
pypet Documentation
Release 0.1.0

Robert Meyer

September 03, 2015

Contents

1 pypet User Manual 1
1.1 What is pypet all about? . 1
1.2 Getting Started . 2
1.3 Tutorial . 8
1.4 Cookbook . 21
1.5 Examples . 64
1.6 Optimization Tips . 116
1.7 FAQs and Known Issues . 117

2 Miscellaneous 119
2.1 Publication Information . 119
2.2 Acknowledgments . 120
2.3 Tests . 120
2.4 Changelog . 121

3 Library Reference 129
3.1 The Environment . 129
3.2 The Trajectory and Group Nodes . 140
3.3 Parameters and Results . 169
3.4 Annotations . 196
3.5 Utils . 197
3.6 Exceptions . 199
3.7 Global Constants . 200
3.8 Slots . 203
3.9 Logging . 204
3.10 Storage Services . 205
3.11 Brian Parameters, Results and Monitors . 214
3.12 Brian Network Framework . 219

4 Contact and License 227
4.1 Contact . 227
4.2 License . 227

Python Module Index 229

i

ii

CHAPTER 1

pypet User Manual

1.1 What is pypet all about?

Whenever you do numerical simulations in science you come across two major problems: First, you need some
way to save your data. Secondly, you extensively explore the parameter space. In order to accomplish both you
write some hacky I/O functionality to get it done the quick and dirty way. Storing stuff into text files, as MATLAB
m-files, or whatever comes in handy.

After a while and many simulations later, you want to look back at some of your very first results. But because of
unforeseen circumstances, you changed lots of your code. As a consequence, you can no longer use your old data,
but you need to write a hacky converter to format your previous results to your new needs. The more complexity
you add to your simulations, the worse it gets, and you spend way too much time formatting your data than doing
science.

Indeed, this was a situation I was confronted with pretty soon at the beginning of my PhD. So this project was
born. I wanted to tackle the I/O problems more generally and produce code that was not specific to my current
simulations, but I could also use for future scientific projects right out of the box.

The python parameter exploration toolkit (pypet) provides a framework to define parameters that you need to
run your simulations. You can actively explore these by following a trajectory through the space spanned by the
parameters. And finally, you can get your results together and store everything appropriately to disk. The storage
format of choice is HDF5 via PyTables.

1.1.1 Main Features

• Novel tree container Trajectory, for handling and managing of parameters and results of numerical simu-
lations

• Group your parameters and results into meaningful categories

• Access data via natural naming, e.g. traj.parameters.traffic.ncars

• Automatic storage of simulation data into HDF5 files via PyTables

• Support for many different data formats

– python native data types: bool, int, long, float, str, complex

– list, tuple, dict

– Numpy arrays and matrices

– Scipy sparse matrices

– pandas Series, DataFrames, and Panels

– BRIAN quantities and monitors

• Easily extendable to other data formats!

1

http://www.hdfgroup.org/HDF5/
http://www.pytables.org/moin/PyTables
http://www.hdfgroup.org/HDF5/
http://www.pytables.org/moin/PyTables
http://pandas.pydata.org/
http://briansimulator.org/

pypet Documentation, Release 0.1.0

• Exploration of the parameter space of your simulations

• Merging of trajectories residing in the same space

• Support for multiprocessing, pypet can run your simulations in parallel

• Analyse your data on-the-fly during multiprocessing for adaptive exploration of the parameter space

• Dynamic Loading, load only the parts of your data you currently need

• Resume a crashed or halted simulation

• Annotate your parameters, results and groups

• Git Integration, let pypet make automatic commits of your codebase

• Sumatra Integration, let pypet add your simulations to the electronic lab notebook tool Sumatra

1.2 Getting Started

1.2.1 Requirements

Python 2.6, 2.7, 3.3, or 3.4 1, and

• numpy >= 1.6.1

• scipy >= 0.9.0

• tables >= 2.3.1

• pandas >= 0.12.0 2

• HDF5 >= 1.8.9

If you use Python 2.6 you also need

• ordereddict >= 1.1

• importlib >= 1.0.1

• logutils >= 0.3.3

• unittest2

For git integration you additionally need

• GitPython >= 0.3.1

To utilize the cap feature for Multiprocessing you need

• psutil >= 2.0.0

To utilize the continuing of crashed trajectories you need

• dill >= 0.2.1

Automatic sumatra records are supported for

• Sumatra >= 0.7.1
1 pypet might also work under Python 3.0-3.2 but has not been tested.
2 Preferably use pandas 0.14.1 or higher or 0.12.0 since there are some upcasting issues with version 0.13.x (see

https://github.com/pydata/pandas/issues/6526/). pypet works under 0.13.x but not all features are fully supported. For instance, these up-
casting issues may prevent you from storing Trajectories containing ArrayParameters to disk. These unwanted upcastings did not happen in
previous pandas versions and will be, or more precisely, have already been removed in the next pandas version. So please up or downgrade
your pandas distribution if your current installation is 0.13.x.

2 Chapter 1. pypet User Manual

http://neuralensemble.org/sumatra/
http://www.numpy.org/
http://www.scipy.org/
http://pytables.github.io/
http://pandas.pydata.org/
http://www.hdfgroup.org/HDF5/
https://pypi.python.org/pypi/ordereddict
https://pypi.python.org/pypi/importlib/1.0.1
https://pypi.python.org/pypi/logutils
https://pypi.python.org/pypi/unittest2/1.0.1
http://gitpython.readthedocs.org/en/stable/
http://pythonhosted.org/psutil/
https://pypi.python.org/pypi/dill
http://neuralensemble.org/sumatra/
https://github.com/pydata/pandas/issues/6526/

pypet Documentation, Release 0.1.0

1.2.2 Install

If you don’t have all prerequisites (numpy, scipy, tables, pandas) install them first. These are standard python
packages, so chances are high that they are already installed. By the way, in case you use the python package
manager pip you can list all installed packages with pip freeze.

Next, simply install pypet via pip install --pre pypet (--pre since the current version is still beta)

Or

The package release can also be found on pypi.python.org. Download, unpack and python setup.py
install it.

Or

In case you use Windows, you have to download the tar file from pypi.python.org and unzip it 3. Next, open a
windows terminal 4 and navigate to your unpacked pypet files to the folder containing the setup.py file. As above,
run from the terminal python setup.py install.

Support

Checkout the pypet Google Group.

To report bugs please use the issue functionality on github (https://github.com/SmokinCaterpillar/pypet).

1.2.3 What to do with pypet?

The whole project evolves around a novel container object called trajectory. A trajectory is a container for
parameters and results of numerical simulations in python. In fact a trajectory instantiates a tree and the tree
structure will be mapped one to one in the HDF5 file when you store data to disk. But more on that later.

As said before a trajectory contains parameters, the basic building blocks that completely define the initial con-
ditions of your numerical simulations. Usually, these are very basic data types, like integers, floats or maybe a bit
more complex numpy arrays.

For example, you have written a set functions that simulates traffic jam in Rome. Your simulation takes a lot
of parameters, the amount of cars (integer), their potential destinations (numpy array of strings), number of
pedestrians (integer), random number generator seeds (numpy integer array), open parking spots in Rome (your
parameter value is probably 0 here), and all other sorts of things. These values are added to your trajectory
container and can be retrieved from there during the runtime of your simulation.

Doing numerical simulations usually means that you cannot find analytical solutions to your problems. Accord-
ingly, you want to evaluate your simulations on very different parameter settings and investigate the effect of
changing the parameters. To phrase that differently, you want to explore the parameter space. Coming back to the
traffic jam simulations, you could tell your trajectory that you want to investigate how different amounts of cars
and pedestrians influence traffic problems in Rome. So you define sets of combinations of cars and pedestrians
and make individual simulation runs for these sets. To phrase that differently, you follow a predefined trajectory of
points through your parameter space and evaluate their outcome. And that’s why the container is called trajectory.

For each run of your simulation, with a particular combination of cars and pedestrians, you record time series data
of traffic densities at major sites in Rome. This time series data (let’s say they are pandas DataFrames) can also
be added to your trajectory container. In the end everything will be stored to disk. The storage is handled by an
extra service to store the trajectory into an HDF5 file on your hard drive. Probably other formats like SQL might
be implemented in the future (or maybe you want to contribute some code and write an SQL storage service?).

3 Extract using WinRaR, 7zip, etc. You might need to unpack it twice, first the tar.gz file and then the remaining tar file in the subfolder.
4 In case you forgot how, you open a terminal by pressing Windows Button + R. Then type cmd into the dialog box and press OK.

1.2. Getting Started 3

http://www.numpy.org/
http://www.scipy.org/
http://pytables.github.io/
http://pandas.pydata.org/
https://pypi.python.org/pypi/pypet
https://pypi.python.org/pypi/pypet
https://groups.google.com/forum/?hl=de#!forum/pypet
https://github.com/SmokinCaterpillar/pypet
http://pandas.pydata.org/
http://www.hdfgroup.org/HDF5/

pypet Documentation, Release 0.1.0

1.2.4 Basic Work Flow

Basic workflow is summarized in the image you can find below. Usually you use an Environment for handling
the execution and running of your simulation. As in the example code snippet in the next subsection, the envi-
ronment will provide a Trajectory container for you to fill in your parameters. During the execution of your
simulation with individual parameter combinations, the trajectory can also be used to store results. All data that
you hand over to a trajectory is automatically stored into an HDF5 file by the HDF5StorageService.

1.2.5 Quick Working Example

The best way to show how stuff works is by giving examples. I will start right away with a very simple code
snippet (it can also be found here: First Steps).

Well, what we have in mind is some sort of numerical simulation. For now we will keep it simple, let’s say we
need to simulate the multiplication of 2 values, i.e. 𝑧 = 𝑥 * 𝑦. We have two objectives, a) we want to store results
of this simulation 𝑧 and b) we want to explore the parameter space and try different values of 𝑥 and 𝑦.

Let’s take a look at the snippet at once:

4 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

from pypet import Environment, cartesian_product

def multiply(traj):
"""Example of a sophisticated simulation that involves multiplying two values.

:param traj:

Trajectory containing
the parameters in a particular combination,
it also serves as a container for results.

"""
z = traj.x * traj.y
traj.f_add_result('z',z, comment='I am the product of two values!')

Create an environment that handles running our simulation
env = Environment(trajectory='Multiplication',filename='./HDF/example_01.hdf5',

file_title='Example_01',
comment='I am a simple example!',
large_overview_tables=True)

Get the trajectory from the environment
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1.0, comment='Im the first dimension!')
traj.f_add_parameter('y', 1.0, comment='Im the second dimension!')

Explore the parameters with a cartesian product
traj.f_explore(cartesian_product({'x':[1.0,2.0,3.0,4.0], 'y':[6.0,7.0,8.0]}))

Run the simulation with all parameter combinations
env.f_run(multiply)

Finally disable logging and close all log-files
env.f_disable_logging()

And now let’s go through it one by one. At first, we have a job to do, that is multiplying two values:

def multiply(traj):
"""Example of a sophisticated simulation that involves multiplying two values.

:param traj:

Trajectory containing
the parameters in a particular combination,
it also serves as a container for results.

"""
z=traj.x * traj.y
traj.f_add_result('z',z, comment='I am the product of two values!')

This is our simulation function multiply. The function makes use of a Trajectory container which manages
our parameters. Here the trajectory holds a particular parameter space point, i.e. a particular choice of 𝑥 and 𝑦.
In general a trajectory contains many parameter settings, i.e. choices of points sampled from the parameter space.
Thus, by sampling points from the space one follows a trajectory through the parameter space - therefore the name
of the container.

We can access the parameters simply by natural naming, as seen above via traj.x and traj.y. The value of z
is simply added as a result to the traj container.

After the definition of the job that we want to simulate, we create an environment which will run the simulation.

1.2. Getting Started 5

pypet Documentation, Release 0.1.0

Moreover, the environment will take care that the function multiply is called with each choice of parameters
once.

Create an environment that handles running our simulation
env = Environment(trajectory='Multiplication',filename='./HDF/example_01.hdf5',

file_title='Example_01',
comment = 'I am a simple example!',
large_overview_tables=True)

We pass some arguments here to the constructor. This is the name of the new trajectory, a filename to store
the trajectory into, the title of the file, and a descriptive comment that is attached to the trajectory. We also set
large_overview_tables=True to get a nice summary of all our computed 𝑧 values in a single table. This is
disabled by default to yield smaller and more compact HDF5 files. But for smaller projects with only a few results,
you can enable it without wasting much space. You can pass many more (or less) arguments if you like, check
out More about the Environment and Environment for a complete list. The environment will automatically
generate a trajectory for us which we can access via the property v_trajectory.

Get the trajectory from the environment
traj = env.v_trajectory

Now we need to populate our trajectory with our parameters. They are added with the default values of 𝑥 = 𝑦 =
1.0.

Add both parameters
traj.f_add_parameter('x', 1.0, comment='Im the first dimension!')
traj.f_add_parameter('y', 1.0, comment='Im the second dimension!')

Well, calculating 1.0 * 1.0 is quite boring, we want to figure out more products. Let’s find the results of the
cartesian product set {1.0, 2.0, 3.0, 4.0} × {6.0, 7.0, 8.0}. Therefore, we use f_explore() in combination
with the builder function cartesian_product() that yields the cartesian product of both parameter ranges.
You don’t have to explore a cartesian product all the time. You can explore arbitrary trajectories through your
space. You only need to pass a dictionary of lists (or other iterables) of the same length with arbitrary entries to
f_explore(). In fact, cartesian_product() turns the dictionary {‘x’:[1.0,2.0,3.0,4.0], ‘y’:[6.0,7.0,8.0]}
into a new one where the values of ‘x’ and ‘y’ are two lists of length 12 containing all pairings of points.

Explore the parameters with a cartesian product:
traj.f_explore(cartesian_product({'x':[1.0,2.0,3.0,4.0], 'y':[6.0,7.0,8.0]}))

Finally, we need to tell the environment to run our job multiply with all parameter combinations.

Run the simulation with all parameter combinations
env.f_run(multiply)

Usually, if you let pypet manage logging for you, it is a good idea in the end to tell the environment to stop logging
and close all log files.

Finally disable logging and close all log-files
env.f_disable_logging()

And that’s it. The environment will evoke the function multiply now 12 times with all parameter combinations.
Every time it will pass a Trajectory container with another one of these 12 combinations of different 𝑥 and 𝑦
values to calculate the value of 𝑧. And all of this is automatically stored to disk in HDF5 format.

If we now inspect the new HDF5 file in examples/HDF/example_01.hdf5, we can find our trajectory containing
all parameters and results. Here you can see the summarizing overview table discussed above.

6 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Loading Data

We end this example by showing how we can reload the data that we have computed before. Here we want to
load all data at once, but as an example just print the result of run_00000001 where 𝑥 was 2.0 and 𝑦 was 6.0. For
loading of data we do not need an environment. Instead, we can construct an empty trajectory container and load
all data into it by ourselves.

from pypet import Trajectory

So, first let's create a new empty trajectory and pass it the path and name of the HDF5 file.
traj = Trajectory(filename='experiments/example_01/HDF5/example_01.hdf5')

Now we want to load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

Finally we want to print a result of a particular run.
Let's take the second run named `run_00000001` (Note that counting starts at 0!).
print 'The result of run_00000001 is: '
print traj.run_00000001.z

This yields the statement The result of run_00000001 is: 12 printed to the console.

Some final remarks on the command:

1.2. Getting Started 7

pypet Documentation, Release 0.1.0

Now we want to load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

Above index specifies that we want to load the trajectory with that particular index within the HDF5 file. We
could instead also specify a name. Counting works also backwards, so -1 yields the last or newest trajectory in
the file.

Next, we need to specify how the data is loaded. Therefore, we have to set the keyword arguments
load_parameters and load_results. Here we chose both to be 2.

0 would mean we do not want to load anything at all. 1 would mean we only want to load the empty hulls or
skeletons of our parameters or results. Accordingly, we would add parameters or results to our trajectory but they
would not contain any data. Instead, 2 means we want to load the parameters and results including the data they
contain.

So that’s it for the start. If you want to know the nitty-gritty details of pypet take a look at the Cookbook. If you
are not the type of guy who reads manuals but wants hands-on experience, check out the Tutorial or the Examples.
If you consider using pypet with an already existing project of yours, I may direct your attention to Wrapping an
Existing Project (Cellular Automata Inside!).

Cheers, Robert

1.3 Tutorial

1.3.1 Conceptualization of a Numerical Experiment

I will give a simple but comprehensive tutorial on pypet and how to use it for parameter exploration of numerical
experiments in python.

pypet is designed to support your numerical simulations in two ways: Allow a) easy exploration of the parameter
space of your simulations and b) easy storage of the results.

We will assume that usually a numerical experiments consist of two to four different stages:

1. Pre-processing Parameter definition, preparation of the experiment

2. The run phase of your experiment Fan-out structure, usually parallel running of different parameter set-
tings, gathering of individual results for each single run

3. Post-processing (optional) Cleaning up of the experiment, sorting results, etc.

4. Analysis of results (optional) Plotting, doing statistics etc.

The first stage can be further divided into two sub-stages. In the beginning the definition of parameters (either
directly in the source code or by parsing a configuration file) and, next, the appropriate setup of your experiment.
This might involve creating particular python objects or pre-computing some expensive functions etc. Moreover,
here you also decide if you want to deviate from your default set of parameters and explore the parameter space
and try a bunch of different settings. Probably you want to do a sensitivity analysis and determine the effect of
changing a critical subset of your parameters.

The second stage, the run phase, is the actual execution of your numerical simulation. Here you perform the
search or exploration of the parameter space. You try all different parameter settings you have specified before for
exploration and obtain the corresponding results. Since this stage is most likely the computational expensive one,
you probably want to parallelize your simulations. I will refer to an individual simulation run with one particular
parameter combination as a single run of your simulation. Since these single runs are different individual simu-
lations with different parameter settings, they are completely independent of each other. The results and outcomes
of one single run should not influence another. Sticking to this assumption makes the parallelization of your
experiments much easier. This doesn’t mean that non-independent runs cannot be handled by pypet (they can!), it
rather means you should not do this for cleaner and easier portable code and simulations.

Thirdly, after all individual single runs are completed you might have a phase of post-processing. This could
encompass merging or collecting of results of individual single runs and/or deconstructing some sensitive python
objects, etc.

8 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Finally, you do further analysis of the raw results of your numerical simulation, like generating plots and meta
statistics, etc. Personally, I would strictly separate this final phase from the previous three. Thus, using a complete
different python script than for the phases before.

This conceptualization is depicted in the figure below:

pypet gives is you a tool to make the stages much easier to handle. pypet offers a novel tree data container called
Trajectory that can be used to store all parameters and results of your numerical simulations. Moreover, pypet
has an Environment that allows easy parallel exploration of the parameter space.

We will see how we can use both in our numerical experiment at the different stages. In this tutorial we will
simulate a simple neuron model, called leaky integrate-and-fire model. Our neuron model is given by a dynamical
variable 𝑉 that describes the development of the so called membrane potential over time. Every time this potential
crosses a particular threshold our neuron is activated and emits an electrical pulse. These pules, called action
potentials or spikes, are the sources of information transmission in the brain. We will stimulate our neuron with an
experimental current 𝐼 and see how this current affects the emission of spikes. For simplicity we assume a system
without any physical units except for time in milliseconds.

We will numerically integrate the linear differential equation:

𝑑𝑉

𝑑𝑡
= − 1

𝜏𝑉
𝑉 + 𝐼

with a non-linear reset rule 𝑉 ← 0 if 𝑉 ≥ 1 and an additional refractory period of 𝜏𝑟𝑒𝑓 . If we detect an action
potential, i.e. 𝑉 ≥ 1, we will keep the voltage 𝑉 clamped to 0 for the refractory period after the threshold crossing
and freeze the differential equation.

Regarding parameter exploration, we will hold the neuron’s time constant 1
𝜏𝑉

= 10 ms fixed and explore the
parameter space by varying different input currents 𝐼 and different lengths of the refractory period 𝜏𝑟𝑒𝑓 .

During the single runs we will record the development of the variable 𝑉 over time and count the number of
threshold crossings to estimate the so called firing rate of a neuron. In the post processing phase we will collect
these firing rates and write them into a pandas DataFrame. Don’t worry if you are not familiar with pandas.
Basically, a pandas DataFrame instantiates a table. It’s like a 2D numpy array, but we can index into the table by
more than just integers.

Finally, during the analysis, we will plot the neuron’s rate as a function of the input current 𝐼 and the refractory
period 𝜏𝑟𝑒𝑓 .

The entire source code of this example can be found here: Post-Processing and Pipelining (from the Tutorial).

1.3.2 Naming Convention

To avoid confusion with natural naming scheme (see below) and the functionality provided by the environment,
trajectory, parameter containers, and so on, I followed the idea by PyTables to use prefixes: f_ for functions and
v_ for python variables/attributes/properties.

1.3. Tutorial 9

http://en.wikipedia.org/wiki/Biological_neuron_model#Leaky_integrate-and-fire
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pytables.github.io/usersguide/

pypet Documentation, Release 0.1.0

For instance, given a pypet result container myresult, myresult.v_comment is the object’s comment at-
tribute and myresult.f_set(mydata=42) is the function for adding data to the result container. Whereas
myresult.mydata might refer to a data item named mydata added by the user.

1.3.3 #1 Pre-Processing

Your experiment usually starts with the creation of an Environment. Don’t worry about the huge amount of
parameters you can pass to the constructor, these are more for tweaking of your experiment and the default settings
are usually suitable.

Yet, we will shortly discuss the most important ones here.

• trajectory

Here you can either pass an already existing trajectory container or simply a string specifying the
name of a new trajectory. In the latter case the environment will create a trajectory container for
you.

• add_time

If True and the environment creates a new trajectory container, it will add the current
time to the name in the format _XXXX_XX_XX_XXhXXmXXs. So for instance, if you
set trajectory=’Gigawatts_Experiment’ and add_time=true, your trajectory’s
name will be Gigawatts_Experiment_2015_10_21_04h23m00s.

• comment

A nice descriptive comment about what you are going to do in your numerical experiment.

• log_config

The name of a logging .ini file specifying the logging set up. See Logging, or the logging docu-
mentation and how to specify logging config files. If set to DEFAULT_LOGGING (’DEFAULT’)
the default settings are used. Simply set to None if you want to disable logging.

• multiproc

If we want to use multiprocessing. We sure do so, so we set this to True.

• ncores

The number of cpu cores we want to utilize. More precisely, the number of processes we start at
the same time to calculate the single runs. There’s usually no benefit in setting this value higher
than the actual number of cores your computer has.

• filename

We can specify the name of the resulting HDF5 file where all data will be stored. We don’t have
to give a filename per se, we can also specify a folder ’./results/’ and the new file will
have the name of the trajectory.

• git_repository

If your code base is under git version control (it’s not? Stop reading and get git NOW! ;-), you
can specify the path to your root git folder here. If you do this, pypet will a) trigger a new
commit if it detects changes in the working copy of your code and b) write the corresponding
commit code into your trajectory so you can immediately see with which version you did your
experiments.

• git_fail

If you don’t want automatic commits, simply set git_fail=True. Given changes in your
code base, your program will throw a GitDiffError instead of making an automatic commit.
Then, you can manually make a commit and restart your program with the committed changes.

• sumatra_project

10 Chapter 1. pypet User Manual

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.config.html#logging-config-fileformat
http://git-scm.com/
http://git-scm.com/

pypet Documentation, Release 0.1.0

If your experiments are recorded with sumatra you can specify the path to your sumatra root
folder here. pypet will automatically trigger the recording of your experiments if you use
f_run(), f_continue() or f_pipeline() to start your single runs or whole experi-
ment. If you use pypet + git + sumatra there’s no doubt that you ensure the repeatability of your
experiments!

Ok, so let’s start with creating an environment:

from pypet import Environment
env = Environment(trajectory='FiringRate',

comment='Experiment to measure the firing rate '
'of a leaky integrate and fire neuron. '
'Exploring different input currents, '
'as well as refractory periods',

add_time=False, # We don't want to add the current time to the name,
log_config='DEFAULT',
multiproc=True,
ncores=2, #My laptop has 2 cores ;-)
filename='./hdf5/', # We only pass a folder here, so the name is chosen
automatically to be the same as the Trajectory
)

The environment provides a new trajectory container for us:

traj = env.v_trajectory

1.3.4 The Trajectory Container

A Trajectory is the container for your parameters and results. It basically instantiates a tree.

This tree has four major branches: config (parameters), parameters, derived_parameters and results.

Parameters stored under config do not specify the outcome of your simulations but only the way how the simula-
tions are carried out. For instance, this might encompass the number of cpu cores for multiprocessing. In fact, the
environment from above has already added the config data we specified before to the trajectory:

>>> traj.config.ncores
2

Parameters in the parameters branch are the fundamental building blocks of your simulations. Changing a pa-
rameter usually effects the results you obtain in the end. The set of parameters should be complete and sufficient
to characterize a simulation. Running a numerical simulation twice with the very same parameter settings should
give also the very same results. So make sure to also add seed values of random number generators to your
parameter set.

Derived parameters are specifications of your simulations that, as the name says, depend on your original param-
eters but are still used to carry out your simulation. They are somewhat too premature to be considered as final
results. We won’t have any of these in the tutorial so you can ignore this branch for the moment.

Anything found under results is, as expected, a result of your numerical simulation.

Adding of Parameters

Ok, for the moment let’s fill the trajectory with parameters for our simulation.

Let’s fill it using the f_add_parameter() function:

traj.f_add_parameter('neuron.V_init', 0.0,
comment='The initial condition for the '

'membrane potential')
traj.f_add_parameter('neuron.I', 0.0,

comment='The externally applied current.')
traj.f_add_parameter('neuron.tau_V', 10.0,

1.3. Tutorial 11

http://neuralensemble.org/sumatra/
http://neuralensemble.org/sumatra/
http://git-scm.com/
http://neuralensemble.org/sumatra/

pypet Documentation, Release 0.1.0

comment='The membrane time constant in milliseconds')
traj.f_add_parameter('neuron.tau_ref', 5.0,

comment='The refractory period in milliseconds '
'where the membrane potnetial '
'is clamped.')

traj.f_add_parameter('simulation.duration', 1000.0,
comment='The duration of the experiment in '

'milliseconds.')
traj.f_add_parameter('simulation.dt', 0.1,

comment='The step size of an Euler integration step.')

Again we can provide descriptive comments. All these parameters will be added to the branch parameters.

As a side remark, if you think there’s a bit too much typing involved here, you can also make use of much shorter
notations. For example, granted you imported the Parameter, you could replace the last addition by:

traj.parameters.simulation.dt = Parameter('dt', 0.1, comment='The step size of an Euler integration step.')

Or even shorter:

traj.par.simulation.dt = 0.1, 'The step size of an Euler integration step.'

Note that we can group the parameters. For instance, we have a group neuron that contains parameters defining
our neuron model and a group simulation that defines the details of the simulation, like the euler step size and
the whole runtime. If a group does not exist at the time of a parameter creation, pypet will automatically create
the groups on the fly.

There’s no limit to grouping, and it can be nested:

>>> traj.f_add_parameter('brian.hippocampus.nneurons', 99999, comment='Number of neurons in my model hippocampus')

There are analogue functions for config data, results and derived_parameters:

• f_add_config()

• f_add_result()

• f_add_derived_parameter()

If you don’t want to stick to these four major branches there is the generic addition:

• f_add_leaf()

By the way, you can add particular groups directly with:

• f_add_parameter_group()

• f_add_config_group()

• f_add_result_group()

• f_add_derived_parameter_group()

and the generic one:

• f_add_group()

Your trajectory tree contains two types of nodes, group nodes and leaf nodes. Group nodes can, as you have seen,
contain other group or leaf nodes, whereas leaf nodes are terminal and do not contain more groups or leaves.

The leaf nodes are abstract containers for your actual data. Basically, there exist two sub-types of these leaves
Parameter containers for your config data, parameters, and derived parameters and Result containers for
your results.

A Parameter can only contain a single data item plus potentially a range or list of different values describing
how the parameter should be explored in different runs.

A Result container can manage several results. You can think of it as non-nested dictionary. Actual data can
also be accessed via natural naming or squared brackets (as discussed in the next section below).

12 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

For instance:

>>> traj.f_add_result('deep.thought', answer=42, question='What do you get if you multiply six by nine?')
>>> traj.results.deep.thought.question
'What do you get if you multiply six by nine?'

Both leaf containers (Parameter, Result) support a rich variety of data types. There also exist more special-
ized versions if the standard ones cannot hold your data, just take a look at More on Parameters and Results. If you
are still missing some functionality for your particular needs you can simply implement your own leaf containers
and put them into the trajectory.

Accessing Data

Data can be accessed in several ways. You can, for instance, access data
via natural naming: traj.parameters.neuron.tau_ref or square brackets
traj[’parameters’][’neuron’][’tau_ref’] or traj[’parameters.neuron.tau_ref’],
or traj[’parameters’,’neuron’,’tau_ref’], or use the f_get() method.

As long as your tree nodes are unique, you can shortcut through the tree. If there’s only one parameter tau_ref,
traj.tau_ref is equivalent to traj.parameters.neuron.tau_ref.

Moreover, since a Parameter only contains a single value (apart from the range), pypet will as-
sume that you usually don’t care about the actual container but just about the data. Thus,
traj.parameters.neuron.tau_ref will immediately return the data value for tau_ref and not the
corresponding Parameter container. If you really need the container itself use f_get(). To learn more about
this concept of fast access of data look at Accessing Data in the Trajectory.

Exploring the Data

Next, we can tell the trajectory which parameters we want to explore. We simply need need to pass a dictionary
of lists (or other iterables) of the same length with arbitrary entries to the trajectory function f_explore().

Every single run in the run phase will contain one setting of parameters in the list. For instance, if our exploration
dictionary looks like {’x’:[1,2,3], ’y’:[1,1,2]} the first run will be with parameter x set to 1 and y to
1, the second with x set to 2 and y set to 1, and the final third one with x=3 and y=2.

If you want to explore the cartesion product of two iterables not having the same length you can use the
cartesian_product() builder function. This will return a dictionary of lists of the same length and all
combinations of the parameters.

Here is our exploration, we try unitless currents 𝐼 ranging from 0 to 1.01 in steps of 0.01 for three different
refractory periods 𝜏𝑟𝑒𝑓 :

from pypet.utils.explore import cartesian_product

explore_dict = {'neuron.I': np.arange(0, 1.01, 0.01).tolist(),
'neuron.tau_ref': [5.0, 7.5, 10.0]}

explore_dict = cartesian_product(explore_dict, ('neuron.tau_ref', 'neuron.I'))
The second argument, the tuple, specifies the order of the cartesian product,
The variable on the right most side changes fastest and defines the
'inner for-loop' of the cartesian product

traj.f_explore(explore_dict)

Note that in case we explore some parameters, their default values that we passed before via
f_add_parameter() are no longer used. If you still want to simulate these, make sure they are part of
the lists in the exploration dictionary.

1.3. Tutorial 13

pypet Documentation, Release 0.1.0

1.3.5 #2 The Run Phase

Next, we define a job or top-level simulation run function (that not necessarily has to be a real python function,
any callable object will do the job). This function will be called and executed with every parameter combination
we specified before with f_explore() in the trajectory container.

In our neuron simulation we have 303 different runs of our simulation. Each run has particular index ranging from
0 to 302 and a particular name that follows the structure run_XXXXXXXX where XXXXXXXX is replaced with the
index and some leading zeros. Thus, our run names range from run_00000000 to run_00000302.

Note that we start counting with 0, so the second run is called run_00000001 and has index 1!

So here is our top-level simulation or run function:

def run_neuron(traj):
"""Runs a simulation of a model neuron.

:param traj:

Container with all parameters.

:return:

An estimate of the firing rate of the neuron

"""

Extract all parameters from `traj`
V_init = traj.par.neuron.V_init
I = traj.par.neuron.I
tau_V = traj.par.neuron.tau_V
tau_ref = traj.par.neuron.tau_ref
dt = traj.par.simulation.dt
duration = traj.par.simulation.duration

steps = int(duration / float(dt))
Create some containers for the Euler integration
V_array = np.zeros(steps)
V_array[0] = V_init
spiketimes = [] # List to collect all times of action potentials

Do the Euler integration:
print 'Starting Euler Integration'
for step in range(1, steps):

if V_array[step-1] >= 1:
The membrane potential crossed the threshold and we mark this as
an action potential
V_array[step] = 0
spiketimes.append((step-1)*dt)

elif spiketimes and step * dt - spiketimes[-1] <= tau_ref:
We are in the refractory period, so we simply clamp the voltage
to 0
V_array[step] = 0

else:
Euler Integration step:
dV = -1/tau_V * V_array[step-1] + I
V_array[step] = V_array[step-1] + dV*dt

print 'Finished Euler Integration'

Add the voltage trace and spike times
traj.f_add_result('neuron.$', V=V_array, nspikes=len(spiketimes),

comment='Contains the development of the membrane potential over time '
'as well as the number of spikes.')

14 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

This result will be renamed to `traj.results.neuron.run_XXXXXXXX`.

And finally we return the estimate of the firing rate
return len(spiketimes) / float(traj.par.simulation.duration) * 1000
*1000 since we have defined duration in terms of milliseconds

Our function has to accept at least one argument and this is our traj container. During the execution of our
simulation function the trajectory will contain just one parameter setting out of our 303 different ones from above.
The environment will make sure that our function is called with each of our parameter choices once.

For instance, if we currently execute the second run (aka run_00000001) all parameters will contain their default
values, except tau_ref and I, they will be set to 5.0 and 0.01, respectively.

Let’s take a look at the first few instructions:

Extract all parameters from `traj`
V_init = traj.par.neuron.V_init
I = traj.par.neuron.I
tau_V = traj.par.neuron.tau_V
tau_ref = traj.par.neuron.tau_ref
dt = traj.par.simulation.dt
duration = traj.par.simulation.duration

So here we simply extract the parameter values from traj. As said before pypet is smart to directly return the
data value instead of a Parameter container. Moreover, remember all parameters will have their default values
except tau_ref and I.

Next, we create a numpy array and a python list and compute the number of steps. This is not specific to pypet but
simply needed for our neuron simulation:

steps = int(duration / float(dt))
Create some containers for the Euler integration
V_array = np.zeros(steps)
V_array[0] = V_init
spiketimes = [] # List to collect all times of action potentials

Also the following steps have nothing to do with pypet, so don’t worry if you not fully understand what’s going
on here. This is just the core of our neuron simulation:

Do the Euler integration:
print 'Starting Euler Integration'
for step in range(1, steps):

if V_array[step-1] >= 1:
The membrane potential crossed the threshold and we mark this as
an action potential
V_array[step] = 0
spiketimes.append((step-1)*dt)

elif spiketimes and step * dt - spiketimes[-1] <= tau_ref:
We are in the refractory period, so we simply clamp the voltage
to 0
V_array[step] = 0

else:
Euler Integration step:
dV = -1/tau_V * V_array[step-1] + I
V_array[step] = V_array[step-1] + dV*dt

print 'Finished Euler Integration'

This is simply the python description of the following set of equations:

𝑑𝑉

𝑑𝑡
= − 1

𝜏𝑉
𝑉 + 𝐼

and 𝑉 ← 0 if 𝑉 ≥ 1 or 𝑡− 𝑡𝑠 ≤ 𝜏𝑟𝑒𝑓 (with 𝑡 the current time and 𝑡𝑠 time of the last spike).

1.3. Tutorial 15

pypet Documentation, Release 0.1.0

Ok, for now we have finished one particular run ouf our simulation. We computed the development of the mem-
brane potential 𝑉 over time and put it into V_array.

Next, we hand over this data to our trajectory, since we want to keep it and write it into the final HDF5 file:

traj.f_add_result('neuron.$', V=V_array, nspikes=len(spiketimes),
comment='Contains the development of the membrane potential over time '

'as well as the number of spikes.')

This statement looks similar to the addition of parameters we have seen before. Yet, there are some subtle differ-
ences. As we can see, a result can contain several data items. If we pass them via NAME=value, we can later on
recall them from the result with result.NAME. Secondly, there is this odd ’$’ character in the result’s name.
Well, recall that we are currently operating in the run phase, accordingly the run_neuron function will be exe-
cuted many times. Thus, we also gather the V_array data many times. We need to store this every time under a
different name in our trajectory tree. ’$’ is a wildcard character that is replaced by the name of the current run.
If we were in the second run, we would store everything under traj.results.neuron.run_00000001
and in the third run under traj.results.neuron.run_00000002 and so on and so forth. Consequently,
calling traj.results.neuron.run_00000001.V will return our membrane voltage array of the second
run.

You are not limited to place the ’$’ at the end, for example

traj.f_add_result('fundamental.wisdom.$.answer', 42, comment='The answer')

would be possible as well.

As a side remark, if you add a result or derived parameter during the run phase but not use the ’$’ wildcard,
pypet will add runs.’$’ to the beginning of your result’s or derived parameter’s name.

So executing the following statement during the run phase

traj.f_add_result('fundamental.wisdom.answer', 42, comment='The answer')

will yield a renaming to results.runs.run_XXXXXXXXX.fundamental.wisdom.answer. Where
run_XXXXXXXXX is the name of the corresponding run, of course.

Moreover, it’s worth noticing that you don’t have to explicitly write the trajectory to disk. Everything you add
during pre-processing, post-processing (see below) is automatically stored at the end of the experiment. Every-
thing you add during the run phase under a group or leaf node called run_XXXXXXXX (where this is the name of
the current run, which will be automatically chosen if you use the ’$’ wildcard) will be stored at the end of the
particular run.

1.3.6 #3 Post-Processing

Each single run of our run_neuron function returned an estimate of the firing rate. In the post processing phase
we want to collect these estimates and sort them into a table according to the value of 𝐼 and 𝜏𝑟𝑒𝑓 . As an appropriate
table we choose a pandas DataFrame. Again this is not pypet specific but pandas offers neat containers for series,
tables and multidimensional panel data. The nice thing about pandas containers is that they except all forms of
indices and not only integer indices like python lists or numpy arrays.

So here comes our post processing function. This function will be automatically called when all single runs are
completed. The post-processing function has to take at least two arguments. First one is the trajectory, second one
is the list of results. This list actually contains two-dimensional tuples. First entry of the tuple is the index of the
run as an integer, and second entry is the result returned by our job-function run_neuron in the corresponding
run. Be aware that since we use multiprocessing, the list is not ordered according to the run indices, but according
to the time the single runs did actually finish.

def neuron_postproc(traj, result_list):
"""Postprocessing, sorts firing rates into a data frame.

:param traj:

Container for results and parameters

16 Chapter 1. pypet User Manual

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/
http://pandas.pydata.org/

pypet Documentation, Release 0.1.0

:param result_list:

List of tuples, where first entry is the run index and second is the actual
result of the corresponding run.

:return:
"""

Let's create a pandas DataFrame to sort the computed firing rate according to the
parameters. We could have also used a 2D numpy array.
But a pandas DataFrame has the advantage that we can index into directly with
the parameter values without translating these into integer indices.
I_range = traj.par.neuron.f_get('I').f_get_range()
ref_range = traj.par.neuron.f_get('tau_ref').f_get_range()

I_index = sorted(set(I_range))
ref_index = sorted(set(ref_range))
rates_frame = pd.DataFrame(columns=ref_index, index=I_index)
This frame is basically a two dimensional table that we can index with our
parameters

Now iterate over the results. The result list is a list of tuples, with the
run index at first position and our result at the second
for result_tuple in result_list:

run_idx = result_tuple[0]
firing_rates = result_tuple[1]
I_val = I_range[run_idx]
ref_val = ref_range[run_idx]
rates_frame.loc[I_val, ref_val] = firing_rates # Put the firing rate into the
data frame

Finally we going to store our new firing rate table into the trajectory
traj.f_add_result('summary.firing_rates', rates_frame=rates_frame,

comment='Contains a pandas data frame with all firing rates.')

Ok, we will go through it one by one. At first we extract the range of parameters we used:

I_range = traj.par.neuron.f_get('I').f_get_range()
ref_range = traj.par.neuron.f_get('tau_ref').f_get_range()

Note that we use pypet.naturalnaming.NNGroupNode.f_get() here since we are interested in the
parameter container not the data value. We can directly extract the parameter range from the container via
𝑝𝑦𝑝𝑒𝑡.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.𝑓𝑔𝑒𝑡𝑟𝑎𝑛𝑔𝑒.

Next, we create a two dimensional table aka pandas DataFrame with the current as the row indices and the refrac-
tory period as column indices.

I_index = sorted(set(I_range))
ref_index = sorted(set(ref_range))
rates_frame = pd.DataFrame(columns=ref_index, index=I_index)

Now we iterate through the result tuples and write the firing rates into the table according to the parameter settings
in this run. As said before, the nice thing about pandas is that we can use the values of 𝐼‘ and 𝜏𝑟𝑒𝑓 ‘ as indices for
our table.

for result_tuple in result_list:
run_idx = result_tuple[0]
firing_rates = result_tuple[1]
I_val = I_range[run_idx]
ref_val = ref_range[run_idx]
rates_frame.loc[I_val, ref_val] = firing_rates

Finally, we add the filled DataFrame to the trajectory.

1.3. Tutorial 17

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/

pypet Documentation, Release 0.1.0

traj.f_add_result('summary.firing_rates', rates_frame=rates_frame,
comment='Contains a pandas data frame with all firing rates.')

Since we are no longer in the run phase, this result will be found in
traj.results.summary.firing_rate and no name of any single run will be added.

This was our post-processing where we simply collected all firing rates and sorted them into a table. You can,
of course, do much more in the post processing phase. You can load all computed data and look at it. You can
even expand the trajectory to trigger a new run phase. Accordingly, you can adaptively and iteratively search the
parameter space. You may even do this on the fly while there are still single runs being executed, see Adding
Post-Processing.

1.3.7 Final Steps in the Main Script

Still we actually need to make the environment execute all the stuff, so this is our main script after we generated
the environment and added the parameters. First, we add the post-processing function. Secondly, we tell the
environment to run our function run_neuron. Our postprocessing function will be automatically called after all
runs have finished.

Ad the postprocessing function
env.f_add_postprocessing(neuron_postproc)

Run the experiment
env.f_run(run_neuron)

Both function take additional arguments which will be automatically passed to the job and post-processing func-
tions.

For instance,

env.f_run(myjob, 42, 'fortytwo', test=33.3)

will additionally pass 42, ’fortytwo’ as positional arguments and test=33.3 as the keyword argument
test to your run function. So the definition of the run function could look like this:

def myjob(traj, number, text, test):
do something

Remember that the trajectory will always be passed as first argument. This works analogously for the post-
processing function as well. Yet, there is the slight difference that your post-processing function needs to accept
the result list as second positional argument followed by your positional and keyword arguments.

Finally, if you used pypet‘s logging feature, it is usually a good idea to tell the environment to stop logging and
close all log files:

Finally disable logging and close all log-files
env.f_disable_logging()

1.3.8 #4 Analysis

The final stage of our experiment encompasses the analysis of our raw data. We won’t do much here, simply plot
our firing rate table and show one example voltage trace. All data analysis happens in a completely different script
and is executed independently of the previous three steps except that we need the data from them in form of a
trajectory.

We will make use of the Automatic Loading functionality and load results in the background as we need them.
Since we don’t want to do any more single runs, we can spare us an environment and only use a trajectory
container.

18 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

from pypet import Trajectory
import matplotlib.pyplot as plt

This time we don't need an environment since we just going to look
at data in the trajectory
traj = Trajectory('FiringRate', add_time=False)

Let's load the trajectory from the file
Only load the parameters, we will load the results on the fly as we need them
traj.f_load(filename='./hdf5/FiringRate.hdf5', load_parameters=2,

load_results=0, load_derived_parameters=0)

We'll simply use auto loading so all data will be loaded when needed.
traj.v_auto_load = True

Here we load the data automatically on the fly
rates_frame = traj.res.summary.firing_rates.rates_frame

plt.figure()
plt.subplot(2,1,1)
#Let's iterate through the columns and plot the different firing rates :
for tau_ref, I_col in rates_frame.iteritems():

plt.plot(I_col.index, I_col, label='Avg. Rate for tau_ref=%s' % str(tau_ref))

Label the plot
plt.xlabel('I')
plt.ylabel('f[Hz]')
plt.title('Firing as a function of input current `I`')
plt.legend()

Also let's plot an example run, how about run 13?
example_run = 13

traj.v_idx = example_run # We make the trajectory behave as a single run container.
This short statement has two major effects:
a) all explored parameters are set to the value of run 13,
b) if there are tree nodes with names other than the current run aka `run_00000013`
they are simply ignored, if we use the `$` sign or the `crun` statement,
these are translated into `run_00000013`.

Get the example data
example_I = traj.I
example_tau_ref = traj.tau_ref
example_V = traj.results.neuron.crun.V # Here crun stands for run_00000013

We need the time step...
dt = traj.dt
...to create an x-axis for the plot
dt_array = [irun * dt for irun in range(len(example_V))]

And plot the development of V over time,
Since this is rather repetitive, we only
plot the first eighth of it.
plt.subplot(2,1,2)
plt.plot(dt_array, example_V)
plt.xlim((0, dt*len(example_V)/8))

Label the axis
plt.xlabel('t[ms]')
plt.ylabel('V')
plt.title('Example of development of V for I=%s, tau_ref=%s in run %d' %

(str(example_I), str(example_tau_ref), traj.v_idx))

1.3. Tutorial 19

pypet Documentation, Release 0.1.0

And let's take a look at it
plt.show()

Finally revoke the `traj.v_idx=13` statement and set everything back to normal.
Since our analysis is done here, we could skip that, but it is always a good idea
to do that.
traj.f_restore_default()

The outcome of your little experiment should be the following image:

Finally, I just want to make some final remarks on the analysis script.

traj.f_load(filename='./hdf5/FiringRate.hdf5', load_parameters=2,
load_results=0, load_derived_parameters=0)

describes how the different subtrees of the trajectory are loaded (load_parameters also includes the config
branch). 0 means no data at all is loaded, 1 means only the containers are loaded but without any data and 2 means
the containers including the data are loaded. So here we load all parameters and all config parameters with data
and no results whatsoever.

Yet, since we say traj.v_auto_load = True the statement rates_frame =
traj.res.summary.firing_rates.rates_frame will return our 2D table of firing rates because the
data is loaded in the background while we request it.

Furthermore,

traj.v_idx = example_run

is an important statement in the code. Setting the properties v_idx or v_crun or using the function
f_set_crun() are equivalent. These give you a powerful tool in data analysis because they make your tra-
jectory behave like a particular single run. Thus, all explored parameter’s values will be set to the corresponding
values of one particular run.

To restore everything back to normal simply call f_restore_default().

This concludes our small tutorial. If you are interested in more advance concepts look into the cookbook or check
out the code snippets in the example section. Notably, if you consider using pypet with an already existing project

20 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

of yours, you might want to pay attention to Wrapping an Existing Project (Cellular Automata Inside!).

Cheers, Robert

1.4 Cookbook

Here you can find some more detailed explanations of various concepts of pypet.

1.4.1 Naming Convention

To avoid confusion with natural naming scheme and the functionality provided by the trajectory, parame-
ters, and so on, I followed the idea by PyTables to use prefixes: f_ for functions and v_ for python vari-
ables/attributes/properties.

For instance, given a result instance myresult, myresult.v_comment is the object’s comment attribute
and myresult.f_set(mydata=42) is the function for adding data to the result container. Whereas
myresult.mydata might refer to a data item named mydata added by the user.

Moreover, the following abbreviations are supported by pypet for interaction with a Trajectory:

• conf is directly mapped to config

• par to parameters

• dpar to derived_parameters

• res to results

• crun or the $ symbol to the name of the current single run, e.g. run_00000002

• r_X and run_X (e.g. r_2) are mapped to the corresponding run name, e.g run_00000008.

If you add or request data by using the abbreviations, these are automatically translated into the corresponding
long forms.

1.4.2 More on Trajectories

Trajectory

For some example code on on topics discussed here see the Natural Naming, Storage and Loading script.

The Trajectory is the container for all results and parameters (see More on Parameters and Results) of your
numerical experiments. Throughout the documentation instantiated objects of the Trajectory class are usually
labeled traj. Probably you as user want to follow this convention, because writing the not abbreviated expression
trajectory all the time in your code can become a bit annoying after some time.

The trajectory container instantiates a tree with groups and leaf nodes, whereas the trajectory object itself is
the root node of the tree. There are two types of objects that can be leaves: parameters and results. Both
follow particular APIs (see Parameter and Result as well as their abstract base classes BaseParameter,
BaseResult). Every parameters contains a single value and optionally a range of values for exploration. In
contrast, results can contain several heterogeneous data items (see More on Parameters and Results).

Moreover, a trajectory contains 4 major tree branches:

• config (in short conf)

Data stored under config does not specify the outcome of your simulations but only the way how
the simulations are carried out. For instance, this might encompass the number of CPU cores
for multiprocessing. If you use and generate a trajectory with an environment (More about the
Environment), the environment will add some config data to your trajectory.

Any leaf added under config is a Parameter object (or descendant of the corresponding base
class BaseParameter).

1.4. Cookbook 21

pypet Documentation, Release 0.1.0

As normal parameters, config parameters can only be specified before the actual single runs.

• parameters (in short par)

Parameters are the fundamental building blocks of your simulations. Changing a parameter
usually effects the results you obtain in the end. The set of parameters should be complete and
sufficient to characterize a simulation. Running a numerical simulation twice with the very same
parameter settings should give also the very same results. Therefore, it is recommenced to also
incorporate seeds for random number generators in your parameter set.

Any leaf added under parameters is a Parameter object (or descendant of the corresponding
base class BaseParameter).

Parameters can only be introduced to the trajectory before the actual simulation runs.

• derived_parameters (in short dpar)

Derived parameters are specifications of your simulations that, as the name says, depend on your
original parameters but are still used to carry out your simulation. They are somewhat too pre-
mature to be considered as final results. For example, assume a simulation of a neural network, a
derived parameter could be the connection matrix specifying how the neurons are linked to each
other. Of course, the matrix is completely determined by some parameters, one could think of
some kernel parameters and a random seed, but still you actually need the connection matrix to
build the final network.

Any leaf added under derived_parameters is a Parameter object (or descendant of the corre-
sponding base class BaseParameter).

• results (in short res)

I guess results are rather self explanatory. Any leaf added under results is a Result object (or
descendant of the corresponding base class BaseResult).

Note that all nodes provide the field ‘v_comment’, which can be filled manually or on construction via
comment=. To allow others to understand your simulations it is very helpful to provide such a comment and
explain what your parameter is good for.

Addition of Groups and Leaves (aka Results and Parameters)

Addition of leaves can be achieved via these functions:

• f_add_config()

• f_add_parameter()

• f_add_derived_parameter()

• f_add_result()

Leaves can be added to any group, including the root group, i.e. the trajectory. Note
that if you operate in the parameters subbranch of the tree, you can only add parameters (i.e.
traj.parameters.f_add_parameter(...) but traj.parameters.f_add_result(...) does
not work). For other subbranches this is analogous.

There are two ways to use the above functions, either you already have an instantiation of the object, i.e. you add
a given parameter:

>>> my_param = Parameter('subgroup1.subgroup2.myparam',42, comment='I am an example')
>>> traj.f_add_parameter(my_param)

Or you let the trajectory create the parameter, where the name is the first positional argument:

>>> traj.f_add_parameter('subgroup1.subgroup2.myparam', 42, comment='I am an example')

There exists a standard constructor that is called in case you let the trajectory create the parameter. The standard
constructor can be changed via the v_standard_parameter property. Default is the Parameter construc-
tor.

22 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

If you only want to add a different type of parameter once, but not change the standard constructor in general, you
can add the constructor as the first positional argument followed by the name as the second argument:

>>> traj.f_add_parameter(PickleParameter, 'subgroup1.subgroup2.myparam', 42, comment='I am an example')

Derived parameters, config and results work analogously.

You can sort parameters/results into groups by colons in the names. For instance,
traj.f_add_parameter(’traffic.mobiles.ncars’, data = 42) creates a pa-
rameter that is added to the subbranch parameters. This will also automatically create
the subgroups traffic and inside there the group mobiles. If you add the parameter
traj.f_add_parameter(’traffic.mobiles.ncycles’, data = 11) afterwards, you will
find this parameter also in the group traj.parameters.traffic.ncycles.

More Ways to Add Data

Moreover, for each of the adding functions there exists a shorter abbreviation that spares you typing:

• f_aconf()

• f_apar()

• f_adpar()

• f_ares()

Besides these functions, pypet gives you the possibility to add new leaves via generic attribute setting.

For example, you could also add a parameter (or result) as follows:

>>> traj.parameters.myparam = Parameter('myparam', 42, comment='I am a useful comment!')

Which creates a novel parameter myparam under traj.parameters. It is important how you choose the name
of your parameter or result. If the names match (.myparam and ’myparam’) as above, or if your parameter has
the empty string as a name (traj.parameters.myparam = Parameter(’’, 42)), the parameter will
be added and named as the generic attribute, here myparam. However, if the names disagree or if the parameter
or result name contains groups, the generic attribute will become also a group node. For instance,

>>> traj.parameters.mygroup = Parameter('myparam', 42)

creates a new parameter at traj.parameters.mygroup.myparam and mygroup is a new group node,
respectively. Likewise

>>> traj.parameters.mygroup = Parameter('mysubgroup.myparam', 42)

adds a new parameter at traj.parameters.mygroup.mysubgroup.myparam.

Finally, there’s an even simpler way to add a parameter or result, so called lazy adding. You have to turn it on to
via traj.v_lazy_adding=True

>>> traj.v_lazy_adding=True
>>> traj.parameters.myparam = 42, 'I am a useful comment'

Accordingly, this is internally translated into

>>> traj.parameters.f_add_leaf('myparam', 42, 'I am a useful comment')

Where f_add_leaf() is a generic addition function, see Generic Addition below. This does work for results
as well, but you cannot pass comments, because

>>> traj.results.myresult = 42, 'I am NOT a comment!'

will create a result with two data items, first being the value 42 and the second one a string ’I am NOT a
comment’. Comments can be passed to the standard results only as keyword arguments and all lazy values are
passed as positional arguments. Yet, you can pass as many items to a result as you want. This, for instance, is
legit:

1.4. Cookbook 23

pypet Documentation, Release 0.1.0

>>> traj.results.another_result = 42, 43, 44
>>> traj.results.another_result.v_comment = 'Result containing 3 integer values'
>>> traj.results.another_result[2]
44

As long as lazy adding is turned on, you cannot change existing values. Thus,

>>> traj.parameters.myparam = 43

will throw an AttributeError because myparam already exists, and has the value 42. Yet, after turning it
off, it works again:

>>> traj.v_lazy_adding = False
>>> traj.par.myparam = 43
>>> traj.myparam
43

The different ways of adding data are also explained in example Adding Data to the Trajectory.

Group Nodes

Besides leaves you can also add empty groups to the trajectory (and to all subgroups, of course) via:

• f_add_config_group()

• f_add_parameter_group()

• f_add_derived_parameter_group()

• f_add_result_group()

As before, if you create the group groupA.groupB.groupC and if group A and B were non-existent before,
they will be created on the way.

Note that pypet distinguishes between three different types of name descriptions, the full name of a node which
would be, for instance, parameters.groupA.groupB.myparam, the (short) name myparam and the lo-
cation within the tree, i.e. parameters.groupA.groupB. All these properties are accessible for each group
and leaf via:

• v_full_name

• v_location

• v_name

Location and full name are relative to the root node. Since a trajectory object is the root of the tree, its full_name
is ’’, the empty string. Yet, the name property is not empty but contains the user chosen name of the trajectory.

Note that if you add a parameter/result/group with f_add_XXXXXX the full name will be extended by the full
name of the group you added it to:

>>> traj.parameters.traffic.f_add_parameter('street.nzebras')

The full name of the new parameter is going to be parameters.traffic.street.nzebras. If you
add anything directly to the root group, i.e. the trajectory, the group names parameters, config,
derived_parameters will be automatically added (of course, depending on what you add, config, a pa-
rameter etc.).

If you add a result or derived parameter during a single run, the name will be changed to include the current name
of the run.

For instance, if you add a result during a single run (let’s assume it’s the first run) like
traj.f_add_result(’mygroup.myresult’, 42, comment=’An important result’), the
result will be renamed to results.runs.run_00000000.mygroup.myresult. Accordingly, all results
(and derived parameters) of all runs are stored into different parts of the tree and are kept independent.

24 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

If this sorting does not really suit you, and you don’t want your results and derived parameters to be put in the
sub-branches runs.run_XXXXXXXXX (with XXXXXXXX the index of the current run), you can make use of the
wildcard character ’$’. If you add this character to the name of your new result or derived parameter, pypet will
automatically replace this wildcard character with the name of the current run.

For instance, if you add a result during a single run (let’s assume again the first one) via
traj.f_add_result(’mygroup.$.myresult’, 42, comment=’An important result’)
the result will be renamed to results.mygroup.run_00000000.myresult. Thus, the branching of
your tree happens on a lower level than before. Even traj.f_add_result(’mygroup.mygroup.$’,
myresult=42, comment=’An important result’) is allowed.

You can also use the wildcard character in the preprocessing stage. Let’s as-
sume you add the following derived parameter before the actual single runs via
traj.f_add_derived_parameter(’mygroup.$.myparam’, 42, comment=’An important
parameter’). If that happend during a single run ’$’ would be renamed to run_XXXXXXXX (with
XXXXXXXX the index of the run). Yet, if you add the parameter BEFORE the single runs, ’$’ will
be replaced by the placeholder name run_ALL. So your new derived parameter here is now called
mygroup.run_All.myparam.

Why is this useful?

Well, this is in particular useful if you pre-compute derived parameters before the single runs which depend on
parameters that might be explored in the near future.

For example you have parameter seed and n and which you use to draw a vector of random numbers. You
keep this vector as a derived parameter. As long as you do not explore different seeds or values of n you can
compute the random numbers before the single runs to save time. Now, if you use the ’$’ statement right from
the beginning it would not make a difference if the following statement was executed during the pre-processing
stage or during the single runs:

np.random.seed(traj.parameters.seed)
traj.f_add_derived_parameter('random_vector.$', np.random(traj.paramaters.n))

In both cases during the single run, you can access your data via traj.dpar.random_vector.crun and
pypet will return the data regardless when you added the derived parameter. Internally pypet tries to resolve
traj.dpar.random_vector.run_XXXXXXXX (with run_XXXXXXXXX referring to the current run, like
run_00000002) first. If this fails, it will fall back to traj.dpar.random_vector.run_ALL (if this fails,
too, pypet will throw an error).

Accordingly, you have to write less code and post-processing and data analysis become easier.

More on Wildcards

So far we have seen that the ‘$’ wildcard translates into the current run name. Similarly does crun. So,
traj.res.runs[’$’].myresult is equivalent to traj.res.runs.crun.myresult. By default,
there exists another wildcard called ‘$set’ or crunset. Both translate to grouping of results into buckets of 1000
runs. More precisely, they are translated to run_set_XXXXX where XXXXX is just the set number. So the first 1000
runs are translated into run_set_00000, the next 1000 into run_set_00001 and so on.

Why is this useful? Well, if you perform many runs, more than 10,000, HDF5 becomes rather slow, because it
cannot handle nodes with so many children. Grouping your results into buckets simply overcomes this problem.
Accordingly, you could add a result as:

>>> traj.f_add_result('$set.$.myresult', 42)

And all results will be sorted into groups of 1000 runs, like traj.results.run_set_00002.run_00002022
for run 2022.

This is also shown in Large Explorations with Many Runs.

Moreover, you can actually define your own wildcards or even replace the existing ones. When creating a trajectory
you can pass particular wildcard functions via wildcard_functions. This has to be a dictionary containing
tuples of wildcards like (’$’, ’crun) as keys and translation functions as values. The function needs to take

1.4. Cookbook 25

pypet Documentation, Release 0.1.0

a single argument, that is the current run index and resolve it into a name. So it must handle all integers of 0 and
larger. Moreover, it must also handle -1 to create a dummy name. For instance, you could define your own naming
scheme via:

from pypet import Trajectory

def my_run_names(idx):
return 'this_is_run_%d' % d

my_wildcards = {('$', 'crun'): my_run_names}
traj = Trajectory(wildcard_functions=my_wildcards)

Now calling traj.f_add_result(’mygroup.$.myresult’, 42) during a run, translates into
traj.mygroup.this_is_run_7 for index 7.

There’s basically no constrain on the wildcard functions, except for the one defining (‘$’, ‘crun’) because it has to
return a unique name for every integer from -1 to infinity. However, other wildcards can be more open and group
many runs together:

from pypet import Trajectory

def my_run_names(idx):
return 'this_is_run_%d' % d

def my_group_names(idx):
if idx == -1:

return 'dummy_group'
elif idx < 9000:

return 'smaller_than_9000'
else:

return 'over_9000'

my_wildcards = {('$', 'crun'): my_run_names,
('$mygrouping', 'mygrouping'): my_group_names}

traj = Trajectory(wildcard_functions=my_wildcards)

Thus, traj.f_add_result(‘mygroup.$mygrouping.$.myresult’, 42)‘ would translate into
traj.results.mygroup.over_9000.this_is_run_9009 for run 9009.‘‘

Generic Addition

You do not have to stick to the given trajectory structure with its four subtrees: config, parameters,
derived_parameters, results. If you just want to use a trajectory as a simple tree container and store
groups and leaves wherever you like, you can use the generic functions f_add_group() and f_add_leaf().
Note however, that the four subtrees are reserved. Thus, if you add anything below one of the four, the correspond-
ing speciality functions from above are called instead of the generic ones.

Accessing Data in the Trajectory

To access data that you have put into your trajectory you can use

• f_get()method. You might want to take a look at the function definition to check out the other arguments
you can pass to f_get. f_get not only works for the trajectory object, but for any group node in your
tree.

• Use natural naming dot notation like traj.nzebras. This natural naming scheme supports some special
features see below.

• Use the square brackets - as you do with dictionaries - like traj[’nzebras’] which is equivalent to
calling traj.nzebras.

26 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Natural Naming

As said before trajectories instantiate trees and the tree can be browsed via natural naming.

For instance, if you add a parameter via traj.f_add_parameter(’traffic.street.nzebras’,
data=4), you can access it via

>>> traj.parameters.street.nzebras
4

Here comes also the concept of fast access. Instead of the parameter object you directly access the data value 4.
Whether or not you want fast access is determined by the value of v_fast_access (default is True):

>>> traj.v_fast_access = False
>>> traj.parameters.street.nzebras
<Parameter object>

Note that fast access works for parameter objects (i.e. for everything you store under parameters, de-
rived_parameters, and config) that are non empty. If you say for instance traj.x and x is an empty param-
eter, you will get in return the parameter object. Fast access works in one particular case also for results, and
that is, if the result contains exactly one item with the name of the result. For instance, if you add the result
traj.f_add_result(’z’, 42), you can fast access it, since the first positional argument is mapped to the
name ‘z’ (See also Results). If the result container is empty or contains more than one item, you will always get
in return the result object.

>>> traj.f_add_result('z', 42)
>>> traj.z
42
>>> traj.f_add_result('k', kay=42)
>>> traj.k
<Result object>
>>> traj.k.kay
42
>>> traj.f_add_result('two_data_values', 11, 12.0)
>>> traj.two_data_values
<Result object>
>>> traj.two_data_values[0]
11

Shortcuts

As a user you are encouraged to nicely group and structure your results as fine grain as possible. Yet, you might
think that you will inevitably have to type a lot of names and colons to access your values and always state the full
name of an item. This is, however, not true. There are two ways to work around that. First, you can request the
group above the parameters, and then access the variables one by one:

>>> mobiles = traj.parameters.traffic.mobiles
>>> mobiles.ncars
42
>>> mobiles.ncycles
11

Or you can make use of shortcuts. If you leave out intermediate groups in your natural naming request, a breadth
first search is applied to find the corresponding group/leaf.

>>> traj.mobiles
42
>>> traj.traffic.mobiles
42
>>> traj.parameters.ncycles
11

1.4. Cookbook 27

pypet Documentation, Release 0.1.0

Search is established with very fast look up and usually needs much less then 𝑂(𝑁) [most often 𝑂(1) or 𝑂(𝑑),
where 𝑑 is the depth of the tree and N the total number of nodes, i.e. groups + leaves].

However, sometimes your shortcuts are not unique and you might find several solutions for your natural naming
search in the tree. pypet will return the first item it finds via breadth first search within the tree. If there are several
items with the same name but in different depths within the tree, the one with the lowest depth is returned. For
performance reasons pypet actually stops the search if an item was found and there is no other item within the tree
with the same name and same depth. If there happen to be two or more items with the same name and with the
same depth in the tree, pypet will raise a NotUniqueNodeError since pypet cannot know which of the two
items you want.

The method that performs the natural naming search in the tree can be called directly, it is f_get().

>>> traj.parameters.f_get('mobiles.ncars')
<Parameter object ncars>
>>> traj.parameters.f_get('mobiles.ncars', fast_access=True)
42

If you don’t want to allow this shortcutting through the tree use f_get(target, shortcuts=False) or
set the trajectory attribute v_shortcuts=False to forbid the shortcuts for natural naming and getitem access.

