

3-Space Sensor USB

Miniature Attitude & Heading Reference System

User's Manual

YEI Technology

630 Second Street Portsmouth, Ohio 45662

www.YeiTechnology.com www.3SpaceSensor.com

> Patents Pending ©2007-2011 Yost Engineering, Inc. Printed in USA

3-Space Sensor USB

Miniature Attitude & Heading Reference System

User's Manual

YEI Technology

630 Second Street Portsmouth, Ohio 45662

www.YeiTechnology.com www.3SpaceSensor.com

> Toll-Free: 888-395-9029 Phone: 740-355-9029

Patents Pending ©2007-2011 Yost Engineering, Inc. Printed in USA

Table of Contents

1.	Usage/Safety Considerations	1
	1.1 Usage Conditions	1
	1.2 Technical Support and Repairs	1
2.	Overview of the YEI 3-Space Sensor	2
	2.1 Introduction.	2
	2.2 Applications	2
	2.3 Hardware Overview	
	2.4 Key Features	
	2.5 Block Diagram of Sensor Operation	5
	2.6 Specifications	6
	2.7 Physical Dimensions	7
	2.8 Axis Assignment	
3	Description of the 3-Space Sensor.	
0.	3.1 Orientation Estimation.	
	3.1.1 Component Sensors	
	3.1.2 Scale, Bias, and Cross-Axis Effect	
	3.1.3 Component Sensor Data Types	
	3.1.4 Additional Calibration.	ر 0
	3.1.5 Reference Vectors.	
	3.1.6 Orientation Filtering	
	3.1.7 Reference Orientation/Taring	
	3.1.8 Other Estimation Parameters.	
	3.2 Communication	
	3.2.1 Wired Streaming Mode	
	3.3 Input Device Emulation	
	3.3.1 Axes and Buttons	
	3.3.2 Joystick	
	3.3.3 Mouse	
	3.4 Sensor Settings	15
	3.4.1 Committing Settings	15
	3.4.2 Natural Axes.	
	3.4.3 Settings and Defaults	
4.	3-Space Sensor Usage/Protocol	
	4.1. Usage Overview	
	4.1.1 Protocol Overview	
	4.1.2 Computer Interfacing Overview	
	4.2. Protocol Packet Format	
	4.2.1 Binary Packet Format	
	4.2.2 ASCII Text Packet Format	19
	4.3 Response Header Format	20
	4.3.1 Wired Response Header	
	4.3.2 Wired Streaming with Response Header	21
	4.4 Command Overview	
	4.4.1 Orientation Commands	22
	4.4.2 Normalized Data Commands	23
	4.4.3 Corrected Data Commands	23
	4.4.4 Other Data Commands	23
	4.4.5 Raw Data Commands	24
	4.4.6 Streaming Commands	24
	4.4.7 Configuration Write Commands	25
	4.4.8 Configuration Read Commands	
	4.4.9 Calibration Commands	
	4.4.10 General Commands	
	4.4.11 Wired HID Commands	
	4.4.12 General HID Commands.	
A	opendix	
-	USB Connector	
	RS232 Connector	
	External Power Connector	
	Hex / Decimal Conversion Chart	

1. Usage/Safety Considerations

1.1 Usage Conditions

- Do not use the 3-Space Sensor in any system on which people's lives depend(life support, weapons, etc.)
- · Because of its reliance on a compass, the 3-Space Sensor will not work properly near the earth's north or south pole.
- Because of its reliance on a compass and accelerometer, the 3-Space Sensor will not work properly in outer space or on planets with no
 magnetic field.
- Care should be taken when using the 3-Space Sensor in a car or other moving vehicle, as the disturbances caused by the vehicle's acceleration may cause the sensor to give inaccurate readings.
- Because of its reliance on a compass, care should be taken when using the 3-Space Sensor near ferrous metal structures, magnetic fields, current carrying conductors, and should be kept about 6 inches away from any computer screens or towers.

1.2 Technical Support and Repairs

YEI provides technical and user support via our toll-free number (888-395-9029) and via email (support@YostEngineering.com). Support is provided for the lifetime of the equipment. Requests for repairs should be made through the Support department. For damage occurring outside of the warranty period or provisions, customers will be provided with cost estimates prior to repairs being performed.

2. Overview of the YEI 3-Space Sensor

2.1 Introduction

The YEI 3-Space SensorTM USB is a miniature, high-precision, high-reliability, Attitude and Heading Reference System (AHRS) offering USB 2.0 and RS232 communication interfaces in a single low-cost end-use-ready unit. The Attitude and Heading Reference System (AHRS) uses triaxial gyroscope, accelerometer, and compass sensors in conjunction with advanced on-board filtering and processing algorithms to determine orientation relative to an absolute reference orientation in real-time.

Orientation can be returned in absolute terms or relative to a designated reference orientation. The proprietary multireference vector mode increases accuracy and greatly reduces and compensates for sensor error. The YEI 3-Space Sensor USB system also utilizes a dynamic sensor confidence algorithm that ensures optimal accuracy and precision across a wide range of operating conditions.

The YEI 3-Space Sensor USB unit features are accessible via a well-documented open communication protocol that allows access to all available sensor data and configuration parameters using either USB 2.0 or RS232. Versatile commands allow access to raw sensor data, normalized sensor data, and filtered absolute and relative orientation outputs in multiple formats including: quaternion, Euler angles (pitch/roll/yaw), rotation matrix, axis angle, two vector(forward/up).

When used as a USB device, the 3-Space SensorTM provides mouse emulation and joystick emulation modes that ease integration with existing applications.

2.2 Applications

The YEI 3-Space Sensor can be used in any situation where accurate near-real-time estimates of orientation are required.

Typical applications include:

- Robotics
- Motion capture
- · Positioning and stabilization
- · Personnel / pedestrian navigation and tracking
- Unmanned air/land/water vehicle navigation
- Vibration analysis
- Inertial augmented localization
- Education and performing arts
- Healthcare monitoring
- · Gaming and motion control
- Accessibility interfaces
- Virtual reality and immersive simulation

2.3 Hardware Overview

- 1. USB Connector The 3-Space Sensor uses a 5-pin mini USB connector to connect to a computer via USB. The USB connector provides for both power and communication signals.
- RS232 Connector The 3-Space Sensor can respond to protocol messages via RS232 by using this port. The port is a 2.5mm 4 conductor jack that carries TxD, RxD, Gnd, +5vdc Input signals. The +5vdc Input signal is provided as a means to provide power and communications in a single connector. If an external power adapter is used the +5vdc Input signal may be left unconnected.
- **3.** External Power Connector The 3-Space Sensor can be powered via an external power supply via this port. The port is an EIAJ-1 standard barrel jack with a positive center pin. Nominal supply voltage is +5vdc, however, any voltage in the range of +3.5vdc to 10vdc will power the unit safely.
- 4. Input Button 1 The 3-Space Sensor includes two input buttons that can be used in conjunction with the orientation sensing capabilities of the device. The inputs are especially useful when using the 3-Space Sensor as an input device such as in joystick emulation mode or mouse emulation mode.
- 5. Indicator LED The 3-Space Sensor includes an RGB LED that can be used for visual status feedback.
- 6. Input Button 2 The 3-Space Sensor includes two input buttons that can be used in conjunction with the orientation sensing capabilities of the device. The inputs are especially useful when using the 3-Space Sensor as an input device such as in joystick emulation mode or mouse emulation mode.

2.4 Key Features

The YEI 3-Space Sensor USB has many features that allow it to be a flexible all-in-one solution for your orientation sensing needs. Below are some of the key features:

- Small self-contained high-performance wireless AHRS at 35mm x 50mm x 15mm and 17 grams
- Fast sensor update and filter rate allow use in real-time applications, including stabilization, virtual reality, real-time immersive simulation, and robotics
- Highly customizable orientation sensing with options such as tunable filtering, oversampling, and orientation error correction
- Advanced integrated Kalman filtering allows sensor to automatically reduce the effects of sensor noise and sensor error
- Robust open protocol allows commands to be sent in human readable form, or more quickly in machine readable form
- Orientation output format available in absolute or relative terms in multiple formats (quaternion, rotation matrix, axis angle, two-vector)
- Absolute or custom reference axes
- Access to raw sensor data
- Flexible communication options: USB 2.0 or RS232 asynchronous serial
- · USB communication via virtual COM port
- · USB joystick/mouse emulation modes ease integration with existing applications
- Upgradeable firmware
- RGB status LED, two programmable input buttons
- · Miniature barrel jack for optional external power input
- Miniature TRS connector for RS232 and power input
- · Available in either hand-held or strap-down packaging
- RoHS compliant

2.5 Block Diagram of Sensor Operation

2.6 Specifications

General				
Part number	TSS-USB (Handheld Sensor Unit)			
	TSS-USB-S (Strapdown Sensor Unit)			
Dimensions	35mm x 50mm x 15mm (1.38 x 1.97 x 0.59 in.)			
Weight	17 grams (0.60 oz)			
Supply voltage	+5v USB, +3.3v ~ +6.0v external jack			
Communication interfaces	USB 2.0, RS232 Asynchronous Serial			
Serial baud rates	1,200~921,600 selectable, default: 115,200			
Filter update rate	Up to 200Hz with full functionality			
Orientation output	absolute & relative quaternion, Euler angles, axis angle, rotation matrix, two vector			
Other output	raw sensor data, corrected sensor data, normalized sensor data, temperature			
Shock survivability	5000g			
Temperature range	-40C ~ 85C (-40F ~ 185F)			
Processor	32-bit RISC running @ 60MHz			
Sensor				
Orientation range	360° about all axes			
Orientation accuracy	±2° for dynamic conditions & all orientations			
Orientation resolution	<0.08°			
Orientation repeatability	0.085° for all orientations			
Accelerometer scale	$\pm 2g / \pm 4g / \pm 8g$ selectable			
Accelerometer resolution	14 bit			
Accelerometer noise density	99μg/√ Hz			
Accelerometer sensitivity	0.00024g/digit for ±2g range			
	0.00048g/digit for ±4g range			
	0.00096g/digit for ±8g range			
Accelerometer temperature sensitivity	±0.008%/°C			
Gyro scale	±250/±500/±2000 °/sec selectable			
Gyro resolution	16 bit			
Gyro noise density	0.03°/sec/√ Hz			
Gyro bias stability @ 25°C	11°/hr average for all axes			
Gyro sensitivity	0.00875°/sec/digit for ±250°/sec			
	0.01750°/sec/digit for ±500°/sec			
	0.070°/sec/digit for ±2000°/sec			
Gyro non-linearity	0.2% full-scale			
Gyro temperature sensitivity	±0.016%/°C			
Compass scale	±1.3 Ga default. Up to ±8.1 Ga available			
Compass resolution	12 bit			
Compass sensitivity	5 mGa/digit			
Compass non-linearity	0.1% full-scale			

*Specifications subject to change

2.7 Physical Dimensions

2.8 Axis Assignment

All YEI 3-Space Sensor product family members have re-mappable axis assignments and axis directions. This flexibility allows axis assignment and axis direction to match the desired end-use requirements.

