THE
BRADUMNRA

COMH}ENIDN

Badumna Network Suite

User Manual
For Badumna 1.4

2 SCALIFY

Copyright (© 2010 by Scalify Pty Ltd.

All rights reserved. No part of this publication can be reproduced, stored in a retrieval system, or

transmitted in any form or by any means without prior written permission of Scalify Pty, Ltd.

badumna, 7. a genus of spiders from Australasia.

badumna network suite, n. a suite of network tools that provide a
complete framework for developing multiplayer applications.

Contents

Preface
1 Introduction
1.1 What'sinthismanual?
1.2 Badumna Overview
1.3 How Badumnaworks
14 Services and features
1.5 Network Structure e
2 Setting up
2.1 Requirements
22 Where to get Badumna Network Suite.
2.3 Installation
24 Settingupa Badumnanetwork
3 Badumna Basics

3.1 Replication and interest management
32 ProximityChat
33 DeadReckoning
3.4 Multiplescenes L oo
3.5 PrivateChat
Centralised Services

4.1 Authentication and user management
4.2 Arbitration
4.3 Overload Server
44 HTTP Tunnelling Service
45 Distributed lookup service
Unity3D

51 Getting started with the Unity package
52 Basicmultiplayergame

viii

Q1 W W IN — =

0 0 g O &

16

37
41
47
50

55
55
67
84
87
91

94
94
95

Contents RSCALIFY
53 Proximity chatdemo 111
54 Dead reckoningdemo 116
55 Multiplescenesdemo oL 118
5.6 Privatechatdemo 121
5.7 Authentication and user managementdemo 130
5.8 BuddylistDemo 134
5.9 Combat Arbitration Serverdemo 138
6 Non Player Characters 145
6.1 Serverbased NPCs 145
6.2 Clientbased NPCs 149
6.3 Distributed Controllerbased NPCs 156
7 Additional Features 171
7.1 Custommessages 171
72 Streaming protocol 0 L. 173
7.3 Debugging L 177
8 The Control Center 178
8.1 Initial Configuration 178
8.2 Starting the ControlCenter. 179
8.3 Accessing the Control Center 180
8.4 Authentication and useraccounts 181
8.5 Germinstallation 183
8.6 Maininformationpage L. 186
8.7 Germshost 186
88 Global Settings 186
8.9 Available services 187
8.10 Monitoring service performance 194
8.11 Starting serviceson Windows 194
8.12 CustomServices i i e e e e e 196
8.13 Notification 197
8.14 Certificateupdate oL L L 198
8.15 Using a different database application 199
8.16 Advanced connectivity options 201
8.17 Useradministration 202
A Changes from Badumna 1.3 to Badumna 1.4 203
Al Localspatialreplicas 203
A2 Initializing Badumna 203
A3 UPnPportforwarding 204
A4 GetNetworkStatus() 204

vi

Contents {2 SCALIFY

A5 Presenceinformation
A6 Httptunnel oo o
A7 APlcallingorder
A8 ArbitrationServer Lo Lo
A9 Decentralized Service Discovery Support
A10 Deiserver e
A.11 Distributed non-playerobjects
A12 Unity and APIExamples
Al13 Buddylist
A14 ControlCenter
A15 SeedPeer
A.16 Defaultportnumbers
Al17 Bugfixes o
B Game development on a residential network
B.1 Universal Plug and Play (UPnP).
B2 PortForwarding
B3 LANTestMode

C Default port numbers

D Known issues in Badumna 1.4

vii

204
204
204
205
205
205
206
206
206
206
207
207
207

209
209
210
210

212

213

Preface

Badumna is a generic network engine for multiplayer applications. This compan-
ion is a detailed user manual that takes you through the ins and outs of Badumna
providing you with a ready reference to the full functionality of Badumna Net-
work Suite. Badumna was designed with a very simple philosophy - make game
creation easy and affordable so that users around the world can develop massively
multiplayer online games. Badumna is not difficult to learn and a beginner can
benefit by reading this manual, especially the first few chapters. If you are one
of the users who would like to develop a multiplayer game without becoming a
networking guru, then this manual is for you.

You will be guided, step-by-step with how Badumna operates and what it ex-
pects from an application. Apart from the functionality, there are examples of ap-
plications that show how to use Badumna along with an explanation of the source
code. Badumna has been fully integrated with Unity3D and there is a chapter
dedicated to using Badumna with Unity3D complete with many example projects
demonstrating Badumna functionality.

This user manual can be used as a user guide or it can be used as a refer-
ence manual for Badumna. The individual chapters convey the subject area ad-
dressed in each case. Each chapter can be read independently and there are links
to other parts of the manual whenever there is complimentary information that
can be found in other parts of the book.

We hope you find Badumna Network Suite useful and are excited about it as
much as we are. If you have any comments, suggestions, or remarks to make the
presented information more complete, and useful then please send us an email at:
suggestions@scalify.com. We would be glad to correct any mistakes or oversights
and are open to suggestions for improvements.

THE SCALIFY TEAM

viii

Chapter 1

Introduction

The Badumna Network Suite is a complete technology solution designed for fast
and efficient creation of multi-user applications, especially online games. The Bad-
umna network library provides a scalable service for game state synchronisation
and object replication by using a decentralised network. The suite also includes
applications for additional centralised services including authentication, arbitra-
tion, load distribution and administration. The functionality of the suite is demon-
strated in a set of tutorials and game examples complete with source code.

1.1 What’s in this manual?

The manual begins with an overview of the Badumna Network Suite, and a high-
level description of the functionality and services it provides.

Chapter 2 details the installation instructions, and explains how to configure a
Badumna network.

Chapter 3 presents a step-by-step guide to getting started with the Badumna net-
work library, explained through a series of tutorials that show the creation
of a small demonstration application. It demonstrates all the distributed ser-
vices required to get a small game up and running.

Chapter 4 introduces Badumna’s centralised services and demonstrates how to
use them to provide security, data persistence, and arbitration for a game,
and how central services can support users behind restrictive firewalls and
with low-bandwidth connections. These topics are all illustrated through
further tutorials.

Chapter 5 shows how to use Badumna with Unity3D, through a set of tutorials
showing the creation of a basic multi-player game using the Badumna pack-
age in the Unity game development environment. These tutorials mirror

Chapter 1. Introduction R SCALIFY

those in Chapters 3 and 4, and show explicitly how to access Badumna func-
tionality using the Unity3D game development environment.

Chapter 6 explains how Badumna supports non-playing characters (NPCs). The
tutorials are followed by game examples that demonstrate the functionality
in both Windows game demos and Unity3D.

Chapter 7 explains Badumna’s advanced functionality. It is targeted for advanced
developers who wish to use the custom networking features available. This
chapter also covers Badumna’s streaming functionality.

Chapter 8 introduces the Badumna Control Center, which can be used by game
administrators to manage the game services remotely and ensure that the
game is running smoothly.

Appendices The appendices include information about changes in the latest ver-
sion of Badumna, and technical information relevant to typical Badumna us-
age scenarios.

The manual is complemented by separate API documentation for the Badumna
Network Suite, available online, and also included as a compiled HTML help file
(.chm) as part of the Badumna Network Suite installation.

@ Jump right in

If you are eager to get hands-on with Badumna as soon as possible,
then you can jump straight into the tutorials, beginning with Chapter
3 for the Windows examples, or Chapter 5 for Unity developers.
You'll be directed back to the relevant instructions (e.g. for installing
and configuring your network) as and when required.

1.2 Badumna Overview

Badumna is a network engine designed for multi-user applications such as online
games and virtual worlds. The uniqueness of Badumna lies in its ability to provide
a highly scalable networking framework for application developers. An applica-
tion that uses Badumna can scale to truly massive player counts using minimal
operator-owned infrastructure and network resources. The key to achieving this
goal is making use of the local bandwidth available to each player.

Badumna was designed with simplicity in mind. Game state synchronisation
which is the main task for an online game is provided as an automated feature
by Badumna. Developers do not have to worry about any server side code for

http://www.scalify.com/badumna/api/1.4/html/B7DDBB17.htm

Chapter 1. Introduction R SCALIFY

synchronising state information. Badumna manages all that in the network and
exchanges object updates to and from relevant remote objects.

Using Badumna, you can make your game network-enabled in a matter of min-
utes. The Badumna package comes with built-in scripts and many examples com-
plete with source code and detailed tutorials.

1.3 How Badumna works

One of the key features of Badumna is scalability. It allows the creation of large
(potentially unlimited) un-sharded MMOs and virtual worlds without the need
for massive server farms.