As a remainder, there also exist nice naming shortcuts for already present groups (these are always active and
cannot be switched off):

• par is mapped to parameters, i.e. traj.parameters is the same group as traj.par

• dpar is mapped to derived_parameters

• res is mapped to results

• conf is mapped to config

• crun is mapped to the name of the current run (for example run_00000002)

• r_X and run_X are mapped to the corresponding run name, e.g. r_3 is mapped to run_00000003

For instance, traj.par.traffic.street.nzebras is equivalent to
traj.parameters.traffic.street.nzebras.

Links

Although each node in the trajectory tree is identified by a unique full name, there can potentially many paths to a
particular node established via links.

One can add a link to every group node simply via f_add_link().

For instance:

>>> traj.parameters.f_add_link('mylink', traj.f_get('x'))

Thus, traj.mylink now points to the same data as traj.x. Colon separated names are not allowed for links,
i.e. traj.parameters.f_add_link(’mygroup.mylink’, traj.f_get(’x’)) does not work.

Links can also be created via generic attribute setting:

>>> traj.mylink2 = traj.f_get('x')

See also the example Using Links.

Links will be handled as normal children during interaction with the trajectory. For example, using
f_iter_nodes() with recursive=True will also recursively iterate all linked groups and leaves.
Moreover, pypet takes care that all nodes are only visited once. To skip linked nodes simply set
with_links=False. However, for storage and loading (see below) links are never evaluated recursively.
Even setting recursive=True linked nodes are, of course, stored or loaded but not their children.

28 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Parameter Exploration

Exploration can be prepared with the function f_explore(). This function takes a dictionary with parameter
names (not necessarily the full names, they are searched) as keys and iterables specifying how the parameter
values for each single run. Note that all iterables need to be of the same length. For example:

>>> traj.f_explore({'ncars':[42,44,45,46], 'ncycles' :[1,4,6,6]})

This would create a trajectory of length 4 and explore the four parameter space points
(42, 1), (44, 4), (45, 6), (46, 6). If you want to explore the cartesian product of parameter ranges, you can
take a look at the cartesian_product() function.

You can extend or expand an already explored trajectory to explore the parameter space further with the function
f_expand().

Using Numpy Iterables

Since parameters are very conservative regarding the data they accept (see Values supported by Parameters), you
sometimes won’t be able to use Numpy arrays for exploration as iterables.

For instance, the following code snippet won’t work:

import numpy a np
from pypet.trajectory import Trajectory
traj = Trajectory()
traj.f_add_parameter('my_float_parameter', 42.4, comment='My value is a standard python float')

traj.f_explore({ 'my_float_parameter': np.arange(42.0, 44.876, 0.23) })

This will result in a TypeError because your exploration iterable np.arange(42.0, 44.876, 0.23)
contains numpy.float64 values whereas you parameter is supposed to use standard python floats.

Yet, you can use numpy’s tolist() function to overcome this problem:

traj.f_explore({ 'my_float_parameter': np.arange(42.0, 44.876, 0.23).tolist() })

Or you could specify your parameter directly as a numpy float:

traj.f_add_parameter('my_float_parameter', np.float64(42.4),
comment='My value is a numpy 64 bit float')

Presetting of Parameters

I suggest that before you calculate any results or derived parameters, you should define all parameters used during
your simulations. Usually you could do this by parsing a config file, or simply by executing some sort of a config
python script that simply adds the parameters to your trajectory (see also Tutorial).

If you have some complex simulations where you might use only parts of your parameters or you want to ex-
clude a set of parameters and include some others, you can make use of the presetting of parameters (see
f_preset_parameter()). This allows you to add control flow on the setting or parameters. Let’s consider
an example:

traj.f_add_parameter('traffic.mobiles.add_cars', True , comment='Whether to add some cars or '
'bicycles in the traffic simulation')

if traj.add_cars:
traj.f_add_parameter('traffic.mobiles.ncars', 42, comment='Number of cars in Rome')

else:
traj.f_add_parameter('traffic.mobiles.ncycles', 13, comment'Number of bikes, in case '

'there are no cars')

There you have some control flow. If the variable add_cars is True, you will add 42 cars otherwise 13 bikes.
Yet, by your definition one line before add_cars will always be True. To switch between the use cases you can

1.4. Cookbook 29

pypet Documentation, Release 0.1.0

rely on presetting of parameters. If you have the following statement somewhere before in your main function,
you can make the trajectory change the value of add_cars right after the parameter was added:

traj.f_preset_parameter('traffic.mobiles.add_cars', False)

So when it comes to the execution of the first line in example above, i.e.
traj.f_add_parameter(’traffic.mobiles.add_cars’, True , comment=’Whether
to add some cars or bicycles in the traffic simulation’), the parameter will be added
with the default value add_cars=True but immediately afterwards the f_set() function will be called with
the value False. Accordingly, if traj.add_cars: will evaluate to False and the bicycles will be added.

In order to preset a parameter you need to state its full name (except the prefix parameters) and you cannot
shortcut through the tree. Don’t worry about typos, before the running of your simulations it will be checked if all
parameters marked for presetting were reached, if not a PresettingError will be thrown.

Storing

Storage of the trajectory container and all it’s content is not carried out by the trajectory itself but by a service. The
service is known to the trajectory and can be changed via the v_storage_service property. The standard
storage service (and the only one so far, you don’t bother write an SQL one? :-) is the HDF5StorageService.
As a side remark, if you create a trajectory on your own (for loading) with the Trajectory class constructor
and you pass it a filename, the trajectory will create an HDF5StorageService operating on that file for
you.

You don’t have to interact with the service directly, storage can be initiated by several methods of the trajectory
and it’s groups and subbranches (they format and hand over the request to the service).

The most straightforward way to store everything is to say:

>>> traj.f_store()

and that’s it. In fact, if you use the trajectory in combination with the environment (see More about the Environ-
ment) you do not need to do this call by yourself at all, this is done by the environment.

If you store a trajectory to disk it’s tree structure is also found in the structure of the HDF5 file! In addition,
there will be some overview tables summarizing what you stored into the HDF5 file. They can be found under
the top-group overview, the different tables are listed in the HDF5 Overview Tables section. By the way, you can
switch the creation of these tables off passing the appropriate arguments to the Environment constructor to
reduce the size of the final HDF5 file.

There are four different storage modes that can be chosen for f_store(store_data=2) and the
store_data keyword argument (default is 2).

• pypet.pypetconstants.STORE_NOTHING: (0)

Nothing is stored, basically a no-op.

• pypet.pypetconstants.STORE_DATA_SKIPPING: (1)

A speedy version of the choice below. Data of nodes that have not been stored before are written
to disk. Thus, skips all nodes (groups and leaves) that have been stored before, even if they
contain new data that has not been stored before.

• pypet.pypetconstants.STORE_DATA: (2)

Stores data of groups and leaves to disk. Note that individual data already found on disk is
not overwritten. If leaves or groups contain new data that is not found on disk, the new data is
added. Here addition only means creation of new data items like tables and arrays, but data is
not appended to existing data arrays or tables.

• pypet.pypetconstants.OVERWRITE_DATA: (3)

Stores data of groups and leaves to disk. All data on disk is overwritten with data found in RAM.
Be aware that this may yield fragmented HDF5 files. Therefore, use with care. Overwriting data
is not recommended as explained below.

30 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Although you can delete or overwrite data you should try to stick to this general scheme: Whatever is stored to
disk is the ground truth and, therefore, should not be changed.

Why being so strict? Well, first of all, if you do simulations, they are like numerical scientific experiments, so
you run them, collect your data and keep these results. There is usually no need to modify the first raw data
after collecting it. You may analyse it and create novel results from the raw data, but you usually should have no
incentive to modify your original raw data. Second of all, HDF5 is bad for modifying data which usually leads to
fragmented HDF5 files and does not free memory on your hard drive. So there are already constraints by the file
system used (but trust me this is minor compared to the awesome advantages of using HDF5, and as I said, why
the heck do you wanna change your results, anyway?).

Again, in case you use your trajectory with or via an Environment there is no need to call f_store() for data
storage, this will always be called at the end of the simulation and at the end of a single run automatically (unless
you set automatic_storing to False). Yet, be aware that if you add any custom data during a single run
not under a group or leaf with run_XXXXXXXX in their full name this data will not be immediately saved after the
completion of the run. In fact, in case of multiprocessing this data will be lost if not manually stored.

Storing data individually

Assume you computed a result that is extremely large. So you want to store it to disk, than free the result and
forget about it for the rest of your simulation or single run:

>>> large_result = traj.results.f_get('large_result')
>>> traj.f_store_item(large_result)
>>> large_result.f_empty()

Note that in order to allow storage of single items, you need to have stored the trajectory at least once. If you
operate during a single run, this has been done before, if not, simply call traj.f_store() once before. If
you do not want to store anything but initialise the storage, you can pass the argument only_init=True, i.e.
traj.f_store(only_init=True).

Moreover, if you call f_empty() on a large result, only the reference to the giant data block within the result is
deleted. So in order to make the python garbage collector free the memory, you must ensure that you do not have
any external reference of your own in your code to the giant data.

To avoid re-opening an closing of the HDF5 file over and over again there is also the possibility to store a list of
items via f_store_items() or whole subtrees via f_store_child() or f_store(). Keep in mind that
Links are always stored non-recursively despite the setting of recursive in these functions.

Loading

Sometimes you start your session not running an experiment, but loading an old trajectory. You can use the
load_trajectory() function or create a new empty trajectory and use the trajectory’s f_load() function.
In both cases you should to pass a filename referring to your HDF5 file. Moreover, pass a name or an index
of the trajectory you want to select within the HDF5 file. For the index you can also count backwards, so -1
would yield the last or newest trajectory in an HDF5 file.

There are two different loading schemes depending on the argument as_new

• as_new=True

You load an old trajectory into your current one, and only load everything stored under param-
eters in order to rerun an old experiment. You could hand this loaded trajectory over to an
Environment and carry out another the simulation again.

• as_new=False

You want to load and old trajectory and analyse results you have obtained. If using the trajectory’s
f_load() method, the current name of the trajectory will be changed to the name of the loaded
one.

1.4. Cookbook 31

pypet Documentation, Release 0.1.0

If you choose the latter load mode, you can specify how the individual subtrees config, parameters, de-
rived_parameters, and results are loaded:

• pypet.pypetconstants.LOAD_NOTHING: (0)

Nothing is loaded, just a no-op.

• pypet.pypetconstants.LOAD_SKELETON : (1)

The skeleton is loaded including annotations (See Annotations). This means that only empty
parameter and result objects will be created and you can manually load the data into them after-
wards. Note that pypet.annotations.Annotations do not count as data and they will
be loaded because they are assumed to be small.

• pypet.pypetconstants.LOAD_DATA: (2)

The whole data is loaded. Note in case you have non-empty leaves already in your trajectory,
these are left untouched.

• pypet.pypetconstants.OVERWRITE_DATA: (3)

As before, but non-empty nodes are emptied and reloaded.

Compared to manual storage, you can also load single items manually via f_load_item(). If you load a large
result with many entries you might consider loading only parts of it (see f_load_items()) In order to load a
parameter, result, or group, with f_load_item() it must exist in the current trajectory in RAM, if it does not
you can always bring your skeleton of your trajectory tree up to date with f_update_skeleton(). This will
load all items stored to disk and create empty instances. After a simulation is completed, you need to call this
function to get the whole trajectory tree containing all new results and derived parameters.

And last but not least, there are also f_load_child() or f_load() methods in order to load whole subtrees.
Keep in mind that links (Links) are always loaded non-recursively despite the setting of recursive in these
functions.

Automatic Loading

The trajectory supports the nice feature to automatically loading data while you access it. Set
traj.v_auto_load=True and you don’t have to care about loading at all during data analysis.

Enabling automatic loading will make pypet do two things. If you try to access group nodes or leaf nodes that
are currently not in your trajectory on RAM but stored to disk, it will load these with data. Note that in order to
automatically load data you cannot use shortcuts! Secondly, if your trajectory comes across an empty leaf node, it
will load the data from disk (here shortcuts work again, since only data and not the skeleton has to be loaded).

For instance:

Create the trajectory independent of the environment
traj = Trajectory(filename='./myfile.hdf5')

We add a result
traj.f_add_result('mygropA.mygroupB.myresult', 42, comment='The answer')

Now we store our trajectory
traj.f_store()

We remove all results
traj.f_remove_child('results', recursive=True)

We turn auto loading on
traj.v_auto_loading = True

Now we can happily recall the result, since it is loaded while we access it.
Stating `results` here is important. We removed the results node above, so
we have to explicitly name it here to reload it, too. There are no shortcuts allowed
for nodes that have to be loaded on the fly and that did not exist in memory before.

32 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

answer= traj.results.mygroupA,mygroupB.myresult
And answer will be 42

Ok next example, now we only remove the data. Since everything is loaded we can shortcut
through the tree.
traj.f_get('myresult').f_empty()
Btw we have to use `f_get` here to get the result itself and not the data `42` via fast
access

If we now access `myresult` again through the trajectory, it will be automatically loaded.
Since the result itself is still in RAM but empty, we can shortcut through the tree:
answer = traj.myresult
And again the answer will be 42

Logging and Git Commits during Data Analysis

Automated logging and git commits are often very handy features. Probably you do not want to miss these while
you do your data analysis. To enable these in case you simply want to load an old trajectory for data analysis
without doing any more single runs, you can again use an Environment.

First, load the trajectory with f_load(), and pass the loaded trajectory to a new environment. Accordingly, the
environment will trigger a git commit (in case you have specified a path to your repository root) and enable logging.
You can additionally pass the argument do_single_runs=False to your environment if you only load your
trajectory for data analysis. Accordingly, no config information like whether you want to use multiprocessing or
resume a broken experiment is added to your trajectory. For example:

Create the trajectory independent of the environment
traj = Trajectory(filename='./myfile.hdf5',

dynamic_imports=[BrianParameter,
BrianMonitorResult,
BrianResult])

Load the first trajectory in the file
traj.f_load(index=0, load_parameters=2,

load_derived_parameters=2, load_results=1,
load_other_data=1)

Just pass the trajectory as the first argument to a new environment.
You can pass the usual arguments for logging and git integration.
env = Environment(traj

log_folder='./logs/',
git_repository='../gitroot/',
do_single_runs=False)

Here comes your data analysis...

Removal of items

If you only want to remove items from RAM (after storing them to disk), you can get rid of whole subbranches
via f_remove_child(). f_remove().

But usually it is enough to simply free the data and keep empty results by using the f_empty() function of a
result or parameter. This will leave the actual skeleton of the trajectory untouched.

Although I made it pretty clear that in general what is stored to disk should be set in stone, there are a functions
to delete items not only from RAM but also from disk: f_delete_item() and f_delete_items(). Note
that you cannot delete explored parameters.

1.4. Cookbook 33

pypet Documentation, Release 0.1.0

Merging and Backup

You can backup a trajectory with the function f_backup().

If you have two trajectories that live in the same space you can merge them into one via f_merge(). There
are a variety of options how to merge them. You can even discard parameter space points that are equal in both
trajectories. You can simply add more trials to a given trajectory if both contain a trial parameter. This is an
integer parameter that simply runs from 0 to N1-1 and 0 to N2-1 with N1 trials in your current and N2 trials in the
other trajectory, respectively. After merging the trial parameter in your merged trajectory runs from 0 to N1+N2-1.

Also checkout the example in Merging of Trajectories.

Moreover, if you need to merge several trajectories take a look at the faster f_merge_many() function.

Single Runs

A single run of your simulation function is identified by it’s index and position in your trajectory, you can access
this via v_idx of your trajectory. As a proper informatics nerd, if you have N runs, than your first run’s index is
0 and the last is indexed as N-1! Also each run has a name run_XXXXXXXX where XXXXXXXX is the index of
the run with some leading zeros, like run_00000007. You can access the name via the v_crun property.

During the execution of individual runs the functionality of your trajectory is reduced:

• You can no longer add data to config and parameters branch

• You can usually not access the full exploration range of parameters but only the current value that corre-
sponds to the index of the run.

• Some functions like f_explore() are no longer supported.

Conceptually one should regard all single runs to be independent. As a consequence, you should not load data
during a particular run that was computed by a previous one. You should not manipulate data in the trajectory
that was not added during the particular single run. This is very important! When it comes to multiprocessing,
manipulating data put into the trajectory before the single runs is useless. Because the trajectory is either pickled
or the whole memory space of the trajectory is forked by the OS, changing stuff within the trajectory will not be
noticed by any other process or even the main script!

1.4.3 Interaction with Trajectories after an Experiment

Iterating over Loaded Data in a Trajectory

The trajectory offers a way to iteratively look into the data you have obtained from several
runs. Assume you have computed the value z with z=traj.x*traj.x and added z to the trajec-
tory in each run via traj.f_add_result(’z’, z). Accordingly, you can find a couple of
traj.results.runs.run_XXXXXXXX.z in your trajectory (where XXXXXXXX is the index of a partic-
ular run like 00000003). To access these one after the other it is quite tedious to write run_XXXXXXXX each
time.

There is a way to tell the trajectory to only consider the subbranches that are associated with a single run and blind
out everything else. You can use the function f_set_crun() to make the trajectory only consider a particular
run (it accepts run indices as well as names). Alternatively, you can set the run idx via changing v_idx of your
trajectory object.

In order to set everything back to normal call f_restore_default() or set v_idx to -1.

For example, consider your trajectory contains the parameters x and y and both have been explored with 𝑥 ∈
{1.0, 2.0, 3.0, 4.0} and 𝑦 ∈ {3.0, 3.0, 4.0, 4.0} and their product is stored as z. The following code snippet will
iterate over all four runs and print the result of each run:

for run_name in traj.f_get_run_names():
traj.f_as_run(run_name)
x=traj.x

34 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

y=traj.y
z=traj.z
print '%s: x=%f, y=%f, z=%f' % (run_name,x,y,z)

Don't forget to reset your trajectory to the default settings, to release its belief to
be the last run:
traj.f_restore_default()

This will print the following statement:

run_00000000: x=1.000000, y=3.000000, z=3.000000

run_00000001: x=2.000000, y=3.000000, z=6.000000

run_00000002: x=3.000000, y=4.000000, z=12.000000

run_00000003: x=4.000000, y=4.000000, z=16.000000

To see this in action you might want to check out Merging of Trajectories.

Looking for Subsets of Parameter Combinations (f_find_idx)

Let’s say you already explored the parameter space and gathered some results. The next step would be to post-
process and analyse the results. Yet, you are not interested in all results at the moment but only for subsets
where the parameters have certain values. You can find the corresponding run indices with the f_find_idx()
function.

In order to filter for particular settings you need a lambda filter function and a list specifying the names of the
parameters that you want to filter. You don’t know what lambda functions are? You might wanna read about it in
Dive Into Python.

For instance, let’s assume we explored the parameters ‘x’ and ‘y’ and the cartesian product of 𝑥 ∈ {1, 2, 3, 4} and
𝑦 ∈ {6, 7, 8}. We want to know the run indices for x==2 or y==8. First we need to formulate a lambda filter
function:

>>> my_filter_function = lambda x,y: x==2 or y==8

Next we can ask the trajectory to return an iterator (in fact it’s a generator) over all run indices that fulfil the above
named condition:

>>> idx_iterator = traj.f_find_idx(['parameters.x', 'parameters.y'], my_filter_function)

Note the list [’parameters.x’, ’parameters.y’] to tell the trajectory which parameters are associated
with the variables in the lambda function. Make sure they are in the same order as in your lambda function.

Now if we print the indexes found by the lambda filter, we get:

>>> print [idx for idx in idx_iterator]
[1, 5, 8, 9, 10, 11]

To see this in action check out Using the f_find_idx Function.

1.4.4 Annotations

Annotations are a small extra feature. Every group node (including your trajectory root node) and every leaf
has a property called v_annotations. These are other container objects (accessible via natural naming of
course), where you can put whatever you want! So you can mark your items in a specific way beyond simple
comments:

>>> ncars_obj = traj.f_get('ncars')
>>> ncars_obj.v_annotations.my_special_annotation = ['peter','paul','mary']
>>> print ncars_obj.v_annotations.my_special_annotation
['peter','paul','mary']

1.4. Cookbook 35

http://www.diveintopython.net/power_of_introspection/lambda_functions.html
https://wiki.python.org/moin/Generators

pypet Documentation, Release 0.1.0

So here you added a list of strings as an annotation called my_special_annotation. These annotations map one
to one to the attributes of your HDF5 nodes in your final hdf5 file. The high flexibility of annotating your items
comes with the downside that storage and retrieval of annotations from the HDF5 file is very slow. Hence, only
use short and small annotations. Consider annotations as a neat additional feature, but I don’t recommend using
the annotations for large machine written stuff or storing large result like data (use the regular result objects to do
that).

1.4.5 More on Parameters and Results

Parameters

The parameter container (Base API is found in BaseParameter) is used to keep data that is explicitly required
as parameters for your simulations. They are the containers of choice for everything in the trajectory stored under
parameters, config, and derived_parameters.

Parameter containers follow these two principles:

• A key concept in numerical simulations is exploration of the parameter space. Therefore, the parameter
containers not only keep a single value but can hold a range of values. These values typically reside in the
same dimension, i.e. only integers, only strings, only numpy arrays, etc.

Exploration is initiated via the trajectory, see Parameter Exploration. The individual values in the explo-
ration range can be accessed one after the other for distinct simulations. How the exploration range is
implemented depends on the parameter.

• The parameter can be locked, meaning as soon as the parameter is assigned to hold a specific value and
the value has already been used somewhere, it cannot be changed any longer (except after being explicitly
unlocked). This prevents the nasty error of having a particular parameter value at the beginning of a simula-
tion but changing it during runtime for whatever reason. This can make your simulations really buggy and
impossible to understand by other people. In fact, I ran into this problem during my PhD using someone
else’s simulations. Thus, debugging took ages. As a consequence, this project was born.

By definition parameters are fixed values that once used never change. An exception to this rule is solely
the exploration of the parameter space (see Parameter Exploration), but this requires to run a number of
distinct simulations anyway.

Values supported by Parameters

Parameters are very restrictive in terms of the data they except. For example, the Parameter excepts only:

• python natives (int, str, bool, float, complex),

• numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str

• python homogeneous non-nested tuples

And by only I mean they handle exactly these types and nothing else, not even objects that are derived from these
data types.

Why so very restrictive? Well, the reason is that we store these values to disk into HDF5 later on. We want
to recall them occasionally, and maybe even rerun our experiments. However, as soon as you store data into an
HDF5 files, most often information about the exact type is lost. So if you store, for instance, a numpy matrix via
PyTables and recall it, you will get a numpy array instead.

The storage service that comes with this package will take care that the exact type of an instance is NOT lost.
However, this guarantee of type conservations comes with the cost that types are restricted.

However, that does not mean that data which is not supported cannot be used as a parameter at all. You have two
possibilities if your data is not supported: First, write your own parameter that converts your data to the basic
types supported by the storage service. This is rather easy, the API BaseParameter is really small. Or second
of all, simply put your data into the PickleParameter and it can be stored later on to HDF5 as the pickle
string.

36 Chapter 1. pypet User Manual

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

As soon as you add data or explore data it will immediately be checked if the data is supported and if not a
TypeError is thrown.

Types of Parameters

So far, the following parameters exist:

• Parameter

Container for native python data: int, long, float, str, bool, complex; and Numpy data: np.int8-64,
np.uint8-64, np.float32-64, np.complex, np.str. Numpy arrays and matrices are allowed as well.

However, for larger numpy arrays, the ArrayParameter is recommended, see below.

• ArrayParameter

Container for native python data as well as tuples and numpy arrays and matrices. The array
parameter is the method of choice for large numpy arrays or python tuples. Individual arrays are
kept only once (and by the HDF5 storage service stored only once to disk). In the exploration
range you can find references to these arrays. This is particularly useful if you reuse an array
many times in distinct simulation, for example, by exploring the parameter space in form of a
cartesian product.

For instance, assume you explore a numpy array with default
value numpy.array([1,2,3]). A potential exploration range
could be: [numpy.array([1,2,3]), numpy.array([3,4,3]),
numpy.array([1,2,3]), numpy.array([3,4,3])] So you
reuse numpy.array([1,2,3]) and numpy.array([3,4,3])
twice. If you would put this data into the standard Parameter, the
full list [numpy.array([1,2,3]), numpy.array([3,4,3]),
numpy.array([1,2,3]), numpy.array([3,4,3]) would be stored to
disk. The ArrayParameter is smarter. It will ask the storage service only to store
numpy.array([1,2,3]) and numpy.array([3,4,3]) once and in addition a
list of references [ref_to_array_1, ref_to_array_2, ref_to_array_1,
ref_to_array_2].

Subclasses the standard Parameter and, therefore, supports also native python data.

• SparseParameter

Container for Scipy sparse matrices. Supported formats are csr, csc, bsr, and dia. Subclasses the
ArrayParameter, and handles memory management similarly.

• PickleParameter

Container for all the data that can be pickled. Like the array parameter, distinct objects are kept
only once and are referred to in the exploration range.

Parameters can be changed and values can be requested with the getter and setter methods: f_get() and
f_set(). For convenience param.data works as well instead of f_get(). Note that param.v_data
is not valid syntax. The idea is that .data works as an extension to the natural naming scheme.

For people using BRIAN quantities, there also exists a BrianParameter.

Results

Results are less restrictive in their acceptance of values and they can handle more than a single data item.

They support a constructor and a getter and setter that have positional and keyword arguments. And, of course,
results support natural naming as well.

For example:

1.4. Cookbook 37

http://docs.scipy.org/doc/scipy/reference/sparse.html
http://briansimulator.org/

pypet Documentation, Release 0.1.0

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!')
>>> res.f_set(333, mystring = 'String!', test = 42)
>>> res.f_get('myresult')
333
>>> res.f_get('mystring')
'String!'
>>> res.mystring
'String!'
>>> res.myresult
333
>>> res.test
42

If you use f_set(*args) the first positional argument is added to the result having the name of the result,
here ‘myresult’. Subsequent positional arguments are added with ‘name_X’ where X is the position of the argu-
ment. Positions are counted starting from zero so f_set(’a’,’b’,’c’) will add the entries ’myresult,
myresult_1, myresult_2’ to your result.

Using f_get() you can request several items at once. If you ask for f_get(itemname) you will get in
return the item with that name. If you request f_get(itemname1, itemname2,) you will get a list
in return containing the items. To refer to items stored with ‘name_X’ providing the index value is sufficient:

>>> res.f_get(0)
333

If your result contains only a single item you can simply call f_get() without any arguments. But if you call
f_get() without any arguments and the result contains more than one item a ValueError is thrown.

>>> res = Result('myres', 42, comment='I only contain a single value')
>>> res.f_get()
42

Other more pythonic methods of data manipulation are also supported:

>>> res.myval = 42
>>> res.myval
42
>>> res['myval'] = 43
>>> res['myval']
43

Types of Results

The following results exist:

• Result

Light Container that stores python native data and numpy arrays.

Note that no sanity checks on individual data is made in case your data is a container. For
instance, if you hand over a python list to the result it is not checked if the individual elements
of the list are valid data items supported by the storage service. You have to take care that your
data is understood by the storage service. It is assumed that results tend to be large and therefore
sanity checks would be too expensive.

Data that can safely be stored into a Result are:

– python natives (int, long, str, bool, float, complex),

– numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64,
np.complex, np.str

– python lists and tuples

Non nested with homogeneous data of the previous types.

38 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

– python dictionaries

Non-nested with strings as keys; values must be of the previously listed types (in-
cluding numpy arrays and matrices) and can be heterogeneous.

– pandas DataFrames, Series, Panels

– ObjectTable

Object tables are special pandas DataFrames with dtype=object, i.e. everything
you keep in object tables will keep its type and won’t be auto-converted py pandas.

• SparseResult

Can handle sparse matrices of type csc, csr, bsr and dia and all data that is handled by the
Result.

• PickleResult

Result that digest everything and simply pickles it!

Note that it is not checked whether data can be pickled, so take care that it works!

For those of you using BRIAN, there exists also the BrianMonitorResult for monitor data and the
BrianResult to handle brian quantities.

1.4.6 More about the Environment

Creating an Environment

In most use cases you will interact with the Environment to do your numerical simulations. The environment
is your handyman for your numerical experiments, it sets up new trajectories, keeps log files and can be used to
distribute your simulations onto several CPUs.

You start your simulations by creating an environment object:

>>> env = Environment(trajectory='trajectory', comment='A useful comment')

You can pass the following arguments. Note usually you only have to change very few of these because most of
the time the default settings are sufficient.

• trajectory

The first argument trajectory can either be a string or a given trajectory object. In case
of a string, a new trajectory with that name is created. You can access the new trajectory via
v_trajectory property. If a new trajectory is created, the comment and dynamically im-
ported classes are added to the trajectory.

• add_time

Whether the current time in format XXXX_XX_XX_XXhXXmXXs is added to the trajectory
name if the trajectory is newly created.

• comment

The comment that will be added to a newly created trajectory.

• dynamic_imports

Only considered if a new trajectory is created.

The argument dynamic_imports is important if you have written your
own parameter or result classes, you can pass these either as class variables
MyCustomParameterClass or as strings leading to the classes in your package:
’mysim.myparameters.MyCustomParameterClass’. If you have several
classes, just put them in a list dynamic_imports=[MyCustomParameterClass,
MyCustomResultClass]. In case you want to load a custom class from disk and the
trajectory needs to know how they are built.

1.4. Cookbook 39

http://pandas.pydata.org/pandas-docs/dev/index.html
http://pandas.pydata.org/pandas-docs/dev/index.html
http://briansimulator.org/

pypet Documentation, Release 0.1.0

It is VERY important, that every class name is UNIQUE. So you should not have two classes
named ’MyCustomParameterClass’ in two different python modules! The identification
of the class is based only on its name and not its path in your packages.

• wildcard_functions

Dictionary of wildcards like $ and corresponding functions that are called upon finding such
a wildcard. For example, to replace the $ aka crun wildcard, you can pass the following:
wildcard_functions = {(’$’, ’crun’): myfunc}.

Your wildcard function myfunc must return a unique run name as a function of a given integer
run index. Moreover, your function must also return a unique dummy name for the run index
being -1.

Of course, you can define your own wildcards like wildcard_functions = {(‘$mycard’, ‘mycard’):
myfunc)}. These are not required to return a unique name for each run index, but can be used
to group runs into buckets by returning the same name for several run indices. Yet, all wildcard
functions need to return a dummy name for the index ‘-1.

You may also want to take a look at More on Wildcards.

• automatic_storing

If True the trajectory will be stored at the end of the simulation and single runs will be stored
after their completion. Be aware of data loss if you set this to False and not manually store
everything.

• log_config

Can be path to a logging .ini file specifying the logging configuration. For an example of such a
file see Logging. Can also be a dictionary that is accepted by the built-in logging module. Set to
None if you don’t want pypet to configure logging.

If not specified, the default settings are used. Moreover, you can manually tweak the default set-
tings without creating a new ini file. Instead of the log_config parameter, pass a log_folder,
a list of logger_names and corresponding log_levels to fine grain the loggers to which the default
settings apply.

For example:

log_folder=’logs’, logger_names=’(’pypet’, ’MyCustomLogger’),
log_levels=(logging.ERROR, logging.INFO)

• log_stdout

Whether the output of stdout and stderr should be recorded into the log files. Disable if
only logging statement should be recorded. Note if you work with an interactive console like
IPython, it is a good idea to set log_stdout=False to avoid messing up the console output.

• report_progress

If progress of runs and an estimate of the remaining time should be shown. Can be True or False
or a triple (10, ’pypet’, logging.Info) where the first number is the percentage and
update step of the resulting progressbar and the second one is a corresponding logger name with
which the progress should be logged. If you use ‘print’, the print statement is used instead. The
third value specifies the logging level (level of logging statement not a filter) with which the
progress should be logged.

Note that the progress is based on finished runs. If you use the QUEUE wrapping in case of
multiprocessing and if storing takes long, the estimate of the remaining time might not be very
accurate.

• multiproc

multiproc specifies whether or not to use multiprocessing (take a look at Multiprocessing).
Default is False.

• ncores

40 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

If multiproc is True, this specifies the number of processes that will be spawned to run your
experiment. Note if you use ’QUEUE’ mode (see below) the queue process is not included in
this number and will add another extra process for storing. If you have psutil installed, you can
set ncores=0 to let psutil determine the number of CPUs available.

• use_pool

If you choose multiprocessing you can specify whether you want to spawn a new process for
every run or if you want a fixed pool of processes to carry out your computation.

When to use a fixed pool of processes or when to spawn a new process for every run? Use the
former if you perform many runs (50k and more) which are inexpensive in terms of memory
and runtime. Be aware that everything you use must be picklable. Use the latter for fewer
runs (50k and less) and which are longer lasting and more expensive runs (in terms of memory
consumption). In case your operating system allows forking, your data does not need to be
picklable. If you choose use_pool=False you can also make use of the cap values, see
below.

• freeze_pool_input

Can be set to True if the run function as well as all additional arguments are immutable. This
will prevent the trajectory from getting pickled again and again. Thus, the run function, the
trajectory as well as all arguments are passed to the pool at initialisation.

• queue_maxsize

Maximum size of the Storage Queue, in case of ’QUEUE’ wrapping. 0 means infinite, -1
(default) means the educated guess of 2 * ncores.

• cpu_cap

If multiproc=True and use_pool=False you can specify a maximum CPU utilization
between 0.0 (excluded) and 100.0 (included) as fraction of maximum capacity. If the current
CPU usage is above the specified level (averaged across all cores), pypet will not spawn a new
process and wait until activity falls below the threshold again. Note that in order to avoid dead-
lock at least one process will always be running regardless of the current utilization. If the
threshold is crossed a warning will be issued. The warning won’t be repeated as long as the
threshold remains crossed.

For example let us assume you chose cpu_cap=70.0, ncores=3, and currently on average
80 percent of your CPU are used. Moreover, at the moment only 2 processes are computing
single runs simultaneously. Due to the usage of 80 percent of your CPU, pypet will wait until
CPU usage drops below (or equal to) 70 percent again until it starts a third process to carry out
another single run.

The parameters memory_cap and swap_cap are analogous. These three thresholds are com-
bined to determine whether a new process can be spawned. Accordingly, if only one of these
thresholds is crossed, no new processes will be spawned.

To disable the cap limits simply set all three values to 100.0.

You need the psutil package to use this cap feature. If not installed and you choose cap values
different from 100.0 a ValueError is thrown.

• memory_cap

Cap value of RAM usage. If more RAM than the threshold is currently in use, no new processes
are spawned. Can also be a tuple (limit, memory_per_process), first value is the cap
value (between 0.0 and 100.0), second one is the estimated memory per process in mega bytes
(MB). If an estimate is given a new process is not started if the threshold would be crossed
including the estimate.

• swap_cap

Analogous to cpu_cap but the swap memory is considered.

• wrap_mode

1.4. Cookbook 41

http://psutil.readthedocs.org/
http://psutil.readthedocs.org/
http://psutil.readthedocs.org/

pypet Documentation, Release 0.1.0

If multiproc is True, specifies how storage to disk is handled via the storage service. Since
PyTables HDF5 is not thread safe, the HDF5 storage service needs to be wrapped with a helper
class to allow the interaction with multiple processes.

There are two options:

pypet.pypetconstants.MULTIPROC_MODE_QUEUE: (‘QUEUE’)

Another process for storing the trajectory is spawned. The sub processes running the individual
single runs will add their results to a multiprocessing queue that is handled by an additional
process.

pypet.pypetconstants.MULTIPROC_MODE_LOCK: (‘LOCK’)

Each individual process takes care about storage by itself. Before carrying out the storage, a lock
is placed to prevent the other processes to store data.

If you don’t want wrapping at all use pypet.pypetconstants.MULTIPROC_MODE_NONE
(‘NONE’).

If you have no clue what I am talking about, you might want to take a look at multiprocessing in
python to learn more about locks, queues and thread safety and so forth.

• clean_up_runs

In case of single core processing, whether all results under results.runs.run_XXXXXXXX
and derived_parameters.runs.run_XXXXXXXX should be removed after the comple-
tion of the run. Note in case of multiprocessing this happens anyway since the trajectory con-
tainer will be destroyed after finishing of the process.

Moreover, if set to True after post-processing run data is also cleaned up.

• immediate_postproc

If you use post- and multiprocessing, you can immediately start analysing the data as soon as
the trajectory runs out of tasks, i.e. is fully explored but the final runs are not completed. Thus,
while executing the last batch of parameter space points, you can already analyse the finished
runs. This is especially helpful if you perform some sort of adaptive search within the parameter
space.

The difference to normal post-processing is that you do not have to wait until all single runs
are finished, but your analysis already starts while there are still runs being executed. This can
be a huge time saver especially if your simulation time differs a lot between individual runs.
Accordingly, you don’t have to wait for a very long run to finish to start post-processing.

Note that after the execution of the final run, your post-processing routine will be called again as
usual.

• continuable

Whether the environment should take special care to allow to resume or continue crashed trajec-
tories. Default is False.

You need to install dill to use this feature. dill will make snapshots of your simulation function
as well as the passed arguments. Be aware that dill is still rather experimental!

Assume you run experiments that take a lot of time. If during your experiments there is a power
failure, you can resume your trajectory after the last single run that was still successfully stored
via your storage service.

The environment will create several .ecnt and .rcnt files in a folder that you specify (see below).
Using this data you can continue crashed trajectories.

In order to resume trajectories use f_continue().

Your individual single runs must be completely independent of one another to allow continuing
to work. Thus, they should not be based on shared data that is manipulated during runtime
(like a multiprocessing manager list) in the positional and keyword arguments passed to the run
function.

42 Chapter 1. pypet User Manual

http://docs.python.org/2/library/multiprocessing.html
https://pypi.python.org/pypi/dill
https://pypi.python.org/pypi/dill
https://pypi.python.org/pypi/dill

pypet Documentation, Release 0.1.0

If you use postprocessing, the expansion of trajectories and continuing of trajectories is not
supported properly. There is no guarantee that both work together.

• continue_folder

The folder where the continue files will be placed. Note that pypet will create a sub-folder with
the name of the environment.

• delete_continue

If true, pypet will delete the continue files after a successful simulation.

• storage_service

Pass a given storage service or a class constructor (default is HDF5StorageService) if you
want the environment to create the service for you. The environment will pass additional keyword
arguments you provide directly to the constructor. If the trajectory already has a service attached,
the one from the trajectory will be used. For the additional keyword arguments, see below.

• git_repository

If your code base is under git version control you can specify the path (relative or absolute) to
the folder containing the .git directory. See also Git Integration.

• git_message

Message passed onto git command.

• git_fail

If True the program fails instead of triggering a commit if there are not committed changes found
in the code base. In such a case a GitDiffError is raised.

• do_single_runs

Whether you intend to actually to compute single runs with the trajectory. If you do not intend to
carry out single runs (probably because you loaded an old trajectory for data analysis), than set
to False and the environment won’t add config information like number of processors to the
trajectory.

• lazy_debug

If lazy_debug=True and in case you debug your code (aka you use pydevd and
the expression ’pydevd’ in sys.modules is True), the environment will use the
LazyStorageService instead of the HDF5 one. Accordingly, no files are created and your
trajectory and results are not saved. This allows faster debugging and prevents pypet from blow-
ing up your hard drive with trajectories that you probably not want to use anyway since you just
debug your code.

If you use the standard HDF5StorageService you can pass the following additional keyword arguments to
the environment. These are handed over to the service:

• filename

The name of the hdf5 file. If none is specified, the default
./hdf5/the_name_of_your_trajectory.hdf5 is chosen. If filename con-
tains only a path like filename=’./myfolder/’, it is changed to
filename=’./myfolder/the_name_of_your_trajectory.hdf5’.

• file_title

Title of the hdf5 file (only important if file is created new)

• overwrite_file

If the file already exists it will be overwritten. Otherwise the trajectory will simply be added to
the file and already existing trajectories are not deleted.

• encoding

Encoding for unicode characters. The default ’utf8’ is highly recommended.

1.4. Cookbook 43

pypet Documentation, Release 0.1.0

• complevel

You can specify your compression level. 0 means no compression and 9 is the highest compres-
sion level. By default the level is set to 9 to reduce the size of the resulting HDF5 file. See
PyTables Compression for a detailed explanation.

• complib

The library used for compression. Choose between zlib, blosc, and lzo. Note that ‘blosc’ and
‘lzo’ are usually faster than ‘zlib’ but it may be the case that you can no longer open your hdf5
files with third-party applications that do not rely on PyTables.

• shuffle

Whether or not to use the shuffle filters in the HDF5 library. This normally improves the com-
pression ratio.

• fletcher32

Whether or not to use the Fletcher32 filter in the HDF5 library. This is used to add a checksum
on hdf5 data.

• pandas_format

How to store pandas data frames. Either in ‘fixed’ (‘f’) or ‘table’ (‘t’) format. Fixed format
allows fast reading and writing but disables querying the hdf5 data and appending to the store
(with other 3rd party software other than pypet).

• purge_duplicate_comments

If you add a result via f_add_result() or a derived parameter
f_add_derived_parameter() and you set a comment, normally that com-
ment would be attached to each and every instance. This can produce a lot of un-
necessary overhead if the comment is the same for every result over all runs. If
hdf5.purge_duplicate_comments=True than only the comment of the first re-
sult or derived parameter instance created is stored, or comments that differ from this first
comment. You might want to take a look at HDF5 Purging of Duplicate Comments.

• summary_tables

Whether summary tables should be created. These give overview about ‘de-
rived_parameters_runs_summary’, and ‘results_runs_summary’. They give an ex-
ample about your results by listing the very first computed result. If you want to
purge_duplicate_comments you will need the summary_tables. You might
want to check out HDF5 Overview Tables.

• small_overview_tables

Whether the small overview tables should be created. Small tables are giving overview about
‘config’, ‘parameters’, ‘derived_parameters_trajectory’, ‘results_trajectory’.

• large_overview_tables

Whether to add large overview tables. These encompass information about every derived param-
eter and result and the explored parameters in every single run. If you want small HDF5 files set
to False (default).

• results_per_run

Expected results you store per run. If you give a good/correct estimate, storage to HDF5 file is
much faster in case you want large_overview_tables.

Default is 0, i.e. the number of results is not estimated!

• derived_parameters_per_run

Analogous to the above.

Finally, you can also pass properties of the trajectory, like v_auto_load=True (you can leave the prefix v_,
i.e. auto_load works, too). Thus, you can change the settings of the trajectory immediately.

44 Chapter 1. pypet User Manual

http://pytables.github.io/usersguide/optimization.html#compression-issues

pypet Documentation, Release 0.1.0

Config Data added by the Environment

The Environment will automatically add some config settings to your trajectory. Thus, you can always look up
how your trajectory was run. This encompasses many of the above named parameters as well as some information
about the environment. This additional information includes a timestamp and a SHA-1 hash code that uniquely
identifies your environment. If you use git integration (Git Integration), the SHA-1 hash code will be the one
from your git commit. Otherwise the code will be calculated from the trajectory name, the current time, and your
current pypet version.

The environment will be named environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs. The first seven X are the
first seven characters of the SHA-1 hash code followed by a human readable timestamp.

All information about the environment can be found in your trajectory under
config.environment.environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs. Your trajectory
could potentially be run by several environments due to merging or extending an existing trajectory. Thus, you
will be able to track how your trajectory was built over time.

Logging

pypet comes with a full fledged logging environment.

Per default the environment will created loggers and stores all logged messages to log files. This includes also
everything written to the standard stream stdout, like print statements, for instance. To disable logging of the
standard streams set log_stdout=False. Note that you should always do this in case you use an interactive
console like IPython. Otherwise your console output will be garbled.

After your experiments are finished you can disable logging to files via f_disable_logging(). This also
restores the standard stream.

You can tweak the standard logging settings via passing the following arguments to the environment. log_folder
specifies a folder where all log-files are stored. logger_names is a list of logger names to which the standard
settings apply. log_levels is a list of levels with which the specified loggers should be logged.

import logging
from pypet import Environment

env = Environment(trajectory='mytraj',
log_folder = './logs/',
logger_nmes = ('pypet', 'MyCustomLogger'),
log_levels=(logging.ERROR, logging.INFO),
log_stdout=True)

Furthermore, if the standard settings don’t suite you at all, you can fine grain logging via a logging config file
passed via log_config=’/test/ini.’. This file has to follow the logging configurations of the logging
module.

Additionally, if you create file handlers you can use the following wildcards in the filenames which are replaced
during runtime:

LOG_ENV ($env) is replaces by the name of the trajectory‘s environment.

LOG_TRAJ ($traj) is replaced by the name of the trajectory.

LOG_RUN ($run) is replaced by the name of the current run.

LOG_SET ($set) is replaced by the name of the current run set.

LOG_PROC ($proc) is replaced by the name fo the current process.

Note that in contrast to the standard logging package, pypet will automatically create folders for your log-files if
these don’t exist.

You can further specify settings for multiprocessing logging which will overwrite your current settings within
each new process. To specify settings only used for multiprocessing, simply append multiproc_ to the sections of
the .ini file.

1.4. Cookbook 45

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.config.html#logging-config-fileformat

pypet Documentation, Release 0.1.0

An example logging ini file including multiprocessing is given below.

Download: default.ini

[loggers]
keys=root

[logger_root]
handlers=file_main,file_error,stream
level=INFO

[formatters]
keys=file,stream

[formatter_file]
format=%(asctime)s %(name)s %(levelname)-8s %(message)s

[formatter_stream]
format=%(processName)-10s %(name)s %(levelname)-8s %(message)s

[handlers]
keys=file_main, file_error, stream

[handler_file_error]
class=FileHandler
level=ERROR
args=('logs/$traj/$env/ERROR.txt',)
formatter=file

[handler_file_main]
class=FileHandler
args=('logs/$traj/$env/LOG.txt',)
formatter=file

[handler_stream]
class=StreamHandler
level=INFO
args=()
formatter=stream

[multiproc_loggers]
keys=root

[multiproc_logger_root]
handlers=file_main,file_error
level=INFO

[multiproc_formatters]
keys=file

[multiproc_formatter_file]
format=%(asctime)s %(name)s %(levelname)-8s %(message)s

[multiproc_handlers]
keys=file_main,file_error

[multiproc_handler_file_error]
class=FileHandler
level=ERROR
args=('logs/$traj/$env/$run_$proc_ERROR.txt',)
formatter=file

[multiproc_handler_file_main]

46 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

class=FileHandler
args=('logs/$traj/$env/$run_$proc_LOG.txt',)
formatter=file

Furthermore, an environment can also be used as a context manager such that logging is automatically disabled in
the end:

import logging
from pypet import Environment

with Environment(trajectory='mytraj',
log_config='DEFAULT,
log_stdout=True) as env:

traj = env.v_trajectory

do your complex experiment...

This is equivalent to:

import logging
from pypet import Environment

env = Environment(trajectory='mytraj',
log_config='DEFAULT'
log_stdout=True)

traj = env.v_trajectory

do your complex experiment...

env.f_disable_logging()

Multiprocessing

For an example on multiprocessing see Multiprocessing.

The following code snippet shows how to enable multiprocessing with 4 CPUs, a pool, and a queue.

env = Environment(self, trajectory='trajectory',
comment='',
dynamic_imports=None,
log_folder='../log/',
use_hdf5=True,
filename='../experiments.h5',
file_title='experiment',
multiproc=True,
ncores=4,
use_pool=True,
wrap_mode='QUEUE')

Setting use_pool=True will create a pool of ncores worker processes which perform your simulation runs.

IMPORTANT: Python multiprocessing does not work well with multi-threading of openBLAS. If your simulation
relies on openBLAS, you need to make sure that multi-threading is disabled. For disabling set the environment
variables OPENBLAS_NUM_THREADS=1 and OMP_NUM_THREADS=1 before starting python and using pypet.
For instance, numpy and matplotlib (!) use openBLAS to solve linear algebra operations. If your simulation relies
on these packages, make sure the environment variables are changed appropriately. Otherwise your program might
crash or get stuck in an infinite loop.

IMPORTANT: In order to allow multiprocessing with a pool (or in general under Windows), all your data and
objects of your simulation need to be serialized with pickle. But don’t worry, most of the python stuff you use is
automatically picklable.

1.4. Cookbook 47

http://www.openblas.net/
http://docs.python.org/2/library/pickle.html

pypet Documentation, Release 0.1.0

If you come across the situation that your data cannot be pickled (which is the case for some BRIAN networks,
for example), don’t worry either. Set use_pool=False (and also continuable=False) and for every
simulation run pypet will spawn an entirely new subprocess. The data is than passed to the subprocess by fork-
ing on OS level and not by pickling. However, this only works under Linux. If you use Windows and choose
use_pool=False you still need to rely on pickle because Windows does not support forking of python pro-
cesses.

Besides, as a general rule of thumb when to use use_pool or don’t: Use the former if you perform many runs
(50k and more) which are in terms of memory and runtime inexpensive. Use no pool (use_pool=False) for
fewer runs (50k and less) and which are longer lasting and more expensive runs (in terms of memory consumption).
In case your operating system allows forking, your data does not need to be picklable. Furthermore, if your
trajectory contains many parameters and you want to avoid that your trajectory gets pickled over and over again
you can set freeze_pool_input=True. The trajectory, the run function as well as the all additional function
arguments are passed to the multiprocessing pool at initialization. Be aware that the run function as well as the
the additional arguments must be immutable, otherwise your individual runs are no longer independent.

Moreover, if you enable multiprocessing and disable pool usage, besides the maximum number of utilized pro-
cessors ncores, you can specify usage cap levels with cpu_cap, memory_cap, and swap_cap as fractions
of the maximum capacity. Values must be chosen larger than 0.0 and smaller or equal to 100.0. If any of these
thresholds is crossed no new processes will be started by pypet. For instance, if you want to use 3 cores aka
ncores=3 and set a memory cap of memory_cap=90. and let’s assume that currently only 2 processes are
started with currently 95 percent of you RAM are occupied. Accordingly, pypet will not start the third process
until RAM usage drops again below (or equal to) 90 percent.

In addition, (only) the memory_cap argument can alternatively be a tuple with two entries: (cap,
memory_per_process). First entry is the cap value between 0.0 and 100.0 and the second one is the es-
timated memory per process in mega-bytes (MB). If you specify such an estimate, starting a new process is
suspended if the threshold would be reached including the estimated memory.

Moreover, to prevent dead-lock pypet will regardless of the cap values always start at least one process. To disable
the cap levels, simply set all three to 100.0 (which is default, anyway). pypet does not check if the processes
themselves obey the cap limit. Thus, if one of the process that computes your single runs needs more RAM/Swap
or CPU power than the cap value, this is its very own problem. The process will not be terminated by pypet. The
process will only cause pypet to not start new processes until the utilization falls below the threshold again. In
order to use this cap feature, you need the psutil package.

Note that HDF5 is not thread safe, so you cannot use the standard HDF5 storage service out of the box. However,
if you want multiprocessing, the environment will automatically provide wrapper classes for the HDF5 storage
service to allow safe data storage. There are two different modes that are supported. You can choose between
them via setting wrap_mode. You can select between ’QUEUE’, ’LOCK’, and ’PIPE’ wrapping. If you have
your own service that is already thread safe you can also choose ’NONE’ to skip wrapping.

If you chose the ’QUEUE’ mode, there will be an additional process spawned that is the only one writing to the
HDF5 file. Everything that is supposed to be stored is send over a queue to the process. This has the advantage
that your worker processes are only busy with your simulation and are not bothered with writing data to a file.
More important, they don’t spend time waiting for other processes to release a thread lock to allow file writing.
The disadvantages are that you can only store but not load data and storage relies a lot on pickling of data, so
often your entire trajectory is send over the queue. Moreover, in case of ’QUEUE’ wrapping you can choose the
queue_maxsize of elements that can be put on the queue. To few means that your worker processes may need
to wait until they can put more data on the queue. To many could blow up your memory in cases the single runs
are actually faster than the storage of the data. 0 means a queue of infinite size. Default is -1 meaning pypet
makes a conservative estimate of twice te number of processes (i.e. 2 * ncores). This doesn’t sound a lot.
However, keep in mind that a single element on the queue might already be quite large like the entire data gathered
in a single run.

If you chose the ’LOCK’ mode, every process will place a lock before it opens the HDF5 file for writing data.
Thus, only one process at a time stores data. The advantages are the possibility to load data and that your data does
not need to be send over a queue over and over again. Yet, your simulations might take longer since processes
have to wait often for each other to release locks.

’PIPE’ wrapping is a rather experimental mode where all processes feed their data into a shared multiprocessing
pipe. This can be much faster than a queue. However, no data integrity checks are made. So there’s no guarantee

48 Chapter 1. pypet User Manual

http://docs.python.org/2/library/pickle.html
http://psutil.readthedocs.org/
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe

pypet Documentation, Release 0.1.0

that all you data is really saved. Use this if you go for many runs that just produce small results, and use it
carefully.

Finally, there also exist a lightweight multiprocessing environment MultiprocContext. It allows to use tra-
jectories in a multiprocess safe setting without the need of a full Environment. For instance, you might use
this if you also want to analyse the trajectory with multiprocessing. You can find an example here: Lightweight
Multiprocessing.

Git Integration

The environment can make use of version control. If you manage your code with git, you can trigger automatic
commits with the environment to get a proper snapshot of the code you actually use. This ensures that your
experiments are repeatable. In order to use the feature of git integration, you additionally need GitPython.

To trigger an automatic commit simply pass the arguments git_repository and git_message to the
Environment constructor. git_repository specifies the path to the folder containing the .git directory.
git_message is optional and adds the corresponding message to the commit. Note that the message will al-
ways be augmented with some short information about the trajectory you are running. The commit SHA-1 hash
and some other information about the commit will be added to the config subtree of your trajectory, so you can
easily recall that commit from git later on.

The automatic commit functionality will only commit changes in files that are currently tracked by your git repos-
itory, it will not add new files. So make sure to put new files into your repository before running an experiment.
Moreover, a commit will only be triggered if your working copy contains changes. If there are no changes de-
tected, information about the previous commit will be added to the trajectory. By the way, the autocommit function
is similar to calling $ git add -u and $ git commit -m ’Some Message’ in your console.

If you want git version control but no automatic commits of your code base in case of changes, you can pass the
option git_fail=True to the environment. Instead of triggering a new commit in case of changed code, the program
will throw a GitDiffError.

Sumatra Integration

The environment can make use of a Sumatra experimental lab-book.

Just pass the argument sumatra_project - which should specify the path to your root sumatra folder - to
the Environment constructor. You can additionally pass a sumatra_reason, a string describing the reason
for you sumatra simulation. pypet will automatically add the name, comment, and the names of all explored
parameters to the reason. You can also pick a sumatra_label, set this to None if you want Sumatra to pick a
label for you. Moreover, pypet automatically adds all parameters to the sumatra record. The explored parameters
are added with their full range instead of the default values.

In contrast to the automatic git commits (see above), which are done as soon as the environment is created, a
sumatra record is only created and stored if you actually perform single runs. Hence, records are stored if you
use one of following three functions: f_run(), or f_pipeline(), or f_continue() and your simulation
succeeds and does not crash.

HDF5 Overview Tables

The HDF5StorageService creates summarizing information about your trajectory that can be found in the
overview group within your HDF5 file. These overview tables give you a nice summary about all parameters
and results you needed and computed during your simulations.

The following tables are created depending of your choice of large_overview_tables and
small_overview_tables:

• An info table listing general information about your trajectory (needed internally)

• A runs table summarizing the single runs (needed internally)

1.4. Cookbook 49

http://git-scm.com/
http://pythonhosted.org/GitPython/0.3.1/index.html
http://neuralensemble.org/sumatra/

pypet Documentation, Release 0.1.0

• An explorations table listing only the names of explored parameters (needed internally)

• The branch tables:

parameters_overview

Containing all parameters, and some information about comments, length etc.

config_overview,

As above, but config parameters

results_overview

All results to reduce memory size only a short value summary and the
name is given. Per default this table is switched off, to enable it pass
large_overview_tables=True to your environment.

results_summary

Only the very first result with a particular comment is listed. For instance, if you
create the result ‘my_result’ in all with the comment ’Contains my important
data’. Only the very first result having this comment is put into the summary table.

If you use this table, you can purge duplicate comments, see HDF5 Purging of Dupli-
cate Comments.

derived_parameters_overview

derived_parameters_summary

Both are analogous to the result overviews above

• The explored_parameters_overview overview table showing the explored parameter ranges

IMPORTRANT: Be aware that overview and summary tables are only for eye-balling of data. You should never
rely on data in these tables because it might be truncated or outdated. Moreover, the size of these tables is restricted
to 1000 entries. If you add more parameters or results, these are no longer listed in the overview tables. Finally,
deleting or merging information does not affect the overview tables. Thus, deleted data remains in the table and is
not removed. Again, the overview tables are unreliable and their only purpose is to provide a quick glance at your
data for eye-balling.

HDF5 Purging of Duplicate Comments

Adding a result with the same comment in every single run, may create a lot of overhead. Since the very
same comment would be stored in every node in the HDF5 file. To get rid of this overhead use the option
purge_duplicate_comments=True and summary_tables=True.

For instance, during a single run you call traj.f_add_result(’my_result’,
42, comment=’Mostly harmless!’) and the result will be renamed to
results.runs.run_00000000.my_result. After storage of the result into your HDF5 file, you
will find the comment ’Mostly harmless!’ in the corresponding HDF5 group node. If you call
traj.f_add_result(’my_result’,-55, comment=’Mostly harmless!’) in another run
again, let’s say run_00000001, the name will be mapped to results.runs.run_00000001.my_result.
But this time the comment will not be saved to disk, since ’Mostly harmless!’ is already part of the very
first result with the name ‘my_result’.

Furthermore, if you reload your data from the example above, the result instance
results.runs.run_00000001.my_result won’t have a comment only the instance
results.runs.run_00000000.my_result.

IMPORTANT: If you use multiprocessing, the comment of the first result that was stored is used. Since runs are
performed synchronously there is no guarantee that the comment of the result with the lowest run index is kept.

IMPORTANT Purging of duplicate comments requires overview tables. Since there are no overview tables for
group nodes, this feature does not work for comments in group nodes. So try to avoid to adding the same comments
over and over again in group nodes within single runs.

50 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Using a Config File

You are not limited to specify the logging environment within an .ini file. You can actually specify all
settings of the environment and already add some basic parameters or config data yourself. Simply pass
config=’my_config_file.ini to the environment. If your .ini file encompasses logging settings, you
don’t have to pass another log_config.

Anything found in an environment, trajectory or storage_service section is directly passed to the environment
constructor. Yet, you can still specify other setting of the environment. Settings passed to the constructor directly
take precedence over settings specified in the ini file.

Anything found under parameters or config is added to the trajectory as parameter or config data.

An example ini file including logging can be found below.

Download: environment_config.ini

######### Environment ##############
[trajectory]
trajectory='ConfigTest'
add_time=True
comment=''
auto_load=True
v_with_links=True
v_lazy_adding=True

[environment]
automatic_storing=True
log_stdout=('STDOUT', 50)
report_progress = (10, 'pypet', 50)
multiproc=True
ncores=2
use_pool=True
cpu_cap=100.0
memory_cap=100.0
swap_cap=100.0
wrap_mode='LOCK'
clean_up_runs=True
immediate_postproc=False
continuable=False
continue_folder=None
delete_continue=True
storage_service='pypet.HDF5StorageService'
do_single_runs=True
lazy_debug=False

[storage_service]
filename='test_overwrite'
file_title=None
overwrite_file=False
encoding='utf-8'
complevel=4
complib='zlib'
shuffle=False
fletcher32=True
pandas_format='t'
purge_duplicate_comments=False
summary_tables=False
small_overview_tables=False
large_overview_tables=True
results_per_run=1000
derived_parameters_per_run=1000
display_time=50

1.4. Cookbook 51

pypet Documentation, Release 0.1.0

Config and Parameters
[config]
test.testconfig=True, 'This is a test config'

[parameters]
test.x=42
y=43, 'This is the second variable'

############ Logging ###############
[loggers]
keys=root

[logger_root]
handlers=file_main,file_error,stream
level=INFO

[formatters]
keys=file,stream

[formatter_file]
format=%(asctime)s %(name)s %(levelname)-8s %(message)s

[formatter_stream]
format=%(processName)-10s %(name)s %(levelname)-8s %(message)s

[handlers]
keys=file_main, file_error, stream

[handler_file_error]
class=FileHandler
level=ERROR
args=('$temp$traj/$env/ERROR.txt',)
formatter=file

[handler_file_main]
class=FileHandler
args=('$temp$traj/$env/LOG.txt',)
formatter=file

[handler_stream]
class=StreamHandler
level=ERROR
args=()
formatter=stream

[multiproc_loggers]
keys=root

[multiproc_logger_root]
handlers=file_main,file_error
level=INFO

[multiproc_formatters]
keys=file

[multiproc_formatter_file]
format=%(asctime)s %(name)s %(levelname)-8s %(message)s

[multiproc_handlers]
keys=file_main, file_error

52 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

[multiproc_handler_file_error]
class=FileHandler
level=ERROR
args=('$temp$traj/$env/$run_$proc_ERROR.txt',)
formatter=file

[multiproc_handler_file_main]
class=FileHandler
args=('$temp$traj/$env/$run_$proc_LOG.txt',)
formatter=file

Example usage:

env = Environment(config='path/to/my_config.ini',
multiproc = False # This will set multiproc to `False` regardless of the
setting within the `my_config.ini` file.
)

Running an Experiment

In order to run an experiment, you need to define a job or a top level function that specifies your simulation. This
function gets as first positional argument the: Trajectory container (see More on Trajectories), and optionally
other positional and keyword arguments of your choice.

def myjobfunc(traj, *args, **kwargs)
#Do some sophisticated simulations with your trajectory
...
return 'fortytwo'

In order to run this simulation, you need to hand over the function to the environment. You can also specify the
additional arguments and keyword arguments using f_run():

env.f_run(myjobfunc, *args, **kwargs)

The argument list args and keyword dictionary kwargs are directly handed over to the myjobfunc during
runtime.

The f_run() will return a list of tuples. Whereas the first tuple entry is the index of the corresponding run and
the second entry of the tuple is the result returned by your run function (for the example above this would simply
always be the string ’fortytwo’, i.e. ((0, ’fortytwo’), (1, ’fortytwo’),...)). In case you
use multiprocessing these tuples are not in the order of the run indices but in the order of their finishing time!

Adding Post-Processing

You can add a post-processing function that is called after the execution of all the single runs via
f_add_postprocessing().

Your post processing function must accept the trajectory container as the first argument, a list of tuples (containing
the run indices and results), and arbitrary positional and keyword arguments. In order to pass arbitrary arguments
to your post-processing function, simply pass these first to f_add_postprocessing().

For example:

def mypostprocfunc(traj, result_list, extra_arg1, extra_arg2):
do some postprocessing here
...

Whereas in your main script you can call

env.f_add_postproc(mypostprocfunc, 42, extra_arg2=42.5)

1.4. Cookbook 53

pypet Documentation, Release 0.1.0

which will later on pass 42 as extra_arg1 and 42.4 as extra_arg2. It is the very same principle as before
for your run function. The post-processing function will be called after the completion of all single runs.

Moreover, please note that your trajectory usually does not contain the data computed during the single runs, since
this has been removed after the single runs to save RAM. If your post-processing needs access to this data, you
can simply load it via one of the many loading functions (f_load_child(), f_load_item(), f_load())
or even turn on Automatic Loading.

Note that your post-processing function should not return any results, since these will simply be lost. However,
there is one particular result that can be returned, see below.

Expanding your Trajectory via Post-Processing

If your post-processing function expands the trajectory via f_expand() or if your post-processing function
returns a dictionary of lists that can be interpreted to expand the trajectory, pypet will start the single runs again
and explore the expanded trajectory. Of course, after this expanded exploration, your post-processing function
will be called again. Likewise, you could potentially expand again, and after the next expansion post-processing
will be executed again (and again, and again, and again, I guess you get it). Thus, you can use post-processing for
an adaptive search within your parameter space.

IMPORTANT: All changes you apply to your trajectory, like setting auto-loading or changing fast access, are
propagated to the new single runs. So try to undo all changes before finishing the post-processing if you plan to
trigger new single runs.

Expanding your Trajectory and using Multiprocessing

If you use multiprocessing and you want to adaptively expand your trajectory, it can be a waste of precious time
to wait until all runs have finished. Accordingly, you can set the argument immediate_postproc to True
when you create your environment. Then your post-processing function is called as soon as pypet runs out of jobs
for single runs. Thus, you can expand your trajectory while the last batch of single runs is still being executed.

To emphasize this a bit more and to not be misunderstood: Your post-processing function is not called as soon
as a single run finishes and the first result is available but as soon as there are no more single runs available to
start new processes. Still, that does not mean you have to wait until all single runs are finished (as for normal
post-processing), but you can already add new single runs to the trajectory while the final n runs are still being
executed. Where n is determined by the number of cores (ncores) and probably the cap values you have chosen
(see Multiprocessing).

pypet will not start a new process for your post-processing. Your post-processing function is executed in the main
process (this makes writing actual post-processing functions much easier because you don’t have to wrap your
head around dead-locks). Accordingly, post-processing should be rather quick in comparison to your single runs,
otherwise post-processing will become the bottleneck in your parallel simulations.