The natural axes of the 3-Space Sensor are as follows:

- The positive X-axis points out of the right hand side of the sensor, which is the side that is facing right when the buttons face upward and plug faces towards you.
- The positive Y-axis points out of the top of the sensor, the side with the buttons.
- The positive Z-axis points out of the front of the sensor, the side opposite the plug.

The natural axes are illustrated in the diagram below

Bear in mind the difference between natural axes and the axes that are used in protocol data. While they are by default the same, they can be remapped so that, for example, data axis Y could contain data from natural axis X. This allows users to work with data in a reference frame they are familiar with.

7

3. Description of the 3-Space Sensor

3.1 Orientation Estimation

The primary purpose of the 3-Space Sensor is to estimate orientation. In order to understand how to handle this estimation and use it in a meaningful way, there are a few concepts about the sensor that should be understood. The following sections describe these concepts.

3.1.1 Component Sensors

The 3-Space Sensor estimates orientation by combining the data it gets from three types of sensors: a gyroscope, an accelerometer, and a compass. A few things you should know about each of these sensors:

- Accelerometer: This sensor measures the acceleration due to gravity, as well as any other accelerations that occur. Because of this, this sensor is at its best when the 3-Space Sensor is sitting still. Most jitter seen as the orientation of the sensor changes is due to shaking causing perturbations in the accelerometer readings. To account for this, by default, when the 3-Space Sensor is being moved, the gyroscope becomes more trusted(becomes a greater part of the orientation estimate), and the accelerometer becomes less trusted.
- **Gyroscope:** This sensor measures angular motion. It has no ability to give any absolute orientation information like the accelerometer or compass, and so is most useful for correcting the orientation during sensor motion. Its role during these times becomes vital, though, as the accelerometer readings can become unreliable during motion.
- **Compass:** This sensor measures magnetic direction. The readings from the compass and accelerometer are used together to form the absolute component of orientation, which is used to correct any short term changes the gyroscope makes. Its readings are much more stable than those of the accelerometer, but it can be adversely affected by any ferrous metal or magnetic objects. When the accelerometer is less trusted, the compass is treated in the same way so as to avoid updates to orientation based on partial absolute information.

3.1.2 Scale, Bias, and Cross-Axis Effect

The readings taken from each component sensor are not in a readily usable form. The compass and accelerometer readings are not unit vectors, and the gyroscope readings aren't yet in radians per second. To convert them to these forms, scale and bias must be taken into account. Scale is how much larger the range of data read from the component sensor is than the range of data should be when it is converted. For example, if the compass were to give readings in the range of -500 to 500 on the x axis, but we would like it to be in the range of -1 to 1, the scale would be 500. Bias is how far the center of the data readings is from 0. If another compass read from -200 to 900 on the x axis, the bias would be 350, and the scale would be 550. The last parameter used in turning this component sensor data into usable data is cross-axis effect. This is the tendency for a little bit of data on one axis of a sensor to get mixed up with the other two. This is an effect experienced by the accelerometer and compass. There are 6 numbers for each of these, one to indicate how much each axis is affected by each other axis. Values for these are generally in the range of 1 to 10%. These parameters are applied in the following order:

- 1) Bias is added to each axis
- 2) The three axes are treated as a vector and multiplied by a matrix representing scale and cross-axis parameters

Factory calibration provides default values for these parameters for the accelerometer and compass, and users should probably never need to change these values. To determine these parameters for the gyroscope, you must calibrate it. Read the Quick Start guide or the 3-Space Suite manual for more information on how to do this.

3.1.3 Component Sensor Data Types

Component sensor data is presented by the 3-Space Sensor in three different stages and is readily accessible via certain protocol commands.

• **Raw Sensor Data:** This refers to data that is read directly from each of the component sensors before any additional processing has occurred. This kind of data is well-suited for users who wish to perform their own calibration routines as well as applications where precise analysis of motion is not extremely critical. Raw data commands are listed in Section 4.4.5, "Raw Data Commands" and span commands 0x40 through 0x43.

Example: In the $\pm 2G$ range, a raw accelerometer vector might look like (144, -25904, 744). This would indicate a force that is mostly in a downward direction.

• **Corrected Sensor Data:** This refers to 'raw' data that has been biased and scaled to represent real-world units, using the steps as described in Section 3.1.2, "Scale, Bias and Cross-Axis Effect". There is an additional scaling that occurs, which further alters the data reading based on each component sensor's device-specific values. This scaling provides the real-world equivalents for read data. For the accelerometer, these values are in units of g-forces, for the magnetometer, these values are in units of gauss, and for the gyroscope, these values are in units or radians/sec. This kind of data is well-suited for users who wish to accurately track the motion of objects in 3D space or measure the strength and direction of magnetic fields. Corrected data commands are listed in Section 4.4.3, "Corrected Data Commands" and span commands 0x25 through 0x28.

Example: In the ± 2 G range, the same raw accelerometer vector from before, when corrected, might look like (.004, -.791, .023). Note that these values are in units of g, and would indicate that at the moment of the sample, the sensor is accelerating mostly downwards at a rate of 7.75 meters per second squared.

• Normalized Sensor Data: This refers to 'corrected' data that has been geometrically normalized. For the accelerometer and magnetometer, all normalized sensor readings are unit-vectors and as such, have lengths of 1. For the gyroscope, these is no difference between 'corrected' and 'normalized' data. This kind of data is well-suited for users who are only interested in the direction of acceleration or magnetic fields. Normalized data commands are listed in Section 4.4.2, "Normalized Data Commands" and span commands 0x20 through 0x23.

Example: The corrected accelerometer vector from before, when normalized, would look like (0.05, -0.998, 0.011). Note that the magnitude information is lost, and only the direction of the acceleration remains.

3.1.4 Additional Calibration

The 3-Space Sensor provides multiple calibration modes that can improve performance at the cost of additional setup and calibration routines. For more information on setting these additional modes, please refer to command 169.

- **Bias Mode**: Applies default range scaling to raw data readings. Also applies a bias offset to raw data, the values of which are taken from the provided calibration parameters command. (See section 4.3.7 for more information)
- **Bias** / **Scale Mode:** The default calibration mode. Applies default range scaling to raw data readings. Also applies a bias offset to the raw data as well as an additional scale matrix. Uses the matrix and vector portions from the provided calibration parameters command.
- Ortho-Calibration Mode: A more advanced calibration mode that requires initial setup steps (Please refer to the 3-Space Suite Quick Start Guide for information on how to supply ortho-calibration data). Uses 24 orthogonal data points to provide accelerometer and compass correction factors for enhanced orientation accuracy.

3.1.5 Reference Vectors

In order to get an absolute estimation of orientation from the accelerometer and compass, the sensor needs a reference vector for each to compare to the data read from it. The most obvious choice for these are the standard direction of gravity(down) and the standard direction of magnetic force(north), respectively. However, the sensor does provide several different modes for determining which reference vector to use:

- **Single Manual:** Uses 2 reference vectors it is given as the reference vectors for the accelerometer and compass.
- Single Auto: When the sensor powers on or is put into this mode, it calculates gravity and north and uses those calculated vectors as the reference vectors.
- **Single Auto Continual:** The same as Single Auto, but the calculation happens constantly. This can account for some shifts in magnetic force due to nearby objects or change of location, and also can help to cope with the instability of the accelerometer.
- **Multiple:** Uses a set of reference vectors from which the best are picked each cycle to form a single, final reference vector. This mode has the ability to compensate for certain errors in the orientation. In this mode the sensor will have a slightly slower update rate, but will provide greater accuracy. For information on how to set up this mode, see the Quick Start guide or the 3-Space Suite manual.

3.1.6 Orientation Filtering

The 3-Space Sensor provides several different modes for providing orientation estimation. Note also that IMU data collection rate is bound to the update rate of the filter. For more information on setting these additional modes, please refer to command 123.

- **Kalman Filter:** The default filter mode. Normalized sensor data and reference vectors are fed into the Kalman filter, which uses statistical techniques to optimally combine the data into a final orientation reading. Provides the highest-accuracy orientation at the lowest performance.
- Alternating Kalman Filter: Uses the same Kalman filter as before, but skips every other update step. Slightly less accurate than the Kalman filter, but faster.
- **Complementary Filter**: Fuses low-pass filtered accelerometer/compass data with high-pass filtered gyroscope data to provide an orientation estimate. Less accurate than any Kalman filtering techniques, but provides significantly higher performance.
- Quaternion Gradient Descent Filter: Utilizes gradient descent techniques to avoid the high computational overhead of Kalman-based filters. Provides high performance and high accuracy. Does not use reference vectors or confidence/rho values, thus it sacrifices some customization for performance.
- IMU Mode: Performs no orientation filtering, but allows IMU data to be read at the maximum update rate of 800 Hz.

3.1.7 Reference Orientation/Taring

Given the results of the Kalman filter, the sensor can make a good estimation of orientation, but it will likely be offset from the actual orientation of the device by a constant angle until it has been given a reference orientation. This reference orientation tells the sensor where you would like its zero orientation to be. The sensor will always consider the zero orientation to be the orientation in which the plug is facing towards you and top(the side with buttons on it) facing up. The sensor must be given a reference orientation that represents the orientation of the sensor when it is in the position in which you consider the plug to be towards you and the buttons up. The act of giving it this reference orientation to the sensor is called taring, just as some scales have a tare button which can be pressed to tell the scale that nothing is on it and it should read zero. For instructions on doing this, refer to the Quick Start guide or 3-Space Suite manual.

3.1.8 Other Estimation Parameters

The 3-Space Sensor offers a few other parameters to filter the orientation estimate. Please note that these only affect the final orientation and not the readings of individual component sensors.

- **Oversampling:** Oversampling causes the sensor to take extra readings from each of the component sensors and average them before using them to estimate orientation. This can reduce noise, but also causes each cycle to take longer proportional to how many extra samples are being taken.
- **Running Average:** The final orientation estimate can be put through a running average, which will make the estimate smoother at the cost of introducing a small delay between physical motion and the sensor's estimation of that motion.
- **Rho Values:** As mentioned earlier, by default the accelerometer and compass are trusted less than the gyros when the sensor is in motion. Rho values are the mechanism that handles the concept of trust. They involve parameters, one for the accelerometer and one for the compass, that indicate how much these component sensors are to be trusted relative to the gyroscope. A lower value for the parameter means more trust. The default mode for this is "confidence mode", where the rho value chooses between a minimum and maximum value based on how much the sensor is moving. The other option is to have a single, static rho value.