Decentralisation is the key to providing a scalable platform for online games.
Badumna uses a structured peer-to-peer network to connect all the users in the
system. Services such as state synchronisation and chat are offered on this net-
work making them extremely scalable. Badumna supports the fundamental re-
quirements of any peer-to-peer network engine such as NAT traversal. Direct con-
nections are established between users behind most routers, with relay connections
used when this is not possible.

Badumna forms a secondary ring of servers (operator controlled machines) that
are used for services such as authentication, third-party arbitration and HTTP tun-
nelling. Badumna provides a distributed look-up service to access these servers
thereby eliminating the single point of failure and making them scalable.

Badumna’s functionality can be accessed through an easy to use APIL Docu-
mentation for the API includes an overview of the expected calling pattern along
with examples that use the API (see section 6).

1.4 Services and features

Badumna provides a complete networking framework for online game developers.
The following services are offered by Badumna Network Suite:

Game state synchronisation: One of the most important requirements of any on-
line game is state synchronisation. Badumna uses the concept of entities to provide
state synchronisation. Any object that needs to be accessible across multiple users
is an entity. Badumna implements a location-based interest management to ensure
that entities get replicated efficiently to all relevant users in the network. Applica-
tion developers do not even have to worry about who needs to receive the updates
for a given entity. Badumna manages all that functionality in the network while
providing a reliable mechanism to deliver the updates. Badumna also supports
dead-reckoning — the ability to send object updates only when necessary — at
the network level. This reduces network traffic significantly. It also makes ob-

Chapter 1. Introduction R SCALIFY

ject movement very smooth as Badumna extrapolates positional information and
applies it to the objects at the desired frame rate.

Chat interface: Badumna offers two different types of chat services to game de-
velopers: proximity and private. Proximity chat provides a service so that entities
can chat with other entities in their visible region. The private chat interface pro-
vides a secure mechanism to send messages between two entities.

HTTP tunnelling: Badumna’s http tunnelling service provides an ability to sup-
port users that cannot send or receive UDP packets (for example, users behind a
corporate proxy). Badumna provides a mechanism to host a tunnelling peer. Users
that are not able to communicate directly via UDDP, send their entity updates to the
tunnelling peer using the http protocol. The tunnelling peer manages state syn-
chronisation and sends updates to the relevant entities in the network.

Overload Service: The overload service provides a mechanism to relieve starving
peers (a peer that is overloaded). If a certain peer in the network is struggling to
send the necessary object updates to its interested entities, it will try and switch
some of its load to the overload peer. The overload service ensures that Badumna
is capable of supporting low bandwidth users and providing them with the same
user experience.

Arbitration Server: Badumna’s arbitration server provides a simple interface to
support complex game logic that requires third-party arbitration. Badumna clients
are able to send arbitration messages as byte streams to the server and receive
call back messages from the server. The arbitration server is also the gateway for
handling persistence. For security reasons, Badumna clients are not allowed to
access the database directly. The arbitration server provides the gateway to access
any information from the database.

Dei Server: Dei Server provides user management, security, and authentication
functionality. Authentication is the process of ensuring that the identity of a partic-
ular user is what they claim it to be. Authentication is provided by using a system
similar to Public Key Infrastructure (PKI) in which user certificates are signed by
a trusted authority (Dei server) and provided to other users as authorisation and
authentication proof. Dei server stops invalid users from joining the network.

Control Centre: Control Centre is the central management interface for appli-
cation providers. It provides a web interface to all applications that are running
on Badumna’s network. It uses a concept of germs to give application providers
the ability to install Badumna components on remote machines and start and stop
them as required.

It also allows them to monitor the network and measure the performance of the
remote machines that are running Badumna specific modules.

Chapter 1. Introduction R SCALIFY

Figure 1.1: Badumna - Network Structure

1.5 Network Structure

In order to understand how Badumna works, it is important to understand the
network structure of Badumna. Figure 1.1 shows Badumna’s network structure
with all the major components. It is a ring based structure with different services
being offered on each ring. For example, the outer most ring comprising all the
peers in the network is used to provide services such as interest management (en-
tity discovery), object replication and synchronisation, and chat. The inner ring
comprising only trusted peers (these are operator controlled peers) provides ser-
vices such as authentication, arbitration, offloading and http tunnelling. Control
Centre is a central administration tool that is used to monitor the network and its
status.

Chapter 2
Setting up

This chapter contains instructions on how to install the Badumna Network Suite,
configure a Badumna network.

2.1 Requirements

Badumna requires the .NET framework 2.0. It supports the Microsoft framework
and the Mono framework. Badumna therefore supports all .NET and Mono based
game engines. We also have built-in support for Unity 3D game engine. If you are
a Unity game developer, you will be able to install the Unity package and access
all the built-in Badumna scripts via the Unity editor. You will require the Unity
development environment installed on your machine.

Windows: Microsoft .NET framework 2.0
Mac OS X/ Linux: Mono 2.6}
Unity 3D: Unity 2.6

!The Badumna network library is compatible with earlier versions of Mono, and so will work
in Unity 2.6 which uses Mono 1.2.5. The Badumna Network Suite’s applications such as SeedPeer,
DeiServer, and ControlCenter, however, require Mono 2.6. Version 1.4 of the Badumna Network
Suite has not yet been tested against more recent versions of Mono.

*Badumna is compatible with Unity 3 for stand-alone applications only. For targeting the web
player, Unity 2.6 should be used at present.

Chapter 2. Setting up R SCALIFY

@ Running under Mono

Badumna applications can run under Mono on Windows, Mac OS
X or Linux. The commands” listed in this manual show how to run
applications on Windows using the Microsoft .NET framework. To
launch Badumna Network Suite applications under Mono, simply
prefix the command line input with “mono”. For example, the in-
structions to launch a seed peer are as follows:

SeedPeer.exe —-application—-name=MyApp
To launch a seed peer using Mono, you would enter:

mono SeedPeer.exe -—-application-name=MyApp

“Command line input is identified by the symbol.

2.2 Where to get Badumna Network Suite.

A free trial version of the Badumna Network Suite can be downloaded from the
Scalify web site. There are downloads for Windows (XP / Vista / 7) and OS X /
Linux.

The trial version contains all features, but is restricted to run for only an hour
at a time before ceasing to function. An unrestricted version is available under
various licenses suitable for indie and professional developers.

There are also two cross-platform demonstration packages showing how to
build games using Badumna: one for Windows and one for Unity. These will be
covered in chapters 3 - 5.

@ Trace version

A version of the Badumna Network Library with trace enabled to
provide developers with debugging output is available to customers
upon request (see section 7.3).

http://www.scalify.com/store.php

Chapter 2. Setting up R SCALIFY

2.3 Installation

2.3.1 Windows (XP/ Vista/7)

Download and run the Windows installer. The installer will copy Badumna Net-
work Suite into the directory of your choice, and create Start menu shortcuts.?

A Permissions under Windows Vista and 7

Windows Vista and Windows 7 users should make sure they have
full permissions for the directory they choose to install Badumna Net-
work Suite in.

2.3.2 Mac OS X/ Linux

Download the Mac OS X / Linux installation file and unzip it in the directory of
your choice. For example:

unzip BadumnaNetworkSuite-v1.4.0-Trial.zip

24 Setting up a Badumna network

There are a couple of key requirements governing the setting up of a Badumna
network:

1. To function correctly, every Badumna network needs at least one peer run-
ning on a machine with a open connection, where an open connection is one
that:

e has a public IP address,
e has an open or full-cone NAT type,
e uses a port not blocked by your firewall.

2. To join a Badumna network, a peer needs to find an existing member of the
network.

These requirements are easily satisfied by running a peer on a machine with an
open connection, and configuring other peers to connect to this first peer (known

*To uninstall simply delete the installation directory and Start Menu folder that were created.
The installer does not place content anywhere else or make any system changes including in the
registry.

Chapter 2. Setting up R SCALIFY

as a seed peer). This is the standard way to set up a Badumna network. Section 2.4.2
explains how to start a seed peer for your network, and subsection 2.4.1 explains
how to configure other peers to connect to the seed peer.

@ SeedPeer can tell you if you have an open connection.

See section 2.4.2

If you only want to run your Badumna network within a local area network
(LAN) for development purposes, then it is possible to relax these requirements.
Badumna clients can be configured to run in LAN mode where no peer with an open
connection is required. Badumna clients can also be configured to find each other
on the local subnet using broadcast, so no seed peer is required in that scenarios.
Section 2.4.1 explains how to configure peers to run in LAN mode, and use subnet
broadcast.

24.1 Configuring Badumna client connectivity

A Badumna client’s connectivity configuration can be specified in two different
ways - either using a configuration stored in a local file called NetworkConfig.xml
or by configuring Badumna within your application program.