Using a Experiment Pipeline

Your numerical experiments usually work like the following: You add some parameters to your trajectory, you
mark a few of these for exploration, and you pass your main function to the environment via f_run(). Accord-
ingly, this function will be executed with all parameter combinations. Maybe you want some post-processing in
the end and that’s about it. However, sometimes even the addition of parameters can be fairly complex. Thus, you
want this part under the supervision of an environment, too. For instance, because you have a Sumatra lab-book
and adding of parameters should also account as runtime. Thus, to have your entire experiment and not only
the exploration of the parameter space managed by pypet you can use the f_pipeline() function, see also
Post-Processing and Pipelining (from the Tutorial).

You have to pass a so called pipeline function to f_pipeline() that defines your entire experiment. Accord-
ingly, your pipeline function is only allowed to take a single parameter, that is the trajectory container. Next,
your pipeline function can fill in some parameters and do some pre-processing. Afterwards your pipeline function
needs to return the run function, the corresponding arguments and potentially a post-processing function with

54 Chapter 1. pypet User Manual

http://neuralensemble.org/sumatra/

pypet Documentation, Release 0.1.0

arguments. To be more precise your pipeline function needs to return two tuples with at most 3 entries each, for
example:

def myjobfunc(traj, extra_arg1, extra_arg2, extra_arg3)
do some sophisticated simulation stuff
solve_p_equals_np(traj, extra_arg1)
disproof_spock(traj, extra_arg2, extra_arg3)
...

def mypostproc(traj, postproc_arg1, postproc_arg2, postproc_arg3)
do some analysis here
...

exploration_dict={'ncards' : [100, 200]}

if maybe_i_should_explore_more_cards:
return exploration_dict

else
return None

def mypipeline(traj):
add some parameters
traj.f_add_parameter('poker.ncards', 7, comment='Usually we play 7-card-stud')
...
Explore the trajectory
traj.f_explore({'ncards': range(42)})

Finally return the tuples
args = (myarg1, myarg2) # myargX can be anything form ints to strings to complex objects
kwargs = {'extra_arg3': myarg3}
postproc_args = (some_other_arg1,) # Check out the comma here! Important to make it a tuple
postproc_kwargs = {'postproc_arg2' : some_other_arg2,

'postproc_arg3' : some_other_arg3}
return (myjobfunc, args, kwargs), (mypostproc, postproc_args, postproc_kwargs)

The first entry of the first tuple is you run or top-level execution function, followed by a list or tuple defining the
positional arguments and, thirdly, a dictionary defining the keyword arguments. The second tuple has to contain
the post-processing function and positional arguments and keyword arguments. If you do not have any positional
arguments pass an empty tuple (), if you do not have any keyword arguments pass an empty dictionary {}.

If you do not need postprocessing at all, your pipeline function can simply return the run function followed by the
positional and keyword arguments:

def mypipeline(traj):
#...
return myjobfunc, args, kwargs

Continuing or Resuming a Crashed Experiment

In order to use this feature you need dill. Careful, dill is rather experimental and still in alpha status!

If all of your data can be handled by dill, you can use the config parameter continuable=True passed
to the Environment constructor. This will create a continue directory (name specified by you via
continue_folder) and a sub-folder with the name of the trajectory. This folder is your safety net for data
loss due to a computer crash. If for whatever reason your day or week-long lasting simulation was interrupted,
you can resume it without recomputing already obtained results. Note that this works only if the HDF5 file is not
corrupted and for interruptions due to computer crashes, like power failure etc. If your simulations crashed due to
errors in your code, there is no way to restore that!

You can resume a crashed trajectory via f_continue() with the name of the continue folder (not the subfolder)
and the name of the trajectory:

1.4. Cookbook 55

https://pypi.python.org/pypi/dill
https://pypi.python.org/pypi/dill
https://pypi.python.org/pypi/dill

pypet Documentation, Release 0.1.0

env = Environment(continuable=True)

env.f_continue(trajectory_name='my_traj_2015_10_21_04h29m00s',
continue_folder='./experiments/continue/')

The neat thing here is, that you create a novel environment for the continuation. Accordingly, you can set different
environmental settings, like changing the number of cores, etc. You cannot change any HDF5 settings or even
change the whole storage service.

When does continuing not work?

Continuing will not work if your top-level simulation function or the arguments passed to your simulation func-
tion are altered between individual runs. For instance, if you use multiprocessing and you want to write computed
data into a shared data list (like multiprocessing.Manager().list(), see Sharing Data during Multi-
processing), these changes will be lost and cannot be captured by the continue snapshots.

A work around here would be to not manipulate the arguments but pass these values as results of your top-level
simulation function. Everything that is returned by your top-level function will be part of the snapshots and can
be reconstructed after a crash.

Continuing might not work if you use post-processing that expands the trajectory. Since you are not limited in
how you manipulate the trajectory within your post-processing, there are potentially many side effects that remain
undetected by the continue snapshots. You can try to use both together, but there is no guarantee whatsoever that
continuing a crashed trajectory and post-processing with expanding will work together.

1.4.7 Using BRIAN with pypet

IMPORTANT

Although the general pypet API is supposed to remain stable, this promise excludes the BRIAN part. The
pypet BRIAN subpackage is still considered to be alpha. I probably won’t change too much within the
pypet.brian.parameter module, but expect the pypet.brian.network module to undergo many
changes and updates. Furthermore, the pypet.brian package has only been used with BRIAN 1.X, no guaran-
tee for BRIAN 2.

pypet and BRIAN

BRIAN as it comes is nice for small scripts and quick simulations, but it can be really hard to manage and
maintain large scale projects based on very complicated networks with many parts and components. So I wrote a
pypet extension that allows easier handling of more sophisticated BRIAN networks.

All of this can be found in pypet.brian sub-package. The package contains a parameter.py file that
includes specialized containers for BRIAN data, like the BrianParameter, the BrianResult (both for
BRIAN Quantities), and the BrianMonitorResult (extracts data from any kind of BRIAN Monitor).

These can be used in conjunction with the network management system in the network.py file within the
pypet.brian package.

In the following I want to explain how to use the network.py framework to run large scale simulations. An ex-
ample of such a large scale simulation can be found in Large scale BRIAN simulation which is an implementation
of the Litwin-Kumar and Doiron paper from 2012.

The BRIAN network framework

The core idea behind my framework is that simulated spiking neural network are not in one giant piece but
compartmentalize. Networks consist of NeuronGroups, Connections or Synapses, Monitors and so on and so forth.
Thus, it would be neat if these parts can be easily replaced or augmented without rewriting a whole simulation.
You want to add STDP to your network? Just plug-in an STDP component. You do not want to record anymore
from the inhibitory neurons? Just throw away a recording component.

56 Chapter 1. pypet User Manual

http://briansimulator.org/
http://briansimulator.org/
http://briansimulator.org/
http://briansimulator.org/docs/reference-monitors.html
http://www.nature.com/neuro/journal/v15/n11/full/nn.3220.html
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-connections.html
http://briansimulator.org/docs/reference-synapses.html
http://briansimulator.org/docs/reference-monitors.html

pypet Documentation, Release 0.1.0

To abstract this idea, the whole simulation framework evolves around the NetworkComponent class. This
specifies an abstract API that any component (which you as a user implement) should agree on to make them easy
to replace and communicate with each other.

There are two specialisation of this NetworkComponent API: The NetworkAnalyser and the
NetworkRunner. Implementations of the former deal with the analysis of network output. This might range
from simply adding and removing Monitors to evaluating the monitor data and computing statistics about the net-
work activity. An instance of the latter is usually only created once and takes care about the running of a network
simulation.

All these three types of components are managed by the NetworkManager that also creates BRIAN networks
and passes these to the runner. Conceptually this is depicted in figure below.

Main Script

In your main script that you use to create an environment and start the parameter exploration, you also need to
include these following steps.

• Create a NetworkRunner and your NetworkComponent instances and NetworkAnalyser in-
stances defining the layout and structure of your network and simulation.

What components are and how to implement these will be discussed in the next section.

• Create a NetworkManager:

Pass your NetworkRunner (as first argument network_runner), all your
NetworkComponent instances as a list (as second argument component_list) and
all NetworkAnalyser instances (as third argument analyser_list) to the constructor of
the manager.

Be aware that the order of components and analysers matter. The building of components,
addition, removal, and analysis (for analyser) is executed in the order they are passed in the
component_list and analyser_list, respectively. If a component B depends on A and
C, make B appear after A and C in the list.

For instance, you have an excitatory neuron group, an inhibitory one, and a connection between
the two. Accordingly, your NetworkComponent creating the connection must be listed after
the components responsible for creating the neuron groups.

For now on let’s call the network manager instance my_manager.

• Call my_manager.add_parameters(traj):

This automatically calls add_parameters(traj) for all components, all analysers and the
runner. So that they can add all their necessary parameters to the the trajectory traj.

1.4. Cookbook 57

http://briansimulator.org/docs/reference-monitors.html
http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

• (Optionally) call my_manager.pre_build(traj):

This will automatically trigger the pre_build function of your components, analysers and the
network runner.

This is useful if you have some components that do not change during parameter exploration, but
which are costly to create and can be so in advance.

For example, you might have different neuron layers in your network and parts of the network do
not change during the runtime of your simulation. For instance, your connections from an LGN
neuron group to a V1 neuron group is fixed. Yet, the computation of the connection pattern is
costly, so you can do this in pre_build to save some time instead of building these over and
over again in every single run.

• (Optionally) call my_manager.pre_run_network(traj)

This will trigger a pre run of the network. First my_manager.pre_build is called (so you
do not have to call it yourself if you intend a pre run). Then a novel BRIAN network instance
is created from the brian_list (see below). This network is simulated by your runner. The
state after the pre run is preserved for all coming simulation runs during parameter exploration.

This is useful if your parameter exploration does not involve modifications of the network per
se. For instance, you explore different input stimuli which are tested on the very same network.
Moreover, you have the very same initialisation run for every stimulus experiment. Instead of
re-simulating the init run over and over again for every stimulus, you can perform it once as a
pre run and use the network after the pre run for every stimulus input.

• Pass the run_network() to your environment’s f_run() to start parameter exploration. This will
automatically initiate the build(traj) method for all your components, analysers and your runner in
every single run. Subsequently, your network will be simulated with he help of your network runner.

These steps are also depicted in the figure below.

58 Chapter 1. pypet User Manual

http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

An example main script might look like the following:

env = Environment(trajectory='Clustered_Network',
filename='experiments/example_11/HDF5/',
log_folder='experiments/example_11/LOGS/',
continuable=False,
multiproc=True,
ncores=2,
use_pool=False)

#Get the trajectory container
traj = env.v_trajectory

We create a Manager and pass all our components to the Manager.
Note the order, MyNeuronGroupsComponent are scheduled before MyConnectionsComponent,
and the Fano Factor computation depends on the MyMonitorAnalysisComponent
my_manager = NetworkManager(network_runner=MyNetworkRunner(),

component_list=(MyNeuronGroupsComponent(), MyConnectionsComponent()),
analyser_list=(MyMonitorAnalysisComponent(), MyFanoFactorComputingComponent()))

Add parameters
my_manager.add_parameters(traj)

Explore different values of a parameter
explore_list = np.arange(0.0, 42.0, 0.5).tolist()
traj.f_explore({'some.random.parameter.of.my.network' : explore_list})

Pre-build network components
my_manager.pre_build(traj)

1.4. Cookbook 59

pypet Documentation, Release 0.1.0

Run the network simulation
env.f_run(my_manager.run_network)

Multiprocessing and Iterative Processing

The framework is especially designed to allow for multiprocessing and to distribute parameter exploration of
network simulations onto several cpus. Even if parts of your network cannot be pickled, multiprocessing can be
easily achieved by setting use_pool=False for your Environment.

Yet, single core processing is more subtle. In fact if you want to pre_build parts of your network or even pre run
a whole network, you can no longer use iterative computation of the single runs of your parameter exploration.
The reason for this lies in the deep inner parts of BRIAN. The problem is that BRIAN networks are not well
encapsulated objects, but are strongly dependent on the whole BRIAN runtime environment. As a consequence,
you cannot take snapshots of a network in order to rerun a given network. In case of parameter exploration, a
BRIAN network changes after each single run. The starting condition of the second run are the network state after
(!) the first run and not before the first run. The only solution to this problem is to not only copy the BRIAN
network but also the whole BRIAN runtime environment. The straightforward way to do this is simply to fork a
new process. This is the reason why you cannot run single core processing on pre-built networks.

If you want to come close to single core processing use multiproc=True and ncores=1 with your envi-
ronment. If you really do not care about messed up initial conditions - maybe since you just debug your code
- you can enforce true single core processing by passing force_single_core=True when you create your
NetworkManager.

Next, I’ll go a bit more into detail about components and finally you will learn which steps are involved in a
network simulation.

Network Components

Network components are the basic building blocks of a pypet BRIAN experiment. There exist three types:

1. Ordinary NetworkComponent

2. NetworkAnalyser for data analysis and recording

3. NetworkRunner for simulation execution.

And these are written by YOU (eventually except for the network runner). The classes above are only abstract and
define the API that can be implemented to make pypet‘s BRIAN framework do its job.

By subclassing these, you define components that build and create BRIAN objects. For example, you could have
your own ExcNeuronGroupComponent that creates a NeuronGroup of excitatory neurons. Your ExcNeuronSy-
napsesComponent creates BRIAN Synapses to make recurrent connections within the excitatory neuron group.
These brian objects (NeuronGroup and Synapses) are then taken by the network manager to construct a BRIAN
network.

Every component can implement these 5 methods:

• add_parameters():

This function should only add parameters necessary for your component to your trajectory traj.

• pre_build() and/or build()

Both are very similar and should trigger the construction of objects relevant to BRIAN like
NeuronGroups or Connections. However, they differ in when they are executed. The for-
mer is initiated either by you directly (aka my_manger.pre_build(traj)), or by a pre run
(my_manager.pre_run_network(traj)). The latter is called during your single runs for param-
eter exploration, before the BRIAN network is simulated by your runner.

The two methods provide the following arguments:

– traj

60 Chapter 1. pypet User Manual

http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-synapses.html
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-synapses.html
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-connections.html
http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

Trajectory container, you can gather all parameters you need from here.

– brian_list

A non-nested (!) list of objects relevant to BRIAN.

Your component has to add BRIAN objects to this list if these objects should be added to
the BRIAN network at network creation. Your manager will create a BRIAN network via
Network(*brian_list).

– network_dict

Add any item to this dictionary that should be shared or accessed by all your components and
which are not part of the trajectory container. It is recommended to also put all items from
the brian_list into the dictionary for completeness.

For convenience I suggest documenting the implementation of build and pre-build and the other
component methods in your subclass like the following. Use statements like Adds for items that are added
to the list and dictionary and Expects for what is needed to be part of the network_dict in order to build
the current component.

For instance:

brian_list:

Adds:

4 Connections, between all types of neurons (e->e, e->i, i->e, i->i)

network_dict:

Expects:

‘neurons_i’: Inhibitory neuron group

‘neurons_e’: Excitatory neuron group

Adds:

‘connections’ [List of 4 Connections,] between all types of neurons (e->e, e->i, i->e,
i->i)

• add_to_network():

This method is called shortly before a subrun of your simulation (see below).

Maybe you did not want to add a BRIAN object directly to the network on its creation, but
sometime later. Here you have the chance to do that.

For instance, you have a SpikeMonitor that should not record the initial first subrun but the sec-
ond one. Accordingly, you did not pass it to the brian_list in pre_build() or build().
You can now add your monitor to the network via its add functionality, see the the BRIAN
network class.

The add_to_network() relies on the following arguments

– traj

Trajectoy container

– network

BRIAN network created by your manager. Elements can be added via add(...).

– current_subrun

BrianParameter specifying the very next subrun to be simulated. See next
section for subruns.

– subrun_list

List of BrianParameter objects that are to be simulated after the current sub-
run.

1.4. Cookbook 61

http://briansimulator.org/
http://briansimulator.org/
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/
http://briansimulator.org/docs/reference-monitors.html#brian.SpikeMonitor
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network
http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

– network_dict

Dictionary of items shared by all components.

• remove_from_network()

This method is analogous to add_to_network(). It is called after a subrun (and after analy-
sis, see below), and gives you the chance to remove items from a network.

For instance, you might want to remove a particular BRIAN Monitor to skip recording of coming
subruns.

Be aware that these functions can be implemented, but they do not have to be. If your custom component misses
one of these, there is no error thrown. Instead, simply pass is executed (see the source code!).

NetworkAnalyser

The NetworkAnalyser is a subclass of an ordinary component. It augments the component API by the func-
tion analyse(). The very same parameters as for add_to_network() are passed to the analyse function.
As the name suggests, you can run some analysis here. This might involve extracting data from monitors or
computing statistics like Fano Factors, etc.

NetworkRunner

The NetworkRunner is another subclass of an ordinary component. The given NetworkRunner does not
define an API but provides functionality to execute a network experiment. There’s no need for creating your own
subclass. Yet, I still suggest subclassing the NetworkRunner, but just implement the add_parameters()
method. There you can add BrianParameter instances to your trajectory to define how long a network simu-
lation lasts and in how many subruns it is divided.

A Simulation Run and Subruns

A single run of a network simulation is further subdivided into so called subruns. This holds for a pre run triggered
by my_manager.pre_run_network(traj) as well as an actual single run during parameter exploration.

The subdivision of a single run into further subruns is necessary to allow having different phases of a simulation.
For instance, you might want to run your network for an initial phase (subrun) of 500 milliseconds. Then one of
your analyser components checks for pathological activity like too high firing rates. If this activity is detected,
you cancel all further subruns and skip the rest of the single run. You can do this by simply removing all subruns
from the subrun_list. You could also add further BrianParameter instances to the list to make your
simulations last longer.

The subrun_list (as it is passed to add_to_network(), remove_from_network(), or analyse())
is populated by your network runner at the beginning of every single run (or pre-run) in your parameter explo-
ration. The network runner searches for BrianParameter instances in a specific group in your trajectory.
By default this group is traj.parameters.simulation.durations (or traj.parameters.simulation.pre_durations for a
pre-run), but you can pick another group name when you create a NetworkRunner instance. The order of
the subruns is inferred from the v_annotations.order attribute of the BrianParameter instances. The
subruns are executed in increasing order. The orders do not need to be consecutive, but a RuntimeError is thrown
in case two subruns have the same order. There is also an Error raised if there exists a parameter where order
cannot be found in it’s v_annotations property.

In previous versions of pypet.brian there was a so called BrianDurationParameter that possessed a
special attribute v_order. This was basically a normal BrianParameter with a little bit of overhead.
Thus, the BrianDurationParameter became a victim of refactoring. There is still an implementation
left for backwards-compatibility. Please, do NOT use the old BrianDurationParameter, but a normal
BrianParameter and replace calls to v_order with v_annotations.order.

For instance, in traj.parameter.simulation.durations there are three BrianParameter in-
stances.

62 Chapter 1. pypet User Manual

http://briansimulator.org/docs/reference-monitors.html

pypet Documentation, Release 0.1.0

>>> init_run = traj.parameter.simulation.durations.f_add_parameter('init_run', 500 * ms)
>>> init_run.v_annotations.order=0
>>> third_run = traj.parameter.simulation.durations.f_add_parameter('third_run', 1.25 * second)
>>> third_run.v_annotations.order=42
>>> measurement_run = traj.parameter.simulation.durations.f_add_parameter('measurement_run', 15 * second)
>>> measurement_run.v_annotations.order=1

One is called init_run, has v_annotations.order=0 and lasts 500 milliseconds (this is not cpu runtime but
BRIAN simulation time). Another one is called third_run lasts 1.25 seconds and has order 42. The third one is
named measurement_run lasts 5 seconds and has order 1. Thus, a single run involves three subruns. They are
executed in the order: init_run involving running the network for 0.5 seconds, measurement_run for 5 seconds,
and finally third_run for 1.25 seconds, because 0 < 1 < 42.

The current_subrun BrianParameter is taken from the subrun_list. In every subrun the
NetworkRunner will call

1. add_to_network()

• for all ordinary components

• for all analysers

• for the network runner itself

2. run(duration) from the BRIAN network created by the manager.

Where the duration is simply the data handled by the current_subrun which is a
BrianParameter.

3. analyse() for all analysers

4. remove_from_network()

• for the network runner itself

• for all analysers

• for all ordinary components

The workflow of network simulation run is also depicted in the figure below.

1.4. Cookbook 63

http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

I recommend taking a look at the source code in the pypet.brian.network python file for a better under-
standing how the pypet BRIAN framework can be used. Especially, check the _execute_network_run()
method that performs the steps mentioned above.

Finally, despite the risk to repeat myself too much, there is an example on how to use pypet with BRIAN based on
the paper by Litwin-Kumar and Doiron paper from 2012, see Large scale BRIAN simulation.

Cheers,

Robert

1.5 Examples

Here you can find some example code how to use the pypet. All examples were written and tested with python 2.7
and most of them also work under python 3.

64 Chapter 1. pypet User Manual

http://www.nature.com/neuro/journal/v15/n11/full/nn.3220.html

pypet Documentation, Release 0.1.0

1.5.1 Basic Concepts

First Steps

Download: example_01_first_steps.py

This is a basic overview about the usage of the tool, nothing fancy.

__author__ = 'Robert Meyer'

import os # To allow file paths working under Windows and Linux

from pypet import Environment
from pypet.utils.explore import cartesian_product

def multiply(traj):
"""Example of a sophisticated simulation that involves multiplying two values.

:param traj:

Trajectory containing
the parameters in a particular combination,
it also serves as a container for results.

"""
z = traj.x * traj.y
traj.f_add_result('z', z, comment='Result of our simulation!')

Create an environment that handles running
filename = os.path.join('hdf5','example_01.hdf5')
env = Environment(trajectory='Multiplication',

filename=filename,
file_title='Example_01_First_Steps',
comment='The first example!',
large_overview_tables=True, # To see a nice overview of all
computed `z` values in the resulting HDF5 file.
Per default disabled for more compact HDF5 files.
)

The environment has created a trajectory container for us
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')

Explore the parameters with a cartesian product
traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))

Run the simulation
env.f_run(multiply)

Now let's see how we can reload the stored data from above.
We do not need an environment for that, just a trajectory.
from pypet.trajectory import Trajectory

So, first let's create a new trajectory and pass it the path and name of the HDF5 file.
Yet, to be very clear let's delete all the old stuff.
del traj
Before deleting the environment let's disable logging and close all log-files

1.5. Examples 65

pypet Documentation, Release 0.1.0

env.f_disable_logging()
del env

traj = Trajectory(filename=filename)

Now we want to load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

Above `index` specifies that we want to load the trajectory with that particular index
within the HDF5 file. We could instead also specify a `name`.
Counting works also backwards, so `-1` yields the last or newest trajectory in the file.
#
Next we need to specify how the data is loaded.
Therefore, we have to set the keyword arguments `load_parameters` and `load_results`,
here we chose both to be `2`.
`0` would mean we do not want to load anything at all.
`1` would mean we only want to load the empty hulls or skeletons of our parameters
or results. Accordingly, we would add parameters or results to our trajectory
but they would not contain any data.
Instead `2` means we want to load the parameters and results including the data they contain.

Finally we want to print a result of a particular run.
Let's take the second run named `run_00000001` (Note that counting starts at 0!).
print('The result of `run_00000001` is: ')
print(traj.run_00000001.z)

Natural Naming, Storage and Loading

Download: example_02_trajectory_access_and_storage.py

The following code snippet shows how natural naming works, and how you can store and load a trajectory.

__author__ = 'Robert Meyer'

import os # To allow pathnames under Windows and Linux

from pypet import Trajectory, NotUniqueNodeError

We first generate a new Trajectory
filename = os.path.join('hdf5', 'example_02.hdf5')
traj = Trajectory('Example', filename=filename,

comment='Access and Storage!')

We add our first parameter with the data 'Harrison Ford'
traj.f_add_parameter('starwars.characters.han_solo', 'Harrison Ford')

This automatically added the groups 'starwars' and the subgroup 'characters'
Let's get the characters subgroup
characters = traj.parameters.starwars.characters

Since characters is unique we could also use shortcuts
characters = traj.characters

Or the get method
characters = traj.f_get('characters')

Or square brackets
characters = traj['characters']

Lets add another character

66 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

characters.f_add_parameter('luke_skywalker', 'Mark Hamill', comment='May the force be with you!')

#The full name of luke skywalker is now `parameters.starwars.characters.luke_skywalker`:
print('The full name of the new Skywalker Parameter is %s' %

traj.f_get('luke_skywalker').v_full_name)

#Lets see what happens if we have not unique entries:
traj.f_add_parameter_group('spaceballs.characters')

Now our shortcuts no longer work, since we have two character groups!
try:

traj.characters
except NotUniqueNodeError as e:

print('Damn it, there are two characters groups in the trajectory: %s' % e._msg)

But if we are more specific we have again a unique finding
characters = traj.starwars.characters

Now let's see what fast access is:
print('The name of the actor playing Luke is %s.' % traj.luke_skywalker)

And now what happens if you forbid it
traj.v_fast_access=False
print('The object found for luke_skywalker is `%s`.' % str(traj.luke_skywalker))

#Let's store the trajectory:
traj.f_store()

That was easy, let's assume we already completed a simulation and now we add a veeeery large
result that we want to store to disk immediately and than empty it
traj.f_add_result('starwars.gross_income_of_film', amount=10.1 ** 11, currency='$$$',

comment='George Lucas is rich, dude!')
This is a large number, we better store it and than free the memory:
traj.f_store_item('gross_income_of_film')
traj.gross_income_of_film.f_empty()

Now lets reload the trajectory
del traj
traj = Trajectory(filename=filename)
We want to load the last trajectory in the file, therefore index = -1
We want to load the parameters, therefore load_parameters=2
We only want to load the skeleton of the results, so load_results=1
traj.f_load(index=-1, load_parameters=2, load_results=1)

Let's check if our result is really empty
if traj.gross_income_of_film.f_is_empty():

print('Nothing there!')
else:

print('I found something!')

Ok, let's manually reload the result
traj.f_load_item('gross_income_of_film')
if traj.gross_income_of_film.f_is_empty():

print('Still empty :-(')
else:

print('George Lucas earned %s%s!' %(str(traj.gross_income_of_film.amount),
traj.gross_income_of_film.currency))

And that's how it works! If you wish, you can inspect the
experiments/example_02/HDF5/example_02.hdf5 file to take a look at the tree structure

1.5. Examples 67

pypet Documentation, Release 0.1.0

Using Links

Download: example_14_links.py

You can also link between different nodes of your Trajectory:

__author__ = 'Robert Meyer'

import os # To allow file paths working under Windows and Linux

from pypet import Environment, Result

def multiply(traj):
"""Example of a sophisticated simulation that involves multiplying two values.

:param traj:

Trajectory containing
the parameters in a particular combination,
it also serves as a container for results.

"""
z=traj.mylink1*traj.mylink2 # And again we now can also use the different names
due to the creation of links
traj.res = Result('runs.$.z', z, 'Result of our simulation!')

Create an environment that handles running
filename = os.path.join('hdf5','example_14.hdf5')
env = Environment(trajectory='Multiplication',

filename=filename,
file_title='Example_14_Links',
comment='How to use links')

The environment has created a trajectory container for us
traj = env.v_trajectory

Add both parameters
traj.v_lazy_adding = True
traj.par.x = 1, 'I am the first dimension!'
traj.par.y = 1, 'I am the second dimension!'

Explore just two points
traj.f_explore({'x': [3, 4]})

So far everything was as in the first example. However now we add links:
traj.f_add_link('mylink1', traj.f_get('x'))
Note the `f_get` here to ensure to get the parameter instance, not the value 1
This allows us now to access x differently:
print('x=' + str(traj.mylink1))
We can try to avoid fast access as well, and recover the original parameter
print(str(traj.f_get('mylink1')))
And also colon notation is allowed that creates new groups on the fly
traj.f_add_link('parameters.mynewgroup.mylink2', traj.f_get('y'))

And, of course, we can also use the links during run:
env.f_run(multiply)

Finally disable logging and close all log-files
env.f_disable_logging()

68 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Adding Data to the Trajectory

Download: example_15_more_ways_to_add_data.py

Here are the different ways to add data to your Trajectory container:

__author__ = 'Robert Meyer'

from pypet import Trajectory, Result, Parameter

traj = Trajectory()

There are more ways to add data,
1st the standard way:
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
2nd by providing a new parameter/result instance, be aware that the data is added where
you specify it. There are no such things as shortcuts for parameter creation:
traj.parameters.y = Parameter('y', 1, comment='I am the second dimension!')
3rd as before, but if our new leaf has NO name it will be renamed accordingly:
traj.parameters.t = Parameter('', 1, comment='Third dimension')
See:
print('t=' + str(traj.t))

What happens if our new parameter's name does not match the name passed to the constructor?
traj.parameters.subgroup = Parameter('v', 2, comment='Fourth dimension')
Well, since 'subgroup' != 'v', 'subgroup' becomes just another group node created on the fly
print(traj.parameters.subgroup)
This even works for already existing groups and with the well known *dot* notation:
traj.parameters = Parameter('subgroup.subsubgroup.w', 2)
See
print('w='+str(traj.par.subgroup.subsubgroup.w))

There's a lazy version which does not require a constructor.
This can be turned on via
traj.v_lazy_adding = True
And you can add a new parameter via
traj.parameters.u = 1, 'Fourth dimension'
print('u=' + str(traj.u))
However, now you can no longer change values of existing parameters,
because this is interpreted as a new parameter addition, so this fails:
try:

traj.parameters.u = 2
print('I won`t be reached')

except AttributeError as exc:
print('Told you: `%s`' % repr(exc))

See:
print('u=' + str(traj.par.u))

But disabling the new adding method makes this work again
traj.v_lazy_adding = False
traj.f_get('u').f_unlock()
traj.parameters.u = 3
now we simply change `u` to be 3

There's also a lazy version to add new group nodes:
from pypet import new_group
traj.v_lazy_adding=True
traj.im_new = new_group
And `im_new` is a new group node:
print(traj.im_new)

1.5. Examples 69

pypet Documentation, Release 0.1.0

Finally, there's one more thing. Using this notation we can also add links.
Simply use the `=` assignment with objects that already exist in your trajectory:
traj.mylink = traj.f_get('x')
now `mylink` links to parameter `x`, also fast access works:
print('Linking to x gives: ' + str(traj.mylink))

Multiprocessing

Download: example_04_multiprocessing.py

This code snippet shows how to use multiprocessing with locks. In order to use the queue based multiprocessing
one simply needs to make the following change for the environment creation:

wrap_mode=pypetconstants.WRAP_MODE_QUEUE.

__author__ = 'Robert Meyer'

import os # For path names being viable under Windows and Linux
import logging

from pypet import Environment, cartesian_product
from pypet import pypetconstants

Let's reuse the simple multiplication example
def multiply(traj):

"""Sophisticated simulation of multiplication"""
z=traj.x*traj.y
traj.f_add_result('z',z=z, comment='I am the product of two reals!')

def main():
"""Main function to protect the *entry point* of the program.

If you want to use multiprocessing under Windows you need to wrap your
main code creating an environment into a function. Otherwise
the newly started child processes will re-execute the code and throw
errors (also see https://docs.python.org/2/library/multiprocessing.html#windows).

"""

Create an environment that handles running.
Let's enable multiprocessing with 2 workers.
filename = os.path.join('hdf5', 'example_04.hdf5')
env = Environment(trajectory='Example_04_MP',

filename=filename,
file_title='Example_04_MP',
log_stdout=True,
comment='Multiprocessing example!',
multiproc=True,
ncores=4,
use_pool=True, # Our runs are inexpensive we can get rid of overhead
by using a pool
wrap_mode=pypetconstants.WRAP_MODE_QUEUE)

Get the trajectory from the environment
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj.f_add_parameter('y', 1.0, comment='I am the second dimension!')

70 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Explore the parameters with a cartesian product, but we want to explore a bit more
traj.f_explore(cartesian_product({'x':[float(x) for x in range(20)],

'y':[float(y) for y in range(20)]}))

Run the simulation
env.f_run(multiply)

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
This will execute the main function in case the script is called from the one true
main process and not from a child processes spawned by your environment.
Necessary for multiprocessing under Windows.
main()

Storing and Loading Large Results (or just parts of them)

Download: example_09_large_results.py

Want to know how to load large results in parts? See below:

__author__ = 'Robert Meyer'

import numpy as np
import os # For path names being viable under Windows and Linux

from pypet.trajectory import Trajectory
from pypet import pypetconstants

Here I show how to store and load results in parts if they are quite large.
I will skip using an environment and only work with a trajectory.

We can create a trajectory and hand it a filename directly and it will create an
HDF5StorageService for us:
filename = os.path.join('hdf5', 'example_09.hdf5')
traj = Trajectory(name='example_09_huge_data',

filename=filename)

Now we directly add a huge result. Note that we could do the exact same procedure during
a single run, there is no syntactical difference.
However, the sub branch now is different, the result will be found under `traj.results.trajectory`
instead of `traj.results.run_XXXXXXXX` (where XXXXXXX is the current run index, e.g. 00000007).
We will add two large matrices a 100 by 100 by 100 one and 1000 by 1000 one, both containing
random numbers. They are called `mat1` and `mat2` and are handled by the same result object
called `huge_matrices`:
traj.f_add_result('huge_matrices',

mat1 = np.random.rand(100,100,100),
mat2 = np.random.rand(1000,1000))

Note that the result will not support fast access since it contains more than a single
data item. Even if there was only `mat1`, because the name is `mat1` instead of `huge_matrices`
(as the result object itself is called), fast access does not work either.
Yet, we can access data via natural naming using the names `mat1` and `mat2` e.g.:
val_mat1 = traj.huge_matrices.mat1[10,10,10]
val_mat2 = traj.huge_matrices.mat2[42,13]
print('mat1 contains %f at position [10,10,10]' % val_mat1)
print('mat2 contains %f at position [42,13]' % val_mat2)

Ok that was enough analysis of the data and should be sufficient for a phd thesis (in economics).
Let's store our trajectory and subsequently free the space for something completely different.

1.5. Examples 71

pypet Documentation, Release 0.1.0

traj.f_store()

We free the data:
traj.huge_matrices.f_empty()

Check if the data was deleted
if traj.huge_matrices.f_is_empty():

print('As promised: Nothing there!')
else:

print('What a disappointing peace of crap this software is!')

Lucky, it worked.
Ok we could it add some more stuff to the result object if we want to:
traj.huge_matrices.f_set(monty='Always look on the bright side of life!')

Next we can store our new string called monty to disk. Since our trajectory was already
stored to disk once, we can make use of the functionality to store individual items:
traj.f_store_item('huge_matrices')

Neat, hu? Ok now let's load some of it back, for educational purposes let's start with a fresh
trajectory. Let's keep the old trajectory name in mind. The current time is added to the
trajectory name on creation (if you do not want this, just say `add_time=False`).
Thus, the name is not `example_09_huge_data`, but `example_09_huge_data_XXXX_XX_XX_XXhXXmXXs`:
old_traj_name = traj.v_name
del traj
traj = Trajectory(filename=filename)

We only want to load the skeleton but not the data:
traj.f_load(name=old_traj_name, load_results=pypetconstants.LOAD_SKELETON)

Check if we only loaded the skeleton, that means the `huge_matrices` result must be empty:
if traj.huge_matrices.f_is_empty():

print('Told you!')
else:

print('Unbelievable, this sucks!')

Now let's only load `monty` and `mat1`.
We can do this by passing the keyword argument `load_only` to the load item function:
traj.f_load_item('huge_matrices', load_only=['monty','mat1'])

Check if this worked:
if ('monty' in traj.huge_matrices and

'mat1' in traj.huge_matrices and
not 'mat2' in traj.huge_matrices):

val_mat1 = traj.huge_matrices.mat1[10,10,10]
print('mat1 contains %f at position [10,10,10]' % val_mat1)
print('And do not forget: %s' % traj.huge_matrices.monty)

else:
print('That\'s it, I quit! I cannot work like this!')

Thanks for your attention!

Post-Processing and Pipelining (from the Tutorial)

Here you find an example of post-processing.

It consists of a main script main.py for the three phases pre-processing, run phase and post-processing of a single
neuron simulation and a analysis.py file giving an example of a potential data analysis encompassing plotting the
results. Moreover, there exists a pipeline.py file to crunch all first three phases into a single function.

A detail explanation of the example can be found in the Tutorial section.

72 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Download: main.py

Download: analysis.py

Download: pipeline.py

Main

__author__ = 'robert'

import numpy as np
import pandas as pd
import logging
import os # For path names working under Linux and Windows

from pypet import Environment, cartesian_product

def run_neuron(traj):
"""Runs a simulation of a model neuron.

:param traj:

Container with all parameters.

:return:

An estimate of the firing rate of the neuron

"""

Extract all parameters from `traj`
V_init = traj.par.neuron.V_init
I = traj.par.neuron.I
tau_V = traj.par.neuron.tau_V
tau_ref = traj.par.neuron.tau_ref
dt = traj.par.simulation.dt
duration = traj.par.simulation.duration

steps = int(duration / float(dt))
Create some containers for the Euler integration
V_array = np.zeros(steps)
V_array[0] = V_init
spiketimes = [] # List to collect all times of action potentials

Do the Euler integration:
print('Starting Euler Integration')
for step in range(1, steps):

if V_array[step-1] >= 1:
The membrane potential crossed the threshold and we mark this as
an action potential
V_array[step] = 0
spiketimes.append((step-1)*dt)

elif spiketimes and step * dt - spiketimes[-1] <= tau_ref:
We are in the refractory period, so we simply clamp the voltage
to 0
V_array[step] = 0

else:
Euler Integration step:
dV = -1/tau_V * V_array[step-1] + I
V_array[step] = V_array[step-1] + dV*dt

1.5. Examples 73

pypet Documentation, Release 0.1.0

print('Finished Euler Integration')

Add the voltage trace and spike times
traj.f_add_result('neuron.$', V=V_array, nspikes=len(spiketimes),

comment='Contains the development of the membrane potential over time '
'as well as the number of spikes.')

This result will be renamed to `traj.results.neuron.run_XXXXXXXX`.

And finally we return the estimate of the firing rate
return len(spiketimes) / float(traj.par.simulation.duration) *1000
*1000 since we have defined duration in terms of milliseconds

def neuron_postproc(traj, result_list):
"""Postprocessing, sorts computed firing rates into a table

:param traj:

Container for results and parameters

:param result_list:

List of tuples, where first entry is the run index and second is the actual
result of the corresponding run.

:return:
"""

Let's create a pandas DataFrame to sort the computed firing rate according to the
parameters. We could have also used a 2D numpy array.
But a pandas DataFrame has the advantage that we can index into directly with
the parameter values without translating these into integer indices.
I_range = traj.par.neuron.f_get('I').f_get_range()
ref_range = traj.par.neuron.f_get('tau_ref').f_get_range()

I_index = sorted(set(I_range))
ref_index = sorted(set(ref_range))
rates_frame = pd.DataFrame(columns=ref_index, index=I_index)
This frame is basically a two dimensional table that we can index with our
parameters

Now iterate over the results. The result list is a list of tuples, with the
run index at first position and our result at the second
for result_tuple in result_list:

run_idx = result_tuple[0]
firing_rates = result_tuple[1]
I_val = I_range[run_idx]
ref_val = ref_range[run_idx]
rates_frame.loc[I_val, ref_val] = firing_rates # Put the firing rate into the
data frame

Finally we going to store our new firing rate table into the trajectory
traj.f_add_result('summary.firing_rates', rates_frame=rates_frame,

comment='Contains a pandas data frame with all firing rates.')

def add_parameters(traj):
"""Adds all parameters to `traj`"""
print('Adding Parameters')

traj.f_add_parameter('neuron.V_init', 0.0,
comment='The initial condition for the '

'membrane potential')

74 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

traj.f_add_parameter('neuron.I', 0.0,
comment='The externally applied current.')

traj.f_add_parameter('neuron.tau_V', 10.0,
comment='The membrane time constant in milliseconds')

traj.f_add_parameter('neuron.tau_ref', 5.0,
comment='The refractory period in milliseconds '

'where the membrane potnetial '
'is clamped.')

traj.f_add_parameter('simulation.duration', 1000.0,
comment='The duration of the experiment in '

'milliseconds.')
traj.f_add_parameter('simulation.dt', 0.1,

comment='The step size of an Euler integration step.')

def add_exploration(traj):
"""Explores different values of `I` and `tau_ref`."""

print('Adding exploration of I and tau_ref')

explore_dict = {'neuron.I': np.arange(0, 1.01, 0.01).tolist(),
'neuron.tau_ref': [5.0, 7.5, 10.0]}

explore_dict = cartesian_product(explore_dict, ('neuron.tau_ref', 'neuron.I'))
The second argument, the tuple, specifies the order of the cartesian product,
The variable on the right most side changes fastest and defines the
'inner for-loop' of the cartesian product

traj.f_explore(explore_dict)

def main():

filename = os.path.join('hdf5', 'FiringRate.hdf5')
env = Environment(trajectory='FiringRate',

comment='Experiment to measure the firing rate '
'of a leaky integrate and fire neuron. '
'Exploring different input currents, '
'as well as refractory periods',

add_time=False, # We don't want to add the current time to the name,
log_stdout=True,
log_config='DEFAULT',
multiproc=True,
ncores=2, #My laptop has 2 cores ;-)
wrap_mode='QUEUE',
filename=filename,
overwrite_file=True)

traj = env.v_trajectory

Add parameters
add_parameters(traj)

Let's explore
add_exploration(traj)

Ad the postprocessing function
env.f_add_postprocessing(neuron_postproc)

Run the experiment
env.f_run(run_neuron)

1.5. Examples 75

pypet Documentation, Release 0.1.0

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Analysis

__author__ = 'robert'

import os

from pypet import Trajectory
import matplotlib.pyplot as plt

def main():

This time we don't need an environment since we just going to look
at data in the trajectory
traj = Trajectory('FiringRate', add_time=False)

Let's load the trajectory from the file
Only load the parameters, we will load the results on the fly as we need them
filename = os.path.join('hdf5', 'FiringRate.hdf5')
traj.f_load(load_parameters=2, load_derived_parameters=0, load_results=0,

load_other_data=0, filename=filename)

We'll simply use auto loading so all data will be loaded when needed.
traj.v_auto_load = True

rates_frame = traj.res.summary.firing_rates.rates_frame
Here we load the data automatically on the fly

plt.figure()
plt.subplot(2,1,1)
#Let's iterate through the columns and plot the different firing rates :
for tau_ref, I_col in rates_frame.iteritems():

plt.plot(I_col.index, I_col, label='Avg. Rate for tau_ref=%s' % str(tau_ref))

Label the plot
plt.xlabel('I')
plt.ylabel('f[Hz]')
plt.title('Firing as a function of input current `I`')
plt.legend(loc='best')

Also let's plot an example run, how about run 13 ?
example_run = 13

traj.v_idx = example_run # We make the trajectory behave as a single run container.
This short statement has two major effects:
a) all explored parameters are set to the value of run 13,
b) if there are tree nodes with names other than the current run aka `run_00000013`
they are simply ignored, if we use the `$` sign or the `crun` statement,
these are translated into `run_00000013`.

Get the example data
example_I = traj.I
example_tau_ref = traj.tau_ref
example_V = traj.results.neuron.crun.V # Here crun stands for run_00000013

76 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

We need the time step...
dt = traj.dt
...to create an x-axis for the plot
dt_array = [irun * dt for irun in range(len(example_V))]

And plot the development of V over time,
Since this is rather repetitive, we only
plot the first eighth of it.
plt.subplot(2,1,2)
plt.plot(dt_array, example_V)
plt.xlim((0, dt*len(example_V)/8))

Label the axis
plt.xlabel('t[ms]')
plt.ylabel('V')
plt.title('Example of development of V for I=%s, tau_ref=%s in run %d' %

(str(example_I), str(example_tau_ref), traj.v_idx))

And let's take a look at it
plt.show()

Finally revoke the `traj.v_idx=13` statement and set everything back to normal.
Since our analysis is done here, we could skip that, but it is always a good idea
to do that.
traj.f_restore_default()

if __name__ == '__main__':
main()

Pipelining

Additionally, you can use pipelining.

Since these three steps pre-processing, run-phase, post-processing define a common pipeline, you can actually
also make pypet supervise all three steps at once.

You can define a pipeline function, that does the pre-processing and returns the job function plus some optional
arguments and the post-processing function with some other optional arguments.

So, you could define the following pipeline function. The pipeline function has to only accept the trajectory as
first argument and has to return 2 tuples, one for the run function and one for the post-processing. Since none
of our functions takes any other arguments than the trajectory (and the pos-processing function the result list) we
simply return an empty tuple () for no arguments and an empty dictionary {} for no keyword arguments.

And that’s it, than everything including the pre-processing and addition of parameters is supervised by pypet.
Check out the source code below:

__author__ = 'robert'

import logging
import os # For path names working under Windows and Linux

from main import add_parameters, add_exploration, run_neuron, neuron_postproc
from pypet import Environment

def mypipeline(traj):
"""A pipeline function that defines the entire experiment

:param traj:

1.5. Examples 77

pypet Documentation, Release 0.1.0

Container for results and parameters

:return:

Two tuples. First tuple contains the actual run function plus additional
arguments (yet we have none). Second tuple contains the
postprocessing function including additional arguments.

"""
add_parameters(traj)
add_exploration(traj)
return (run_neuron,(),{}), (neuron_postproc,(),{})

def main():
filename = os.path.join('hdf5', 'FiringRate.hdf5')
env = Environment(trajectory='FiringRatePipeline',

comment='Experiment to measure the firing rate '
'of a leaky integrate and fire neuron. '
'Exploring different input currents, '
'as well as refractory periods',

add_time=False, # We don't want to add the current time to the name,
log_stdout=True,
multiproc=True,
ncores=2, #My laptop has 2 cores ;-)
filename=filename,
overwrite_file=True)

env.f_pipeline(mypipeline)

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Wrapping an Existing Project (Cellular Automata Inside!)

Here you can find out how to wrap pypet around an already existing simulation. The original project
(original.py) simulates elementary cellular automata.

The code explores different starting conditions and automata rules. pypetwrap.py shows how to include pypet
into the project without changing much of the original code. Basically, the core code of the simulation is left
untouched. Only the boilerplate of the main script changes and a short wrapper function is needed that passes
parameters from the trajectory to the core simulation.

Moreover, introducing pypet allows much easier exploration of the parameter space. Now exploring different
parameter sets requires no more code changes.

Download: original.py

Download: pypetwrap.py

Original Project

""" This module contains a simulation of 1 dimensional cellular automata

We also simulate famous rule 110: http://en.wikipedia.org/wiki/Rule_110

"""

__author__ = 'Robert Meyer'

78 Chapter 1. pypet User Manual

http://en.wikipedia.org/wiki/Elementary_cellular_automaton

pypet Documentation, Release 0.1.0

import numpy as np
import os
import matplotlib.pyplot as plt
import pickle

from pypet import progressbar # I don't want to write another progressbar, so I use this here

def convert_rule(rule_number):
""" Converts a rule given as an integer into a binary list representation.

It reads from left to right (contrary to the Wikipedia article given below),
i.e. the 2**0 is found on the left hand side and 2**7 on the right.

For example:

``convert_rule(30)`` returns [0, 1, 1, 1, 1, 0, 0, 0]

The resulting binary list can be interpreted as
the following transition table:

neighborhood new cell state
000 0
001 1
010 1
011 1
100 1
101 0
110 0
111 0

For more information about this rule
see: http://en.wikipedia.org/wiki/Rule_30

"""
binary_rule = [(rule_number // pow(2,i)) % 2 for i in range(8)]
return np.array(binary_rule)

def make_initial_state(name, ncells, seed=42):
""" Creates an initial state for the automaton.

:param name:

Either ``'single'`` for a single live cell in the middle of the cell ring,
or ``'random'`` for uniformly distributed random pattern of zeros and ones.

:param ncells: Number of cells in the automaton

:param seed: Random number seed for the ``#random'`` condition

:return: Numpy array of zeros and ones (or just a one lonely one surrounded by zeros)

:raises: ValueError if the ``name`` is unknown

"""
if name == 'single':

just_one_cell = np.zeros(ncells)
just_one_cell[int(ncells/2)] = 1.0
return just_one_cell

elif name == 'random':

1.5. Examples 79

pypet Documentation, Release 0.1.0

np.random.seed(seed)
random_init = np.random.randint(2, size=ncells)
return random_init

else:
raise ValueError('I cannot handel your initial state `%s`.' % name)

def plot_pattern(pattern, rule_number, filename):
""" Plots an automaton ``pattern`` and stores the image under a given ``filename``.

For axes labels the ``rule_number`` is also required.

"""
plt.figure()
plt.imshow(pattern)
plt.xlabel('Cell No.')
plt.ylabel('Time Step')
plt.title('CA with Rule %s' % str(rule_number))
plt.savefig(filename)
#plt.show()
plt.close()

def cellular_automaton_1D(initial_state, rule_number, steps):
""" Simulates a 1 dimensional cellular automaton.

:param initial_state:

The initial state of *dead* and *alive* cells as a 1D numpy array.
It's length determines the size of the simulation.

:param rule_number:

The update rule as an integer from 0 to 255.

:param steps:

Number of cell iterations

:return:

A 2D numpy array (steps x len(initial_state)) containing zeros and ones representing
the automaton development over time.

"""

ncells = len(initial_state)
Create an array for the full pattern
pattern = np.zeros((steps, ncells))

Pass initial state:
pattern[0,:] = initial_state

Get the binary rule list
binary_rule = convert_rule(rule_number)

Conversion list to get the position in the binary rule list
neighbourhood_factors = np.array([1, 2, 4])

Iterate over all steps to compute the CA
all_cells = range(ncells)
for step in range(steps-1):

current_row = pattern[step, :]

80 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

next_row = pattern[step+1, :]
for irun in all_cells:

Get the neighbourhood
neighbour_indices = range(irun - 1, irun + 2)
neighbourhood = np.take(current_row, neighbour_indices, mode='wrap')
Convert neighborhood to decimal
decimal_neighborhood = int(np.sum(neighbourhood * neighbourhood_factors))
Get next state from rule book
next_state = binary_rule[decimal_neighborhood]
Update next state of cell
next_row[irun] = next_state

return pattern

def main():
""" Main simulation function """
rules_to_test = [10, 30, 90, 110, 184] # rules we want to explore:
steps = 250 # cell iterations
ncells = 400 # number of cells
seed = 100042 # RNG seed
initial_states = ['single', 'random'] # Initial states we want to explore

create a folder for the plots and the data
folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_original')
if not os.path.isdir(folder):

os.makedirs(folder)
filename = os.path.join(folder, 'all_patterns.p')

print('Computing all patterns')
all_patterns = [] # list containing the simulation results
for idx, rule_number in enumerate(rules_to_test):

iterate over all rules
for initial_name in initial_states:

iterate over the initial states

make the initial state
initial_state = make_initial_state(initial_name, ncells, seed=seed)
simulate the automaton
pattern = cellular_automaton_1D(initial_state, rule_number, steps)
keep the resulting pattern
all_patterns.append((rule_number, initial_name, pattern))

Print a progressbar, because I am always impatient
(ok that's already from pypet, but it's really handy!)
progressbar(idx, len(rules_to_test), reprint=True)

Store all patterns to disk
with open(filename, 'wb') as file:

pickle.dump(all_patterns, file=file)

Finally print all patterns
print('Plotting all patterns')
for idx, pattern_tuple in enumerate(all_patterns):

rule_number, initial_name, pattern = pattern_tuple
Plot the pattern
filename = os.path.join(folder, 'rule_%s_%s.png' % (str(rule_number), initial_name))
plot_pattern(pattern, rule_number, filename)
progressbar(idx, len(all_patterns), reprint=True)

if __name__ == '__main__':
main()

1.5. Examples 81

pypet Documentation, Release 0.1.0

Using pypet

""" Module that shows how to wrap *pypet* around an existing project

Thanks to *pypet* the module is now very flexible.
You can immediately start exploring different sets
of parameters, like different seeds or cell numbers.
Accordingly, you can simply change ``exp_dict`` to explore different sets.

On the contrary, this is tedious in the original code
and requires some effort of refactoring.

"""

__author__ = 'Robert Meyer'

import os
import logging

from pypet import Environment, cartesian_product, progressbar

Lets import the stuff we already have:
from original import cellular_automaton_1D, make_initial_state, plot_pattern

def make_filename(traj):
""" Function to create generic filenames based on what has been explored """
explored_parameters = traj.f_get_explored_parameters()
filename = ''
for param in explored_parameters.values():

short_name = param.v_name
val = param.f_get()
filename += '%s_%s__' % (short_name, str(val))

return filename[:-2] + '.png' # get rid of trailing underscores and add file type

def wrap_automaton(traj):
""" Simple wrapper function for compatibility with *pypet*.

We will call the original simulation functions with data extracted from ``traj``.

The resulting automaton patterns wil also be stored into the trajectory.

:param traj: Trajectory container for data

"""
Make initial state
initial_state = make_initial_state(traj.initial_name, traj.ncells, traj.seed)
Run simulation
pattern = cellular_automaton_1D(initial_state, traj.rule_number, traj.steps)
Store the computed pattern
traj.f_add_result('pattern', pattern, comment='Development of CA over time')

def main():
""" Main *boilerplate* function to start simulation """
Now let's make use of logging
logger = logging.getLogger()

Create folders for data and plots
folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_pypet')
if not os.path.isdir(folder):

os.makedirs(folder)

82 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

filename = os.path.join(folder, 'all_patterns.hdf5')

Create an environment
env = Environment(trajectory='cellular_automata',

multiproc=True,
ncores=4,
wrap_mode='QUEUE',
filename=filename,
overwrite_file=True)

extract the trajectory
traj = env.v_traj

traj.v_lazy_adding = True
traj.par.ncells = 400, 'Number of cells'
traj.par.steps = 250, 'Number of timesteps'
traj.par.rule_number = 30, 'The ca rule'
traj.par.initial_name = 'random', 'The type of initial state'
traj.par.seed = 100042, 'RNG Seed'

Explore
exp_dict = {'rule_number' : [10, 30, 90, 110, 184],

'initial_name' : ['single', 'random'],}
You can uncomment the ``exp_dict`` below to see that changing the
exploration scheme is now really easy:
exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
'ncells' : [100, 200, 300],
'seed': [333444555, 123456]}
exp_dict = cartesian_product(exp_dict)
traj.f_explore(exp_dict)

Run the simulation
logger.info('Starting Simulation')
env.f_run(wrap_automaton)

Load all data
traj.f_load(load_data=2)

logger.info('Printing data')
for idx, run_name in enumerate(traj.f_iter_runs()):

Plot all patterns
filename = os.path.join(folder, make_filename(traj))
plot_pattern(traj.crun.pattern, traj.rule_number, filename)
progressbar(idx, len(traj), logger=logger)

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Large Explorations with Many Runs

Download: example_18_many_runs.py

How to group many results into buckets

"""Exploring more than 20000 runs may slow down *pypet*.

HDF5 has problems handling nodes with more than 10000 children.

1.5. Examples 83

pypet Documentation, Release 0.1.0

To overcome this problem, simply group your runs into buckets or sets
using the `$set` wildcard.

"""

__author__ = 'Robert Meyer'

import os # To allow file paths working under Windows and Linux

from pypet import Environment
from pypet.utils.explore import cartesian_product

def multiply(traj):
"""Example of a sophisticated simulation that involves multiplying two values."""
z = traj.x * traj.y
Since we perform many runs we will group results into sets of 1000 each
using the `$set` wildcard
traj.f_add_result('$set.$.z', z, comment='Result of our simulation '

'sorted into buckets of '
'1000 runs each!')

def main():
Create an environment that handles running
filename = os.path.join('hdf5','example_18.hdf5')
env = Environment(trajectory='Multiplication',

filename=filename,
file_title='Example_18_Many_Runs',
comment='Contains many runs',
multiproc=True,
use_pool=True,
ncores=2,
wrap_mode='QUEUE')

The environment has created a trajectory container for us
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')

Explore the parameters with a cartesian product, yielding 2500 runs
traj.f_explore(cartesian_product({'x': range(50), 'y': range(50)}))

Run the simulation
env.f_run(multiply)

Disable logging
env.f_disable_logging()

turn auto loading on, since results have not been loaded, yet
traj.v_auto_load = True
Use the `v_idx` functionality
traj.v_idx = 2042
print('The result of run %d is: ' % traj.v_idx)
Now we can rely on the wildcards
print(traj.res.crunset.crun.z)
traj.v_idx = -1

if __name__ == '__main__':
main()

84 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

1.5.2 Advanced Concepts

Merging of Trajectories

Download: example_03_trajectory_merging.py

The code snippet below shows how to merge trajectories.

__author__ = 'Robert Meyer'

import os # For using pathnames under Windows and Linux

from pypet import Environment, cartesian_product

Let's reuse the simple multiplication example
def multiply(traj):

"""Sophisticated simulation of multiplication"""
z=traj.x*traj.y
traj.f_add_result('z',z=z, comment='I am the product of two reals!',)

Create 2 environments that handle running
filename = os.path.join('hdf5', 'example_03.hdf5')
env1 = Environment(trajectory='Traj1',filename=filename,

file_title='Example_03',
comment='I will be increased!')

env2 = Environment(trajectory='Traj2',filename=filename,
file_title='Example_03', log_config=None, # One environment keeping log files
is enough
comment = 'I am going to be merged into some other trajectory!')

Get the trajectories from the environment
traj1 = env1.v_trajectory
traj2 = env2.v_trajectory

Add both parameters
traj1.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj1.f_add_parameter('y', 1.0, comment='I am the second dimension!')
traj2.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj2.f_add_parameter('y', 1.0, comment='I am the second dimension!')

Explore the parameters with a cartesian product for the first trajectory:
traj1.f_explore(cartesian_product({'x':[1.0,2.0,3.0,4.0], 'y':[6.0,7.0,8.0]}))
Let's explore slightly differently for the second:
traj2.f_explore(cartesian_product({'x':[3.0,4.0,5.0,6.0], 'y':[7.0,8.0,9.0]}))

Run the simulations with all parameter combinations
env1.f_run(multiply)
env2.f_run(multiply)

Now we merge them together into traj1
We want to remove duplicate entries
like the parameter space point x=3.0, y=7.0.
Several points have been explored by both trajectories and we need them only once.
Therefore, we set remove_duplicates=True (Note this takes O(N1*N2)!).
We also want to backup both trajectories, but we let the system choose the filename.
Accordingly we choose backup_filename=True instead of providing a filename.
We want to move the hdf5 nodes from one trajectory to the other.
Thus we set move_nodes=True.

1.5. Examples 85

pypet Documentation, Release 0.1.0

Finally,we want to delete the other trajectory afterwards since we already have a backup.
traj1.f_merge(traj2, remove_duplicates=True, backup_filename=True,

move_data=True, delete_other_trajectory=True)

And that's it, now we can take a look at the new trajectory and print all x,y,z triplets.
But before that we need to load the data we computed during the runs from disk.
We choose load_parameters=2 and load_results=2 since we want to load all data and not only
the skeleton
traj1.f_load(load_parameters=2, load_results=2)

for run_name in traj1.f_get_run_names():
We can make the trajectory belief it is a single run. All parameters will
be treated as they were in the specific run. And we can use the `crun` wildcard.
traj1.f_as_run(run_name)
x=traj1.x
y=traj1.y
We need to specify the current run, because there exists more than one z value
z=traj1.crun.z
print('%s: x=%f, y=%f, z=%f' % (run_name, x, y, z))

Don't forget to reset you trajectory to the default settings, to release its belief to
be the last run.
traj1.f_restore_default()

As you can see duplicate parameter space points have been removed.
If you wish you can take a look at the files and backup files in
the experiments/example_03/HDF5 directory

Finally, disable logging and close log files
env1.f_disable_logging()

Custom Parameter (Strange Attractor Inside!)

Download: example_05_custom_parameter.py

Here you can see an example of a custom parameter and how to reload results and use them for analysis. We will
simulate the Lorenz Attractor and integrate with a simple Euler method. We will explore three different initial
conditions.

__author__ = 'Robert Meyer'

import numpy as np
import inspect
import os # For path names being viable under Windows and Linux

from pypet import Environment, Parameter, ArrayParameter, Trajectory
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Here we will see how we can write our own custom parameters and how we can use
it with a trajectory.

Now we want to do a more sophisticated simulations, we will integrate a differential equation
with an Euler scheme

Let's first define our job to do
def euler_scheme(traj, diff_func):

"""Simulation function for Euler integration.

:param traj:

86 Chapter 1. pypet User Manual

https://en.wikipedia.org/wiki/Lorenz_attractor

pypet Documentation, Release 0.1.0

Container for parameters and results

:param diff_func:

The differential equation we want to integrate

"""

steps = traj.steps
initial_conditions = traj.initial_conditions
dimension = len(initial_conditions)

This array will collect the results
result_array = np.zeros((steps,dimension))
Get the function parameters stored into `traj` as a dictionary
with the (short) names as keys :
func_params_dict = traj.func_params.f_to_dict(short_names=True, fast_access=True)
Take initial conditions as first result
result_array[0] = initial_conditions

Now we compute the Euler Scheme steps-1 times
for idx in range(1,steps):

result_array[idx] = diff_func(result_array[idx-1], **func_params_dict) * traj.dt + \
result_array[idx-1]

Note the **func_params_dict unzips the dictionary, it's the reverse of **kwargs in function
definitions!

#Finally we want to keep the results
traj.f_add_result('euler_evolution', data=result_array, comment='Our time series data!')

Ok, now we want to make our own (derived) parameter that stores source code of python functions.
We do NOT want a parameter that stores an executable function. This would complicate
the problem a lot. If you have something like that in mind, you might wanna take a look
at the marshal (http://docs.python.org/2/library/marshal) module
or dill (https://pypi.python.org/pypi/dill) package.
Our intention here is to define a parameter that we later on use as a derived parameter
to simply keep track of the source code we use ('git' would be, of course, the better solution
but this is just an illustrative example)
class FunctionParameter(Parameter):

We can go for a a cheap solution and make use of the function `_convert_data` of the parent.
This gets called before adding data to the parameter to turn numpy arrays
into read-only numpy arrays. But we will use the function for our purpose to extract
the source code:
def _convert_data(self, val):

if callable(val):
return inspect.getsource(val)

else:
return super(FunctionParameter,self)._convert_data(val)

For more complicate parameters you might consider implementing:
`f_supports` (we do not need it since we convert the data to stuff the parameter already
supports, and that is strings!)
#
and
the private functions
#
`_values_of_same_type` (to tell whether data is similar, i.e. of two data items agree in their
type, this is important to only allow exploration within the same dimension.
For instance, a parameter that stores integers, should only explore integers etc.)
#
and
#

1.5. Examples 87

pypet Documentation, Release 0.1.0

`_equal_values` (to tell if two data items are equal. This is important for merging if you
want to erase duplicate parameter points. The trajectory needs to know when a
parameter space point was visited before.)
#
and
#
`_store` (to be able to turn complex data into basic types understood by the storage service)
#
and
#
`_load` (to be able to recover your complex data form the basic types understood by the storage
service)
#
But for now we will rely on the parent functions and hope for the best!

Ok now let's follow the ideas in the final section of the cookbook and let's
have a part in our simulation that only defines the parameters.
def add_parameters(traj):

"""Adds all necessary parameters to the `traj` container"""

traj.f_add_parameter('steps', 10000, comment='Number of time steps to simulate')
traj.f_add_parameter('dt', 0.01, comment='Step size')

Here we want to add the initial conditions as an array parameter. We will simulate
a 3-D differential equation, the Lorenz attractor.
traj.f_add_parameter(ArrayParameter,'initial_conditions', np.array([0.0,0.0,0.0]),

comment = 'Our initial conditions, as default we will start from'
' origin!')

We will group all parameters of the Lorenz differential equation into the group 'func_params'
traj.f_add_parameter('func_params.sigma', 10.0)
traj.f_add_parameter('func_params.beta', 8.0/3.0)
traj.f_add_parameter('func_params.rho', 28.0)

#For the fun of it we will annotate the group
traj.func_params.v_annotations.info='This group contains as default the original values chosen ' \

'by Edward Lorenz in 1963. Check it out on wikipedia ' \
'(https://en.wikipedia.org/wiki/Lorenz_attractor)!'

We need to define the lorenz function, we will assume that the value array is 3 dimensional,
First dimension contains the x-component, second y-component, and third the z-component
def diff_lorenz(value_array, sigma, beta, rho):

"""The Lorenz attractor differential equation

:param value_array: 3d array containing the x,y, and z component values.
:param sigma: Constant attractor parameter
:param beta: FConstant attractor parameter
:param rho: Constant attractor parameter

:return: 3d array of the Lorenz system evaluated at `value_array`

"""
diff_array = np.zeros(3)
diff_array[0] = sigma * (value_array[1]-value_array[0])
diff_array[1] = value_array[0] * (rho - value_array[2]) - value_array[1]
diff_array[2] = value_array[0] * value_array[1] - beta * value_array[2]

return diff_array

88 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

And here goes our main function
def main():

filename = os.path.join('hdf5', 'example_05.hdf5')
env = Environment(trajectory='Example_05_Euler_Integration',

filename=filename,
file_title='Example_05_Euler_Integration',
comment='Go for Euler!')

traj = env.v_trajectory
trajectory_name = traj.v_name

1st a) phase parameter addition
add_parameters(traj)

1st b) phase preparation
We will add the differential equation (well, its source code only) as a derived parameter
traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,

comment='Source code of our equation!')

