Application Note

PMAC Throughput Testing Results

Research has been conducted to determine the rate at which PMAC can process a motion program. This
document is intended to give a PMAC user ageneral idea as to how fast a motion program can be
processed based on the data attained and provide the steps that were used to determine thisrate. In
addition, this document explains the various boundaries that are reached when pushing PMAC to its
computational limit and has suggestions to further increase the throughput. A section devoted to PMAC
NC for Windowsis also included to explain throughput results attained for this application.

Throughput Fundamentals

The rate at which PMAC processes a motion program is specified in units of blocks per second, bps. A
block is considered to be one line in the motion program regardless of how many axisare in theline. For
example, X10, X10Y 20, X10Y20Z2, TA1, etc. are all considered one block.

A bit of categorizingisin order. Asfar as PMAC is concerned, motion programs are of two types, externa
and internal. Internal programsreside in a standard program buffer within PMAC's memory. Externa
programs, programs generated and transferred by a host computer, ultimately end up in one of PMAC’s
internal rotary buffers either in an ASCII format, or binary (binary only possible if using the Dual-Ported
Rams (DPR) Binary Rotary Buffer). Furthermore, external binary programs may be transferred from host
to PMAC in two ways, with or without preprocessing the ASCII program file. That is, when sending
PMAC aprogram viathe DPR binary rotary buffer, the host may first convert the PMAC ASCII motion
program file to aPMAC binary file and then send the binary file piece meal to the DPR. Alternatively, the
host can convert and download each line of the ASCI|I file on the fly oneline at atime.

All three forms, internal and both external, were tested under a variety of servo frequencies, phase
frequencies, master clock frequencies, number of axisin asingle block, and aso with and without
streamlining PMAC’ s encoder conversion table. Appendices B-D show data (and bar charts) going from
the most optimal PMAC settings, to the default factory settings respectively using DOS programs which
used SPLINE mode, 1ms moves. Appendix E has data and bar chartsillustrating the maximum throughput
for Circular moves with optimal PMAC settings. Finaly, Appendix F has NC for Windows data and charts
for splined 1ms moves.

Splined and circular moves were chosen since every move statement in the motion programis
processed. Whereas when PMAC isin Linear mode it may skip blocks, depending on whether or not it
has enough time to calculate the move. Asaresult, using Linear move mode would lead to erroneous
values for the PMAC throughput.

PMAC Computational Limits

What was found to limit the maximum throughput is discussed here. Recognizing what is keeping PMAC
from running faster is important in determining what actions, if any, may be taken to remove the
bottleneck. Keep in mind that none of the symptoms described below occurs, the host computer may be
the slowest link inthe chain. That is, for external programs, the rate at which the host can transfer the
moves to PMAC islower than the rate at which PMAC can process the moves.

For any given PMAC configuration, the limit on the throughput may be due to one of following:

Symptom Throughput Bottleneck Remedies*
Watchdog trips card shuts down Not enough background time to keep the See Table 2

(and the tail stops wagging) watchdog timer happy

A run time error occurs. Program Not enough time to perform the motion Decrease 18.

run status bit is TRUE. Motors calculationsin onereal time interrupt Also, see Table 2.
move at the last commanded period. Increase servo interrupt
velocity (run-away). The maximum feedrate overrideis frequency

Program runsfine, but can't increase | restricted by the servo interrupt frequency

feedrate

*See Appendix A for details on making optimizations

Throughput Testing Results 1

Application Note

A system that does not have enough background time will have the watch dog timer trip causing the card
to shut down. Background time is the time |eft over after higher priority tasks have been done (i.e.
Phasing, Closing servo loops, Mation planning, PLCO, PLCCO etc.). Not having enough background
time is a condition more frequently encountered with the lower speed 20Mhz PMAC than the 40/60 Mhz
PMAC.

A Run Time Error occurs when the time at which the calculations for the next move are completed occurs
after the move should have began. At every Real Time Interrupt PMAC does motion planning, if itis
required, then PLCO and finally PLCCO. If this does not occur often enough, the just described condition
occurs. It isfor thisreason that 18, Run Time Interrupt period, for all test was set to 0. This mandates that
Real Time Interrupts, RTI, occur at every servo cycle. No PLCO /PLCCO were used in the testing
therefore the only thing done at RTI wasto do if motion planning if needed. Thisis the optimum setting
for 18 when trying to optimize throughput, since no significant processor timeis taken unlessit isrequired
for the trgjectory calculations.

When PMAC’ s throughput has been restricted by the feedrate override, increasing the servo interrupt
frequency will increase throughput. The maximum feedrate override value can be determined by the
following equation:

Max_Feedrate Override= 225* Servo_Interrupt_Frequency/2.26(KHZ)

This condition, for example, usually occurred for the faster 40/60 MHz PMAC boards with the default
servo interrupt frequency of 2.2 KHz. Inthis scenario, PMAC has computational power to spare, yet
since the motion program can only have afeedrate override of 225% and the minimum movetimeis 1ms,
throughput is restricted to 2250 blocks per second.