Configuring Badumna by using NetworkConfig.xml

The NetworkConfig.xml file can be used to configure a peer’s connectivity.* If such
a file exists, it will be loaded automatically and the settings will be applied when
initializing Badumna. The xml file must be located in the same directory as the
client executable.

The Connectivity module provides Badumna with a range of information such
as the UDP port range to be used, whether to use broadcast in the local subnet,
et cetera. The different parameters that you can specify within the Connectivity
module are as follows:

Port range: The UDP port range that will be used by Badumna to connect
with other clients.

Broadcast: Inform Badumna whether broadcast should be used within the
local subnet.

*The NetworkConfig.xml file contains configuration settings for different Badumna specific
modules. The Connectivity module is a prerequisite for Badumna to function. Other modules that
can optionally be configured are Arbitration, Overload, Tunnel, and Logger. These modules will be
described later in the manual.

Chapter 2. Setting up R SCALIFY

Initializer: Inform a Badumna client if you have a Seed Peer set up for the
game network.

LanTestMode: Inform Badumna to operate in LAN mode. You don’t require
external network connectivity in this mode.

PortForwarding: Use port forwarding. This is required when peers are connected
behind a router or other NAT device, as is typically the case. It is
recommended that port forwarding is always enabled.’

Stun: Informs Badumna whether to enable STUN and also provides a
list of STUN servers to use. STUN is required by Badumna to
detect the NAT-type of a particular client. This is required for
Badumna to function beyond the LAN.

A NetworkConfig.xml is case-sensitive.

XML element and attribute names used in NetworkConfig.xml are
case sensitive. Cases must match those used in the documentation
and example files.

The Connectivity module for a typical client using a seed peer is configured as
follows:

<Module Name= >
<PortRange>21300,21399</PortRange>
<Broadcast Enabled= >21250</Broadcast>
<Initializer type= >seedpeer.example.com:21251</Initializer>
<PortForwarding Enabled= />
<Stun>

<Server>stunl .noc.ams—ix .net</Server>
<Server>stun.voipbuster.com</Server>
<Server>stun01.sipphone.com</Server>
<Server>stun.voxgratia.org</Server>
</Stun>
</Module>

Listing 2.1: Standard NetworkConfig.xml connectivity configuration.

°The option of disabling port forwarding is primarily provided to allow troubleshooting of
router issues.

10

Chapter 2. Setting up R SCALIFY

Note that broadcast is enabled even though a seed peer is being used. This will
mean that peers on the same subnet can establish direct connections more effi-
ciently, and will be able to communicate even if their NAT does not support hair-
pinning.

If you only want to run your Badumna network within a LAN, it is not neces-
sary to use a seed peer. Instead, you can enable LAN mode:

<Module Name= >
<PortRange>21300,21399</PortRange>
<Broadcast Enabled= >21250</Broadcast>
<LanTestMode Enabled= />

</Module>

Listing 2.2: NetworkConfig.xml connectivity configuration for LAN mode.

When using LAN mode, broadcast must be enabled.

Configuring Badumna within the application program

It is possible to configure the client network settings within the application pro-
gram. This may be necessary if you don’t have access to the local file system (i.e. if
you are developing a browser-based game using Unity3D).

To configure Badumna, you need to create a new ConfigurationOptions object
as follows:

ConfigurationOptions badumnaConfigOptions = new ConfigurationOptions() ;

You can now set the different values using this object. For example, to set the
Seed peer address and the discovery type as Seed Peer, use the following code:

badumnaConfigOptions. DiscoveryType = DiscoveryType.SeedPeer;
badumnaConfigOptions. DiscoverySource = ;

To enable broadcast in the local subnet on port 21250 and to set the UDP port
range for the clients from 21300 to 21399, use the following code:

11

http://www.scalify.com/badumna/api/1.4/html/B17CF14C.htm

Chapter 2. Setting up R SCALIFY

badumnaConfigOptions. BroadcastPort = 21250;
badumnaConfigOptions . MinumumPort = 21300;
badumnaConfigOptions . MaximumPort = 21399;

The Badumna configuration should be done before you initialize the network
library. Please refer to the examples in chapter 5 for more details on how to config-
ure the connectivity settings for the client within the application program.

2.4.2 Starting a Seed Peer

Every Badumna enabled application requires a seed peer to allow peers to find the
the network.® The seed peer must be started on a machine with an open connection
(see page 8.

Badumna networks should have an application name to identify them. Only
peers using the same application name will be able to join the network. The
Seed Peer must also be configured with the same application name, which can
be achieved using the ——application-name command line option.

Ensure that the Seed Peer application is installed on the relevant machine. If
you haven't installed Seed Peer, then please refer to the installation instructions
and make sure you include ‘Seed Peer’ during the installation process.

The Seed Peer application SeedPeer is installed in the SeedPeer directory inside
the Badumna Network Suite installation directory. It can be launched from the
command line:

SeedPeer.exe ——application—-name=my-app

where ‘my-app’ should be replaced with the name for your Badumna network.

By default, the seed peer listens on port 21251. You can configure the seed peer
to listen on a different port. This may be required if the default port number is
not available on that machine. To change the port number you need to edit the
NetworkConfig.xml file that is stored in the SeedPeer folder. Open the file and
change the following line:

<PortRange>21251,21251</PortRange>

Since the seed peer must run using a known port, its port range must be limited
to include a single port. Replace both occurrences of the number 21251 by the new
port number. This must be done before you start the SeedPeer.

®Unless configured for LAN-mode and/or using local subnet broadcast.

12

Chapter 2. Setting up A SCALIFY

<+ Badumna Command Prompt - SeedPeer.exe --verbose

Public address: Full coneil128.132.52.122:21251

Figure 2.1: Verbose SeedPeer output

Checking you have an open connection

The seed peer should be run on a machine with an open connection (see page 8.
To check that your machine has an open connection, run SeedPeer with the
verbose option:

SeedPeer.exe —-verbose

Figure 2.1 show typical output. The line beginning ‘Public address” shows the
NAT type, followed by the public IP address, followed by the port being used. If
the NAT type shown is ‘Open’ or "Full cone’, then the host machine has an open
connection.

Starting multiple Seed Peers

You can increase reliability, and make sure there is always a seed peer for clients to
connect to even if one host is unavailable, it is possible to run multiple seed peers
for the same network on different hosts.

If you want to support multiple Seed Peers in your network, you need to in-
clude the information of the other Seed Peers in the NetworkConfig.xml file. For

13

Chapter 2. Setting up R SCALIFY

example, let us assume that you want to start three Seed Peers in your network
on three machines: seedpeerl.example.com, seedpeer2.example.com, and seed-
peer3.example.com. Let us assume that all three Seed Peers will be started on port
number 21251. The connectivity module for seedpeerl.example.com needs to be
updated as follows:

<Module Name="Connectivity ">
<PortRange>21251,21251</P0rtRange>
<Broadcast Enabled="true">21250</Broadcast>
<Initializer type="Seed">seedpeer2.example.com:21251,seedpeer3.
example.com:21251</Initializer>
<Stun Enabled="True">
<Server>stunl .noc.ams—ix .net</Server>
<Server>stun.fwd.org</Server>
<Server>stun.voipbuster.com</Server>
<Server>stun01.sipphone.com</Server>
<Server>stun.voxgratia.org</Server>
</Stun>
</Module>

Listing 2.3: NetworkConfig.xml connectivity configuration with multiple seed
peers.

As you can see we have included the address and port number of the other two
Seed Peers as part of the Initializer settings. The connectivity module for the other
two seed peers should be updated accordingly.

Re-starting a Seed Peer

Typically, Seed Peer is the first application that you start in your game network.
When you start the Seed Peer it starts a new network. All other clients use the
Seed Peer as a reference peer and join that network. There may be an occasion
when you have to restart the Seed Peer application after you have deployed the
game and there are active users in the network. In such a situation, you can start
the Seed Peer with a special command line option. This tells the Seed Peer to join
the existing network and not start a new network. Use the following command to
re-start a Seed Peer and have it join an existing network:

SeedPeer.exe —--rejoin

14

Chapter 2. Setting up R SCALIFY

Starting a Seed Peer for a Secure Badumna Network.

If you are running a secure Badumna network, you will need to specially config-
ure your Seed Peer. Badumna security is introduced in chapter 4. Please refer to
subsection 4.1.4 for full instructions on starting a Seed Peer for a secure Badumna
Network.

Seed Peer command line options summary

--application-name=VALUE The name to give the Badumna network.

--dei-config-file the name of a file containing the Dei configuration (used for se-
cure networks — see subsection 4.1.4).

--dei-config-string a string containing the Dei configuration (used for secure net-
works — see subsection 4.1.4).