We want to explore some initial conditions
traj.f_explore({'initial_conditions' : [

np.array([0.01,0.01,0.01]),
np.array([2.02,0.02,0.02]),
np.array([42.0,4.2,0.42])

]})
3 different conditions are enough for an illustrative example

2nd phase let's run the experiment
We pass `euler_scheme` as our top-level simulation function and
the Lorenz equation 'diff_lorenz' as an additional argument
env.f_run(euler_scheme, diff_lorenz)

We don't have a 3rd phase of post-processing here

4th phase analysis.
I would recommend to do post-processing completely independent from the simulation,
but for simplicity let's do it here.

Let's assume that we start all over again and load the entire trajectory new.
Yet, there is an error within this approach, do you spot it?
del traj
traj = Trajectory(filename=filename)

We will only fully load parameters and derived parameters.
Results will be loaded manually later on.
try:

However, this will fail because our trajectory does not know how to
build the FunctionParameter. You have seen this coming, right?
traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,

load_results=1)
except ImportError as e:

print('That did\'nt work, I am sorry: %s ' % str(e))

Ok, let's try again but this time with adding our parameter to the imports
traj = Trajectory(filename=filename,

dynamically_imported_classes=FunctionParameter)

Now it works:
traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,

load_results=1)

1.5. Examples 89

pypet Documentation, Release 0.1.0

#For the fun of it, let's print the source code
print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

Let's get the exploration array:
initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
Now let's plot our simulated equations for the different initial conditions:
We will iterate through the run names
for idx, run_name in enumerate(traj.f_get_run_names()):

#Get the result of run idx from the trajectory
euler_result = traj.results.f_get(run_name).euler_evolution
Now we manually need to load the result. Actually the results are not so large and we
could load them all at once. But for demonstration we do as if they were huge:
traj.f_load_item(euler_result)
euler_data = euler_result.data

#Plot fancy 3d plot
fig = plt.figure(idx)
ax = fig.gca(projection='3d')
x = euler_data[:,0]
y = euler_data[:,1]
z = euler_data[:,2]
ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
plt.legend()
plt.show()

Now we free the data again (because we assume its huuuuuuge):
del euler_data
euler_result.f_empty()

You have to click through the images to stop the example_05 module!

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Parameter Presetting

Download: example_06_parameter_presetting.py

We will reuse some stuff from the previous example Custom Parameter (Strange Attractor Inside!):

• Our main euler simulation job euler_scheme

• The FunctionParameter to store source code

We will execute the same euler simulation as before, but now with a different differential equation yielding the
Roessler Attractor. If you erase the statement

traj.f_preset_parameter(‘diff_name’, ‘diff_roessler’)

you will end up with the same results as in the previous example.

__author__ = 'Robert Meyer'

import numpy as np
import os # For path names being viable under Windows and Linux

Let's reuse the stuff from the previous example

90 Chapter 1. pypet User Manual

https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor

pypet Documentation, Release 0.1.0

from example_05_custom_parameter import euler_scheme, FunctionParameter, diff_lorenz

from pypet import Environment, ArrayParameter
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Now we will add some control flow to allow to switch between the differential equations
def add_parameters(traj):

"""Adds all necessary parameters to the `traj` container.

You can choose between two parameter sets. One for the Lorenz attractor and
one for the Roessler attractor.
The former is chosen for `traj.diff_name=='diff_lorenz'`, the latter for
`traj.diff_name=='diff_roessler'`.
You can use parameter presetting to switch between the two cases.

:raises: A ValueError if `traj.diff_name` is none of the above

"""
traj.f_add_parameter('steps', 10000, comment='Number of time steps to simulate')
traj.f_add_parameter('dt', 0.01, comment='Step size')

Here we want to add the initial conditions as an array parameter, since we will simulate
a 3-D differential equation, that is the Roessler attractor
(https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor)
traj.f_add_parameter(ArrayParameter,'initial_conditions', np.array([0.0,0.0,0.0]),

comment = 'Our initial conditions, as default we will start from'
' origin!')

Per default we choose the name `'diff_lorenz'` as in the last example
traj.f_add_parameter('diff_name','diff_lorenz', comment= 'Name of our differential equation')

We want some control flow depending on which name we really choose
if traj.diff_name == 'diff_lorenz':

These parameters are for the Lorenz differential equation
traj.f_add_parameter('func_params.sigma', 10.0)
traj.f_add_parameter('func_params.beta', 8.0/3.0)
traj.f_add_parameter('func_params.rho', 28.0)

elif traj.diff_name == 'diff_roessler':
If we use the Roessler system we need different parameters
traj.f_add_parameter('func_params.a', 0.1)
traj.f_add_parameter('func_params.c', 14.0)

else:
raise ValueError('I don\'t know what %s is.' % traj.diff_name)

We need to define the Roessler function, we will assume that the value array is 3 dimensional,
First dimension is x-component, second y-component, and third the z-component
def diff_roessler(value_array, a, c):

"""The Roessler attractor differential equation

:param value_array: 3d array containing the x,y, and z component values.
:param a: Constant attractor parameter
:param c: Constant attractor parameter

:return: 3d array of the Roessler system evaluated at `value_array`

"""
b=a
diff_array = np.zeros(3)
diff_array[0] = -value_array[1] - value_array[2]
diff_array[1] = value_array[0] + a * value_array[1]

1.5. Examples 91

pypet Documentation, Release 0.1.0

diff_array[2] = b + value_array[2] * (value_array[0] - c)

return diff_array

And here goes our main function
def main():

filename = os.path.join('hdf5', 'example_06.hdf5')
env = Environment(trajectory='Example_06_Euler_Integration',

filename=filename,
file_title='Example_06_Euler_Integration',
comment = 'Go for Euler!')

traj = env.v_trajectory

1st a) phase parameter addition
Remember we have some control flow in the `add_parameters` function, the default parameter
set we choose is the `'diff_lorenz'` one, but we want to deviate from that and use the
`'diff_roessler'`.
In order to do that we can preset the corresponding name parameter to change the
control flow:
traj.f_preset_parameter('diff_name', 'diff_roessler') # If you erase this line, you will get

again the lorenz attractor
add_parameters(traj)

1st b) phase preparation
Let's check which function we want to use
if traj.diff_name=='diff_lorenz':

diff_eq = diff_lorenz
elif traj.diff_name=='diff_roessler':

diff_eq = diff_roessler
else:

raise ValueError('I don\'t know what %s is.' % traj.diff_name)
And add the source code of the function as a derived parameter.
traj.f_add_derived_parameter(FunctionParameter, 'diff_eq', diff_eq,

comment='Source code of our equation!')

We want to explore some initial conditions
traj.f_explore({'initial_conditions' : [

np.array([0.01,0.01,0.01]),
np.array([2.02,0.02,0.02]),
np.array([42.0,4.2,0.42])

]})
3 different conditions are enough for now

2nd phase let's run the experiment
We pass 'euler_scheme' as our top-level simulation function and
the Roessler function as an additional argument
env.f_run(euler_scheme, diff_eq)

Again no post-processing

4th phase analysis.
I would recommend to do the analysis completely independent from the simulation
but for simplicity let's do it here.
We won't reload the trajectory this time but simply update the skeleton
traj.f_load_skeleton()

#For the fun of it, let's print the source code
print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

92 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Let's get the exploration array:
initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
Now let's plot our simulated equations for the different initial conditions.
We will iterate through the run names
for idx, run_name in enumerate(traj.f_get_run_names()):

Get the result of run idx from the trajectory
euler_result = traj.results.f_get(run_name).euler_evolution
Now we manually need to load the result. Actually the results are not so large and we
could load them all at once, but for demonstration we do as if they were huge:
traj.f_load_item(euler_result)
euler_data = euler_result.data

Plot fancy 3d plot
fig = plt.figure(idx)
ax = fig.gca(projection='3d')
x = euler_data[:,0]
y = euler_data[:,1]
z = euler_data[:,2]
ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
plt.legend()
plt.show()

Now we free the data again (because we assume its huuuuuuge):
del euler_data
euler_result.f_empty()

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Using the f_find_idx Function

Download: example_08_f_find_idx.py

Here you can see how you can search for particular parameter combinations and the corresponding run indices
using the f_find_idx() function.

__author__ = 'Robert Meyer'

import os # For path names being viable under Windows and Linux

from pypet import Environment, cartesian_product
from pypet import pypetconstants

def multiply(traj):
"""Sophisticated simulation of multiplication"""
z=traj.x*traj.y
traj.f_add_result('z',z, comment='I am the product of two reals!')

Create an environment that handles running
filename = os.path.join('hdf5', 'example_08.hdf5')
env = Environment(trajectory='Example08',filename=filename,

file_title='Example08',
comment='Another example!')

1.5. Examples 93

pypet Documentation, Release 0.1.0

Get the trajectory from the environment
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')

Explore the parameters with a cartesian product:
traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))

Run the simulation
env.f_run(multiply)

We load all results
traj.f_load(load_results=pypetconstants.LOAD_DATA)

And now we want to find som particular results, the ones where x was 2 or y was 8.
Therefore, we use a lambda function
my_filter_predicate= lambda x,y: x==2 or y==8

We can now use this lambda function to search for the run indexes associated with x==2 OR y==8.
We need a list specifying the names of the parameters and the predicate to do this.
Note that names need to be in the order as listed in the lambda function, here 'x' and 'y':
idx_iterator = traj.f_find_idx(['x','y'], my_filter_predicate)

Now we can print the corresponding results:
print('The run names and results for parameter combinations with x==2 or y==8:')
for idx in idx_iterator:

We focus on one particular run. This is equivalent to calling `traj.f_as_run(idx)`.
traj.v_idx=idx
run_name = traj.v_as_run
and print everything nicely
print('%s: x=%d, y=%d, z=%d' %(run_name, traj.x, traj.y, traj.crun.z))

And we do not forget to set everything back to normal
traj.f_restore_default()

Finally disable logging and close all log-files
env.f_disable_logging()

Accessing Results from All Runs at Once

Download: example_10_get_items_from_all_runs.py

Want to know how to access all data from results at once? Check out f_get_from_runs() and the code
below:

__author__ = 'Robert Meyer'

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
import os # For path names working under Windows ans Linux

from pypet import Environment, cartesian_product
from pypet import pypetconstants

def multiply(traj):
"""Sophisticated simulation of multiplication"""
z=traj.x * traj.y
traj.f_add_result('z', z, comment='I am the product of two reals!')

94 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Create an environment that handles running
filename = os.path.join('hdf5', 'example_10.hdf5')
env = Environment(trajectory='Example10', filename=filename,

file_title='Example10',
comment='Another example!')

Get the trajectory from the environment
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')

Explore the parameters with a cartesian product:
x_length = 12
y_length = 12
traj.f_explore(cartesian_product({'x': range(x_length), 'y': range(y_length)}))

Run the simulation
env.f_run(multiply)

We load all results
traj.f_load(load_results=pypetconstants.LOAD_DATA)

We access the ranges for plotting
xs = traj.f_get('x').f_get_range()
ys = traj.f_get('y').f_get_range()

Now we want to directly get all numbers z from all runs
for plotting.
We use `fast_access=True` to directly get access to
the values.
Moreover, since `f_get_from_runs` returns an ordered dictionary
`values()` gives us all values already in the correct order of the runs.
zs = list(traj.f_get_from_runs(name='z', fast_access=True).values())
We also make sure it's a list (because in python 3 ``value()`` returns an
iterator instead of a list)

Convert the lists to numpy 2D arrays
x_mesh = np.reshape(np.array(xs), (x_length, y_length))
y_mesh = np.reshape(np.array(ys), (x_length, y_length))
z_mesh = np.reshape(np.array(zs), (x_length, y_length))

Make fancy 3D plot
fig=plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(x_mesh, y_mesh, z_mesh, rstride=1, cstride=1)
plt.show()

Finally disable logging and close all log-files
env.f_disable_logging()

Sharing Data during Multiprocessing

Here we show how data can be shared among multiple processes. Mind however, that this is conceptually a rather
bad design since the single runs are no longer independent of each other. A better solution would be to simply
return the data and sort it into a list during post-processing.

Download: example_12_sharing_data_between_processes.py

1.5. Examples 95

pypet Documentation, Release 0.1.0

__author__ = 'Robert Meyer'

import multiprocessing as mp
import numpy as np
import os # For path names working under Windows and Linux

from pypet import Environment, cartesian_product

def multiply(traj, result_list):
"""Example of a sophisticated simulation that involves multiplying two values.

This time we will store tha value in a shared list and only in the end add the result.

:param traj:

Trajectory containing
the parameters in a particular combination,
it also serves as a container for results.

"""
z=traj.x*traj.y
result_list[traj.v_idx] = z

def main():
Create an environment that handles running
filename = os.path.join('hdf5', 'example_12.hdf5')
env = Environment(trajectory='Multiplication',

filename=filename,
file_title='Example_12_Sharing_Data',
comment='The first example!',
continuable=False, # We have shared data in terms of a multiprocessing list,
so we CANNOT use the continue feature.
multiproc=True,
ncores=2)

The environment has created a trajectory container for us
traj = env.v_trajectory

Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')

Explore the parameters with a cartesian product
traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))

We want a shared list where we can put all out results in. We use a manager for this:
result_list = mp.Manager().list()
Let's make some space for potential results
result_list[:] =[0 for _dummy in range(len(traj))]

Run the simulation
env.f_run(multiply, result_list)

Now we want to store the final list as numpy array
traj.f_add_result('z', np.array(result_list))

Finally let's print the result to see that it worked
print(traj.z)

#Disable logging and close all log-files

96 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

env.f_disable_logging()

if __name__ == '__main__':
main()

Lightweight Multiprocessing

Download: example_16_multiproc_context.py

This example shows you how to use a MultiprocContext.

__author__ = 'Robert Meyer'

import os
import multiprocessing as mp
import logging

from pypet import Trajectory, MultiprocContext

def manipulate_multiproc_safe(traj):
""" Target function that manipulates the trajectory.

Stores the current name of the process into the trajectory and

overwrites previous settings.

:param traj:

Trajectory container with multiprocessing safe storage service

"""

Manipulate the data in the trajectory
traj.last_process_name = mp.current_process().name
Store the manipulated data
traj.results.f_store(store_data=3) # Overwrites data on disk
Not recommended, here only for demonstration purposes :-)

def main():
We don't use an environment so we enable logging manually
logging.basicConfig(level=logging.INFO)

filename = os.path.join('hdf5','example_16.hdf5')
traj = Trajectory(filename=filename, overwrite_file=True)

The result that will be manipulated
traj.f_add_result('last_process_name', 'N/A',

comment='Name of the last process that manipulated the trajectory')

with MultiprocContext(trajectory=traj, wrap_mode='LOCK') as mc:
The multiprocessing context manager wraps the storage service of the trajectory
and passes the wrapped service to the trajectory.
Also restores the original storage service in the end.
Moreover, wee need to use the `MANAGER_LOCK` wrapping because the locks
are pickled and send to the pool for all function executions

Start a pool of processes manipulating the trajectory
iterable = (traj for x in range(20))
pool = mp.Pool(processes=4)
Pass the trajectory and the function to the pool and execute it 20 times
pool.map_async(manipulate_multiproc_safe, iterable)

1.5. Examples 97

pypet Documentation, Release 0.1.0

pool.close()
Wait for all processes to join
pool.join()

Reload the data from disk and overwrite the existing result in RAM
traj.results.f_load(load_data=3)
Print the name of the last process the trajectory was manipulated by
print('The last process to manipulate the trajectory was: `%s`' % traj.last_process_name)

if __name__ == '__main__':
main()

1.5.3 BRIAN Examples

Short BRIAN Example

Download: example_07_brian_network.py

Find an example usage with BRIAN below.

__author__ = 'Robert Meyer'

import logging
import os # For path names being viable under Windows and Linux

from pypet.environment import Environment
from pypet.brian.parameter import BrianParameter,BrianMonitorResult
from pypet.utils.explore import cartesian_product
Don't do this at home:
from brian import *

We define a function to set all parameter
def add_params(traj):

"""Adds all necessary parameters to `traj`."""

We set the BrianParameter to be the standard parameter
traj.v_standard_parameter=BrianParameter
traj.v_fast_access=True

Add parameters we need for our network
traj.f_add_parameter('Sim.defaultclock', 0.01*ms)
traj.f_add_parameter('Net.C',281*pF)
traj.f_add_parameter('Net.gL',30*nS)
traj.f_add_parameter('Net.EL',-70.6*mV)
traj.f_add_parameter('Net.VT',-50.4*mV)
traj.f_add_parameter('Net.DeltaT',2*mV)
traj.f_add_parameter('Net.tauw',40*ms)
traj.f_add_parameter('Net.a',4*nS)
traj.f_add_parameter('Net.b',0.08*nA)
traj.f_add_parameter('Net.I',.8*nA)
traj.f_add_parameter('Net.Vcut',traj.VT+5*traj.DeltaT) # practical threshold condition
traj.f_add_parameter('Net.N',50)

eqs='''
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
'''
traj.f_add_parameter('Net.eqs', eqs)
traj.f_add_parameter('reset', 'vm=Vr;w+=b')

98 Chapter 1. pypet User Manual

http://briansimulator.org/

pypet Documentation, Release 0.1.0

This is our job that we will execute
def run_net(traj):

"""Creates and runs BRIAN network based on the parameters in `traj`."""

We want to give every network a fresh start
clear(True, True)

defaultclock.dt=traj.defaultclock

We let BRIAN grasp the parameters from the local namespace
C=traj.C
gL=traj.gL
EL=traj.EL
VT=traj.VT
DeltaT=traj.DeltaT
tauw=traj.tauw
a=traj.a
b=traj.b
I=traj.I
Vcut=traj.Vcut
N=traj.N

eqs=traj.eqs

Create the Neuron Group
neuron=NeuronGroup(N,model=eqs,threshold=Vcut,reset=traj.reset)
neuron.vm=EL
neuron.w=a*(neuron.vm-EL)
neuron.Vr=linspace(-48.3*mV,-47.7*mV,N) # bifurcation parameter

Run the network initially for 100 milliseconds
print 'Initial Run'
run(100*msecond,report='text') # we discard the first spikes

Create a Spike Monitor
MSpike=SpikeMonitor(neuron, delay = 1*ms)
Create a State Monitor for the membrane voltage, record from neurons 1-3
MStateV = StateMonitor(neuron,'vm',record=[1,2,3])

Now record for 500 milliseconds
print 'Measurement run'
run(500*msecond,report='text')

Add the BRAIN monitors
traj.v_standard_result = BrianMonitorResult
traj.f_add_result('SpikeMonitor',MSpike)
traj.f_add_result('StateMonitorV', MStateV)

def main():
Let's be very verbose!
logging.basicConfig(level = logging.INFO)

Let's do multiprocessing this time with a lock (which is default)
filename = os.path.join('hdf5', 'example_07.hdf5')
env = Environment(trajectory='Example_07_BRIAN',

filename=filename,
file_title='Example_07_Brian',
comment = 'Go Brian!',
dynamically_imported_classes=[BrianMonitorResult, BrianParameter],

1.5. Examples 99

pypet Documentation, Release 0.1.0

multiproc=True,
wrap_mode='QUEUE',
ncores=2)

traj = env.v_trajectory

1st a) add the parameters
add_params(traj)

1st b) prepare, we want to explore the different network sizes and different tauw time scales
traj.f_explore(cartesian_product({traj.f_get('N').v_full_name:[50,60],

traj.f_get('tauw').v_full_name:[30*ms,40*ms]}))

2nd let's run our experiment
env.f_run(run_net)

You can take a look at the results in the hdf5 file if you want!

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

Large scale BRIAN simulation

This example involves a large scale simulation of a BRIAN network Using BRIAN with pypet. The example is
taken from the Litwin-Kumar and Doiron paper from Nature neuroscience 2012.

It is split into three different modules: The clusternet.py file containing the network specification, the runscript.py
file to start a simulation (you have to be patient, BRIAN simulations can take some time), and the plotff.py to plot
the results of the parameter exploration, i.e. the Fano Factor as a function of the clustering parameter R_ee.

Download: clusternet.py

Download: runscript.py

Download: plotff.py

Clusternet

"""Module to run the clustered Neural Network Simulations as in Litwin-Kumar & Doiron 2012"""

__author__ = 'Robert Meyer'

import os
import numpy as np
import matplotlib.pyplot as plt

from pypet.trajectory import Trajectory
from pypet.brian.parameter import BrianParameter, BrianMonitorResult
from pypet.brian.network import NetworkComponent, NetworkRunner, NetworkAnalyser
from brian.stdunits import ms

from brian import NeuronGroup, rand, Connection, Equations, Network, SpikeMonitor, second, \
raster_plot, show, StateMonitor, clear, reinit_default_clock

def _explored_parameters_in_group(traj, group_node):
"""Checks if one the parameters in `group_node` is explored.

100 Chapter 1. pypet User Manual

http://briansimulator.org/
http://www.nature.com/neuro/journal/v15/n11/full/nn.3220.html

pypet Documentation, Release 0.1.0

:param traj: Trajectory container
:param group_node: Group node
:return: `True` or `False`

"""
explored = False
for param in traj.f_get_explored_parameters():

if param in group_node:
explored = True
break

return explored

class CNNeuronGroup(NetworkComponent):
"""Class to create neuron groups.

Creates two groups of excitatory and inhibitory neurons.

"""

@staticmethod
def add_parameters(traj):

"""Adds all neuron group parameters to `traj`."""
assert(isinstance(traj,Trajectory))

scale = traj.simulation.scale

traj.v_standard_parameter = BrianParameter

model_eqs = '''dV/dt= 1.0/tau_POST * (mu - V) + I_syn : 1
mu : 1
I_syn = - I_syn_i + I_syn_e : Hz

'''

conn_eqs = '''I_syn_PRE = x_PRE/(tau2_PRE-tau1_PRE) : Hz
dx_PRE/dt = -(normalization_PRE*y_PRE+x_PRE)*invtau1_PRE : 1
dy_PRE/dt = -y_PRE*invtau2_PRE : 1

'''

traj.f_add_parameter('model.eqs', model_eqs,
comment='The differential equation for the neuron model')

traj.f_add_parameter('model.synaptic.eqs', conn_eqs,
comment='The differential equation for the synapses. '

'PRE will be replaced by `i` or `e` depending '
'on the source population')

traj.f_add_parameter('model.synaptic.tau1', 1*ms, comment = 'The decay time')
traj.f_add_parameter('model.synaptic.tau2_e', 3*ms, comment = 'The rise time, excitatory')
traj.f_add_parameter('model.synaptic.tau2_i', 2*ms, comment = 'The rise time, inhibitory')

traj.f_add_parameter('model.V_th', 1.0, comment = "Threshold value")
traj.f_add_parameter('model.reset_func', 'V=0.0',

comment = "String representation of reset function")
traj.f_add_parameter('model.refractory', 5*ms, comment = "Absolute refractory period")

traj.f_add_parameter('model.N_e', int(4000*scale), comment = "Amount of excitatory neurons")
traj.f_add_parameter('model.N_i', int(1000*scale), comment = "Amount of inhibitory neurons")

traj.f_add_parameter('model.tau_e', 15*ms, comment = "Membrane time constant, excitatory")
traj.f_add_parameter('model.tau_i', 10*ms, comment = "Membrane time constant, inhibitory")

1.5. Examples 101

pypet Documentation, Release 0.1.0

traj.f_add_parameter('model.mu_e_min', 1.1, comment = "Lower bound for bias, excitatory")
traj.f_add_parameter('model.mu_e_max', 1.2, comment = "Upper bound for bias, excitatory")

traj.f_add_parameter('model.mu_i_min', 1.0, comment = "Lower bound for bias, inhibitory")
traj.f_add_parameter('model.mu_i_max', 1.05, comment = "Upper bound for bias, inhibitory")

@staticmethod
def _build_model_eqs(traj):

"""Computes model equations for the excitatory and inhibitory population.

Equation objects are created by fusing `model.eqs` and `model.synaptic.eqs`
and replacing `PRE` by `i` (for inhibitory) or `e` (for excitatory) depending
on the type of population.

:return: Dictionary with 'i' equation object for inhibitory neurons and 'e' for excitatory

"""
model_eqs = traj.model.eqs
post_eqs={}
for name_post in ['i','e']:

variables_dict ={}
new_model_eqs=model_eqs.replace('POST', name_post)
for name_pre in ['i', 'e']:

conn_eqs = traj.model.synaptic.eqs
new_conn_eqs = conn_eqs.replace('PRE', name_pre)
new_model_eqs += new_conn_eqs

tau1 = traj.model.synaptic['tau1']
tau2 = traj.model.synaptic['tau2_'+name_pre]

normalization = (tau1-tau2) / tau2
invtau1=1.0/tau1
invtau2 = 1.0/tau2

variables_dict['invtau1_'+name_pre] = invtau1
variables_dict['invtau2_'+name_pre] = invtau2
variables_dict['normalization_'+name_pre] = normalization
variables_dict['tau1_'+name_pre] = tau1
variables_dict['tau2_'+name_pre] = tau2

variables_dict['tau_'+name_post] = traj.model['tau_'+name_post]

post_eqs[name_post] = Equations(new_model_eqs, **variables_dict)

return post_eqs

def pre_build(self, traj, brian_list, network_dict):
"""Pre-builds the neuron groups.

Pre-build is only performed if none of the
relevant parameters is explored.

:param traj: Trajectory container

:param brian_list:

List of objects passed to BRIAN network constructor.

Adds:

Inhibitory neuron group

102 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Excitatory neuron group

:param network_dict:

Dictionary of elements shared among the components

Adds:

'neurons_i': Inhibitory neuron group

'neurons_e': Excitatory neuron group

"""
self._pre_build = not _explored_parameters_in_group(traj, traj.parameters.model)

if self._pre_build:
self._build_model(traj, brian_list, network_dict)

def build(self, traj, brian_list, network_dict):
"""Builds the neuron groups.

Build is only performed if neuron group was not
pre-build before.

:param traj: Trajectory container

:param brian_list:

List of objects passed to BRIAN network constructor.

Adds:

Inhibitory neuron group

Excitatory neuron group

:param network_dict:

Dictionary of elements shared among the components

Adds:

'neurons_i': Inhibitory neuron group

'neurons_e': Excitatory neuron group

"""
if not hasattr(self, '_pre_build') or not self._pre_build:

self._build_model(traj, brian_list, network_dict)

def _build_model(self, traj, brian_list, network_dict):
"""Builds the neuron groups from `traj`.

Adds the neuron groups to `brian_list` and `network_dict`.

"""

model = traj.parameters.model

Create the equations for both models

1.5. Examples 103

pypet Documentation, Release 0.1.0

eqs_dict = self._build_model_eqs(traj)

Create inhibitory neurons
eqs_i = eqs_dict['i']
neurons_i = NeuronGroup(N=model.N_i,

model = eqs_i,
threshold=model.V_th,
reset=model.reset_func,
refractory=model.refractory,
freeze=True,
compile=True,
method='Euler')

Create excitatory neurons
eqs_e = eqs_dict['e']
neurons_e = NeuronGroup(N=model.N_e,

model = eqs_e,
threshold=model.V_th,
reset=model.reset_func,
refractory=model.refractory,
freeze=True,
compile=True,
method='Euler')

Set the bias terms
neurons_e.mu =rand(model.N_e) * (model.mu_e_max - model.mu_e_min) + model.mu_e_min
neurons_i.mu =rand(model.N_i) * (model.mu_i_max - model.mu_i_min) + model.mu_i_min

Set initial membrane potentials
neurons_e.V = rand(model.N_e)
neurons_i.V = rand(model.N_i)

Add both groups to the `brian_list` and the `network_dict`
brian_list.append(neurons_i)
brian_list.append(neurons_e)
network_dict['neurons_e']=neurons_e
network_dict['neurons_i']=neurons_i

class CNConnections(NetworkComponent):
"""Class to connect neuron groups.

In case of no clustering `R_ee=1,0` there are 4 connection instances (i->i, i->e, e->i, e->e).

Otherwise there are 3 + 3*N_c-2 connections with N_c the number of clusters
(i->i, i->e, e->i, N_c conns within cluster, 2*N_c-2 connections from cluster to outside).

"""

@staticmethod
def add_parameters(traj):

"""Adds all neuron group parameters to `traj`."""
assert(isinstance(traj,Trajectory))

traj.v_standard_parameter = BrianParameter
scale = traj.simulation.scale

traj.f_add_parameter('connections.R_ee', 1.0, comment='Scaling factor for clustering')

traj.f_add_parameter('connections.clustersize_e', 80, comment='Size of a cluster')
traj.f_add_parameter('connections.strength_factor', 1.9,

104 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

comment='Factor for scaling cluster weights')

traj.f_add_parameter('connections.p_ii', 0.5,
comment='Connection probability from inhibitory to inhibitory')

traj.f_add_parameter('connections.p_ei', 0.5,
comment='Connection probability from inhibitory to excitatory')

traj.f_add_parameter('connections.p_ie', 0.5,
comment='Connection probability from excitatory to inhibitory')

traj.f_add_parameter('connections.p_ee', 0.2,
comment='Connection probability from excitatory to excitatory')

traj.f_add_parameter('connections.J_ii', 0.057/np.sqrt(scale),
comment='Connection strength from inhibitory to inhibitory')

traj.f_add_parameter('connections.J_ei', 0.045/np.sqrt(scale),
comment='Connection strength from inhibitory to excitatroy')

traj.f_add_parameter('connections.J_ie', 0.014/np.sqrt(scale),
comment='Connection strength from excitatory to inhibitory')

traj.f_add_parameter('connections.J_ee', 0.024/np.sqrt(scale),
comment='Connection strength from excitatory to excitatory')

def pre_build(self, traj, brian_list, network_dict):
"""Pre-builds the connections.

Pre-build is only performed if none of the
relevant parameters is explored and the relevant neuron groups
exist.

:param traj: Trajectory container

:param brian_list:

List of objects passed to BRIAN network constructor.

Adds:

Connections, amount depends on clustering

:param network_dict:

Dictionary of elements shared among the components

Expects:

'neurons_i': Inhibitory neuron group

'neurons_e': Excitatory neuron group

Adds:

Connections, amount depends on clustering

"""
self._pre_build = not _explored_parameters_in_group(traj, traj.parameters.connections)

self._pre_build = (self._pre_build and 'neurons_i' in network_dict and
'neurons_e' in network_dict)

if self._pre_build:
self._build_connections(traj, brian_list, network_dict)

def build(self, traj, brian_list, network_dict):

1.5. Examples 105

pypet Documentation, Release 0.1.0

"""Builds the connections.

Build is only performed if connections have not
been pre-build.

:param traj: Trajectory container

:param brian_list:

List of objects passed to BRIAN network constructor.

Adds:

Connections, amount depends on clustering

:param network_dict:

Dictionary of elements shared among the components

Expects:

'neurons_i': Inhibitory neuron group

'neurons_e': Excitatory neuron group

Adds:

Connections, amount depends on clustering

"""
if not hasattr(self, '_pre_build') or not self._pre_build:

self._build_connections(traj, brian_list, network_dict)

def _build_connections(self, traj, brian_list, network_dict):
"""Connects neuron groups `neurons_i` and `neurons_e`.

Adds all connections to `brian_list` and adds a list of connections
with the key 'connections' to the `network_dict`.

"""

connections = traj.connections

neurons_i = network_dict['neurons_i']
neurons_e = network_dict['neurons_e']

print 'Connecting ii'
self.conn_ii = Connection(neurons_i,neurons_i, state='y_i',

weight=connections.J_ii,
sparseness=connections.p_ii)

print 'Connecting ei'
self.conn_ei = Connection(neurons_i,neurons_e,state='y_i',

weight=connections.J_ei,
sparseness=connections.p_ei)

print 'Connecting ie'
self.conn_ie = Connection(neurons_e,neurons_i,state='y_e',

weight=connections.J_ie,
sparseness=connections.p_ie)

conns_list = [self.conn_ii, self.conn_ei, self.conn_ie]

106 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

if connections.R_ee > 1.0:
If we come here we want to create clusters

cluster_list=[]
cluster_conns_list=[]
model=traj.model

Compute the number of clusters
clusters = model.N_e/connections.clustersize_e
traj.f_add_derived_parameter('connections.clusters', clusters, comment='Number of clusters')

Compute outgoing connection probability
p_out = (connections.p_ee*model.N_e) / \

(connections.R_ee*connections.clustersize_e+model.N_e- connections.clustersize_e)

Compute within cluster connection probability
p_in = p_out * connections.R_ee

We keep these derived parameters
traj.f_add_derived_parameter('connections.p_ee_in', p_in ,

comment='Connection prob within cluster')
traj.f_add_derived_parameter('connections.p_ee_out', p_out ,

comment='Connection prob to outside of cluster')

low_index = 0
high_index = connections.clustersize_e
Iterate through cluster and connect within clusters and to the rest of the neurons
for irun in range(clusters):

cluster = neurons_e[low_index:high_index]

Connections within cluster
print 'Connecting ee cluster #%d of %d' % (irun, clusters)
conn = Connection(cluster,cluster,state='y_e',

weight=connections.J_ee*connections.strength_factor,
sparseness=p_in)

cluster_conns_list.append(conn)

Connections reaching out from cluster
A cluster consists of `clustersize_e` neurons with consecutive indices.
So usually the outside world consists of two groups, neurons with lower
indices than the cluster indices, and neurons with higher indices.
Only the clusters at the index boundaries project to neurons with only either
lower or higher indices
if low_index > 0:

rest_low = neurons_e[0:low_index]
print 'Connecting cluster with other neurons of lower index'
low_conn = Connection(cluster,rest_low,state='y_e',

weight=connections.J_ee,
sparseness=p_out)

cluster_conns_list.append(low_conn)

if high_index < model.N_e:
rest_high = neurons_e[high_index:model.N_e]
print 'Connecting cluster with other neurons of higher index'
high_conn = Connection(cluster,rest_high,state='y_e',

weight=connections.J_ee,
sparseness=p_out)

1.5. Examples 107

pypet Documentation, Release 0.1.0

cluster_conns_list.append(high_conn)

low_index=high_index
high_index+=connections.clustersize_e

self.cluster_conns=cluster_conns_list
conns_list+=cluster_conns_list

else:
Here we don't cluster and connection probabilities are homogeneous
print 'Connectiong ee'
self.conn_ee = Connection(neurons_e,neurons_e,state='y_e',

weight=connections.J_ee,
sparseness=connections.p_ee)

conns_list.append(self.conn_ee)

Add the connections to the `brian_list` and the network dict
brian_list.extend(conns_list)
network_dict['connections'] = conns_list

class CNNetworkRunner(NetworkRunner):
"""Runs the network experiments.

Adds two BrianParameters, one for an initial run, and one for a run
that is actually measured.

"""

def add_parameters(self, traj):
"""Adds all necessary parameters to `traj` container."""
par= traj.f_add_parameter(BrianParameter,'simulation.durations.initial_run', 500*ms,

comment='Initialisation run for more realistic '
'measurement conditions.')

par.v_annotations.order=0
par=traj.f_add_parameter(BrianParameter,'simulation.durations.measurement_run', 2000*ms,

comment='Measurement run that is considered for '
'statistical evaluation')

par.v_annotations.order=1

class CNFanoFactorComputer(NetworkAnalyser):
"""Computes the FanoFactor if the MonitorAnalyser has extracted data"""

def add_parameters(self, traj):
traj.f_add_parameter('analysis.statistics.time_window', 0.1 , 'Time window for FF computation')
traj.f_add_parameter('analysis.statistics.neuron_ids', tuple(range(500)),

comment= 'Neurons to be taken into account to compute FF')

@staticmethod
def _compute_fano_factor(spike_table, neuron_id, time_window, start_time, end_time):

"""Computes Fano Factor for one neuron.

:param spike_table:

DataFrame containing the spiketimes of all neurons

:param neuron_id:

108 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

Index of neuron for which FF is computed

:param time_window:

Length of the consecutive time windows to compute the FF

:param start_time:

Start time of measurement to consider

:param end_time:

End time of measurement to consider

:return:

Fano Factor (float) or
returns 0 if mean firing activity is 0.

"""
assert(end_time >= start_time+time_window)

Number of time bins
bins = (end_time-start_time)/float(time_window)
bins = int(np.floor(bins))

Arrays for binning of spike counts
binned_spikes = np.zeros(bins)

DataFrame only containing spikes of the particular neuron
spike_table_neuron = spike_table[spike_table.neuron==neuron_id]

for bin in range(bins):
We iterate over the bins to calculate the spike counts
lower_time = start_time+time_window*bin
upper_time = start_time+time_window*(bin+1)

Filter the spikes
spike_table_interval = spike_table_neuron[spike_table_neuron.spiketimes >= lower_time]
spike_table_interval = spike_table_interval[spike_table_interval.spiketimes < upper_time]

Add count to bins
spikes = len(spike_table_interval)
binned_spikes[bin]=spikes

var = np.var(binned_spikes)
avg = np.mean(binned_spikes)

if avg > 0:
return var/float(avg)

else:
return 0

@staticmethod
def _compute_mean_fano_factor(neuron_ids, spike_table, time_window, start_time, end_time):

"""Computes average Fano Factor over many neurons.

:param neuron_ids:

List of neuron indices to average over

1.5. Examples 109

pypet Documentation, Release 0.1.0

:param spike_table:

DataFrame containing the spiketimes of all neurons

:param time_window:

Length of the consecutive time windows to compute the FF

:param start_time:

Start time of measurement to consider

:param end_time:

End time of measurement to consider

:return:

Average fano factor

"""
ffs = np.zeros(len(neuron_ids))

for idx, neuron_id in enumerate(neuron_ids):
ff=CNFanoFactorComputer._compute_fano_factor(

spike_table, neuron_id, time_window, start_time, end_time)
ffs[idx]=ff

mean_ff = np.mean(ffs)
return mean_ff

def analyse(self, traj, network, current_subrun, subrun_list, network_dict):
"""Calculates average Fano Factor of a network.

:param traj:

Trajectory container

Expects:

`results.monitors.spikes_e`: Data from SpikeMonitor for excitatory neurons

Adds:

`results.statistics.mean_fano_factor`: Average Fano Factor

:param network:

The BRIAN network

:param current_subrun:

BrianParameter

:param subrun_list:

Upcoming subruns, analysis is only performed if subruns is empty,
aka the final subrun has finished.

:param network_dict:

Dictionary of items shared among componetns

110 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

"""
#Check if we finished all subruns
if len(subrun_list)==0:

spikes_e = traj.results.monitors.spikes_e

time_window = traj.parameters.analysis.statistics.time_window
start_time = float(traj.parameters.simulation.durations.initial_run)
end_time = start_time+float(traj.parameters.simulation.durations.measurement_run)
neuron_ids = traj.parameters.analysis.statistics.neuron_ids

mean_ff = self._compute_mean_fano_factor(
neuron_ids, spikes_e.spikes, time_window, start_time, end_time)

traj.f_add_result('statistics.mean_fano_factor', mean_ff, comment='Average Fano '
'Factor over all '
'exc neurons')

print 'R_ee: %f, Mean FF: %f' % (traj.R_ee, mean_ff)

class CNMonitorAnalysis(NetworkAnalyser):
"""Adds monitors for recoding and plots the monitor output."""

@staticmethod
def add_parameters(traj):

traj.f_add_parameter('analysis.neuron_records',(0,1,100,101),
comment='Neuron indices to record from.')

traj.f_add_parameter('analysis.plot_folder',
os.path.join('experiments', 'example_11', 'PLOTS'),
comment='Folder for plots')

traj.f_add_parameter('analysis.show_plots', 0, comment='Whether to show plots.')
traj.f_add_parameter('analysis.make_plots', 1, comment='Whether to make plots.')

def add_to_network(self, traj, network, current_subrun, subrun_list, network_dict):
"""Adds monitors to the network if the measurement run is carried out.

:param traj: Trajectory container

:param network: The BRIAN network

:param current_subrun: BrianParameter

:param subrun_list: List of coming subrun_list

:param network_dict:

Dictionary of items shared among the components

Expects:

'neurons_e': Excitatory neuron group

Adds:

'monitors': List of monitors

0. SpikeMonitor of excitatory neurons

1. StateMonitor of membrane potential of some excitatory neurons
(specified in `neuron_records`)

2. StateMonitor of excitatory synaptic currents of some excitatory neurons

1.5. Examples 111

pypet Documentation, Release 0.1.0

3. State monitor of inhibitory currents of some excitatory neurons

"""
if current_subrun.v_annotations.order == 1:

self._add_monitors(traj, network, network_dict)

def _add_monitors(self, traj, network, network_dict):
"""Adds monitors to the network"""

neurons_e = network_dict['neurons_e']

monitor_list = []

Spiketimes
self.spike_monitor = SpikeMonitor(neurons_e, delay=0*ms)
monitor_list.append(self.spike_monitor)

Membrane Potential
self.V_monitor = StateMonitor(neurons_e,'V',

record=list(traj.neuron_records))

monitor_list.append(self.V_monitor)

Exc. syn .Current
self.I_syn_e_monitor = StateMonitor(neurons_e, 'I_syn_e',

record=list(traj.neuron_records))
monitor_list.append(self.I_syn_e_monitor)

Inh. syn. Current
self.I_syn_i_monitor = StateMonitor(neurons_e, 'I_syn_i',

record=list(traj.neuron_records))
monitor_list.append(self.I_syn_i_monitor)

Add monitors to network and dictionary
network.add(*monitor_list)
network_dict['monitors'] = monitor_list

def _make_folder(self, traj):
"""Makes a subfolder for plots.

:return: Path name to print folder

"""
print_folder = os.path.join(traj.analysis.plot_folder,

traj.v_trajectory_name, traj.v_crun)
print_folder = os.path.abspath(print_folder)
if not os.path.isdir(print_folder):

os.makedirs(print_folder)

return print_folder

def _plot_result(self, traj, result_name):
"""Plots a state variable graph for several neurons into one figure"""
result = traj.f_get(result_name)
values = result.values
varname = result.varname
unit = result.unit
times = result.times

record = result.record

for idx, celia_neuron in enumerate(record):
plt.subplot(len(record), 1, idx+1)

112 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

plt.plot(times, values[idx,:])
if idx==0:

plt.title('%s' % varname)
if idx==1:

plt.ylabel('%s/%s' % (varname,unit))
if idx == len(record)-1:

plt.xlabel('t/ms')

def _print_graphs(self, traj):
"""Makes some plots and stores them into subfolders"""
print_folder = self._make_folder(traj)

If we use BRIAN's own raster_plot functionality we
need to sue the SpikeMonitor directly
raster_plot(self.spike_monitor, newfigure=True, xlabel='t', ylabel='Exc. Neurons',

title='Spike Raster Plot')

filename=os.path.join(print_folder,'spike.png')

print 'Current plot: %s ' % filename
plt.savefig(filename)
plt.close()

fig=plt.figure()
self._plot_result(traj, 'monitors.V')
filename=os.path.join(print_folder,'V.png')
print 'Current plot: %s ' % filename
fig.savefig(filename)
plt.close()

plt.figure()
self._plot_result(traj, 'monitors.I_syn_e')
filename=os.path.join(print_folder,'I_syn_e.png')
print 'Current plot: %s ' % filename
plt.savefig(filename)
plt.close()

plt.figure()
self._plot_result(traj, 'monitors.I_syn_i')
filename=os.path.join(print_folder,'I_syn_i.png')
print 'Current plot: %s ' % filename
plt.savefig(filename)
plt.close()

if not traj.analysis.show_plots:
plt.close('all')

else:
plt.show()

def analyse(self, traj, network, current_subrun, subrun_list, network_dict):
"""Extracts monitor data and plots.

Data extraction is done if all subruns have been completed,
i.e. `len(subrun_list)==0`

First, extracts results from the monitors and stores them into `traj`.

Next, uses the extracted data for plots.

:param traj:

Trajectory container

1.5. Examples 113

pypet Documentation, Release 0.1.0

Adds:

Data from monitors

:param network: The BRIAN network

:param current_subrun: BrianParameter

:param subrun_list: List of coming subruns

:param network_dict: Dictionary of items shared among all components

"""
if len(subrun_list)==0:

traj.f_add_result(BrianMonitorResult, 'monitors.spikes_e', self.spike_monitor,
comment = 'The spiketimes of the excitatory population')

traj.f_add_result(BrianMonitorResult, 'monitors.V', self.V_monitor,
comment = 'Membrane voltage of four neurons from 2 clusters')

traj.f_add_result(BrianMonitorResult, 'monitors.I_syn_e', self.I_syn_e_monitor,
comment = 'I_syn_e of four neurons from 2 clusters')

traj.f_add_result(BrianMonitorResult, 'monitors.I_syn_i', self.I_syn_i_monitor,
comment = 'I_syn_i of four neurons from 2 clusters')

print 'Plotting'

if traj.parameters.analysis.make_plots:
self._print_graphs(traj)

Runscript

"""Starting script to run a network simulation of the clustered network
by Litwin-Kumar and Doiron (Nature neuroscience 2012).

The network has been implemented using the *pypet* network framework.

"""

__author__ = 'Robert Meyer'

import numpy as np
import os # To allow path names work under Windows and Linux

from pypet.environment import Environment
from pypet.brian.network import NetworkManager, run_network

from clusternet import CNMonitorAnalysis, CNNeuronGroup, CNNetworkRunner, CNConnections,\
CNFanoFactorComputer

def main():
filename = os.path.join('hdf5', 'Clustered_Network.hdf5')
env = Environment(trajectory='Clustered_Network',

add_time=False,
filename=filename,
continuable=False,
lazy_debug=False,
multiproc=True,

114 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

ncores=2,
use_pool=False, # We cannot use a pool, our network cannot be pickled
wrap_mode='QUEUE',
overwrite_file=True)

#Get the trajectory container
traj = env.v_trajectory

We introduce a `meta` parameter that we can use to easily rescale our network
scale = 0.5 # To obtain the results from the paper scale this to 1.0
Be aware that your machine will need a lot of memory then!
traj.f_add_parameter('simulation.scale', scale,

comment='Meta parameter that can scale default settings. '
'Rescales number of neurons and connections strenghts, but '
'not the clustersize.')

We create a Manager and pass all our components to the Manager.
Note the order, CNNeuronGroups are scheduled before CNConnections,
and the Fano Factor computation depends on the CNMonitorAnalysis
clustered_network_manager = NetworkManager(network_runner=CNNetworkRunner(),

component_list=(CNNeuronGroup(), CNConnections()),
analyser_list=(CNMonitorAnalysis(),CNFanoFactorComputer()))

Add original parameters (but scaled according to `scale`)
clustered_network_manager.add_parameters(traj)

We need `tolist` here since our parameter is a python float and not a
numpy float.
explore_list = np.arange(1.0, 2.6, 0.2).tolist()
Explore different values of `R_ee`
traj.f_explore({'R_ee' : explore_list})

Pre-build network components
clustered_network_manager.pre_build(traj)

Run the network simulation
traj.f_store() # Let's store the parameters already before the run
env.f_run(clustered_network_manager.run_network)

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__=='__main__':
main()

Plotff

"""Script to plot the fano factor graph for a given simulation
stored as a trajectory to an HDF5 file.

"""

__author__ = 'Robert Meyer'

import os

1.5. Examples 115

pypet Documentation, Release 0.1.0

import matplotlib.pyplot as plt

from pypet import Trajectory, Environment
from pypet.brian.parameter import BrianMonitorResult, BrianParameter, BrianDurationParameter

def main():

filename = os.path.join('hdf5', 'Clustered_Network.hdf5')
If we pass a filename to the trajectory a new HDF5StorageService will
be automatically created
traj = Trajectory(filename=filename,

dynamically_imported_classes=[BrianDurationParameter,
BrianMonitorResult,
BrianParameter])

Let's create and fake environment to enable logging:
env = Environment(traj, do_single_runs=False)

Load the trajectory, but onyl laod the skeleton of the results
traj.f_load(index=-1, load_parameters=2, load_derived_parameters=2, load_results=1)

Find the result instances related to the fano factor
fano_dict = traj.f_get_from_runs('mean_fano_factor', fast_access=False)

Load the data of the fano factor results
ffs = fano_dict.values()
traj.f_load_items(ffs)

Extract all values and R_ee values for each run
ffs_values = [x.f_get() for x in ffs]
Rees = traj.f_get('R_ee').f_get_range()

Plot average fano factor as a function of R_ee
plt.plot(Rees, ffs_values)
plt.xlabel('R_ee')
plt.ylabel('Avg. Fano Factor')
plt.show()

Finally disable logging and close all log-files
env.f_disable_logging()

if __name__ == '__main__':
main()

1.6 Optimization Tips

1.6.1 Group your Results into Buckets/Sets

HDF5 has a hard time managing nodes with more than 20,000 children. Accordingly, file I/O and reading or
writing data can become very inefficient if one of your trajectory groups has more than 20,000 children. For
instance, this may happen to you if you explore many runs.

Suppose in every run you add the following result:

>>> traj.f_add_result('some_group.$.z', 42, comment='Universal answer.')

116 Chapter 1. pypet User Manual

pypet Documentation, Release 0.1.0

If this line is executed in each of your, let’s say 100,000 runs, the node some_group will have at least 100k
children. Hence, storage and loading becomes extremely slow.

The simplest way around this problem is to group your results into buckets using the ’$set’ wildcard, see also
More on Wildcards. Accordingly, your result addition becomes:

>>> traj.f_add_result('some_group.$set.$.z', 42, comment='Universal answer.')

Hence, even running 100k runs, some_group has only 100 children, each having only 1000 children themselves.

1.6.2 Huge Explorations

Yet, this approach will still fall short in case you have parameter exploration of more than 1,000,000 runs, because
loading meta-data of your trajectory may already take more than a minute. And this can be annoying. In case of
such huge explorations, I would advise you to tailor your parameter space and split it among several individual
trajectories.

1.6.3 Collect Small Results

In case you compute only small results during your runs, like a single value, but you do this quite often (100k+),
it might be more convenient to return the result instead of storing it into the trajectory directly. As a consequence,
you can collect these single values later on during the post-processing phase and store all of them together into a
single result. This has also been done for the estimated firing rate in the Tutorial.

1.6.4 Many and Fast Single Runs

In case you perform many single runs and milliseconds matter, use a pool (use_pool=True) in combination
with a queue (wrap_mode=’QUEUE’, see Multiprocessing) or the even faster - but potentially unreliable -
method of using a shared pipe (wrape_mode=’PIPE’). Moreover, to avoid re-pickling of unnecessary data of
your trajectory, store and remove all data that is not needed during single runs.

For instance, if you don’t really need config data during the runs, use the following before calling the environ-
ment’s f_run() function:

traj.f_store()
traj.config.f_remove(recursive=True)

This may save a couple of milliseconds each run because the config data no longer needs to be pickled and send
over the queue for storage.

Moreover, you can further avoid unnecessary pickling for the pool by setting freeze_pool_input=True.
Accordingly, the trajectory, your target function, and all additional arguments are passed to each pool process at
initialisation and not for each run individually. However, in order to use this feature, you must make sure that
neither your target function nor the additional arguments are mutated over the course of your runs.

1.7 FAQs and Known Issues

1.7.1 Tools

Q: How can I open and inspect an HDF5 file created by pypet?

A: For inspection I mostly use these two tools: HDFview and ViTables.

1.7. FAQs and Known Issues 117

http://www.hdfgroup.org/products/java/hdfview/
http://vitables.org/

pypet Documentation, Release 0.1.0

1.7.2 Performance Issues

Q: Exploring many runs (10k+) pypet becomes incredibly slow when it comes to loading and storing data!?

A: HDF5 has a hard time managing nodes with many children. To avoid this simply group your result
into buckets using the ‘$set’ wildcard. See also the Optimization Tips.

Q: pypet produces enormously large files of several Gigabytes despite them containing almost no data!?

A: Your HDF5 version is too old (most likely you are using 1.8.5). Please update to 1.8.9 or newer.

1.7.3 Infinite Loops

Q: My program does not terminate (i.e. it does not crash but runs forever) when I use pypet in multiprocessing
mode in combination with matplotlib and savefig!?

A: Matplotlib uses numpy for linear algebra operations, these operations are often necessary when
plotting. So, to solve the issues take a look at the next question.

Q: My program does not terminate (i.e. it does not crash but runs forever) when I use pypet in multiprocessing
mode in combination with numpy and linalg.inv or some similar function!?

A: Numpy uses openBLAS (http://www.openblas.net/) to solve linear algebra operations. Yet, there
are many issues with openBLAS and Python multiprocessing. To resolve this set the environment
variables OPENBLAS_NUM_THREADS=1 and OMP_NUM_THREADS=1.

1.7.4 Crashes and Errors

Q: GitPython does not work. If I specify my repository git_repository=’./myrepo’, pypet crashes with
an AttributeError: ’Repo’ object has no attribute ’index’. What should I do?

A: You probably have an older version of GitPython (likely 0.1.7), install a newer one.
If pip install GitPython still downloads the old version, try pip install --pre
GitPython or if you simply want to upgrade, use pip install --upgrade --pre
GitPython.

Q: My program crashes with TypeError: [..] dtype: float64 its type is <class
’pandas.core.series.Series’>.!?

A: You are using pandas version 0.13.x. Unfortunately, pandas performs some unwanted upcasting
that cannot be handled by pypet (see https://github.com/pydata/pandas/issues/6526/). This unwanted
upcasting did not happen in previous pandas versions and will be, or more precisely, has already been
removed in the next pandas version. So either downgrade pandas to version 0.12.0 or upgrade to
0.14.1 or newer.

Q: My program crashes if I try to store a Trajectory containing an ArrayParameter!?

A: Look at the previous answer, you are using pandas 0.13.x, please up or downgrade your pandas
package.

1.7.5 Other Problems

Q: If I create and environment in an IPython console everything becomes gibberish!?

A: Pypet will redirect stdout to files. Unfortunately, this messes with the IPython console. To
avoid this simply disable logging of this stream setting the log_stdout option to False: env =
Environment(..., log_stdout=False, ...).

Q: I have large data sets that are not stored if I use multiprocessing and the lock wrapping!?

A: Probably, you use an older HDF5 version (< 1.8.7) that does not allow simultaneous openings
of a single HDF5 file. Either install a newer version or switch to queue wrapping.

118 Chapter 1. pypet User Manual

http://www.openblas.net/
https://github.com/pydata/pandas/issues/6526/

CHAPTER 2

Miscellaneous

2.1 Publication Information

2.1.1 Citation Policy

If you use pypet in your research, it would be very kind of you to cite this in your amazing work. A research
article about pypet is currently in preparation which will be the basis for citations in the future. In the meantime
you can cite the software as given below. For bibtex you can use:

@misc{rmeyer2015,
author = {Robert Meyer and Klaus Obermayer},
year = {2015},
title = {pypet: {T}he {P}ython {P}arameter {E}xploration {T}oolkit},
note = {\url{http://pypet.readthedocs.org/}},
institution = {Technische Universität Berlin, Neural Information Processing Group}

}

Otherwise you can cite it as:

• Robert Meyer and Klaus Obermayer. pypet: The Python Parameter Exploration Toolkit, 2015.
http://pypet.readthedocs.org/.

2.1.2 Brain Days and EuroPython Poster

There is a poster about pypet that was shown at the Berlin Brain Days 2013 and the EuroPython 2014.

119

http://pypet.readthedocs.org/
http://www.neuroscience-berlin.de/bbd/
https://ep2014.europython.eu/en/

pypet Documentation, Release 0.1.0

Download:

• CLICK ME for PDF DOWNLOAD

• CLICK ME for PNG DOWNLOAD

2.2 Acknowledgments

• Thanks to Robert Pröpper and Philipp Meier for answering all my python questions

You might want to check out their SpykeViewer tool for visualization of MEA recordings and
NEO data

• Thanks to Owen Mackwood for his SNEP toolbox which provided the initial ideas for this project

• Thanks to the BCCN Berlin, the Research Training Group GRK 1589/1, and the Neural Information Pro-
cessing Group for support

2.3 Tests

Tests can be found in pypet/tests. Note that they involve heavy file IO and you need privileges to write files to a
temporary folder. The test suites will make use of the tempfile.gettempdir() function to create such a
temporary folder.

Each test module can be run individually, for instance $ python trajectory_test.py.

You can run all tests with $ python all_tests.py which can also be found under pypet/tests. You can
pass additional arguments as $ python all_tests.py -k --folder=myfolder/ with -k to keep
the HDF5 and log files created by the tests (if you want to inspect them, otherwise they will be deleted after the
completed tests), and --folder= to specify a folder where to store the HDF5 files instead of the temporary one.
If the folder cannot be created, the program defaults to tempfile.gettempdir().

If you do not want to browse to your installation folder, you can also download the all_tests.py script.

120 Chapter 2. Miscellaneous

https://github.com/rproepp/spykeviewer
http://pythonhosted.org/neo/index.html
http://www.bccn-berlin.de/Home
http://www.ni.tu-berlin.de/
http://www.ni.tu-berlin.de/

pypet Documentation, Release 0.1.0

Running all tests can take up to 20 minutes and might temporarily take up to 1 GB of disk space. The test suite
encompasses more than 700 tests and has a code coverage of about 90%!

pypet is constantly tested with Python 2.6, 2.7, 3.3 and 3.4 for Linux using Travis-CI. Testing for Windows
platforms is performed via Appveyor. The source code is available at github.com/SmokinCaterpillar/pypet.

2.4 Changelog

pypet 0.1b.12

• Renaming of the MultiprocContext’s start function to f_start

• BUG FIX: Correct lock acquiring for multiprocessing with StorageContextManager

• BUG FIX: v_full_copy is now False by default

• BUG FIX: v_full_copy is no longer automatically set to True when using freeze_pool_input.

• New consecutive_merge parameter for f_merge to allow faster merging of several trajectories.

pypet 0.1b.11

• If one wants the old logging method, log_config should not be specified, i.e. setting it to None is no longer
sufficient‘

• BUG FIX: Connection loss between the queue manager and the pool/processes has been resolved. This
caused a minor slowing down of multiprocessing using a queue.

• New freeze_pool_input functionality for faster starting of single runs if using a pool.

pypet 0.1b.10

• New v_crun_ property simply returning ’run_ALL’ if v_crun is None.

• BUG FIX: Removed recursive evaluation due to usage of itertools.chain during recursive node traversal

• max_depth is now also supported by f_store, f_store_child, f_load, f_load_child

• Loading and Storing internally are no longer truly recursive but iteratively handled.

• New v_auto_run_prepend property of the trajectory to switch off auto run name prepending if desired.

• The trajectory no longer relies on evil eval to construct a class. Instead it relies on the global scope.

• Better counting of loading and storing nodes to display rate in nodes/s

• BUG FIX: Minor bug in the progressbar has been fixed to detect automatic resets.

• Now support for non-nested empty containers: Empty dictionary, empty list, empty tuple and empty numpy
array. All of them supported by the ArrayParameter and normal Results.

• Support for Sparse matrices containing NO data (i.e. only zeros).

• Performance optimization for storage and loading

• Improved test handling and parsing in pypet.tests

• Environment now supports git_fail option to fail if there are not committed changes instead of triggering a
new commit.

• Users can now define their own functions to produce run-names

• Likewise users can define their onw wildcards

• The lazy version of adding elements (traj.par.x = 42, ‘A comment’) now needs to be turned on by the user
via (‘traj.v_lazy_adding = True) before it can be used.

• HDF5_STRCOL_MAX_ARRAY_LENGTH has been renamed to HDF5_STRCOL_MAX_RANGE_LENGTH

• The summary tables have been shortened. Now there’s no distinction anymore between the actual runs and
everything else.

2.4. Changelog 121

https://travis-ci.org/SmokinCaterpillar/pypet
https://ci.appveyor.com/project/SmokinCaterpillar/pypet
https://github.com/SmokinCaterpillar/pypet

pypet Documentation, Release 0.1.0

• Moreover, data added to summary tables is no longer deleted. There also exists a maximum length for these
tables (1000).

• The overview about the explored parameters in each run has been removed (due to size)

• Summary tables are now only based on the comments not the names!

• One can pass an estimate for memory that each run needs to better protect the memory cap.

• All tree nodes except the trajectory now use __slots__ for faster and more compact creation.

• You can now request to load a trajectory without run_information to save time for huge trajectories

• Trajectories use ordered dictionaries to remember what was added during a single run. Accordingly, now
every data added during a single run regardless if they were added below a group run_XXXXXXXX is stored.

• BUG FIX: The ‘QUEUE’ wrapping no longer waits for chunks of data, but starts storing immediately. Thus,
if you have fast simulations, the storage service no longer waits until the end of you simulation before it
starts storing data. In order to avoid overhead, the hdf5 is simply kept open until the queue is closed.

• BUG FIX: If log_stdout=True, the original stream is restored instead of sys.__stdout__. Thus, using an-
other Python interpreter with a redirection of stdout and calling f_disable_logging no longer disables print
completely.

• Refactored ‘QUEUE’ wrapping. The user can now decide the maximum size of the Storage Queue.

• CAP values are now in %, so choose values between 0.0 and 100.0

• BUG FIX: Links removed during single runs are now no longer stored

• BUG FIX: pypet. is no longer prepended to unpickled logger names. Accordingly, pypet logger names are
now fully qualified names like pypet.trajectory.Trajectory.

pypet 0.1b.9

• BUG FIX: Fixed backwards compatibility

• BUG FIX: Metadata is loaded only once

• Results no longer support the v_no_data_string property

• Data of Results is no longer sorted in case of calling f_val_to_string

• In accordance with the python default to call __repr__ for displaying contained objects, f_val_to_str calls
repr on the contained data in parameters and results.

• Added informative __repr__ for the most commonly used classes

• The (annoyingly long) keyword dynamically_imported_classes is changed to dynamic_imports. For back-
wards compatibility, the old keyword can still be used.

• New f_get_default method, now one can specify a default value that should be returned if the requested data
is not found in the trajectory

• progressbar displays the run and remaining time.

• New LINK features allowing group nodes to refer to other parts of the tree

• The SingleRun has been removed and all interactions are with real Trajectory objects, but the API remained
the same.

• All pypet relevant imported packages will be stored by the trajectory

• Internally the queue no longer needs to be re-passed to the QueueSender, allowing for easier custom multi-
processing

• New MultiprocessWrapper (aka a light-weight environment for multiprocessing) for custom multiprocess-
ing

• StorageServices provide an multiproc_safe attribute to enable the user to check if they work in a
multi-process safe environment

• Environments can be used as context managers to disable the logging to files after the experiment.

122 Chapter 2. Miscellaneous

pypet Documentation, Release 0.1.0

• Environments provide the v_log_path property to get the current log path

• BUG FIX: Trajectories with only a single explored parameter can now be merged several times

• Backwards search no longer supported!

• f_get_all now supports shortcuts and abbreviations like crun or par

• $ always translates to the run the trajectory is set to, also for adding new items to the tree

• If the current run is not set, traj.v_crun is set to None

• Moreover, f_iter_nodes and f_iter_leaves is no longer affected by the setting of a current run
and always return all nodes and leaves

• The iteration functions from above now allow for a predicate function to filter potential nodes

• Storing a leaf or a group via traj.f_store_item(item, overwrite=True) now also replaces
all annotations and comments

• Passing overwrite_file=True to an environment will overwrite the hdf5 file.

• remove_empty_groups is no longer supported

• All messages logged by pypet are now no longer using the root logger but one called ‘pypet’.

• Better customization of logging. The user can now pass a list of logger_names and corresponding
log_levels which are logged to files in the log_path.

• The environment no longer adds config information about hdf5 to the trajectory directly. This is now done
by the service itself.

• The keyword arguments passed to the environment regarding the storage service are no longer handled by
the environment but are directly passed to the service.

• BUG FIX: Fixed merging of result summaries that are only found in one trajectory

• BUG FIX: Log files are now closed when the handlers are removed

• BUG FIX: max_depth is now really always in relation to the start node and not in relation to intermediate
results

• API change for f_migrate to match new concept of storage service

• Short function names for item additions like f_apar besides f_add_parameter.

• Abbreviations like par and dpar can now also be used for item creation and are always translated

• To streamline the API you can now no longer specify the name of backup files for merging

• Locked parameters can no longer be loaded and must be unlocked before.

• Parameters are no longer required to implement __len__ because it can be ambiguous, instead they must
implement f_get_range_length function.

• BUG FIX: crun is now also accepted for adding of data and not only for requests

• Setting ncores=0 lets pypet determine the number of CPUs automatically (requires psutil).

pypet 0.1b.8

• Support for python 3.3 and 3.4!

• Proper handling of unicode strings (well, see above^^)

• Checking if names of leaf and group nodes only contain alphanumeric characters

• PickleParameter and PickleResult now explicitly store the pickle protocol because retrieval from the pickle
dump is not always possible in python 3.