How to Increase Throughput

Before reading the conclusions deduced from the datait is suggested that the reader review PMAC's
computational priorities, see Computational Featuresin the PMAC User Manual (User Guide). Once a
good understanding of how PMAC performs its multitasking is achieved, the conclusions below will be
better understood.

The following conclusion can be made from the data. In order of most significant impact, a higher
throughput can always be attained by:

Optimization Throuahput Increase

Increasing the Master clock freguency 100-800%

Decreasing the number the axis per block 200-700%

Pre-process the ASCI|I file to a binary one. 80-100%

'Removing any unused entries from the Encoder Conversion Table | 10 - 30%

Using an internal buffer, next fastest external binary, slowest 10-15%

external ASCI|

ISetting the Phase frequency equal to the servo frequency 5 10%

*Change uncompiled PLCs to compiled PLCs Floating point operations run 2-3 time
faster and fixed point operations run
20-30 times faster.

See Appendix A for detailed information on making selected optimizations.

Trends:
The following trends have been found. Here we discuss the effects on throughput as aresult of varying
one parameter as all others remain fixed tragjectory calculations (Run time error occurs).

2 Throughput Testing Results

Application Note

I ncreasing Servo Frequency:
As oneincreases the servo interrupt frequency PMAC spends more time on:

1. Sampling feedback devices, converting data (viathe Encoder Conversion Table) and computing the
output based on the difference in the commanded Vs actual position

2. Foreground tasks
a. Motion planning

b. PLCsand/or PLCCs (none of which were used in this analysis) and therefore less time becomes
available for background tasks.

How the Data was attained
The basic methodology in attaining the dataisfirst discussed followed by exactly how PMAC was
configured for the various tests that were conducted.

The data was attained by developing a DOS based application, benchmrk.c (Available with ComLib). For
any given test, the card was configured appropriately in both hardware (servo_frequency and/or Master
clock frequency) as well as software (I-variables). Three functions were developed; all dedicated testing
routines for each of the three methods of running a PMAC program. The main program would iteratively
call one of these dedicated functions specifying the feedrate at which to run the PMAC program, and the
function would return the results of the test (percent error) when completed. Depending on whether or
not the last iteration ran successfully, the feedrate would be varied according to the algorithm illustrated
below: (Keep in mind the move times were set to 1 ms)

Bagin baaling
S fandrale = 50%

Periomn | esl

-~ - s Faadrala=Fasdiate+
Tl Faicisd ? ———

laratian_valus

I

!

Feedrale- Feed-ate Iberation value=18 a1 skar
lNeration_valuel of program

Haraikn_walue=
Inleralion valum3

s

Vit

< Horation_valses1 s
= " " " .-....

Dions

Throughput Testing Results 3

Application Note

All necessary conditions for a successful test run are listed and then described below:

1. Calculated run time was within 1% of the actual run time
2. Aruntimeerror, RTI, did not occur.

3. Thewatchdog timer did not trip.

4. A servointerrupt error did not occur

Thefirst mode of failure, extended actual run time, occurs in both the external program types. Thetime
that the program should take to execute (in milliseconds) is cal culated by the following formula:

run_time_calc = (NUM_LINES+2)*(100.0/feedrate); 2 extra TA added in spline

If PMAC takes 1% longer to run the program than the calculated value afailure is considered to have
occurred. Here the bottleneck isthe rate at which PMAC can transfer data from the host (not enough
background time), or if the host computer is slow, the rate at which the host can transfer moves to PMAC.
In both cases, the PMAC rotary buffer at times may not have any movesin it and extratime will be spent
decelerating to stop, possibly waiting for the next move and finally accelerating to speed.

A run time error occurs when the time at which the calculations for a move have completed is after the
move should have started. When this happens PMAC will have all motors continue to move at the last
commanded velocity and the program never finishes. In this case, atime-out counter in the testing
agorithm determines that a run time error has occurred.

A watch dog timer will trip when insufficient background time was available for house keeping or the
RTI is not occurring frequently enough (won't be the cause of failure here) or if the digital voltage goes
below 4.5V (Thistoo is not afactor in the tests performed).

Servo errors will occur when not all the cal culations necessary for a single servo cycle can be completed
inasingle servo period. In this case, the PMAC will report a servo interrupt error in the appropriate
coordinate systems status word. Nothing catastrophic occurs when this error is encountered. PMAC will
continue any unfinished servo calculationsin the following servo interrupt. The user will notice that the
program will continue to run at exactly half the speed it should since every other servo cycleis now
skipped.

Timing of Program Execution

In all tests the means of timing was by use of a high resolution (+/- 50 microseconds) PC based timer.
The timer was started at the beginning of program execution and stopped when the last line of code was
executed. For theinternal ASCII program the beginning of program execution was considered to be the
time immediately following the acknowledge character received by the host after sending PMAC arun
command. The lag time between when PMAC actually begins running the program and when the PC
timer startstiming is considered negligible. Thisis based on the fact that all tests used 3000 blocks of
program code which resulted in a smallest run time of 670 ms. In comparison the maximum response
time of issuing arun command to PMAC isunder 3.5 ms. For both externa programs the start time was
considered to be just before the first program line was sent to arotary buffer. For all types, a program
was considered finished when the last line of code, which was an m-variable assignment statement,
occurred. The M-Variable was defined to point to DPR. The host program would poll this memory
location until it was assigned, at which point the PC-timer would stop. Again, the lag time between
program termination and the stopping of the PC timer is considered negligible.

