL program. It is, however, a somewhat tedious and error-prone
task to specify a large model in the LISREL language, which partly is because variables
are refered to by numbers only.

The SIMPLIS language

The SIMPLIS language allows simple specification of relations between observed and
latent variables, and statements may be made in a free form about variances and covari-
ances of independent variables. Statements are made in terms of labels of latent and man-
ifest variables, so in most cases the model specification is extremely simple. The
SIMPLIS language is somewhat limited, however, because it does not allow relations
which involve residuals. Specification of multi-group models also is somewhat tedious.
SIMPLIS is not supported by the current version of STREAMS.

The LISREL 8 program translates the SIMPLIS statements into a sequence of statements
in the LISREL language. In this way an efficient model specification is obtained without
the user having to bother with the complicated details of the LISREL languge.

The EQS Language

The EQS program also offers a relatively simple language with which models may be for-
mulated as a set of equations in terms of the variables. EQS has a strong affinity to the
general RAM (Reticular Analysis of Moment structures) framework described by McAr-
dle and McDonald (1984). In contrast to SIMPLIS, EQS makes the residuals in manifest
and latent variables available as independent variables. One disadvantage of EQS, how-
ever, is that start values for the iterative solution of the equations must be supplied by the
user, while these are computed by Amos and LISREL. As in SIMPLIS the specification
of models for multiple groups is done through one specification for each group, and
through statements which specify constraints across groups.

The Amos Language

The Amos language, which is referred to as Amos Text by Arbuckle (1997), also is based
upon the RAM specification. Amos Text, which is available in Amos 3.6, is a simple and
general language, which offers the same degree of generality as EQS. However, unlike
EQS, Amos does not require specification of start values. The Amos language offers an
elegant method for imposing equality constraints on parameters, through assigning the
same label to parameters which are constrained to be equal. This feature makes it rela-
tively easy to specify multi-group models with Amos. With Amos 4 the Amos Text lan-
guage has been replaced with Amos Basic, which has similar structure, but which is more
general and powerful because it has the capabilities of a programming langtuage.

The Mplus Language

The Mplus language also is a simple and general language, which is somewhat similar to
Amos text. Thus, a smilar method for imposing equality constraints on parameters is used
in Mplus as in Amos. The Mplus language also offers built-in support for specification of
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two-level models and for several other complex type of models. The Mplus program has
limited capabilities for computing start values, so these must often be supplied in the lan-
guage statements. In the Mplus language no clear distinction is made between residuals
and other variables, which implies some restrictions on the generality of the type of mod-
els which may be formulated (for an example, see page 71).

The Mx Language

The Mx program (Neale, 1995) is a structural equation modeling package, which offers
almost complete generality and flexibility. The program is based on a matrix algebra proc-
essor, and a general optimizer, and these tools make it possible to specify and estimate all
standard SEM models, and also complex non-standard models, in terms of matrix algebra
expressions. The flexibility and power of Mx is, however, bought at the price of a rela-
tively high level of complexity, which makes the Mx language inaccessible to many sub-
stantively oriented SEM users.

Advantages and Disadvantages of SEM Programs

There are both advantages and disadvantages associated with each of the systems. Never-
theless, modelers tend to commit themselves to use of one program or language only,
which probably has to do with the fact that it is quite tedious and confusing to prepare
data, and to specify and respecify models for different systems. But with STREAMS it is
easy to change from one system to another, which makes it quite feasible to use more than
one program in the same modeling project. This makes it possible to exploit the comple-
mentary strengths of the programs. In many cases these advantages probably are so great
that users who only have access to one program should acquire one or more of the other
programs as well.