--harness-port=VALUE Only used by the Control Centre.
--control-id=VALUE Only used by the Control Centre.
-v, ——verbose Print verbose output when running.

-1, ——rejoin Rejoin an existing network (see section 2.4.2).

-h, —=help Display usage instructions.

15

Chapter 3

Badumna Basics

This chapter provides a simple guide to using the Badumna network library. The
core functionality includes:

e entity replication and interest management,
e proximity chat,

e dead-reckoning,

e multiple scenes,

e and private chat.

These topics are each introduced with a short overview of key concepts, and a
summary of the parts of the Badumna API used to implement them, followed by a
full step-by-step example of how to incorporate the functionality in a simple game.

Full source code for each example is included in the Windows example pack-
age available with the Badumna Network Suite free trial edition from the Scalify
website (see section 2.2).

A Visual Studio 2008 or Visual C# 2008/2010 Express required.

3.1 Replication and interest management

In an online game, it is necessary to replicate changes in game state over the net-
work. Typically these changes in game state are realized as the changes in proper-
ties of game objects. In practice, it is desirable to only replicate those parts of the
game state that a particular client needs, and this can be limited to those changes
that occur within a client’s area of interest (AOI).

16

http://www.scalify.com/store.php
http://www.scalify.com/store.php

Chapter 3. Badumna Basics R SCALIFY

- ~
4 AN
L/ *
- -~ \
P . \
L0 _— \
’] g , \
y 1 X |3 1
] \ e ”
| T b /' . Local entities
o [2 |
! \:‘n; i /
- = - - .
\\ S _- 7 AN I:l Remote enties
\ S~ L/ 7 . F . .
\ ¢ "7 Y =~ i ¢ Entity radius
AN N II ., d ’ \ AN N P
- o / ke, v ') Entity region of interest
& P & B -
.7 n R N = 1 ') Peerregion of interest
1 e, W \ 1 4 -
f A\ ~ 7 . 7
1 Z \I\ ,h -
v LT I~ ’
\ /7 S o - - -
~ 4

Figure 3.1: Interest Management. A peer with two original entities, A and B, will
‘see’ the remote entities X and Y whose radii intersect it’s area of interest, but not
Z.

3.1.1 Key concepts

To support this basic functionality Badumna uses the concept of a spatial entity,
which is a game object with dynamic properties (properties that change over time)
that has a position in three-dimensional space, a bounding radius, and an interest
radius. An entity will define additional properties as required by its function in
the game, such as orientation, colour, et cetera.

In Badumna, a spatial entity originating on the local machine is termed a spatial
original, and spatial entities being replicated from other machines are termed spatial
replicas. A Badumna application will replicate state changes of spatial originals
over the network to other interested peers, and receive updates to the states of
spatial replicas.

Badumna defines a virtual space in which spatial entities may exists as a scene.
Every spatial entity must belong to a scene, and will not receive updates from the
other spatial entities that are not in the same scene. A game may have multiple
scenes representing multiple levels, instances or shards.

Within a scene, each client will only receive updates relating to spatial replicas
whose radius (three-dimensional bounding sphere) intersect with its area of inter-
est. A client’s area of interest is defined as the union of the areas of interest of all
its spatial originals. A spatial original’s area of interest is defined as the sphere
centred upon its position with radius set to its interest radius.

17

Chapter 3. Badumna Basics R SCALIFY

A two-dimensional illustration of these concepts is depicted in Figure 3.1. There
are two local entities, A and B, which will be spatial originals on the local peer.
There are three remote entities, X, Y, and Z. The local peer is only interested in
those remote entities whose bounds intersect with its area of interest, that is the
union of the areas of interest of A and B. Therefore, the local peer will receive up-
dates from X and Y as spatial replicas, but will be unaware of Z. Conversely, the
peer hosting entity X will receive updates for entity A, but not B, despite them be-
ing hosted on the same peer. The peers hosting entity Y will not receive updates
for B, even though it is within B’s AQ], as its own AOI is too small.

Area of Interest can be set for each entity type according to need. For example,
a player character’s AOI should be at least as big as their view distance. A non-
player character’s AOI could be smaller, if they are intended to ignore players who
are not close to them.

A AOI and bandwidth consumption

Increasing entities” AOI will typically lead to increased bandwidth
consumption, so care should be taken to choose AOI values that are
large enough to provide a consistent experience to users, but no larger.

@ Units in Badumna

v/ Badumna does not specify units for distance — they are deter-
mined by the application.

v Velocity is measured in units per second.

v/ Badumna’s default values for AOI and velocity are optimized
for Unity 3D — optimize your own application by calling Net-
workFacade.RegisterEntityDetails(...).

3.1.2 Badumna API usage

The following steps using the Badumna API are required to set up entity replica-
tion and interest management in a Badumna-enabled game:

1. Initialize the peer (local machine):
NetworkFacade.Initialize(string)
Badumna will start the network thread and perform other initialization nec-

18

http://www.scalify.com/badumna/api/1.4/html/627A6D28.htm

Chapter 3. Badumna Basics R SCALIFY

essary for the machine to join the network. The name of the network to join
must be passed to this method.

2. Log in to the Badumna network:

NetworkFacade.Login(ITokenSupplier)

It is necessary to log in to allow the local client to begin using the peer-to-
peer network. Secure networks require security tokens to be provided when
logging in. These are supplied by Badumna’s security system, Dei, which
is covered in chapter 4. In this chapter, we will not be using security fea-
tures, and so use the overloaded Login method that does not require security
tokens.

3. Join the scene:
NetworkFacade.JoinScene(string, CreateSpatialReplica, RemoveSpatialReplica)
The application has to join a specific scene in the game. When you join the
scene you also provide Badumna with the names of two call back functions.
These are called when there is a new remote entity in the scene or if a remote
entity leaves the scene.

4. Register entity types:
NetworkFacade.RegisterEntityDetails(uint entityType, float areaOfIntere-
stRadius, Badumna.DataTypes.Vector3 maxVelocity)
Each different type of entity must have its interest radius and maximum ve-
locity registered with the network. This allows Badumna to internally opti-
mize interest management.

5. Register local entities with the scene:
NetworkScene.RegisterEntity(ISpatialOriginal, uint)
Each network enabled entity needs to be registered with a scene. This will
publish the entity making it visible to any other entities that have joined the
same scene and are nearby. The scene’s call-back function for entity creation
is called on the nearby remote peers in the scene to instantiate the given en-
tity.

6. Flag for the properties of entities that have changed:
NetworkFacade.FlagForUpdate(ISpatialOriginal, int)
Whenever an entity’s property has changed, you inform Badumna about it
by calling FlagForUpdate() with the appropriate parameters. Badumna will
then ensure that interested remote entities receive this update.

7. Trigger Badumna’s regular processing:
NetworkFacade.ProcessNetworkState()
Periodically (possibly every frame) notify the network engine that it is safe
to perform any operations on entities, invoke call-backs. Operations include

19

http://www.scalify.com/badumna/api/1.4/html/23F3212A.htm
http://www.scalify.com/badumna/api/1.4/html/F10E07D4.htm
http://www.scalify.com/badumna/api/1.4/html/EFEE4CFD.htm
http://www.scalify.com/badumna/api/1.4/html/EFEE4CFD.htm
http://www.scalify.com/badumna/api/1.4/html/61C5BCCF.htm
http://www.scalify.com/badumna/api/1.4/html/56F80722.htm
http://www.scalify.com/badumna/api/1.4/html/6FB7D7D5.htm

Chapter 3. Badumna Basics R SCALIFY

10.

11.

dispatching updates from local entities and applying updates to remote en-
tities.

Unregister local entities from the scene:
NetworkScene.UnregisterEntity(ISpatialOriginal)

When a local entity is no longer required, it should be unregistered with the
network scene, so that remote peers will remove their replica, by calling their
RemoveSpatialReplica callback.

. Leave the scene:

NetworkScene.Leave()
When the client is no longer hosting entities in a scene it should leave the
scene.

Log out from the Badumna network:
NetworkFacade.Logout()
Stop communicating with the other peers in the Baduna Network.

Shut down Badumna:

NetworkFacade.Shutdown()

Inform Badumna that the user is closing the application. This will enable
Badumna to shutdown the network thread and also perform other finaliza-
tion. In real applications it is recommended that the overload Shutdown(true)
should be used to block so Badumna can clean up the network correctly.

These steps are illustrated in the context of a small network game demo in the
following section.

@ Replication message reliability

Replication messages are sent semi-reliably. If an update for a prop-
erty is not acknowledged, it is resent, but only if no more recent up-
dates for that property have been sent in the meantime. This means
that terminal states are guarenteed to be replicated given enough
time, but transient states may be lost. For this reason, entity property
replication is best suited to replicating state information rather than
events. Badumna supports custom messages as an alternative that is
better suited to commuincating events (see section 7.1).