Timing could have aso be done using PMAC's servo counter. In this case, program lines would have to
be added to capture the servo counter at the start and end of the program. The time would have been
calculated as the difference between the ending and starting servo counter values times the servo interrupt
period. Actualy, thiswas done to compare timing techniques and it was found that the results
consistently differed by less than 0.5%.

4 Throughput Testing Results

Application Note

Setting up PMAC

The communication functions used in benchmrk.c were from ComLib, the Delta Tau PMAC C-function
communication library. Communication over the bus and DPR were established. PMAC, for al tests,
was configured by sending it the following command strings:

RN ;Card set to factory default state

158=1 ;Communication to ASCII-DPR established

110 = xxx ;Set to appropriate value, afunction of servo_freguency

1187=1 ;Set default Accel time

1188=0 ;Set the default S-curve time

18=0 ;Set Real Time Interrupt frequency equal to the servo frequency
&1 ;Setup motors and coordinate system

#1->1X ;Define all axis being used for the test

#2->1y ;And so on depending on the number of axis, X, Y, Z, U, v, w
i100=1 ;Activate all motors being used for a given test

i200=1 ;And so on depending on the number of axis

i111=0 ;So that motors don't really have to be hooked up

i211=0 ;And so on depending on the number of axis

i1125=$12c000 | ;So that limits and amp faults do not have to be grounded in hardware
i225=$12c004 | ;And so on depending on the number of axis

#1j/ ;Close the loop on all motors active for the given test

#2j/ ;And so on depending on the number of axis

Now the details of each testing method are described in pseudo code. The nomenclature for the pseudo-
code is shown below:

Typeface Meaning
Bold Strings sent to PMAC
Bold Italic Pseudo-Code

Internal ASCII Procedure

The following procedure, determines how fast PMAC can run a program stored in a standard program
buffer in ASCII form. The routine first downloads the program, begins execution and the timer, and then
waits for the last statement in the program to execute before stopping the timer. The last statement in the
routine sets a bit in DPR which is being polled.
1. Makethe M-Variable definition to point in unused DPR:
m1023->y:$D000,15,1 ; Thislocation isin DPR's control panel, an unused location
This serves as the end of program flag.
2. Makeafar pointer to same location:
pmac_all_done = (unsigned int *) MK_FP(0xD400,0);
The code aboveisin C. pmac_all_done pointsto PC segment D400(hex) and offset O.
3. Set pmac_all_doneflagto 0.
*pmac_all_done =0;
4. Download program to PMAC
Open progl1000
Clear INC SPLINE1TAO1
m1023 =0// Set program_doneflagto 0

do{

if(number_of axis==2)
x1lyl

elseif (number_of_axis==3)
x1lylzl

Throughput Testing Results

Application Note

endif
lines_down = lines_down+1;
} while (test>0 AND lines_down<NUM_LINES);
dwell0 //So that M s are synchronous
m1023=1;
Close
5. Change feedrate
%feedrate
delay(2000);// Must put this delay in so feedrate override takes effect before run.

6. Begin execution of program and wait for acknowledge
b1000r

7. Begintimer
timel = hrt_read();

8. Wait until program has completed running, or atimeout has occurred, Recall the last statement is an
m-variable assignment which modifies the 15th bit of the word polled by the line below i=0;
A_TIMEOUT = 100000;

while(! (*pmac_all_done & 0x8000) & & !kbhit() && i <A TIMEOUT) i++;
time2 = hrt_read();

9. Timed out?
if(i >=A_TIMEOUT){

/IA runtime error has occurred. Exit procedure return failure condition return FALSE; }

10. Determine how long it program took to execute, and whether or not a successful run.
run_time_pc = (time2-timel1)/(1193.0* 1000.0);// PC CLOCK
bps = (lines_down+3.0)/run_time_pc;
run_time_calc = ((NUM_L INES+2.0)*.001)* (100.0/feedr ate); // in seconds
percent_error = ((run_time_pc-run_time_calc)/run_time_calc)*100.0;

/[display run time calculated, actual, and error.

11. Return error
if(error > 1)
return FALSE
else
return TRUE;

External Binary Procedure

This procedure checks the rate at which a PMAC program may be downloaded to the DPR binary rotary
buffer from ASCII code generated on the fly (Ioading from a file has been found to be the same speed).

It has been found that a 66Mhz DX2 PC clone has been able to transfer program blocks from the PC to
the DPR Rotary buffer at the following rates:

#AXiS Transfer Rate (BPS)
8681
6700
5900
4500
3500

OB WIN|F-

6 Throughput Testing Results

Application Note

Thisis useful to know since if the BUS is not faster than PMAC's processing speed the host becomes the
bottleneck in the transfer process.

PMAC program command processing rate: Determined by dividing the number of blocks sent by the
difference in time from when the first block is sent and when the final block is sent. The last program line
isam-variable assignment. This M-V ariable has been defined a m1023>y:$D000,15,1, a bit that is not
being used in the DPR control panel area.