• Children of groups are no longer listed via __dir__ in case of debugging to prevent unwanted locking.

• Better support for PyTables 2 and 3 with same code base.

• pypet and pypet.brian now provide the __all__ list.

2.4. Changelog 123

pypet Documentation, Release 0.1.0

pypet 0.1b.7

• StreamToLogger has moved to the pypetlogging.py module. The mplogging module was deleted.

• The Network Manager now accepts custom network constructors

• A SingleRun can now provide a v_filename and v_as_run property. Both cannot be changed and the latter
simply returns the name of the run.

• Better testing on travis

• Better support for pandas 0.14.1

• Now you can import most of the objects directly from the pypet package, e.g. from pypet import
Trajectory instead of from pypet.trajectory import Trajectory.

pypet 0.1b.6

• The storage service prints status updates for loading and storing trees

• v_as_run is not longer None for a trajectory but run_ALL

• The Queue storage writer now stores batches of single runs to avoid re-opening of files as much as possible

• Faster Loading of data

• Support for PyTables 3.1.1

• pypet stores the name of the main script as a config parameter

• Data of Parameters can be accessed via .data or param[’data’]. Same holds for results that only contain a
single data item.

• Parameters provide the function f_get_default to return the default value if the parameter is not empty.

• Large dictionaries and Object Tables are now split into chunks of 512 items

• In case an object table has more than 32 columns, another table is created to store the data item types (which
is faster than storing all of the types as hdf5 node attributes)

pypet 0.1b.5

• New auto load feature

• BUG FIX: When parameters are emptied, the default value is set to None (and no longer kept)

• Now items are only saved once, if the node already exist on disk, storage is refused (Previously new data
was added if it was not within the leaf before, but this can lead to strange inconsistencies).

• BUG FIX: f_has_children of a group node, now returns the correct result

• Refactored continuing of trajectories. Now this is based on dill and works also with data that cannot be
pickled. f_continue_run is renamed f_continue to emphasize this change in API

• Picking the search strategy and using v_check_uniqueness is no longer supported. Sorry for the inconve-
nience. So forward search will always check if it finds 2 nodes with the same name within the same depth,
and skip search if the next tree depth is entered.

• f_contains of group nodes has per default shortcuts=False

• There exists now the abstract class HasLogger in pypetlogging.py that establishes a unified logging frame-
work

• Likewise the loggers of all network components are now private objects _logger and so is the function
_set_logger.

• BUG FIX: f_get_run_information now works without passing any arguments

• Trajectories no longer accept a file_tile on initialisation

• One can now decide if trajectories should be automatically stored and if data should be cleaned up after
every run

124 Chapter 2. Miscellaneous

pypet Documentation, Release 0.1.0

• BUG FIX: Storage of individual items during a single run do no longer require a full storage of the single
run container.

• If automatic storage is enabled, trajectories are now stored at the end of the experiment, no longer before
the starting of the single runs

• You can use the $ character to decide where the HDF5 file tree should branch out for the individual runs

• v_creator_name is now called v_run_branch (since single runs can also create items that are not part of a
run branch, so this is no longer misleading‘.

• Results and parameters now issue a warning when they have been stored and you change their data

• Parameters now have a property v_explored which is True for explored parameters even if the range has
been removed

• By default backwards_search is turned off!

• Brian parameters no longer store the storage_mode explicitly

• BUG FIX: Wildcard character now always defaults to run_ALL if trajectory is not set to particular run

• BUG FIX: Now names with XXXrun_ are again allowed only run_ are forbidden.

pypet 0.1b.4

• Annotations and Results now support __setitem__, which is analogue to f_get and f_set

• Group Nodes can now contain comments as well

• Comments are only stored to HDF5 if they are not the empty string

• Large Overview Tables are off by default

• BrianDurationParameter was removed and the annotations are used instead. Use a normal BrianParameter
and instead of v_order use v_annotations.order

• The user is advised to use environment.f_run(manager.run_network), instead of environ-
ment.f_run(run_network, manager)

• Now there is the distinction between small, large, and summary tables

• BrianMonitorResult: Mean and variance values of State and MultiState Monitors are only extracted if they
were recorded (which for newer BRIAN versions is only the case if you do NOT record traces)

• Log Level can be passed to environment

• BUG FIX: Scalars are no longer autoconverted by the storage service to zero-length numpy arrays

• Names of loggers have been shortened

• The trajectory now contains the functions f_delete_item and f_delete_items to erase stuff from disk.
f_remove_items and f_remove_item no longer delete data from disk.

• Loading and deletions of items can now be made with SingleRuns as well.

• f_iter_nodes now iterates by default recursively all nodes

• A group node now supports __iter__ which simply calls f_iter_nodes NON recursively

• The structure of the trees are slightly changed. Results and derived parameters added with the trajectory are
no longer assigned the prefix trajectory. Results and derived parameters added during single runs are now
sorted into runs.run_XXXXXXXXX.

• Useless shortcuts have been removed.

• New Backwards search functionality

• New f_get_all functionality to find all items in a tree matching a particular search string

• Pandas Series and Panels are now supported, too!

• Now Pypet allows compression of HDF5 files, this can yield a massive reduction in memory space.

2.4. Changelog 125

pypet Documentation, Release 0.1.0

• tr, cr, current_run, param, dparam are no longer supported as a shortcuts

• __getitem__ is equivalent to __getattr__

• Now one can specify a maximum depth for accessing items.

• Now one can specify if shortcuts, i.e. hopping over parts of the tree, are allowed.

• New trajectroy attributes v_backwards_search, v_max_depth, v_shortcuts and v_iter_recursive.
v_iter_recursive specifies the behavior of __iter__.

• __contains__ now greps is arguments from the attributes v_max_depth and v_shortcuts.

• log_stdout parameter of the Environment determines if STDOUT and STDERROR will be logged to files.
Can be disabled to allow better usage of pypet with interactive consoles.

• git commits only happen on changes and not all the time

• Now one can specify CPU, RAM and Swap cap levels if no pool is used. If these cap levels are crossed
pypet won’t start new processes.

• f_load now has an argument load_all to quickly load all subtrees with the same setting. Also f_load now
accepts a filename as well

• New post-processing and pipeline modes!

pypet 0.1b.3

• BUG FIX: Now f_run and f_continue_run of an environment return the results produced by runfunc

• You can enforce a type convert for exploration

• Added lazy_debug option for the environment

• If you don’t specify a filename, the environment defaults to a file with the name of the trajectory

• New multiprocessing mode (use_pool=False for environment) to spawn individual processes for each run.
Useful if data cannot be pickled.

• New Brian framework with NetworkManager, NetworkComponent, NetworkAnalyser, NetworkRunner and
DurationParameter

• Components, Analysers and the network runner of the manager are now publicly available

• Every component now provides the function set_logger to enable logging and instantiate a logger for
self.logger

pypet 0.1b.2

• DefaultReplacementError is now called PresettingError

• Now the runtime of single runs is measured and stored.

• __getitem__ of the trajectory always returns the instance and fast access is not applied

• PickleResult and PickleParameter support the choice of protocol

• Explored Sparse matrices are stored under a slightly different name to disk.

• BUG FIX: BFS works properly

• BUG FIX: f_iter_runs is now affected if f_as_run is chosen

• Annotations support __iter__

• Annotations support __getitem__

• BrianMonitorResult, the property and columns ‘times’ for the Spike and StateSpikeMonitor has been re-
named ‘spiketimes’.

• Results support __iter__

126 Chapter 2. Miscellaneous

pypet Documentation, Release 0.1.0

• BrianMonitorResult, the name of state variables in array mode is changed to varname+’_%Xd’, instead of
varname+’_idx%08d’, and ‘spiketimes_%08d’ to ‘spiketimes_%Xd’ and X is chosen in accordance with
the number of neurons

• BUG FIX: nested_equal now supports Object Tables containing numpy arrays

• Better categorizations of the utility functions

• Comments are no longer limited in size

• New Brian Result

• Storage Service - in case of purging - now sets the comment to the result with the lowest index, in case of
multiprocessing.

• Old API names are kept, but emit a depricated warning.

• The exploration array is now termed range. Accordingly, the function f_is_array is renamed f_has_range
and f_get_array renamed to f_get_range.

• v_leaf renamed to v_is_leaf

• f_is_root renamed to v_is_root and changed to property

• v_fast_accessible renamed to f_supports_fast_access and changed to function

• v_parameter changed to v_is_parameter

pypet 0.1b.1

• Support for long types

• Documentation for the f_find_idx function

• The parameters trajectory_name and trajectory_index in f_load have been renamed to name and index

pypet 0.1b.0

• Group nodes support __getitem__

• SparseResult

• If you merge a trajectory, all environment settings of both are kept.

• More information about the environment is added to the trajectory

• BUG FIX:

Recall of trajectory comments from disks yielded numpy strings instead of python strings This could cause
trouble if the comment is empty!

• Git Integration, you can now make autocommits for every experiment

• New Sparse Parameter, for scipy sparse matrices

• BUG FIX: Loading of Trajectory metadata, now v_time is loaded correctly

• BUG FIX: Expand no longer repeats already run experiments

• More fine grain overview tables

• Comments for runs are only added once and not every run

• The overview tables are now found in the group overview

• Test are operating in a temp directory

• Now you can have fast access with results if they contain only a single entry with the name of the result

• New trajectory function f_as_run that makes the trajectory belief it is a particular single run and results and
derived parameters of other runs are blinded out.

• Every group node now knows how to store and load itself via f_load and f_store.

2.4. Changelog 127

pypet Documentation, Release 0.1.0

• Storage of data is now analogous to loading with constants in (1,2,3). 1 Storing data only of items
not been stored before, 2 for storing data as previously known. 3 For overwriting data. For instance,
traj.f_load(store_data=3) overwrites all data on disk.

• f_update_skeleton is now f_load_skeleton to be more in line with naming scheme.

• setattr no longer supports shortcuts, i.e. traj.x = 4 only works if x is directly below the trajectory root.

• Using setattr with a tuple of exactly length 2 whereas the second element is a string, sets the value as well
as a comment

pypet 0.1a.6

• BUG FIX: (HDF5StorageService): storing a trajectory several times increased run and info table

pypet 0.1a.5

• Removed unnecessary imports

• Better documentation

pypet 0.1a.4

• Adding positional results will add them with the result name

pypet 0.1a.3

• Better handling of filenames, now relative paths are considered

pypet 0.1a.2

• Added automatic version grapping in setup.py

pypet 0.1a.1

• BaseParameter supports now __getitem__ if it is an array

128 Chapter 2. Miscellaneous

CHAPTER 3

Library Reference

3.1 The Environment

genindex

3.1.1 Quicklinks

Environment The environment to run a parameter exploration.
f_run Runs the experiments and explores the parameter space.
f_continue Resumes crashed trajectories.
f_pipeline You can make pypet supervise your whole experiment by defining a pipeline.
v_trajectory The trajectory of the Environment

3.1.2 Environment

Module containing the environment to run experiments.

An Environment provides an interface to run experiments based on parameter exploration.

The environment contains and might even create a Trajectory container which can be filled with parameters
and results (see pypet.parameter). Instance of this trajectory are distributed to the user’s job function to
perform a single run of an experiment.

An Environment is the handyman for scheduling, it can be used for multiprocessing and takes care of organiza-
tional issues like logging.

class pypet.environment.Environment(trajectory=’trajectory’, add_time=True, com-
ment=’‘, dynamic_imports=None, wild-
card_functions=None, automatic_storing=True,
log_config=’DEFAULT’, log_stdout=(‘STDOUT’,
20), report_progress=(5, ‘pypet’, 20), mul-
tiproc=False, ncores=1, use_pool=False,
freeze_pool_input=False, queue_maxsize=-
1, cpu_cap=100.0, memory_cap=100.0,
swap_cap=100.0, wrap_mode=’LOCK’,
clean_up_runs=True, immediate_postproc=False,
continuable=False, continue_folder=None,
delete_continue=True, storage_service=<class
‘pypet.storageservice.HDF5StorageService’>,
git_repository=None, git_message=’‘, git_fail=False,
sumatra_project=None, sumatra_reason=’‘,
sumatra_label=None, do_single_runs=True,
lazy_debug=False, **kwargs)

129

pypet Documentation, Release 0.1.0

The environment to run a parameter exploration.

The first thing you usually do is to create and environment object that takes care about the running of the
experiment. You can provide the following arguments:

Parameters

•trajectory – String or trajectory instance. If a string is supplied, a novel trajectory
is created with that name. Note that the comment and the dynamically imported classes
(see below) are only considered if a novel trajectory is created. If you supply a trajectory
instance, these fields can be ignored.

•add_time – If True the current time is added to the trajectory name if created new.

•comment – Comment added to the trajectory if a novel trajectory is created.

•dynamic_imports – Only considered if a new trajectory is created. If you’ve written
custom parameters or results that need to be loaded dynamically during runtime, the
module containing the class needs to be specified here as a list of classes or strings
naming classes and there module paths.

For example: dynamic_imports = [’pypet.parameter.PickleParameter’, MyCustomPa-
rameter]

If you only have a single class to import, you do not need the list brackets: dy-
namic_imports = ‘pypet.parameter.PickleParameter’

•wildcard_functions – Dictionary of wildcards like $ and corresponding func-
tions that are called upon finding such a wildcard. For example, to replace the $ aka
crun wildcard, you can pass the following: wildcard_functions = {(’$’,
’crun’): myfunc}.

Your wildcard function myfunc must return a unique run name as a function of a given
integer run index. Moreover, your function must also return a unique dummy name for
the run index being -1.

Of course, you can define your own wildcards like wildcard_functions = {(‘$mycard’,
‘mycard’): myfunc)}. These are not required to return a unique name for each run index,
but can be used to group runs into buckets by returning the same name for several run
indices. Yet, all wildcard functions need to return a dummy name for the index ‘-1.

•automatic_storing – If True the trajectory will be stored at the end of the simu-
lation and single runs will be stored after their completion. Be aware of data loss if you
set this to False and not manually store everything.

•log_config – Can be path to a logging .ini file specifying the logging configuration.
For an example of such a file see Logging. Can also be a dictionary that is accepted by
the built-in logging module. Set to None if you don’t want pypet to configure logging.

If not specified, the default settings are used. Moreover, you can manually tweak the
default settings without creating a new ini file. Instead of the log_config parameter, pass
a log_folder, a list of logger_names and corresponding log_levels to fine grain the
loggers to which the default settings apply.

For example:

log_folder=’logs’, logger_names=’(’pypet’,
’MyCustomLogger’), log_levels=(logging.ERROR,
logging.INFO)

•log_stdout – Whether the output of stdout should be recorded into the log files.
Disable if only logging statement should be recorded. Note if you work with an in-
teractive console like IPython, it is a good idea to set log_stdout=False to avoid
messing up the console output.

Can also be a tuple: (‘mylogger’, 10), specifying a logger name as well as a log-level.
The log-level defines with what level stdout is logged, it is not a filter.

130 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•report_progress – If progress of runs and an estimate of the remaining
time should be shown. Can be True or False or a triple (10, ’pypet’,
logging.Info) where the first number is the percentage and update step of the
resulting progressbar and the second one is a corresponding logger name with which
the progress should be logged. If you use ‘print’, the print statement is used instead.
The third value specifies the logging level (level of logging statement not a filter) with
which the progress should be logged.

Note that the progress is based on finished runs. If you use the QUEUE wrapping in
case of multiprocessing and if storing takes long, the estimate of the remaining time
might not be very accurate.

•multiproc – Whether or not to use multiprocessing. Default is False. Besides the
wrap_mode (see below) that deals with how storage to disk is carried out in case of
multiprocessing, there are two ways to do multiprocessing. By using a fixed pool of
processes (choose use_pool=True, default option) or by spawning an individual process
for every run and parameter combination (use_pool=False). The former will only spawn
not more than ncores processes and all simulation runs are sent over to to the pool one
after the other. This requires all your data to be pickled.

If your data cannot be pickled (which could be the case for some BRIAN networks, for
instance) choose use_pool=False (also make sure to set continuable=False). This will
also spawn at most ncores processes at a time, but as soon as a process terminates a new
one is spawned with the next parameter combination. Be aware that you will have as
many logfiles in your logfolder as processes were spawned. If your simulation returns
results besides storing results directly into the trajectory, these returned results still need
to be pickled.

•ncores – If multiproc is True, this specifies the number of processes that will be
spawned to run your experiment. Note if you use QUEUE mode (see below) the queue
process is not included in this number and will add another extra process for storing.
If you have psutil installed, you can set ncores=0 to let psutil determine the number of
CPUs available.

•use_pool – Whether to use a fixed pool of processes or whether to spawn a new pro-
cess for every run. Use the former if you perform many runs (50k and more) which
are in terms of memory and runtime inexpensive. Be aware that everything you use
must be picklable. Use the latter for fewer runs (50k and less) and which are longer
lasting and more expensive runs (in terms of memory consumption). In case your op-
erating system allows forking, your data does not need to be picklable. If you choose
use_pool=False you can also make use of the cap values, see below.

•freeze_pool_input – Can be set to True if the run function as well as all addi-
tional arguments are immutable. This will prevent the trajectory from getting pickled
again and again. Thus, the run function, the trajectory as well as all arguments are
passed to the pool at initialisation.

•queue_maxsize – Maximum size of the Storage Queue, in case of ’QUEUE’ wrap-
ping. 0 means infinite, -1 (default) means the educated guess of 2 * ncores.

•cpu_cap – If multiproc=True and use_pool=False you can specify a maximum cpu
utilization between 0.0 (excluded) and 100.0 (included) as fraction of maximum capac-
ity. If the current cpu usage is above the specified level (averaged across all cores),
pypet will not spawn a new process and wait until activity falls below the threshold
again. Note that in order to avoid dead-lock at least one process will always be running
regardless of the current utilization. If the threshold is crossed a warning will be issued.
The warning won’t be repeated as long as the threshold remains crossed.

For example cpu_cap=70.0, ncores=3, and currently on average 80 percent of your cpu
are used. Moreover, let’s assume that at the moment only 2 processes are computing
single runs simultaneously. Due to the usage of 80 percent of your cpu, pypet will wait
until cpu usage drops below (or equal to) 70 percent again until it starts a third process
to carry out another single run.

3.1. The Environment 131

pypet Documentation, Release 0.1.0

The parameters memory_cap and swap_cap are analogous. These three thresholds are
combined to determine whether a new process can be spawned. Accordingly, if only
one of these thresholds is crossed, no new processes will be spawned.

To disable the cap limits simply set all three values to 100.0.

You need the psutil package to use this cap feature. If not installed and you choose cap
values different from 100.0 a ValueError is thrown.

•memory_cap – Cap value of RAM usage. If more RAM than the threshold is
currently in use, no new processes are spawned. Can also be a tuple (limit,
memory_per_process), first value is the cap value (between 0.0 and 100.0), sec-
ond one is the estimated memory per process in mega bytes (MB). If an estimate is given
a new process is not started if the threshold would be crossed including the estimate.

•swap_cap – Analogous to cpu_cap but the swap memory is considered.

•wrap_mode – If multiproc is True, specifies how storage to disk is handled via the
storage service.

There are two options:

WRAP_MODE_QUEUE: (‘QUEUE’)

Another process for storing the trajectory is spawned. The sub processes running
the individual single runs will add their results to a multiprocessing queue that is
handled by an additional process. Note that this requires additional memory since
the trajectory will be pickled and send over the queue for storage!

WRAP_MODE_LOCK: (‘LOCK’)

Each individual process takes care about storage by itself. Before carrying out the
storage, a lock is placed to prevent the other processes to store data. Accordingly,
sometimes this leads to a lot of processes waiting until the lock is released. Yet,
single runs do not need to be pickled before storage!

If you don’t want wrapping at all use WRAP_MODE_NONE (‘NONE’)

•clean_up_runs – In case of single core processing, whether all results under groups
named run_XXXXXXXX should be removed after the completion of the run. Note in case
of multiprocessing this happens anyway since the single run container will be destroyed
after finishing of the process.

Moreover, if set to True after post-processing it is checked if there is still data under
run_XXXXXXXX and this data is removed if the trajectory is expanded.

•immediate_postproc – If you use post- and multiprocessing, you can immediately
start analysing the data as soon as the trajectory runs out of tasks, i.e. is fully explored
but the final runs are not completed. Thus, while executing the last batch of parameter
space points, you can already analyse the finished runs. This is especially helpful if you
perform some sort of adaptive search within the parameter space.

The difference to normal post-processing is that you do not have to wait until all single
runs are finished, but your analysis already starts while there are still runs being exe-
cuted. This can be a huge time saver especially if your simulation time differs a lot
between individual runs. Accordingly, you don’t have to wait for a very long run to
finish to start post-processing.

In case you use immediate postprocessing, the storage service of your trajectory is still
multiprocessing safe. Moreover, internally the lock securing the storage service will be
supervised by a multiprocessing manager. Accordingly, you could even use multipro-
cessing in your immediate post-processing phase if you dare, like use a multiprocessing
pool, for instance.

Note that after the execution of the final run, your post-processing routine will be called
again as usual.

132 Chapter 3. Library Reference

http://psutil.readthedocs.org/
https://docs.python.org/2/library/multiprocessing.html

pypet Documentation, Release 0.1.0

•continuable – Whether the environment should take special care to allow to resume
or continue crashed trajectories. Default is False.

You need to install dill to use this feature. dill will make snapshots of your simulation
function as well as the passed arguments. BE AWARE that dill is still rather experimen-
tal!

Assume you run experiments that take a lot of time. If during your experiments there
is a power failure, you can resume your trajectory after the last single run that was still
successfully stored via your storage service.

The environment will create several .ecnt and .rcnt files in a folder that you specify (see
below). Using this data you can continue crashed trajectories.

In order to resume trajectories use f_continue().

Be aware that your individual single runs must be completely independent of one an-
other to allow continuing to work. Thus, they should NOT be based on shared data that
is manipulated during runtime (like a multiprocessing manager list) in the positional
and keyword arguments passed to the run function.

If you use post-processing, the expansion of trajectories and continuing of trajectories
is NOT supported properly. There is no guarantee that both work together.

•continue_folder – The folder where the continue files will be placed. Note that
pypet will create a sub-folder with the name of the environment.

•delete_continue – If true, pypet will delete the continue files after a successful
simulation.

•storage_service – Pass a given storage service or a class constructor (default
HDF5StorageService) if you want the environment to create the service for you.
The environment will pass the additional keyword arguments you pass directly to the
constructor. If the trajectory already has a service attached, the one from the trajectory
will be used.

•git_repository – If your code base is under git version control you can specify
here the path (relative or absolute) to the folder containing the .git directory as a string.
Note in order to use this tool you need GitPython.

If you set this path the environment will trigger a commit of your code base adding all
files that are currently under version control. Similar to calling git add -u and git commit
-m ‘My Message’ on the command line. The user can specify the commit message, see
below. Note that the message will be augmented by the name and the comment of the
trajectory. A commit will only be triggered if there are changes detected within your
working copy.

This will also add information about the revision to the trajectory, see below.

•git_message – Message passed onto git command. Only relevant if a new commit
is triggered. If no changes are detected, the information about the previous commit and
the previous commit message are added to the trajectory and this user passed message
is discarded.

•git_fail – If True the program fails instead of triggering a commit if there are not
committed changes found in the code base. In such a case a GitDiffError is raised.

•sumatra_project – If your simulation is managed by sumatra, you can specify here
the path to the sumatra root folder. Note that you have to initialise the sumatra project
at least once before via smt init MyFancyProjectName.

pypet will automatically ad ALL parameters to the sumatra record. If a parameter is
explored, the WHOLE range is added instead of the default value.

pypet will add the label and reason (only if provided, see below) to your trajectory as
config parameters.

3.1. The Environment 133

https://pypi.python.org/pypi/dill
http://pythonhosted.org/GitPython/0.3.1/index.html
http://neuralensemble.org/sumatra/

pypet Documentation, Release 0.1.0

•sumatra_reason – You can add an additional reason string that is added to the
sumatra record. Regardless if sumatra_reason is empty, the name of the trajectory, the
comment as well as a list of all explored parameters is added to the sumatra record.

Note that the augmented label is not stored into the trajectory as config parameter, but
the original one (without the name of the trajectory, the comment, and the list of ex-
plored parameters) in case it is not the empty string.

•sumatra_label – The label or name of your sumatra record. Set to None if you
want sumatra to choose a label in form of a timestamp for you.

•do_single_runs – Whether you intend to actually to compute single runs with the
trajectory. If you do not intend to do single runs, than set to False and the environment
won’t add config information like number of processors to the trajectory.

•lazy_debug – If lazy_debug=True and in case you debug your code (aka you
use pydevd and the expression ’pydevd’ in sys.modules is True), the envi-
ronment will use the LazyStorageService instead of the HDF5 one. Accordingly,
no files are created and your trajectory and results are not saved. This allows faster de-
bugging and prevents pypet from blowing up your hard drive with trajectories that you
probably not want to use anyway since you just debug your code.

The Environment will automatically add some config settings to your trajectory. Thus, you can always look
up how your trajectory was run. This encompasses most of the above named parameters as well as some
information about the environment. This additional information includes a timestamp as well as a SHA-1
hash code that uniquely identifies your environment. If you use git integration, the SHA-1 hash code will be
the one from your git commit. Otherwise the code will be calculated from the trajectory name, the current
time, and your current pypet version.

The environment will be named environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs. The first seven X
are the first seven characters of the SHA-1 hash code followed by a human readable timestamp.

All information about the environment can be found in your trajectory under con-
fig.environment.environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs. Your trajectory could potentially
be run by several environments due to merging or extending an existing trajectory. Thus, you will be able
to track how your trajectory was built over time.

Git information is added to your trajectory as follows:

•git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.hexsha

The SHA-1 hash of the commit. commit_XXXXXXX_XXXX_XX_XX_XXhXXmXXs is
mapped to the first seven items of the SHA-1 hash and the formatted data of the commit,
e.g. commit_7ef7hd4_2015_10_21_16h29m00s.

•git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.name_rev

String describing the commits hexsha based on the closest reference

•git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.committed_date

Commit date as Unix Epoch data

•git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.message

The commit message

Moreover, if you use the standard HDF5StorageService you can pass the following keyword arguments
in **kwargs:

Parameters

•filename – The name of the hdf5 file. If none is specified the de-
fault ./hdf5/the_name_of_your_trajectory.hdf5 is chosen. If filename con-
tains only a path like filename=’./myfolder/’, it is changed to ‘file-
name=’./myfolder/the_name_of_your_trajectory.hdf5’.

•file_title – Title of the hdf5 file (only important if file is created new)

134 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•overwrite_file – If the file already exists it will be overwritten. Otherwise, the tra-
jectory will simply be added to the file and already existing trajectories are not deleted.

•encoding – Format to encode and decode unicode strings stored to disk. The default
’utf8’ is highly recommended.

•complevel – You can specify your compression level. 0 means no compression and 9
is the highest compression level. See PyTables Compression for a detailed description.

•complib – The library used for compression. Choose between zlib, blosc, and lzo.
Note that ‘blosc’ and ‘lzo’ are usually faster than ‘zlib’ but it may be the case that
you can no longer open your hdf5 files with third-party applications that do not rely on
PyTables.

•shuffle – Whether or not to use the shuffle filters in the HDF5 library. This normally
improves the compression ratio.

•fletcher32 – Whether or not to use the Fletcher32 filter in the HDF5 library. This
is used to add a checksum on hdf5 data.

•pandas_format – How to store pandas data frames. Either in ‘fixed’ (‘f’) or ‘table’
(‘t’) format. Fixed format allows fast reading and writing but disables querying the hdf5
data and appending to the store (with other 3rd party software other than pypet).

•purge_duplicate_comments – If you add a result via f_add_result() or a
derived parameter f_add_derived_parameter() and you set a comment, nor-
mally that comment would be attached to each and every instance. This can produce
a lot of unnecessary overhead if the comment is the same for every instance over all
runs. If purge_duplicate_comments=1 than only the comment of the first result or de-
rived parameter instance created in a run is stored or comments that differ from this first
comment.

For instance, during a single run you call traj.f_add_result(‘my_result,42,
comment=’Mostly harmless!’)‘ and the result will be renamed to re-
sults.run_00000000.my_result. After storage in the node associated with this
result in your hdf5 file, you will find the comment ‘Mostly harmless!’ there. If you call
traj.f_add_result(‘my_result’,-43, comment=’Mostly harmless!’) in another run again,
let’s say run 00000001, the name will be mapped to results.run_00000001.my_result.
But this time the comment will not be saved to disk since ‘Mostly harmless!’ is already
part of the very first result with the name ‘results.run_00000000.my_result’. Note that
the comments will be compared and storage will only be discarded if the strings are
exactly the same.

If you use multiprocessing, the storage service will take care that the comment for the
result or derived parameter with the lowest run index will be considered regardless of the
order of the finishing of your runs. Note that this only works properly if all comments
are the same. Otherwise the comment in the overview table might not be the one with
the lowest run index.

You need summary tables (see below) to be able to purge duplicate comments.

This feature only works for comments in leaf nodes (aka Results and Parameters). So
try to avoid to add comments in group nodes within single runs.

•summary_tables – Whether the summary tables should be created, i.e. the ‘de-
rived_parameters_runs_summary’, and the results_runs_summary.

The ‘XXXXXX_summary’ tables give a summary about all results or derived parame-
ters. It is assumed that results and derived parameters with equal names in individual
runs are similar and only the first result or derived parameter that was created is shown
as an example.

The summary table can be used in combination with purge_duplicate_comments to only
store a single comment for every result with the same name in each run, see above.

3.1. The Environment 135

http://pytables.github.io/usersguide/optimization.html#compression-issues

pypet Documentation, Release 0.1.0

•small_overview_tables – Whether the small overview tables should be
created. Small tables are giving overview about ‘config’,’parameters’, ‘de-
rived_parameters_trajectory’, , ‘results_trajectory’, ‘results_runs_summary’.

Note that these tables create some overhead. If you want very small hdf5 files set
small_overview_tables to False.

•large_overview_tables – Whether to add large overview tables. This encom-
passes information about every derived parameter, result, and the explored parameter in
every single run. If you want small hdf5 files set to False (default).

•results_per_run – Expected results you store per run. If you give a good/correct
estimate storage to hdf5 file is much faster in case you store LARGE overview tables.

Default is 0, i.e. the number of results is not estimated!

•derived_parameters_per_run – Analogous to the above.

Finally, you can also pass properties of the trajectory, like v_with_links=True (you can leave the
prefix v_, i.e. with_links works, too). Thus, you can change the settings of the trajectory immediately.

f_add_postprocessing(postproc, *args, **kwargs)
Adds a post processing function.

The environment will call this function via postproc(traj, result_list, *args,

**kwargs) after the completion of the single runs.

This function can load parts of the trajectory id needed and add additional results.

Moreover, the function can be used to trigger an expansion of the trajectory. This can be useful if the
user has an optimization task.

Either the function calls f_expand directly on the trajectory or returns an dictionary. If latter f_expand
is called by the environment.

Note that after expansion of the trajectory, the post-processing function is called again (and again for
further expansions). Thus, this allows an iterative approach to parameter exploration.

Note that in case post-processing is called after all runs have been executed, the storage service of the
trajectory is no longer multiprocessing safe. If you want to use multiprocessing in your post-processing
you can still manually wrap the storage service with the MultiprocessWrapper.

Nonetheless, in case you use immediate post-processing, the storage service is still multiprocessing
safe. In fact, it has to be because some single runs are still being executed and write data to your HDF5
file. Accordingly, you can also use multiprocessing during the immediate post-processing without
having to use the MultiprocessWrapper.

You can easily check in your post-processing function if the storage service is multiprocessing safe
via the multiproc_safe attribute, i.e. traj.v_storage_service.multiproc_safe.

Parameters

•postproc – The post processing function

•args – Additional arguments passed to the post-processing function

•kwargs – Additional keyword arguments passed to the postprocessing function

Returns

f_continue(trajectory_name=None, continue_folder=None)
Resumes crashed trajectories.

Parameters

•trajectory_name – Name of trajectory to resume, if not specified the name
passed to the environment is used. Be aware that if add_time=True the name you
passed to the environment is altered and the current date is added.

136 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•continue_folder – The folder where continue files can be found. Do not pass
the name of the sub-folder with the trajectory name, but to the name of the parental
folder. If not specified the continue folder passed to the environment is used.

Returns

List of the individual results returned by your run function.

Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the
actual result. In case of multiprocessing these are not necessarily ordered according to
their run index, but ordered according to their finishing time.

Does not contain results stored in the trajectory! In order to access
these simply interact with the trajectory object, potentially after call-
ing‘~pypet.trajectory.Trajectory.f_update_skeleton‘ and loading all results at once
with f_load() or loading manually with f_load_items().

Even if you use multiprocessing without a pool the results returned by runfunc still need
to be pickled.

f_disable_logging(remove_all_handlers=True)
Removes all logging handlers and stops logging to files and logging stdout.

Parametersremove_all_handlers – If True all logging handlers are removed. If you
want to keep the handlers set to False.

f_pipeline(pipeline)
You can make pypet supervise your whole experiment by defining a pipeline.

pipeline is a function that defines the entire experiment. From pre-processing including setting up the
trajectory over defining the actual simulation runs to post processing.

The pipeline function needs to return TWO tuples with a maximum of three entries each.

For example:

return (runfunc, args, kwargs), (postproc, postproc_args, postproc_kwargs)

Where runfunc is the actual simulation function thet gets passed the trajectory container and potentially
additional arguments args and keyword arguments kwargs. This will be run by your environment with
all parameter combinations.

postproc is a post processing function that handles your computed results. The function must accept
as arguments the trajectory container, a list of results (list of tuples (run idx, result)) and potentially
additional arguments postproc_args and keyword arguments postproc_kwargs.

As for f_add_postproc(), this function can potentially extend the trajectory.

If you don’t want to apply post-processing, your pipeline function can also simply return the run
function and the arguments:

return runfunc, args, kwargs

Or

return runfunc, args

Or

return runfunc

return runfunc, kwargs does NOT work, if you don’t want to pass args do return
runfunc, (), kwargs.

Analogously combinations like

return (runfunc, args), (postproc,)

work as well.

3.1. The Environment 137

pypet Documentation, Release 0.1.0

Parameterspipeline – The pipleine function, taking only a single argument traj. And
returning all functions necessary for your experiment.

Returns

List of the individual results returned by runfunc.

Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the
actual result. In case of multiprocessing these are not necessarily ordered according to
their run index, but ordered according to their finishing time.

Does not contain results stored in the trajectory! In order to access these simply interact
with the trajectory object, potentially after calling f_update_skeleton() and load-
ing all results at once with f_load() or loading manually with f_load_items().

Even if you use multiprocessing without a pool the results returned by runfunc still need
to be pickled.

Results computed from postproc are not returned. postproc should not return any results
except dictionaries if the trajectory should be expanded.

f_run(runfunc, *args, **kwargs)
Runs the experiments and explores the parameter space.

Parameters

•runfunc – The task or job to do

•args – Additional arguments (not the ones in the trajectory) passed to runfunc

•kwargs – Additional keyword arguments (not the ones in the trajectory) passed to
runfunc

Returns

List of the individual results returned by runfunc.

Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the
actual result. In case of multiprocessing these are not necessarily ordered according to
their run index, but ordered according to their finishing time.

Does not contain results stored in the trajectory! In order to access
these simply interact with the trajectory object, potentially after call-
ing‘~pypet.trajectory.Trajectory.f_update_skeleton‘ and loading all results at once
with f_load() or loading manually with f_load_items().

If you use multiprocessing without a pool the results returned by runfunc still need to be
pickled.

f_set_large_overview(switch)
Switches large overview tables on (switch=True) or off (switch=False).

f_set_small_overview(switch)
Switches small overview tables on (switch=True) or off (switch=False).

f_set_summary(switch)
Switches summary tables on (switch=True) or off (switch=False).

f_switch_off_all_overview()
Switches all tables off.

DEPRECATED: Please pass whether to use the tables to the environment constructor.

f_switch_off_large_overview()
Switches off the tables consuming the most memory.

•Single Run Result Overview

•Single Run Derived Parameter Overview

•Explored Parameter Overview in each Single Run

138 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

DEPRECATED: Please pass whether to use the tables to the environment constructor.

f_switch_off_small_overview()
Switches off small overview tables and switches off purge_duplicate_comments.

DEPRECATED: Please pass whether to use the tables to the environment constructor.

v_hexsha
The SHA1 identifier of the environment.

It is identical to the SHA1 of the git commit. If version control is not used, the environment hash is
computed from the trajectory name, the current timestamp and your current pypet version.

v_log_path
The full path to the (sub) folder where log files are stored

v_name
Name of the Environment

v_time
Time of the creation of the environment, human readable.

v_timestamp
Time of creation as python datetime float

v_traj
Equivalent to env.v_trajectory

v_trajectory
The trajectory of the Environment

3.1.3 MultiprocContext

class pypet.environment.MultiprocContext(trajectory, wrap_mode=’LOCK’,
full_copy=None, manager=None,
use_manager=True, lock=None, queue=None,
queue_maxsize=0, log_config=None,
log_stdout=False)

A lightweight environment that allows the usage of multiprocessing.

Can be used if you don’t want a full-blown Environment to enable multiprocessing or if you want to
implement your own custom multiprocessing.

This Wrapper tool will take a trajectory container and take care that the storage service is multiprocessing
safe. Supports the ’LOCK’ as well as the ’QUEUE’ mode. In case of the latter an extra queue process is
created if desired. This process will handle all storage requests and write data to the hdf5 file.

Not that in case of ’QUEUE’ wrapping data can only be stored not loaded, because the queue will only be
read in one direction.

Parameters

•trajectory – The trajectory which storage service should be wrapped

•wrap_mode – There are two options:

WRAP_MODE_QUEUE: (‘QUEUE’)

If desired another process for storing the trajectory is spawned. The sub pro-
cesses running the individual trajectories will add their results to a multipro-
cessing queue that is handled by an additional process. Note that this requires
additional memory since data will be pickled and send over the queue for
storage!

WRAP_MODE_LOCK: (‘LOCK’)

3.1. The Environment 139

pypet Documentation, Release 0.1.0

Each individual process takes care about storage by itself. Before carrying
out the storage, a lock is placed to prevent the other processes to store data.
Accordingly, sometimes this leads to a lot of processes waiting until the lock
is released. Yet, data does not need to be pickled before storage!

•full_copy – In case the trajectory gets pickled (sending over a queue or a pool
of processors) if the full trajectory should be copied each time (i.e. all parameter
points) or only a particular point. A particular point can be chosen beforehand with
f_as_run().

Leave full_copy=None if the setting from the passed trajectory should be used.
Otherwise v_full_copy of the trajectory is changed to your chosen value.

•manager – You can pass an optional multiprocessing manager here, if you already
have instantiated one. Leave None if you want the wrapper to create one.

•use_manager – If your lock and queue should be created with a manager or if wrap-
ping should be created from the multiprocessing module directly.

For example: multiprocessing.Lock() or via a manager
multiprocessing.Manager().Lock() (if you specified a manager, this
manager will be used).

The former is usually faster whereas the latter is more flexible and can be used in an
environment where fork is not available, for instance.

•lock – You can pass a multiprocessing lock here, if you already have instantiated one.
Leave None if you want the wrapper to create one in case of ’LOCK’ wrapping.

•queue – You can pass a multiprocessing queue here, if you already instantiated one.
Leave None if you want the wrapper to create one in case of ‘’QUEUE’‘ wrapping.

•queue_maxsize – Maximum size of queue if created new. 0 means infinite.

•log_config – Path to logging config file or dictionary to configure logging for the
spawned queue process. Thus, only considered if the queue wrap mode is chosen.

•log_stdout – If stdout of the queue process should also be logged.

For an usage example see Lightweight Multiprocessing.

f_finalize()
Restores the original storage service.

If a queue process and a manager were used both are shut down.

Automatically called when used as context manager.

f_start()
Starts the multiprocess wrapping.

Automatically called when used as context manager.

3.2 The Trajectory and Group Nodes

3.2.1 Quicklinks

Here are some links to important functions:

Trajectory The trajectory manages results and parameters.
f_add_parameter Adds a parameter under the current node.
f_add_derived_parameter Adds a derived parameter under the current group.
f_add_result Adds a result under the current node.

Continued on next page

140 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

Table 3.2 – continued from previous page
f_add_link Adds a link to an existing node.
f_add_leaf Adds an empty generic leaf under the current node.
f_iter_leaves Iterates (recursively) over all leaves hanging below the current group.
f_iter_nodes Iterates recursively (default) over nodes hanging below this group.
f_get Searches and returns an item (parameter/result/group node) with the given name.
f_store_child Stores a child or recursively a subtree to disk.
f_store Stores a group node to disk
f_load_child Loads a child or recursively a subtree from disk.
f_load Loads a group from disk.
f_explore Prepares the trajectory to explore the parameter space.
f_store Stores the trajectory to disk and recursively all data in the tree.
f_load Loads a trajectory via the storage service.
f_load_skeleton Loads the full skeleton from the storage service.
f_preset_parameter Presets parameter value before a parameter is added.
f_get_from_runs Searches for all occurrences of name in each run.
f_load_items Loads parameters and results specified in iterator.
f_store_items Stores individual items to disk.
f_remove_items Removes parameters, results or groups from the trajectory.
f_delete_items Deletes items from storage on disk.
f_find_idx Finds a single run index given a particular condition on parameters.
f_get_run_information Returns a dictionary containing information about a single run.
v_crun Run name if you want to access the trajectory as a single run.
v_idx Index if you want to access the trajectory as during a single run.
v_standard_parameter The standard parameter used for parameter creation
v_standard_result The standard result class used for result creation
v_annotations Annotation feature of a trajectory node.
load_trajectory Helper function that creates a novel trajectory and loads it from disk.

3.2.2 Trajectory

class pypet.trajectory.Trajectory(name=’my_trajectory’, add_time=True, comment=’‘, dy-
namic_imports=None, wildcard_functions=None, stor-
age_service=None, **kwargs)

The trajectory manages results and parameters.

The trajectory provides all functionality to define how the parameter space of your simulation should be
explored. During single runs based on a particular parameter point, the functionality fo the trajectory is
reduced.

You can add four types of data to the trajectory:

•Config:

These are special parameters specifying modalities of how to run your simulations. Chang-
ing a config parameter should NOT have any influence on the results you obtain from your
simulations.

They specify runtime environment parameters like how many CPUs you use for multipro-
cessing etc.

In fact, if you use the default runtime environment of this project, the environment will add
some config parameters to your trajectory.

The method to add more config is f_add_config()

Config parameters are put into the subtree traj.config (with traj being your trajectory in-
stance).

•Parameters:

3.2. The Trajectory and Group Nodes 141

pypet Documentation, Release 0.1.0

These are your primary ammunition in numerical simulations. They specify how your simu-
lation works. They can only be added before the actual running of the simulation exploring
the parameter space. They can be added via f_add_parameter() and be explored using
f_explore(). Or to expand an existing trajectory use f_expand().

Your parameters should encompass all values that completely define your simulation, I rec-
ommend also storing random number generator seeds as parameters to guarantee that a sim-
ulation can be repeated exactly the way it was run the first time.

Parameters are put into the subtree traj.parameters.

•Derived Parameters:

They are not much different from parameters except that they can be added anytime.

Conceptually this encompasses stuff that is intermediately computed from the original pa-
rameters. For instance, as your original parameters you have a random number seed and
some other parameters. From these you compute a connection matrix for a neural network.
This connection matrix could be stored as a derived parameter.

Derived parameters are added via f_add_derived_parameter().

Derived parameters are put into the subtree traj.derived_parameters. They are further sorted
into traj.derived_parameters.runs.run_XXXXXXXX if they were added during a single run.
XXXXXXXX is replaced by the index of the corresponding run, for example run_00000001.

•Results:

Result are added via the f_add_result(). They are kept under the subtree traj.results
and are further sorted into traj.results.runs.run_XXXXXXXX if they are added during a single
run.

There are several ways to access the parameters and results, to learn about these, fast access, and natural
naming see Accessing Data in the Trajectory.

In case you create a new trajectory you can pass the following arguments:

Parameters

•name – Name of the trajectory, if add_time=True the current time is added as a string
to the parameter name.

•add_time – Boolean whether to add the current time in human readable format to the
trajectory name.

•comment – A useful comment describing the trajectory.

•dynamic_imports – If you’ve written a custom parameter that needs to be loaded
dynamically during runtime, this needs to be specified here as a list of classes or
strings naming classes and there module paths. For example: dynamic_imports =
[’pypet.parameter.PickleParameter’,MyCustomParameter]

If you only have a single class to import, you do not need the list brackets: dy-
namic_imports = ‘pypet.parameter.PickleParameter’

•wildcard_functions – Dictionary of wildcards like $ and corresponding func-
tions that are called upon finding such a wildcard.

•storage_service – Pass a storage service used by the Trajectory. Alternatively,
pass a constructor and other **kwargs are passed onto the constructor.

•kwargs – Other arguments passed to the storage service constructor

Raises

ValueError: If the name of the trajectory contains invalid characters ornot all addi-
tional keyword arguments are used.

TypeError: If the dynamically imported classes are not classes or strings.

142 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

Example usage:

>>> traj = Trajectory('ExampleTrajectory', dynamic_imports=['Some.custom.class'], comment = 'I am a neat example!', storage_service=HDF5StorageService, filename='experiment.hdf5', file_title='Experiments')

f_add_config(*args, **kwargs)
Adds a config parameter under the current group.

Similar to f_add_parameter().

If current group is the trajectory the prefix ‘config’ is added to the name.

ATTENTION: This function is not available during a single run!

f_add_config_group(*args, **kwargs)
Adds an empty config group under the current node.

Adds the full name of the current node as prefix to the name of the group. If current node is
the trajectory (root), the prefix ‘config’ is added to the full name.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automati-
cally be created.

ATTENTION: This function is not available during a single run!

f_add_parameter(*args, **kwargs)
Adds a parameter under the current node.

There are two ways to add a new parameter either by adding a parameter instance:

>>> new_parameter = Parameter('group1.group2.myparam', data=42, comment='Example!')
>>> traj.f_add_parameter(new_parameter)

Or by passing the values directly to the function, with the name being the first (non-keyword!)
argument:

>>> traj.f_add_parameter('group1.group2.myparam', data=42, comment='Example!')

If you want to create a different parameter than the standard parameter, you can give the
constructor as the first (non-keyword!) argument followed by the name (non-keyword!):

>>> traj.f_add_parameter(PickleParameter,'group1.group2.myparam', data=42, comment='Example!')

The full name of the current node is added as a prefix to the given parameter name. If the
current node is the trajectory the prefix ‘parameters’ is added to the name.

ATTENTION: This function is not available during a single run!

f_add_parameter_group(*args, **kwargs)
Adds an empty parameter group under the current node.

Can be called with f_add_parameter_group(’MyName’, ’this is an
informative comment’) or f_add_parameter_group(name=’MyName’,
comment=’This is an informative comment’) or with a given new
group instance: f_add_parameter_group(ParameterGroup(’MyName’,
comment=’This is a comment’)).

Adds the full name of the current node as prefix to the name of the group. If current node is
the trajectory (root), the prefix ‘parameters’ is added to the full name.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automati-
cally created.

ATTENTION: This function is not available during a single run!

3.2. The Trajectory and Group Nodes 143

pypet Documentation, Release 0.1.0

f_add_to_dynamic_imports(dynamic_imports)
Adds classes or paths to classes to the trajectory to create custom parameters.

param dynamic_importsIf you’ve written custom parameter that needs to be
loaded dynamically during runtime, this needs to be specified here as a list of
classes or strings naming classes and there module paths. For example: dy-
namic_imports = [’pypet.parameter.PickleParameter’,MyCustomParameter]

If you only have a single class to import, you do not need the list brackets: dy-
namic_imports = ‘pypet.parameter.PickleParameter’

ATTENTION: This function is not available during a single run!

f_add_wildcard_functions(func_dict)
#TODO

f_backup(**kwargs)
Backs up the trajectory with the given storage service.

Arguments of kwargs are directly passed to the storage service, for the
HDF5StorageService you can provide the following argument:

param backup_filenameName of file where to store the backup.

In case you use the standard HDF5 storage service and backup_filename=None,
the file will be chosen automatically. The backup file will be in the same folder as
your hdf5 file and named ‘backup_XXXXX.hdf5’ where ‘XXXXX’ is the name
of your current trajectory.

ATTENTION: This function is not available during a single run!

f_delete_item(item, *args, **kwargs)
Deletes a single item, see f_delete_items()

f_delete_items(iterator, *args, **kwargs)
Deletes items from storage on disk.

Per default the item is NOT removed from the trajectory.

Links are NOT deleted on the hard disk, please delete links manually before deleting data!

Parameters

•iterator – A sequence of items you want to remove. Either the instances them-
selves or strings with the names of the items.

•remove_from_trajectory – If items should also be removed from trajectory.
Default is False.

•args – Additional arguments passed to the storage service

•kwargs – Additional keyword arguments passed to the storage service

If you use the standard hdf5 storage service, you can pass the following additional
keyword argument:

param delete_onlyYou can partially delete leaf nodes. Specify a list of parts of
the result node that should be deleted like delete_only=[’mystuff’,’otherstuff’].
This wil only delete the hdf5 sub parts mystuff and otherstuff from disk. BE
CAREFUL, erasing data partly happens at your own risk. Depending on how
complex the loading process of your result node is, you might not be able to
reconstruct any data due to partially deleting some of it.

Be aware that you need to specify the names of parts as they were stored to
HDF5. Depending on how your leaf construction works, this may differ from
the names the data might have in your leaf in the trajectory container.

If the hdf5 nodes you specified in delete_only cannot be found a warning is
issued.

144 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

Note that massive deletion will fragment your HDF5 file. Try to avoid chang-
ing data on disk whenever you can.

If you want to erase a full node, simply ignore this argument or set to None.

param remove_from_itemIf data that you want to delete from storage should
also be removed from the items in iterator if they contain these. Default is
False.

param recursiveIf you want to delete a group node and it has children you need
to set recursive to True. Default is ‘False.

f_delete_link(link, remove_from_trajectory=False)
Deletes a single link see f_delete_links()

f_delete_links(iterator_of_links, remove_from_trajectory=False)
Deletes several links from the hard disk.

Links can be passed as a string ’groupA.groupB.linkA’ or as a tuple containing the node from
which the link should be removed and the name of the link (groupWithLink, ’linkA’).

f_expand(build_dict, fail_safe=True)

Similar to f_explore(), but can be used to enlargealready completed trajectories.

Please ensure before usage, that all explored parameters are loaded!

param build_dictDictionary containing the expansion

param fail_safeIf old ranges should be deep-copied in order to allow to restore the orig-
inal exploration if something fails during expansion. Set to False if deep-copying your
parameter ranges causes errors.

raisesTypeError: If not all explored parameters are enlarged

AttributeError: If keys of dictionary cannot be found in the trajectory

NotUniqueNodeError:

If dictionary keys do not unambiguously map to single parameters

ValueError: If not all explored parameter ranges are of the same length

ATTENTION: This function is not available during a single run!

f_explore(build_dict)
Prepares the trajectory to explore the parameter space.

To explore the parameter space you need to provide a dictionary with the names of the pa-
rameters to explore as keys and iterables specifying the exploration ranges as values.

All iterables need to have the same length otherwise a ValueError is raised. A ValueError is
also raised if the names from the dictionary map to groups or results and not parameters.

If your trajectory is already explored but not stored yet and your parameters are not locked
you can add new explored parameters to the current ones if their iterables match the current
length of the trajectory.

Raises an AttributeError if the names from the dictionary are not found at all in the trajectory
and NotUniqueNodeError if the keys not unambiguously map to single parameters.

Raises a TypeError if the trajectory has been stored already, please use f_expand() then
instead.

Example usage:

>>> traj.f_explore({'groupA.param1' : [1,2,3,4,5], 'groupA.param2':['a','b','c','d','e']})

Could also be called consecutively:

3.2. The Trajectory and Group Nodes 145

pypet Documentation, Release 0.1.0

>>> traj.f_explore({'groupA.param1' : [1,2,3,4,5]})
>>> traj.f_explore({'groupA.param2':['a','b','c','d','e']})

NOTE:

Since parameters are very conservative regarding the data they accept (see Values supported
by Parameters), you sometimes won’t be able to use Numpy arrays for exploration as iter-
ables.

For instance, the following code snippet won’t work:

import numpy a np
from pypet.trajectory import Trajectory
traj = Trajectory()
traj.f_add_parameter('my_float_parameter', 42.4,

comment='My value is a standard python float')

traj.f_explore({ 'my_float_parameter': np.arange(42.0, 44.876, 0.23) })

This will result in a TypeError because your exploration iterable np.arange(42.0, 44.876,
0.23) contains numpy.float64 values whereas you parameter is supposed to use standard
python floats.

Yet, you can use Numpys tolist() function to overcome this problem:

traj.f_explore({ 'my_float_parameter': np.arange(42.0, 44.876, 0.23).tolist() })

Or you could specify your parameter directly as a numpy float:

traj.f_add_parameter('my_float_parameter', np.float64(42.4),
comment='My value is a numpy 64 bit float')

ATTENTION: This function is not available during a single run!

f_find_idx(name_list, predicate)
Finds a single run index given a particular condition on parameters.

ONLY useful for a single run if v_full_copy‘ was set to ‘‘True. Otherwise a TypeError
is thrown.

Parameters

•name_list – A list of parameter names the predicate applies to, if you have only a
single parameter name you can omit the list brackets.

•predicate – A lambda predicate for filtering that evaluates to either True or
False

ReturnsA generator yielding the matching single run indices

Example:

>>> predicate = lambda param1, param2: param1==4 and param2 in [1.0, 2.0]
>>> iterator = traj.f_find_idx(['groupA.param1', 'groupA.param2'], predicate)
>>> [x for x in iterator]
[0, 2, 17, 36]

f_get_config(fast_access=False, copy=True)
Returns a dictionary containing the full config names as keys and the config parameters or the config
parameter data items as values.

Parameters

•fast_access – Determines whether the parameter objects or their values are re-
turned in the dictionary.

146 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•copy – Whether the original dictionary or a shallow copy is returned. If you want the
real dictionary please do not modify it at all! Not Copying and fast access do not work
at the same time! Raises ValueError if fast access is true and copy false.

ReturnsDictionary containing the config data

RaisesValueError

f_get_derived_parameters(fast_access=False, copy=True)

Returns a dictionary containing the full parameter names as keys and the parametersor the pa-
rameter data items as values.

Parameters

•fast_access – Determines whether the parameter objects or their values are re-
turned in the dictionary.

•copy – Whether the original dictionary or a shallow copy is returned. If you want the
real dictionary please do not modify it at all! Not Copying and fast access do not work
at the same time! Raises ValueError if fast access is true and copy false.

ReturnsDictionary containing the parameters.

RaisesValueError

f_get_explored_parameters(fast_access=False, copy=True)

Returns a dictionary containing the full parameter names as keys and the parametersor the pa-
rameter data items as values.

IMPORTANT: This dictionary always contains all explored parameters as keys. Even when they
are not loaded, in this case the value is simply None. fast_access only works if all explored
parameters are loaded.

Parameters

•fast_access – Determines whether the parameter objects or their values are re-
turned in the dictionary.

•copy – Whether the original dictionary or a shallow copy is returned. If you want the
real dictionary please do not modify it at all! Not Copying and fast access do not work
at the same time! Raises ValueError if fast access is true and copy false.

ReturnsDictionary containing the parameters.

RaisesValueError

f_get_from_runs(name, include_default_run=True, use_indices=False, fast_access=False,
with_links=True, shortcuts=True, max_depth=None, auto_load=False)

Searches for all occurrences of name in each run.

Generates an ordered dictionary with the run names or indices as keys and found items as
values.

Example:

>>> traj.f_get_from_runs(self, 'deep.universal_answer', use_indices=True, fast_access=True)
OrderedDict([(0, 42), (1, 42), (2, 'fortytwo), (3, 43)])

param nameString description of the item(s) to find. Cannot be full names but the
part of the names that are below a run_XXXXXXXXX group.

param include_default_runIf results found under run_ALL should be accounted
for every run or simply be ignored.

3.2. The Trajectory and Group Nodes 147

pypet Documentation, Release 0.1.0

param use_indicesIf True the keys of the resulting dictionary are the run in-
dices (e.g. 0,1,2,3), otherwise the keys are run names (e.g. run_00000000,
run_000000001)

param fast_accessWhether to return parameter or result instances or the values han-
dled by these.

param with_linksIf links should be considered

param shortcutsIf shortcuts are allowed and the trajectory can hop over nodes in
the path.

param max_depthMaximum depth (relative to start node) how search should
progress in tree. None means no depth limit. Only relevant if shortcuts are al-
lowed.

param auto_loadIf data should be loaded from the storage service if it cannot be
found in the current trajectory tree. Auto-loading will load group and leaf nodes
currently not in memory and it will load data into empty leaves. Be aware that
auto-loading does not work with shortcuts.

returnOrdered dictionary with run names or indices as keys and found items as
values. Will only include runs where an item was actually found.

ATTENTION: This function is not available during a single run!

f_get_parameters(fast_access=False, copy=True)

Returns a dictionary containing the full parameter names as keys and the parametersor the pa-
rameter data items as values.

Parameters

•fast_access – Determines whether the parameter objects or their values are re-
turned in the dictionary.

•copy – Whether the original dictionary or a shallow copy is returned. If you want the
real dictionary please do not modify it at all! Not Copying and fast access do not work
at the same time! Raises ValueError if fast access is true and copy false.

ReturnsDictionary containing the parameters.

RaisesValueError

f_get_results(fast_access=False, copy=True)
Returns a dictionary containing the full result names as keys and the corresponding result objects or
result data items as values.

Parameters

•fast_access – Determines whether the result objects or their values are returned
in the dictionary. Works only for results if they contain a single item with the name of
the result.

•copy – Whether the original dictionary or a shallow copy is returned. If you want the
real dictionary please do not modify it at all! Not Copying and fast access do not work
at the same time! Raises ValueError if fast access is true and copy false.

ReturnsDictionary containing the results.

RaisesValueError

f_get_run_information(name_or_idx=None, copy=True)
Returns a dictionary containing information about a single run.

ONLY useful during a single run if v_full_copy‘ was set to ‘‘True. Otherwise only the
current run is available.

148 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

The information dictionaries have the following key, value pairings:

•completed: Boolean, whether a run was completed

•idx: Index of a run

•timestamp: Timestamp of the run as a float

•time: Formatted time string

•finish_timestamp: Timestamp of the finishing of the run

•runtime: Total runtime of the run in human readable format

•name: Name of the run

•parameter_summary:

A string summary of the explored parameter settings for the particular run

•short_environment_hexsha: The short version of the environment SHA-1 code

If no name or idx is given then a nested dictionary with keys as run names and info dictionaries as
values is returned.

Parameters

•name_or_idx – str or int

•copy – Whether you want the dictionary used by the trajectory or a copy. Note if you
want the real thing, please do not modify it, i.e. popping or adding stuff. This could
mess up your whole trajectory.

ReturnsA run information dictionary or a nested dictionary of information dictionaries with
the run names as keys.

f_get_run_names(sort=True)
Returns a list of run names.

ONLY useful for a single run during multiprocessing if v_full_copy‘ was set to ‘‘True.
Otherwise only the current run is available.

Parameterssort – Whether to get them sorted, will only require O(N) [and not O(N*log
N)] since we use (sort of) bucket sort.

f_get_wildcards()
Returns a list of all defined wildcards

f_idx_to_run(name_or_idx)
Converts an integer idx to the corresponding single run name and vice versa.

Note during a single run ONLY useful if v_full_copy was set to True.

Parametersname_or_idx – Name of a single run or an integer index

ReturnsThe corresponding idx or name of the single run

Example usage:

>>> traj.f_idx_to_run(4)
'run_00000004'
>>> traj.f_idx_to_run('run_00000000')
0

f_is_completed(name_or_id=None)
Whether or not a given run is completed.

If no run is specified it is checked whether all runs were completed.

param name_or_idNam or id of a run to check

returnTrue or False

3.2. The Trajectory and Group Nodes 149

pypet Documentation, Release 0.1.0

ATTENTION: This function is not available during a single run!

f_is_empty()

Whether no results nor parameters have been added yet to the trajectory(ignores config).

ATTENTION: This function is not available during a single run!

f_is_wildcard(wildcard)
Checks if a given wildcard is really a wildcard.

f_iter_runs()
Makes the trajectory iterate over all runs.

Note that after a full iteration, the trajectory is set back to normal.

Thus, the following code snippet

for run_name in traj.f_iter_runs():

Do some stuff here...

is equivalent to

for run_name in traj.f_get_run_names(sort=True):
traj.f_set_crun(run_name)

Do some stuff here...

traj.f_set_crun(None)

returnIterator over runs. The iterator itself will return the run names but modify the
trajectory in each iteration and set it back do normal in the end.

ATTENTION: This function is not available during a single run!

f_load(name=None, index=None, as_new=False, load_parameters=2,
load_derived_parameters=1, load_results=1, load_other_data=1, recursive=True,
load_data=None, max_depth=None, force=False, dynamic_imports=None,
with_run_information=True, storage_service=None, **kwargs)

Loads a trajectory via the storage service.

If you want to load individual results or parameters manually, you can take a look at
f_load_items(). To only load subtrees check out f_load_child().

For f_load you can pass the following arguments:

param nameName of the trajectory to be loaded. If no name or index is specified
the current name of the trajectory is used.

param indexIf you don’t specify a name you can specify an integer index instead.
The corresponding trajectory in the hdf5 file at the index position is loaded (count-
ing starts with 0). Negative indices are also allowed counting in reverse order. For
instance, -1 refers to the last trajectory in the file, -2 to the second last, and so on.

param as_newWhether you want to rerun the experiments. So the trajectory is
loaded only with parameters. The current trajectory name is kept in this case,
which should be different from the trajectory name specified in the input param-
eter name. If you load as_new=True all parameters are unlocked. If you load
as_new=False the current trajectory is replaced by the one on disk, i.e. name,
timestamp, formatted time etc. are all taken from disk.

param load_parametersHow parameters and config items are loaded

param load_derived_parametersHow derived parameters are loaded

150 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

param load_resultsHow results are loaded

You can specify how to load the parameters, derived parameters and results as
follows:

•pypet.pypetconstants.LOAD_NOTHING: (0)

Nothing is loaded.

•pypet.pypetconstants.LOAD_SKELETON : (1)

The skeleton is loaded including annotations (See Annotations). This
means that only empty parameter and result objects will be created
and you can manually load the data into them afterwards. Note that
pypet.annotations.Annotations do not count as data and
they will be loaded because they are assumed to be small.

•pypet.pypetconstants.LOAD_DATA: (2)

The whole data is loaded. Note in case you have non-empty leaves
already in RAM, these are left untouched.

•pypet.pypetconstants.OVERWRITE_DATA: (3)

As before, but non-empty nodes are emptied and reloaded.

Note that in all cases except pypet.pypetconstants.LOAD_NOTHING,
annotations will be reloaded if the corresponding instance is created or the
annotations of an existing instance were emptied before.

param recursiveIf data should be loaded recursively. If set to None, this is equiva-
lent to set all data loading to :const:‘pypet.pypetconstants.LOAD_NOTHING.

param load_dataAs the above, per default set to None. If not None
the setting of load_data will overwrite the settings of load_parameters,
load_derived_parameters, load_results, and load_other_data. This is more or
less or shortcut if all types should be loaded the same.

param max_depthMaximum depth to load nodes (inclusive).

param forcepypet will refuse to load trajectories that have been created using
pypet with a different version number or a different python version. To
force the load of a trajectory from a previous version simply set force
= True. Note that it is not checked if other versions of packages dif-
fer from previous experiments, i.e. numpy, scipy, etc. But you can check
for this manually. The versions of other packages can be found under
’config.environment.name_of_environment.versions.package_name’.

param dynamic_importsIf you’ve written a custom parameter that needs to be
loaded dynamically during runtime, this needs to be specified here as a list of
classes or strings naming classes and there module paths. For example: dy-
namic_imports = [’pypet.parameter.PickleParameter’,MyCustomParameter]

If you only have a single class to import, you do not need the list brackets: dy-
namic_imports = ‘pypet.parameter.PickleParameter’

The classes passed here are added for good and will be kept by the trajectory.
Please add your dynamically imported classes only once.

param with_run_informationIf information about the individual runs should be
loaded. If you have many runs, like 1,000,000 or more you can spare time
by setting with_run_information=False. Note that f_get_run_information and
f_idx_to_run do not work in such a case. Moreover, setting v_idx does not work
either. If you load the trajectory without this information, be careful, this is not
recommended.

param storage_servicePass a storage service used by the trajectory. Alternatively
pass a constructor and other **kwargs are passed onto the constructor. Leave

3.2. The Trajectory and Group Nodes 151

pypet Documentation, Release 0.1.0

None in combination with using no other kwargs, if you don’t want to change the
service the trajectory is currently using.

param kwargsOther arguments passed to the storage service constructor. Don’t
pass any other kwargs and storage_service=None, if you don’t want to
change the current service.