3.2 Communication

Obtaining data about orientation from the sensor or giving values for any of its settings is done through the sensor's communication protocol. The protocol can be used through either the USB port or the RS232 port. A complete description of how to use this protocol is given in section 4 of this document. Also, you may instead use the 3-Space Suite, which provides a graphical method to do the same. To learn how to use this, read the 3-Space Suite manual.

3.2.1 Wired Streaming Mode

The default mode of communication for the 3-Space Sensor is a call and response paradigm wherein you send a command and then receive a response. The sensor also features a streaming mode where it can be instructed to periodically send back the response from a command automatically, without any further communication from the host. To activate the streaming mode, use the following steps:

1) Set up the streaming to call the commands you want data from. First, figure out which commands you want data from. The following commands are valid for streaming:

0(0x00), Read tared orientation as quaternion 1(0x01), Read tared orientation as euler angles 2(0x02), Read tared orientation as rotation matrix 3(0x03), Read tared orientation as axis angle 4(0x04), Read tared orientation as two vector 5(0x05), Read difference quaternion 6(0x06), Read untared orientation as guaternion 7(0x07), Read untared orientation as euler angles 8(0x08), Read untared orientation as rotation matrix 9(0x09), Read untared orientation as axis angle 10(0x0a), Read untared orientation as two vector 11(0x0b), Read tared two vector in sensor frame 12(0x0c), Read untared two vector in sensor frame 32(0x20), Read all normalized component sensor data 33(0x21), Read normalized gyroscope vector 34(0x22), Read normalized accelerometer vector 35(0x23), Read normalized compass vector 37(0x25), Read all corrected component sensor data 38(0x26), Read corrected gyroscope vector 39(0x27). Read corrected accelerometer vector 40(0x28). Read corrected compass vector 41(0x29), Read corrected linear acceleration 43(0x2B) Read temperature C 44(0x2C), Read temperature F 45(0x2D), Read confidence factor 64(0x40), Read all raw component sensor data 65(0x41), Read raw gyroscope vector 66(0x42), Read raw accelerometer vector 67(0x43), Read raw compass vector 201(0xc9), Read battery voltage 202(0xca), Read battery percentage 203(0xcb), Read battery status 250(0xfa), Read button state 255(0xff), No command

There are 8 streaming slots available for use, and each one can hold one of these commands. These slots can be set using command 80(0x50), with the parameters being the 8 command bytes corresponding to each slot. Unused slots should be filled with 0xff so that they will output nothing.

Please note: The total amount of data the 8 slots can return at once is 256 bytes. If the resulting data exceeds this, the set streaming slots command will fail.

2) Set up the streaming interval, duration, and start delay. These parameters control the timing of the streaming session. They can be set using command 82(0x52). All times are to be given in microseconds. They control the streaming as follows:

Interval determines how often the streaming session will output data from the requested commands. For example, an interval of 1000000 will output data once a second. An interval of 0 will output data as quickly as possible. The interval will be clamped to 1000 if the user attempts to set it in the range 1 - 1000.

Duration determines how long the streaming session will run for. For example, a duration of 5000000 indicates the session should stop after 5 seconds. A duration of 4294967295 (0xFFFFFFFF) means that the session will run indefinitely until a stop streaming command is explicitly issued.

Start Delay determines how long the sensor should wait after a start command is issued to actually begin streaming. For example, a start delay 200000 means the session will start after 200 milliseconds.

3) Begin the streaming session. This can be done using command 85(0x55). Once started, the session will run until the duration has elapsed, or until the stop command, 86(0x56) has been called. Please note that only binary data is supported. While streaming sessions can be started with ascii commands, only binary data will be returned. Also note that if the sensor is sending large amounts of data the host doesn't have time to handle, this can cause buffer overflows in some communication drivers, leading to slowdowns and loss of data integrity. If the firmware detects that the buffer has overflowed, the asynchronous session will be stopped. If this occurs, this is a sure sign that either the streaming interval is set too low, the program is not working fast enough to handle the amount of data or both.

Data is output over the same communication interface the streaming session is started with. For example, if the user sends the Start Streaming command via the USB interface, data will be streamed over the same USB connection. This also applies for RS-232 communication. For more information on all these commands, see the Streaming Commands section in the command chart near the end of this document.

3.3 Input Device Emulation

3.3.1 Axes and Buttons

The 3-Space Sensor has the ability to act as a joystick and/or mouse when plugged in through USB. Both of these are defined in the same way, as a collection of axes and buttons. Axes are input elements that can take on a range of values, whereas buttons can only either be on or off. On a joystick, the stick part would be represented as 2 axes, and all the physical buttons on it as buttons. The 3-Space Sensor has no physical joystick and only 2 physical buttons, so there are a number of options to use properties of the orientation data as axes and buttons. Each input device on the 3-Space Sensor has 2 axes and 8 buttons. For more information on setting these up, see the 3-Space Suite manual. All communication for these input devices is done through the standard USB HID(Human Interface Device) protocol.

3.3.2 Joystick

As far as a modern operating system is concerned, a joystick is any random collection of axes and buttons that isn't a mouse or keyboard. Joysticks are mostly used for games, but can also be used for simulation, robot controls, or other applications. The 3-Space Sensor, as a joystick, should appear just like any other joystick to an operating system that supports USB HID(which most do).

3.3.3 Mouse

When acting as a mouse, the 3-Space Sensor will take control of the system's mouse cursor, meaning if the mouse portion is not properly calibrated, using it could easily leave you in a situation in which you are unable to control the mouse cursor at all. In cases like this, unplugging the 3-Space Sensor will restore the mouse to normal operation, and unless the mouse enabled setting was saved to the sensor's memory, plugging it back in should restore normal operation. Using the default mouse settings, caution should be exercised in making sure the orientation estimate is properly calibrated before turning on the mouse. For help with this, see the Quick Start guide.

The mouse defaults to being in Absolute mode, which means that the data it gives is meant to represent a specific position on screen, rather than an offset from the last position. This can be changed to Relative mode, where the data represents an offset. In this mode, the data which would have indicated the edges of the screen in Absolute mode will now represent the mouse moving as quickly as it can in the direction of that edge of the screen. For more information, see command 251 in section 4.3.7, or the 3-Space Suite manual.

3.4 Sensor Settings

3.4.1 Committing Settings

Certain changes made to the 3-Space Sensor will not be saved unless they are committed. This allows you to make changes to the sensor and easily revert it to its previous state by resetting the chip. For instructions on how to commit your changes, see the Quick Start guide or 3-Space Suite manual. Any changes relating to the multiple reference vector and ortho-calibration mode are an exception to this rule, as all these changes are saved immediately.

3.4.2 Natural Axes

The natural axes of the 3-Space Sensor are as follows:

- The positive X-axis points out of the right hand side of the sensor, which is the side that is facing right when the buttons face upward and plug faces towards you.
- The positive Y-axis points out of the top of the sensor, the side with the buttons.
- The positive Z-axis points out of the front of the sensor, the side opposite the plug.

Bear in mind the difference between natural axes and the axes that are used in protocol data. While they are by default the same, they can be remapped so that, for example, data axis Y could contain data from natural axis X. This allows users to work with data in a reference frame they are familiar with. See section 2.8 for a diagram of the natural axes.

3.4.3 Settings and Defaults

Setting Name	Purpose	Default Value
Accelerometer Rho Value	Determine how trusted the accelerometer is	Confidence Mode, 5 to 100
Compass Rho Value	Determine how trusted the compass is	Confidence Mode, 5 to 100
Accelerometer Coefficients	Determines the scale, bias, and cross-axis parameters for the accelerometer	Factory calibrated
Compass Coefficients	Determines the scale, bias, and cross-axis parameters for the compass	Factory calibrated
Gyroscope Coefficients	Determines the scale, bias and cross-axis parameters for the gyroscope	Factory calibrated
Accelerometer Enabled	Determines whether the compass is enabled or not	TRUE
Compass Enabled	Determines whether the accelerometer is enabled or not	TRUE
Gyroscope Enabled	Determines whether the gyroscope is enabled or not	TRUE
Filter Mode	Determines how orientation is filtered.	1 (Kalman)
Accelerometer Reference Vector	Determines which vector the accelerometer should read in order for the sensor's untared orientation to be the identity orientation.	0, 1, 0
Compass Reference Vector	Dertemines which vector the compass should read in order for the sensor's untared orientation to be the identity orientation.	0, 0, 1 (Default mode is to re-calculate this vector on startup)
Reference Vector Mode	Determines how reference vectors are calculated for orientation estimation.	1 (Single automatic)
Euler Order	Determines the default composition order of euler angles returned by the sensor.	YXZ
Calibration Mode	Determines how raw sensor data is transformed into normalized data	1 (Scale-Bias)
Axis Directions	Determines what natural axis direction each data axis faces	+X, +Y, +Z
Sample Rate	Determines how many samples the sensor takes per cycle	1 from each component sensor
Running Average Percentage	Determines how heavy of a running average to run on the final orientation	0(no running average)
Desired Update Rate	Determines how long each cycle should take(ideally)	0 microseconds
Reference Mode	Determines how the accelerometer and compass reference vectors are determined	Single Auto
RS232 Baud Rate	Determines the speed of RS232 communication	115200
CPU Speed	Determines how fast the CPU will run	60 MHz

User's Manual

LED Color	Determines the RGB color of the LED	0,0,1(Blue)
Joystick Enabled	Determines whether the joystick is enabled or not	TRUE
Mouse Enabled	Determines whether the mouse is enabled or not	FALSE
Button Gyro Disable Length	Determines how many cycles the gyro is ignored after a button is pressed	5
Multi Reference Weight Power	Determines what power each multi reference vector weight is raised to	10
Multi Reference Cell Divisions	Determines how many cells the multi reference lookup table is divided into per axis	4
Multi Reference Nearby Vectors	Determines how many nearby vectors each multi reference lookup table cell stores	8
Wired Response Header Bitfield	Determines what kind of data is prepended to response data.	0
Streaming Slots	Determines which commands are executed during a streaming session.	255, 255, 255, 255, 255, 255, 255, 255
Streaming Timing	Dertemines the streaming interval, duration and delay.	10000, 4294967295, 0

4. 3-Space Sensor Usage/Protocol

4.1. Usage Overview

4.1.1 Protocol Overview

The 3-Space Sensor receives messages from the controlling system in the form of sequences of serial communication bytes called packets. For ease of use and flexibility of operation, two methods of encoding commands are provided: binary and text. Binary encoding is more compact, more efficient, and easier to access programmatically. ASCII text encoding is more verbose and less efficient yet is easier to read and easier to access via a traditional terminal interface. Both binary and ASCII text encoding methods share an identical command structure and support the entire 3-Space command set.