1. [Initialize and enable the PMAC DPR Binary rotary buffer
if (DProtBuflnit(id,DPR_ROT_SIZE) < 0){
/IReport an error and return 1 RETURN 1;

}
DProtBuf(id,ON);

2. Definearotary buffer internal to PMAC
DEF ROT1500

3. Make M-Variable definition to point in unused DPR, this serves as the end of program flag:
m1023->y:$D000,15,1 ;
4. Make afar pointer to same location:
pmac_all_done = (unsigned int *) MK_FP(0xD400,0);
5. Set pmac_all_doneflag to 0. pmac_all_done=0;
*pmac_all_done=0;
6. Open PMAC'sinternal rotary buffer
OPEN ROT

7. Change the feedrate override value.
%feedrate
delay(2000);// Must put thisdelay in so feedrate override takes effect before run.

8. Begin execution of rotary program
" b1000r"

9. Begin download of program
clear
inc
SPLINE1 TAO1
m1023=0// For PC Timer

10. Start timer
timel = hrt_read();
11. Begin downloading NUM_LINES program lines
timeout = 0;
run_time error_flag = FALSE;
top:
do{
if(number_of axis==2)
test = DPASCI I StrToRot(" x1");
elseif (number_of_axis==3)
test = DPASCI I StrToRot(" x1y1");
-}
if(test>0){ // Line sent to PMAC
lines down =lines_down + 1;
timeout=0; // Reset timeout

Throughput Testing Results 7

Application Note

}

ese
timeout++;// Buffer full, or PMAC has arun time error
} while (lines_down<(NUM_LINEYS));

if(lines_down < NUM_LINES){
if(test = ERR_DPR_BUFFERBUSY)
Il Report to screen that Buffer has had an error, i.e. abad command sent
ese
I/ Report that DPR rotary buffer has been filled
if(timeout < THE_TIMEOUT) // Have not exceeded the timeout?
goto top;
ese
run_time error_flag= TRUE;
12. Send thelast line down
test=-1;
timeout=0L ;
while(test < 0 AND timeout<THE_TIMEOUT){
test = DPASCI I StrToRot(id," m1023=1");// For PC timer
timeout++;
}
if(timeout >= THE_TIMEOUT)
return 2.0; // Program took to long for execution

13. Wait until program has completed running, last statement assigns m1023
i=0;
while(* pmac_all_done& 0x8000 == 1 AND run_time_error_flag==0 AND
i<KTHE_TIMEOUT)
i++;
time2 = hrt_read();
14. Close PMAC' srotary program buffer
CLOSE

15. Timed out? If yes, arun time error occurred.
if(run_time error_flag||i >=THE_TIMEOUT)
/I Display an error message
return 1.0;

}
16. Do necessary calculations,
run_time_pc = (time2-timel)/(1193.0* 1000.0);
bps = (lines_down+2.0)/run_time_pc;
run_time calc = (NUM_LINES+2)*.001)* (100.0/feedrate)//2 for added TA times
error = ((run_time_pc-run_time_calc)/run_time_calc)*100.0;
17. Display results
Calculated run time = run_time_calc, Error = error
PMAC rotary program process rate = bps

18. Return Error
return error;

Throughput Testing Results

Application Note

External ASCII Procedure

This procedure checks the rate at which a PMAC program may be downloaded to the PMAC internal
rotary buffer when moves are transferred thru the DPR in ASCII form. Enhanced throughput may be
attained using interrupt-based handshaking. Here, the DPR fixed background buffer takes sometimein
background to update.

1

10.

11.

Configure 116 and 117.
116=10
117=115

Enable DPR Background stuff.
149=1// Enable DPR background update 1159 = 1 // 1st motor/cs only

Define arotary buffer internal to PMAC.
DEF ROT1500 // Buffer size is dependant on number 117 and number of axis
/I A conservative value buf_size = num_axis*lines_ahead* 1.5

Make M-Variable definition to point in unused DPR:
m21023->y:$D000,15,1 //This serves as the end of program flag.

Make afar pointer to same location:

pmac_all_done = (unsigned int *) MK_FP(0xD400,0);
Set pmac_all_doneflag to 0.

*pmac_all_done = 0;

Open the rotary buffer.

OPEN ROT

Change feedrate override.
Y%feedrate
delay(2000);// Must put thisin so feedrate override takes effect

Begin execution of rotary program
" b1000r"

Begin download of program
inc

SPLINE1

TAO1

m21023=0// For PC Timer

Begin downloading NUM_LINES program lines.
timeout = 0;
run_time_error_flag = FALSE;
timel = hrt_read();
top:
while(! DProtBufFull(id,1) AND lines down<NUM_LINES)
{if(number_of_axis==2)
X1
elseif (number_of_axis==3)
X1lY1l

endif lines_down++;

}
if(lines_down < NUM_LINES)
// DPR rotary buffer has been filled

Throughput Testing Results

Application Note

if(DPsysRunTimeError(id,1)){
/IA run time error has occurred
return 1.0;

}
goto top;