3.1.3 API Example 1 - Basic Badumna Demo

This demo application shows how to create a multi-player game that uses Bad-
umna for synchronizing basic state information. The game simply allows a user to

20

http://www.scalify.com/badumna/api/1.4/html/AE0FBDB7.htm
http://www.scalify.com/badumna/api/1.4/html/B29AF279.htm
http://www.scalify.com/badumna/api/1.4/html/285E2201.htm
http://www.scalify.com/badumna/api/1.4/html/639B31EB.htm
http://www.scalify.com/badumna/api/1.4/html/627A6D28.htm

Chapter 3. Badumna Basics R SCALIFY

move their avatar around a 2D space, and see other players” avatars in the same
virtual world.
This example will demonstrate the following Badumna facilities:

e Logging in to a Badumna Network.

¢ Joining a network scene.

e Registering entities with a network scene.

e Replicating entity state data across the network.

The basic control and rendering of the game scene is achieved by representing
an avatar as a UserControl which is moved around a Canvas, with position up-
dated according to key-presses. The example is simple enough that you should
not need prior knowledge of .NET controls. If you wish to understand more about
these items, please refer to Microsoft’s NET framework documentation.

In this tutorial we’ll see how to create entities that can be replicated across the
network, and then what steps an application needs to follow to use Badumna to
perform the replication. Our entities will be responsible for representing their state
data, serializing and deserializing this data, and notifying Badumna of changes in
state data that need to be replicated across the network.

In our simple demo the only entities we have are the avatars. There are two
kinds of avatars: one for representing the local player and one for representing
remote players on other machines. To begin, we’ll look at the base class for our
game entities, called Avatar. This is defined in the file Avatar.xaml.cs.

Since the avatars are represented in the game using user controls, the Avatar
class inherits from UserControl, but this is obviously just an application-specific
detail, and not important for the functioning of Badumna. As we wish our avatars
to be replicated across the network, the Avatar class implements the Badumna
interface ISpatialEntity, and includes the properties Guid (a globally unique iden-
tifier), Position, Radius, and AreaOfInterest, and the method HandleEvent().

public partial class Avatar : UserControl, ISpatialEntity
{

#region ISpatialEntity implementation

public Badumnald Guid { get; set; }

public float Radius { get; set; }

public float AreaOfInterestRadius { get; set; }

public Vector3 Position

{

21

Chapter 3. Badumna Basics R SCALIFY

get

return this.mPosition;

set

this . mPosition = value;

this . mTranslate.X = value.X;
this.mTranslate.Y = value.Y;
OnPositionUpdate () ;

}

public void HandleEvent(Stream stream)
{
}

#endregion // ISpatialEntity implementation

These properties will allow Badumna to perform position-related interest man-
agement. Since the position property is also important for rendering the avatar in
the game, there is application-specific code in the property’s Set() method to up-
date the translational data used to render the user control in the right place.

In our game, there is other information about our avatars that we want to repli-
cate across the network, namely the avatar’s color and orientation. To prepare for
this, the Avatar has two further properties:

public partial class Avatar : UserControl, ISpatialEntity
{

#region Properties

public Color Color
{

get

{

return this.mColor;

)

set

this .mColor = value;

22

Chapter 3. Badumna Basics R SCALIFY

this . Triangle. Fill = new SolidColorBrush(value);
OnColorUpdate () ;

}

public float Orientation

{
get
{

}

return this.mOrientation;

set

// Limit the value to modulo 360 degrees.
while (value >= 360.0f)

{
}
while (value < 0.0f)
{

}

value —= 360.0f;

value += 360.0f;

this . mOrientation = value;
this . mRotate. Angle = value;
OnOrientationUpdate () ;

}

#endregion // Properties

Notice that the Avatar class also includes a number of ‘OnUpdate’ virtual meth-
ods:

public partial class Avatar : UserControl, ISpatialEntity
{

#region On update methods

protected virtual void OnPositionUpdate ()

{
// Do nothing.

23

Chapter 3. Badumna Basics R SCALIFY

}

protected virtual void OnColorUpdate ()
{

}

// Do nothing.

protected virtual void OnOrientationUpdate ()
{

}

// Do nothing.

#endregion // On update methods

These methods are called in their corresponding properties’ Set() methods, and
as we shall see shortly, they can be overridden in classes deriving from Avatar to
allow further actions to be taken in response to property updates.

We will be deriving two classes from Avatar: LocalAvatar to represent the
avatar controlled by the local player, and RemoteAvatar to represent the avatars
of other remote players.

LocalAvatar is defined in the file LocalAvatar.cs. The local avatar is termed
an ’original” entity that will be replicated across the network, and the copies rep-
resented as remote avatars on other machines are termed 'replicas’. LocalAvatar
therefore implements the Badumna interface ISpatialOriginal:

class LocalAvatar : Avatar, ISpatialOriginal

{

// 1SpatialOriginal implementation

public void Serialize (BooleanArray requiredParts, Stream stream)

{

BinaryWriter writer = new BinaryWriter (stream);

if (requiredParts[(int)Avatar.StateSegment.Color])
{

Color ¢ = this.Color;
writer . Write(c.A);
writer . Write(c.R);
writer . Write(c.G) ;
writer . Write(c.B);

)

if (requiredParts[(int)Avatar.StateSegment.Orientation])

24

Chapter 3. Badumna Basics R SCALIFY

writer . Write (this.Orientation);

ISpatialOriginals are responsible for serializing their state to a stream by imple-
menting the Serialize() method. Badumna automagically serializes the properties
defined in the ISpatialEntity interface, so in this case the Serialize method only
needs to take care of the Color and Orientation properties.

In order to minimize network traffic, only those parts of an entity’s state that
have changed should be serialized. To achieve this, Badumna calls the Serialize
method with a Boolean array indicating the parts that have changed. It is the ap-
plication programmer’s responsibility to notify Badumna when properties have
changed. LocalAvatar does this by overriding the Avatar class’s ‘OnUpdate” meth-
ods to call NetworkFacade’s FlagForUpdate() method:

class LocalAvatar : Avatar, ISpatialOriginal

{

#region On update overrides

protected override void OnPositionUpdate ()

{
NetworkFacade . Instance . FlagForUpdate (this , (int)
SpatialEntityStateSegment . Position);
}

protected override void OnOrientationUpdate ()

{
NetworkFacade . Instance . FlagForUpdate (this , (int)Avatar.
StateSegment. Orientation);

}

protected override void OnColorUpdate ()

{
NetworkFacade . Instance . FlagForUpdate (this , (int)Avatar.
StateSegment. Color);

}

#endregion // On update overrides

25

Chapter 3. Badumna Basics R SCALIFY

Notice how the Boolean array identifying which data should be serialized is
indexed using an enumeration. Badumna provides the SpatialEntityStateSegment
enumeration to identify properties defined in Badumna interfaces. Entities with
custom properties (such as Color and Orientation in this example) need to de-
fine an enumeration identifying these, beginning with the first available value as
defined by SpatialEntityStateSegment. This can be found in the Avatar class in
Avatar.xaml.cs:

public partial class Avatar : UserControl, ISpatialEntity
{
public enum StateSegment : int
{
Orientation = SpatialEntityStateSegment.
FirstAvailableSegment,
Color,

The counterpart to LocalAvatar is RemoteAvatar, which is defined in the file
RemoteAvatar.cs:

class RemoteAvatar : Avatar, ISpatialReplica

{
public void Deserialize (BooleanArray includedParts,
Stream stream, int
estimatedMillisecondsSinceDeparture)

BinaryReader reader = new BinaryReader (stream);

if (includedParts[(int)Avatar.StateSegment.Color])
{

byte a = reader.ReadByte() ;
byte r = reader.ReadByte() ;
byte g = reader.ReadByte() ;
byte b = reader.ReadByte() ;

A

this.Color = new Color |{
b };

=a, R=r,G=g, B-=
}
if (includedParts[(int)Avatar.StateSegment.

Orientation])

{

26

Chapter 3. Badumna Basics R SCALIFY

this . Orientation = reader.ReadSingle();

As an ISpatialReplica, RemoteAvatar must implement a Deserialize() method
that will read state data from a stream to set replicated properties. It is impor-
tant that properties are identified using the same enumeration values as in the
corresponding ISpatialOriginal’s Serialize() method, and that a property’s data is
written and read in the same format. Once again the properties that are defined in
ISpatialEntity are automagically deserialized by Badumna, so only the additional
properties Color and Orientation need to be dealt with here.

We now have the classes for representing our original and replica game entities
(i.e. our local and remote avatars) and have made sure that they implement the
key interfaces for representing entities’ state and serializing and deserializing state
change data respectively, and that the originals will notify Badumna when their
state changes. Next we will see how they are used in the game.