For example, LISREL 8 offers excellent functions for determining start values for the iter-
ative solution of the system of non-linear equations involved in the estimation process and
it generally is fast and efficient. An EQS or Mplus model may be supplied with start val-
ues which have been determined from parameter estimates computed by LISREL in a pre-
vious modeling step (or vice versa). EQS and Mplus, on the other hand, offers estimators,
and statistics for evaluating goodness of fit which are not available in Amos or LISREL.
As is demonstrated in Chapter 7 the programs are differentially effective for different
kinds of models, EQS being very good at one-group models, but quite inefficient when
estimating multiple-group models. Other examples of advantages and disadvantages of
the estimation programs could easily be cited, but it should also be stressed that user expe-
riences and judgement differ greatly (see, e. g., Byrne, 1995, for a comparison between
EQS and LISREL).

Types of Models Supported for Different SEM Programs

There are certain restrictions on which types of models are supported for different lan-
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guages. The table below presents an overview:

All the different model types are supported when Amos, LISREL or Mx are used. How-
ever, because EQS does not write estimation output to files when multiple group models
are estimated it is not possible to support post-processing of output from such models.
Models for incomplete data and two-level models are multiple-group models, so such
model types cannot be supported for EQS.

For Mplus models with residuals as independent variables are not supported, because the
Mplus language does not make a distinction between residuals and other kinds of varia-
bles. There also are some restrictions on the types of two-level models supported (see
“Specifying Models for Two-Level Data”, page 99), and only a subset of the advanced
features offered by Mplus are supported by STREAMS.

The Options Forms

For each SEM program there is an Options form. These are described below.

The Amos Options form

This form offers four main categories of options on four tabs:

• Input
• Estimation
• Bootstrap
• Output
The Amos (Text) program offers a very large number of options, which are specified
through directives, the first character of which is a dollar sign. Most of these directives
may be specified through prespecified choices on the Amos Options form, but some are
specified through selecting directives from the list supplied in the Input category.

TABLE 3. Types of models supported for different languages

LANGUAGE

Model Type Amos EQS Mplus Mx LISREL

One-group model (pre- and post-
processing)

X X X X X

Multiple-group model (pre-pro-
cessing)

X X X X X

Multiple-group model (post-pro-
cessing)

X X X X

Models with residuals as indepen-
dent variables

X X X X

Models for incomplete data X X X X

Models for two-level data X X X X
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Input
The Input category offers check boxes to select some options concerning the nature of
the data. 

The Unbiased Covariance
Matrix  option generates the
$unbiased directive, which
should be selected when a co-
variance matrix has been com-
puted with N-1 as the number
of observations. STREAMS
computes such matrices, so
this option should be used
when matrices computed by
STREAMS are analyzed.

When the Missing Value
Code option is checked a
value (default -1) may be sup-
plied which indicates a miss-
ing value in raw data. The
same missing data code must
thus be used for all variables.
When this option is selected
Amos uses a special missing-

data estimation technique (see Chapter 5 for further information). The Normality Check
option may also be used with rawdata as input, and causes a test of multivariate normality
to be computed.

The Input  tab also offers a list of directives, which may not be selected in any other way.
Clicking one of these causes it to be moved into the box labeled Other Directives. Some
of the directives must also be supplied with a numerical parameter, which is simply done
through writing the number. To remove a directive from the list, the ordinary text editing
techniques are used.
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Estimation
The Estimation tab allows
choice of different estimation
methods, and of some other
options which govern the
process of estimation. It is
also possible to restrict the
number of iterations and the
time for estimation; the
default is that there are no
such restrictions.

Bootstrap
The Bootstrap tab is used to
ask Amos to perform boostrap
estimation of standard errors,
and other statistics. 

When the check-box labeled
Number of Boostrap Samples
is clicked, the number of sam-
ples may be supplied. When
this box is not checked, no
bootstrapping is performed.

This form also offers several
options concerning the statis-
tics to be generated. For an ex-
planation of the meaning of
these options, the Amos man-
ual (Arbuckle, 1997) is re-
ferred to.
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Output
The Output  category may be
used to select different output
to be printed. In most cases the
output requested is also writ-
ten to a file, which has the
model name as suffix, and
.amp as suffix. The options
should be self-explanatory
and full information is give in
the Amos manual (Arbuckle,
1997).