}
while(DProtBufFull(id,1)); // Wait while the rotary buffer isfull

12. Send the last line of the program.
M 1023=1// For PC timer

13. Wait until program has completed running, last statement assigns m1023
i=0;
while(! (*pmac_all_done & 0x8000) AND !run_time error_flag)
i++;
time2 = hrt_read();
14. Close PMAC's rotary buffer.
CLOSE

15. How long did it take according to the PC?
run_time_pc = (time2-timel)/(1193.0* 1000.0);
bps = (lines_down+2.0)/run_time_pc;
run_time_calc = ((NUM_LINES+2)*.001)* (100.0/feedrate);//2 for added TA times
error = ((run_time_pc-run_time_calc)/run_time_calc)*100.0;
16. Display results.
Calculated run time = run_time_calc, Error = error
PMAC rotary program process rate = bps

17. Return Error.
return error;

PMAC NC for Windows Throughput Testing

Delta Tau's PMAC NC for Windows, the first fully capable CNC controller providing an open-architecture
approach to machine tools, was also tested for throughput (See Appendix F). This application, as with any

application that has to display datareal time and respond to a multitasking system on a continual basis, can
be expected to have lower throughput than the dedicated, non-visual, DOS based testing that was described
above.

The NC for Windows application uses only the external DPR binary rotary buffer for transferring motion
programs to PMAC. The two modes in which thisis done, each line converted to binary on the fly
(ASCII->Binary) or preprocessed (Binary->Binary), were done for both 1 and 2 coordinate systems as
well as the three PMAC master clock frequencies (20,40 & 60 MHz). Furthermore, two host computer
speeds, 486-33 and 486-66 were evaluated. Since the PC isthe bottleneck for throughput in nearly al
cases (except for the 486-66, 20 MHz PMAC case), the faster the PC the higher the throughput.

Conditions for Testing

PMAC

The encoder conversion table and phase frequency were streamlined, 18 was set to 0, and two PLCs were
running, PLC1 and PLC2. A file containing 10,000 SPLINE mode moves each of 1mswas used to
conduct thetest. Theinternal rotary buffer size was set to half that of the DPR rotary buffer size. More
on buffer size is discussed below.

10 Throughput Testing Results

Application Note

Host

Only two applications were running at the time of testing, the NC for Windows Executive program and
CNC.EXE. Obviously, the more applications running the less time NC for Windows has to transfer the
motion program.

The default rotary buffer sizes (set by dprBinRot1S ze and dpr BinRot2S ze) that were used are shown below.

Number of Coordinate | DPR Rotary buffer sizes | PMAC Internal Rotary Buffer Sizes
Systems (long integer s 32-bit) (48-bit words)
1 2000 1000
2 1000 500

Timing of Program Execution
The following PLC was downloaded to PMAC for timing how long the motion program took to execute.
i5=2
m1000->x:$0,0,24,u
m1001->x:$0818,0,1
p1010=0
open plcl
clear 1T(m1001 1)
if(p1010 = 0)
p1001=m1000
p1010=1
endif
else

if(plol0 = 1)
p1002 = m1000
p1010=0
p1003=(p1002-p1001)*.000442
endif
endif
close

15=2 ENAPLC1

Optimizing SYS.INI file Parameters
Several parametersin the SYS.INI file, pertinent to throughput are now discussed.

dprBinRot1Size and dpr BinRot2Size

The rotary buffer sizes in these tests play a more important role in determining maximum throughput than
in the DOS based throughput testing applications. Why isthis? Once the PMAC rotary motion program
execution has begun, PMAC NC for Windows will update the display only when the DPR buffer has been
filled or PMAC NC for Windows has downloaded MaxBlkPerDisp (asys.ini parameter) number of lines.
If the time it takes to update the display islonger than it takes PMAC to execute all the movesin the
buffer then PMAC will bring all motors to a stop and wait for the next move (which appears after the host
is done updating the display). If the condition just described occurs the run would be considered invalid,
since agood run is considered to have all moves completely blended with no dwells.

M axBlkPerDisp

If the parameter, MaxBlkPerDisp, existsin the SY S.INI initialization file, it should be set to as large as
the DPR rotary buffer size. This parameter is used when converting RS274 to binary. The CNC.EXE
application will convert and download until the DPR buffer has been filled or after MaxBlkPerDisp
blocks have been processed

MaxFeedOvrd

MaxFeedOvrd restricts the maximum feedrate override value. A default value of 200% restricts the user

to amaximum of 2000 blocks per second. Increase this value to 10 times the maximum number of blocks
per second you wish to achieve.

Throughput Testing Results 11

Application Note

Appendix A Making Optimizations

Removing Unused Encoder Conversion Table Entries

Removing unused entries in the encoder conversion table (ECT), and changing the phase frequency to the
servo frequency are easily done. The ECT hasnine entriesin it by default. It assumesthat there are eight
motors with eight encoders as feedback, and the last entry will use encoder number 4 asa TIMEBASE.
As an example to optimizing the ECT only using N motors, not eight, and not using the TIMEBASE
entry. To remove the unused entries in the ECT, write avalue of 0 to the ECT base address (1824 dec)
plusN intheY address space. If N = 4, then this would be accomplished with the on-line PMAC
command WY :1828,0.