The 3-Space Sensor buffers the incoming command stream and will only take an action once the entire packet has been received and the checksum has been verified as correct(ASCII mode commands do not use checksums for convenience). Incomplete packets and packets with incorrect checksums will be ignored. This allows the controlling system to send command data at leisure without loss of functionality. The command buffer will, however, be cleared whenever the 3-Space Sensor is either reset or powered off/on.

Specific details of the 3-Space Sensor protocol and its control commands are discussed in the following pages.

4.1.2 Computer Interfacing Overview

When interfacing with a computer, the 3-Space Sensor presents itself as a COM port, which provides an interface by which the serial communication the protocol requires may happen. The name of this COM port is specific to the operating system being used. It is possible to use multiple 3-Space Sensors on a single computer. Each will be assigned its own COM port. The easiest way to find out which COM port belongs to a certain sensor is to take note of what COM port appears when that sensor is plugged in(provided the drivers have been installed on that computer already. Otherwise, find out what COM port appears once driver installation has finished.) For more information on how to install the sensor software on a computer and begin using it, see the Quick Start guide.

4.2. Protocol Packet Format

4.2.1 Binary Packet Format

The binary packet size can be three or more bytes long, depending upon the nature of the command being sent to the controller. Each packet consists of an initial **"start of packet"** byte, followed by a **"command value"** specifier byte, followed by zero or more **"command data"** bytes, and terminated by a packet **"checksum value"** byte.

Each binary packet is at least 3 bytes in length and is formatted as shown in figure 1

Figure 1 - Typical Binary Command Packet Format

Binary Return Values:

When a 3 Space Sensor command is called in binary mode, any data it returns will also be in binary format. For example, if a floating point number is returned, it will be returned as its 4 byte binary representation.

For information on the floating point format, go here: <u>http://en.wikipedia.org/wiki/Single_precision_floating-point_format</u>

Also keep in mind that integer and floating point values coming from the sensor are stored in big-endian format.

The Checksum Value:

The checksum is computed as an arithmetic summation of all of the characters in the packet (except the checksum value itself) modulus 256. This gives a resulting checksum in the range 0 to 255. The checksum for binary packets is transmitted as a single 8-bit byte value.

4.2.2 ASCII Text Packet Format

ASCII text command packets are similar to binary command packets, but are received as a single formatted line of text. Each text line consists of the following: an ASCII colon character followed by an integral command id in decimal, followed by a list of ASCII encoded floating-point command values, followed by a terminating newline character. The command id and command values are given in decimal. The ASCII encoded command values must be separated by an ASCII comma character or an ASCII space character. Thus, legal command characters are: the colon, the comma, the period, the digits 0 through 9, the minus sign, the new-line, the space, and the backspace. When a command calls for an integer or byte sized parameter, the floating point number given for that parameter will be interpreted as being the appropriate data type. For simplicity, the ASCII encoded commands follow the same format as the binary encoded commands, but ASCII text encodings of values are used rather than raw binary encodings.

Each ASCII packet is formatted as shown in figure 2.

Figure 2 - Typical ASCII Command Packet Format

Thus the ASCII packet consists of the the following characters:

- **I** : the ASCII colon character signifies the start of an ASCII text packet.
- , the ASCII comma character acts as a value delimiter when multiple values are specified.
- . the ASCII period character is used in floating point numbers.
- 0 9 the ASCII digits are used to in integer and floating point values.
- I - the ASCII minus sign is used to indicate a negative number
- | **h** the ASCII newline character is used to signify the end of an ASCII command packet.
- **b** the ASCII backspace character can be used to backup through the partially completed line to correct errors.

If a command is given in ASCII mode but does not have the right number of parameters, the entire command will be ignored.

Sample ASCII commands:

:0\n	Read orientation as a quaternion
:106,2\n	Set oversample rate to 2

ASCII Return Values:

All values are returned in ASCII text format when an ASCII-format command is issued. To read the return data, simply read data from the sensor until a Windows newline(a carriage return and a line feed) is encountered..

4.3 Response Header Format

4.3.1 Wired Response Header

The 3-Space Sensor is capable of returning additional data that can be prepended to all command responses. This capability is managed via the Response Header Bitfield, which can be configured using command 221 (0xDD). Each bit in the field, if enabled, corresponds to a different piece of information that will be output prior to the expected response data. To use the Response Header Bitfield, use the following steps:

1.) Determine which additional data you would like to have output as the response header. The list of options are:

- 0x1 (Bit 0) Success/Failure; comprised of one byte with non-zero values indicating failure.
- 0x2 (Bit 1) Timestamp; comprised of four bytes representing the most recent sample time in microseconds. Note that this is not a difference, but a total accumulated time.
- 0x4 (Bit 2) Command echo; comprised of one byte. Echoes back the previous command.
- 0x8 (Bit 3) Additive checksum; comprised of one byte summed over the response data modulus 256. Note that this does not include the Response Header itself.
- 0x10 (Bit 4) Logical ID; comprised of one byte indicating the logical ID of the received packet. For wired communication, this always returns 0xFE.
- 0x20 (Bit 5) Serial number; comprised of four bytes.
- 0x40 (Bit 6) Data length; comprised of one byte. Represents the amount of response data. Note that this does not include the Response Header itself.

For example, if you wanted all future data to be preceded with a timestamp and a data length, you would want to use bits 1 and 6, which corresponds to the value 65 (0x00000041). This is the value that would be passed into the Set Wired Response Header Bitfield command (Command 221).

2.) Call command 221 passing in the specified value. Keep in mind that this is a 4-byte value.

3.) Ask for data using the Response Header Start Byte.

Typical wired binary commands use 0xF7 to indicate the start of a command packet. If 0xF7 is used, response data will never contain a Response Header. Instead, the user should use 0xF9 instead of 0xF7. This will cause the resulting command to prepend the requested Response Header to the response data. Typical wired ascii commands use ':' to indicate the start of a typical command packet and the ';' character to indicate to the sensor that the data should have the Response Header prepended. Also note that all Response Header will be output in ascending order, starting with the lowest enabled bit and continuing on to the highest enabled bit.

4.) Parse the Response Header data.

Assume we wanted to ask for the raw accelerometer data along with the timestamp and data length and that we have already called command 221 with a parameter of 65. We then send the following to the sensor:

0xf9 0x42 0x42

We receive the following response from the sensor:

0x17 0x39 0x15 0x93 0x0c 0xc4 0x86 0x0 0x0 0xc5 0x54 0x0 0x0 0x46 0x7c 0xc0 0x0

Going in order, we used bits 1 and 6, so we can parse out the timestamp first, which is 4 bytes, and then the data length, which is 1 byte:

Timestamp: 0x17 0x39 0x15 0x93 (389617043)

Data Length: 0x0c (12)

Data: 0xc4 0x86 0x0 0x0 0xc5 0x54 0x0 0x0 0x46 0x7c 0xc0 0x0 (-1072.0, -3392.0, 16176.0)

For the ascii version, we would send the following:

";64\n"

We would receive the following response:

"389617043,37,-1072.00000,-3392.00000,16176.00000\r\n"

4.3.2 Wired Streaming with Response Header

Streaming data can also have Response Header data prepended to each streamed packet. This can be accomplished by calling the Start Streaming command (0x55) with the Response Header Packet Byte. Assuming that streaming has been configured properly and a non-zero Wired Response Header bitfield has been set, the following examples will start streaming with Response Headers disabled and enabled, respectively:

0xf7 0x55 0x55	//Start streaming WITHOUT response header prepended
0xf9 0x55 0x55	//Start streaming WITH response header prepended

Keep in mind that the actual start command will also have a Response Header attached that must be successfully parsed.

4.4 Command Overview

There are over 90 different command messages that are grouped numerically by function. Unused command message bytes are reserved for future expansion.

When looking at the following command message tables, note the following:

- The "Data Len" field indicates the number of additional data-bytes the command expects to follow the command-byte itself. This number doesn't include the Start of Packet, Command, or Checksum bytes. Thus, the total message size can be calculated by adding three bytes to the "Data Len" listed in the table.
- Likewise, the "Return Data Len" field indicates the number of data-bytes the command delivers back to the sender once the command has finished executing.
- Under "Return Data Details", each command lists the sort of data which is being returned and next to this in parenthesis the form this data takes. For example, a quaternion is represented by 4 floating point numbers, so a command which returns a quaternion would list "Quaternion(float x4)" for its return data details.
- Command length information only applies to binary commands, as ascii commands can vary in length.
- For quaternions, data is always returned in x, y, z, w order.
- Euler angles are always returned in pitch, yaw, roll order.
- When calling commands in ASCII mode, there is no fixed byte length for the parameter data or return data, as the length depends on the ASCII encoding.

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
0(0x00)	quaternion	quaternion form	16	Quaternion (float x4)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
1(0x01)	euler angles	euler angle form	12	Euler Angles (float x3)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
2(0x02)	rotation matrix	rotation matrix form	36	Rotation Matrix (float x9)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in		Axis (float x3), Angle in		
3(0x03)	axis angle	axis-angle form	16	Radians (float)	0	
		Returns the filtered, tared orientation estimate in two				
	Get tared orientation as	vector form, where the first vector refers to forward		Forward Vector (float x3),		
4 (0x04	two vector.	and the second refers to down.	24	Down Vector (float x3)	0	
		Returns the difference between the measured				
5(0x05)	Get difference quaternion	orientation from last frame and this frame.	16	Quaternion (float x4)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
6(0x06)	quaternion	quaternion form.	16	Quaternion (float x4)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
7(0x07)	euler angles	euler angle form	12	Euler Angles (float x3)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
8(0x08)	rotation matrix	rotation matrix form	36	Rotation Matrix (float x9)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in		Axis (float x3), Angle in		
9(0x09)	axis angle	axis-angle form	16	Radians (float)	0	
		Returns the filtered, untared orientation estimate in				
	Get untared orientation as	two vector form, where the first vector refers to north		North Vector (float x3),		
10(0x0A)	two vector.	and the second refers to gravity.	24	Gravity Vector (float x3)	0	
		Returns the filtered, tared orientation estimate in two				
		vector form, where the first vector refers to forward				
		and the second refers to down. These vectors are				
44/0.00	Get tared two vector in	given in the sensor reference frame and not the		Forward Vector (float x3),		
11(0x0B)	sensor frame	global reference frame.	24	Down Vector (float x3)	0	
		Returns the filtered, untared orientation estimate in				
		two vector form, where the first vector refers to forward and the second refers to down. These				
	Get untared two vector in	vectors are given in the sensor reference frame and		North Vector (float x3),		
12(0x0C)	sensor frame	not the global reference frame.	24	Gravity Vector (float x3)	0	
12(0X00)	SCHOULININE	not the global relevence liame.	24	Gravity Vector (IIOat X3)	U	

