
ocp-build User Manual

OCamlPro INRIA

Jan 26, 2013

Contents

1 Introduction 5
1.1 Main Features . 5
1.2 Comparing ocp-build to others 5

2 Tutorial: Building an ocp-build project 7
2.1 Invoking ocp-build . 7
2.2 The obuild directory . 8
2.3 Setting ocp-build default parameters 8

3 Tutorial: How to use ocp-build in your projects 9
3.1 Building a simple program . 9
3.2 Building libraries . 10
3.3 Customization of per-file options 10

4 Building OCaml Projects with ocp-build 11
4.1 Environment Variables . 11
4.2 Configuration Files . 12
4.3 Compilation Layout . 12
4.4 Format of the package description files (.ocp) 13

4.4.1 Description of Simple Packages 13
4.4.2 OCaml Configuration 13
4.4.3 OCaml options . 13
4.4.4 Advanced options . 15

4.5 Command line options . 16

5 Managing tests with ocp-build 17
5.1 Running tests . 17
5.2 Adding tests to your packages 18

5.2.1 Creating an independant “test” package 18
5.2.2 Including tests in a “program” package 19

3

4 CONTENTS

5.2.3 Adding external tests to a “program” package 20
5.2.4 Complex examples . 20

6 Managing Syntax Extensions with ocp-build 23

7 Installation 25
7.1 Installing with opam . 25
7.2 Installing from GitHub . 26
7.3 Specification of Next Version 27

Chapter 1

Introduction

ocp-build is a tool to build whole OCaml projects, composed of multiple
files in multiple directories.

1.1 Main Features

The main features of ocp-build are:

• Simple declarative project description

• Short syntax for packing modules, dependencies between libraries.

• Simple way to customize options for every module.

• Incremental and parallel build system

• Support for camlp4, composition of syntax extensions and optimised
compilation

• Portable, run both on Unices and Windows

• Support and generate ocamlfind META files

1.2 Comparing ocp-build to others

Here is a list of other building tools for OCaml projects and how ocp-build

compares to them.

5

6 CHAPTER 1. INTRODUCTION

ocamlbuild: ocamlbuild is a generic build manager, where configuration
files are written in OCaml. ocp-build has a less generic scope, but
consequently, its configuration files are much simpler, and still very
powerful because of its specialization for OCaml projects. Also, ocp-build
works under native Windows.

make: make is a well-known generic build manager for Unices. Makefiles
for OCaml projects are notoriously complicated to write, and do not
support parallelization well.

omake: omake is an improved make, written in OCaml, and with native
support for OCaml projects. omake works well on big projects and
under Windows, but it is not supported anymore, and omake has no
support for library dependencies.

ocamlfind ocamlfind is not a build manager, but a command-line tool to
make the OCaml compilers aware of other OCaml components in-
stalled in the system (libraries, syntaxes, etc.), thanks to their META
files. ocp-build supports META files, and, since it reads the environ-
ment only once, is much faster than using ocamlfind for every module.

oasis: oasis is a simple frontend to describe OCaml projects, inspired from
Cabal. Configuration files are simple declarative files, as with ocp-build,
but the build process is done by other tools (ocamlbuild usually).
ocp-build is very similar to using oasis+ocamlfind+ocamlbuild, but
supports multi-components projects, and its declarative language is
simpler.

opam: opam is a source package manager for OCaml. It relies on other
build managers to compile packages, and only decides in which order
the packages should be compiled and installed to meet dependencies
between them. opam uses ocp-build to build itself.

Chapter 2

Tutorial: Building an
ocp-build project

Even if you are not using ocp-build to build you own projects, you might
need some more information to take advantage of ocp-build features when
compiling other projects.

2.1 Invoking ocp-build

If you want to compile a project that uses ocp-build, you can use the
following commands:

ocp-build root: This command defines the root directory of the project
as the current directory. ocp-build will create a file ocp-build.root.
When invoked from any sub-directory, it will come back to this direc-
tory to compile the full project.

ocp-build configure [OPTIONS]: This command can be used to modify
default options of the project, stored in the ocp-build.root file.

ocp-build project [QUERY]: This command can be used to read the project,
and query some informations. For example, it can be used to ask which
packages are going to be built in the current configuraiton.

ocp-build build [PACKAGES]: This command can be used to compile all
the project, or just a list of packages.

ocp-build install [PACKAGES]: install the specified packages.