It should be observed, how-
ever, that when the Factor
Score Coefficients option is
selected, the post-processor
retrieves the factor score
weights from the Amos out-
put listing, and constructs the
SPSS instructions needed to
actually obtain the factor

scores. The SPSS syntax is written to a file with the model name as prefix, and .sps as suf-
fix, and which is put in the dictionary directory. In order to achieve sufficient precision in
the computation of factor scores the number of decimal places is always set to 6 when this
option is selected. 

If, for example, the Factor Score Coefficients option is selected for the vr1.mbi model in
the HPG project, the following SPSS code is written to the file vr1.sps:

The EQS Options form

This form offers four main categories of options on four tabs:

• Estimation
• Model tests
• Sub-matrices
• Print

SPSS instructions for computation of factor scores constructed by the post-processor

COMPUTE Verb = WORD*.37456 +                                                    
               READ*.383831 +                                                   
               GI*.051307 +                                                     
               ERC*.031045 +                                                    
               DS*.042173 +                                                     
               DTM*.048222 .                                                    
COMPUTE Reas = WORD*.06358 +                                                    
               READ*.065153 +                                                   
               GI*.292412 +                                                     
               ERC*.176936 +                                                    
               DS*.240358 +                                                     
               DTM*.274834 .                                                    
EXECUTE.
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Estimation
The EQS program offers several
estimation methods, more than
one of which may be obtained in
the same run (see Bentler, 1995,
pp. 46-47). The available esti-
mation methods are shown in the
list, and through clicking and
shift-clicking in the list, up to
three estimation methods may be
chosen.

The Estimation category tab al-
llows the user to specify differ-
ent parameters which govern the
estimation process. The mean-
ing of these options is described
in the EQS manual (Bentler,
1995, Chapter 3).

Model Tests
Under the Model Tests tab, the
user may select the Wald test,
which investigates if one or
more free parameters of a given
model may be dropped, and the
LM (Lagrange Multiplier) test,
which investigates if one or
more fixed parameters should be
treated as free parameters in-
stead. When EQS 5 is used there
is also an option labelled All Fit
Statistics, which by defalt is se-
lected.

Default forms of these tests are
obtained through clicking the
check-boxes. In EQS it is also
possible to specify a large
number of alternatives and
options for these tests. The EQS
instructions for obtaining most

of these must, however, be edited into the EQS instructions generated by the pre-proces-
sor. However, some of the options concerning the LM test are available in the Model
Tests category (see Bentler, 1995, for a description of the meaning of these). 
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Sub Matrices
The Sub Matrices tab allows the
user to specify which sub-matri-
ces are to be investigated with
the LM test.

The sub-matrices which are to be
included in the LM test are
checked with the check-boxes.

Print
The Print  tab, finally, is used to
govern the output from EQS.

Most of the options are self-ex-
planatory, and more information
may also be obtained from the
EQS manual (Bentler, 1995).

The LISREL 8 Options form

The LISREL 8 Options form offers three main categories of options on three tabs:

• Input
• Estimation
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• Output

Input
When the Input tab is clicked, the fol-
lowing form is presented:

This form offers the user the opportunity
to decide whether the Ridge Option (see
Jöreskog & Sörbom, 1989b, p. 22) is de-
sired or not, and which constant to apply.

Estimation
The Estimation tab offers options gov-
erning the estimation of parameters. 

This form offers a choice between seven
different methods of estimation: Maxi-
mum Likelihood (ML), Instrumental
Variables (IV), Two-Stage Least
Squares (TSLS), Generalized Least
Squares (GLS), Generally Weighted
Least Squares (WLS), and Diagonally
Weighted Least Squares (DWLS). 

The estimation methods are described
by Jöreskog and Sörbom (1989a, pp. 16-
22). As has already been pointed out
choice of estimation method should be
matched with choice of matrix to be
analyzed, and the matrix should, of
course, be appropriate for the data.