4.4.1 Orientation Commands

4.4.2 Normalized Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Returns the normalized gyro rate vector,				
		accelerometer vector, and compass vector. Note that				
		the gyro vector is in units of radians/sec, while the		Gyro Rate in units of		
		accelerometer and compass are unit-length vectors		radians/sec (Vector x3),		
		indicating the direction of gravity and north,		Gravity Direction (Vector		
	Get all normalized	respectively. These two vectors do not have any		x3), North Direction (Vector		
32(0x20)	component sensor data	magnitude data associated with them.	36	x3)	0	
		Returns the normalized gyro rate vector, which is in		Gyro Rate in units of		
33(0x21)	Get normalized gyro rate	units of radians/sec.	12	radians/sec (float x3)	0	
		Returns the normalized accelerometer vector. Note				
		that this is a unit-vector indicating the direction of				
	Get normalized	gravity. This vector does not have any magnitude		Gravity Direction (Vector		
34(0x22)	accelerometer vector	data associated with it.	12	x3)	0	
		Returns the normalized compass vector. Note that				
		this is a unit-vector indicating the direction of gravity.				
	Get normalized compass	This vector does not have any magnitude data				
35(0x23)	vector	associated with it.	12	North Direction (Vector x3)	0	

4.4.3 Corrected Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
				Gyro Rate in units of		
		Returns the corrected gyro rate vector,		radians/sec (Vector x3),		
		accelerometer vector, and compass vector. Note that		Acceleration Vector in units		
		the gyro vector is in units of radians/sec, the		of G (Vector x3), Compass		
	Get all corrected	accelerometer vector is in units of G, and the		Vector in units of gauss		
37(0x25)	component sensor data	compass vector is in units of gauss.	36	(Vector x3)	0	
		Returns the corrected gyro rate vector, which is in				
		units of radians/sec. Note that this result is the				
		same data returned by the normalized gyro rate		Gyro Rate in units of		
38(0x26)	Get corrected gyro rate	command.	12	radians/sec (float x3)	0	
		Returns the acceleration vector in units of G. Note				
	Get corrected	that this acceleration will include the static		Acceleration Vector in units		
39(0x27)	accelerometer vector	component of acceleration due to gravity.	12	of G (float x3)	0	
	Get corrected compass			Compass Vector in units of		
40(0x28)	vector	Returns the compass vector in units of gauss.	12	gauss (float x3)	0	
		Returns the linear acceleration of the device, which				
		is the overall acceleration which has been orientation				
	Get corrected linear	compensated and had the component of				
	acceleration in global	acceleration due to gravity removed. Uses the tared		Acceleration Vector in units		
41(0x29)	space	orientation.	12	of G (float x3)	0	

4.4.4 Other Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
43(0x2B)	Get temperature C	Returns the temperature of the sensor in Celsius.	4	Temperature (float)	0	
44(0x2C)	Get temperature F	Returns the temperature of the sensor in Fahrenheit	4	Temperature (float)	0	
		Returns a value indicating how much the sensor is being moved at the moment. This value will return 1 if the sensor is completely stationary, and will return 0 if it is in motion. This command can also return values in between indicating how much motion the				
45(0x2D)	Get confidence factor	sensor is experiencing.	4	Confidence Factor (float)	0	

4.4.5 Raw Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
				Gyro Rate in counts per		
		Returns the raw gyro rate vector, accelerometer		degrees/sec (Vector x3),		
		vector and compass vector as read directly from the		Acceleration Vector in		
		component sensors without any additional post-		counts per g (Vector x3),		
	Get all raw component	processing. The range of values is dependent on the		Compass Vector in counts		
64(0x40)	sensor data	currently selected range for each respective sensor.	36	per gauss (Vector x3)	0	
		Returns the raw gyro rate vector as read directly				
		from the gyroscope without any additional post-		Gyro Rate in counts per		
65(0x41)	Get raw gyroscope rate	processing.	12	degrees/sec (Vector x3)	0	
		Returns the raw acceleration vector as read directly				
	Get raw accelerometer	from the accelerometer without any additional post-		Acceleration Vector in		
66(0x42)	data	processing.	12	counts per g (Vector x3)	0	
		Returns the raw compass vector as read directly				
		from the compass without any additional post-		Compass Vector in counts		
67(0x43)	Get raw compass data	processing.	12	per gauss (Vector x3)	0	

4.4.6 Streaming Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Configures data output slots for streaming mode.				
		Command accepts a list of eight bytes, where each				
		byte corresponds to a different data command. Every	'			
		streaming iteration, each command will be executed				
		in order and the resulting data will be output in the				
		specified slot. Valid commands are commands in				
		the ranges 0x0 - 0x10, 0x20 - 0x30, 0x40 - 0x50,				
		0xC9 – 0xCA (for battery-powered sensors) and				
		0xFA. A slot value of 0xFF 'clears' the slot and				
		prevents any data from being written in that position.				
		This command can fail if there is an invalid command	1			
		passed in as any of the parameters or if the total				
		allotted size is exceeded. Upon failure, all slots will				
		be reset to 0xFF. This setting can be saved to non-				
		volatile flash memory using the Commit Settings				
80(0x50)	Set streaming slots	command.	0		8	Commands (Byte x8)
81(0x51)	Get streaming slots	Returns the current streaming slots configuration.	8	Commands (Byte x8)	0	
		Configures timing information for a streaming				
		session. All parameters are specified in				
		microseconds. The first parameter is the interval,				
		which specifies how often data will be output. A				
		value of 0 means that data will be output at the end				
		of every filter loop. Aside from 0, values lower than				
		1000 will be clamped to 1000. The second parameter	r			
		is the duration, which specifies the length of the				
		streaming session. If this value is set to				
		0xFFFFFFFF, streaming will continue indefinitely				
		until it is stopped via command 0x56. The third				
		parameter is the delay, which specifies a n amount				
		of time the sensor will wait before outputting the first				
		packet of streaming data. This setting can be saved				Interval (Unsigned int),
		to non-volatile flash memory using the Commit				Duration (Unsigned int), Delay
82(0x52)	Set streaming timing	Settings command.	0		12	(Unsigned int)
				Interval (Unsigned int),		
				Duration (Unsigned int),		
83(0x53)	Get streaming timing	Returns the current streaming timing information.	12	Delay (Unsigned int)	0	
		Return a single packet of streaming data using the			1	
84(0x54)	Get streaming batch	current slot configuration.	Varies		0	
		Start a streaming session using the current slot and			1	
85(0x55)	Start streaming	timing configuration.	0		0	
86(0x56)	Stop streaming	Stop the current streaming session.	0		0	
		Set the current internal timestamp to the specified				
95(0x5F)	Update current timestamp	value.	0		4	Timestamp (Unsigned int)

4.4.7 Configuration Write Commands

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
oonninana		Sets the current euler angle decomposition order,	Duta Lon	Rotani Bata Botano		
		which determines how the angles returned from				
		command 0x1 are decomposed from the full				
	Set euler angle	quaternion orientation. Possible values are 0x0 for		Euler angle decomposition order		
16(0x10)	decomposition order	XYZ, 0x1 for YZX, 0x2 for ZXY, 0x3 for ZYX, 0x4 for XZY or 0x5 for YXZ (default).	1	(byte)	0	
10(0X10)	Tare with current	Sets the tare orientation to be the same as the				
96(0x60)	orientation	current filtered orientation.	0		0	
		Sets the tare orientation to be the same as the				
		supplied orientation, which should be passed as a				
97(0x61)	Tare with quaternion	quaternion.	0		16	Quaternion (float x4)
		Sets the tare orientation to be the same as the				
		supplied orientation, which should be passed as a				
98(0x62)	Tare with rotation matrix	rotation matrix.	0		36	Rotation Matrix (float x9)
		Determines how trusted the accelerometer contribution is to the overall orientation estimation.				
	Set static accelerometer	Higher values mean that the accelerometer is less				Accelerometer rho value
99(0x63)	rho mode	trusted.	0		4	(float)
()		Determines how trusted the accelerometer	-			(
		contribution is to the overall orientation estimation.				
		Instead of using a single value, uses a minimum and				
		maximum value. Rho values will be changed within				
		this range depending on the confidence factor. This				Minimum accelerometer rho
400/004)	Set confidence	can have the effect of smoothing out the	0			value (float), Maximum
100(0x64)	accelerometer rho mode	accelerometer when the sensor is in motion.	0		8	accelerometer rho value (float)
		contribution is to the overall orientation estimation.				
	Set static compass rho	Higher values mean that the compass is less				
101(0x65)	mode	trusted.	0		4	Compass rho value (float)
		Determines how trusted the compass contribution is				
		to the overall orientation estimation. Instead of using				
		a single value, uses a minimum and maximum value.				
		Rho values will be changed within this range				
		depending on the confidence factor. This can have the effect of reducing the compass's effect on the				Minimum compass rho value
	Set confidence compass	overall orientation estimation and thus reducing				(float), Maximum compass
102(0x66)	rho mode	magnetically-induced interference.	0		8	rho value (float)
		Causes the processor to wait for the specified				
		number of microseconds at the end of each update				
		loop. Can be useful for bounding the overall update				Microsecond update rate
103(0x67)	Set desired update rate	rate of the sensor if necessary.	0		4	(unsigned integer)
		Uses the current tared orientation to set up the				
		reference vector for the nearest orthogonal				
		orientation. This is an advanced command that is best used through 3-Space Sensor Suite calibration				
	Set multi reference vectors	utilities. For more information, please refer to the 3-				
104(0x68)	with current orientation	Space Sensor Suite Quick Start Guide.	0		0	
. ,		Set the current reference vector mode. Parameter				
		can be 0 for single static mode, which uses a certain				
		reference vector for the compass and another certain				
		vector for the accelerometer at all times, 1 for single				
		auto mode, which uses (0, -1, 0) as the reference vector for the accelerometer at all times and uses				
		the average angle between the accelerometer and				
		compass to calculate the compass reference vector				
		once upon initiation of this mode, 2 for single auto				
		continuous mode, which works similarly to single				
		auto mode, but calculates this continuously, or 3 for				
		multi-reference mode, which uses a collection of				
		reference vectors for the compass and				
405(000)		accelerometer both, and selects which ones to use				Made (Dute)
105(0x69)	Set reference vector mode	before each step of the filter. Sets the number of times to sample each	0		1	Mode (Byte)
		component sensor for each iteration of the filter. This				
		can smooth out readings at the cost of performance.				
		If this value is set to 0 or 1, no oversampling occurs				
		-otherwise, the number of samples per iteration				
		depends on the specified parameter, up to a				
		maximum of 10. This setting can be saved to non-				
400/0 011		volatile flash memory using the Commit Settings	_			
106(0x6A)	Set oversample rate	command.	0		1	Samples Per Iteration (Byte)
		Enable or disable gyroscope readings as inputs to the orientation estimation. Note that updated				
		THE ODEILAUUT ESTIMATION. NOTE MAL UDUATED	1		1	1
		gyroscope readings are still accessible via				