7

8 CHAPTER 2. TUTORIAL: BUILDING AN OCP-BUILD PROJECT

ocp-build test: run the project tests

ocp-build clean: remove the obuild directory containing all build arte-
facts.

ocp-build query [QUERY]: This command can be used to query some in-
formation from the OCaml environment.

2.2 The obuild directory

ocp-build creates a directory obuild at the root of the project, to store
the files it creates. The content of the obuild directory is as follows:

obuild/cache.cmd: a list of command checksums, to avoid re-executing
commands already executed.

obuild/cache.cmd.log: the log of texts used to compute command check-
sums.

obuild/ mutable tree/: a copy of the project hierarchy of directories,
used to store temporary sources and annotations (actually, redirec-
tions towards annotation files)

obuild/package/: for each package, a directory containing the object files
generated during the compilation.

2.3 Setting ocp-build default parameters

Chapter 3

Tutorial: How to use
ocp-build in your projects

3.1 Building a simple program

To build a program, for example composed of two files a.ml and b.ml, and
using libraries x and y (where x and y are META packages), you just need to
create a file my-program.ocp in the directory containing the sources, with
the following content:

begin program "my-program"

files = ["a.ml" "b.ml"]

requires = ["x" "y"]

end

If you don’t know in which order a.ml and b.ml should be linked, you
can ask ocp-build to sort them for you:

begin program "my-program"

sort = true

files = ["a.ml" "b.ml"]

requires = ["x" "y"]

end

Finally, you can provide additionnal information, not necessary for your
program:

version = "1.2.3"

9

10CHAPTER 3. TUTORIAL: HOWTOUSE OCP-BUILD IN YOUR PROJECTS

authors = ["Jon Doe <jon.doe@does-family.net>"]

license = ["GPLv3"]

begin program "my-program"

files = ["a.ml" "b.ml"]

requires = ["x" "y"]

end

ocp-build can still use this information to generate files that will be
integrated to your program, for example here the module Version:

version = "1.2.3"

authors = ["Jon Doe <jon.doe@does-family.net>"]

license = ["GPLv3"]

begin program "my-program"

files = [

"version.ml" (ocp2ml)

"a.ml" "b.ml"]

requires = ["x" "y"]

end

Once your program compiled, the content of file version.ml can be
seen in the directory obuild/ mutable tree/SUBDIR/version.ml, where
SUBDIR is the subdirectory of your sources in the compiled project.

3.2 Building libraries

3.3 Customization of per-file options

Chapter 4

Building OCaml Projects
with ocp-build

ocp-build can be used to compile simple OCaml projects. The tool uses
simple configuration files to describe the packages that need to be compiled,
and the dependencies between them.

Compared to other OCaml building tools, it provides the following par-
ticularities:

• ocp-build supports complete parallel builds. Its improved under-
standing of OCaml compilation constraints avoids traditionnal prob-
lems, arising from conflicts while compiling interfaces.

• ocp-build configuration files provide a simple and concise way to
handle the complexity of OCaml projects.

• ocp-build supports complex compilation rules, such as per-file op-
tions, packing and C stubs files.

• ocp-build can use either a set of attributes or a digest of the content
of a file to detect files’ modifications to decide which files should be
rebuilt.

4.1 Environment Variables

ocp-build uses the following environment variables :

HOME : the user directory (“.” if not defined)

11

12 CHAPTER 4. BUILDING OCAML PROJECTS WITH OCP-BUILD

OCP HOME : ocp-build configuration directory (“$HOME/.ocp” if not
defined)

PATH : the path of directories containing commands (separated by “:” on
Unix, “;” on Windows)

TERM : if defined, characters are escaped (also on Windows)

OCPBUILD VERBOSITY : verbosity before the -v option is parsed.

OCP DEBUG MODULES : which modules to debug (need more info...)

OCAMLLIB : not directly used by ocp-build, but used by OCaml, from
which ocp-build computes its own configuration.

4.2 Configuration Files

ocp-build uses two different kind of files to describe a project:

• Each package (or set of packages) should be described in a file with
an .ocp extension. When ocp-build is run with the -scan option, it
scans the directory to find all such configuration files, and adds them
to the project.

• The project should be described in a file ocp-build.root. This file
should be at the root of the project, and ocp-build will try to find it
by recursively scanning all the parents directories. If it does not exist,
it should be created using the -init option.