The phase frequency can be set to the servo frequency by changing hardware jumpers (E3-E6 and E 29-
E33). For example to have a phase and servo frequency of 2.2 KHz, place jumpers on E3 through E6 and
put a jumper on E29 leaving E30-E33 without ajumper. PMAC I-Variable, 110 (specifies time between
servo interrupts) will not need to be changed from its default value in this case since 2.2KHz is the factory
default servo frequency. Additional info on these jJumpersis given below.

E3 - E6: Servo Clock Frequency Control
The servo clock (which determines how often the servo loop is closed) is derived from the phase clock (see
E98, E29 - E33) through a divide-by-N counter. Jumpers E3 through E6 control this dividing function.

E3 E4 E5 E6 Servo Clock = Phase Default and Physical L ayout
Clock Divided by N E3E4ES5E6

ON ON ON ON N =divided by 1

OFF ON ON ON N = divided by 2

ON OFF ON ON N = divided by 3

OFF OFF ON ON N =divided by 4 Only E5 and E6 ON (20MHZz)

ON OFF ON ON N = divided by 5

OFF ON OFF ON N = divided by 6 Only E4 and E6 ON (30MHZz)

ON OFF | OFF ON N = divided by 7

OFF OFF | OFF ON N = divided by 8

ON ON ON OFF N = divided by 9

OFF ON ON OFF N = divided by 10

ON OFF ON OFF N = divided by 11

OFF OFF ON OFF N = divided by 12

ON ON OFF | OFF N = divided by 13

OFF ON OFF | OFF N = divided by 14

ON OFF | OFF | OFF N = divided by 15

OFF OFF | OFF | OFF N = divided by 16
Note: The setting of 1-Variable 110 should be adjusted to match the servo interrupt cycle time set by E98, E3

-- E6, E29 -- E33, and the master clock frequency. 110 holds the length of a servo interrupt cycle, scaled so

that 8,388,608 equals one millisecond. Since 110 has a maximum value of 8,388,607, the servo interrupt
cycle time should always be less than a millisecond (unless making the basic unit of time on PMAC
something other than a millisecond). To have a servo sample time greater than one millisecond, the sampling
may be slowed in software with variable 1x60.

Frequency can be checked on J4 pins 21 and 22.

Note:

If E40-E43 are set up so that the card has a software address other than @0, the
servo clock signal must be received over the serial port from card @0, so these
jumpers have no effect.

12 Throughput Testing Results

Application Note

E29 - E33: Phase Clock Fregquency Control
Jumpers E29 through E33 control the speed of the phase clock, and, indirectly, the servo clock, whichis
divided down from the phase clock (see E3 - E6). No more than one of these five jumpers may beon at a

time.

E29 | E30 | E31 | E32 | E33 Phase Clock Frequency Default and Physical Layout
19.6608 MHz 29.4912 MHz
Master Clock Master Clock

ON OFF | OFF | OFF | OFF 2.26 KHz 3.39 KHz E29

OFF | ON OFF | OFF | OFF 452 KHz 6.78 KHz E30

OFF | OFF ON OFF | OFF 9.04 KHz 13.55 KHz E31

OFF | OFF | OFF ON | OFF 18.07 KHz 27.10 KHz E32

OFF | OFF | OFF | OFF | ON 36.14 KHz 54.21 KHz E33

exactly 1/2 that shown in the above table.

Note: If jumper E98 has been changed to connect pins 2-3 (default is 1-2), the phase clock frequency is

Note: If E40-E43 are set so that the card has a software address other than @0, the phase clock signal must
be received over the serial port from card @0, so these jumpers have no effect.

Appendix B Throughput Data, Encoder Conversion Table and Phase

Frequency Minimized

Note:

The external binary tests for appendices B-E were done in the conversion on the
fly mode. That is, the ASCII program file was not preprocessed before the test

was conducted, rather each line of ASCII in the file was converted and

downloaded as the motion program was running. Preprocessing the file can
improve throughput significantly (as seen in the NC for Windows tests, up to
100%) when the host computer is the bottleneck. The test results shown in
appendices B-E were done on a 486-66 PC with programsin DOS. With this
combination, the host computer was never the slowest link in the process.

PMAC Setup: Factory default, V1.15a2 AXIS Splined, E.C.T. and Phase Freq. Streamlined
Throughput (bps)

Master Clock Freq (Mhz) | Servo Freg. (Khz)| Interna | External Binary | External ASCII
20 2.26 1957 1826 768
20 4,52 1495 1395 555
20 9.04 0 0 0
40 2.26 2248 2241 2241
40 4,52 4496 4496 2100
40 9.04 4356 4039 1626
60 2.26 2248 2250 2247
60 4.52 4497 4496 3375
60 9.04 7796 6958 2988

Throughput Testing Results

13

Application Note

PMAC Setup: Factory default, V1.15a3 AXIS Splined, E.C.T. and Phase Freq. Streamlined