User's Manual

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Enable or disable accelerometer readings as inputs				
		to the orientation estimation. Note that updated				
		accelerometer readings are still accessible via				
		commands. This setting can be saved to non-volatile				
		flash memory using the Commit Settings command.				
108(0x6C)	Set accelerometer enabled		0		1	Enabled (Byte)
		Enable or disable compass readings as inputs to the				
		orientation estimation. Note that compass readings				
		are still accessible via commands. This setting can				
		be saved to non-volatile flash memory using the				
109(0x6D)	Set compass enabled	Commit Settings command.	0		1	Enabled (Byte)
	Reset multi-reference	Resets all reference vectors in the multi-reference				
110(0x6E)	vectors to zero	table to zero. Intended for advanced users.	0		0	
		Sets the number of cell dimensions and number of				
		nearby vectors per cell for the multi-reference lookup				
		table. First parameter indicates the number of cell				
		divisions—as an example, multi-reference mode, by				
		default, only handles orientations reachable by				
		successive rotations of ninety degrees about any of				
		the three axes, and hence, has a resolution of 4 (360				
		/ 4 == 90). Thus, a resolution of 8 would provide				
		rotations of forty-five degrees about any of the three				
		axes (360 / 8 == 45). The second parameter				
		indicates the number of adjacent vectors that will be				
		checked for each In addition, the number of checked vectors can be adjusted as well. The				
		second parameters refers to the number of adjacent				
		reference vectors that are 'averaged' to produce the				
	Set multi-reference table	final reference vector for the particular orientation, up				Resolution (Byte), Number of
111(0x6F)	resolution	to a maximum of 32. Intended for advanced users.	0		2	Check Vectors (Byte)
		Directly set the multi-reference compass vector at	Ū			
		the specified index. First parameter is index, second				
	Set compass mulfi-	parameter is compass vector. Intended for advanced				Index (Byte), Compass
112(0x70)	reference vector	users.	0		13	Reference Vector (float x3)
		Set the compass reading to be used as a check				
		vector to determine which cell index to draw the				
		reference vector from. First parameter is an index,				
	Set compass multi-	second parameter is the compass vector. Intended				Index (Byte), Compass
113(0x71)	reference check vector	for advanced users.	0		13	Check Vector (float x3)
		Directly set the multi-reference accelerometer vector	Ť			
		at the specified index. First parameter is index,				
	Set accelerometer multi-	second parameter is compass vector. Intended for				Index (Byte), Accelerometer
114(0x72)	reference vector	advanced users.	0		13	Reference Vector (float x3)
		Set the accelerometer reading to be used as a	-			
		check vector to determine which cell index to draw				
		the reference vector from. First parameter is an				
	Set accelerometer multi-	index, second parameter is the accelerometer				Index (Byte), Accelerometer
115(0x73)	reference check vector	vector. Intended for advanced users.	0		13	Check Vector (float x3)
			. <u> </u>	1		

User's Manual

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
Command	Description		Data Len	Return Data Details	Len	
		Sets alternate directions for each of the natural axes				
		of the sensor. The only parameter is a bitfield				
		representing the possible combinations of axis				
		swapping. The lower 3 bits specify where each of the natural axes appears:				
		000: X: Right, Y: Up, Z: Forward (left-handed				
		system, standard operation) 001: X Right, Y: Forward, Z: Up (right-handed				
		system)				
		002: X: Up, Y: Right, Z: Forward (right-handed system)				
		003: X: Forward, Y: Right, Z: Up (left-handed				
		system)				
		004: X: Up, Y: Forward, Z: Right (left-handed system)				
		005: X: Forward, Y: Up, Z: Right (right-handed				
		system)				
		(For example, using X: Right, Y: Forward, Z: Up				
		means that any values that appear on the positive				
		vertical (Up) axis of the sensor will be the third(Z)				
		component of any vectors and will have a positive sign, and any that appear on the negative vertical				
		axis will be the Z component and will have a negative				
		sign.)				
		The 3 bits above those are used to indicate which				
		axes, if any, should be reversed. If it is cleared, the				
		axis will be pointing in the positive direction. Otherwise, the axis will be pointed in the negative				
		direction. (Note: These are applied to the axes after				
		the previous conversion takes place).				
		Bit 4: Positive/Negative Z (Third resulting component)				
		Bit 5: Positive/Negative Y (Second resulting				
		component) Bit 6: Positive/Negative X (First resulting component)				
		Note that for each negation that is applied, the handedness of the system flips. So, if X and Z are				
		negative and you are using a left-handed system, the				
		system will still be left handed, but if only X is				
116(0x74)	Set axis directions	negated, the system will become right-handed. Sets what percentage of running average to use on	0		1	Axis Direction Byte (byte)
		the sensor's orientation. This is computed as				
		follows:				
		total orient = total orient * percent				
		total_orient = total_orient + current_orient * (1 -				
		percent) current orient = total orient				
		If the percentage is 0, the running average will be shut off completely. Maximum value is 97%. This				
	Set running average	setting can be saved to non-volatile flash memory				Running Average Percent
117(0x75)	percent Set compass reference	using the Commit Settings command. Sets the static compass reference vector for Single	0		4	(float) Compass Reference Vector
118(0x76)	vector	Reference Mode.	0		12	(float x3)
	Set accelerometer	Sets the static accelerometer reference vector for				Accelerometer Reference
119(0x77) 120(0x78)	reference vector Reset filter	Single Reference Mode. Resets the state of the currently selected filter	0		12	Vector (float x3)
		Only parameter is the new accelerometer range,				
		which can be 0 for $\pm 2g$ (Default range), which can be				
		1 for \pm 4g, or 2 for \pm 8g. Higher ranges can detect and report larger accelerations, but are not as accurate				
		for smaller accelerations. This setting can be saved				
121(0x79)	Set accelerometer range	to non-volatile flash memory using the Commit Settings command.	0		1	Accelerometer range setting (byte)
121(0719)		Set weighting power for multi reference vector	0			
		weights. Multi reference vector weights are all raised				
		to the weight power before they are summed and used in the calculation for the final reference vector.				
		Setting this value nearer to 0 will cause the reference				
		vectors to overlap more, and setting it nearer to				
122(0x7a)	Set multi-reference weight power	infinity will cause the reference vectors to influence a smaller set of orientations.	0		4	Weight power (float)
.==(3x1a)	- Portor	emailer out of enentations.		1		

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Used to disable the orientation filter or set the		1		
		orientation filter mode. Changing this parameter can				
		be useful for tuning filter-performance versus				
		orientation-update rates. Passing in a parameter of 0				
		places the sensor into IMU mode, a 1 places the				
		sensor into Kalman Filtered Mode (Default mode), a				
		2 places the sensor into Alternating Kalman Filter				
		Mode, a 3 places the sensor into Complementary				
		Filter Mode and a 4 places the sensor into				
		Quaternion Gradient Descent Filter Mode. More				
		information can be found in Section 3.1.5. This				
		setting can be saved to non-volatile flash memory				
123(0x7b)	Set filter mode	using the Commit Settings command.	0		1	Mode (Byte)
		Used to further smooth out the orientation at the				
		cost of higher latency. Passing in a parameter of 0				
		places the sensor into a static running average				
		mode, a 1 places the sensor into a confidence-				
		based running average mode, which changes the				
		running average factor based upon the confidence				
		factor, which is a measure of how 'in motion' the				
		sensor is. This setting can be saved to non-volatile				
124(0x7c)	Set running average mode	flash memory using the Commit Settings command.	0		1	Mode (Byte)
		Only parameter is the new gyroscope range, which				
		can be 0 for ±250 DPS, 1 for ±500 DPS, or 2 for				
		±2000 DPS (Default range). Higher ranges can				
		detect and report larger angular rates, but are not as				
		accurate for smaller angular rates. This setting can				
		be saved to non-volatile flash memory using the				Gyroscope range setting
125(0x7d)	Set gyroscope range	Commit Settings command.	0		1	(Byte)
		Only parameter is the new compass range, which				
		can be 0 for ±0.88G, 1 for ±1.3G (Default range), 2				
		for ±1.9G, 3 for ±2.5G, 4 for ±4.0G, 5 for ±4.7G, 6 for				
		±5.6G, or 7 for ±8.1G. Higher ranges can detect and				
		report larger magnetic field strengths but are not as				
		accurate for smaller magnetic field strengths. This				
106(0+70)	Cot compose renge	setting can be saved to non-volatile flash memory	0		1	Company range patting (D: ta)
126(0x7e)	Set compass range	using the Commit Settings command.	0		1	Compass range setting (Byte)