4.3 Compilation Layout

ocp-build generates files both in the source directories and in a special
obuild directory, depending on the nature of the files:

• Temporary source files and compilation garbage are stored in the
source directories. This set includes implementation and interfaces
files generated by ocamllex and ocamlyacc, and other special files
such as .annot files.

• Binary object files are stored in the obuild directory, where a sub-
directory is created for each package.

4.4. FORMAT OF THE PACKAGE DESCRIPTION FILES (.OCP) 13

4.4 Format of the package description files (.ocp)

4.4.1 Description of Simple Packages

A simple package description looks like this:

begin library "ocplib-system"

files = ["file.ml" "process.ml"]

requires = ["unix"]

end

This description explains to ocp-build that a library ocplib-system

should be built from source files file.ml and process.ml (and possibly
file.mli and process.mli), and that this library depends on the unix

library to be built.
Another simple description is:

begin program "file-checker"

files = ["checkFiles.ml" "checkMain.ml"]

requires = ["ocplib-system"]

end

This description tells ocp-build that it should build an executable
file-checker from the provided source files, and with a dependency to-
wards ocplib-system. ocp-build will automatically add the dependency
towards unix required by ocplib-system.

4.4.2 OCaml Configuration

The following variables are automatically defined by ocp-build from OCaml
configuration:

ocaml major version

ocaml minor version

ocaml point version

4.4.3 OCaml options

Per-package options

dirname(string) The directory where the package files are located.

14 CHAPTER 4. BUILDING OCAML PROJECTS WITH OCP-BUILD

generated(bool) If true, the package is already installed

has byte(bool)

has asm(bool)

Per-file options

ml(bool) The file is an implementation source (.ml file)

mli(bool) The file is an interface source (.mli file)

cflags(list) Options to be passed to the C compiler

ccopt(list) ???

nopervasives(bool)

nodeps(list) A list of false dependencies

nocmxdeps(list) A list of false dependencies for native code

bytelink(list)

bytecomp(list)

asmlink(list)

asmcomp(list)

dep(list)

rule sources(list)

pp(list) ???

pp requires(list) ???

sort(bool)

4.4. FORMAT OF THE PACKAGE DESCRIPTION FILES (.OCP) 15

4.4.4 Advanced options

Per-file options

Options can be specified on a per-file basis:

begin library "ocplib-fast"

files = [

"fastHashtbl.ml" (asmcomp = ["-inline"; "30"])

"fastString.ml"

]

end

They can also be specified for a group of files:

begin library "ocplib-fast"

files = [

begin (asmcomp = ["-inline"; "30"])

"fastHashtbl.ml"

"fastMap.ml"

end

"fastString.ml"

]

end

Configurations

Preprocessor requirements: pp requires

The pp requires option can be used to declare a dependency between one
or more source files and a preprocessor that should thus be built before. The
preprocessor must be specified as a program package in a projet, plus the
target (bytecode byte or native asm):

begin library "ocplib-doc"

files = [

"docHtml.ml" (

pp = ["./_obuild/ocp-pp/ocp-pp.byte"]

pp_requires = ["ocp-pp:byte"]

)

"docInfo.ml"

]

16 CHAPTER 4. BUILDING OCAML PROJECTS WITH OCP-BUILD

requires = ["ocp-pp"]

end

Note that you still need:

• To specify the package in the requires directive, to ensure that this
package will be available when your package will need it for processing.

• To specify the command pp to call the preprocessor

4.5 Command line options

Chapter 5

Managing tests with
ocp-build

ocp-build can run tests on packages.

5.1 Running tests

Running tests is simple:

ocp-build -tests

ocp-build will compile all the tests, and run them. ocp-build will then
display how many tests failed and succeeded, which tests failed, and timings
for benchmarks :

Parallel tests ran in 0.00s (max 6 jobs)

Serial tests ran in 0.08s

FAILED: 0/7

SUCCESS: 7/7

0.08s ocp-build.test/tests/cycle

ocp-build runs tests in two phases: in the first parallel phase, it runs
as many tests as possible in parallel, depending on the “njobs” option; in
the second sequential phase, it runs the tests in sequential. Tests are moved
to the sequential phase when they are benchmarks or serialized.