Throughput (bps)
Master Clock Freq (Mhz) | Servo Freq. (Khz)| |nternal External Binary | External ASCII
20 2.26 1294 1211 546
20 452 877 817 347
20 9.04 0 0 0
40 2.26 2241 2241 1827
40 452 3644 3404 1530
40 9.04 2522 2342 1002
60 2.26 2247 2241 2241
60 452 4497 4497 2571
60 9.04 4913 4489 2055
PMAC Setup: Factory default, V1.15a4 AXIS Splined, E.C.T. and Phase Freg. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freq. (Khz)| Internal | External Binary | External ASCII
20 2.26 937 877 410
20 452 498 466 198
20 9.04 0 0 0
40 2.26 2250 2243 1429
40 452 2451 2433 1147
40 9.04 1485 1389 610
60 2.26 2246 2248 2241
60 4.52 4384 4198 2015
PMAC Setup: Factory default, V1.15a6 AXIS Splined, E.C.T. and Phase Freq. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freg. (Khz) | Internal [External Binary |External ASCII
20 2.26 488 458 226
20 4.52 0 0 0
20 9.04 0 0 0
40 2.26 2001 1900 963
40 4,52 1435 1365 676
40 9.04 0 0 0
60 2.26 2242 2243 1569
60 4.52 2740 2569 1281
60 9.04 1635 1535 744

14

Throughput Testing Results

Application Note

.15 A, Factory Default, 2-Axis Program, Master Clock Freg. 40 Mhz
ECT and Phase Frequency Minimized

000 —

a0on ——

F000

aoen ——

s0en ——

000 -

anen —

w00 - o 1826
1485 1395

1000 —— Tad _—
Imtarmal I Extamal Binary I Extemnal Ascii

Mathod

Appendix C Throughput Data, Encoder Conversion Table Minimized

PMAC Setup: Factory default, V1.15a2 AXIS E.C.T. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freg. (Khz) | Internal | External Binary | External ASCII

20 2.26 1784 1674 695
20 4.52 1405 1310 516
20 9.04 0 0 0

40 2.26 2248 2241 2241
40 4.52 4480 4490 2066
40 9.04 4356 4039 1626
60 2.26 2248 2250 2247
60 4.52 4497 4480 3355
60 9.04 7696 6958 2988

PMAC Setup: Factory default, V1.15a3 AXIS Splined, E.C.T. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freq. (Khz) | Internal | External Binary | External ASCII

20 2.26 1196 1096 506
20 4.52 79 734 312
20 9.04 0 0 0

40 2.26 2241 2241 1787
40 4.52 3554 3311 1499
40 9.04 2522 2342 1002
60 2.26 2247 2247 2247
60 452 4497 4497 2522
60 9.04 4913 4489 2055

Throughput Testing Results

15

Application Note

PMAC Setup: Factory default, V1.15A 4 AXIS Splined, E.C.T. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freg. (Khz) | Internal | External Binary | External ASCII
20 2.26 847 797 367
20 4.52 438 418 168
20 9.04 0 0 0
40 2.26 2241 2243 1390
40 4.52 2539 2373 1112
40 9.04 1485 1389 610
60 2.26 2247 2248 2241
60 4.52 4410 4137 1946
60 9.04 3379 3137 1450
PMAC Setup: Factory default, V1.15A 6 AXIS Splined, E.C.T. Streamlined
Throughput (bps)
Master Clock Freq (Mhz) | Servo Freg. (Khz) | Internal | External Binary | External ASCII

20 2.26 428 408 199
20 4.52 0 0 0
20 9.04 0 0 0
40 2.26 1930 1826 930
40 4.52 1380 1320 655
40 9.04 0 0 0
60 2.26 2247 2247 1540
60 4.52 2679 2521 1270
60 9.04 1635 1535 744

Appendix D PMAC Throughput Results (No Optimizations)

The following results are from a PMAC, prom version 1.15A, which was not changed from factory
default settings with the exception of enabling motors, setting 18 = 0.

PMAC Setup: Factory default, PROM V1.15a2 AXIS Splined
Max. Throughput (bps)

Master Clock Freq (Mhz) Servo Freg. (Khz) Internal External Binary External ASCII
20 2.26 1623 1515 606
20 4.52 1086 997 367
20 9.04 0 0 0
40 2.26 2241 2241 2164
40 4.52 4476 4476 1837
40 9.04 3449 3167 1201
60 2.26 2240 2234 2243
60 4.52 4497 4478 3107
60 9.04 4495 4477 2452

PMAC Setup: Factory default, PROM V1.15a3 AXIS Splined
Throughput (bps)

Master Clock Freq (Mhz) Servo Freg. (Khz) Internal Externa Binary External ASCII
20 2.26 1096 1032 466
20 4.52 598 555 219
20 9.04 0 0 0
40 2.26 2241 2241 1711
40 4.52 3300 3085 1400
40 9.04 1980 1840 780
60 2.26 2247 2241 2241
60 4.52 4476 4476 2460
60 9.04 4476 4170 1860

16 Throughput Testing Results

Application Note

PMAC Setup: Factory default, PROM V1.15a4 AXIS Splined

Throughput (bps)

Master Clock Freq (Mhz) Servo Freg. (Khz) Internal External Binary External ASCII
20 2.26 767 718 340
20 4.52 319 0 0
20 9.04 0 0 0
40 2.26 2250 2243 1355
40 4.52 2300 2190 1052
40 9.04 1770 1062 470
60 2.26 2248 2247 2195
60 4.52 4260 4018 1920
60 9.04 2990 2820 1300