The default estimation method is ML,
and in many cases the combination of ML and the covariance matrix is a good choice.
However, when ordinal variables are analyzed and the sample is large the recommended
procedure is WLS and a polychoric correlation matrix.

When WLS or DWLS is chosen the appropriate asymptotic matrices must have been com-
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puted by PRELIS 2, and they must also have been imported into the project. If this has
been done STREAMS makes the appropriate references to the asymptotic matrix. How-
ever, because subsets of variables cannot be extracted from the asymptotic matrices the
model must include all the variables in the matrix. Thus, if a model is to be fitted to
another subset of variables it is necessary to compute a new set of matrices, and import
these into the project.

The Estimation category also allows the user to turn the Admissibility check (Jöreskog
& Sörbom, 1989a, p. 23) on and off, and to change the maximum number of iterations
from the LISREL default of three times the number of free parameters. 

Output
On the Output  tab of the LISREL 8
Options form a large number of check
boxes are presented through which the
amount and type of output is deter-
mined. These options are more or less
self-explanatory and detailed informa-
tion is presented by Jöreskog and Sör-
bom (1989a, b, 1993b, c).

When the OK  button on the LISREL 8
Options form is clicked the OU line in
the edit area is updated. It is, however, al-
ways possible to change the OU state-
ment, either by double-clicking on the
OU line, or through clicking the Options
button.

When the Factor Scores Regressions
option is selected, the post-processor
retrieves the factor score weights from
the LISREL output listing, and con-

structs the SPSS instructions needed to actually obtain the factor scores. The SPSS syntax
is written to a file with the model name as prefix, and .sps as suffix, and which is put in
the dictionary directory. In order to achieve sufficient precision in the computation of fac-
tor scores the number of decimal places is always set to 6 when this option is selected. 

If, for example, the Factor Scores Regressions option is selected for the vr1.mbi model
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in the HPG project, the following SPSS code is written to the file vr1.sps:

The Mplus Model Type tab

When Mplus is selected as estimation program the Model Type tab of the Model form
offers some program specific options:

One of these is the option Factor scores, which causes Mplus to produce a file of indi-
vidual factor scores, along with the values of the observed variables. The Factor scores
option requires raw data as input. When this option is used the post-processor also cre-
ates a file of SPSS instructions for importing the data into SPSS. 

SPSS instructions for computation of factor scores constructed by the post-processor

COMPUTE Verb = WORD*.27484 +                                                    
               READ*.240358 +                                                   
               GI*.176937 +                                                     
               ERC*.292411 +                                                    
               DS*.065153 +                                                     
               DTM*.063580 .                                                    
COMPUTE Reas = WORD*.04822 +                                                    
               READ*.042173 +                                                   
               GI*.031045 +                                                     
               ERC*.051307 +                                                    
               DS*.383831 +                                                     
               DTM*.374565 .                                                    
EXECUTE.
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For example, when factor scores are requested for the vr1.mbi model the following mes-
sage is seen in the post-processor listing:

The following SPSS instructions are in the file vr1.sps:

It may be noted that the factor scores computed by Mplus correlate perfectly with those
that are computed from the factor score weights produced by LISREL (page 221), even
though they are expressed in a different scale. The factor scores that may be computed
from the factor score weights produced by Amos (page 217) correlate highly, but not
perfectly, with those computed by LISREL and Mplus.

Another option presented on the Model Type tab is Exploratory Factor Analysis. When
this option is selected Mplus performs exploratory factor analyses, producing solutions
with the number of factors ranging between the minimum and maximum given (see
Muthén & Muthén, 1998, pp. 133-136).

The Mplus Options form

The Mplus Options form offers four tabs with options:

• Variables
• Define
• Estimation
• Output

Factor scores have been written to  
c:\streams\examples\hpg\vr1.fsc, 
along with SPSS instructions in 
c:\streams\examples\hpg\vr1.sps. 