4.4.8 Configuration Read Commands

T.T.U U	onnguration i		Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Data Len	Data Details
	Get tare orientation as					
128(0x80)	quaternion	Returns the current tare orientation as a quaternion.	16	Quaternion (float x4)	0	
129(0x81)	Get tare orientation as rotation matrix	Retums the current tare orientation as a rotation matrix.	36	Rotation Matrix (float x9)	0	
129(0801)		Returns the current accelerometer rho mode as well			0	
		as the value. If this mode is set to 0 (static), this will				
		return the rho mode, the static rho value, and then a				
		dummy value of 0. If this mode is set to 1, this will		Accelerometer rho mode		
130(0x82)	Get accelerometer rho value	return the rho mode, and the minimum and maximum rho values.	9	(byte), Accelerometer rho values (float x2)	0	
130(0X02)	value	Returns the current compass rho mode as well as	9		0	
		the value. If this mode is set to 0 (static), this will				
		return the rho mode, the static rho value, and then a				
		dummy value of 0. If this mode is set to 1, this will		Compass rho mode (byte),		
131(0x83)	Get compass rho value	return the rho mode, and the minimum and maximum rho values.	9	Compass rho values (float x2)	0	
		Reads the amount of time taken by the last filter	0	Last update time in		
132(0x84)	Get current update rate	update step.	4	microseconds (int)	0	
		Reads the current compass reference vector. Note				
00/005	Get compass reference	that this is not valid if the sensor is in Multi	40	Compass reference vector	_	
133(0x85)	vector	Reference Vector mode. Reads the current compass reference vector. Note	12	(float x3)	0	
	Get accelerometer	that this is not valid if the sensor is in Multi		Accelerometer reference		
134(0x86)	reference vector	Reference Vector mode.	12	vector (float x4)	0	
		Reads the current reference vector mode. Return	1	, ,		
		value can be 0 for single static, 1 for single auto, 2				
135(0x87)	Get reference vector mode	for single auto continuous or 3 for multi.	1	Mode (byte)	0	
	Get compass multi-	Reads the multi-reference mode compass reference vector at the specified index. Intended for advanced		Compass multi-reference		
136(0x88)	reference vector	users.	12	reference vector (float x3)	1	Index (byte)
		Reads the multi-reference mode compass reference		Compass multi-reference		
		check vector at the specified index. Intended for		reference check vector		
137(0x89)	reference check vector	advanced users.	12	(float x3)	1	Index (byte)
	Get accelerometer multi-	Reads the multi-reference mode accelerometer		Accelerometer multi-		
138(0x8a)	reference vector	reference vector at the specified index. Intended for advanced users.	12	(float x3)	1	Index (byte)
		Reads the multi-reference mode accelerometer		Accelerometer multi-		
	Get accelerometer multi-	reference check vector at the specified index.		reference reference check		
139(0x8b)	reference check vector	Intended for advanced users.	12	vector (float x3)	1	Index (byte)
		Returns a value indicating whether the gyroscope				
140(0x8c)	Get gyroscope enabled state	contribution is currently part of the orientation estimate: 0 for off, 1 for on.	1	Gyroscope enabled value (byte)	0	
140(0×00)		Returns a value indicating whether the accelerometer				
	Get accelerometer enabled	contribution is currently part of the orientation		Accelerometer enabled		
141(0x8d)	state	estimate: 0 for off, 1 for on.	1	value (byte)	0	
	Ost same an ablad	Returns a value indicating whether the compass				
142(0x8e)	Get compass enabled state	contribution is currently part of the orientation estimate: 0 for off, 1 for on.	1	Compass enabled value (byte)	0	
		Returns a value indicating the current axis direction	· ·	-,,		
		setup. For more information on the meaning of this				
		value, please refer to the Set Axis Direction			-	
143(0x8f)	Get axis direction	command (116).	1	Axis direction value (byte)	0	
		Returns a value indicating how many times each component sensor is sampled before being stored				
		as raw data. A value of 1 indicates that no				
		oversampling is taking place, while a value that is				
144(0+00)	Cot or promote sets	higher indicates the number of samples per		Ourreample rate (hute)		
144(0x90)	Get oversample rate	component sensor per filter update step. Returns a value indicating how heavily the orientation	1	Oversample rate (byte)	0	
		estimate is based upon the estimate from the	'			
		previous frame. For more information on the meaning	ı l			
	Get running average	of this value, please refer to the Set Running Average		Running average percent	-	
145(0x91)	percent	Percent command (117).	4	(float)	0	
		Returns the current desired update rate. Note that this value does not indicate the actual update rate,				
		but instead indicates the value that should be spent				
		'idling' in the main loop. Thus, without having set a				
		specified desired update rate, this value should read		Desired update rate in		
146(0x92)	Get desired update rate	0.	4	microseconds (int)	0	
		Return the current accelerometer measurement range, which can be a 0 for $\pm 2a$ 1 for $\pm 4a$ or a 2 for		Accelerometer range		
	Get accelerometer range	range, which can be a 0 for $\pm 2g$, 1 for $\pm 4g$ or a 2 for $\pm 8g$.	1	Accelerometer range setting (byte)	0	
148(0x94)						
148(0x94)	Get multi-reference mode	Read weighting power for multi-reference vector				

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Reads number of cell divisions and number of nearby				
		vectors per cell for the multi-reference vector lookup				
		table. For more information on these values, please		Number of cell divisions		
	Get multi-reference	refer to the Set Multi-Reference Resolution		(byte), number of nearby		
150(0x96)	resolution	command (111). Intended for advanced users.	2	vectors (byte)	0	
	Get number of multi-	Reads the total number of multi-reference cells.				
151(0x97)	reference cells	Intended for advanced users.	4	Number of cells (int)	0	
		Returns the current filter mode, which can be 0 for				
		IMU mode, 1 for Kalman, 2 for Alternating Kalman or				
		3 for Complementary. For more information, please				
152(0x98)	Get filter mode	refer to the Set Filter Mode command (123).	1	Filter mode (byte)	0	
		Reads the selected mode for the running average,		Running average mode		
153(0x99)	Get running average mode	which can be 0 for normal or 1 for confidence.	1	(byte)	0	
		Reads the current gyroscope measurement range,				
		which can be 0 for ±250 DPS, 1 for ±500 DPS or 2		Gyroscope range setting		
154(0x9a)	Get gyroscope range	for ±2000 DPS.	1	(byte)	0	
		Reads the current compass measurement range,				
		which can be 0 for ± 0.88 G, 1 for ± 1.3 G, 2 for ± 1.9 G,				
		3 for ±2.5G, 4 for ±4.0G, 5 for ±4.7G, 6 for ±5.6G or		Compass range setting		
155(0x9b)	Get compass range	7 for ±8.1G.	1	(byte)	0	
	Get euler angle					Euler angle decomposition
156(0x9c)	decomposition order	Reads the current euler angle decomposition order.	0		1	order (byte)

4.4.9 Calibration Commands

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
		Sets the current compass calibration parameters to				
		the specified values. These consist of a bias which				
		is added to the raw data vector and a matrix by				
		which the value is multiplied. This setting can be				
	Set compass calibration	saved to non-volatile flash memory using the Commit				Matrix (float x9), Bias (float
60(0xa0)	coefficients	Settings command.	0		48	x3)
00(0x40)		Sets the current accelerometer calibration	0		0	x3)
		parameters to the specified values. These consist of				
		a bias which is added to the raw data vector and a				
	0.1	matrix by which the value is multiplied. This setting				
- <i></i>	Set accelerometer	can be saved to non-volatile flash memory using the				Matrix (float x9), Bias (float
61(0xa1)	calibration coefficients	Commit Settings command.	0		48	x3)
	Get compass calibration			Matrix (float x9), Bias (float		
62(0xa2)	coefficients	Return the current compass calibration parameters.	48	x3)		
	Get accelerometer	Return the current accelerometer calibration		Matrix (float x9), Bias (float		
63(0xa3)	calibration coefficients	parameters.	48	x3)		
, ,	Get gyroscope calibration			Matrix (float x9), Bias (float		
64(0xa4)	coefficients	Return the current gyroscope calibration parameters.	48	x3)		
(0,44)		Performs auto-gyroscope calibration. Sensor should	10			
		remain still while samples are taken. The gyroscope				
	Begin gyroscope auto-	bias will be automatically placed into the bias part of			_	
65(0xa5)	calibration	the gyroscope calibration coefficient list.	0		0	
		Sets the current gyroscope calibration parameters to				
		the specified values. These consist of a bias which				
		is added to the raw data vector and a matrix by				
		which the value is multiplied. This setting can be				
	Set gyroscope calibration	saved to non-volatile flash memory using the Commit	:			Matrix (float x9), Bias (float
66(0xa6)	coefficients	Settings command.	0		48	x3)
		Bias, 1 for Scale-Bias and 2 for Ortho-Calibration.	-			
		For more information, refer to section 3.1.3				
		Additional Calibration. This setting can be saved to				
CO(0 O)		non-volatile flash memory using the Commit Settings	0			Mada (Duta)
69(0xa9)	Set calibration mode	command.	0		1	Mode (Byte)
		Reads the current calibration mode, which can be 0				
		for Bias, 1 for Scale-Bias or 2 for Ortho-Calibration.				
		For more information, refer to section 3.1.3				
70(0xaa)	Get calibration mode	Additional Calibration.	1	Mode (byte)	0	
	Set ortho-calibration data	Set the ortho-calibration compass and				
	point from current	accelerometer vectors corresponding to this				
71(0xab)	orientation	orthogonal orientation. Intended for advanced users.	0		0	
		Directly set a vector corresponding to this orthogonal	-		-	
		orientation. First parameter is type, where 0 is for		1		1
		compass and 1 is for accelerometer. Second				Type (Byte), Index (Byte),
	Set ortho-calibration data	parameter is index, which indicates the orthogonal				Accelerometer or Compass
70/0		orientation. Intended for advanced users.	0			
72(0xac)	point from vector		0		14	Vector (float x3)
		Return the vector corresponding to the orthogonal				
		orientation given by index. First parameter is type,				
		where 0 is for compass and 1 is for accelerometer.				
	Get ortho-calibration data	Second parameter is index, which indicates the		Accelerometer or compass		
73(0xad)	point	orthogonal orientation. Intended for advanced users.	12	vector (float x3)	2	Type (Byte), Index (Byte)
		Stores accelerometer and compass data in the				
		ortho-lookup table for use in the orientation fusion		1		1
		algorithm. For best results, each of the 24		1		1
		orientations should be filled in with component		1		1
		sensor data. Note also that ortho-calibration data will	d .	1		1
			1			
		not be used unless the calibration mode is set to		1		1
		Ortho-Calibration. For more information, refer to		1		1
		Section 3.1.3 Additional Calibration. Intended for	_			
74(0xae)	Perform ortho-calibration	advanced users.	0		0	
		Clear out all ortho-lookup table data. Intended for				