In our demo, the remainder of logic required to create the game and use Bad-
umna is in the main window class, which can be found in the file MainWindow.xaml.cs.

The class begins with an enumeration which is used to define the types of en-
tities that exist in the game. We have only one kind of entity, avatars, although
as is typical, we are using two separate classes derived from a common base to
represent local and remote avatars.

public partial class MainWindow : Window
{
// Enumeration defining types of entities in the game
private enum EntityType : uint
{
None,
Avatar,

Next, the member variables are defined. The ones that are relevant to Badumna
are mAvatar, and mScene. mAvatar is used to hold the local avatar when it is cre-
ated, and is of type LocalAvatar, which implements ISpatialOriginal as described
above. mScene is used to hold the scene. Each game has to have one or more

27

Chapter 3. Badumna Basics R SCALIFY

scenes and each scene has a unique name. The name for the scene is stored in the
constant SceneName.

public partial class MainWindow : Window
{

#region Member variables

// Constants

private const string SceneName = "world";
private const float MoveAmount = 5f;
private const float RotateAmount = 5f;

// Random number generator (used for setting avatar color

)

public static readonly Random RandomSource = new Random ()

7

// Badumna specific: The local avatar (implements
ISpatialOriginal)
private LocalAvatar mAvatar;

// Badumna specific: Network scene
private NetworkScene mScene;

// Flag to indicate whether logged in
private bool mlIsLoggedIn;

// Timer used to schedule regular updates to the game
state

private DispatcherTimer mProcessTimer;

#endregion // Member variables

The first step to enable Badumna is to initialize the network thread and perform
any other initialization tasks. This has to be done once, and here it is done in
the MainWindow constructor. Since the initialization can take several seconds to
return, and will block until it does, it is best to do it in a background worker thread.
The constructor also contains application-specific code for initializing the window,
and creating a timer to schedule updates to the game state.

28

Chapter 3. Badumna Basics R SCALIFY

public partial class MainWindow : Window

{

public MainWindow ()

{
// Windows specific initialization
InitializeComponent () ;

// Do required initialization work in the background so that
the Ul appears quickly
BackgroundWorker worker = new BackgroundWorker () ;
this . Status.Content = "Initializing Badumna...";
worker . DoWork +=
delegate
{
// Badumna specific: Initialize the network.
NetworkFacade . Instance . Initialize ("api—example");
b
worker . RunWorkerCompleted +=
delegate
{
this.Status.Content = "";
this . LoginButton.IsEnabled = true;
¥
worker . RunWorkerAsync () ;

// Set up the timer to schedule regular updates

this . mProcessTimer = new DispatcherTimer () ;

this . mProcessTimer. Interval = TimeSpan.FromSeconds(1.0 /
60.0) ;

this . mProcessTimer. Tick += delegate { this.RegularProcessing

O; b

When a user wants to start a session, we need to login to Badumna network
and also join the scene. This task is performed in the Login_Click() method:

public partial class MainWindow : Window
{

private void Login_Click(object sender, RoutedEventArgs e)
{

// Update the interface to disallow logging in when logged in
this . LoginButton.IsEnabled = false;

29

Chapter 3. Badumna Basics R SCALIFY

// Set the status bar text because this may be a lengthy
operation
this . Status.Content = "Logging in...";

BackgroundWorker worker = new BackgroundWorker () ;
worker .DoWork +=
delegate
{
// Badumna specific: Log in to the network
// We do this in the background as it may take a
little time
NetworkFacade . Instance . Login () ;

}s

worker . RunWorkerCompleted +=
delegate
{
// Badumna specific: Register entity details
// Avater’s area of interest is 150, its max velocity
is 60 on both X and Y axis and 0 on the Z axis.
NetworkFacade . Instance . RegisterEntityDetails ((uint)
EntityType.Avatar, 150.0f, new Vector3(60, 60, 0)

’

// Badumna specific: Join the network scene

this . mScene = NetworkFacade.Instance.JoinScene (
MainWindow . SceneName, this.CreateSpatialReplica,
this . RemoveSpatialReplica) ;

// Create the local avatar and add it to our canvas
this .mAvatar = new LocalAvatar();
this . Viewport. Children.Add(this .mAvatar) ;

// Badumna specific: Register the local avatar with
the scene

this .mScene. RegisterEntity (this .mAvatar, (uint)
EntityType. Avatar) ;

// Initialize the avatar’s position and color
this . mAvatar. Position = new Vector3(50f, 50f, 0f);

this .mAvatar.Color = Colors.Blue;

// Enable the scheduler
this . mProcessTimer.IsEnabled = true;

// Set logged in flag
this .mIsLoggedIn = true;

// Update the interface to allow logging out
this . LogoutButton.IsEnabled = true;

30

Chapter 3. Badumna Basics R SCALIFY

// Clear the status bar text
this . Status.Content = ;
b

worker . RunWorkerAsync () ;

The important steps relating to Badumna in this method are logging in to the
network, registering entity details, joining the scene, creating the local avatar and
registering it with the scene.

The Login() function call logs the user into the network by verifying user details
and also provides other security features. In this example, we are not supplying
user details (refer to Dei server documentation for use of this feature). Since the
login method will block until it has finished, login is done in a background worker
thread, with the rest of the steps being scheduled to run upon completion of login.

The RegisterEntityDetails() method will tell Badumna the size of avatars” AOI
and their maximum velocity. Badumna uses these values to optimize its internal
interest management algorithms.

The JoinScene() function call ensures that the local avatar is connected to the
scene. It also supplies Badumna with two call-back functions (CreateSpatialReplica()
and RemoveSpatialReplica()). CreateSpatialReplica() is called by Badumna when
a new remote entity enters the user’s area of interest and RemoveSpatialReplica()
is called by Badumna when an existing remote entity is no longer in the user’s area
of interest and can be removed by the user.

The RegisterEntity() function call registers the local avatar with the scene, and
informs Badumna of the entity type using the enumeration defined above. Any
other instances of the game running on the network that have already joined the
scene would then be notified of the new entity via the CreateSpatialReplica() call-
back function they passed to Badumna.

The remainder of the code in this method is application-specific and deals with
initialization of the local avatar, enabling the scheduler and configuring the UL

Now we’'ll take a closer look at the call-backs for creating and removing spa-
tial replicas. The CreateSpatialReplica() call back function has three arguments: a
NetworkScene, a Badumnald, and a uint used to store the enumerated entity type.
The NetworkScene informs the application which scene the new remote entity is
part of (this is important for an application that has multiple scenes). The Badum-
nald is a unique id assigned to every single entity. This is how Badumna identifies
any entity in the network. In the current example, there is only one type of entity

31

Chapter 3. Badumna Basics R SCALIFY

(avatar). However, an application may have different entity types such as NPCs,
and other dynamic objects.

Here the CreateSpatialReplica only needs to create a RemoteAvatar object and
add it to the canvas used to display our game.

public partial class MainWindow : Window
{

public ISpatialReplica CreateSpatialReplica (NetworkScene
scene , Badumnald entityld , uint entityType)
{

if (entityType == (uint)EntityType.Avatar)
{
RemoteAvatar remoteAvatar = new RemoteAvatar() ;
this . Viewport.Children.Add(remoteAvatar) ;
return remoteAvatar;

}

return null;

Conversely, RemoveSpatialReplica merely has to remove the RemoteAvatar ob-
ject it is passed from the canvas. Note that we can assume the ISpatialReplica it is
passed is of type RemoteAvatar, as avatar is the only entity type we have.

public partial class MainWindow : Window

{

public void RemoveSpatialReplica (NetworkScene scene,
ISpatialReplica replica)
{

RemoteAvatar remoteAvatar =
if (remoteAvatar != null)

{
J

replica as RemoteAvatar;

this . Viewport. Children .Remove(remoteAvatar) ;

32

Chapter 3. Badumna Basics R SCALIFY

So far we have covered how an application sets up the network and scene, adds
its own original entities, and handles the creation and removal of replicas. Next we
will see how entities” states are continually synchronized across the network.

As described above, our local and remote avatar classes already take care of
serializing and deserializing changes in their game state, by implementing the
ISpatialOriginal and ISpatialReplica interfaces, and the local avatar notifies Bad-
umna when state has changed. Badumna will make use of the methods defined
by these interfaces to accomplish the state synchronization whenever prompted
by the application. This needs to take place regularly. We have already seen that
the MainWindow class set up a timer in its constructor to schedule regular calls
to a method called RegularProcessing(). That method just needs to call the Net-
workFacade’s ProcessNetworkState() method to trigger Baduma to perform state
synchronization, as long as we are logged in:

public partial class MainWindow : Window
{

private void RegularProcessing ()

{
if (this.mlIsLoggedIn)

{
}

NetworkFacade. Instance.ProcessNetworkState () ;

That’s all that needs to be done in the MainWindow to keep our entities syn-
chronized across the network. There is a Window_KeyDown method that re-
sponds to user input by updating the local avatar’s position, orientation and color
properties as appropriate, and these properties will notify Badumna that the state
changes need to be replicated by calling Badumna’s FlagForUpdate() method, as
explained above.