PMAC Setup: Factory default, PROM V1.15a6 AXIS Splined
Throughput (bps)

Master Clock Freq (Mhz) Servo Freg. (Khz) Internal External Binary External ASCII
20 2.26 400 370 177
20 4.52 0 0 0
20 9.04 0 0 0
40 2.26 1890 1795 920
40 4,52 1330 1256 625
40 9.04 0 0 0
60 2.26 2240 2243 1540
60 4.52 2240 2450 1246
60 9.04 1490 1390 680

Appendix E PMAC Throughput Results (Circular Moves)

PMAC Setup: Factory default, V1.15a2 AXIS Circle Moves, E.C.T. and Phase Freg.
Streamlined SIF=2 2K hz
Master Clock Freq (Mhz) Internal External Binary| External ASCII
20 MHz Master Clock 438 437 318
40 MHz Master Clock 1426 1387 1002
60 MHz Master Clock 2213 2109 1550
Note:

Servo Interrupt Frequencies greater than 2.2 kHz were not attempted because
previous results have shown that this would not improve the throughput.
Increasing the servo interrupt frequency only enhances throughput when the
bottleneck is the feedrate override. Inthe 20 MHz case decreasing the servo
interrupt frequency by one half will likely increase throughput although the servo

performance will decline.

Throughput Testing Results

17

Application Note

1.15A, 2-AxisCircular (113=TA =TM =1m), E. C. T. and Phase Freg. Minimized
00

[-1=2:1i

P3O0 T

300 T .

2 RAHE MGEIe Clock
sgo0 1+
[an wnie moster Slock
dgon +

D Bl pubiy danpier Clogk

4300 T

Threzag et Bocin P lscong

FANI 0%
2000 T PIT - 1850
hpnd
1300 + sa3p PR 318
1]
nitgieal Falaingl Angey Fatginal &gl
MElher

Appendix F NC for Windows Throughput Results (Spline Moves)

The NC for Windows application uses only the external DPR binary rotary buffer for transferring motion
programsto PMAC. The two modesin which thisis done, each line converted to binary on the fly
(ASCII->Binary) or preprocessed (Binary->Binary), are shown for both 1 and 2 coordinate systems as
well as the three PMAC master clock frequencies. The difference in the two data sets below is only the
speed of the host computer, 486-33 and 486-66. Since the PC is the bottleneck for throughput in all
cases (except for the 486-66, 20 MHz PMAC case), the faster the PC the higher the throughput.

PMAC Setup: Factory default, V1.15F 2 AXIS Spline Moves, E.C.T. and Phase Freg. Streamlined,
SIF=2.2Khz,486-33, 2-PLCs

Master Clock Freq (Mhz) | ASCII->BIN 1CS | ASCII->BIN 2CS| BIN->BIN 1CS | BIN->BIN 2CS
20 MHz Master Clock 300 120 1100 350
40 MHz Master Clock 300 120 1100 350
60 MHz Master Clock 300 120 1100 350

ACEsiNiadawi dBd kb 1 T8F FoPFeE s, G@dembrag 7 Janms B & .1, 0
Fhmieirag aplimiasd, 10=0

FOB0 TEg

b
1850

F1-0] L &0 MHE R er Dlach
LET]}

B 5o s mcarer Clock

13 n-&.:\ MHr Moafer Clock

1384
1223 1ddd 1000

1344
aaa

Threag st Bocin Fer decoed

&iJad
411 gag A0 AN
2dd -
- .
ASCH-FEIN NCE AJCN-rHIE 200 HH-FEIR 1LY BIH-=HIM 21

gl

PMAC Setup: Factory default, V1.15F 2 AXIS Spline Moves, E.C.T. and Phase Freq. Streamlined,
SIF=2 2K h7 486-A6 2-Pl Cs

Master Clock Freg (Mhz) | ASCII->BIN 1CS | ASCII->BIN 2CS | BIN->BIN 1CS | BIN->BIN 2CS
20 MHz Master Clk 1000 280 1400 550
40 MHz Master Clk 1000 310 2000 700
60 MHz Master Clk 1000 310 2000 700

18 Throughput Testing Results

	PMAC Throughput Testing Results
	Throughput Fundamentals
	PMAC Computational Limits
	How to Increase Throughput
	Throughput Increase

	How the Data was attained
	Timing of Program Execution

	Setting up PMAC
	Internal ASCII Procedure
	External Binary Procedure
	External ASCII Procedure
	PMAC NC for Windows Throughput Testing
	Conditions for Testing
	Timing of Program Execution

	Optimizing SYS.INI file Parameters
	Appendix A Making Optimizations
	Removing Unused Encoder Conversion Table Entries

	Appendix B Throughput Data, Encoder Conversion Table and Phase Frequency Minimized
	Appendix C Throughput Data, Encoder Conversion Table Minimized
	Appendix D PMAC Throughput Results (No Optimizations)
	Appendix E PMAC Throughput Results (Circular Moves)
	Appendix F NC for Windows Throughput Results (Spline Moves)