17

18 CHAPTER 5. MANAGING TESTS WITH OCP-BUILD

5.2 Adding tests to your packages

5.2.1 Creating an independant “test” package

A “test” package is a program that is only compiled when ocp-build is ran
with argument -tests.

begin test "my-lib-test"

files = ["test.ml"]

requires = ["my-lib"]

end

Within a “test” package, it is possible to run several times the program
with different parameters. For that, a “tests” field can define a list of test
names. If the “tests” field of a “test” package is not specified, a test name
“default” is automatically defined.

Every test can define a set of options:

test exit : the correct exit status for the test (0 by default)

test dir : the directory in which the test program should be run (default
is empty, for the project root)

test args : a list of arguments for the test program (default is empty)

test benchmark : true if the time spent running the test should be dis-
played. Benchmarks are not run in parallel with other tests (default
is false).

test stdout : the name of a file that should be used, when the exit status
is correct, to compare with what the test printed on stdout.

test stderr : the name of a file that should be used, when the exit status
is correct, to compare with what the test printed on stderr.

test stdin : the name of a file that should be passed on the standard input
of the test.

test serialized : true if the test should not be run in parallel with other
tests. Useful for tests that are themselves using several cores (default
is false).

test variants : a list of strings on which a test should iterate (default is
””).

5.2. ADDING TESTS TO YOUR PACKAGES 19

test asm : true if the native version of the test should be run (default is
true)

test byte : true if the bytecode version of the test should be run (default
is true).

test cmd : the name of the file that should be run (default is %{binary}%,
see substitions later).

When defining these options, substitutions are available:

%{test}% the name of the current test.

%{binary}% the name of the current executable being run

%{sources}% the current source directory of the test

%{tests}% a sub-directory “tests” within the source directory of the test

%{variant}% the current variant, when “test variants” was specified.

%{results}% the directory where test results will be stored (can be used
to store other files).

5.2.2 Including tests in a “program” package

It is also possible to define tests directly in a “program” package. For that,
you should need to define the “tests” field:

begin program "my-program"

files = ["main.ml"]

requires = ["my-lib"]

(* for all the tests, the program should receive the test name

as first argument *)

test_args = ["%{test}%"]

(* we want to run 3 tests, with names "1", "2" and "3" *)

tests = ["1" "2"

(* in the test "3", the expected exit status should be 2 *)

"3" (test_exit = 2)]

end

20 CHAPTER 5. MANAGING TESTS WITH OCP-BUILD

5.2.3 Adding external tests to a “program” package

It is also possible to define tests for a “program” package in a separate “test”
package. For that, the “test” package should have an empty “files” field,
and have the “program” package in its “requires” field. The previous tests
would now be written:

begin test "my-program-test"

files = []

requires = ["my-program"]

(* for all the tests, the program should receive the test name

as first argument *)

test_args = ["%{test}%"]

(* we want to run 3 tests, with names "1", "2" and "3" *)

tests = ["1" "2"

(* in the test "3", the expected exit status should be 2 *)

"3" (test_exit = 2)]

end

5.2.4 Complex examples

In the following example, we generate tests for the program “compile-and-
run”: we define 4 tests (the “tests” field), and for each test, we will run
the 4 variants (the “test variants” option). In each run, the variant value is
passed as the first argument, while the second argument is a file within the
test directory. The program “compile-and-run” is only tested in native code
(we set “test byte” to false). For each test, we compare the output with a
file in the test directory with the “.reference” extension (the “test stdout”
option):

begin test "basic"

files = []

requires = ["compile-and-run"]

test_byte = false

test_stdout = ["%{sources}%/%{test}%.reference"]

test_variants = [

"-ocamlc" "-ocamlopt"

"-ocamlc.opt" "-ocamlopt.opt"

5.2. ADDING TESTS TO YOUR PACKAGES 21

]

test_args = ["%{variant}%" "%{sources}%/%{test}%.ml"]

tests = [

"arrays" "equality" "maps" "sets"

]

end

22 CHAPTER 5. MANAGING TESTS WITH OCP-BUILD

Chapter 6

Managing Syntax Extensions
with ocp-build

23

24CHAPTER 6. MANAGING SYNTAX EXTENSIONSWITH OCP-BUILD

Chapter 7

Installation

ocp-build is part of TypeRex. The simplest way to install it is to use
opam1, the source package manager for OCaml. If for some reasons, you are
not satisfied by this way, you will want to try to install it from its source
repository, on GitHub.