All that is left for the MainWindow class to take care of is logging out and
shutting down. Logging out requires our original entity (the local avatar) to be
unregistered from the scene, the scene to be left, and the network to be logged
out from. This is handled in the Logout_Click() method which also performs the
application-specific steps of removing the local avatar from the canvas, disabling
the scheduler, and reconfiguring the UL

33

Chapter 3. Badumna Basics R SCALIFY

public partial class MainWindow : Window

{

private void Logout_Click(object sender, RoutedEventArgs
e)
{
// Update the interface to disallow logging out when
logged out
this . LogoutButton.IsEnabled = false;

// Badumna specific: Unregister the local avatar from
the scene

this .mScene. UnregisterEntity (this .mAvatar) ;

this . mAvatar = null;

// Badumna specific: leave the scene
this .mScene. Leave () ;
this .mScene = null;

// Remove all avatars from the canvas
this . Viewport. Children. Clear () ;

// Disable the scheduler
this . mProcessTimer.IsEnabled = false;

// Unset the logged in flag
this . mIsLoggedIn = false;

// Badumna specific: log out from the network
NetworkFacade . Instance . Logout () ;

// Update the interface to allow logging in
this .LoginButton.IsEnabled = true;

Finally, when the application is shutdown, it needs to log out (if currently
logged in), and then shut down the network, by calling the NetworkFacade’s Shut-
down() method. In our demo this is done by overriding the Window’s OnClosed()
virtual method:

public partial class MainWindow : Window
{

34

Chapter 3. Badumna Basics R SCALIFY

protected override void OnClosed(EventArgs e)

{
// 1f logged in, log out

if (this.mlIsLoggedIn)
{

}

this.Logout_Click (this, null);

// Badumna specific: shut down the network
NetworkFacade . Instance .Shutdown () ;

base.OnClosed (e) ;

We have now explained all the tasks that are required to make this application
a multi-player application. The last thing that needs to be done is configuring the
network discovery method. When a user starts an application, it has to connect to
other peers in the network. There are several methods the application can use to
find peers, including local subnet broadcast, or looking up a known seed peer. A
seed peer is a Badumna node that is typically the first peer in the network. This is
used as a reference peer by all other peers to establish their position in the network.
It is important that this peer is started on a machine that has an open connection
(see pages 8 and 13).

The network configuration is done in the file NetworkConfig.xml (please refer
to section 2.3 to learn more about configuring a Badumna client).

<Modules>
<Module Name="Connectivity ">
<PortRange MaxPortsToTry="3">21300,21399</PortRange>
<Broadcast Enabled="true">21250</Broadcast>
<l-—Initializer type="SeedPeer">seedpeer.example.com
:21251</ Initializer —>
<PortForwarding Enabled="true" />
<Stun Enabled="true">
<Server>stunl.noc.ams—ix .net</Server>
<Server>stun.voipbuster.com</Server>
<Server>stun01.sipphone.com</Server>
<Server>stun.voxgratia.org</Server>
</Stun>
</Module>

</Modules>

35

Chapter 3. Badumna Basics R SCALIFY

The current configuration is only relying on local broadcast for discovery. There-
fore, the application would work in a given subnet (and then only if the first peer
to join had an open connection, see page 8). In order to make the application work
across the entire internet, we need to specify a seed peer as a secondary discov-
ery mechanism. If you would like to do this, please refer to subsection 2.4.2 for
instructions on how to start your own seed peer.

A Application names must match.

The seed peer must use the same application name as the client ap-
plications, in this case “api-example”.

To configure the demo game to use a seed peer, uncomment the Initializer ele-
ment and replace seedpeer.example.com with the actual host name or IP address of
the machine that has the SeedPeer application installed. The default port is 21251.
You can configure the seed peer to change the port number (see Section 2.4). This
may be necessary if you want to run multiple applications using the same ma-
chine. For example, if your seed peer is running on a machine with the host name
‘public. nydomain.com’, and using port 1234, you would use the following line:

<Initializer type= >public. mydomain.com:1234 </
Initializer >

A Open connection required.

The SeedPeer application must be installed and started on a machine
that has a public IP address. See pages 8 and 13.

Once you have edited the NetworkConfig.xml file, you are ready to build the
application and run it. If you start the application on two different machines or
even the same machine, you should be able to see the other game objects and their
movement.

Checklist:

36

Chapter 3. Badumna Basics R SCALIFY

v Configure connectivity by either:

v (a) Using a seed peer:
v/ Start the seed peer with the application name “api-example”

v Configure the API Example with the seed peer’s address and port
(see subsection 2.4.1).

v/ or (b) Configure the API Example to run in LAN mode (see subsec-
tion 2.4.1).

v/ Build and run ApiExample.

@ Experiment with AOI

Badumna will make sure that remote entities are replicated as long as
they are within the local entity’s area of interest. To see this, maxmize
the window and move one avatar far away from the other. At a cer-
tain point, the avatars will no longer ‘see” each other.

3.2 Proximity Chat

Badumna offers several types of chat facility. The first one presented here is prox-
imity chat that allows an entity to send messages to all other entities near by.

3.2.1 Key Concepts

Proximity chat depends upon Badumna’s interest management to send messages
from one entity to the other entities whose area of interest it is in. Note, it is
whether the speaking entity is within the listening entity’s AOI that determines
whether the message will be delivered, not vice versa.

3.2.2 Badumna API usage

In order to set up proximity chat, applications need to make the following use of
the Badumna API:

1. Create a chat service:
NetworkFacade.CreateChatService()
A chat service must be created for each entity that wishes to send or receive
proximity messages.

37

http://www.scalify.com/badumna/api/1.4/html/7EFDB926.htm

Chapter 3. Badumna Basics R SCALIFY

2. Subscribe to the chat service’s proximity channel:
IChatService.SubscribeToProximityChannel(Badumnald, string, ChatMes-
sageHandler)

The subscription is made using the Badumna ID of the entity concerned, and
includes a string to use a display name, and a delegate to handle proximity
messages received from other entities in this entity’s AOL

3. Send chat message:
IChatService.SendChannelMessage(ChatChannelld, string)

Messages must be sent as strings to the proximity channel using the ID ChatChan-

nelld.Proximity. Other channels are used for private chat messages which
are covered in section 3.5.

3.2.3 API Example 2 - Proximity Chat Demo

The first example demonstrated how to configure a game object as a Badumna-
enabled entity and synchronize its properties with other remote objects. This ex-
ample will build on that and demonstrate how to enable proximity chat.

All the logic for using Badumna’s chat service is in the MainWindow class in
the file MainWindow.xaml.cs. The only other change to the project is to add the
controls to to the main window to allow users to enter text, and see messages,
which is done in the file MainWindow.xaml.

To simplify the code, we include the Badumna.Chat namespace with the using
directive:

using Badumna.Chat;

Add a member variable to MainWindow to hold the chat service:

public partial class MainWindow : Window

{
#region Member variables

// Badumna specific: Chat service
private IChatService mChatService;

When a user logs in to the application and joins the scene, we create an instance
of Badumna'’s chat service and subscribe to the proximity chat channel for the local
avatar:

38

http://www.scalify.com/badumna/api/1.4/html/B1B8B63D.htm
http://www.scalify.com/badumna/api/1.4/html/B1B8B63D.htm
http://www.badumna.com/scalify/api/html/8688D6C.htm

Chapter 3. Badumna Basics R SCALIFY

private void Login_Click(object sender, RoutedEventArgs e)
{

// Create the chat service
mChatService = NetworkFacade.Instance.
CreateChatService () ;

// Subscribe to a proximity channel for the local
avatar

mChatService . SubscribeToProximityChannel (mAvatar . Guid
, "default", HandleChatMessage) ;

The arguments to SubscribeToProximityChannel() include the Guid of the en-
tity we wish to listen near (in this case our local avatar), a display name to use in
the proximity channel (not used in this demo), and a handler to deal with incoming
chat messages.