4.4.10 General Commands

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
		Allows finer-grained control over the sensor LED.				
		Accepts a single parameter that can be 0 for				
		standard, which displays all standard LED status indicators or 1 for static, which displays only the				
		LED color as specified by command 238. For more				
		information on LED status indicators, please refer to				
196(0xc4)	Set LED Mode	Section 2.10.	0		1	LED mode (byte)
		Returns the current sensor LED mode, which can be				
		0 for standard or 1 for static. For more information on				
200(0xc8)	Get LED Mode	LED status indicators, please refer to Section 2.10.	1	LED mode (byte)	0	
		Configures the response header for data returned				
		over a wired connection. The only parameter is a				
		four-byte bitfield that determines which data is				
		prepended to all data responses. The following bits are used:				
		0x1: (1 byte) Success/Failure, with non-zero values				
		representing failure.				
		0x2: (4 bytes) Timestamp, in microseconds.				
		Ov 4: (1 by to) Command cabo, outputs the called				
		0x4: (1 byte) Command echo—outputs the called command. Returns 0xFF for streamed data.				
		Over (1 buto) Additive abacksum over returned data				
		0x8: (1 byte) Additive checksum over returned data, but not including response header.				
		0x10: (1 byte) Logical ID, returns 0xFE for wired				
		sensors. Meant to be used with 3-Space Dongle response header (For more info, see command				
		0xDB).				
		0x20: (4 bytes) Serial number				
		0x40: (1 byte) Data length, returns the length of the				
		requested data, not including response header.				
		This setting can be committed to non-volatile flash				
		memory by calling the Commit Settings command.				
004(0		For more information on Response Headers, please	0			Response header
221(0xdd)	bitfield Get wired response header	refer to Section 4.4. Return the current wired response header bitfield.	0	Response header	4	configuration (Unsigned int)
222(0xde)	bitfield	For more information, please refer to Section 4.4.	4	configuration (Unsigned int)	0	
		Returns a string indicating the current firmware				
223(0xdf)	Get firmware version string		12	Firmware version (string)	0	
224(0xe0)	Restore factory settings	Return all non-volatile flash settings to their original, default settings.	0		0	
224(0x00)		Commits all current sensor settings to non-volatile	Ū			
		flash memory, which will persist after the sensor is				
		powered off. For more information on which parameters can be stored in this manner, refer to				
225(0xe1)	Commit settings	Section 3.4 Sensor Settings.	0		0	
226(0xe2)	Software reset	Resets the sensor.	0		0	
		Sets the current sleep mode of the sensor.				
		Supported sleep modes are 0 for NONE and 1 for IDLE. IDLE mode merely skips all filtering steps.				
227(0xe3)	Set sleep mode	NONE is the default state.	0		1	Sleep mode (byte)
. ,	·	Reads the current sleep mode of the sensor, which				
228(0xe4)	Get sleep mode	can be 0 for NONE or 1 for IDLE.	1	Sleep mode (byte)	0	
		Places the sensor into a special mode that allows firmware upgrades. This will case normal operation				
		until the firmware update mode is instructed to return				
		the sensor to normal operation. For more information				
229(0xe5)	Enter bootloader mode	on upgrading firmware, refer to the 3-Space Sensor Suite Quick Start Guide.	0		0	
	Get hardware version	Returns a string indicating the current hardware	0		0	
230(0xe6)	string	version.	32	Hardware version (string)	0	
		Sets the baud rate of the physical UART. This				
		setting does not need to be committed, but will not take effect until the sensor is reset. Valid baud rates				
		are 1200, 2400, 4800, 9600, 19200, 28800, 38400,				
		57600, 115200 (default), 230400, 460800 and				
231(0407)	Set LIAPT bourd rote	921600. Note that this is only applicable for sensor types that have UART interfaces.	0			Baud rate (int)
231(0xe7)	Set UART baud rate	Returns the baud rate of the physical UART. Note	0		4	Baud rate (int)
		that this is only applicable for sensor types that have				
		UART interfaces.	4		0	

User's Manual

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Sets the communication mode for USB. Accepts				
		one value that can be 0 for CDC (default) or 1 for				USB communication mode
233(0xe9)	Set USB Mode	FTDI.	0		1	(byte)
				USB communication mode		
234(0xea)	Get USB Mode	Returns the current USB communication mode.	1	(byte)	0	
		Returns the serial number, which will match the				
237(0xed)	Get serial number	value etched onto the physical sensor.	4	Serial number (int)	0	
		Sets the color of the LED on the sensor to the				
		specified RGB color. This setting can be committed				
		to non-volatile flash memory by calling the Commit				
238(0xee)	Set LED color	Wireless Settings command.	0		12	RGB Color (float x3)
239(0xef)	Get LED color	Returns the color of the LED on the sensor.	12	RGB Color (float x3)	0	

4.4.11 Wired HID Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Enable or disable streaming of joystick HID data for				
240(0xf0)	Enable/disable joystick	this sensor.	0		1	Joystick enabled state (byte)
		Enable or disable streaming of mouse HID data for				
241(0xf1)	Enable/disable mouse	this sensor.	0		1	Mouse enabled state (byte)
		Read whether the sensor is currently streaming		Joystick enabled state		
242(0xf2)	Get joystick enabled	joystick HID data.	1	(byte)	0	
		Read whether the sensor is currently streaming				
243(0xf3)	Get mouse enabled	mouse HID data.	1	Mouse enabled state (byte)	0	

4.4.12 General HID Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Sets the operation mode for one of the controls. The				
		first parameter is the control class, which can be 0				
		for Joystick Axis, 1 for Joystick Button, 2 for Mouse				
		Axis or 3 for Mouse Button. There are two axes and				
		eight buttons on the joystick and mouse. The				
		second parameter, the control index, selects which				
		one of these axes or buttons you would like to				
		modify. The third parameter, the handler index,				
		specifies which handler you want to take care of this				
		control. These can be the following:				
		Turn off this control: 255				
		Axes: Global Axis: 0				
		Screen Point: 1				
		Buttons:				
		Hardware Button: 0				Control class (byte), control
		Orientation Button: 1				index (byte), handler index
244(0xf4)	Set control mode	Shake Button: 2	0		3	(byte)
			1			
		Sets parameters for the specified control's operation				
		mode. The control classes and indices are the same				
		as described in command 244. Each mode can have				
		up to 10 data points associated with it. How many				Control class (byte), control
045(0.55)	0.1	should be set and what they should be set to is			-	index (byte), data point index
245(0xf5)	Set control data	entirely based on which mode is being used.	0		7	(byte), data point (float)
		Reads the handler index of this control's mode. The control classes and indices are the same as				Control alogg (buta) agentral
246(0xf6)	Get control mode	described in command 244.	1	Handler index (byte)	2	Control class (byte), control index (byte)
240(0/10)	Ger control mode	Reads the value of a certain parameter of the	1		2	index (byte)
		specified control's operation mode. The control				Control class (byte), control
		classes and indices are the same as described in				index (byte), data point index
247(0xf7)	Get control data	command 244.	4	Data point (float)	3	(byte)
		Determines how long, in frames, the gyros should be				
		disabled after one of the physical buttons on the				
		sensor is pressed. A setting of 0 means they won't				
		be disabled at all. This setting helps to alleviate gyro				
0.40(0.50)	Set button gyro disable	disturbances cause by the buttons causing small				
248(0xf8)	length	shockwaves in the sensor.	0		1	Number of frames (byte)
040/050)	Get button gyro disable	Deturne the summer button sum dischiels length		Number of from an (but a)		
249(0xf9)	lentgh	Returns the current button gyro disable length.	1	Number of frames (byte)	0	
		Reads the current state of the sensor's physical buttons. This value returns a byte, where each bit				
		represents the state of the sensor's physical				
250(0xfa)	Get button state	buttons.	1	Button state (byte)	0	
		Puts the mode in absolute or relative mode. This	İ			
		change will not take effect immediately and the				
		sensor must be reset before the mouse will enter				
	Set mouse	this mode. The only parameter can be 0 for absolute				Absolute or relative mode
251(0xfb)	absolute/relative mode	(default) or 1 for relative	0		1	(byte)
		Return the current mouse absolute/relative mode.				
	Cet mayor	Note that if the sensor has not been reset since it				
252(0)(5-)	Get mouse	has been put in this mode, the mouse will not reflect		Absolute or relative mode	_	
252(0xfc)	absolute/relative mode	this change yet, even though the command will.	1	(byte)	0	
		Sets whether the joystick and mouse are present or removed. The first parameter is for the joystick, and				
		can be 0 for removed or 1 for present. The second				
		parameter is for the mouse. If removed, they will not				
		show up as devices on the target system at all. For				Joystick present/removed
	Set joystick and mouse	these changes to take effect, the sensor driver may				(byte), Mouse
253(0xfd)	present/removed	need to be reinstalled.	0		2	present/removed (byte)
				Joystick present/removed		
	Get joystick and mouse	Returns whether the joystick and mouse are present		(byte), Mouse		
254(0xfe)	present/removed	or removed.	2	present/removed (byte)	0	

Appendix

USB Connector

The 3-Space Sensor has a 5-pin USB Type-B jack and can be connected via a standard 5-pin mini USB cable.

RS232 Connector

The RS232 connector provides a means to communicate with the 3-Space Sensor via standard RS232 signals. The RS232 connector is a standard 2.5mm 4-conductor phone jack with the following pinout:

Where the signals are assigned as follows:

Signal Number	Signal Location	Signal Description
1	Sleeve	+5vdc (Serial Power Input)
2	Tip	TxD (Transmit output from unit)
3	Ring 1	RxD (Receive data to unit)
4	Ring 2	Gnd (Shared power and signal ground)

Mating plugs are available from Yost Engineering, Inc. or from other electronics vendors. One such option for a mating 2.5mm 4-conductor phone plug is Kobiconn part #: 171-7425-E

Note that the RS232 power input is provided as a convenient way to provide power along with communications via a single connector. Thus, the +5vdc input is only required when the unit is not being powered via USB or the External Power Connector option.

External Power Connector

The external power connector is a standard EIAJ-1 (0.70mm ID, 2.35mm OD) with the center pin positive. The power requirements are nominally +5vdc at at least 100mA. While the system is designed for +5vdc, it can be powered from any input voltage in the range +3.6vdc to +10vdc.

+5vdc AC adapters with EIAJ-1 connectors are commonly used for cell phone charging and are readily available. A suitable AC adapter is the Audiovox or UTStarcom model CNR4 or equivalent and is available from Yost Engineering, Inc. or from other retailers.

Note that the external power connector is only required when the unit is not being powered via USB or the RS232 input jack power option.

		Second Hexadecimal digit															
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
First Hexadecimal Digit	0	000	001	002	003	004	005	006	007	008	009	010	011	012	013	014	015
	1	016	017	018	019	020	021	022	023	024	025	026	027	028	029	030	031
	2	032	033	034	035	036	037	038	039	040	041	042	043	044	045	046	047
	3	048	049	050	051	052	053	054	055	056	057	058	059	060	061	062	063
	4	064	065	066	067	068	069	070	071	072	073	074	075	076	077	078	079
	5	080	081	082	083	084	085	086	087	088	089	090	091	092	093	094	095
	6	096	097	098	099	100	101	102	103	104	105	106	107	108	109	110	111
	7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
	8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
	9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	A	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	B	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	С	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	E	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Hex / Decimal Conversion Chart

Notes:

Serial Number:

YEI Technology

630 Second Street Portsmouth, Ohio 45662

> Toll-Free: 888-395-9029 Phone: 740-355-9029

www.YeiTechnology.com www.3SpaceSensor.com

> Patents Pending ©2007-2012 Yost Engineering, Inc. Printed in USA