

PONOVO POWER CO., LTD		
2F, 4Cell, To	ower C, In.Do Mansion	
No.48A Zhichun Road, Haidian District		
Beijing, China (Post Code 100098)		
Office	TEL. +86 (10) 82755151 ext. 8887 FAX +86 (10) 82755257	
E-Mail	Info@ponovo.com.cn	
Website	www.ponovo.com.cn	

PowerTest

Special Modules

VERSION: DATE : PowerTest Special Modules-AE-2.10 23/09/2011

This manual is the publisher of PONOVO POWER CO., LTD. To make any kind of copy of this manual please contact PONOVO POWER CO., LTD in advance.

This manual represents the technical status for the moment of publishing. The product information, description and specifications mentioned in the manual do not have any contact binding force and PONOVO POWER CO., LTD remains the right to make modifications to the technical specifications and configurations without prior notice. PONOVO POWER does not take responsibility to the possible error/mistakes in this manual.

Contents

1.	Ene	ergy meter	3
	a)	Set group parameters	4
	b)	Set test parameters	4
	c)	Set assessment criterion	5
2.	Hig	h impedance	6
3.	Po	wer Swing Simulation	7
	a)	General	7
	b)	Principle of power swing	7
	c)	Simulation principle	8
	d)	Power swing parameters	9
	e)	Set group parameters	10
	f)	Set test parameters	11
	g)	Power swing example	13
4.	Tra	nsducer	14
	a)	Example	15
		 Transducer 	
		parameters	15
		Test connection	15
		• Set test parameters	16
		Add test point	17

1. Energy Meter

This module is designed to check the functionality and accuracy of energy meter.

Following type of 1-phase or 3-phase energy meters can be checked.

- Active power meter
- Reactive power meter
- Apparent power meter

Note: to check some type energy meters the *optional scanning head* is required to turn the LED flash on energy meter into electrical pulse which can be sensed by the test set. Please contact the manufacture for more details regarding the scanning head

Set group parameters

Click **Para** button to enter into group parameter page. Group test parameter page along with default settings is shown bellow

Name	Value	Variable
Meter type	P 토	MeterType
Select	Pulse/kVARh(kWh,k.	PulseType
Constant	50000.000	Constant
CT ratio	1.000	Kct
PT ratio	1.000	Kpt

Meter type

- **P** Active power meter
- **Q** Reactive power meter
- S Apparent power meter

<u>Select</u>

Pulse/kVARh(kWh,kVAh)

Select pulse unit as pulse per kVARh((kWh, kVAh)

VARh(Wh,VAh)/Pulse

Select pulse unit as kVARh((kWh, kVAh) per pulse

Constant

Defines the number of pulse for 1 KVARh(kWh, kVAh) if we select *Pulse/kVARh(kWh,kVAh)*

Defines the KVARh(kWh, kVAh) value for each pulse if we select kVARh(kWh,kVAh)/Pulse

Example

- Select to test kWh meter
- Seect Pulse/kVARh(kWh,kVAh)
- Set Constant as 100: indicate that each 100 pulses represents 1 kWh

 Set *Pulses* in test parameters page as 6: indicate that we are going to sense only 6 pulses for the whole test process. The total kWh measured for the whole test process should be 6/100=0.06kWh

PT ratio

Ratio for voltage in case

CT ratio

Ratio for Current

Set test parameters

Parameters A	ssessment Wiring
Name	Errorcuve100%load Add
Phase	LABC Remove
Current	100.0% In 1.000 A
Voltage	100.0% Vn 63.500 V
Power Angle	0.0 Power Factor 1.000 Load Capacitive 💌
Stab. time	0.000S
Pulses	6 Est. time 2.268S
Waveform	Sinus+Current Ha - Harmonic 2nd - 0.000 %

<u>Name</u>

Edit here the name for the current test point

<u>Phase</u>

Indicate the wiring type for the energy meter.