ATTENTION: This function is not available during a single run!

f_load_item(item, *args, **kwargs)
Loads a single item, see also f_load_items()

f_load_items(iterator, *args, **kwargs)
Loads parameters and results specified in iterator.

You can directly list the Parameter objects or just their names.

If names are given the ~pypet.naturalnaming.NNGroupNode.f_get method is applied to find the pa-
rameters or results in the trajectory. Accordingly, the parameters and results you want to load must
already exist in your trajectory (in RAM), probably they are just empty skeletons waiting desperately
to handle data. If they do not exist in RAM yet, but have been stored to disk before, you can call
f_update_skeleton() in order to bring your trajectory tree skeleton up to date. In case of a
single run you can use the f_load_child() method to recursively load a subtree without any data.
Then you can load the data of individual results or parameters one by one.

If want to load the whole trajectory at once or ALL results and parameters that are still empty take a
look at f_load(). As mentioned before, to load subtrees of your trajectory you might want to check
out f_load_child().

To load a list of parameters or results with f_load_items you can pass the following arguments:

Parameters

•iterator – A list with parameters or results to be loaded.

•only_empties – Optional keyword argument (boolean), if True only empty param-
eters or results are passed to the storage service to get loaded. Non-empty parameters
or results found in iterator are simply ignored.

•args – Additional arguments directly passed to the storage service

•kwargs – Additional keyword arguments directly passed to the storage service (ex-
cept the kwarg only_empties)

If you use the standard hdf5 storage service, you can pass the following additional
keyword arguments:

param load_onlyIf you load a result, you can partially load it and ignore
the rest of data items. Just specify the name of the data you want
to load. You can also provide a list, for example load_only=’spikes’,
load_only=[’spikes’,’membrane_potential’].

Be aware that you need to specify the names of parts as they were stored to
HDF5. Depending on how your leaf construction works, this may differ from
the names the data might have in your leaf in the trajectory container.

A warning is issued if data specified in load_only cannot be found in the in-
stances specified in iterator.

param load_exceptAnalogous to the above, but everything is loaded except
names or parts specified in load_except. You cannot use load_only and
load_except at the same time. If you do a ValueError is thrown.

A warning is issued if names listed in load_except are not part of the items to
load.

f_load_skeleton()
Loads the full skeleton from the storage service.

152 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

This needs to be done after a successful exploration in order to update the trajectory tree with
all results and derived parameters from the individual single runs. This will only add empty
results and derived parameters (i.e. the skeleton) and load annotations.

ATTENTION: This function is not available during a single run!

f_lock_derived_parameters()
Locks all non-empty derived parameters

ATTENTION: This function is not available during a single run!

f_lock_parameters()
Locks all non-empty parameters

ATTENTION: This function is not available during a single run!

f_merge(other_trajectory, trial_parameter=None, remove_duplicates=False, ignore_data=(),
backup=True, move_data=False, delete_other_trajectory=False, keep_info=True,
keep_other_trajectory_info=True, merge_config=True, consecutive_merge=False)

Merges another trajectory into the current trajectory.

Both trajectories must live in the same space. This means both need to have the same param-
eters with similar types of values.

Note that links are also merged. There are exceptions: Links found under a generic run group
called run_ALL or links linking to a node under such a group are NOT merged and simply
skipped, because there is no straightforward way to resolve the link.

param other_trajectoryOther trajectory instance to merge into the current one.

param trial_parameterIf you have a particular parameter that specifies only the
trial number, i.e. an integer parameter running form 0 to T1 and 0 to T2, the pa-
rameter is modified such that after merging it will cover the range 0 to T1+T2+1.
T1 is the number of individual trials in the current trajectory and T2 number of
trials in the other trajectory.

param remove_duplicatesWhether you want to remove duplicate parameter points.
Requires N1 * N2 (quadratic complexity in single runs). A ValueError is raised if
no runs would be merged.

param ignore_dataList of full names of data that should be ignored and not merged.

param backupIf True, backs up both trajectories into files chosen automatically
by the storage services. If you want to customize your backup use the f_backup
function instead.

param move_dataTells the storage service to move data from one trajectory to the
other instead of copying it.

If you use the HDF5 storage service and both trajectories are stored in the same
file, merging is performed fast directly within the file. You can choose if you want
to copy nodes (‘move_nodes=False‘) from the other trajectory to the current one,
or if you want to move them. Accordingly, the stored data is no longer accessible
in the other trajectory.

param delete_other_trajectoryIf you want to delete the other trajectory after merg-
ing.

param keep_infoIf True, information about the merge is added to the trajectory
config tree under config.merge.

param merge_configWhether or not to merge all config parameters under .con-
fig.git, .config.environment, and .config.merge of the other trajectory into the cur-
rent one.

param keep_other_trajectory_infoWhether to keep information like length, name,
etc. of the other trajectory in case you want to keep all the information. Setting of
keep_other_trajectory_info is irrelevant in case keep_info=False.

3.2. The Trajectory and Group Nodes 153

pypet Documentation, Release 0.1.0

param consecutive_mergeCan be set to True if you are about to merge several tra-
jectories into the current one within a loop to avoid quadratic complexity. But
remember to store your trajectory manually after all merges. Also make sure
that all parameters and derived parameters are available in your current trajec-
tory and load them before the consecutive merging. Also avoid specifying a
trial_parameter and set backup=False to avoid quadratic complexity in case of
consecutive merges.

If you cannot directly merge trajectories within one HDF5 file, a slow merging process is
used. Results are loaded, stored, and emptied again one after the other. Might take some
time!

Annotations of parameters and derived parameters under .derived_parameters.trajectory are
NOT merged. If you wish to extract the annotations of these parameters you have to do that
manually before merging. Note that annotations of results and derived parameters of single
runs are copied, so you don’t have to worry about these.

ATTENTION: This function is not available during a single run!

f_merge_many(other_trajectories, ignore_data=(), move_data=False,
delete_other_trajectory=False, keep_info=True,
keep_other_trajectory_info=True, merge_config=True, backup=True)

Can be used to merge several other_trajectories into your current one.

IMPORTANT backup=True only backs up the current trajectory not any of the
other_trajectories. If you need a backup of these, do it manually.

Parameters as for f_merge().

ATTENTION: This function is not available during a single run!

f_migrate(new_name=None, in_store=False, new_storage_service=None, **kwargs)
Can be called to rename and relocate the trajectory.

param new_nameNew name of the trajectory, None if you do not want to change
the name.

param in_storeSet this to True if the trajectory has been stored with the new name
at the new file before and you just want to “switch back” to the location. If you
migrate to a store used before and you do not set in_store=True, the storage ser-
vice will throw a RuntimeError in case you store the Trajectory because it will
assume that you try to store a new trajectory that accidentally has the very same
name as another trajectory. If set to True and trajectory is not found in the file, the
trajectory is simply stored to the file.

param new_storage_serviceNew service where you want to migrate to. Leave none
if you want to keep the olde one.

param kwargsAdditional keyword arguments passed to the service. For instance,
to change the file of the trajectory use filename=’my_new_file.hdf5.

ATTENTION: This function is not available during a single run!

f_preset_config(config_name, *args, **kwargs)
Similar to func:~pypet.trajectory.Trajectory.f_preset_parameter

ATTENTION: This function is not available during a single run!

f_preset_parameter(param_name, *args, **kwargs)
Presets parameter value before a parameter is added.

Can be called before parameters are added to the Trajectory in order to change the values that
are stored into the parameter on creation.

After creation of a parameter, the instance of the parameter is called with
param.f_set(*args,**kwargs) with *args, and **kwargs provided by the user with
f_preset_parameter.

154 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

Before an experiment is carried out it is checked if all parameters that were marked were also
preset.

param param_nameThe full name (!) of the parameter that is to be changed after
its creation.

param argsArguments that will be used for changing the parameter’s data

param kwargsKeyword arguments that will be used for changing the parameter’s
data

Example:

>>> traj.f_preset_parameter('groupA.param1', data=44)
>>> traj.f_add_parameter('groupA.param1', data=11)
>>> traj.parameters.groupA.param1
44

ATTENTION: This function is not available during a single run!

f_remove(recursive=True, predicate=None)
Recursively removes all children of the trajectory

Parameters

•recursive – Only here for consistency with signature of parent method. Cannot be
set to False because the trajectory root node cannot be removed.

•predicate – Predicate which can evaluate for each node to True in order to remove
the node or False if the node should be kept. Leave None if you want to remove all
nodes.

f_remove_item(item, recursive=False)
Removes a single item, see f_remove_items()

f_remove_items(iterator, recursive=False)
Removes parameters, results or groups from the trajectory.

This function ONLY removes items from your current trajectory and does not delete data stored to
disk. If you want to delete data from disk, take a look at f_delete_items().

This will also remove all links if items are linked.

Parameters

•iterator – A sequence of items you want to remove. Either the instances them-
selves or strings with the names of the items.

•recursive – In case you want to remove group nodes, if the children should be
removed, too.

f_restore_default()

Restores the default value in all explored parameters and sets thev_idx property back to -1 and
v_crun to None.

ATTENTION: This function is not available during a single run!

f_set_crun(name_or_idx)
Can make the trajectory behave as during a particular single run.

It allows easier data analysis.

Has the following effects:

•v_idx and v_crun are set to the appropriate index and run name

•All explored parameters are set to the corresponding value in the exploration ranges, i.e.
when you call f_get() (or fast access) on them you will get in return the value at the
corresponding v_idx position in the exploration range.

3.2. The Trajectory and Group Nodes 155

pypet Documentation, Release 0.1.0

•If you perform a search in the trajectory tree, the trajectory will only search the run sub-
tree under results and derived_parameters with the corresponding index. For instance,
if you use f_set_crun(‘run_00000007’) or f_set_crun(7) and search for traj.results.z this
will search for z only in the subtree traj.results.run_00000007. Yet, you can still explic-
itly name other subtrees, i.e. traj.results.run_00000004.z will still work.

ATTENTION: This function is not available during a single run!

f_set_properties(**kwargs)
Sets properties like v_fast_access.

For example: traj.f_set_properties(v_fast_access=True,
v_auto_load=False)

f_shrink(force=False)

Shrinks the trajectory and removes all exploration ranges from the parameters.Only possible if
the trajectory has not been stored to disk before or was loaded as new.

param forceUsually you cannot shrink the trajectory if it has been stored to disk, because
there’s no guarantee that it is actually shrunk if there still exist explored parameters on
disk. In case you are certain that you did not store explored parameters to disk set or
you deleted all of them from disk set force=True.

raisesTypeError if the trajectory was stored before.

ATTENTION: This function is not available during a single run!

f_store(only_init=False, store_data=2, max_depth=None)
Stores the trajectory to disk and recursively all data in the tree.

Parameters

•only_init – If you just want to initialise the store. If yes, only meta informa-
tion about the trajectory is stored and none of the groups/leaves within the trajectory.
Alternatively, you can pass recursive=False.

•store_data – Only considered if only_init=False. Choose of the following:

–pypet.pypetconstants.STORE_NOTHING: (0)

Nothing is store.

–pypet.pypetconstants.STORE_DATA_SKIPPING: (1)

Speedy version of normal STORE_DATA will entirely skip groups (but not
their children) and leaves if they have been stored before. No new data is
added in this case.

–pypet.pypetconstants.STORE_DATA: (2)

Stores every group and leave node. If they contain data that is not yet stored to
disk it is added.

–pypet.pypetconstants.OVERWRITE_DATA: (3)

Stores all groups and leave nodes and will delete all data on disk and overwrite
it with the current data in RAM.

NOT RECOMMENDED! Overwriting data on disk fragments the HDF5 file
and yields badly compressed large files. Better stick to the concept write once
and read many!

If you use the HDF5 Storage Service usually (STORE_DATA (2)) only novel data is stored to disk.
If you have results that have been stored to disk before only new data items are added and already
present data is NOT overwritten.

Overwriting (OVERWRITE_DATA (3)) existing data with the HDF5 storage service is not recom-
mended due to fragmentation of the HDF5 file. Better stick to the concept write once, but read often.

156 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

If you want to store individual parameters or results, you might want to take a look at
f_store_items(). To store whole subtrees of your trajectory check out f_store_child().
Note both functions require that your trajectory was stored to disk with f_store at least once before.

ATTENTION: Calling f_store during a single run the behavior is different.

To avoid re-storing the full trajectory in every single run, which is redundant, only sub-trees of the
trajectory are really stored.

The storage serivce looks for new data that is added below groups called run_XXXXXXXXXX and
stores it where XXXXXXXXX is the index of this run. The only_init parameter is ignored in this case.
You can avoid this behavior by using the argument from below.

Parametersmax_depth – Maximum depth to store tree (inclusive). During single runs
max_depth is also counted from root.

f_store_item(item, *args, **kwargs)
Stores a single item, see also f_store_items().

f_store_items(iterator, *args, **kwargs)
Stores individual items to disk.

This function is useful if you calculated very large results (or large derived parameters) during runtime
and you want to write these to disk immediately and empty them afterwards to free some memory.

Instead of storing individual parameters or results you can also store whole subtrees with
f_store_child().

You can pass the following arguments to f_store_items:

Parameters

•iterator – An iterable containing the parameters or results to store, either their
names or the instances. You can also pass group instances or names here to store the
annotations of the groups.

•non_empties – Optional keyword argument (boolean), if True will only store the
subset of provided items that are not empty. Empty parameters or results found in
iterator are simply ignored.

•args – Additional arguments passed to the storage service

•kwargs – If you use the standard hdf5 storage service, you can pass the following
additional keyword argument:

param overwriteList names of parts of your item that should be erased and over-
written by the new data in your leaf. You can also set overwrite=True to over-
write all parts.

For instance:

>>> traj.f_add_result('mygroup.myresult', partA=42, partB=44, partC=46)
>>> traj.f_store()
>>> traj.mygroup.myresult.partA = 333
>>> traj.mygroup.myresult.partB = 'I am going to change to a string'
>>> traj.f_store_item('mygroup.myresult', overwrite=['partA', 'partB'])

Will store ‘mygroup.myresult’ to disk again and overwrite the parts ‘partA’ and
‘partB’ with the new values 333 and ‘I am going to change to a string’. The
data stored as partC is not changed.

Be aware that you need to specify the names of parts as they were stored to
HDF5. Depending on how your leaf construction works, this may differ from
the names the data might have in your leaf in the trajectory container.

Note that massive overwriting will fragment and blow up your HDF5 file. Try
to avoid changing data on disk whenever you can.

3.2. The Trajectory and Group Nodes 157

pypet Documentation, Release 0.1.0

RaisesTypeError:

If the (parent) trajectory has never been stored to disk. In this case use
pypet.trajectory.f_store() first.

ValueError: If no item could be found to be stored.

Note if you use the standard hdf5 storage service, there are no additional arguments or keyword argu-
ments to pass!

f_to_dict(fast_access=False, short_names=False, copy=True, with_links=True)
Returns a dictionary with pairings of (full) names as keys and instances/values.

Parameters
•fast_access – If True, parameter values are returned instead of the instances. Works
also for results if they contain a single item with the name of the result.

•short_names – If true, keys are not full names but only the names. Raises a ValueError
if the names are not unique.

•copy – If fast_access=False and short_names=False you can access the original data
dictionary if you set copy=False. If you do that, please do not modify anything! Raises
ValueError if copy=False and fast_access=True or short_names=True.

•with_links – If links should be ignored
Returnsdictionary
RaisesValueError

f_wildcard(wildcard=’$’, run_idx=None)
#TODO

v_auto_load
Whether the trajectory should attempt to load data on the fly.

v_auto_run_prepend
If during run the runs.run_XXXXXXXX should be prepended if it is missing.

Is not considered for f_add_leaf and f_add_group which never prepend.

v_comment
Should be a nice descriptive comment

v_crun
Run name if you want to access the trajectory as a single run.

You can turn the trajectory to behave as during a single run if you set v_crun to a particular run name.
Note that only string values are appropriate here, not indices. Check the v_idx property if you want to
provide an index.

Alternatively instead of directly setting v_crun you can call f_set_crun:().

Set to None to make the trajectory to turn everything back to default.

v_crun_
” Similar to v_crun but returns ’run_ALL’ if v_crun is None.

v_environment_hexsha
If the trajectory is used with an environment this returns the SHA-1 code of the environment.

v_environment_name
If the trajectory is used with an environment this returns the name of the environment.

v_fast_access
Whether parameter instances (False) or their values (True) are returned via natural naming.

Works also for results if they contain a single item with the name of the result.

Default is True.

v_filename
The name and path of the hdf5 file in case you use the HDF4StorageService

158 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

v_full_copy
Whether trajectory is copied fully during pickling or only the current parameter space point.

Note if the trajectory is copied as a whole, also during a single run you can access the full parameter
space.

Changing v_full_copy will also change v_full_copy of all explored parameters!

v_idx
Index if you want to access the trajectory as during a single run.

You can turn the trajectory to behave as if during the execution of your runs if you set v_idx to a
particular index. Note that only integer values are appropriate here, not names of runs.

Alternatively instead of directly setting v_idx you can call f_set_crun:().

Set to -1 to make the trajectory turn everything back to default.

v_is_run
True mak if trajectory is used during a single run initiated by an environment.

Accordingly, the functionality of the trajectory is reduced.

v_iter_recursive
Whether using __iter__ should iterate only immediate children or recursively all nodes.

v_lazy_adding
If lazy additions are allowed.

I.e. traj.par.x = 42 which adds a new parameter with value 42

v_max_depth
The maximum depth the tree should be searched if shortcuts are allowed.

Set to None if there should be no depth limit.

v_python
The version of python as a string that was used to create the trajectory

v_shortcuts
Whether shortcuts are allowed if accessing data via natural naming or squared bracket indexing.

v_standard_leaf
The standard constructor used if you add a generic leaf.

The constructor is only used if you do not add items under the usual four subtrees (parameters, de-
rived_parameters, config, results).

v_standard_parameter
The standard parameter used for parameter creation

v_standard_result
The standard result class used for result creation

v_storage_service
The service that can store the trajectory to disk or wherever.

Default is None or if a filename was provided on construction the HDF5StorageService.

v_time
Formatted time string of the time the trajectory or run was created.

v_timestamp
Float timestamp of creation time

v_trajectory_name
Name of the (parent) trajectory

v_trajectory_time
Time (parent) trajectory was created

3.2. The Trajectory and Group Nodes 159

pypet Documentation, Release 0.1.0

v_trajectory_timestamp
Float timestamp when (parent) trajectory was created

v_version
The version of pypet that was used to create the trajectory

v_with_links
Whether links should be considered in case using natural naming or squared bracket indexing

pypet.trajectory.load_trajectory(name=None, index=None, as_new=False,
load_parameters=2, load_derived_parameters=1,
load_results=1, load_other_data=1, recursive=True,
load_data=None, max_depth=None, force=False, dy-
namic_imports=None, new_name=’my_trajectory’,
add_time=True, wildcard_functions=None,
with_run_information=True, storage_service=<class
‘pypet.storageservice.HDF5StorageService’>, **kwargs)

Helper function that creates a novel trajectory and loads it from disk.

For the parameters see f_load().

new_name and add_time are only used in case as_new is True. Accordingly, they determine the new
name of trajectory.

3.2.3 NNGroupNode

class pypet.naturalnaming.NNGroupNode(full_name=’‘, trajectory=None, comment=’‘)
A group node hanging somewhere under the trajectory or single run root node.

You can add other groups or parameters/results to it.

f_add_group(*args, **kwargs)
Adds an empty generic group under the current node.

You can add to a generic group anywhere you want. So you are free to build your parameter tree
with any structure. You do not necessarily have to follow the four subtrees config, parameters, de-
rived_parameters, results.

If you are operating within these subtrees this simply calls the corresponding adding function.

Be aware that if you are within a single run and you add items not below a group run_XXXXXXXX that
you have to manually save the items. Otherwise they will be lost after the single run is completed.

f_add_leaf(*args, **kwargs)
Adds an empty generic leaf under the current node.

You can add to a generic leaves anywhere you want. So you are free to build your trajectory tree
with any structure. You do not necessarily have to follow the four subtrees config, parameters, de-
rived_parameters, results.

If you are operating within these subtrees this simply calls the corresponding adding function.

Be aware that if you are within a single run and you add items not below a group run_XXXXXXXX that
you have to manually save the items. Otherwise they will be lost after the single run is completed.

f_add_link(name_or_item, full_name_or_item=None)
Adds a link to an existing node.

Can be called as node.f_add_link(other_node) this will add a link the other_node with the
link name as the name of the node.

Or can be called as node.f_add_link(name, other_node) to add a link to the other_node
and the given name of the link.

In contrast to addition of groups and leaves, colon separated names are not allowed, i.e.
node.f_add_link(’mygroup.mylink’, other_node) does not work.

160 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_children()
Returns the number of children of the group

f_contains(item, with_links=True, shortcuts=False, max_depth=None)
Checks if the node contains a specific parameter or result.

It is checked if the item can be found via the f_get() method.
Parameters

•item – Parameter/Result name or instance.

If a parameter or result instance is supplied it is also checked if the provided item and the
found item are exactly the same instance, i.e. id(item)==id(found_item).

•with_links – If links are considered.
•shortcuts – Shortcuts is False the name you supply must be found in the tree WITH-
OUT hopping over nodes in between. If shortcuts=False and you supply a non colon
separated (short) name, than the name must be found in the immediate children of your
current node. Otherwise searching via shortcuts is allowed.

•max_depth – If shortcuts is True than the maximum search depth can be specified. None
means no limit.

ReturnsTrue or False

f_debug()
Creates a dummy object containing the whole tree to make unfolding easier.

This method is only useful for debugging purposes. If you use an IDE and want to unfold the trajectory
tree, you always need to open the private attribute _children. Use to this function to create a new object
that contains the tree structure in its attributes.

Manipulating the returned object does not change the original tree!

f_get(name, fast_access=False, with_links=True, shortcuts=True, max_depth=None,
auto_load=False)

Searches and returns an item (parameter/result/group node) with the given name.
Parameters

•name – Name of the item (full name or parts of the full name)
•fast_access – Whether fast access should be applied.
•with_links – If links are considered. Cannot be set to False if auto_load is True.
•shortcuts – If shortcuts are allowed and the trajectory can hop over nodes in the path.
•max_depth – Maximum depth relative to starting node (inclusive). None means no depth
limit.

•auto_load – If data should be loaded from the storage service if it cannot be found in
the current trajectory tree. Auto-loading will load group and leaf nodes currently not in
memory and it will load data into empty leaves. Be aware that auto-loading does not work
with shortcuts.

ReturnsThe found instance (result/parameter/group node) or if fast access is True and you
found a parameter or result that supports fast access, the contained value is returned.

RaisesAttributeError: If no node with the given name can be found

NotUniqueNodeError
In case of forward search if more than one candidate node is found within a particular
depth of the tree. In case of backwards search if more than one candidate is found
regardless of the depth.

DataNotInStorageError:

3.2. The Trajectory and Group Nodes 161

pypet Documentation, Release 0.1.0

In case auto-loading fails
Any exception raised by the StorageService in case auto-loading is enabled

f_get_all(name, max_depth=None, shortcuts=True)
Searches for all occurrences of name under node.

Links are NOT considered since nodes are searched bottom up in the tree.
Parameters

•node – Start node
•name – Name of what to look for, can be separated by colons, i.e.
’mygroupA.mygroupB.myparam’.

•max_depth – Maximum search depth relative to start node. None for no limit.
•shortcuts – If shortcuts are allowed, otherwise the stated name defines a con-
secutive name.For instance. ’mygroupA.mygroupB.myparam’ would also find
mygroupA.mygroupX.mygroupB.mygroupY.myparam if shortcuts are allowed,
otherwise not.

ReturnsList of nodes that match the name, empty list if nothing was found.

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_children(copy=True)
Returns a children dictionary.

Parameterscopy – Whether the group’s original dictionary or a shallow copy is returned. If
you want the real dictionary please do not modify it at all!

ReturnsDictionary of nodes

f_get_class_name()
Returns the class name of the parameter or result or group.

Equivalent to obj.__class__.__name__

f_get_default(name, default=None, fast_access=True, with_links=True, shortcuts=True,
max_depth=None, auto_load=False)

Similar to f_get, but returns the default value if name is not found in the trajectory.

This function uses the f_get method and will return the default value in case f_get raises an AttributeEr-
ror or a DataNotInStorageError. Other errors are not handled.

In contrast to f_get, fast access is True by default.

f_get_groups(copy=True)
Returns a dictionary of groups hanging immediately below this group.

Parameterscopy – Whether the group’s original dictionary or a shallow copy is returned. If
you want the real dictionary please do not modify it at all!

ReturnsDictionary of nodes

f_get_leaves(copy=True)
Returns a dictionary of all leaves hanging immediately below this group.

Parameterscopy – Whether the group’s original dictionary or a shallow copy is returned. If
you want the real dictionary please do not modify it at all!

ReturnsDictionary of nodes

f_get_links(copy=True)
Returns a link dictionary.

Parameterscopy – Whether the group’s original dictionary or a shallow copy is returned. If
you want the real dictionary please do not modify it at all!

ReturnsDictionary of nodes

f_get_parent()
Returns the parent of the node.

Raises a TypeError if current node is root.

162 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

f_get_root()
Returns the root node of the tree.

Either a full trajectory or a single run container.

f_groups()
Returns the number of immediate groups of the group

f_has_children()
Checks if node has children or not

f_has_groups()
Checks if node has groups or not

f_has_leaves()
Checks if node has leaves or not

f_has_links()
Checks if node has children or not

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_iter_leaves(with_links=True)
Iterates (recursively) over all leaves hanging below the current group.

Parameterswith_links – If links should be ignored, leaves hanging below linked nodes are
not listed.

ReturnsIterator over all leaf nodes

f_iter_nodes(recursive=True, with_links=True, max_depth=None, predicate=None)
Iterates recursively (default) over nodes hanging below this group.

Parameters
•recursive – Whether to iterate the whole sub tree or only immediate children.
•with_links – If links should be considered
•max_depth – Maximum depth in search tree relative to start node (inclusive)
•predicate – A predicate function that is applied for each node and only returns the
node if it evaluates to True. If False and you iterate recursively also the children are
spared.

Leave to None if you don’t want to filter and simply iterate over all nodes.

For example, to iterate only over groups you could use:

>>> traj.f_iter_nodes(recursive=True, predicate=lambda x: x.v_is_group)

To blind out all runs except for a particular set, you can simply pass a tuple of run indices
with -1 referring to the run_ALL node.

For instance

>>> traj.f_iter_nodes(recursive=True, predicate=(0,3,-1))

Will blind out all nodes hanging below a group named run_XXXXXXXXX (including the
group) except run_00000000, run_00000003, and run_ALL.

ReturnsIterator over nodes

f_leaves()
Returns the number of immediate leaves of the group

f_links()
Returns the number of links of the group

f_load(recursive=True, load_data=2, max_depth=None)
Loads a group from disk.

3.2. The Trajectory and Group Nodes 163

pypet Documentation, Release 0.1.0

Parameters
•recursive – Default is True. Whether recursively all nodes below the current node should
be loaded, too. Note that links are never evaluated recursively. Only the linked node will be
loaded if it does not exist in the tree, yet. Any nodes or links of this linked node are not loaded.

•load_data – Flag how to load the data. For how to choose ‘load_data’ see Loading.
•max_depth – In case recursive is True, you can specify the maximum depth to load load data
relative from current node.

ReturnsThe node itself.

f_load_child(name, recursive=False, load_data=2, max_depth=None)
Loads a child or recursively a subtree from disk.

Parameters
•name – Name of child to load. If grouped (‘groupA.groupB.childC’) the path along the way to
last node in the chain is loaded. Shortcuts are NOT allowed!

•recursive – Whether recursively all nodes below the last child should be loaded, too. Note
that links are never evaluated recursively. Only the linked node will be loaded if it does not exist
in the tree, yet. Any nodes or links of this linked node are not loaded.

•load_data – Flag how to load the data. For how to choose ‘load_data’ see Loading.
•max_depth – In case recursive is True, you can specify the maximum depth to load load data
relative from current node. Leave None if you don’t want to limit the depth.

ReturnsThe loaded child, in case of grouping (‘groupA.groupB.childC’) the last node (here ‘childC’)
is returned.

f_remove(recursive=True, predicate=None)
Recursively removes the group and all it’s children.

Parameters
•recursive – If removal should be applied recursively. If not, node can only be removed if it
has no children.

•predicate – In case of recursive removal, you can selectively remove nodes in the tree.
Predicate which can evaluate for each node to True in order to remove the node or False if
the node should be kept. Leave None if you want to remove all nodes.

f_remove_child(name, recursive=False, predicate=None)
Removes a child of the group.

Note that groups and leaves are only removed from the current trajectory in RAM. If the trajectory is stored
to disk, this data is not affected. Thus, removing children can be only be used to free RAM memory!

If you want to free memory on disk via your storage service, use f_delete_items() of your trajec-
tory.

Parameters
•name – Name of child, naming by grouping is NOT allowed (‘groupA.groupB.childC’), child
must be direct successor of current node.

•recursive – Must be true if child is a group that has children. Will remove the whole subtree
in this case. Otherwise a Type Error is thrown.

•predicate – Predicate which can evaluate for each node to True in order to remove the node
or False if the node should be kept. Leave None if you want to remove all nodes.

RaisesTypeError if recursive is false but there are children below the node.

ValueError if child does not exist.

f_remove_link(name)
Removes a link from from the current group node with a given name.

Does not delete the link from the hard drive. If you want to do this, checkout f_delete_links()

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_store(recursive=True, store_data=2, max_depth=None)
Stores a group node to disk

Parameters

164 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•recursive – Whether recursively all children should be stored too. Default is True.
•store_data – For how to choose ‘store_data’ see Storing.
•max_depth – In case recursive is True, you can specify the maximum depth to store data
relative from current node. Leave None if you don’t want to limit the depth.

f_store_child(name, recursive=False, store_data=2, max_depth=None)
Stores a child or recursively a subtree to disk.

Parameters
•name – Name of child to store. If grouped (‘groupA.groupB.childC’) the path along the way to
last node in the chain is stored. Shortcuts are NOT allowed!

•recursive – Whether recursively all children’s children should be stored too.
•store_data – For how to choose ‘store_data’ see Storing.
•max_depth – In case recursive is True, you can specify the maximum depth to store data
relative from current node. Leave None if you don’t want to limit the depth.

RaisesValueError if the child does not exist.

f_to_dict(fast_access=False, short_names=False, with_links=True)
Returns a dictionary with pairings of (full) names as keys and instances as values.

This will iteratively traverse the tree and add all nodes below this group to the dictionary.
Parameters

•fast_access – If True parameter or result values are returned instead of the instances.
•short_names – If true keys are not full names but only the names. Raises a ValueError if the
names are not unique.

•with_links – If links should be considered
Returnsdictionary
RaisesValueError

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

3.2. The Trajectory and Group Nodes 165

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

The location of a trajectory or single run is the empty string since it is root.

v_name
Name of the node

v_root
Link to the root of the tree, i.e. the trajectory

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

3.2.4 ParameterGroup

class pypet.naturalnaming.ParameterGroup(full_name=’‘, trajectory=None, comment=’‘)
Group node in your trajectory, hanging below traj.parameters.

You can add other groups or parameters to it.

f_add_parameter(*args, **kwargs)
Adds a parameter under the current node.

There are two ways to add a new parameter either by adding a parameter instance:

>>> new_parameter = Parameter('group1.group2.myparam', data=42, comment='Example!')
>>> traj.f_add_parameter(new_parameter)

Or by passing the values directly to the function, with the name being the first (non-keyword!) argument:

>>> traj.f_add_parameter('group1.group2.myparam', data=42, comment='Example!')

If you want to create a different parameter than the standard parameter, you can give the constructor as the
first (non-keyword!) argument followed by the name (non-keyword!):

>>> traj.f_add_parameter(PickleParameter,'group1.group2.myparam', data=42, comment='Example!')

The full name of the current node is added as a prefix to the given parameter name. If the current node is
the trajectory the prefix ‘parameters’ is added to the name.

f_add_parameter_group(*args, **kwargs)
Adds an empty parameter group under the current node.

Can be called with f_add_parameter_group(’MyName’, ’this is an
informative comment’) or f_add_parameter_group(name=’MyName’,
comment=’This is an informative comment’) or with a given new group instance:
f_add_parameter_group(ParameterGroup(’MyName’, comment=’This is a
comment’)).

Adds the full name of the current node as prefix to the name of the group. If current node is the trajectory
(root), the prefix ‘parameters’ is added to the full name.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automatically created.

f_apar(*args, **kwargs)
Adds a parameter under the current node.

There are two ways to add a new parameter either by adding a parameter instance:

166 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

>>> new_parameter = Parameter('group1.group2.myparam', data=42, comment='Example!')
>>> traj.f_add_parameter(new_parameter)

Or by passing the values directly to the function, with the name being the first (non-keyword!) argument:

>>> traj.f_add_parameter('group1.group2.myparam', data=42, comment='Example!')

If you want to create a different parameter than the standard parameter, you can give the constructor as
the first (non-keyword!) argument followed by the name (non-keyword!):

>>> traj.f_add_parameter(PickleParameter,'group1.group2.myparam', data=42, comment='Example!')

The full name of the current node is added as a prefix to the given parameter name. If the current node is
the trajectory the prefix ‘parameters’ is added to the name.

3.2.5 ConfigGroup

class pypet.naturalnaming.ConfigGroup(full_name=’‘, trajectory=None, comment=’‘)
Group node in your trajectory, hanging below traj.config.

You can add other groups or parameters to it.

f_aconf(*args, **kwargs)
Adds a config parameter under the current group.

Similar to f_add_parameter().

If current group is the trajectory the prefix ‘config’ is added to the name.

f_add_config(*args, **kwargs)
Adds a config parameter under the current group.

Similar to f_add_parameter().

If current group is the trajectory the prefix ‘config’ is added to the name.

f_add_config_group(*args, **kwargs)
Adds an empty config group under the current node.

Adds the full name of the current node as prefix to the name of the group. If current node is the
trajectory (root), the prefix ‘config’ is added to the full name.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automatically be
created.

3.2.6 DerivedParameterGroup

class pypet.naturalnaming.DerivedParameterGroup(full_name=’‘, trajectory=None, com-
ment=’‘)

Group node in your trajectory, hanging below traj.derived_parameters.

You can add other groups or parameters to it.

f_add_derived_parameter(*args, **kwargs)
Adds a derived parameter under the current group.

Similar to f_add_parameter()

Naming prefixes are added as in f_add_derived_parameter_group()

3.2. The Trajectory and Group Nodes 167

pypet Documentation, Release 0.1.0

f_add_derived_parameter_group(*args, **kwargs)
Adds an empty derived parameter group under the current node.

Adds the full name of the current node as prefix to the name of the group. If current node is a single
run (root) adds the prefix ‘derived_parameters.runs.run_08%d%’ to the full name where ‘08%d’ is
replaced by the index of the current run.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automatically be
created.

f_adpar(*args, **kwargs)
Adds a derived parameter under the current group.

Similar to f_add_parameter()

Naming prefixes are added as in f_add_derived_parameter_group()

3.2.7 ResultGroup

class pypet.naturalnaming.ResultGroup(full_name=’‘, trajectory=None, comment=’‘)
Group node in your trajectory, hanging below traj.results.

You can add other groups or results to it.

f_add_result(*args, **kwargs)
Adds a result under the current node.

There are two ways to add a new result either by adding a result instance:

>>> new_result = Result('group1.group2.myresult', 1666, x=3, y=4, comment='Example!')
>>> traj.f_add_result(new_result)

Or by passing the values directly to the function, with the name being the first (non-keyword!) argu-
ment:

>>> traj.f_add_result('group1.group2.myresult', 1666, x=3, y=3,comment='Example!')

If you want to create a different result than the standard result, you can give the constructor as the first
(non-keyword!) argument followed by the name (non-keyword!):

>>> traj.f_add_result(PickleResult,'group1.group2.myresult', 1666, x=3, y=3, comment='Example!')

Additional arguments (here 1666) or keyword arguments (here x=3, y=3) are passed onto the con-
structor of the result.

Adds the full name of the current node as prefix to the name of the result. If current node is a single
run (root) adds the prefix ‘results.runs.run_08%d%’ to the full name where ‘08%d’ is replaced by the
index of the current run.

f_add_result_group(*args, **kwargs)
Adds an empty result group under the current node.

Adds the full name of the current node as prefix to the name of the group. If current node is a single
run (root) adds the prefix ‘results.runs.run_08%d%’ to the full name where ‘08%d’ is replaced by the
index of the current run.

The name can also contain subgroups separated via colons, for example:
name=subgroup1.subgroup2.subgroup3. These other parent groups will be automatically be
created.

168 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

f_ares(*args, **kwargs)
Adds a result under the current node.

There are two ways to add a new result either by adding a result instance:

>>> new_result = Result('group1.group2.myresult', 1666, x=3, y=4, comment='Example!')
>>> traj.f_add_result(new_result)

Or by passing the values directly to the function, with the name being the first (non-keyword!) argu-
ment:

>>> traj.f_add_result('group1.group2.myresult', 1666, x=3, y=3,comment='Example!')

If you want to create a different result than the standard result, you can give the constructor as the first
(non-keyword!) argument followed by the name (non-keyword!):

>>> traj.f_add_result(PickleResult,'group1.group2.myresult', 1666, x=3, y=3, comment='Example!')

Additional arguments (here 1666) or keyword arguments (here x=3, y=3) are passed onto the con-
structor of the result.

Adds the full name of the current node as prefix to the name of the result. If current node is a single
run (root) adds the prefix ‘results.runs.run_08%d%’ to the full name where ‘08%d’ is replaced by the
index of the current run.

3.3 Parameters and Results

This module contains implementations of result and parameter containers.

Results and parameters are the leaf nodes of the Trajectory tree. Instances of results can only be found under
the subtree traj.results, whereas parameters are used to handle data kept under traj.config, traj.parameters, and
traj.derived_parameters.

Result objects can handle more than one data item and heterogeneous data. On the contrary, parameters only han-
dle single data items. However, they can contain ranges - arrays of homogeneous data items - to allow parameter
exploration.

The module contains the following parameters:

• BaseParameter

Abstract base class to define the parameter interface

• Parameter

Standard parameter that handles a variety of different data types.

• ArrayParameter

Parameter class for larger numpy arrays and python tuples

• SparseParameter

Parameter for Scipy sparse matrices

• PickleParameter

Parameter that can handle all objects that can be pickled

The module contains the following results:

• BaseResult

Abstract base class to define the result interface

• Result

3.3. Parameters and Results 169

pypet Documentation, Release 0.1.0

Standard result that handles a variety of different data types

• SparseResult

Result that can handle Scipy sparse matrices

• PickleResult

Result that can handle all objects that can be pickled

Moreover, part of this module is also the ObjectTable. This is a specification of pandas DataFrames which
maintains data types. It prevents auto-conversion of data to numpy data types, like python integers to numpy 64
bit integers, for instance.

3.3.1 Parameter Quicklinks

f_set Sets a data value for a parameter.
f_get Returns the current data value of the parameter and locks the parameter.
f_empty Erases all data in the parameter.
f_get_range Returns a python tuple containing the exploration range.
f_has_range If the parameter has a range.
f_supports Checks if input data is supported by the parameter.

3.3.2 Result Quicklinks

f_set Method to put data into the result.
f_get Returns items handled by the result.
f_empty Removes all data from the result or parameter.
f_to_dict Returns all handled data as a dictionary.

3.3.3 Parameter

class pypet.parameter.Parameter(full_name, data=None, comment=’‘)
The standard container that handles access to simulation parameters.

Parameters are simple container objects for data values. They handle single values as well as the so called
exploration range. An array containing multiple values which are accessed one after the other in individual
simulation runs.

Parameter exploration is usually initiated through the trajectory see
:func:~pypet.trajectory.Trajectory.f_explore and :func:~pypet.trajectory.Trajectory.f_expand.

To access the parameter’s data value one can call the f_get() method.

Parameters support the concept of locking. Once a value of the parameter has been accessed, the param-
eter cannot be changed anymore unless it is explicitly unlocked using f_unlock(). Locking prevents
parameters from being changed during runtime of a simulation.

Supported data values for the parameter are
•python natives (int, long, str, bool, float, complex),
•numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str
•python homogeneous non-nested tuples

Note that for larger numpy arrays it is recommended to use the ArrayParameter.

In case you create a new parameter you can pass the following arguments:
Parameters

•full_name – The full name of the parameter. Grouping can be achieved by using
colons.

170 Chapter 3. Library Reference

http://pandas.pydata.org/

pypet Documentation, Release 0.1.0

•data – A data value that is handled by the parameter. It is checked whether
the parameter f_supports() the data. If not a TypeError is thrown. If the
parameter becomes explored, the data value is kept as a default. After simulation
the default value will be restored.

The data can be accessed as follows:

>>> param.f_get()
42

Or using >>> param.data 42

[It is not v_data because the data is supposed to be part of the trajectory tree or
extension of the natural naming scheme and not considered as an attribute/variable
of the parameter container.]

To change the data after parameter creation one can call f_set():

>>> param.f_set(43)
>>> param.f_get()
43

•comment – A useful comment describing the parameter. The comment can be
changed later on using the ‘v_comment’ variable.

>>> param.v_comment = 'Example comment'
>>> print param.v_comment
'Example comment'

RaisesTypeError: If data is not supported by the parameter.
Example usage:

>>> param = Parameter('traffic.mobiles.ncars',data=42, comment='I am a neat example')

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_empty()
Erases all data in the parameter.

Does not erase data from disk. So if the parameter has been stored with a service to disk and is
emptied, it can be restored by loading from disk.

RaisesParameterLockedException: If the parameter is locked.

f_get()
Returns the current data value of the parameter and locks the parameter.

RaisesTypeError if the parameter is empty
Example usage:

>>> param = Parameter('groupA.groupB.myparam', comment='I am a neat example')
>>> param.f_set(44.0)
>>> param.f_get()
44.0:

3.3. Parameters and Results 171

pypet Documentation, Release 0.1.0

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_array()
Returns an iterable to iterate over the values of the exploration range.

Note that the returned values should be either a copy of the exploration range or the array must be
immutable, for example a python tuple.

ReturnsImmutable sequence
RaisesTypeError if the parameter is not explored

Example usage:

>>> param = Parameter('groupA.groupB.myparam',data=22, comment='I am a neat example')
>>> param._explore([42,43,43])
>>> param.f_get_array()
(42,43,44)

DEPRECATED: Use f_get_range() instead!

f_get_class_name()
Returns the name of the class i.e. return self.__class__.__name__

f_get_default()
Returns the default value of the parameter and locks it.

f_get_range()
Returns a python tuple containing the exploration range.

Example usage:

>>> param = Parameter('groupA.groupB.myparam',data=22, comment='I am a neat example')
>>> param._explore([42,43,43])
>>> param.f_get_range()
(42,43,44)

RaisesTypeError: If parameter is not explored.

f_get_range_length()
Returns the length of the parameter range.

Raises TypeError if the parameter has no range.

Does not need to be implemented if the parameter supports __len__ appropriately.

f_has_range()
If the parameter has a range.

Does not have to be True if the parameter is explored. The range might be removed during pickling
to save memory. Accordingly, v_explored remains True whereas f_has_range is False.

f_is_array()
Returns true if the parameter is explored and contains a range array.

DEPRECATED: Use f_has_range() instead.

f_is_empty()
True if no data has been assigned to the parameter.

Example usage:

>>> param = Parameter('myname.is.example', comment='I am _empty!')
>>> param.f_is_empty()
True
>>> param.f_set(444)
>>> param.f_is_empty()
False

172 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

True if no data has been assigned to the parameter.
Example usage:

>>> param = Parameter('myname.is.example', comment='I am _empty!')
>>> param.f_is_empty()
True
>>> param.f_set(444)
>>> param.f_is_empty()
False

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_lock()
Locks the parameter and forbids further manipulation.

Changing the data value or exploration range of the parameter are no longer allowed.

f_set(data)
Sets a data value for a parameter.

Example usage:

>>> param = Parameter('groupA.groupB.myparam', comment='I am a neat example')
>>> param.f_set(44.0)
>>> param.f_get()
44.0

RaisesParameterLockedException: If parameter is locked

TypeError: If the type of the data value is not supported by the parameter

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_supports(data)
Checks if input data is supported by the parameter.

f_supports_fast_access()
Checks if parameter supports fast access.

A parameter supports fast access if it is NOT empty!

f_unlock()
Unlocks the locked parameter.

Please use it very carefully, or best do not use this function at all. There should better be no reason to
unlock a locked parameter! The only exception I can think of is to unlock a large derived parameter
after usage to subsequently call f_empty() to clear memory.

f_val_to_str()
String summary of the value handled by the parameter.

Note that representing the parameter as a string accesses its value, but for simpler debugging, this
does not lock the parameter or counts as usage!

Calls __repr__ of the contained value.

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

3.3. Parameters and Results 173

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_explored
Whether parameter is explored.

Does not necessarily have to be similar to f_has_range() since the range can be deleted on
pickling and the parameter remains explored.

v_fast_accessible
Whether or not fast access can be supported by the Parameter or Result

DEPRECATED: Please use function f_supports_fast_access instead!

v_full_copy
Whether or not the full parameter including the range or only the current data is copied during pick-
ling.

If you run your simulations in multiprocessing mode, the whole trajectory and all parameters need to
be pickled and are sent to the individual processes. Each process than runs an individual point in the
parameter space. As a consequence, you do not need the full ranges during these calculations. Thus,
if the full copy mode is set to False the parameter is pickled without the range array and you can save
memory.

If you want to access the full range during individual runs, you need to set v_full_copy to True.

It is recommended NOT to do that in order to save memory and also do obey the philosophy that
individual simulation runs are independent.

Example usage:

>>> import pickle
>>> param = Parameter('examples.fullcopy', data=333, comment='I show you how the copy mode works!')
>>> param._explore([1,2,3,4])
>>> dump=pickle.dumps(param)
>>> newparam = pickle.loads(dump)
>>> newparam.f_get_range()
TypeError

>>> param.v_full_copy=True
>>> dump = pickle.dumps(param)
>>> newparam=pickle.loads(dump)
>>> newparam.f_get_range()
(1,2,3,4)

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_parameter
Whether the node is a parameter or not (i.e. a result)

174 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

The location of a trajectory or single run is the empty string since it is root.

v_locked
Whether or not the parameter is locked and prevents further modification

v_name
Name of the node

v_parameter
Whether the node is a parameter or not (i.e. a result)

DEPRECATED: Please use v_is_parameter instead!

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

3.3.4 ArrayParameter

class pypet.parameter.ArrayParameter(full_name, data=None, comment=’‘)
Similar to the Parameter, but recommended for large numpy arrays and python tuples.

The array parameter is a bit smarter in memory management than the parameter. If a numpy array is used
several times within an exploration, only one numpy array is stored by the default HDF5 storage service.
For each individual run references to the corresponding numpy array are stored.

Since the ArrayParameter inherits from Parameter it also supports all other native python types.

IDENTIFIER = ‘__rr__’
Identifier to mark stored data as an array

f_supports(data)
Checks if input data is supported by the parameter.

3.3.5 SparseParameter

class pypet.parameter.SparseParameter(full_name, data=None, comment=’‘)
Parameter that handles Scipy csr, csc, bsr and dia sparse matrices.

Sparse Parameter inherits from ArrayParameter and supports arrays and native python data as well.

Uses similar memory management as its parent class.

DIA_NAME_LIST = [’format’, ‘data’, ‘offsets’, ‘shape’]
Data names for serialization of dia matrices

IDENTIFIER = ‘__spsp__’
Identifier to mark stored data as a sparse matrix

OTHER_NAME_LIST = [’format’, ‘data’, ‘indices’, ‘indptr’, ‘shape’]
Data names for serialization of csr, csc, and bsr matrices

3.3. Parameters and Results 175

pypet Documentation, Release 0.1.0

f_supports(data)
Sparse matrices support Scipy csr, csc, bsr and dia matrices and everything their parent class the
ArrayParameter supports.

3.3.6 PickleParameter

class pypet.parameter.PickleParameter(full_name, data=None, comment=’‘, protocol=2)
A parameter class that supports all picklable objects, and pickles everything!

If you use the default HDF5 storage service, the pickle dumps are stored to disk. Works similar to the array
parameter regarding memory management (Equality of objects is based on object id).

There is no straightforward check to guarantee that data is picklable, so you have to take care that all data
handled by the PickleParameter supports pickling.

You can pass the pickle protocol via protocol=2 to the constructor or change it with the v_protocol property.
Default protocol is 0. Note that after storage to disk changing the protocol has no effect. If the parameter is
loaded, v_protocol is set to the protocol used to store the data.

f_supports(data)
There is no straightforward check if an object can be pickled and this function will always return
True.

So you have to take care in advance that the item can be pickled.

v_protocol
The protocol used to pickle data, default is 0.

See pickle documentation for the protocols.

3.3.7 Result

class pypet.parameter.Result(full_name, *args, **kwargs)
Light Container that stores basic python and numpy data.

Note that no sanity checks on individual data is made (only on outer data structure) and you have to take
care, that your data is understood by the storage service. It is assumed that results tend to be large and
therefore sanity checks would be too expensive.

Data that can safely be stored into a Result are:
•python natives (int, long, str, bool, float, complex),
•numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str
•python lists and tuples of the previous types (python natives + numpy natives and arrays) Lists and
tuples are not allowed to be nested and must be homogeneous, i.e. only contain data of one particular
type. Only integers, or only floats, etc.

•python dictionaries of the previous types (not nested!), data can be heterogeneous, keys must be
strings. For example, one key-value pair of string and int and one key-value pair of string and float,
and so on.

•pandas DataFrames
•ObjectTable

Note that containers should NOT be empty (like empty dicts or lists) at the time they are saved to disk. The
standard HDF5 storage service cannot store empty containers! The Result emits a warning if you hand over
an empty container.

Data is set on initialisation or with f_set()

Example usage:

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!' [1000,2000], {'a':'b','c':333}, hitchhiker='Arthur Dent')

In case you create a new result you can pass the following arguments:
Parameters

176 Chapter 3. Library Reference

http://docs.python.org/2/library/pickle.html
http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe

pypet Documentation, Release 0.1.0

•fullanme – The fullname of the result, grouping can be achieved by colons,
•comment – A useful comment describing the result. The comment can later on
be changed using the v_comment variable

>>> param.v_comment
'I am a neat example!'

•args – Data that is handled by the result. The first positional argument is stored
with the name of the result. Following arguments are stored with name_X where X
is the position of the argument.

•kwargs – Data that is handled by the result, it is kept by the result under the
names specified by the keys of kwargs.

>>> res.f_get(0)
[1000,2000]
>>> res.f_get(1)
{'a':'b','c':'d'}
>>> res.f_get('myresult')
[1000,2000]
>>> res.f_get('hitchhiker')
'ArthurDent'
>>> res.f_get('myresult','hitchhiker')
([1000,2000], 'ArthurDent')

Can be changed or more can be added via f_set()

>>> result.f_set('Uno',x='y')
>>> result.f_get(0)
'Uno'
>>> result.f_get('x')
'y'

Alternative method to put and retrieve data from the result container is via
__getattr__ and __setattr__:

>>> res.ford = 'prefect'
>>> res.ford
'prefect'

RaisesTypeError:

If the data format in args or kwargs is not known to the result. Checks type of outer data
structure, i.e. checks if you have a list or dictionary. But it does not check on individual
values within dicts or lists.

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_empty()
Removes all data from the result or parameter.

If the result has already been stored to disk via a trajectory and a storage service, the data on disk is
not affected by f_empty.

Yet, this function is particularly useful if you have stored very large data to disk and you want to free
some memory on RAM but still keep the skeleton of your result or parameter.

3.3. Parameters and Results 177

pypet Documentation, Release 0.1.0

Note that freeing RAM requires that all references to the data are deleted. If you reference the data
somewhere else in your code, the data is not erased from RAM.

f_get(*args)
Returns items handled by the result.

If only a single name is given, a single data item is returned. If several names are given,
a list is returned. For integer inputs the result returns resultname_X.

If the result contains only a single entry you can call f_get() without arguments. If you
call f_get() and the result contains more than one element a ValueError is thrown.

If the requested item(s) cannot be found an AttributeError is thrown.

Parametersargs – strings-names or integers
ReturnsSingle data item or tuple of data

Example:

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!' [1000,2000], {'a':'b','c':333}, hitchhiker='Arthur Dent')
>>> res.f_get('hitchhiker')
'Arthur Dent'
>>> res.f_get(0)
[1000,2000]
>>> res.f_get('hitchhiker', 'myresult')
('Arthur Dent', [1000,2000])

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_class_name()
Returns the class name of the parameter or result or group.

Equivalent to obj.__class__.__name__

f_is_empty()
True if no data has been put into the result.

Also True if all data has been erased via f_empty().

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_remove(*args)
Removes *args from the result

f_set(*args, **kwargs)
Method to put data into the result.

Parameters
•args – The first positional argument is stored with the name of the result.
Following arguments are stored with name_X where X is the position of the
argument.

•kwargs – Arguments are stored with the key as name.
RaisesTypeError if outer data structure is not understood.

Example usage:

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!')
>>> res.f_set(333,42.0, mystring='String!')
>>> res.f_get('myresult')
333
>>> res.f_get('myresult_1')
42.0
>>> res.f_get(1)

178 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

42.0
>>> res.f_get('mystring')
'String!'

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_set_single(name, item)
Sets a single data item of the result.

Raises TypeError if the type of the outer data structure is not understood. Note that the type check is
shallow. For example, if the data item is a list, the individual list elements are NOT checked whether
their types are appropriate.

Parameters
•name – The name of the data item
•item – The data item

RaisesTypeError
Example usage:

>>> res.f_set_single('answer', 42)
>>> res.f_get('answer')
42

f_supports_fast_access()
Whether or not the result supports fast access.

A result supports fast access if it contains exactly one item with the name of the result.

f_to_dict(copy=True)
Returns all handled data as a dictionary.

Parameterscopy – Whether the original dictionary or a shallow copy is returned.
ReturnsData dictionary

f_translate_key(key)
Translates integer indeces into the appropriate names

f_val_to_str()
Summarizes data handled by the result as a string.

Calls __repr__ on all handled data. Data is NOT ordered.

Truncates the string if it is longer than pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH
Returnsstring

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_fast_accessible
Whether or not fast access can be supported by the Parameter or Result

DEPRECATED: Please use function f_supports_fast_access instead!

3.3. Parameters and Results 179

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_parameter
Whether the node is a parameter or not (i.e. a result)

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

The location of a trajectory or single run is the empty string since it is root.

v_name
Name of the node

v_no_data_string
Whether or not to give a short summarizing string when callingf_val_to_str() or __str__.
Can be set to False if the evaluation of stored data into string is too costly.

DEPRECATED! Does not change anything. Data will always be printed.

v_parameter
Whether the node is a parameter or not (i.e. a result)

DEPRECATED: Please use v_is_parameter instead!

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

3.3.8 SparseResult

class pypet.parameter.SparseResult(full_name, *args, **kwargs)
Handles Scipy sparse matrices.

Supported Formats are csr, csc, bsr, and dia.

Subclasses the standard result and can also handle all data supported by Result.

IDENTIFIER = ‘__spsp__’
Identifier string to label sparse matrix data

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

180 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_empty()
Removes all data from the result or parameter.

If the result has already been stored to disk via a trajectory and a storage service, the data on disk is
not affected by f_empty.

Yet, this function is particularly useful if you have stored very large data to disk and you want to free
some memory on RAM but still keep the skeleton of your result or parameter.

Note that freeing RAM requires that all references to the data are deleted. If you reference the data
somewhere else in your code, the data is not erased from RAM.

f_get(*args)
Returns items handled by the result.

If only a single name is given, a single data item is returned. If several names are given,
a list is returned. For integer inputs the result returns resultname_X.

If the result contains only a single entry you can call f_get() without arguments. If you
call f_get() and the result contains more than one element a ValueError is thrown.

If the requested item(s) cannot be found an AttributeError is thrown.

Parametersargs – strings-names or integers
ReturnsSingle data item or tuple of data

Example:

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!' [1000,2000], {'a':'b','c':333}, hitchhiker='Arthur Dent')
>>> res.f_get('hitchhiker')
'Arthur Dent'
>>> res.f_get(0)
[1000,2000]
>>> res.f_get('hitchhiker', 'myresult')
('Arthur Dent', [1000,2000])

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_class_name()
Returns the class name of the parameter or result or group.

Equivalent to obj.__class__.__name__

f_is_empty()
True if no data has been put into the result.

Also True if all data has been erased via f_empty().

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_remove(*args)
Removes *args from the result

f_set(*args, **kwargs)
Method to put data into the result.

Parameters

3.3. Parameters and Results 181

pypet Documentation, Release 0.1.0

•args – The first positional argument is stored with the name of the result.
Following arguments are stored with name_X where X is the position of the
argument.

•kwargs – Arguments are stored with the key as name.
RaisesTypeError if outer data structure is not understood.

Example usage:

>>> res = Result('supergroup.subgroup.myresult', comment='I am a neat example!')
>>> res.f_set(333,42.0, mystring='String!')
>>> res.f_get('myresult')
333
>>> res.f_get('myresult_1')
42.0
>>> res.f_get(1)
42.0
>>> res.f_get('mystring')
'String!'

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_set_single(name, item)
Sets a single data item of the result.

Raises TypeError if the type of the outer data structure is not understood. Note that the type check is
shallow. For example, if the data item is a list, the individual list elements are NOT checked whether
their types are appropriate.

Parameters
•name – The name of the data item
•item – The data item

RaisesTypeError
Example usage:

>>> res.f_set_single('answer', 42)
>>> res.f_get('answer')
42

f_supports_fast_access()
Whether or not the result supports fast access.

A result supports fast access if it contains exactly one item with the name of the result.

f_to_dict(copy=True)
Returns all handled data as a dictionary.

Parameterscopy – Whether the original dictionary or a shallow copy is returned.
ReturnsData dictionary

f_translate_key(key)
Translates integer indeces into the appropriate names

f_val_to_str()
Summarizes data handled by the result as a string.

Calls __repr__ on all handled data. Data is NOT ordered.

Truncates the string if it is longer than pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH
Returnsstring

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

182 Chapter 3. Library Reference

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_fast_accessible
Whether or not fast access can be supported by the Parameter or Result

DEPRECATED: Please use function f_supports_fast_access instead!

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_parameter
Whether the node is a parameter or not (i.e. a result)

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

The location of a trajectory or single run is the empty string since it is root.

v_name
Name of the node

v_no_data_string
Whether or not to give a short summarizing string when callingf_val_to_str() or __str__.
Can be set to False if the evaluation of stored data into string is too costly.

DEPRECATED! Does not change anything. Data will always be printed.

v_parameter
Whether the node is a parameter or not (i.e. a result)

DEPRECATED: Please use v_is_parameter instead!

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

3.3.9 PickleResult

class pypet.parameter.PickleResult(full_name, *args, **kwargs)
Result that digest everything and simply pickles it!

3.3. Parameters and Results 183

pypet Documentation, Release 0.1.0

Note that it is not checked whether data can be pickled, so take care that it works!

You can pass the pickle protocol via protocol=2 to the constructor or change it with the v_protocol property.
Default protocol is 0.

Note that after storage to disk changing the protocol has no effect. If the parameter is loaded, v_protocol is
set to a protocol used to store an item. Note that items are reconstructed from a dictionary and the protocol
is taken from the first one found in the dictionary. This is a rather arbitrary choice. Yet, the underlying
assumption is that all items were pickled with the same protocol, which is the general case.

f_set_single(name, item)
Adds a single data item to the pickle result.

Note that it is NOT checked if the item can be pickled!

v_protocol
The protocol used to pickle data, default is 0.

See pickle documentation for the protocols.

3.3.10 Object Table

class pypet.parameter.ObjectTable(data=None, index=None, columns=None, copy=False)
Wrapper class for pandas DataFrames.

It creates data frames with dtype=object.

Data stored into an object table preserves its original type when stored to disk. For instance, a python int is
not automatically converted to a numpy 64 bit integer (np.int64).

The object table serves as a data structure to hand data to a storage service.

Example Usage:

>>> ObjectTable(data={'characters':['Luke', 'Han', 'Spock'], 'Random_Values' :[42,43,44] })

Creates the following table:
Index Random_Values characters
0 42 Luke
1 43 Han
2 44 Spock

3.3.11 The Abstract Base Classes of Parameters and Results

These classes serve as a reference if you want to implement your own parameter or result. Therefore, also private
functions are listed.

class pypet.parameter.BaseParameter(full_name, comment=’‘)
Abstract class that specifies the methods for a trajectory parameter.

Parameters are simple container objects for data values. They handle single values as well as ranges of
potential values. These range arrays contain multiple values which are accessed one after the other in
individual simulation runs.

Parameter exploration is usually initiated through the trajectory see f_explore() and f_expand().

To access the parameter’s data value one can call the f_get() method.

Parameters support the concept of locking. Once a value of the parameter has been accessed, the parameter
cannot be changed anymore unless it is explicitly unlocked using f_unlock(). This prevents parameters
from being changed during runtime of a simulation.

If multiprocessing is desired the parameter must be picklable!
Parameters

184 Chapter 3. Library Reference

http://docs.python.org/2/library/pickle.html
http://pandas.pydata.org/

pypet Documentation, Release 0.1.0

•full_name – The full name of the parameter in the trajectory tree, groupings are
separated by a colon: fullname = ‘supergroup.subgroup.paramname’

•comment – A useful comment describing the parameter: comment = ‘Some useful
text, dude!’

__all_slots__ = set([’_depth’, ‘_full_copy’, ‘_full_name’, ‘_stored’, ‘_is_parameter’, ‘_logger’, ‘_comment’, ‘_is_leaf’, ‘_name’, ‘_locked’, ‘_run_branch’, ‘_branch’, ‘_explored’, ‘_annotations’, ‘__weakref__’])

__class__
alias of MetaSlotMachine

__delattr__
x.__delattr__(‘name’) <==> del x.name

__dir__()
Includes all slots in the dir method

__format__()
default object formatter

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__getitem__(idx)
Equivalent to f_get_range[idx]

RaisesTypeError if parameter has no range

__getstate__()
Called for pickling.

Removes the logger to allow pickling and returns a copy of __dict__.

__hash__

__init__(full_name, comment=’‘)

__module__ = ‘pypet.parameter’

__new__(S, ...) → a new object with type S, a subtype of T

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__()

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__setstate__(statedict)
Called after loading a pickle dump.

Restores __dict__ from statedict and adds a new logger.

__sizeof__()→ int
size of object in memory, in bytes

__slots__ = (‘_locked’, ‘_full_copy’, ‘_explored’)

__str__()
String representation of the Parameter

Output format is:<class_name> full_name (len:X, ‘comment): value‘. If comment is the empty string,
the comment is omitted. If the parameter is not explored the length is omitted.

__subclasshook__()
Abstract classes can override this to customize issubclass().

3.3. Parameters and Results 185

pypet Documentation, Release 0.1.0

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or
NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it over-
rides the normal algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

_annotations

_branch

_comment

_depth

_equal_values(val1, val2)
Checks if the parameter considers two values as equal.

This is important for the trajectory in case of merging. In case you want to delete duplicate parameter
points, the trajectory needs to know when two parameters are equal. Since equality is not always
implemented by values handled by parameters in the same way, the parameters need to judge whether
their values are equal.

The straightforward example here is a numpy array. Checking for equality of two numpy arrays yields
a third numpy array containing truth values of a piecewise comparison. Accordingly, the parameter
could judge two numpy arrays equal if ALL of the numpy array elements are equal.

In this BaseParameter class values are considered to be equal if they obey the function
nested_equal(). You might consider implementing a different equality comparison in your sub-
class.

RaisesTypeError: If both values are not supported by the parameter.

_expand(iterable)
Similar to _explore() but appends to the exploration range.

Parametersiterable – An iterable specifying the exploration range.
RaisesParameterLockedException: If the parameter is locked

TypeError: If the parameter did not have a range before
Example usage:

>>> param = Parameter('groupA.groupB.myparam', data=3.13, comment='I am a neat example')
>>> param._explore([3.0,2.0,1.0])
>>> param._expand([42.0,43.0])
>>> param.f_get_range()
(3.0,2.0,1.0,42.0,43.0)

ABSTRACT: Needs to be defined in subclass

_explore(iterable)
The method to explore a parameter and create a range of entries.

Parametersiterable – An iterable specifying the exploration range

For example:

>>> param = Parameter('groupA.groupB.myparam',data=22.33, comment='I am a neat example')
>>> param._explore([3.0,2.0,1.0])

RaisesParameterLockedException: If the parameter is locked

TypeError: If the parameter is already explored
ABSTRACT: Needs to be defined in subclass

_explored

_full_copy

_full_name

186 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

_is_leaf

_is_parameter

_load(load_dict)
Method called by the storage service to reconstruct the original result.

Data contained in the load_dict is equal to the data provided by the result or parameter when previ-
ously called with _store().

Parametersload_dict – The dictionary containing basic data structures, see also
_store().

ABSTRACT: Needs to be implemented by subclass

_load_flags()
Currently not used because I let the storage service infer how to load stuff from the data itself.