7.1 Installing with opam

ocp-build is available in opam. It is a meta-package (an empty package)
that triggers the installation of TypeRex, with version greater than 1.99.
Indeed, ocp-build is compiled and installed by the TypeRex package. Any
previous version of ocp-build (especially version 0.1) should be uninstalled
before installing TypeRex.

First, let’s check if ocp-build is already installed:

peerocaml:~% opam info ocp-build

package: ocp-build

installed-version: ocp-build.0.1 [4.00.1]

available-version: 1.99.2-beta

description: Project manager for OCaml

The output of the command shows that ocp-build is already installed,
with version 0.1. We should remove it immediatly:

peerocaml:~% opam remove ocp-build

The following actions will be performed:

- remove ocp-build.0.1

1http://opam.ocamlpro.com

25

http://opam.ocamlpro.com

26 CHAPTER 7. INSTALLATION

0 to install | 0 to reinstall | 0 to upgrade | 0 to downgrade | 1 to remove

Note that some other packages depending on ocp-build can need to be
uninstalled too. You can keep a list of these packages, so that you can install
them again after installing the new version.

If you only ask opam to install ocp-build, opam might decide to re-
install ocp-build 0.1 because it has a shorter chain of dependencies than
ocp-build 1.99. To force it to install the new version, we can ask for both
ocp-build and TypeRex:

peerocaml:~% opam install ocp-build typerex

The following actions will be performed:

- install ocp-build.1.99.2-beta

- install typerex.1.99.2-beta

2 to install | 0 to reinstall | 0 to upgrade | 0 to downgrade | 0 to remove

Do you want to continue ? [Y/n]

7.2 Installing from GitHub

ocp-build sources can be retrieved from GitHub. The latest version is
developed in the typerex2 branch of the OCamlPro/typerex repository:

peerocaml:~% git clone git@github.com:OCamlPro/typerex.git

peerocaml:~% git checkout typerex2

In the source directory (typerex), We can now configure, compile and
install:

peerocaml:~% ./configure --prefix /usr/local/

peerocaml:~% make

peerocaml:~% make install

The last command will install all TypeRex commands and libraries. If
you just want to install ocp-build, you can use:

peerocaml:~% sudo ./_obuild/ocp-build/ocp-build.asm -install ocp-build \

-install-bin /usr/local/bin -install-lib /usr/local/lib/ocaml

Note that we used sudo since the install paths we specified require ad-
ministrator priviledges.

It is also possible to uninstall files installed by make install using
ocp-build:

7.2. INSTALLING FROM GITHUB 27

peerocaml:~% ocp-build -uninstall typerex

We can also use ocp-build to uninstall packages installed by ocp-build

(but it would be a bad idea to use that to uninstall packages installed by
opam):

peerocaml:~% sudo ocp-build -uninstall ocp-build

If you want to modify ocp-build, sources specific to ocp-build are
located in the tools/ocp-build directory.

28 CHAPTER 7. INSTALLATION

Chapter 8

Specification of Next Version

8.1 Wanted Features

• Compositionnality: each package should describe itself, and ocp-build
should build all packages together

• Cross-compilation:

8.2 Other Ideas

• Package “compiler” to describe the compiler, that can be either to be
compiled or already generated. The default compiler is “host”, while
cross-compiling, it is “build”.

• In the “configure” step, it should be possible to detect missing depen-
dencies (pkg-config).

29

	Introduction
	Main Features
	Comparing ocp-build to others

	Tutorial: Building an ocp-build project
	Invoking ocp-build
	The _obuild directory
	Setting ocp-build default parameters

	Tutorial: How to use ocp-build in your projects
	Building a simple program
	Building libraries
	Customization of per-file options

	Building OCaml Projects with ocp-build
	Environment Variables
	Configuration Files
	Compilation Layout
	Format of the package description files (.ocp)
	Description of Simple Packages
	OCaml Configuration
	OCaml options
	Advanced options

	Command line options

	Managing tests with ocp-build
	Running tests
	Adding tests to your packages
	Creating an independant ``test'' package
	Including tests in a ``program'' package
	Adding external tests to a ``program'' package
	Complex examples

	Managing Syntax Extensions with ocp-build
	Installation
	Installing with opam
	Installing from GitHub
	Specification of Next Version