LABC for 3-phase 3-wire meter and 3-phase 4-wiring meter

Wiring for 3P-3W meter

Wiring for 3P-3W meter

LA, LB,LC for single phase meter

Wiring for single phase meter

Note: Pulse output from energy meter or scanning head must be connected to binary input 1

Current

Percent of rate current

<u>Voltage</u>

Percent of rate voltage

Power angle, Power Factor, Load

Set angle or power factor which will be influenced by the selection of *Load*

Stab. time

Stabilization time required for energy meter to enter into stable working condtion

Pulses

Pulses numbers to be sensed for testing.

Est. time

Time required for the test and this time is calculated based on the *Pulses* number setting and the voltage and current settings.

Waveform

We can select to add harmonic to the voltage or current output.

Sinus no harmonic in the output Sinus+Current Harmonic add harmonic to current output

Sinus+Current Harmonic add harmonic to current output

The harmonic number and percentage can also be set

Example

	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-			020
Sinus+Current Ha -	Harmonic	2	-	5.000	%

In this example we have set to add 5% of 2nd harmonic to the current to be supplied to the energy meter.

Set assessment criterion

Click *Assessment* to enter into criterion setting page

Parameters	Assessment W	/iring
Assessm	ent	
1.000001	Max. Error <	s 0.5 %
	Criterion	ABS(ERROR)<0.5

We can set the value based on the accuracy of the meter under test

2. High Burden Relay

This module is used to test high burden relay along with optional Phpc-01 Current Booster.

Connected to the main test set the Phpc-01 Current Booster will provide one channel current source and will be controlled by this module.

Necessary voltage sources can also be provided to make relay in proper working condition.

3. Power Swing Simulation

General

This module is used to simulate the power swing. This can be a tool for relay test engineer to observe the relay behavior during dynamic power swing process.

Principle of power swing

Important feature of power swing is as follow.

- phase angle between Generator and Load will swing
- The voltage and current will also have swing

Simulation principle

The typical system model used for simulating the power swing is as follows

For such a system the swing frequency is determined by swing cycle T.

We can easily simulate the power swing by defining the following settings:

Power angle	angle between the Generator and Load
Swing cycle	the time used to complete one cycle of swing
Swing numbers	how many swing cycles we want to simulate
Em/En	the direction of power swing

Internally the swing voltage and current will be calculated by taking account of the above parameters and other parameters in our power swing module.

Power swing parameters

Switch the view button to display swing model and parameters

Click this button to view the system

Then the follow window will pop up.

Grafa	57	Here	4.00	
estine.	Equ	iivalent Sytem Diagram	c estine	restin
Min. Swing Voltage Max. Swing Current Swing center Power Angle	75.878V 3.503A 21.665ohm 180.0deg			
			ana ana ang ang ang ang ang ang ang ang	

Here we an see power swing parameters

The power swing center is calculated by taking account of system settings set in group parameters.

The position of power swing center can be changed by changing the system settings

Set group parameters

Click here to set system settings

Group parameters setting page will appear

Name	Value	Variable
Tprefault	5.000S	PreFaultTime
CT Polarity	Line	
Zs	25.000Ohm	Zs
Phi(Zs)	90.000Deg	Phis
Zt	15.000Ohm	Zt
Phi(Zt)	78.000Deg	Phit
Xď.	1.000Ohm	Xd

Tprefault	prefault time (will be used when simulating the power swing with fault)
CT Side	select the installation position of CT (Line or Busbar)
Zs	Equivalent system impedance for En
Phi(Zs)	Impedance angle of Zs
Z t	Line impedance
Phi(Zt)	Impedance angle of Zt
Xď	Equivalent system impedance for Em

Set test parameters

Parameters Results	Wiring			
Name	0-200DegSwing	Fault		
Pow. Angle Start	0	Deg	A-E	Add
Pow. Angle End	200	Deg	1.0000nm	Remove
Swing Cycle	2	S Foult Time	5.000A	
Swing Number	5	Reference	0.500S	
IEm I/IEn I	1.25	Frequency	50.000Hz	
Trip Contact Acc. Signal Contact Dec. Signal Contact	A • C • D •		Swing Mode from-to-from Increase speed Decrease speed	