If you write your own parameter or result you can implement this function to make specifications on
how to load data, see also pypet.storageservice.HDF5StorageService.store().

Returns{} (Empty dictionary)

_locked

_logger

_name

_rename(full_name)
Renames the tree node

_restore_default()
Restores original data if changed due to exploration.

If a Parameter is explored, the actual data is changed over the course of different simulations. This
method restores the original data assigned before exploration.

ABSTRACT: Needs to be defined in subclass

_run_branch

_set_details(depth, branch, run_branch)
Sets some details for internal handling.

_set_logger(name=None)
Adds a logger with a given name.

If no name is given, name is constructed as type(self).__name__.

_set_parameter_access(idx=0)
Sets the current value according to the idx in the exploration range.

Prepares the parameter for further usage, and tells it which point in the parameter space should be
accessed by calls to f_get().

Parametersidx – The index within the exploration range.

If the parameter has no range, the single data value is considered regardless of the
value of idx. Raises ValueError if the parameter is explored and idx>=len(param).

RaisesValueError:

If the parameter has a range and idx is larger or equal to the length of the parameter.
Example usage:

>>> param = Parameter('groupA.groupB.myparam',data=22.33, comment='I am a neat example')
>>> param._explore([42.0,43.0,44.0])
>>> param._set_parameter_access(idx=1)
>>> param.f_get()
43.0

ABSTRACT: Needs to be defined in subclass

3.3. Parameters and Results 187

pypet Documentation, Release 0.1.0

_shrink()
If a parameter is explored, i.e. it has a range, the whole exploration range is deleted.

Note that this function does not erase data from disk. So if the parameter has been stored with a
service to disk and is shrunk, it can be restored by loading from disk.

RaisesParameterLockedException: If the parameter is locked

TypeError: If the parameter has no range
ABSTRACT: Needs to be defined in subclass

_store()
Method called by the storage service for serialization.

The method converts the parameter’s or result’s value(s) into simple data structures that can be stored
to disk. Returns a dictionary containing these simple structures.

Understood basic structures are
•python natives (int, long, str,bool,float,complex)
•python lists and tuples
•numpy natives arrays, and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex,
np.str

•python dictionaries of the previous types (flat not nested!)
•pandas data frames
•object tables (see ObjectTable)

ReturnsA dictionary containing basic data structures.

ABSTRACT: Needs to be implemented by subclass

_store_flags()
Currently not used because I let the storage service infer how to store stuff from the data itself.

If you write your own parameter or result you can implement this function to make specifications on
how to store data, see also pypet.storageservice.HDF5StorageService.store().

Returns{} (Empty dictionary)

_stored

_values_of_same_type(val1, val2)
Checks if two values agree in type.

For example, two 32 bit integers would be of same type, but not a string and an integer, nor a 64 bit
and a 32 bit integer.

This is important for exploration. You are only allowed to explore data that is of the same type as the
default value.

One could always come up with a trivial solution of type(val1) is type(val2). But sometimes your
parameter does want even more strict equality or less type equality.

For example, the Parameter has a stricter sense of type equality regarding numpy arrays. In
order to have two numpy arrays of the same type, they must also agree in shape. However, the
ArrayParameter, considers all numpy arrays as of being of same type regardless of their shape.

Moreover, the SparseParameter considers all supported sparse matrices (csc, csr, bsr, dia) as
being of the same type. You can make explorations using all these four types at once.

The difference in how strict types are treated arises from the way parameter data is
stored to disk and how the parameters hand over their data to the storage service (see
pypet.parameter.BaseParameter._store()).

The Parameter puts all it’s data in an ObjectTable which has strict constraints on the column
sizes. This means that numpy array columns only accept numpy arrays with a particular size. In
contrast, the array and sparse parameter hand over their data as individual items which yield individual
entries in the hdf5 node. In order to see what I mean simply run an experiment with all 3 parameters,
explore all of them, and take a look at the resulting hdf5 file!

188 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

However, this BaseParameter class implements the straightforward version of type(val1) is type(val2)
to consider data to be of the same type.

RaisesTypeError: if both values are not supported by the parameter.

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_empty()
Erases all data in the parameter.

Does not erase data from disk. So if the parameter has been stored with a service to disk and is
emptied, it can be restored by loading from disk.

RaisesParameterLockedException: If the parameter is locked.
ABSTRACT: Needs to be defined in subclass

f_get()
Returns the current data value of the parameter and locks the parameter.

RaisesTypeError if the parameter is empty
Example usage:

>>> param = Parameter('groupA.groupB.myparam', comment='I am a neat example')
>>> param.f_set(44.0)
>>> param.f_get()
44.0:

ABSTRACT: Needs to be defined in subclass

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_array()
Returns an iterable to iterate over the values of the exploration range.

Note that the returned values should be either a copy of the exploration range or the array must be
immutable, for example a python tuple.

ReturnsImmutable sequence
RaisesTypeError if the parameter is not explored

Example usage:

>>> param = Parameter('groupA.groupB.myparam',data=22, comment='I am a neat example')
>>> param._explore([42,43,43])
>>> param.f_get_array()
(42,43,44)

DEPRECATED: Use f_get_range() instead!

f_get_class_name()
Returns the name of the class i.e. return self.__class__.__name__

f_get_default()
Returns the default value of the parameter and locks it.

f_get_range()
Returns an iterable to iterate over the values of the exploration range.

3.3. Parameters and Results 189

pypet Documentation, Release 0.1.0

Note that the returned values should be either a copy of the exploration range or the array must be
immutable, for example a python tuple.

ReturnsImmutable sequence
RaisesTypeError if the parameter is not explored

Example usage:

>>> param = Parameter('groupA.groupB.myparam',data=22, comment='I am a neat example')
>>> param._explore([42,43,43])
>>> param.f_get_range()
(42,43,44)

ABSTRACT: Needs to be defined in subclass

f_get_range_length()
Returns the length of the parameter range.

Raises TypeError if the parameter has no range.

Does not need to be implemented if the parameter supports __len__ appropriately.

f_has_range()
Returns true if the parameter contains a range array.

Not necessarily equal to v_explored if the range is removed on pickling due to v_full_copy=False.

ABSTRACT: Needs to be defined in subclass

f_is_array()
Returns true if the parameter is explored and contains a range array.

DEPRECATED: Use f_has_range() instead.

f_is_empty()
True if no data has been assigned to the parameter.

Example usage:

>>> param = Parameter('myname.is.example', comment='I am _empty!')
>>> param.f_is_empty()
True
>>> param.f_set(444)
>>> param.f_is_empty()
False

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_lock()
Locks the parameter and forbids further manipulation.

Changing the data value or exploration range of the parameter are no longer allowed.

f_set(data)
Sets a data value for a parameter.

Example usage:

>>> param = Parameter('groupA.groupB.myparam', comment='I am a neat example')
>>> param.f_set(44.0)
>>> param.f_get()
44.0

RaisesParameterLockedException: If parameter is locked

TypeError: If the type of the data value is not supported by the parameter

190 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

ABSTRACT: Needs to be defined in subclass

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_supports(data)
Checks whether the data is supported by the parameter.

f_supports_fast_access()
Checks if parameter supports fast access.

A parameter supports fast access if it is NOT empty!

f_unlock()
Unlocks the locked parameter.

Please use it very carefully, or best do not use this function at all. There should better be no reason to
unlock a locked parameter! The only exception I can think of is to unlock a large derived parameter
after usage to subsequently call f_empty() to clear memory.

f_val_to_str()
String summary of the value handled by the parameter.

Note that representing the parameter as a string accesses its value, but for simpler debugging, this
does not lock the parameter or counts as usage!

Calls __repr__ of the contained value.

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_explored
Whether parameter is explored.

Does not necessarily have to be similar to f_has_range() since the range can be deleted on
pickling and the parameter remains explored.

v_fast_accessible
Whether or not fast access can be supported by the Parameter or Result

DEPRECATED: Please use function f_supports_fast_access instead!

v_full_copy
Whether or not the full parameter including the range or only the current data is copied during pick-
ling.

If you run your simulations in multiprocessing mode, the whole trajectory and all parameters need to
be pickled and are sent to the individual processes. Each process than runs an individual point in the
parameter space. As a consequence, you do not need the full ranges during these calculations. Thus,
if the full copy mode is set to False the parameter is pickled without the range array and you can save
memory.

If you want to access the full range during individual runs, you need to set v_full_copy to True.

3.3. Parameters and Results 191

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

It is recommended NOT to do that in order to save memory and also do obey the philosophy that
individual simulation runs are independent.

Example usage:

>>> import pickle
>>> param = Parameter('examples.fullcopy', data=333, comment='I show you how the copy mode works!')
>>> param._explore([1,2,3,4])
>>> dump=pickle.dumps(param)
>>> newparam = pickle.loads(dump)
>>> newparam.f_get_range()
TypeError

>>> param.v_full_copy=True
>>> dump = pickle.dumps(param)
>>> newparam=pickle.loads(dump)
>>> newparam.f_get_range()
(1,2,3,4)

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_parameter
Whether the node is a parameter or not (i.e. a result)

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

The location of a trajectory or single run is the empty string since it is root.

v_locked
Whether or not the parameter is locked and prevents further modification

v_name
Name of the node

v_parameter
Whether the node is a parameter or not (i.e. a result)

DEPRECATED: Please use v_is_parameter instead!

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

class pypet.parameter.BaseResult(full_name, comment=’‘)
Abstract base API for results.

192 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

Compared to parameters (see BaseParameter) results are also initialised with a full name and a com-
ment. Yet, results can contain more than a single value and heterogeneous data.

__all_slots__ = set([’_depth’, ‘_full_name’, ‘_stored’, ‘_is_parameter’, ‘_logger’, ‘_comment’, ‘_is_leaf’, ‘_name’, ‘_run_branch’, ‘_branch’, ‘_annotations’, ‘__weakref__’])

__class__
alias of MetaSlotMachine

__delattr__
x.__delattr__(‘name’) <==> del x.name

__dir__()
Includes all slots in the dir method

__format__()
default object formatter

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__getstate__()
Called for pickling.

Removes the logger to allow pickling and returns a copy of __dict__.

__hash__

__init__(full_name, comment=’‘)

__module__ = ‘pypet.parameter’

__new__(S, ...) → a new object with type S, a subtype of T

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__setstate__(statedict)
Called after loading a pickle dump.

Restores __dict__ from statedict and adds a new logger.

__sizeof__()→ int
size of object in memory, in bytes

__slots__ = ()

__str__()
String representation of the parameter or result.

If not specified in subclass this is simply the full name.

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or
NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it over-
rides the normal algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

_annotations

_branch

3.3. Parameters and Results 193

pypet Documentation, Release 0.1.0

_comment

_depth

_full_name

_is_leaf

_is_parameter

_load(load_dict)
Method called by the storage service to reconstruct the original result.

Data contained in the load_dict is equal to the data provided by the result or parameter when previ-
ously called with _store().

Parametersload_dict – The dictionary containing basic data structures, see also
_store().

ABSTRACT: Needs to be implemented by subclass

_load_flags()
Currently not used because I let the storage service infer how to load stuff from the data itself.

If you write your own parameter or result you can implement this function to make specifications on
how to load data, see also pypet.storageservice.HDF5StorageService.store().

Returns{} (Empty dictionary)

_logger

_name

_rename(full_name)
Renames the tree node

_run_branch

_set_details(depth, branch, run_branch)
Sets some details for internal handling.

_set_logger(name=None)
Adds a logger with a given name.

If no name is given, name is constructed as type(self).__name__.

_store()
Method called by the storage service for serialization.

The method converts the parameter’s or result’s value(s) into simple data structures that can be stored
to disk. Returns a dictionary containing these simple structures.

Understood basic structures are
•python natives (int, long, str,bool,float,complex)
•python lists and tuples
•numpy natives arrays, and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex,
np.str

•python dictionaries of the previous types (flat not nested!)
•pandas data frames
•object tables (see ObjectTable)

ReturnsA dictionary containing basic data structures.

ABSTRACT: Needs to be implemented by subclass

_store_flags()
Currently not used because I let the storage service infer how to store stuff from the data itself.

If you write your own parameter or result you can implement this function to make specifications on
how to store data, see also pypet.storageservice.HDF5StorageService.store().

Returns{} (Empty dictionary)

_stored

194 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

f_ann_to_str()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

f_ann_to_string()
Returns annotations as string

Equivalent to v_annotations.f_ann_to_str()

DEPRECATED: Please use f_ann_to_str() instead.

f_empty()
Removes all data from the result or parameter.

If the result has already been stored to disk via a trajectory and a storage service, the data on disk is
not affected by f_empty.

Yet, this function is particularly useful if you have stored very large data to disk and you want to free
some memory on RAM but still keep the skeleton of your result or parameter.

Note that freeing RAM requires that all references to the data are deleted. If you reference the data
somewhere else in your code, the data is not erased from RAM.

ABSTRACT: Needs to be implemented by subclass

f_get_annotations(*args)
Returns annotations

Equivalent to v_annotations.f_get(*args)

f_get_class_name()
Returns the class name of the parameter or result or group.

Equivalent to obj.__class__.__name__

f_is_empty()
Returns true if no data is handled by a result or parameter.

ABSTRACT: Needs to be implemented by subclass

f_is_root()
Whether the group is root (True for the trajectory and a single run object)

DEPRECATED: Please use property v_is_root!

f_set_annotations(*args, **kwargs)
Sets annotations

Equivalent to calling v_annotations.f_set(*args,**kwargs)

f_supports_fast_access()
Whether or not fast access can be supported by the parameter or result.

ABSTRACT: Needs to be implemented by subclass.

f_val_to_str()
Returns a string summarizing the data handled by the parameter or result

ABSTRACT: Needs to be implemented by subclass, otherwise the empty string is returned.

v_annotations
Annotation feature of a trajectory node.

Store some short additional information about your nodes here. If you use the standard HDF5 storage
service, they will be stored as hdf5 node attributes.

v_branch
The name of the branch/subtree, i.e. the first node below the root.

The empty string in case of root itself.

3.3. Parameters and Results 195

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

v_comment
Should be a nice descriptive comment

v_depth
Depth of the node in the trajectory tree.

v_fast_accessible
Whether or not fast access can be supported by the Parameter or Result

DEPRECATED: Please use function f_supports_fast_access instead!

v_full_name
The full name, relative to the root node.

The full name of a trajectory or single run is the empty string since it is root.

v_is_group
Whether node is a group or not (i.e. it is a leaf node)

v_is_leaf
Whether node is a leaf or not (i.e. it is a group node)

v_is_parameter
Whether the node is a parameter or not (i.e. a result)

v_is_root
Whether the group is root (True for the trajectory and a single run object)

v_leaf
Whether node is a leaf or not (i.e. it is a group node)

DEPRECATED: Please use v_is_leaf!

v_location
Location relative to the root node.

The location of a trajectory or single run is the empty string since it is root.

v_name
Name of the node

v_parameter
Whether the node is a parameter or not (i.e. a result)

DEPRECATED: Please use v_is_parameter instead!

v_run_branch
If this node is hanging below a branch named run_XXXXXXXXX.

The branch name is either the name of a single run (e.g. ‘run_00000009’) or ‘trajectory’.

v_stored
Whether or not this tree node has been stored to disk before.

3.4 Annotations

class pypet.annotations.Annotations
Simple container class for annotations.

Every tree node (leaves and group nodes) can be annotated. In case you use the standard
HDF5StorageService, these annotations are stored in the attributes of the hdf5 nodes in the hdf5 file,
you might wanna take a look at pytables attributes.

Annotations should be small (short strings or basic python data types) since their storage and retrieval is
quite slow!

196 Chapter 3. Library Reference

http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

f_ann_to_str()
Returns all annotations lexicographically sorted as a concatenated string.

f_empty()
Removes all annotations from RAM

f_get(*args)
Returns annotations

If len(args)>1, then returns a list of annotations.

f_get(X) with X integer will return the annotation with name annotation_X.

If the annotation contains only a single entry you can call f_get() without arguments. If you call
f_get() and the annotation contains more than one element a ValueError is thrown.

f_is_empty()
Checks if annotations are empty

f_remove(key)
Removes key from annotations

f_set(*args, **kwargs)
Sets annotations

Items in args are added as annotation and annotation_X where ‘X’ is the position in args for following
arguments.

f_set_single(name, data)
Sets a single annotation.

f_to_dict(copy=True)
Returns annotations as dictionary.

Parameterscopy – Whether to return a shallow copy or the real thing (aka _dict).

3.5 Utils

3.5.1 Exploration Functions

Module containing factory functions for parameter exploration

pypet.utils.explore.cartesian_product(parameter_dict, combined_parameters=())
Generates a Cartesian product of the input parameter dictionary.

For example:

>>> print cartesian_product({'param1':[1,2,3], 'param2':[42.0, 52.5]})
{'param1':[1,1,2,2,3,3],'param2': [42.0,52.5,42.0,52.5,42.0,52.5]}

Parameters
•parameter_dict – Dictionary containing parameter names as keys and iter-
ables of data to explore.

•combined_parameters – Tuple of tuples. Defines the order of the parameters
and parameters that are linked together. If an inner tuple contains only a single
item, you can spare the inner tuple brackets.

For example:

>>> print cartesian_product({'param1': [42.0, 52.5], 'param2':['a', 'b'], 'param3' : [1,2,3]}, ('param3',('param1', 'param2')))
{param3':[1,1,2,2,3,3],'param1' : [42.0,52.5,42.0,52.5,42.0,52.5], 'param2':['a','b','a','b','a','b']}

ReturnsDictionary with cartesian product lists.

3.5. Utils 197

pypet Documentation, Release 0.1.0

pypet.utils.explore.find_unique_points(explored_parameters)
Takes a list of explored parameters and finds unique parameter combinations.

If parameter ranges are hashable operates in O(N), otherwise O(N**2).
Parametersexplored_parameters – List of explored parameters
ReturnsList of tuples, first entry being the parameter values, second entry a list containing the

run position of the unique combination.

3.5.2 Utility Functions

HDF5 File Compression

You can use the following function to compress an existing HDF5 file that already contains a trajectory. This only
works under Linux.

pypet.compact_hdf5_file(filename, name=None, index=None, keep_backup=True)
Can compress an HDF5 to reduce file size.

The properties on how to compress the new file are taken from a given trajec-
tory in the file. Simply calls ptrepack from the command line. (Se also
https://pytables.github.io/usersguide/utilities.html#ptrepackdescr)

Currently only supported under Linux, no guarantee for Windows usage.
Parameters

•filename – Name of the file to compact
•name – The name of the trajectory from which the compression properties are
taken

•index – Instead of a name you could also specify an index, i.e -1 for the last
trajectory in the file.

•keep_backup – If a back up version of the original file should be kept. The
backup file is named as the original but _backup is appended to the end.

ReturnsThe return/error code of ptrepack

Progressbar

Simple progressbar that can be used during a for-loop (no initialisation necessary). It displays progress and
estimates remaining time.

pypet.progressbar(index, total, percentage_step=10, logger=’print’, log_level=20, reprint=True,
time=True, length=20, fmt_string=None, reset=False)

Plots a progress bar to the given logger for large for loops.

To be used inside a for-loop at the end of the loop:

for irun in range(42):
my_costly_job() # Your expensive function
progressbar(index=irun, total=42, reprint=True) # shows a growing progressbar

There is no initialisation of the progressbar necessary before the for-loop. The progressbar will be reset
automatically if used in another for-loop.

Parameters
•index – Current index of for-loop
•total – Total size of for-loop
•percentage_step – Steps with which the bar should be plotted
•logger – Logger to write to - with level INFO. If string ‘print’ is given, the print
statement is used. Use None if you don’t want to print or log the progressbar
statement.

•log_level – Log level with which to log.
•reprint – If no new line should be plotted but carriage return (works only for
printing)

198 Chapter 3. Library Reference

https://pytables.github.io/usersguide/utilities.html#ptrepackdescr

pypet Documentation, Release 0.1.0

•time – If the remaining time should be estimated and displayed
•length – Length of the bar in = signs.
•fmt_string – A string which contains exactly one %s in order to incorporate
the progressbar. If such a string is given, fmt_string % progressbar is
printed/logged.

•reset – If the progressbar should be restarted. If progressbar is called with a
lower index than the one before, the progressbar is automatically restarted.

ReturnsThe progressbar string or None if the string has not been updated.

3.5.3 General Equality Function and Comparisons of Parameters and Results

Module containing utility functions to compare parameters and results

pypet.utils.comparisons.get_all_attributes(instance)
Returns an attribute value dictionary much like __dict__ but incorporates __slots__

pypet.utils.comparisons.nested_equal(a, b)
Compares two objects recursively by their elements.

Also handles numpy arrays, pandas data and sparse matrices.

First checks if the data falls into the above categories. If not, it is checked if a or b are some type of sequence
or mapping and the contained elements are compared. If this is not the case, it is checked if a or b do provide
a custom __eq__ that evaluates to a single boolean value. If this is not the case, the attributes of a and b are
compared. If this does not help either, normal == is used.

Assumes hashable items are not mutable in a way that affects equality. Based on the suggestion from HERE,
thanks again Lauritz V. Thaulow :-)

pypet.utils.comparisons.parameters_equal(a, b)
Compares two parameter instances

Checks full name, data, and ranges. Does not consider the comment.
ReturnsTrue or False
RaisesValueError if both inputs are no parameter instances

pypet.utils.comparisons.results_equal(a, b)
Compares two result instances

Checks full name and all data. Does not consider the comment.
ReturnsTrue or False
RaisesValueError if both inputs are no result instances

3.6 Exceptions

Module containing all exceptions

exception pypet.pypetexceptions.DataNotInStorageError(msg)
Excpetion raise by Storage Service if data that is supposed to be loaded cannot be found on disk.

exception pypet.pypetexceptions.GitDiffError(msg)
Exception raised if there are uncommited changes.

exception pypet.pypetexceptions.NoSuchServiceError(msg)
Exception raised by the Storage Service if a specific operation is not supported, i.e. the message is not
understood.

exception pypet.pypetexceptions.NotUniqueNodeError(msg)
Exception raised by the Natural Naming if a node can be found more than once.

exception pypet.pypetexceptions.ParameterLockedException(msg)
Exception raised if someone tries to modify a locked Parameter.

3.6. Exceptions 199

http://stackoverflow.com/questions/18376935/best-practice-for-equality-in-python

pypet Documentation, Release 0.1.0

exception pypet.pypetexceptions.PresettingError(msg)
Exception raised if parameter presetting failed.

Probable cause might be a typo in the parameter name.

exception pypet.pypetexceptions.TooManyGroupsError(msg)
Exception raised by natural naming fast search if fast search cannot be applied.

exception pypet.pypetexceptions.VersionMismatchError(msg)
Exception raised if the current version of pypet does not match the version with which the trajectory was
handled.

3.7 Global Constants

Here you can find global constants. These constants define the data supported by the storage service and the
standard parameter, maximum length of comments, messages for storing and loading etc. This module contains
constants defined for a global scale and used across most pypet modules.

It contains constants defining the maximum length of a parameter/result name or constants that are recognized by
storage services to determine how to store and load data.

pypet.pypetconstants.PARAMETERTYPEDICT = {<class ‘__name__’>: <Mock object at 0x7f03a6bdc5d0>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc450>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc2d0>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc350>, ‘str’: <type ‘str’>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc4d0>, ‘int’: <type ‘int’>, ‘float’: <type ‘float’>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc3d0>, ‘long’: <type ‘long’>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc410>, ‘complex’: <type ‘complex’>, ‘bool’: <type ‘bool’>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc490>, ‘unicode’: <type ‘unicode’>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc610>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc590>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc310>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc550>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc390>, <class ‘__name__’>: <Mock object at 0x7f03a6bdc510>}
A Mapping (dict) from the the string representation of a type and the type.

These are the so far supported types of the storage service and the standard parameter!

pypet.pypetconstants.PARAMETER_SUPPORTED_DATA = (<Mock object at 0x7f03a6bdc650>, <Mock object at 0x7f03a6bdc690>, <Mock object at 0x7f03a6bdc6d0>, <Mock object at 0x7f03a6bdc710>, <Mock object at 0x7f03a6bdc750>, <Mock object at 0x7f03a6bdc790>, <Mock object at 0x7f03a6bdc7d0>, <Mock object at 0x7f03a6bdc810>, <Mock object at 0x7f03a6bdc850>, <Mock object at 0x7f03a6bdc890>, <Mock object at 0x7f03a6bdc8d0>, <Mock object at 0x7f03a6bdc910>, <Mock object at 0x7f03a6bdc950>, <Mock object at 0x7f03a6bdc990>, <Mock object at 0x7f03a6bdc9d0>, <Mock object at 0x7f03a6bdca10>, <Mock object at 0x7f03a6bdca50>, <Mock object at 0x7f03a6bdca90>, <Mock object at 0x7f03a6bdcad0>, <Mock object at 0x7f03a6bdcb10>, <Mock object at 0x7f03a6bdcb50>, <type ‘unicode’>, <type ‘str’>)
Set of supported scalar types by the storage service and the standard parameter

pypet.pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH = 128
Maximum length of a (short) name

pypet.pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH = 512
Maximum length of the location string

pypet.pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH = 64
Maximum length of a value string

pypet.pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH = 512
Maximum length of a comment

pypet.pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH = 1024
Maximum length of a parameter array summary

pypet.pypetconstants.HDF5_STRCOL_MAX_RUNTIME_LENGTH = 18
Maximum length of human readable runtime, 18 characters allows to display up to 999 days excluding the
microseconds

pypet.pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH = 1000
Maximum number of entries in an overview table

pypet.pypetconstants.WRAP_MODE_QUEUE = ‘QUEUE’
For multiprocessing, queue multiprocessing mode

pypet.pypetconstants.WRAP_MODE_LOCK = ‘LOCK’
Lock multiprocessing mode

pypet.pypetconstants.WRAP_MODE_NONE = ‘NONE’
No multiprocessing wrapping for the storage service

pypet.pypetconstants.WRAP_MODE_PIPE = ‘PIPE’
Pipe multiprocessing mode

pypet.pypetconstants.LOAD_SKELETON = 1
For trajectory loading, loads only the skeleton.

200 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

pypet.pypetconstants.LOAD_DATA = 2
Loads skeleton and data.

pypet.pypetconstants.LOAD_NOTHING = 0
Loads nothing

pypet.pypetconstants.UPDATE_SKELETON = 1
DEPRECATED: Updates skeleton, i.e. adds only items that are not part of your current trajectory.

pypet.pypetconstants.UPDATE_DATA = 2
DEPRECATED: Updates skeleton and data, adds only items that are not part of your current trajectory.

pypet.pypetconstants.STORE_NOTHING = 0
Stores nothing to disk

pypet.pypetconstants.STORE_DATA_SKIPPING = 1
Stores only data of instances that have not been stored before

pypet.pypetconstants.STORE_DATA = 2
Stored all data to disk adds to existing data

pypet.pypetconstants.OVERWRITE_DATA = 3
Overwrites data on disk

pypet.pypetconstants.LEAF = ‘LEAF’
For trajectory or item storage, stores a leaf node, i.e. parameter or result object

pypet.pypetconstants.TRAJECTORY = ‘TRAJECTORY’
Stores the whole trajectory

pypet.pypetconstants.MERGE = ‘MERGE’
Merges two trajectories

pypet.pypetconstants.GROUP = ‘GROUP’
Stores a group node, can be recursive.

pypet.pypetconstants.LIST = ‘LIST’
Stores a list of different things, in order to avoid reopening and closing of the hdf5 file.

pypet.pypetconstants.SINGLE_RUN = ‘SINGLE_RUN’
Stores a single run

pypet.pypetconstants.PREPARE_MERGE = ‘PREPARE_MERGE’
Updates a trajectory before it is going to be merged

pypet.pypetconstants.BACKUP = ‘BACKUP’
Backs up a trajectory

pypet.pypetconstants.DELETE = ‘DELETE’
Removes an item from hdf5 file

pypet.pypetconstants.DELETE_LINK = ‘DELETE_LINK’
Removes a soft link from hdf5 file

pypet.pypetconstants.TREE = ‘TREE’
Stores a subtree of the trajectory

pypet.pypetconstants.ACCESS_DATA = ‘ACCESS_DATA’
Access and manipulate data directly in the hdf5 file

pypet.pypetconstants.CLOSE_FILE = ‘CLOSE_FILE’
Close a still opened HDF5 file

pypet.pypetconstants.OPEN_FILE = ‘OPEN_FILE’
Opens an HDF5 file and keeps it open until CLOSE_FILE is passed.

pypet.pypetconstants.FLUSH = ‘FLUSH’
Tells the storage to flush the file

3.7. Global Constants 201

pypet Documentation, Release 0.1.0

pypet.pypetconstants.FORMAT_ZEROS = 8
Number of leading zeros

pypet.pypetconstants.RUN_NAME = ‘run_’
Name of a single run

pypet.pypetconstants.RUN_NAME_DUMMY = ‘run_ALL’
Dummy name if not created during run

pypet.pypetconstants.FORMATTED_RUN_NAME = ‘run_%08d’
Name formatted with leading zeros

pypet.pypetconstants.SET_FORMAT_ZEROS = 5
Number of leading zeros for set

pypet.pypetconstants.SET_NAME = ‘run_set_’
Name of a run set

pypet.pypetconstants.SET_NAME_DUMMY = ‘run_set_ALL’
Dummy name if not created during run

pypet.pypetconstants.FORMATTED_SET_NAME = ‘run_set_%05d’
Name formatted with leading zeros

pypet.pypetconstants.ARRAY = ‘ARRAY’
Stored as array

pypet.pypetconstants.CARRAY = ‘CARRAY’
Stored as carray

pypet.pypetconstants.EARRAY = ‘EARRAY’
Stored as earray_e.

pypet.pypetconstants.VLARRAY = ‘VLARRAY’
Stored as vlarray

pypet.pypetconstants.TABLE = ‘TABLE’
Stored as pytable

pypet.pypetconstants.DICT = ‘DICT’
Stored as dict.

In fact, stored as pytable, but the dictionary wil be reconstructed.

pypet.pypetconstants.FRAME = ‘FRAME’
Stored as pandas DataFrame

pypet.pypetconstants.SERIES = ‘SERIES’
Store data as pandas Series

pypet.pypetconstants.PANEL = ‘PANEL’
Store data as pandas Panel(4D)

pypet.pypetconstants.SPLIT_TABLE = ‘SPLIT_TABLE’
If a table was split due to too many columns

pypet.pypetconstants.DATATYPE_TABLE = ‘DATATYPE_TABLE’
If a table contains the data types instead of the attrs

pypet.pypetconstants.SHARED_DATA = ‘SHARED_DATA_’
An HDF5 data object for direct interaction

pypet.pypetconstants.LOG_ENV = ‘$env’
Wildcard replaced by name of environment

pypet.pypetconstants.LOG_TRAJ = ‘$traj’
Wildcard replaced by name of trajectory

pypet.pypetconstants.LOG_RUN = ‘$run’
Wildcard replaced by name of current run

202 Chapter 3. Library Reference

http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-array-class
http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-carray-class
http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-vlarray-class
http://pytables.github.io/usersguide/libref/structured_storage.html#the-table-class
http://pandas.pydata.org/pandas-docs/dev/io.html#hdf5-pytables

pypet Documentation, Release 0.1.0

pypet.pypetconstants.LOG_PROC = ‘$proc’
Wildcard replaced by the name of the current process

pypet.pypetconstants.LOG_SET = ‘$set’
Wildcard replaced by the name of the current run set

pypet.pypetconstants.DEFAULT_LOGGING = ‘DEFAULT’
Default logging configuration

3.8 Slots

For performance reasons all tree nodes support slots. They all sub-class the HasSlots class, which is the top-
level class of pypet (its direct descendant is HasLogger, see below). This class provides an __all_slots__
property (with the help of the MetaSlotMachine metaclass) that lists all existing __slots__ of a class
including the inherited ones. Moreover, via __getstate__ and __setstate__ HasSlots takes care
that all sub-classes can be pickled with the lowest protocol and don’t need to implement __getstate__ and
__setstate__ themselves even when they have __slots__. However, sub-classes that still implement these
functions should call the parent ones via super. Sub-classes are not required to define __slots__. If they
don’t, HasSlots wil also automatically handle their __dict__ in __getstate__ and __setstate__.

class pypet.slots.HasSlots
Top-class that allows mixing of classes with and without slots.

Takes care that instances can still be pickled with the lowest protocol. Moreover, provides a generic __dir__
method that lists all slots.

__dir__()
Includes all slots in the dir method

__setstate__(state)
Recalls state for items with slots

__weakref__
list of weak references to the object (if defined)

pypet.slots.add_metaclass(metaclass)
Adds a metaclass to a given class.

This decorator is used instead of __metaclass__ to allow for Python 2 and 3 compatibility.

Inspired by the six module: (https://bitbucket.org/gutworth/six/src/784c6a213c4527ea18f86a800f51bf16bc1df5bc/six.py?at=default)

For example:

@add_metaclass(MyMetaClass)
class MyClass(object):

pass

is equivalent to

class MyClass(object):
__metaclass__ = MyMetaClass

in Python 2 or

class MyClass(object, metaclass=MyMetaClass)
pass

in Python 3.

pypet.slots.get_all_slots(cls)
Iterates through a class’ (cls) mro to get all slots as a set.

3.8. Slots 203

https://docs.python.org/2/reference/datamodel.html#slots
https://bitbucket.org/gutworth/six/src/784c6a213c4527ea18f86a800f51bf16bc1df5bc/six.py?at=default

pypet Documentation, Release 0.1.0

class pypet.slots.MetaSlotMachine(name, bases, dictionary)
Meta-class that adds the attribute __all_slots__ to a class.

__all_slots__ is a set that contains all unique slots of a class, including the ones that are inherited from
parents.

3.9 Logging

HasLogger can be sub-classed to allow per class or even per instance logging. The logger is initialized via
_set_logger() and is available via the _logger attribute. HasLogger also takes care that the logger does
not get pickled when __getstate__ and __setstate__ are called. Thus, you are always advised in sub-
classes that also implement these functions to call the parent ones via super. HasLogger is a direct sub-class
of HasSlots. Hence, support for __slots__ is ensured.

class pypet.pypetlogging.HasLogger
Abstract super class that automatically adds a logger to a class.

To add a logger to a sub-class of yours simply call myobj._set_logger(name). If name=None the
logger is chosen as follows:

self._logger = logging.getLogger(self.__class.__.__module__ +
’.’ + self.__class__.__name__)

The logger can be accessed via myobj._logger.

__getstate__()
Called for pickling.

Removes the logger to allow pickling and returns a copy of __dict__.

__setstate__(statedict)
Called after loading a pickle dump.

Restores __dict__ from statedict and adds a new logger.

_set_logger(name=None)
Adds a logger with a given name.

If no name is given, name is constructed as type(self).__name__.

pypet.pypetlogging.rename_log_file(traj, filename, process_name=None)
Renames a given filename with valid wildcard placements.

LOG_ENV ($env) is replaces by the name of the trajectory‘s environment.

LOG_TRAJ ($traj) is replaced by the name of the trajectory.

LOG_RUN ($run) is replaced by the name of the current run. If the trajectory is not set to a run ‘run_ALL’
is used.

LOG_SET ($set) is replaced by the name of the current run set. If the trajectory is not set to a run
‘run_set_ALL’ is used.

LOG_PROC ($proc) is replaced by the name fo the current process.
Parameters

•traj – A trajectory container
•filename – A filename string
•process_name – The name of the desired process. If None the name of the
current process is taken determined by the multiprocessing module.

ReturnsThe new filename

204 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

3.10 Storage Services

3.10.1 The HDF5 Storage Service

class pypet.storageservice.HDF5StorageService(filename=None, file_title=None, over-
write_file=False, encoding=’utf8’,
complevel=9, complib=’zlib’,
shuffle=True, fletcher32=False,
pandas_format=’fixed’,
purge_duplicate_comments=True,
summary_tables=True,
small_overview_tables=True,
large_overview_tables=False,
results_per_run=0, de-
rived_parameters_per_run=0, dis-
play_time=20, trajectory=None)

Storage Service to handle the storage of a trajectory/parameters/results into hdf5 files.

Normally you do not interact with the storage service directly but via
the trajectory, see pypet.trajectory.Trajectory.f_store() and
pypet.trajectory.Trajectory.f_load().

The service is not thread safe. For multiprocessing the service needs to be wrapped ei-
ther by the LockWrapper or with a combination of QueueStorageServiceSender and
QueueStorageServiceWriter.

The storage service supports two operations store and load.

Requests for these two are always passed as msg, what_to_store_or_load, *args, **kwargs

For example:

>>> HDF5StorageService.load(pypetconstants.LEAF, myresult, load_only=['spikestimes','nspikes'])

For a list of supported items see store() and load().

The service accepts the following parameters
Parameters

•filename – The name of the hdf5 file. If none is specified the de-
fault ./hdf5/the_name_of_your_trajectory.hdf5 is chosen. If filename con-
tains only a path like filename=’./myfolder/’, it is changed to ‘file-
name=’./myfolder/the_name_of_your_trajectory.hdf5’.

•file_title – Title of the hdf5 file (only important if file is created new)
•overwrite_file – If the file already exists it will be overwritten. Otherwise
the trajectory will simply be added to the file and already existing trajectories are
not deleted.

•encoding – Format to encode and decode unicode strings stored to disk. The
default ’utf8’ is highly recommended.

•complevel – If you use HDF5, you can specify your compression level. 0 means
no compression and 9 is the highest compression level. See PyTables Compression
for a detailed description.

•complib – The library used for compression. Choose between zlib, blosc, and
lzo. Note that ‘blosc’ and ‘lzo’ are usually faster than ‘zlib’ but it may be the case
that you can no longer open your hdf5 files with third-party applications that do
not rely on PyTables.

•shuffle – Whether or not to use the shuffle filters in the HDF5 library. This
normally improves the compression ratio.

•fletcher32 – Whether or not to use the Fletcher32 filter in the HDF5 library.
This is used to add a checksum on hdf5 data.

3.10. Storage Services 205

http://pytables.github.io/usersguide/optimization.html#compression-issues

pypet Documentation, Release 0.1.0

•pandas_format – How to store pandas data frames. Either in ‘fixed’ (‘f’) or ‘ta-
ble’ (‘t’) format. Fixed format allows fast reading and writing but disables querying
the hdf5 data and appending to the store (with other 3rd party software other than
pypet).

•purge_duplicate_comments – If you add a result via f_add_result()
or a derived parameter f_add_derived_parameter() and you set a com-
ment, normally that comment would be attached to each and every instance. This
can produce a lot of unnecessary overhead if the comment is the same for every
instance over all runs. If purge_duplicate_comments=1 than only the comment of
the first result or derived parameter instance created in a run is stored or comments
that differ from this first comment.

For instance, during a single run you call traj.f_add_result(‘my_result,42,
comment=’Mostly harmless!’)‘ and the result will be renamed to re-
sults.run_00000000.my_result. After storage in the node associated with this
result in your hdf5 file, you will find the comment ‘Mostly harmless!’ there.
If you call traj.f_add_result(‘my_result’,-43, comment=’Mostly harmless!’) in
another run again, let’s say run 00000001, the name will be mapped to re-
sults.run_00000001.my_result. But this time the comment will not be saved to
disk since ‘Mostly harmless!’ is already part of the very first result with the name
‘results.run_00000000.my_result’. Note that the comments will be compared and
storage will only be discarded if the strings are exactly the same.

If you use multiprocessing, the storage service will take care that the comment
for the result or derived parameter with the lowest run index will be considered
regardless of the order of the finishing of your runs. Note that this only works
properly if all comments are the same. Otherwise the comment in the overview
table might not be the one with the lowest run index.

You need summary tables (see below) to be able to purge duplicate comments.

This feature only works for comments in leaf nodes (aka Results and Parameters).
So try to avoid to add comments in group nodes within single runs.

•summary_tables – Whether the summary tables should be created, i.e. the
‘derived_parameters_runs_summary’, and the results_runs_summary.

The ‘XXXXXX_summary’ tables give a summary about all results or derived pa-
rameters. It is assumed that results and derived parameters with equal names in
individual runs are similar and only the first result or derived parameter that was
created is shown as an example.

The summary table can be used in combination with purge_duplicate_comments
to only store a single comment for every result with the same name in each run,
see above.

•small_overview_tables – Whether the small overview tables should be
created. Small tables are giving overview about ‘config’,’parameters’, ‘de-
rived_parameters_trajectory’, , ‘results_trajectory’,’results_runs_summary’.

Note that these tables create some overhead. If you want very small hdf5 files set
small_overview_tables to False.

•large_overview_tables – Whether to add large overview tables. This en-
compasses information about every derived parameter, result, and the explored
parameter in every single run. If you want small hdf5 files, this is the first option
to set to false.

•results_per_run – Expected results you store per run. If you give a
good/correct estimate storage to hdf5 file is much faster in case you store LARGE
overview tables.

Default is 0, i.e. the number of results is not estimated!
•derived_parameters_per_run – Analogous to the above.
•display_time – How often status messages about loading and storing time
should be displayed. Interval in seconds.

206 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

•trajectory – A trajectory container, the storage service will add the used pa-
rameter to the trajectory container.

ADD_ROW = ‘ADD’
Adds a row to an overview table

REMOVE_ROW = ‘REMOVE’
Removes a row from an overview table

MODIFY_ROW = ‘MODIFY’
Changes a row of an overview table

COLL_TYPE = ‘COLL_TYPE’
Type of a container stored to hdf5, like list,tuple,dict,etc

Must be stored in order to allow perfect reconstructions.

COLL_LIST = ‘COLL_LIST’
Container was a list

COLL_TUPLE = ‘COLL_TUPLE’
Container was a tuple

COLL_NDARRAY = ‘COLL_NDARRAY’
Container was a numpy array

COLL_MATRIX = ‘COLL_MATRIX’
Container was a numpy matrix

COLL_DICT = ‘COLL_DICT’
Container was a dictionary

COLL_EMPTY_DICT = ‘COLL_EMPTY_DICT’
Container was an empty dictionary

COLL_SCALAR = ‘COLL_SCALAR’
No container, but the thing to store was a scalar

SCALAR_TYPE = ‘SCALAR_TYPE’
Type of scalars stored into a container

NAME_TABLE_MAPPING = {‘_overview_parameters’: ‘parameters_overview’, ‘_overview_derived_parameters_summary’: ‘derived_parameters_summary’, ‘_overview_config’: ‘config_overview’, ‘_overview_explored_parameters’: ‘explored_parameters_overview’, ‘_overview_derived_parameters’: ‘derived_parameters_overview’, ‘_overview_results_summary’: ‘results_summary’, ‘_overview_results’: ‘results_overview’}
Mapping of trajectory config names to the tables

PR_ATTR_NAME_MAPPING = {‘_derived_parameters_per_run’: ‘derived_parameters_per_run’, ‘_purge_duplicate_comments’: ‘purge_duplicate_comments’, ‘_results_per_run’: ‘results_per_run’}
Mapping of Attribute names for hdf5_settings table

ATTR_LIST = [’complevel’, ‘complib’, ‘shuffle’, ‘fletcher32’, ‘pandas_format’, ‘encoding’]
List of HDF5StorageService Attributes that have to be stored into the hdf5_settings table

STORAGE_TYPE = ‘SRVC_STORE’
Flag, how data was stored

ARRAY = ‘ARRAY’
Stored as array

CARRAY = ‘CARRAY’
Stored as carray

EARRAY = ‘EARRAY’
Stored as earray_e.

VLARRAY = ‘VLARRAY’
Stored as vlarray

TABLE = ‘TABLE’
Stored as pytable

DICT = ‘DICT’
Stored as dict.

3.10. Storage Services 207

http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-array-class
http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-carray-class
http://pytables.github.io/usersguide/libref/homogenous_storage.html#the-vlarray-class
http://pytables.github.io/usersguide/libref/structured_storage.html#the-table-class

pypet Documentation, Release 0.1.0

In fact, stored as pytable, but the dictionary wil be reconstructed.

FRAME = ‘FRAME’
Stored as pandas DataFrame

SERIES = ‘SERIES’
Store data as pandas Series

PANEL = ‘PANEL’
Store data as pandas Panel(4D)

SPLIT_TABLE = ‘SPLIT_TABLE’
If a table was split due to too many columns

DATATYPE_TABLE = ‘DATATYPE_TABLE’
If a table contains the data types instead of the attrs

SHARED_DATA = ‘SHARED_DATA_’
An HDF5 data object for direct interaction

TYPE_FLAG_MAPPING = {<Mock object at 0x7f03a6bdc810>: ‘ARRAY’, <class ‘pypet.shareddata.SharedEArray’>: ‘SHARED_DATA_’, <Mock object at 0x7f03a6bdc850>: ‘ARRAY’, <Mock object at 0x7f03a6bdc890>: ‘ARRAY’, <Mock object at 0x7f03a6bdc8d0>: ‘ARRAY’, <type ‘list’>: ‘ARRAY’, <Mock object at 0x7f03a6bdc7d0>: ‘ARRAY’, <Mock object at 0x7f03a6bdc910>: ‘ARRAY’, <Mock object at 0x7f03a6bdc950>: ‘ARRAY’, <Mock object at 0x7f03a6bdc990>: ‘ARRAY’, <Mock object at 0x7f03a6bdc9d0>: ‘ARRAY’, <class ‘Panel’>: ‘PANEL’, <Mock object at 0x7f03a6bdca10>: ‘ARRAY’, <class ‘pypet.parameter.ObjectTable’>: ‘TABLE’, <type ‘tuple’>: ‘ARRAY’, <Mock object at 0x7f03a6bdca50>: ‘ARRAY’, <class ‘DataFrame’>: ‘FRAME’, <Mock object at 0x7f03a6bdca90>: ‘ARRAY’, <Mock object at 0x7f03a6bdcad0>: ‘ARRAY’, <type ‘dict’>: ‘DICT’, <Mock object at 0x7f03a6bdcb10>: ‘ARRAY’, <Mock object at 0x7f03a6bdcb50>: ‘ARRAY’, <Mock object at 0x7f03a6945750>: ‘CARRAY’, <class ‘pypet.shareddata.SharedVLArray’>: ‘SHARED_DATA_’, <class ‘pypet.shareddata.SharedCArray’>: ‘SHARED_DATA_’, <class ‘Panel4D’>: ‘PANEL’, <class ‘pypet.shareddata.SharedPandasFrame’>: ‘SHARED_DATA_’, <type ‘str’>: ‘ARRAY’, <class ‘Series’>: ‘SERIES’, <type ‘unicode’>: ‘ARRAY’, <Mock object at 0x7f03a6bdc650>: ‘ARRAY’, <Mock object at 0x7f03a6bdc690>: ‘ARRAY’, <Mock object at 0x7f03a6bdc6d0>: ‘ARRAY’, <class ‘pypet.shareddata.SharedArray’>: ‘SHARED_DATA_’, <Mock object at 0x7f03a6bdc710>: ‘ARRAY’, <Mock object at 0x7f03a6bdc750>: ‘ARRAY’, <Mock object at 0x7f03a6bdc790>: ‘ARRAY’, <Mock object at 0x7f03a69457d0>: ‘CARRAY’, <class ‘pypet.shareddata.SharedTable’>: ‘SHARED_DATA_’}
Mapping from object type to storage flag

FORMATTED_COLUMN_PREFIX = ‘SRVC_COLUMN_%s_’
Stores data type of a specific pytables column for perfect reconstruction

DATA_PREFIX = ‘SRVC_DATA_’
Stores data type of a pytables carray or array for perfect reconstruction

ANNOTATION_PREFIX = ‘SRVC_AN_’
Prefix to store annotations as node attributes

ANNOTATED = ‘SRVC_ANNOTATED’
Whether an item was annotated

INIT_PREFIX = ‘SRVC_INIT_’
Hdf5 attribute prefix to store class name of parameter or result

CLASS_NAME = ‘SRVC_INIT_CLASS_NAME’
Name of a parameter or result class, is converted to a constructor

COMMENT = ‘SRVC_INIT_COMMENT’
Comment of parameter or result

LENGTH = ‘SRVC_INIT_LENGTH’
Length of a parameter if it is explored, no longer in use, only for backwards compatibility

LEAF = ‘SRVC_LEAF’
Whether an hdf5 node is a leaf node

is_open
Normally the file is opened and closed after each insertion.

However, the storage service may provide the option to keep the store open and signals this via this
property.

encoding
How unicode strings are encoded

display_time
Time interval in seconds, when to display the storage or loading of nodes

complib
Compression library used

complevel
Compression level used

fletcher32
Whether fletcher 32 should be used

208 Chapter 3. Library Reference

http://pandas.pydata.org/pandas-docs/dev/io.html#hdf5-pytables
http://pytables.github.io/usersguide/libref/declarative_classes.html#the-attributeset-class

pypet Documentation, Release 0.1.0

shuffle
Whether shuffle filtering should be used

pandas_append
If pandas should create storage in append mode.

DEPRECATED. No longer used, please use shared data instead!

pandas_format
Format of pandas data. Applicable formats are ‘table’ (or ‘t’) and ‘fixed’ (or ‘f’)

filename
The name and path of the underlying hdf5 file.

load(msg, stuff_to_load, *args, **kwargs)
Loads a particular item from disk.

The storage service always accepts these parameters:
Parameters

•trajectory_name – Name of current trajectory and name of top node in
hdf5 file.

•trajectory_index – If no trajectory_name is provided, you can spec-
ify an integer index. The trajectory at the index position in the hdf5 file is
considered to loaded. Negative indices are also possible for reverse index-
ing.

•filename – Name of the hdf5 file
The following messages (first argument msg) are understood and the following arguments can be
provided in combination with the message:

•pypet.pypetconstants.TRAJECTORY (‘TRAJECTORY’)
Loads a trajectory.

param stuff_to_loadThe trajectory
param as_newWhether to load trajectory as new
param load_parametersHow to load parameters and config
param load_derived_parametersHow to load derived parameters
param load_resultsHow to load results
param forceForce load in case there is a pypet version mismatch

You can specify how to load the parameters, derived parameters and results as
follows:

pypet.pypetconstants.LOAD_NOTHING: (0)
Nothing is loaded

pypet.pypetconstants.LOAD_SKELETON : (1)
The skeleton including annotations are loaded, i.e. the items are
empty. Non-empty items in RAM are left untouched.

pypet.pypetconstants.LOAD_DATA: (2)
The whole data is loaded. Only empty or in RAM non-existing in-
stance are filled with the data found on disk.

pypet.pypetconstants.OVERWRITE_DATA: (3)
The whole data is loaded. If items that are to be loaded are already
in RAM and not empty, they are emptied and new data is loaded from
disk.

•pypet.pypetconstants.LEAF (‘LEAF’)
Loads a parameter or result.

param stuff_to_loadThe item to be loaded
param load_dataHow to load data
param load_onlyIf you load a result, you can partially

load it and ignore the rest of the data. Just spec-
ify the name of the data you want to load. You can
also provide a list, for example load_only=’spikes’,
load_only=[’spikes’,’membrane_potential’].

Issues a warning if items cannot be found.

3.10. Storage Services 209

pypet Documentation, Release 0.1.0

param load_exceptIf you load a result you can partially load in and
specify items that should NOT be loaded here. You cannot use
load_except and load_only at the same time.

•pypet.pyetconstants.GROUP
Loads a group a node (comment and annotations)

param recursiveRecursively loads everything below
param load_dataHow to load stuff if recursive=True accepted

values as above for loading the trajectory
param max_depthMaximum depth in case of recursion. None for no

limit.
•pypet.pypetconstants.TREE (‘TREE’)

Loads a whole subtree
param stuff_to_loadThe parent node (!) not the one where loading

starts!
param child_nameName of child node that should be loaded
param recursiveWhether to load recursively the subtree below child
param load_dataHow to load stuff, accepted values as above for

loading the trajectory
param max_depthMaximum depth in case of recursion. None for no

limit.
param trajectoryThe trajectory object

•pypet.pypetconstants.LIST (‘LIST’)
Analogous to storing lists

RaisesNoSuchServiceError if message or data is not understood

DataNotInStorageError if data to be loaded cannot be found on disk

store(msg, stuff_to_store, *args, **kwargs)
Stores a particular item to disk.

The storage service always accepts these parameters:
Parameters

•trajectory_name – Name or current trajectory and name of top node in
hdf5 file

•filename – Name of the hdf5 file
•file_title – If file needs to be created, assigns a title to the file.

The following messages (first argument msg) are understood and the following arguments can be
provided in combination with the message:

•pypet.pypetconstants.PREPARE_MERGE (‘PREPARE_MERGE’):
Called to prepare a trajectory for merging, see also ‘MERGE’ below.

Will also be called if merging cannot happen within the same hdf5 file. Stores
already enlarged parameters and updates meta information.

param stuff_to_storeTrajectory that is about to be extended by an-
other one

param changed_parametersList containing all parameters that were
enlarged due to merging

param old_lengthOld length of trajectory before merge
•pypet.pypetconstants.MERGE (‘MERGE’)

Note that before merging within HDF5 file, the storage service will be called with
msg=’PREPARE_MERGE’ before, see above.

Raises a ValueError if the two trajectories are not stored within the very same hdf5
file. Then the current trajectory needs to perform the merge slowly item by item.

Merges two trajectories, parameters are:
param stuff_to_storeThe trajectory data is merged into
param other_trajectory_nameName of the other trajectory
param rename_dictDictionary containing the old result and derived

parameter names in the other trajectory and their new names in
the current trajectory.

210 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

param move_nodesWhether to move the nodes from the other to the
current trajectory

param delete_trajectoryWhether to delete the other trajectory after
merging.

•pypet.pypetconstants.BACKUP (‘BACKUP’)
param stuff_to_storeTrajectory to be backed up
param backup_filenameName of file where to store the backup. If

None the backup file will be in the same folder as your hdf5
file and named ‘backup_XXXXX.hdf5’ where ‘XXXXX’ is the
name of your current trajectory.

•pypet.pypetconstants.TRAJECTORY (‘TRAJECTORY’)
Stores the whole trajectory

param stuff_to_storeThe trajectory to be stored
param only_initIf you just want to initialise the store. If yes, only

meta information about the trajectory is stored and none of the
nodes/leaves within the trajectory.

param store_dataHow to store data, the following settings are under-
stood:

pypet.pypetconstants.STORE_NOTHING:
(0)

Nothing is stored
pypet.pypetconstants.STORE_DATA_SKIPPING:
(1)

Data of not already stored nodes is stored
pypet.pypetconstants.STORE_DATA: (2)

Data of all nodes is stored. However, existing data
on disk is left untouched.

pypet.pypetconstants.OVERWRITE_DATA: (3)
Data of all nodes is stored and data on disk is over-
written. May lead to fragmentation of the HDF5
file. The user is adviced to recompress the file man-
ually later on.

•pypet.pypetconstants.SINGLE_RUN (‘SINGLE_RUN’)
param stuff_to_storeThe trajectory
param store_dataHow to store data see above
param store_finalIf final meta info should be stored

•pypet.pypetconstants.LEAF
Stores a parameter or result

Note that everything that is supported by the storage service and that is stored to
disk will be perfectly recovered. For instance, you store a tuple of numpy 32 bit
integers, you will get a tuple of numpy 32 bit integers after loading independent of
the platform!

param stuff_to_soreResult or parameter to store

In order to determine what to store, the function ‘_store’ of the
parameter or result is called. This function returns a dictionary
with name keys and data to store as values. In order to deter-
mine how to store the data, the storage flags are considered, see
below.

The function ‘_store’ has to return a dictionary containing val-
ues only from the following objects:

–python natives (int, long, str, bool, float, complex),
–numpy natives, arrays and matrices of type np.int8-64,

np.uint8-64, np.float32-64, np.complex, np.str
–python lists and tuples of the previous types (python na-

tives + numpy natives and arrays) Lists and tuples are not
allowed to be nested and must be homogeneous, i.e. only
contain data of one particular type. Only integers, or only

3.10. Storage Services 211

pypet Documentation, Release 0.1.0

floats, etc.
–python dictionaries of the previous types (not nested!),

data can be heterogeneous, keys must be strings. For ex-
ample, one key-value-pair of string and int and one key-
value pair of string and float, and so on.

–pandas DataFrames
–ObjectTable

The keys from the ‘_store’ dictionaries determine how the data
will be named in the hdf5 file.

param store_dataHow to store the data, see above for a descitpion.
param store_flagsFlags describing how to store data.

ARRAY (‘ARRAY’)
Store stuff as array

CARRAY (‘CARRAY’)
Store stuff as carray

TABLE (‘TABLE’)
Store stuff as pytable

DICT (‘DICT’)
Store stuff as pytable but reconstructs
it later as dictionary on loading

FRAME (‘FRAME’)
Store stuff as pandas data frame

Storage flags can also be provided by the parameters and results
themselves if they implement a function ‘_store_flags’ that re-
turns a dictionary with the names of the data to store as keys
and the flags as values.

If no storage flags are provided, they are au-
tomatically inferred from the data. See
pypet.HDF5StorageService.TYPE_FLAG_MAPPING
for the mapping from type to flag.

param overwriteCan be used if parts of a leaf should be replaced.
Either a list of HDF5 names or True if this should account for
all.

•pypet.pypetconstants.DELETE (‘DELETE’)
Removes an item from disk. Empty group nodes, results and non-explored param-
eters can be removed.

param stuff_to_storeThe item to be removed.
param delete_onlyPotential list of parts of a leaf node that should be

deleted.
param remove_from_itemIf delete_only is used, whether deleted

nodes should also be erased from the leaf nodes themseleves.
param recursiveIf you want to delete a group node you can recur-

sively delete all its children.
•pypet.pypetconstants.GROUP (‘GROUP’)

param stuff_to_storeThe group to store
param store_dataHow to store data
param recursiveTo recursively load everything below.
param max_depthMaximum depth in case of recursion. None for no

limit.
•pypet.pypetconstants.TREE

Stores a single node or a full subtree
param stuff_to_storeNode to store
param store_dataHow to store data
param recursiveWhether to store recursively the whole sub-tree
param max_depthMaximum depth in case of recursion. None for no

limit.
•pypet.pypetconstants.DELETE_LINK

Deletes a link from hard drive

212 Chapter 3. Library Reference

http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe

pypet Documentation, Release 0.1.0

param nameThe full colon separated name of the link
•pypet.pypetconstants.LIST

Stores several items at once
param stuff_to_storeIterable whose items are to be

stored. Iterable must contain tuples, for example
[(msg1,item1,arg1,kwargs1),(msg2,item2,arg2,kwargs2),...]

•pypet.pypetconstants.ACCESS_DATA
Requests and manipulates data within the storage. Storage must be open.

param stuff_to_storeA colon separated name to the data path
param item_nameThe name of the data item to interact with
param requestA functional request in form of a string
param argsPositional arguments passed to the reques
param kwargsKeyword arguments passed to the request

•pypet.pypetconstants.OPEN_FILE
Opens the HDF5 file and keeps it open

param stuff_to_storeNone
•pypet.pypetconstants.CLOSE_FILE

Closes an HDF5 file that was kept open, must be open before.
param stuff_to_storeNone

•pypet.pypetconstants.FLUSH
Flushes an open file, must be open before.

param stuff_to_storeNone

RaisesNoSuchServiceError if message or data is not understood

item
alias of str

3.10.2 The Multiprocessing Wrappers

class pypet.storageservice.LockWrapper(storage_service, lock=None)
For multiprocessing in WRAP_MODE_LOCK mode, augments a storage service with a lock.

The lock is acquired before storage or loading and released afterwards.

is_open
Normally the file is opened and closed after each insertion.

However, the storage service may provide the option to keep the store open and signals this via this
property.

load(*args, **kwargs)
Acquires a lock before loading and releases it afterwards.

multiproc_safe
Usually storage services are not supposed to be multiprocessing safe

store(*args, **kwargs)
Acquires a lock before storage and releases it afterwards.

class pypet.storageservice.QueueStorageServiceSender(storage_queue=None)
For multiprocessing with WRAP_MODE_QUEUE, replaces the original storage service.

All storage requests are send over a queue to the process running the QueueStorageServiceWriter.

Does not support loading of data!

send_done()
Signals the writer that it can stop listening to the queue

store(*args, **kwargs)
Puts data to store on queue.

Note that the queue will no longer be pickled if the Sender is pickled.

3.10. Storage Services 213

pypet Documentation, Release 0.1.0

class pypet.storageservice.QueueStorageServiceWriter(storage_service, stor-
age_queue)

Wrapper class that listens to the queue and stores queue items via the storage service.

3.10.3 Empty Storage Service for Debugging

class pypet.storageservice.LazyStorageService(*args, **kwargs)
This lazy guy does nothing! Only for debugging purposes.

Ignores all storage and loading requests and simply executes pass instead.

load(*args, **kwargs)
Nope, I won’t care, dude!

store(*args, **kwargs)
Do whatever you want, I won’t store anything!

3.11 Brian Parameters, Results and Monitors

Module containing results and parameters that can be used to store BRIAN data.

Parameters handling BRIAN data are instantiated by the BrianParameter class for any BRIAN Quantity.

The BrianResult can store BRIAN Quantities and the BrianMonitorResult extracts data from BRIAN
Monitors.

All these can be combined with the experimental framework in pypet.brian.network to allow fast setup of large
scale BRIAN experiments.

3.11.1 BrianParameter

class pypet.brian.parameter.BrianParameter(full_name, data=None, comment=’‘, stor-
age_mode=’FLOAT’)

A Parameter class that supports BRIAN Quantities.

Note that only scalar BRIAN quantities are supported, lists, tuples or dictionaries of BRIAN quantities
cannot be handled.

There are two storage modes, that can be either passed to constructor or changed via v_storage_mode:
•FLOAT_MODE: (‘FLOAT’)

The value is stored as a float and the unit as a sting.

i.e. 12 mV is stored as 12.0 and ‘1.0 * mV’
•STRING_MODE: (‘STRING’)

The value and unit are stored combined together as a string.

i.e. 12 mV is stored as ‘12.0 * mV’
Supports data for the standard Parameter, too.

FLOAT_MODE = ‘FLOAT’
Float storage mode

IDENTIFIER = ‘__brn__’
Identification string stored into column title of hdf5 table

STRING_MODE = ‘STRING’
String storage mode

f_supports(data)
Simply checks if data is supported

v_storage_mode
There are two storage modes:

214 Chapter 3. Library Reference

http://briansimulator.org/

pypet Documentation, Release 0.1.0

•FLOAT_MODE: (‘FLOAT’)
The value is stored as a float and the unit as a sting.

i.e. 12 mV is stored as 12.0 and ‘1.0 * mV’
•STRING_MODE: (‘STRING’)

The value and unit are stored combined together as a string.

i.e. 12 mV is stored as ‘12.0 * mV’

3.11.2 BrianDurationParameter

class pypet.brian.parameter.BrianDurationParameter(full_name, data=None, or-
der=0, comment=’‘, stor-
age_mode=’FLOAT’)

Special BRIAN parameter to specify orders and durations of subruns.

The NetworkRunner extracts the individual subruns for a given network from such duration parameters.
The order of execution is defined by the property v_order. The exact values do not matter only the rank
ordering.

A Duration Parameter should be in time units (ms or s, for instance).

DEPRECATED: Please use a normal BrianParameter instead and add the property order to it’s
Annotations. No longer use:

>>> subrun = BrianDurationParameter('mysubrun', 10 * s, order=42)

But use:

>>> subrun = BrianParameter('mysubrun', 10 * s)
>>> subrun.v_annotations.order=42

3.11.3 BrianResult

class pypet.brian.parameter.BrianResult(full_name, *args, **kwargs)
A result class that can handle BRIAN quantities.

Note that only scalar BRIAN quantities are supported, lists, tuples or dictionaries of BRIAN quantities
cannot be handled.

Supports also all data supported by the standard Result.

Storage mode works as for BrianParameter.

FLOAT_MODE = ‘FLOAT’
Float storage mode

IDENTIFIER = ‘__brn__’
Identifier String to label brian data

STRING_MODE = ‘STRING’
String storage mode

f_set_single(name, item)
Sets a single data item of the result.

Raises TypeError if the type of the outer data structure is not understood. Note that the type check is
shallow. For example, if the data item is a list, the individual list elements are NOT checked whether
their types are appropriate.

Parameters
•name – The name of the data item
•item – The data item

RaisesTypeError

3.11. Brian Parameters, Results and Monitors 215

pypet Documentation, Release 0.1.0

Example usage:

>>> res.f_set_single('answer', 42)
>>> res.f_get('answer')
42

v_storage_mode
There are two storage modes:

•FLOAT_MODE: (‘FLOAT’)
The value is stored as a float and the unit as a sting,

i.e. 12 mV is stored as 12.0 and ‘1.0 * mV’
•STRING_MODE: (‘STRING’)

The value and unit are stored combined together as a string,

i.e. 12 mV is stored as ‘12.0 * mV’

3.11.4 BrianMonitorResult

class pypet.brian.parameter.BrianMonitorResult(full_name, *args, **kwargs)
A Result class that supports brian monitors.

Subclasses Result, NOT BrianResult. The storage mode here works slightly different than in
BrianResult and BrianParameter, see below.

Monitor attributes are extracted and added as results with the attribute names. Note the original monitors
are NOT stored, only their attribute/property values are kept.