SET
 UNDEFINED = WARN.
DATA LIST
 FILE=’c:\streams\examples\hpg\vr1.fsc’ RECORDS = 1 FIXED/
    WORD     1-12 (4)
    READ     13-24 (4)
    GI       25-36 (4)
    ERC      37-48 (4)
    DS       49-60 (4)
    DTM      61-72 (4)
    VERB     73-84 (4)
    REAS     85-96 (4)
 .
EXECUTE.
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Variables
The Variables
tab allows the
user to specify a
cod e va lu e
which is regard-
ed as missing da-
ta. This option is
meaningful only
when raw data is
input and when
the raw maxi-
mum likelihood
miss in g  da ta
mode l ing  ap-
proch described
in Chapter 5 is
used. A single
miss in g  da ta
cod e may  b e

specified. 

On the Variables tab those observed variables which are to be treated as categorical vari-
ables in the model should also be identified. This is done simply through transfering the
categorical variables from the left-hand list-box to the right-hand list-box.

When it comes to categorical variables it should be observed that STREAMS offers full
support for analysis of dichotomous variables only with Mplus. For such variables the
model specification includes start values, and post-processing of modeling results is per-
formed. When a categorical variable encompasses more than two categories, the pre-pro-
cessor produces a model specification which does not include start values, and no post-
processing of model results is being performed. It should be observed, however, that if
start values are copied from a model which treats the variables as continous at least partial
start values are obtained.
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Define
The Define tab allows
transformations of vari-
ables with the functions
specified in the Mplus
manual (Muthén & Muth-
én, 1998, pp. 56-58). It
should be observed, how-
ever, that only existing
variables may be trans-
formed, and that no new
variables may be speci-
fied in this step, which is,
of course, because these
new variables will not de-
fined in the project dictio-
nary.

Estimation
The Estimation tab on the Mplus Options form provides a list of choices when it comes

to the process of estimation, in terms of choice of estimators and parameters of estima-
tion.

Mplus offers a rich variety of estimators, and particularly so robust estimators for non-
normal data. These estimators produce the same paramterer estimates as does ordinary
ML estimation, but the χ2 test statistic and standard errors are corrected to componsate
for the deviation from non-normality, typically resulting in a lower test-statistic and
larger standard errors.
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Output
The Output tab, finally, offers a set of options concerning what is to be presented in the

output listing.

The Mx Options form

The Mx Options form offers three tabs with options:

• Input
• Estimation
• Output
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Input
The Input tab allows the user to specify
a code value which is regarded as missing
data:

This option is meaningful only when
raw data is input. When a value is sup-
plied here the Mx program uses the raw
maximum likelihood missing data mod-
eling approch described in Chapter 5. 

Estimation
The Estimation tab on the Mx Options
form provides a list of choices when it
comes to the process of estimation:

Most options on this tab are self-explan-
atory and more information is given in
the Mx guide (Neale, 1997). It should be
emphasized that the Jiggle start values
option, which when checked adds a ran-
dom component to the supplied start
values, may be useful when start values
are copied from a previously estimated
model. This is because Mx may encoun-
ter numerical problems in the minima-
zation when the start values are close to
the final values.
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Output
The Output tab, finally, offers a set of
options concerning what is to be pre-
sented in the output listing.
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This chapter describes how to install the STREAMS program components, and how to
customize the installation to suit the particular configuration of structural equation mod-
eling software available.

Installing STREAMS 2.5

STREAMS 2.5 is typically delivered on CD, or is downloaded from the
www.mwstreams.com site. 

The first installation of STREAMS 2.5 involves the following steps.

1. If an older version of STREAMS is already installed it should be uninstalled, and in
particular should the STREAMS\EXAMPLES directory be deleted.

2. Insert the CD and start the program SETUP.EXE, for example through double click-
ing the program name, or selecting it and choosing Run under the Start menu.

3. The program responds by the message Initializing InstallShield Wizard, and then a
standard installation procedure starts. The default directory for installing STREAMS
is C:\STREAMS but this may be changed during the installation. It should be
observed, however, that the example projects delivered with the system automatically
install into STREAMS\EXAMPLES, which makes it convenient to keep the default
installation directory.