		Swing mode sele	ection
Pow Angle Start	start power angle		
		Sw	ing Mode
Pow Angle End	end power angel (will	🗌 from	-to-from
	be activated when	Incre	ase speed
	from-to-from'is	C Deci	rease speed
	Mode')		
		from-to-from	swing angle will change
Swing Cycle	time used to complete on cycle of power swing (normally set range: 2-5s)		from angle start to angle end and then from angle end to angle start
)	increase speed	swing angle will change
Swing Number	number of power swing cycle to simulate		from angle start to angle end
Em / En	the ratio of Em/En	decrease speed	swing angle will change from angle end to angle start

Set power swing center

The ratio of Em/En will influence the position of power swing center

Other settings

Trip Contact

assign the binary input for sensing the tripping signal from the relay

Available binary inputs are A,B, E, F,G,H

А	-
A	-
В	
E	
F	
G	-

Acc. Signal Contact incoming Acceleration signal from relay Dec. Signal Contact incoming Deceleration signal from relay The above two parameters are mostly used when testing out-of-step relay Fault type fault type **|Zf|** fault impedance Fault time Reference this indicates when the fault will occur after power swing stars Frequency this is the reference frequency set in **System** Configuration

Power swing example

In this example we have made the following settings

Name	Value	Variable
Tprefault	5.000S	PreFaultTime
CT Side	Line	
Zs	2.000Ohm	Zs
Phi(Zs)	90.000Deg	Phis
Zt	2.000Ohm	Zt
Phi(Zt)	78.000Deg	Phit
Xď'	0.500Ohm	Xd

4. Transducer

This module is used to check the accuracy of transducer

Example: test procedure for one typical transducer

Transducer parameters

Transducer type	Var
Transducer connection	3 phase, 4 wires
Transducer range	0-350MVar
Transducer output type and range	Current, 0-4mA
Rate voltage:	110V
PT ratio	400KV/110V
Rate current	1A
CT ratio	1000A/1A

Test connection

Set test parameters

Parameter	rs							
Name		OM∨ar					Ad	d
Vnom(L-	N)	63.500∨	Angle	0.00	Class 1	.000%	Add Sw	eep
Current		1.000A	Frequenc	v 50.000Hz	Stabilizing 5	.000S	Dele	ete
Turned			i requerie	,,	time '		Delete	e All
- Iransdu	ucer s	settings		nula uhaaa G	Thuse where	CT And	PT Ratio	
Type	Read	tive power		ngie phase 🤄	inree phase	Prim.	1000.000	A
	Input	Range O	utput Range	e		Sec [1.000	Δ
Min	0.00	OMVar 📔 🕻).000mA	Output	mA 🔽	Duino [400.000	
Max	350.0	000MVa 4	1.000mA	Innut Value		Prim. j	400.000	kV
	I▼ Pri	imary Side		input value	ju.uuumvar	Sec.	110.000	V

Vnom(L-N) 63.500V	nominal L-N voltage of transducer input
Current 1.000A	output current to be injected into transducer
Angle 0.00	angle between output voltage and current based on power
Input Value 0.000MVar	power to be provided to the transducer
C Single phase 📀 Three phase	select 3 phase (based on the type of transducer)
Type Reactive power 💌	Select Reactive power test (based on our test requirement)
Input RangeOutput RangeMin0.000M∨ar0.000mAMax350.000M∨a4.000mA	the measuring and output range of transducer
Output mA 💌	the output type of transducer

✓ Primary Side CT And PT Ratio	Set the primary side rating in case transducer input reflects the primary side value
Class 1.000%	The accuracy class of transducer and this setting will be used as the assessment criterion
Stabilizing 5.000S time	The average measuring values during this time will be used to reflect the actual accuracy of the transducer under test

Add test point

Click Add to add one point each time

New test point.

Click Quick Add to add more test points each time

Start Start value of the test points.

Stop Stop value of the test points.

Step Step value.

Confirm the setting and we see new test points added in the test list

NR	Name	Item	Sel	
1	Transducer	0MVar	×	0
2		50.000MVar	 	•
3		100.000MVar	 	•
4		150.000MVar	 	•
-5		200.000MVar	 	0
6		250.000MVar	 	•
7		300 000MVar	 	•
8		350MVar	 	0