Add monitor on __init__ via monitor= or via f_set(monitor=brian_monitor)

IMPORTANT: You can only use 1 result per monitor. Otherwise a ‘TypeError’ is thrown.

Example:

>>> brian_result = BrianMonitorResult('example.brian_test_test.mymonitor',
monitor=SpikeMonitor(...),
storage_mode='TABLE',
comment='Im a SpikeMonitor Example!')

>>> brian_result.nspikes
1337

There are two storage modes in case you use the SpikeMonitor and StateSpikeMonitor:
•TABLE_MODE: (‘TABLE’)

Default, information is stored into a single table where one column contains the neuron
index, another the spiketimes and following columns contain variable values (in case of
the StateSpikeMonitor) This is a very compact storage form.

•ARRAY_MODE: (‘ARRAY’)
For each neuron there will be a new hdf5 array, i.e. if you have many neurons your result
node will have many entries. Note that this mode does sort everything according to the
neurons but reading and writing of data might take muuuuuch longer compared to the
other mode.

Following monitors are supported and the following values are extraced:
•SpikeCounter

–count
Array of spike counts for each neuron

–nspikes
Number of recorded spikes

–source
Name of source recorded from as string.

•VanRossumMetric
–tau

Time constant of kernel.

216 Chapter 3. Library Reference

pypet Documentation, Release 0.1.0

–tau_unit
‘second’

–distance
A square symmetric matrix containing the distances

–N
Number of neurons.

–source
•PopulationSpikeCounter

–delay
Recording delay

–nspikes
–source

•StateSpikeMonitor
–delay
–nspikes
–source
–varnames

Names of recorded variables as tuple of strings.
–spiketimes_unit

‘second’
–variablename_unit

Unit of recorded variable as a string. ‘variablename’ is mapped to the
name of a recorded variable. For instance, if you recorded the mem-
brane potential named ‘vm’ you would get a field named ‘vm_unit’.

If you use v_storage_mode = TABLE_MODE
–spikes

pandas DataFrame containing in the columns:

‘neuron’: neuron indices

‘spiketimes’: times of spiking

‘variablename’: values of the recorded variables
If you use v_storage_mode = ARRAY_MODE

–spiketimes_XXX
spiketimes of neuron ‘XXX’ for each neuron you recorded from. The
number of digits used to represent and format the neuron index are
chosen automatically.

–variablename_XXX
Value of the recorded variable at spiketimes for neuron XXX

–format_string
String used to format the neuron index, for example ‘%03d’.

•PopulationRateMonitor
–times

The times of the bins.
–times_unit

‘second’
–rate

An array of rates in Hz
–rate_unit

‘Hz’
–source
–bin

The duration of a bin (in second).
–delay

•ISIHistogramMonitor:
–source
–delay
–nspikes
–bins

3.11. Brian Parameters, Results and Monitors 217

pypet Documentation, Release 0.1.0

The bins array passed at initialisation of the monitor.
–count

An array of length len(bins) counting how many ISIs were in each bin.
•SpikeMonitor

–delay
–nspikes
–source
–spiketimes_unit

‘second’
If you use v_storage_mode = TABLE_MODE

–spikes
pandas DataFrame containing in the columns:

‘neuron’: neuron indices

‘spiketimes’: times of spiking
If you use v_storage_mode = ARRAY_MODE

–spiketimes_XXX
spiketimes of neuron ‘XXX’ for each neuron you recorded from. The
number of digits used to represent and format the neuron index are
chosen automatically.

–format_string
String used to format the neuron index, for example ‘%03d’.

•StateMonitor
–source
–record

What to record. Can be ‘True’ to record from all neurons. A single
integer value or a list of integers.

–when
When recordings were made, for a list of potential values see BRIAN.

–timestep
Integer defining the clock timestep a recording was made.

–times
Array of recording times

–times_unit
‘second’

–mean
Mean value of the state variable for every neuron in the group. Only
extracted if mean values are calculated by BRIAN. Note that for newer
versions of BRIAN, means and variances are no longer extracted if
record is NOT set to False.

–var
Unbiased estimated of variances of state variable for each neuron.
Only extracted if variance values are calculated by BRIAN.

–values
A 2D array of the values of all recorded neurons, each row is a single
neuron’s value

–unit
The unit of the values as a string

–varname
Name of recorded variable

•MultiStateMonitor
As above but instead of values and unit, the result contains ‘varname_values’ and ‘var-
name_unit’, where ‘varname’ is the name of the recorded variable.

ARRAY_MODE = ‘ARRAY’
Array storage mode, not recommended if you have many neurons!

TABLE_MODE = ‘TABLE’
Table storage mode for SpikeMonitor and StateSpikeMonitor

218 Chapter 3. Library Reference

http://briansimulator.org/docs/reference-monitors.html

pypet Documentation, Release 0.1.0

f_set_single(name, item)
To add a monitor use f_set_single(‘monitor’, brian_monitor).

Otherwise f_set_single works similar to f_set_single().

v_monitor_type
The type of the stored monitor. Each MonitorResult can only manage a single Monitor.

v_storage_mode
The storage mode for SpikeMonitor and StateSpikeMonitor

There are two storage modes:
•TABLE_MODE: (‘TABLE’)

Default, information is stored into a single table where the first column is the neu-
ron index, second column is the spike time following columns contain variable
values (in case of the StateSpikeMonitor) This is a very compact storage form.

•ARRAY_MODE: (‘ARRAY’)
For each neuron there will be a new hdf5 array, i.e. if you have many neurons
your result node will have many entries. Note that this mode does sort everything
according to the neurons but reading and writing of data might take muuuuuch
longer compared to the other mode.

3.12 Brian Network Framework

Module for easy compartmental implementation of a BRIAN network.

Build parts of a network via subclassing NetworkComponent and NetworkAnalyser for recording and
statistical analysis.

Specify a NetworkRunner (subclassing optionally) that handles the execution of your experiment in different
subruns. Subruns can be defined as BrianParameter instances in a particular trajectory group. You must add
to every parameter’s Annotations the attribute order. This order must be an integer specifying the index or
order the subrun should about to be executed in.

The creation and management of a BRIAN network is handled by the NetworkManager (no need for subclass-
ing). Pass your components, analyser and your runner to the manager.

Pass the run_network() function together with a NetworkManager to your main environment function
f_run() to start a simulation and parallel parameter exploration. Be aware that in case of a pre-built network,
successful parameter exploration requires parallel processing (see NetworkManager).

3.12.1 Quicklinks

These function can directly be called or used by the user.

run_network Top-level simulation function, pass this together with a NetworkManager to the environment.
NetworkManager.add_parameters Adds parameters for a network simulation.
NetworkManager.pre_run_network Starts a network run before the individual run.
NetworkManager.pre_build Pre-builds network components.

The private functions of the runner and the manager are also listed below to allow fast browsing of the source
code.

3.12.2 Functions that can be implemented by a Subclass

These functions can be implemented in the subclasses:

3.12. Brian Network Framework 219

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html

pypet Documentation, Release 0.1.0

NetworkComponent.build Builds network objects at the beginning of each individual experimental run.
NetworkComponent.add_to_network Can add network objects before a specific subrun.
NetworkComponent.remove_from_network Can remove network objects before a specific subrun.
NetworkComponent.pre_build Builds network objects before the actual experimental runs.
NetworkAnalyser.analyse Can perform statistical analysis on a given network.

I would suggest in case one subclasses NetworkRunner to implement its add_parameters()
method (inherited from NetworkComponent) in order to add BrianDurationParameter instances to
traj.parameters.simulation.durations or traj.parameters.simulation.pre_durations to define the length and order
of individual subruns.

For a description of the structure and different phases of an individual simulation run see run_network().

3.12.3 Top-Level run_network Function

pypet.brian.network.run_network(traj, network_manager)
Top-level simulation function, pass this together with a NetworkManager to the environment.

DEPRECATED: Please pass network_manager.run_network to the environment’s f_run function
Parameters

•traj – Trajectory container
•network_manager – NetworkManager instance

–Creates a BRIAN network.
–Manages all NetworkComponent instances, all NetworkAnalyser
and a single NetworkRunner.

3.12.4 NetworkManager

class pypet.brian.network.NetworkManager(network_runner, component_list, anal-
yser_list=(), force_single_core=False, net-
work_constructor=None)

Manages a BRIAN network experiment and creates the network.

An experiment consists of
Parameters

•network_runner – A NetworkRunner

Special component that handles the execution of several subruns. A NetworkRun-
ner can be subclassed to implement the add_parameters() method to add
BrianParameter instances defining the order and duration of subruns.

•component_list – List of NetworkComponents instances to create and
manage individual parts of a network. They are build and added to the network in
the order defined in the list.

NetworkComponent always needs to be sublcassed and defines only an ab-
stract interface. For instance, one could create her or his own subclass called
NeuronGroupComponent that creates NeuronGroups, Whereas a SynapseCompo-
nent creates Synapses between the before built NeuronGroups. Accordingly, the
SynapseComponent instance is listed after the NeuronGroupComponent.

•analyser_list – List of Analyser instances for recording and statistical
evaluation of a BRIAN network. They should be used to add monitors to a network
and to do further processing of the monitor data.

This division allows to create compartmental network models where one can easily replace parts of a net-
work simulation.

Parameters
•force_single_core – In case you pre_build() or even pre_run() a
network, you usually cannot use single core processing. The problem with sin-
gle core processing is that iterative exploration of the parameter space alters the

220 Chapter 3. Library Reference

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-synapses.html
http://briansimulator.org/docs/reference-models-and-groups.html

pypet Documentation, Release 0.1.0

network on every iteration and the network cannot be reset to the initial condi-
tions holding before the very first experimental run. This is an inherent problem of
BRIAN. The only way to overcome this problem is multiprocessing and copying
(either by pickling or by forking) the whole BRIAN environment.

If you are not bothered by not starting every experimental run with the very same
network, you can set force_single_core=True. The NetworkManager will do itera-
tive single processing and ignore the ongoing modification of the network through-
out all runs.

In case multiproc=True for your environment, the setting of force_single_core is
irrelevant and has no effect.

•network_constructor – If you have a custom network constructor apart
from the Brian one, pass it here.

_run_network(traj)
Starts a single run carried out by a NetworkRunner.

Called from the public function run_network().
Parameterstraj – Trajectory container

add_parameters(traj)
Adds parameters for a network simulation.

Calls add_parameters() for all components, analyser, and the network runner (in this order).
Parameterstraj – Trajectory container

build(traj)
Pre-builds network components.

Calls build() for all components, analysers and the network runner.

build does not need to be called by the user. If ~pypet.brian.network.run_network is passed to an
Environment with this Network manager, build is automatically called for each individual experi-
mental run.

Parameterstraj – Trajectory container

pre_build(traj)
Pre-builds network components.

Calls pre_build() for all components, analysers, and the network runner.

pre_build is not automatically called but either needs to be executed manually by the user, either
calling it directly or by using pre_run().

This function does not create a BRIAN network, but only it’s components.
Parameterstraj – Trajectory container

pre_run_network(traj)
Starts a network run before the individual run.

Useful if a network needs an initial run that can be shared by all individual experimental runs during
parameter exploration.

Needs to be called by the user. If pre_run_network is started by the user, pre_build() will be
automatically called from this function.

This function will create a new BRIAN network which is run by the NetworkRunner and it’s
execute_network_pre_run().

To see how a network run is structured also take a look at run_network().
Parameterstraj – Trajectory container

run_network(traj)
Top-level simulation function, pass this to the environment

Performs an individual network run during parameter exploration.

3.12. Brian Network Framework 221

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html

pypet Documentation, Release 0.1.0

run_network does not need to be called by the user. If the top-level ~pypet.brian.network.run_network
method (not this one of the NetworkManager) is passed to an Environmentwith this NetworkMan-
ager, run_network and build() are automatically called for each individual experimental run.

This function will create a new BRIAN network in case one was not pre-run. The execution of the
network run is carried out by the NetworkRunner and it’s execute_network_run() (also
take a look at this function’s documentation to see the structure of a network run).

Parameterstraj – Trajectory container

3.12.5 NetworkRunner

class pypet.brian.network.NetworkRunner(report=’text’, report_period=None, dura-
tions_group_name=’simulation.durations’,
pre_durations_group_name=’simulation.pre_durations’)

Specific NetworkComponent to carry out the running of a BRIAN network experiment.

A NetworRunner only handles the execution of a network simulation, the BRIAN network is created by a
NetworkManager.

Can potentially be subclassed to allow the adding of parameters via add_parameters(). These pa-
rameters should specify an experimental run with a :class:~pypet.brian.parameter.BrianParameter‘ to define
the order and duration of network subruns. For the actual experimental runs, all subruns must be stored
in a particular trajectory group. By default this traj.parameters.simulation.durations. For a pre-run the
default is traj.parameters.simulation.pre_durations. These default group names can be changed at runner
initialisation (see below).

The network runner will look in the v_annotations property of each parameter in the specified trajectory
group. It searches for the entry order to determine the order of subruns.

Parameters
•report – How simulation progress should be reported, see also the parameters
of run(...) in a BRIAN network and the magic run method.

•report_period – How often progress is reported. If not specified 10 seconds
is chosen.

•durations_group_name – Name where to look for BrianParameter in-
stances in the trajectory which specify the order and durations of subruns.

•pre_durations_group_name – As above, but for pre running a network.
Moreover, in your subclass you can log messages with the private attribute _logger which is initialised in
_set_logger().

_execute_network_run(traj, network, network_dict, component_list, analyser_list,
pre_run=False)

Generic execute_network_run function, handles experimental runs as well as pre-runs.
See also execute_network_run() andexecute_network_pre_run().

_extract_subruns(traj, pre_run=False)
Extracts subruns from the trajectory.

Parameters
•traj – Trajectory container
•pre_run – Boolean whether current run is regular or a pre-run

RaisesRuntimeError if orders are duplicates or even missing

execute_network_pre_run(traj, network, network_dict, component_list, analyser_list)
Runs a network before the actual experiment.

Called by a NetworkManager. Similar to run_network().

Subruns and their durations are extracted from the trajectory. All BrianParameter instances
found under traj.parameters.simulation.pre_durations (default, you can change the name of the
group where to search for durations at runner initialisation). The order is determined from the
v_annotations.order attributes. There must be at least one subrun in the trajectory, otherwise an
AttributeError is thrown. If two subruns equal in their order property a RuntimeError is thrown.

Parameters

222 Chapter 3. Library Reference

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html#brian.run

pypet Documentation, Release 0.1.0

•traj – Trajectory container
•network – BRIAN network
•network_dict – Dictionary of items shared among all components
•component_list – List of NetworkComponent objects
•analyser_list – List of NetworkAnalyser objects

execute_network_run(traj, network, network_dict, component_list, analyser_list)
Runs a network in an experimental run.

Called by a NetworkManager.

A network run is divided into several subruns which are defined as BrianParameter instances.

These subruns are extracted from the trajectory. All BrianParameter instances found under
traj.parameters.simulation.durations (default, you can change the name of the group where to search
for durations at runner initialisation). The order is determined from the v_annotations.order attributes.
An error is thrown if no orders attribute can be found or if two parameters have the same order.

There must be at least one subrun in the trajectory, otherwise an AttributeError is thrown. If two
subruns equal in their order property a RuntimeError is thrown.

For every subrun the following steps are executed:
1.Calling add_to_network() for every every NetworkComponent in the order as they

were passed to the NetworkManager.
2.Calling add_to_network() for every every NetworkAnalyser in the order as they were

passed to the NetworkManager.
3.Calling add_to_network() of the NetworkRunner itself (usually the network runner

should not add or remove anything from the network, but this step is executed for complete-
ness).

4.Running the BRIAN network for the duration of the current subrun by calling the network’s
run function.

5.Calling analyse() for every every NetworkAnalyser in the order as they were passed
to the NetworkManager.

6.Calling remove_from_network() of the NetworkRunner itself (usually the network run-
ner should not add or remove anything from the network, but this step is executed for complete-
ness).

7.Calling remove_from_network() for every every NetworkAnalyser in the order as
they were passed to the NetworkManager

8.Calling remove_from_network() for every every NetworkComponent in the order as
they were passed to the NetworkManager.

These 8 steps are repeated for every subrun in the subrun_list. The subrun_list passed to all
add_to_network, analyse and remove_from_network methods can be modified within these functions
to potentially alter the order of execution or even erase or add upcoming subruns if necessary.

For example, a NetworkAnalyser checks for epileptic pathological activity and cancels all coming
subruns in case of undesired network dynamics.

Parameters
•traj – Trajectory container
•network – BRIAN network
•network_dict – Dictionary of items shared among all components
•component_list – List of NetworkComponent objects
•analyser_list – List of NetworkAnalyser objects

3.12.6 NetworkComponent

class pypet.brian.network.NetworkComponent
Abstract class to define a component of a BRIAN network.

Can be subclassed to define the construction of NeuronGroups or Connections, for instance.

add_parameters(traj)
Adds parameters to traj.

3.12. Brian Network Framework 223

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-connections.html

pypet Documentation, Release 0.1.0

Function called from the NetworkManager to define and add parameters to the trajectory container.

add_to_network(traj, network, current_subrun, subrun_list, network_dict)
Can add network objects before a specific subrun.

Called by a NetworkRunner before a the given subrun.

Potentially one wants to add some BRIAN objects later to the network than at the very beginning
of an experimental run. For example, a monitor might be added at the second subrun after an initial
phase that is not supposed to be recorded.

Parameters
•traj – Trajectoy container
•network – BRIAN network where elements could be added via add(...).
•current_subrun – BrianParameter specifying the very next subrun
to be simulated.

•subrun_list – List of BrianParameter objects that are to be run
after the current subrun.

•network_dict – Dictionary of items shared by all components.

build(traj, brian_list, network_dict)
Builds network objects at the beginning of each individual experimental run.

Function called from the NetworkManager at the beginning of every experimental run,
Parameters

•traj – Trajectory container
•brian_list – Add BRIAN network objects like NeuronGroups or Con-
nections to this list. These objects will be automatically added at the in-
stantiation of the network in case the network was not pre-run via Net-
work(*brian_list) (see the BRIAN network class).

•network_dict – Add any item to this dictionary that should be shared
or accessed by all your components and which are not part of the trajectory
container. It is recommended to also put all items from the brian_list into
the dictionary for completeness.

For convenience I recommend documenting the implementation of build and pre-build and so on in
the subclass like the following. Use statements like Adds for items that are added to the list and the
dict and statements like Expects for what is needed to be part of the network_dict in order to build the
current component.

brian_list:
Adds:

4 Connections, between all types of neurons (e->e, e->i, i->e, i->i)
network_dict:

Expects:

‘neurons_i’: Inhibitory neuron group

‘neurons_e’: Excitatory neuron group

Adds:
‘connections’: List of 4 Connections,between all types of neurons (e->e,

e->i, i->e, i->i)

pre_build(traj, brian_list, network_dict)
Builds network objects before the actual experimental runs.

Function called from the NetworkManager if components can be built before the actual experi-
mental runs or in case the network is pre-run.

Parameters are the same as for the build() method.

remove_from_network(traj, network, current_subrun, subrun_list, network_dict)
Can remove network objects before a specific subrun.

Called by a NetworkRunner after a given subrun and shortly after analysis (see
NetworkAnalyser).

224 Chapter 3. Library Reference

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-models-and-groups.html
http://briansimulator.org/docs/reference-connections.html
http://briansimulator.org/docs/reference-connections.html
http://briansimulator.org/docs/reference-network.html#brian.Network

pypet Documentation, Release 0.1.0

Parameters
•traj – Trajectoy container
•network – BRIAN network where elements could be removed via re-
move(...).

•current_subrun – BrianParameter specifying the current subrun
that was executed shortly before.

•subrun_list – List of BrianParameter objects that are to be run
after the current subrun.

•network_dict – Dictionary of items shared by all components.

3.12.7 NetworkAnalyser

class pypet.brian.network.NetworkAnalyser
Specific NetworkComponent that analysis a network experiment.

Can be subclassed to create components for statistical analysis of a network and network monitors.

analyse(traj, network, current_subrun, subrun_list, network_dict)
Can perform statistical analysis on a given network.

Called by a NetworkRunner directly after a given subrun.
Parameters

•traj – Trajectoy container
•network – BRIAN network
•current_subrun – BrianParameter specifying the current subrun
that was executed shortly before.

•subrun_list – List of BrianParameter objects that are to be run
after the current subrun. Can be deleted or added to change the actual course
of the experiment.

•network_dict – Dictionary of items shared by all components.

3.12. Brian Network Framework 225

http://briansimulator.org/docs/reference-network.html
http://briansimulator.org/docs/reference-network.html

pypet Documentation, Release 0.1.0

226 Chapter 3. Library Reference

CHAPTER 4

Contact and License

4.1 Contact

Robert Meyer

robert.meyer (at) ni.tu-berlin.de

Marchstr. 23

TU-Berlin, MAR 5.046

D-10587 Berlin

4.2 License

Copyright (c) 2013-2015, Robert Meyer
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the author nor the names of other contributors
may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

227

pypet Documentation, Release 0.1.0

228 Chapter 4. Contact and License

Python Module Index

p
pypet.brian.network, 219
pypet.brian.parameter, 214
pypet.environment, 129
pypet.parameter, 169
pypet.pypetconstants, 200
pypet.pypetexceptions, 199
pypet.utils.comparisons, 199
pypet.utils.explore, 197

229

pypet Documentation, Release 0.1.0

230 Python Module Index

Index

Symbols
__all_slots__ (pypet.parameter.BaseParameter at-

tribute), 185
__all_slots__ (pypet.parameter.BaseResult attribute),

193
__class__ (pypet.parameter.BaseParameter attribute),

185
__class__ (pypet.parameter.BaseResult attribute), 193
__delattr__ (pypet.parameter.BaseParameter attribute),

185
__delattr__ (pypet.parameter.BaseResult attribute), 193
__dir__() (pypet.parameter.BaseParameter method),

185
__dir__() (pypet.parameter.BaseResult method), 193
__dir__() (pypet.slots.HasSlots method), 203
__format__() (pypet.parameter.BaseParameter

method), 185
__format__() (pypet.parameter.BaseResult method),

193
__getattribute__ (pypet.parameter.BaseParameter at-

tribute), 185
__getattribute__ (pypet.parameter.BaseResult at-

tribute), 193
__getitem__() (pypet.parameter.BaseParameter

method), 185
__getstate__() (pypet.parameter.BaseParameter

method), 185
__getstate__() (pypet.parameter.BaseResult method),

193
__getstate__() (pypet.pypetlogging.HasLogger

method), 204
__hash__ (pypet.parameter.BaseParameter attribute),

185
__hash__ (pypet.parameter.BaseResult attribute), 193
__init__() (pypet.parameter.BaseParameter method),

185
__init__() (pypet.parameter.BaseResult method), 193
__module__ (pypet.parameter.BaseParameter at-

tribute), 185
__module__ (pypet.parameter.BaseResult attribute),

193
__new__() (pypet.parameter.BaseParameter method),

185
__new__() (pypet.parameter.BaseResult method), 193

__reduce__() (pypet.parameter.BaseParameter
method), 185

__reduce__() (pypet.parameter.BaseResult method),
193

__reduce_ex__() (pypet.parameter.BaseParameter
method), 185

__reduce_ex__() (pypet.parameter.BaseResult
method), 193

__repr__ (pypet.parameter.BaseResult attribute), 193
__repr__() (pypet.parameter.BaseParameter method),

185
__setattr__ (pypet.parameter.BaseParameter attribute),

185
__setattr__ (pypet.parameter.BaseResult attribute), 193
__setstate__() (pypet.parameter.BaseParameter

method), 185
__setstate__() (pypet.parameter.BaseResult method),

193
__setstate__() (pypet.pypetlogging.HasLogger

method), 204
__setstate__() (pypet.slots.HasSlots method), 203
__sizeof__() (pypet.parameter.BaseParameter method),

185
__sizeof__() (pypet.parameter.BaseResult method),

193
__slots__ (pypet.parameter.BaseParameter attribute),

185
__slots__ (pypet.parameter.BaseResult attribute), 193
__str__() (pypet.parameter.BaseParameter method),

185
__str__() (pypet.parameter.BaseResult method), 193
__subclasshook__() (pypet.parameter.BaseParameter

method), 185
__subclasshook__() (pypet.parameter.BaseResult

method), 193
__weakref__ (pypet.parameter.BaseParameter at-

tribute), 186
__weakref__ (pypet.parameter.BaseResult attribute),

193
__weakref__ (pypet.slots.HasSlots attribute), 203
_annotations (pypet.parameter.BaseParameter at-

tribute), 186
_annotations (pypet.parameter.BaseResult attribute),

193
_branch (pypet.parameter.BaseParameter attribute),

231

pypet Documentation, Release 0.1.0

186
_branch (pypet.parameter.BaseResult attribute), 193
_comment (pypet.parameter.BaseParameter attribute),

186
_comment (pypet.parameter.BaseResult attribute), 194
_depth (pypet.parameter.BaseParameter attribute), 186
_depth (pypet.parameter.BaseResult attribute), 194
_equal_values() (pypet.parameter.BaseParameter

method), 186
_execute_network_run()

(pypet.brian.network.NetworkRunner
method), 222

_expand() (pypet.parameter.BaseParameter method),
186

_explore() (pypet.parameter.BaseParameter method),
186

_explored (pypet.parameter.BaseParameter attribute),
186

_extract_subruns() (pypet.brian.network.NetworkRunner
method), 222

_full_copy (pypet.parameter.BaseParameter attribute),
186

_full_name (pypet.parameter.BaseParameter attribute),
186

_full_name (pypet.parameter.BaseResult attribute), 194
_is_leaf (pypet.parameter.BaseParameter attribute), 186
_is_leaf (pypet.parameter.BaseResult attribute), 194
_is_parameter (pypet.parameter.BaseParameter at-

tribute), 187
_is_parameter (pypet.parameter.BaseResult attribute),

194
_load() (pypet.parameter.BaseParameter method), 187
_load() (pypet.parameter.BaseResult method), 194
_load_flags() (pypet.parameter.BaseParameter

method), 187
_load_flags() (pypet.parameter.BaseResult method),

194
_locked (pypet.parameter.BaseParameter attribute), 187
_logger (pypet.parameter.BaseParameter attribute), 187
_logger (pypet.parameter.BaseResult attribute), 194
_name (pypet.parameter.BaseParameter attribute), 187
_name (pypet.parameter.BaseResult attribute), 194
_rename() (pypet.parameter.BaseParameter method),

187
_rename() (pypet.parameter.BaseResult method), 194
_restore_default() (pypet.parameter.BaseParameter

method), 187
_run_branch (pypet.parameter.BaseParameter at-

tribute), 187
_run_branch (pypet.parameter.BaseResult attribute),

194
_run_network() (pypet.brian.network.NetworkManager

method), 221
_set_details() (pypet.parameter.BaseParameter

method), 187
_set_details() (pypet.parameter.BaseResult method),

194
_set_logger() (pypet.parameter.BaseParameter

method), 187
_set_logger() (pypet.parameter.BaseResult method),

194
_set_logger() (pypet.pypetlogging.HasLogger method),

204
_set_parameter_access()

(pypet.parameter.BaseParameter method),
187

_shrink() (pypet.parameter.BaseParameter method),
187

_store() (pypet.parameter.BaseParameter method), 188
_store() (pypet.parameter.BaseResult method), 194
_store_flags() (pypet.parameter.BaseParameter

method), 188
_store_flags() (pypet.parameter.BaseResult method),

194
_stored (pypet.parameter.BaseParameter attribute), 188
_stored (pypet.parameter.BaseResult attribute), 194
_values_of_same_type()

(pypet.parameter.BaseParameter method),
188

A
ACCESS_DATA (in module pypet.pypetconstants), 201
add_metaclass() (in module pypet.slots), 203
add_parameters() (pypet.brian.network.NetworkComponent

method), 223
add_parameters() (pypet.brian.network.NetworkManager

method), 221
ADD_ROW (pypet.storageservice.HDF5StorageService

attribute), 207
add_to_network() (pypet.brian.network.NetworkComponent

method), 224
analyse() (pypet.brian.network.NetworkAnalyser

method), 225
ANNOTATED (pypet.storageservice.HDF5StorageService

attribute), 208
ANNOTATION_PREFIX

(pypet.storageservice.HDF5StorageService
attribute), 208

Annotations (class in pypet.annotations), 196
ARRAY (in module pypet.pypetconstants), 202
ARRAY (pypet.storageservice.HDF5StorageService

attribute), 207
ARRAY_MODE (pypet.brian.parameter.BrianMonitorResult

attribute), 218
ArrayParameter (class in pypet.parameter), 175
ATTR_LIST (pypet.storageservice.HDF5StorageService

attribute), 207

B
BACKUP (in module pypet.pypetconstants), 201
BaseParameter (class in pypet.parameter), 184
BaseResult (class in pypet.parameter), 192
BrianDurationParameter (class in

pypet.brian.parameter), 215
BrianMonitorResult (class in pypet.brian.parameter),

216

232 Index

pypet Documentation, Release 0.1.0

BrianParameter (class in pypet.brian.parameter), 214
BrianResult (class in pypet.brian.parameter), 215
build() (pypet.brian.network.NetworkComponent

method), 224
build() (pypet.brian.network.NetworkManager

method), 221

C
CARRAY (in module pypet.pypetconstants), 202
CARRAY (pypet.storageservice.HDF5StorageService

attribute), 207
cartesian_product() (in module pypet.utils.explore),

197
CLASS_NAME (pypet.storageservice.HDF5StorageService

attribute), 208
CLOSE_FILE (in module pypet.pypetconstants), 201
COLL_DICT (pypet.storageservice.HDF5StorageService

attribute), 207
COLL_EMPTY_DICT

(pypet.storageservice.HDF5StorageService
attribute), 207

COLL_LIST (pypet.storageservice.HDF5StorageService
attribute), 207

COLL_MATRIX (pypet.storageservice.HDF5StorageService
attribute), 207

COLL_NDARRAY (pypet.storageservice.HDF5StorageService
attribute), 207

COLL_SCALAR (pypet.storageservice.HDF5StorageService
attribute), 207

COLL_TUPLE (pypet.storageservice.HDF5StorageService
attribute), 207

COLL_TYPE (pypet.storageservice.HDF5StorageService
attribute), 207

COMMENT (pypet.storageservice.HDF5StorageService
attribute), 208

compact_hdf5_file() (in module pypet), 198
complevel (pypet.storageservice.HDF5StorageService

attribute), 208
complib (pypet.storageservice.HDF5StorageService at-

tribute), 208
ConfigGroup (class in pypet.naturalnaming), 167

D
DATA_PREFIX (pypet.storageservice.HDF5StorageService

attribute), 208
DataNotInStorageError, 199
DATATYPE_TABLE (in module

pypet.pypetconstants), 202
DATATYPE_TABLE (pypet.storageservice.HDF5StorageService

attribute), 208
DEFAULT_LOGGING (in module

pypet.pypetconstants), 203
DELETE (in module pypet.pypetconstants), 201
DELETE_LINK (in module pypet.pypetconstants), 201
DerivedParameterGroup (class in

pypet.naturalnaming), 167
DIA_NAME_LIST (pypet.parameter.SparseParameter

attribute), 175

DICT (in module pypet.pypetconstants), 202
DICT (pypet.storageservice.HDF5StorageService at-

tribute), 207
display_time (pypet.storageservice.HDF5StorageService

attribute), 208

E
EARRAY (in module pypet.pypetconstants), 202
EARRAY (pypet.storageservice.HDF5StorageService

attribute), 207
encoding (pypet.storageservice.HDF5StorageService

attribute), 208
Environment (class in pypet.environment), 129
execute_network_pre_run()

(pypet.brian.network.NetworkRunner
method), 222

execute_network_run()
(pypet.brian.network.NetworkRunner
method), 223

F
f_aconf() (pypet.naturalnaming.ConfigGroup method),

167
f_add_config() (pypet.naturalnaming.ConfigGroup

method), 167
f_add_config() (pypet.trajectory.Trajectory method),

143
f_add_config_group() (pypet.naturalnaming.ConfigGroup

method), 167
f_add_config_group() (pypet.trajectory.Trajectory

method), 143
f_add_derived_parameter()

(pypet.naturalnaming.DerivedParameterGroup
method), 167

f_add_derived_parameter_group()
(pypet.naturalnaming.DerivedParameterGroup
method), 167

f_add_group() (pypet.naturalnaming.NNGroupNode
method), 160

f_add_leaf() (pypet.naturalnaming.NNGroupNode
method), 160

f_add_link() (pypet.naturalnaming.NNGroupNode
method), 160

f_add_parameter() (pypet.naturalnaming.ParameterGroup
method), 166

f_add_parameter() (pypet.trajectory.Trajectory
method), 143

f_add_parameter_group()
(pypet.naturalnaming.ParameterGroup
method), 166

f_add_parameter_group() (pypet.trajectory.Trajectory
method), 143

f_add_postprocessing()
(pypet.environment.Environment method),
136

f_add_result() (pypet.naturalnaming.ResultGroup
method), 168

Index 233

pypet Documentation, Release 0.1.0

f_add_result_group() (pypet.naturalnaming.ResultGroup
method), 168

f_add_to_dynamic_imports()
(pypet.trajectory.Trajectory method), 143

f_add_wildcard_functions()
(pypet.trajectory.Trajectory method), 144

f_adpar() (pypet.naturalnaming.DerivedParameterGroup
method), 168

f_ann_to_str() (pypet.annotations.Annotations
method), 196

f_ann_to_str() (pypet.naturalnaming.NNGroupNode
method), 160

f_ann_to_str() (pypet.parameter.BaseParameter
method), 189

f_ann_to_str() (pypet.parameter.BaseResult method),
195

f_ann_to_str() (pypet.parameter.Parameter method),
171

f_ann_to_str() (pypet.parameter.Result method), 177
f_ann_to_str() (pypet.parameter.SparseResult method),

180
f_ann_to_string() (pypet.naturalnaming.NNGroupNode

method), 161
f_ann_to_string() (pypet.parameter.BaseParameter

method), 189
f_ann_to_string() (pypet.parameter.BaseResult

method), 195
f_ann_to_string() (pypet.parameter.Parameter method),

171
f_ann_to_string() (pypet.parameter.Result method),

177
f_ann_to_string() (pypet.parameter.SparseResult

method), 180
f_apar() (pypet.naturalnaming.ParameterGroup

method), 166
f_ares() (pypet.naturalnaming.ResultGroup method),

168
f_backup() (pypet.trajectory.Trajectory method), 144
f_children() (pypet.naturalnaming.NNGroupNode

method), 161
f_contains() (pypet.naturalnaming.NNGroupNode

method), 161
f_continue() (pypet.environment.Environment method),

136
f_debug() (pypet.naturalnaming.NNGroupNode

method), 161
f_delete_item() (pypet.trajectory.Trajectory method),

144
f_delete_items() (pypet.trajectory.Trajectory method),

144
f_delete_link() (pypet.trajectory.Trajectory method),

145
f_delete_links() (pypet.trajectory.Trajectory method),

145
f_disable_logging() (pypet.environment.Environment

method), 137
f_empty() (pypet.annotations.Annotations method),

197

f_empty() (pypet.parameter.BaseParameter method),
189

f_empty() (pypet.parameter.BaseResult method), 195
f_empty() (pypet.parameter.Parameter method), 171
f_empty() (pypet.parameter.Result method), 177
f_empty() (pypet.parameter.SparseResult method), 181
f_expand() (pypet.trajectory.Trajectory method), 145
f_explore() (pypet.trajectory.Trajectory method), 145
f_finalize() (pypet.environment.MultiprocContext

method), 140
f_find_idx() (pypet.trajectory.Trajectory method), 146
f_get() (pypet.annotations.Annotations method), 197
f_get() (pypet.naturalnaming.NNGroupNode method),

161
f_get() (pypet.parameter.BaseParameter method), 189
f_get() (pypet.parameter.Parameter method), 171
f_get() (pypet.parameter.Result method), 178
f_get() (pypet.parameter.SparseResult method), 181
f_get_all() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_annotations() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_annotations() (pypet.parameter.BaseParameter

method), 189
f_get_annotations() (pypet.parameter.BaseResult

method), 195
f_get_annotations() (pypet.parameter.Parameter

method), 171
f_get_annotations() (pypet.parameter.Result method),

178
f_get_annotations() (pypet.parameter.SparseResult

method), 181
f_get_array() (pypet.parameter.BaseParameter

method), 189
f_get_array() (pypet.parameter.Parameter method), 172
f_get_children() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_class_name() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_class_name() (pypet.parameter.BaseParameter

method), 189
f_get_class_name() (pypet.parameter.BaseResult

method), 195
f_get_class_name() (pypet.parameter.Parameter

method), 172
f_get_class_name() (pypet.parameter.Result method),

178
f_get_class_name() (pypet.parameter.SparseResult

method), 181
f_get_config() (pypet.trajectory.Trajectory method),

146
f_get_default() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_default() (pypet.parameter.BaseParameter

method), 189
f_get_default() (pypet.parameter.Parameter method),

172
f_get_derived_parameters()

234 Index

pypet Documentation, Release 0.1.0

(pypet.trajectory.Trajectory method), 147
f_get_explored_parameters()

(pypet.trajectory.Trajectory method), 147
f_get_from_runs() (pypet.trajectory.Trajectory

method), 147
f_get_groups() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_leaves() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_links() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_parameters() (pypet.trajectory.Trajectory

method), 148
f_get_parent() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_range() (pypet.parameter.BaseParameter

method), 189
f_get_range() (pypet.parameter.Parameter method), 172
f_get_range_length() (pypet.parameter.BaseParameter

method), 190
f_get_range_length() (pypet.parameter.Parameter

method), 172
f_get_results() (pypet.trajectory.Trajectory method),

148
f_get_root() (pypet.naturalnaming.NNGroupNode

method), 162
f_get_run_information() (pypet.trajectory.Trajectory

method), 148
f_get_run_names() (pypet.trajectory.Trajectory

method), 149
f_get_wildcards() (pypet.trajectory.Trajectory method),

149
f_groups() (pypet.naturalnaming.NNGroupNode

method), 163
f_has_children() (pypet.naturalnaming.NNGroupNode

method), 163
f_has_groups() (pypet.naturalnaming.NNGroupNode

method), 163
f_has_leaves() (pypet.naturalnaming.NNGroupNode

method), 163
f_has_links() (pypet.naturalnaming.NNGroupNode

method), 163
f_has_range() (pypet.parameter.BaseParameter

method), 190
f_has_range() (pypet.parameter.Parameter method),

172
f_idx_to_run() (pypet.trajectory.Trajectory method),

149
f_is_array() (pypet.parameter.BaseParameter method),

190
f_is_array() (pypet.parameter.Parameter method), 172
f_is_completed() (pypet.trajectory.Trajectory method),

149
f_is_empty() (pypet.annotations.Annotations method),

197
f_is_empty() (pypet.parameter.BaseParameter method),

190
f_is_empty() (pypet.parameter.BaseResult method),

195
f_is_empty() (pypet.parameter.Parameter method), 172
f_is_empty() (pypet.parameter.Result method), 178
f_is_empty() (pypet.parameter.SparseResult method),

181
f_is_empty() (pypet.trajectory.Trajectory method), 150
f_is_root() (pypet.naturalnaming.NNGroupNode

method), 163
f_is_root() (pypet.parameter.BaseParameter method),

190
f_is_root() (pypet.parameter.BaseResult method), 195
f_is_root() (pypet.parameter.Parameter method), 173
f_is_root() (pypet.parameter.Result method), 178
f_is_root() (pypet.parameter.SparseResult method),

181
f_is_wildcard() (pypet.trajectory.Trajectory method),

150
f_iter_leaves() (pypet.naturalnaming.NNGroupNode

method), 163
f_iter_nodes() (pypet.naturalnaming.NNGroupNode

method), 163
f_iter_runs() (pypet.trajectory.Trajectory method), 150
f_leaves() (pypet.naturalnaming.NNGroupNode

method), 163
f_links() (pypet.naturalnaming.NNGroupNode

method), 163
f_load() (pypet.naturalnaming.NNGroupNode

method), 163
f_load() (pypet.trajectory.Trajectory method), 150
f_load_child() (pypet.naturalnaming.NNGroupNode

method), 164
f_load_item() (pypet.trajectory.Trajectory method), 152
f_load_items() (pypet.trajectory.Trajectory method),

152
f_load_skeleton() (pypet.trajectory.Trajectory method),

152
f_lock() (pypet.parameter.BaseParameter method), 190
f_lock() (pypet.parameter.Parameter method), 173
f_lock_derived_parameters()

(pypet.trajectory.Trajectory method), 153
f_lock_parameters() (pypet.trajectory.Trajectory

method), 153
f_merge() (pypet.trajectory.Trajectory method), 153
f_merge_many() (pypet.trajectory.Trajectory method),

154
f_migrate() (pypet.trajectory.Trajectory method), 154
f_pipeline() (pypet.environment.Environment method),

137
f_preset_config() (pypet.trajectory.Trajectory method),

154
f_preset_parameter() (pypet.trajectory.Trajectory

method), 154
f_remove() (pypet.annotations.Annotations method),

197
f_remove() (pypet.naturalnaming.NNGroupNode

method), 164
f_remove() (pypet.parameter.Result method), 178
f_remove() (pypet.parameter.SparseResult method),

Index 235

pypet Documentation, Release 0.1.0

181
f_remove() (pypet.trajectory.Trajectory method), 155
f_remove_child() (pypet.naturalnaming.NNGroupNode

method), 164
f_remove_item() (pypet.trajectory.Trajectory method),

155
f_remove_items() (pypet.trajectory.Trajectory method),

155
f_remove_link() (pypet.naturalnaming.NNGroupNode

method), 164
f_restore_default() (pypet.trajectory.Trajectory

method), 155
f_run() (pypet.environment.Environment method), 138
f_set() (pypet.annotations.Annotations method), 197
f_set() (pypet.parameter.BaseParameter method), 190
f_set() (pypet.parameter.Parameter method), 173
f_set() (pypet.parameter.Result method), 178
f_set() (pypet.parameter.SparseResult method), 181
f_set_annotations() (pypet.naturalnaming.NNGroupNode

method), 164
f_set_annotations() (pypet.parameter.BaseParameter

method), 191
f_set_annotations() (pypet.parameter.BaseResult

method), 195
f_set_annotations() (pypet.parameter.Parameter

method), 173
f_set_annotations() (pypet.parameter.Result method),

179
f_set_annotations() (pypet.parameter.SparseResult

method), 182
f_set_crun() (pypet.trajectory.Trajectory method), 155
f_set_large_overview()

(pypet.environment.Environment method),
138

f_set_properties() (pypet.trajectory.Trajectory method),
156

f_set_single() (pypet.annotations.Annotations method),
197

f_set_single() (pypet.brian.parameter.BrianMonitorResult
method), 218

f_set_single() (pypet.brian.parameter.BrianResult
method), 215

f_set_single() (pypet.parameter.PickleResult method),
184

f_set_single() (pypet.parameter.Result method), 179
f_set_single() (pypet.parameter.SparseResult method),

182
f_set_small_overview()

(pypet.environment.Environment method),
138

f_set_summary() (pypet.environment.Environment
method), 138

f_shrink() (pypet.trajectory.Trajectory method), 156
f_start() (pypet.environment.MultiprocContext

method), 140
f_store() (pypet.naturalnaming.NNGroupNode

method), 164
f_store() (pypet.trajectory.Trajectory method), 156

f_store_child() (pypet.naturalnaming.NNGroupNode
method), 165

f_store_item() (pypet.trajectory.Trajectory method),
157

f_store_items() (pypet.trajectory.Trajectory method),
157

f_supports() (pypet.brian.parameter.BrianParameter
method), 214

f_supports() (pypet.parameter.ArrayParameter
method), 175

f_supports() (pypet.parameter.BaseParameter method),
191

f_supports() (pypet.parameter.Parameter method), 173
f_supports() (pypet.parameter.PickleParameter

method), 176
f_supports() (pypet.parameter.SparseParameter

method), 175
f_supports_fast_access()

(pypet.parameter.BaseParameter method),
191

f_supports_fast_access() (pypet.parameter.BaseResult
method), 195

f_supports_fast_access() (pypet.parameter.Parameter
method), 173

f_supports_fast_access() (pypet.parameter.Result
method), 179

f_supports_fast_access()
(pypet.parameter.SparseResult method),
182

f_switch_off_all_overview()
(pypet.environment.Environment method),
138

f_switch_off_large_overview()
(pypet.environment.Environment method),
138

f_switch_off_small_overview()
(pypet.environment.Environment method),
139

f_to_dict() (pypet.annotations.Annotations method),
197

f_to_dict() (pypet.naturalnaming.NNGroupNode
method), 165

f_to_dict() (pypet.parameter.Result method), 179
f_to_dict() (pypet.parameter.SparseResult method),

182
f_to_dict() (pypet.trajectory.Trajectory method), 158
f_translate_key() (pypet.parameter.Result method), 179
f_translate_key() (pypet.parameter.SparseResult

method), 182
f_unlock() (pypet.parameter.BaseParameter method),

191
f_unlock() (pypet.parameter.Parameter method), 173
f_val_to_str() (pypet.parameter.BaseParameter

method), 191
f_val_to_str() (pypet.parameter.BaseResult method),

195
f_val_to_str() (pypet.parameter.Parameter method),

173

236 Index

pypet Documentation, Release 0.1.0

f_val_to_str() (pypet.parameter.Result method), 179
f_val_to_str() (pypet.parameter.SparseResult method),

182
f_wildcard() (pypet.trajectory.Trajectory method), 158
filename (pypet.storageservice.HDF5StorageService

attribute), 209
find_unique_points() (in module pypet.utils.explore),

197
fletcher32 (pypet.storageservice.HDF5StorageService

attribute), 208
FLOAT_MODE (pypet.brian.parameter.BrianParameter

attribute), 214
FLOAT_MODE (pypet.brian.parameter.BrianResult at-

tribute), 215
FLUSH (in module pypet.pypetconstants), 201
FORMAT_ZEROS (in module pypet.pypetconstants),

201
FORMATTED_COLUMN_PREFIX

(pypet.storageservice.HDF5StorageService
attribute), 208

FORMATTED_RUN_NAME (in module
pypet.pypetconstants), 202

FORMATTED_SET_NAME (in module
pypet.pypetconstants), 202

FRAME (in module pypet.pypetconstants), 202
FRAME (pypet.storageservice.HDF5StorageService

attribute), 208

G
get_all_attributes() (in module

pypet.utils.comparisons), 199
get_all_slots() (in module pypet.slots), 203
GitDiffError, 199
GROUP (in module pypet.pypetconstants), 201

H
HasLogger (class in pypet.pypetlogging), 204
HasSlots (class in pypet.slots), 203
HDF5_MAX_OVERVIEW_TABLE_LENGTH (in

module pypet.pypetconstants), 200
HDF5_STRCOL_MAX_COMMENT_LENGTH (in

module pypet.pypetconstants), 200
HDF5_STRCOL_MAX_LOCATION_LENGTH (in

module pypet.pypetconstants), 200
HDF5_STRCOL_MAX_NAME_LENGTH (in module

pypet.pypetconstants), 200
HDF5_STRCOL_MAX_RANGE_LENGTH (in mod-

ule pypet.pypetconstants), 200
HDF5_STRCOL_MAX_RUNTIME_LENGTH (in

module pypet.pypetconstants), 200
HDF5_STRCOL_MAX_VALUE_LENGTH (in mod-

ule pypet.pypetconstants), 200
HDF5StorageService (class in pypet.storageservice),

205

I
IDENTIFIER (pypet.brian.parameter.BrianParameter

attribute), 214

IDENTIFIER (pypet.brian.parameter.BrianResult at-
tribute), 215

IDENTIFIER (pypet.parameter.ArrayParameter at-
tribute), 175

IDENTIFIER (pypet.parameter.SparseParameter
attribute), 175

IDENTIFIER (pypet.parameter.SparseResult attribute),
180

INIT_PREFIX (pypet.storageservice.HDF5StorageService
attribute), 208

is_open (pypet.storageservice.HDF5StorageService at-
tribute), 208

is_open (pypet.storageservice.LockWrapper attribute),
213

item (pypet.storageservice.HDF5StorageService
attribute), 213

L
LazyStorageService (class in pypet.storageservice), 214
LEAF (in module pypet.pypetconstants), 201
LEAF (pypet.storageservice.HDF5StorageService at-

tribute), 208
LENGTH (pypet.storageservice.HDF5StorageService

attribute), 208
LIST (in module pypet.pypetconstants), 201
load() (pypet.storageservice.HDF5StorageService

method), 209
load() (pypet.storageservice.LazyStorageService

method), 214
load() (pypet.storageservice.LockWrapper method),

213
LOAD_DATA (in module pypet.pypetconstants), 200
LOAD_NOTHING (in module pypet.pypetconstants),

201
LOAD_SKELETON (in module pypet.pypetconstants),

200
load_trajectory() (in module pypet.trajectory), 160
LockWrapper (class in pypet.storageservice), 213
LOG_ENV (in module pypet.pypetconstants), 202
LOG_PROC (in module pypet.pypetconstants), 203
LOG_RUN (in module pypet.pypetconstants), 202
LOG_SET (in module pypet.pypetconstants), 203
LOG_TRAJ (in module pypet.pypetconstants), 202

M
MERGE (in module pypet.pypetconstants), 201
MetaSlotMachine (class in pypet.slots), 203
MODIFY_ROW (pypet.storageservice.HDF5StorageService

attribute), 207
multiproc_safe (pypet.storageservice.LockWrapper at-

tribute), 213
MultiprocContext (class in pypet.environment), 139

N
NAME_TABLE_MAPPING

(pypet.storageservice.HDF5StorageService
attribute), 207

Index 237

pypet Documentation, Release 0.1.0

nested_equal() (in module pypet.utils.comparisons),
199

NetworkAnalyser (class in pypet.brian.network), 225
NetworkComponent (class in pypet.brian.network), 223
NetworkManager (class in pypet.brian.network), 220
NetworkRunner (class in pypet.brian.network), 222
NNGroupNode (class in pypet.naturalnaming), 160
NoSuchServiceError, 199
NotUniqueNodeError, 199

O
ObjectTable (class in pypet.parameter), 184
OPEN_FILE (in module pypet.pypetconstants), 201
OTHER_NAME_LIST

(pypet.parameter.SparseParameter attribute),
175

OVERWRITE_DATA (in module
pypet.pypetconstants), 201

P
pandas_append (pypet.storageservice.HDF5StorageService

attribute), 209
pandas_format (pypet.storageservice.HDF5StorageService

attribute), 209
PANEL (in module pypet.pypetconstants), 202
PANEL (pypet.storageservice.HDF5StorageService at-

tribute), 208
Parameter (class in pypet.parameter), 170
PARAMETER_SUPPORTED_DATA (in module

pypet.pypetconstants), 200
ParameterGroup (class in pypet.naturalnaming), 166
ParameterLockedException, 199
parameters_equal() (in module

pypet.utils.comparisons), 199
PARAMETERTYPEDICT (in module

pypet.pypetconstants), 200
PickleParameter (class in pypet.parameter), 176
PickleResult (class in pypet.parameter), 183
PR_ATTR_NAME_MAPPING

(pypet.storageservice.HDF5StorageService
attribute), 207

pre_build() (pypet.brian.network.NetworkComponent
method), 224

pre_build() (pypet.brian.network.NetworkManager
method), 221

pre_run_network() (pypet.brian.network.NetworkManager
method), 221

PREPARE_MERGE (in module pypet.pypetconstants),
201

PresettingError, 199
progressbar() (in module pypet), 198
pypet.brian.network (module), 219
pypet.brian.parameter (module), 214
pypet.environment (module), 129
pypet.parameter (module), 169
pypet.pypetconstants (module), 200
pypet.pypetexceptions (module), 199
pypet.utils.comparisons (module), 199

pypet.utils.explore (module), 197

Q
QueueStorageServiceSender (class in

pypet.storageservice), 213
QueueStorageServiceWriter (class in

pypet.storageservice), 213

R
remove_from_network()

(pypet.brian.network.NetworkComponent
method), 224

REMOVE_ROW (pypet.storageservice.HDF5StorageService
attribute), 207

rename_log_file() (in module pypet.pypetlogging), 204
Result (class in pypet.parameter), 176
ResultGroup (class in pypet.naturalnaming), 168
results_equal() (in module pypet.utils.comparisons),

199
RUN_NAME (in module pypet.pypetconstants), 202
RUN_NAME_DUMMY (in module

pypet.pypetconstants), 202
run_network() (in module pypet.brian.network), 220
run_network() (pypet.brian.network.NetworkManager

method), 221

S
SCALAR_TYPE (pypet.storageservice.HDF5StorageService

attribute), 207
send_done() (pypet.storageservice.QueueStorageServiceSender

method), 213
SERIES (in module pypet.pypetconstants), 202
SERIES (pypet.storageservice.HDF5StorageService at-

tribute), 208
SET_FORMAT_ZEROS (in module

pypet.pypetconstants), 202
SET_NAME (in module pypet.pypetconstants), 202
SET_NAME_DUMMY (in module

pypet.pypetconstants), 202
SHARED_DATA (in module pypet.pypetconstants),

202
SHARED_DATA (pypet.storageservice.HDF5StorageService

attribute), 208
shuffle (pypet.storageservice.HDF5StorageService at-

tribute), 208
SINGLE_RUN (in module pypet.pypetconstants), 201
SparseParameter (class in pypet.parameter), 175
SparseResult (class in pypet.parameter), 180
SPLIT_TABLE (in module pypet.pypetconstants), 202
SPLIT_TABLE (pypet.storageservice.HDF5StorageService

attribute), 208
STORAGE_TYPE (pypet.storageservice.HDF5StorageService

attribute), 207
store() (pypet.storageservice.HDF5StorageService

method), 210
store() (pypet.storageservice.LazyStorageService

method), 214

238 Index

pypet Documentation, Release 0.1.0

store() (pypet.storageservice.LockWrapper method),
213

store() (pypet.storageservice.QueueStorageServiceSender
method), 213

STORE_DATA (in module pypet.pypetconstants), 201
STORE_DATA_SKIPPING (in module

pypet.pypetconstants), 201
STORE_NOTHING (in module pypet.pypetconstants),

201
STRING_MODE (pypet.brian.parameter.BrianParameter

attribute), 214
STRING_MODE (pypet.brian.parameter.BrianResult

attribute), 215

T
TABLE (in module pypet.pypetconstants), 202
TABLE (pypet.storageservice.HDF5StorageService at-

tribute), 207
TABLE_MODE (pypet.brian.parameter.BrianMonitorResult

attribute), 218
TooManyGroupsError, 200
Trajectory (class in pypet.trajectory), 141
TRAJECTORY (in module pypet.pypetconstants), 201
TREE (in module pypet.pypetconstants), 201
TYPE_FLAG_MAPPING

(pypet.storageservice.HDF5StorageService
attribute), 208

U
UPDATE_DATA (in module pypet.pypetconstants),

201
UPDATE_SKELETON (in module

pypet.pypetconstants), 201

V
v_annotations (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_annotations (pypet.parameter.BaseParameter at-

tribute), 191
v_annotations (pypet.parameter.BaseResult attribute),

195
v_annotations (pypet.parameter.Parameter attribute),

173
v_annotations (pypet.parameter.Result attribute), 179
v_annotations (pypet.parameter.SparseResult attribute),

182
v_auto_load (pypet.trajectory.Trajectory attribute), 158
v_auto_run_prepend (pypet.trajectory.Trajectory

attribute), 158
v_branch (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_branch (pypet.parameter.BaseParameter attribute),

191
v_branch (pypet.parameter.BaseResult attribute), 195
v_branch (pypet.parameter.Parameter attribute), 173
v_branch (pypet.parameter.Result attribute), 179
v_branch (pypet.parameter.SparseResult attribute), 182

v_comment (pypet.naturalnaming.NNGroupNode at-
tribute), 165

v_comment (pypet.parameter.BaseParameter attribute),
191

v_comment (pypet.parameter.BaseResult attribute),
195

v_comment (pypet.parameter.Parameter attribute), 174
v_comment (pypet.parameter.Result attribute), 179
v_comment (pypet.parameter.SparseResult attribute),

183
v_comment (pypet.trajectory.Trajectory attribute), 158
v_crun (pypet.trajectory.Trajectory attribute), 158
v_crun_ (pypet.trajectory.Trajectory attribute), 158
v_depth (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_depth (pypet.parameter.BaseParameter attribute),

191
v_depth (pypet.parameter.BaseResult attribute), 196
v_depth (pypet.parameter.Parameter attribute), 174
v_depth (pypet.parameter.Result attribute), 179
v_depth (pypet.parameter.SparseResult attribute), 183
v_environment_hexsha (pypet.trajectory.Trajectory at-

tribute), 158
v_environment_name (pypet.trajectory.Trajectory at-

tribute), 158
v_explored (pypet.parameter.BaseParameter attribute),

191
v_explored (pypet.parameter.Parameter attribute), 174
v_fast_access (pypet.trajectory.Trajectory attribute),

158
v_fast_accessible (pypet.parameter.BaseParameter at-

tribute), 191
v_fast_accessible (pypet.parameter.BaseResult at-

tribute), 196
v_fast_accessible (pypet.parameter.Parameter at-

tribute), 174
v_fast_accessible (pypet.parameter.Result attribute),

179
v_fast_accessible (pypet.parameter.SparseResult

attribute), 183
v_filename (pypet.trajectory.Trajectory attribute), 158
v_full_copy (pypet.parameter.BaseParameter attribute),

191
v_full_copy (pypet.parameter.Parameter attribute), 174
v_full_copy (pypet.trajectory.Trajectory attribute), 158
v_full_name (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_full_name (pypet.parameter.BaseParameter at-

tribute), 192
v_full_name (pypet.parameter.BaseResult attribute),

196
v_full_name (pypet.parameter.Parameter attribute), 174
v_full_name (pypet.parameter.Result attribute), 179
v_full_name (pypet.parameter.SparseResult attribute),

183
v_hexsha (pypet.environment.Environment attribute),

139
v_idx (pypet.trajectory.Trajectory attribute), 159

Index 239

pypet Documentation, Release 0.1.0

v_is_group (pypet.naturalnaming.NNGroupNode at-
tribute), 165

v_is_group (pypet.parameter.BaseParameter attribute),
192

v_is_group (pypet.parameter.BaseResult attribute), 196
v_is_group (pypet.parameter.Parameter attribute), 174
v_is_group (pypet.parameter.Result attribute), 180
v_is_group (pypet.parameter.SparseResult attribute),

183
v_is_leaf (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_is_leaf (pypet.parameter.BaseParameter attribute),

192
v_is_leaf (pypet.parameter.BaseResult attribute), 196
v_is_leaf (pypet.parameter.Parameter attribute), 174
v_is_leaf (pypet.parameter.Result attribute), 180
v_is_leaf (pypet.parameter.SparseResult attribute), 183
v_is_parameter (pypet.parameter.BaseParameter

attribute), 192
v_is_parameter (pypet.parameter.BaseResult attribute),

196
v_is_parameter (pypet.parameter.Parameter attribute),

174
v_is_parameter (pypet.parameter.Result attribute), 180
v_is_parameter (pypet.parameter.SparseResult at-

tribute), 183
v_is_root (pypet.naturalnaming.NNGroupNode at-

tribute), 165
v_is_root (pypet.parameter.BaseParameter attribute),

192
v_is_root (pypet.parameter.BaseResult attribute), 196
v_is_root (pypet.parameter.Parameter attribute), 174
v_is_root (pypet.parameter.Result attribute), 180
v_is_root (pypet.parameter.SparseResult attribute), 183
v_is_run (pypet.trajectory.Trajectory attribute), 159
v_iter_recursive (pypet.trajectory.Trajectory attribute),

159
v_lazy_adding (pypet.trajectory.Trajectory attribute),

159
v_leaf (pypet.naturalnaming.NNGroupNode attribute),

165
v_leaf (pypet.parameter.BaseParameter attribute), 192
v_leaf (pypet.parameter.BaseResult attribute), 196
v_leaf (pypet.parameter.Parameter attribute), 175
v_leaf (pypet.parameter.Result attribute), 180
v_leaf (pypet.parameter.SparseResult attribute), 183
v_location (pypet.naturalnaming.NNGroupNode

attribute), 165
v_location (pypet.parameter.BaseParameter attribute),

192
v_location (pypet.parameter.BaseResult attribute), 196
v_location (pypet.parameter.Parameter attribute), 175
v_location (pypet.parameter.Result attribute), 180
v_location (pypet.parameter.SparseResult attribute),

183
v_locked (pypet.parameter.BaseParameter attribute),

192
v_locked (pypet.parameter.Parameter attribute), 175

v_log_path (pypet.environment.Environment attribute),
139

v_max_depth (pypet.trajectory.Trajectory attribute),
159

v_monitor_type (pypet.brian.parameter.BrianMonitorResult
attribute), 219

v_name (pypet.environment.Environment attribute),
139

v_name (pypet.naturalnaming.NNGroupNode at-
tribute), 166

v_name (pypet.parameter.BaseParameter attribute), 192
v_name (pypet.parameter.BaseResult attribute), 196
v_name (pypet.parameter.Parameter attribute), 175
v_name (pypet.parameter.Result attribute), 180
v_name (pypet.parameter.SparseResult attribute), 183
v_no_data_string (pypet.parameter.Result attribute),

180
v_no_data_string (pypet.parameter.SparseResult

attribute), 183
v_parameter (pypet.parameter.BaseParameter at-

tribute), 192
v_parameter (pypet.parameter.BaseResult attribute),

196
v_parameter (pypet.parameter.Parameter attribute), 175
v_parameter (pypet.parameter.Result attribute), 180
v_parameter (pypet.parameter.SparseResult attribute),

183
v_protocol (pypet.parameter.PickleParameter attribute),

176
v_protocol (pypet.parameter.PickleResult attribute),

184
v_python (pypet.trajectory.Trajectory attribute), 159
v_root (pypet.naturalnaming.NNGroupNode attribute),

166
v_run_branch (pypet.naturalnaming.NNGroupNode at-

tribute), 166
v_run_branch (pypet.parameter.BaseParameter at-

tribute), 192
v_run_branch (pypet.parameter.BaseResult attribute),

196
v_run_branch (pypet.parameter.Parameter attribute),

175
v_run_branch (pypet.parameter.Result attribute), 180
v_run_branch (pypet.parameter.SparseResult attribute),

183
v_shortcuts (pypet.trajectory.Trajectory attribute), 159
v_standard_leaf (pypet.trajectory.Trajectory attribute),

159
v_standard_parameter (pypet.trajectory.Trajectory at-

tribute), 159
v_standard_result (pypet.trajectory.Trajectory at-

tribute), 159
v_storage_mode (pypet.brian.parameter.BrianMonitorResult

attribute), 219
v_storage_mode (pypet.brian.parameter.BrianParameter

attribute), 214
v_storage_mode (pypet.brian.parameter.BrianResult at-

tribute), 216

240 Index

pypet Documentation, Release 0.1.0

v_storage_service (pypet.trajectory.Trajectory at-
tribute), 159

v_stored (pypet.naturalnaming.NNGroupNode at-
tribute), 166

v_stored (pypet.parameter.BaseParameter attribute),
192

v_stored (pypet.parameter.BaseResult attribute), 196
v_stored (pypet.parameter.Parameter attribute), 175
v_stored (pypet.parameter.Result attribute), 180
v_stored (pypet.parameter.SparseResult attribute), 183
v_time (pypet.environment.Environment attribute), 139
v_time (pypet.trajectory.Trajectory attribute), 159
v_timestamp (pypet.environment.Environment at-

tribute), 139
v_timestamp (pypet.trajectory.Trajectory attribute), 159
v_traj (pypet.environment.Environment attribute), 139
v_trajectory (pypet.environment.Environment at-

tribute), 139
v_trajectory_name (pypet.trajectory.Trajectory at-

tribute), 159
v_trajectory_time (pypet.trajectory.Trajectory at-

tribute), 159
v_trajectory_timestamp (pypet.trajectory.Trajectory at-

tribute), 159
v_version (pypet.trajectory.Trajectory attribute), 160
v_with_links (pypet.trajectory.Trajectory attribute), 160
VersionMismatchError, 200
VLARRAY (in module pypet.pypetconstants), 202
VLARRAY (pypet.storageservice.HDF5StorageService

attribute), 207

W
WRAP_MODE_LOCK (in module

pypet.pypetconstants), 200
WRAP_MODE_NONE (in module

pypet.pypetconstants), 200
WRAP_MODE_PIPE (in module

pypet.pypetconstants), 200
WRAP_MODE_QUEUE (in module

pypet.pypetconstants), 200

Index 241

	pypet User Manual
	What is pypet all about?
	Getting Started
	Tutorial
	Cookbook
	Examples
	Optimization Tips
	FAQs and Known Issues

	Miscellaneous
	Publication Information
	Acknowledgments
	Tests
	Changelog

	Library Reference
	The Environment
	The Trajectory and Group Nodes
	Parameters and Results
	Annotations
	Utils
	Exceptions
	Global Constants
	Slots
	Logging
	Storage Services
	Brian Parameters, Results and Monitors
	Brian Network Framework

	Contact and License
	Contact
	License

	Python Module Index