In addition to the program files and system components, the installation procedure puts a
copy of the STREAMS 2.5 User’s Guide (i. e., the present document) in PDF format in the
directory where STREAMS is installed. This document may be read with Adobe Acrobat
Reader. This program is included on the installation CD, and may also be downloaded
without cost from http://www.adobe.com. The installation procedure also puts copies of
all the examples projects referred to in the documentation in compressed format in the

��
Installing 
STREAMS



230 Installing STREAMS  

Structural Equation Modeling Made Simple

STREAMS installation directory. These may be decompressed using the procedure avail-
able in STREAMS.

Connecting STREAMS with the Estimation Programs

After STREAMS has been installed, connections need to be established between the esti-
mation programs (i. e., Amos, EQS, LISREL and/or Mx), and STREAMS must be
informed about which versions of the programs are available. 

Amos 4 is automatically localized and connected to by STREAMS whereever it is
installed. If the other estimation programs are installed in the default directories assumed
by STREAMS they are automatically localized by STREAMS as well. The following
default directories are assumed:

Amos 3.5 and 3.6 C: \PROGRAM\AMOS
EQS 4 and 5: C: \EQSWIN
LISREL 8 DOS 8.03: C: \LIS8
LISREL 8 DOS 8.12: C: \LISREL8
LISREL 8.20: C:\PROGRAM\INTERACTIVE LISREL
LISREL 8.30: C:\LISREL83
Mplus 1.0: C:\PROGRAM\Mplus
Mx 1.44- C:\STREAMS

If the estimation programs have been installed in these default directories no further action
needs to be taken for STREAMS to be able to use them. However, if the estimation pro-
grams have been installed in other directories it is necessary to identify these locations. 

This is done through clicking the program button beneath the Run button on the Model
Building form, which produces the Estimation programs form:
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This form displays a series of differently colored wrenches aside the different estimation
programs. The colored wrenches have the following meaning:

• Grey wrench: Program is connected to STREAMS, but not selected for use.

• Blue wrench: Program is connected to STREAMS, and selected for use.

• Green wrench: Program is connected to STREAMS, and chosen to be the default
program (i. e., this program is used when a new model is created).

• Crossed-over wrench: Program is not installed or not yet connected to STREAMS.

Two different methods may be used to connect a program to STREAMS which has been
installed in a another directory than the default directory. One possibility is to enter the
pathname of the installation directory. This is done through clicking the + next to the
wrench, which presents several items of information, and among them the default instal-
lation directory. This is here illustrated for LISREL 8.20:
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This pathname may be changed through clicking the pathname, and when a box appears
around the name the old pathname may be changed. Assuming that LISREL 8.20 has been
installed to C:\PROGRAM FILES\LIS820 this information may be entered. When car-
riage return is hit the program asks:

If the Yes button is clicked STREAMS connects to the program if it can identify an .exe
file with the appropriate name in the directory. If STREAMS is successful information
about the .exe file found in the directory is displayed:

The other method of connecting an estimation program to STREAMS involves identify-
ing a particular .exe file, using the standard file open dialogue. This method is useful if
the directory contains more than one .exe file, or if the .exe file has a non-standard name. 

To use this method the Select file ... button on the form is clicked, which produces the file
open dialogue. This may be used to identify a particular .exe file:
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When the Open button is clicked, STREAMS asks for confirmation:

When the Yes button is clicked, STREAMS connects to the program, and presents infor-
mation about the program on the Estimation programs form:
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STREAMS offers a simple procedure for describing a rawdata file which is stored in asci
format (or text format). The data file must have a fixed format, i. e. for each case the var-
iables must occupy the same positions in the file. There may be one or more lines of data
for each case. With multipe-line input all data records for the first case must appear first,
then all data records for the second case (in the same order), and so on. Any record may
be at most 4096 characters long. It is somewhat more convenient to have all the informa-
tion on one record so if there is a choice between organizing the information on one or on
several records the former alternative is recommended. It is also recommended that the
data file is given the suffix .raw (e. g., hpg.raw). When such a file is opened when the
STREAMS Data Wizard is run the Input file  form presents information about the file, and
the button Define variables... is enabled:

A The STREAMS 
Rawdata Format
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If information has previously been entered about the variables and their locations in the
data file, this information, which is stored in a file with the file name as prefix and .sdd as
suffix, is retrieved as well. To add descriptions of variables in a rawdata file, or to update
previously given information, the Define variables... button should be clicked. This
causes the Data Definition form to be presented.
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This form is used for entering and updating information about the variables in the data file.
Previously entered information is shown in the box on the right hand side. The available
information may be updated through adding information about further variables, or
through changing previously given information. The Records field in the lower right-
hand corner of the form informs STREAMS about the number of records for each case in
the data file. By default this is assumed to be 1 but if the actual number of records is larger
the value must be changed.

Entering information about a variable
To enter information about a previously undefined variable the cursor should be moved
to the Name field, where a variable name is entered. The name should contain no more
than 7 alphanumeric characters (i. e., the letters A - Z and the numbers 0 - 9) and it is rec-
ommended that upper-case letters are used. 

Then use the Tab key (or the Enter key) to move the cursor to the next field, which is
labeled Record No.. If there is only one record for each case the number 1 is already
entered here, but if there are more than one records for each case the appropriate record
number should be entered.

The next field is labeled Start Column. Here the first position of the variable in the record
is given. For example, if the variable occupies positions 10-12 on record 1, the number 10
is entered here. Then use the Tab key to move the cursor to the Width  field, and enter the
number of positions that the variable occupies. For our example the width will be 3.
Observe that it is not possible for a variable to span two records.

The Decimal places field, which cannot be left blank, is then filled out. It is strongly rec-
ommended that decimal points are not actually written to the data file, but that these are
implied. For example, if positions 10-12 contain the value 246 for a case this is interpreted
as 24.6 if the value 1 is supplied in the decimal places field. If 0 is given the value will be
read as 246.0, and if 3 decimal places are specified the value is read as 0. 246. Observe
that if decimal points are included in the data values in the file, 0 should be given as the
number of decimal points.

Then the Description field is filled out, and here descriptive information about the varia-
ble is given. 

The Missing Values button may be clicked if one or more codes to represent missing
information is to be entered:
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First the number and type of missing values is selected, and then the code used to identify
cases who lack a valid value on the variable are entered. It is recommended that extreme
values, which may never be a valid value (such as 9 for a dichotomous variable with 0 and
1 as valid codes, or 999 for a variable which may take values between 0 and 144) are used
as a missing data codes.

Review the information, and correct any mistakes. To go back to a field use either the
Shift-Tab key (i. e., keep the Shift key down as the Tab key is clicked) or move the cursor
to the field and click the mouse button. Click the Add button when all the information has
been enetered.

Adding value labels
For categorical variables the numerical codes signify belongingness to a certain group (e.
g., 1 for males, and 2 for females), so for purposes of documentation and ease of interpre-
tation it is often useful also to have the verbal labels for the categories available as well.
Such value labels may be defined for a variable if the Value Labels button is clicked.
When this is done a new form shows:
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First enter a code value in the Value field (e. g., 1), and then enter the corresponding label
in the Value Label field (e. g., Boys). When the correct information has been entered
click the Add button, which moves the information into the white box (i. e., 1 = Boys).
Then a new code value and its label may be entered, and so on.

To change previously entered information the line which is to be changed should be
clicked, which causes the information to be transferred to the Value and Value Label
fields. Edit the information in the fields, and then click the Change button. To remove a
value label the line is first marked, and then the Remove button is clicked.

Defining many variables with similar characteristics
Sometimes a record contains several consecutively located variables with similar charac-
teristics. An example could be the responses (correct or incorrect) to 30 vocabulary items.
The Automatic Variable Definition  feature may be used to enter information about such
variables in an efficient manner. Use the following procedure:

1. Describe the first variable in the sequence and complete each field on the form as if
the variable would be entered singly. However, for the Name field a prefix only
should be entered, and to this prefix STREAMS will then append a sequence number.
Thus, if we want the vocabulary items to be labeled VOC1 to VOC30 the prefix VOC
should be used.

2. Enter value labels, if any.

3. Click the check box labeled Automatic Variable Definition  and supply appropriate
values in the fields Number of Variables and Start Value (which in our example
would be 30 and 1, respectively).

4. Click the Add button, which causes 30 variables to be added to the dictionary. 

Observe that this procedure only works when all variables have the same width and are
located next to one another in the same record.
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Updating information about a variable
In order to change previously entered information the variable is clicked upon in the box
on the right hand side. This causes the stored information to be displayed in the fields of
the form, and the field or the fields to be updated may now be changed, using the tech-
niques described in the previous section. When the new information has been correctly
entered, click the Change button. 

If a variable is to be removed from the dictionary, click on the variable in the text box so
the information about the variable is displayed on the screen, and then click the Remove
button.

When all information about the variables has been entered and/or updated, click the OK
button. This causes the dictionary for the rawdata file to be stored in a file, which has the
name of the data file, and the suffix .sdd (e. g., hpg.sdd). If an .sdd file exists for a data
file it is automatically retrieved into STREAMS next time the data file is opened. 

Copying information from an existing data dictionary
There frequently is a need to describe a rawdata file which has the same variables in the
same positions as a file for which an .sdd file already exists. When this is the case it is not
necessary to enter the information again, because it may be copied from the existing dic-
tionary. To do that the From File... button on the Data Definition form is clicked. This
produces a dialogue box, asking the user to identify an .sdd file. An appropriate data dic-
tionary in the current directory or another directory should then be identified and opened,
which causes the information in this dictionary to be copied to the data dictionary for the
new rawdata file.

An Example of a Dictionary for Rawdata

Rawdata may be described using the procedures for describing characteristics of data sup-
plied in STREAMS. An example of such a data dictionary is presented below.

The Swedish Scholastic Aptitude Test Data
The projects included in the EXAMPLES subdirectory under the STREAMS directory
include some examples of data dictionaries. Here a few of these will be briefly com-
mented.

The hpg.raw file in the HPG subdirectory contains data for the hpg project which is used
in several examples in this text. The data file comprises 579 subjects who have taken the
Swedish Scholastic Aptitude Test (SweSAT), along with some other tests. The data file
includes the variable shown in Table 5:

There are no missing data for any subject in this file. The information in Table 5 has been
entered into the dictionary hpg.sdd, which is retrieved automatically when the hpg.raw
file is opened.
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TABLE 4. The variables in hpg.raw

Label Description
Start 
position 

Field 
Width

Number 
of 
Decimals

GENDER Gender (male=1, female=2) 1 1 0

PROG Program in Upper Secondary School 2 2 0

HUM Dummy for the Humanistic program 4 2 0

SCI Dummy for the Science program 6 2 0

SOC Dummy for the Social program 8 2 0

TEC Dummy for the Technical program 10 2 0

MRK Mean grades from Upper Sec School 12 4 2

SYNONY Synonyms test 16 2 0

VIZUAL Spatial test 18 2 0

FIGRES Figural Reasoning test 20 2 0

NUMSER Number Series test 22 2 0

WORD The vocabulary subtest of the SweSAT 24 2 0

DS The Data Sufficiency subtest of the SweSAT 26 2 0

READ The reading subtest of the SweSAT 28 2 0

DTM The Diagrams, Tables and Maps subtest of the 
SweSAT

30 2 0

GI The General Information subtest of the SweSAT 32 2 0

ERC The English Reading Comprehension subtest of 
the SweSAT

34 2 0

HPTOT The total raw score on the SweSAT 36 3 0
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