HandleChatMessage is the call back function that is called by Badumna when
the local entity receives a chat message. In this example, we are simply going to
display the message in a very simple text-box.

private void HandleChatMessage(ChatChannelld channel, Badumnald
userld, string message)
{
this . ChatDisplayBox. Visibility = Visibility . Visible;
this .ChatTextBox. Clear () ;
this . ChatDisplayTextBox.Text = message;

In our demo, the chat Ul is supported by helper methods to show and hide the
chat controls. ShowMiniChat() displays the chat-box, clears the contents of the box
and switches the focus of the application to the chat-box. HideMiniChat() clears
the contents of the chat-box and hides the box from the screen.

private void ShowMiniChat(object sender, RoutedEventArgs e)
{
this .ChatBox. Visibility = Visibility . Visible;
this .ChatTextBox.Clear () ;

39

Chapter 3. Badumna Basics R SCALIFY

this .ChatTextBox.Focus() ;
}

private void HideMiniChat ()

{
this .ChatBox. Visibility = Visibility .Collapsed;

this .ChatTextBox.Clear () ;

The final change required is to modify the Window_KeyDown() method to call
ShowMiniChat() when the user hits Space, and send any message in the chat box
and call HideMiniChat()when the user hits Enter. To send a chat message to the
proximity channel, you use the chat service’s SendChannelMessage() method.

private void Window_KeyDown(object sender, KeyEventArgs e)
{

switch (e.Key)
{

case Key.Space:
this .ShowMiniChat(this , null);
break;

case Key.Enter:

var message = ChatTextBox.Text.Trim() ;

if (!string.IsNullOrEmpty (message))

{
mChatService . SendChannelMessage (

ChatChannelld . Proximity , message);

ChatTextBox. Clear () ;

}

HideMiniChat () ;

e.Handled = true;

break;

The rest of the application is exactly the same as the previous example. You
should be able to build the application and test the proximity chat functionality
across multiple machines.

40

Chapter 3. Badumna Basics R SCALIFY

Checklist:
v Configure connectivity by either:

v/ (a) Using a seed peer:
v/ Start the seed peer with the application name “api-example”

v Configure the API Example with the seed peer’s address and port
(see subsection 2.4.1).

v or (b) Configure the API Example to run in LAN mode (see subsec-
tion 2.4.1).

v/ Build and run ApiExample.

3.3 Dead Reckoning

In the previous examples you may have noticed that the object movement is not
very smooth. In this example we will demonstrate how to enable dead reckoning
in order to make the object movement smooth and also optimise network traffic.

3.3.1 Key Concepts

Dead reckoning is a method of estimating an object’s current position based on a
previous known position and the object’s velocity. By replicating an entity’s ve-
locity to its replicas, dead reckoning can be used to frequently update the replica’s
position in between updates received over the network.

When dead reckoning is being used, it is not necessary to replicate position
information as frequently, since it is being calculated by Badumna. It is up to the
application to determine when to flag position for update for each entity, according
to how much positional error can be tolerated in the game.

For example, if an entity is moving at a constant velocity, then position updates
need not be sent, as the position can be calculated accurately from the current
velocity. Each time velcoity changes, there will be a small error introduced on the
remote machine due to the time taken to receive the velocity update.

One possible strategy for deciding when to replicate position information, would
be to do it whenever velocity changes. A more conservative strategy would be to
also replicate it periodically even when the velocity has not changed, if the velocity
is non-zero. This would reduce positional error at the cost of increased bandwidth
consumption.

Peers can perform local checking on the dead-reckoned position calculated for
a dead-reckoned remote entity. For example, the application could do collision
tests to see if the calculated position would mean walking through a wall, and
adjust the calculated position accordingly if required. It is up to the application
how sophisticated this checking is required to be.

41

Chapter 3. Badumna Basics R SCALIFY

3.3.2 Badumna API usage

1. Make entities implement the IDeadReckonable interface:
IDeadReckonable
Both original and remote entities need to implement IDeadReckonable for
the entity to use dead reckoning. The IDeadReckonable interface inherits
from AttemptMovement(Vector3).

2. Original dead-reckonable entities must update the entity’s velocity:
IDeadReckonable.Velocity
The velocity must be flagged for update like other replicated properties. The
position property must still be replicated as it is used to correct the dead-
reckoned position on remote peers, however it can be replicated less fre-
gently.

3. Remote entities must resolve their dead-reckoned position:
IDeadReckonable.AttemptMovement(Vector3)
Badumna will call dead-reckoned remote entities” AttemptMovement method
during regular processing, with a dead-reckoned position calculated by Bad-
umna. Applications can simply use this position directly to update the entity,
or can do checks first, such as collision tests.

These steps are illustrated in the following example, again building upon the
demo game developed in the preceding examples.

3.3.3 API Example 3 - Dead Reckoning Demo

Dead reckoning works by replicating an entity’s velocity. When an application
knows a remote entity’s velocity it can extrapolate to smoothly update the entity’s
position every frame, rather than just when updates are received. Also, when an
original entity is moving at constant velocity, the application does not have to send
any messages to the network for other peers to be able to keep their remote copies’
positions synchronized, as the position can be calculated locally.

To use dead-reckoning, we need to change the Avatar class to implement the
interface IDeadReckonable, instead of ISpatialEntity. Note that IDeadReckonable
derives from ISpatialEntity, and just adds one new property (Velocity) and one
new method (AttemptMovement). These additions mean we also need a new field
to support the velocity property, and a new ‘OnUpdate” method to allow child
classes to act upon Velocity updates. The new code required in Avatar file are
shown below:

public partial class Avatar : UserControl, IDeadReckonable

42

http://www.scalify.com/badumna/api/1.4/html/EF9DC11B.htm
http://www.scalify.com/badumna/api/1.4/html/7A630129.htm
http://www.scalify.com/badumna/api/1.4/html/39964BEB.htm
http://www.scalify.com/badumna/api/1.4/html/7A630129.htm

Chapter 3. Badumna Basics R SCALIFY

#region Fields
private Vector3 mVelocity = new Vector3(0f, 0f, 0f);
#endregion // Fields

#region IDeadReckonable implementation

public Vector3 Velocity

{
get

{

return this.mVelocity;

this . mVelocity = value;
OnVelocityUpdate () ;

}

public void AttemptMovement(Vector3 reckonedPosition)

{
}

this . Position = reckonedPosition;

#endregion // IDeadReckonable implementation
#region On update methods

protected virtual void OnVelocityUpdate ()
{

}

// Do nothing.

#endregion // On update methods

When using dead reckoning, Badumna will estimates an entity’s position based
on the current velocity for you, and will call the IDeadReckonable’s AttemptMove-
ment() method peridocially, to update its position. This ensures that the remote
object is rendered smoothly on the screen. As shown above, in this demo all the
AttemptMovement() method needs to do is set the avatar’s position. A more so-

43

Chapter 3. Badumna Basics R SCALIFY

phisticated game might check locally to see if the update is permited according to
collision logic, for example.

Now we are using velocity to calculate position, Local Avatar is responsible for
performing this computation, which requires a new ComputePosition() method
that calculates position based upon an old position, the velocity and elapsed time.
We also need a method, FixPosition(), that will update position and old position, to
allow client code to move the avatar without ComputePosition() reverting it back
based upon it’s old position. Local Avatar also needs to override the OnVelocityUp-
date() method to notify Badumna when velocity changes.

The new code added to LocalAvatar.cs is shown below:

class LocalAvatar : Avatar, ISpatialOriginal

{
#region Fields

private Vector3 mOldPosition = new Vector3(0f, 0f, 0f);
private DateTime mOIldTime = DateTime.Now;

#endregion // Fields
#region Public methods

public void ComputePosition ()
{
///Compute the position periodically based upon old
position, velocity and elapsed time

DateTime currentTime = DateTime .Now;

float secondsElapsed = (float)(currentTime — this.
mOldTime) . TotalSeconds;

Vector3 displacement = this.Velocity % secondsElapsed

this . Position = this.mOIldPosition + displacement;

this . mOIldPosition = this.Position;

this .mOIldTime = DateTime .Now;

}

public void FixPosition(Vector3 newPosition)
{
// Fix the position, by setting the position, zeroing
velocity and reseting oldPosition.
this.Position = newDPosition;
this . Velocity = new Vector3(0f, 0f, 0f);
this . mOldPosition = this.Position;

44

Chapter 3. Badumna Basics R SCALIFY

#endregion // Public methods
#region On update overrides

protected override void OnVelocityUpdate ()
{
NetworkFacade. Instance . FlagForUpdate (this , (int)
SpatialEntityStateSegment. Velocity);
}

#endregion // On update overrides

The final changes required, are to update the MainWindow class to change
the local avatar’s velocity in response to user input, rather than changing its posi-
tion directly, and to periodically call the local avatar’s ComputePosition() method.
These changes occur in the Window_KeyDown() and RegularProcessing() meth-
ods respectively. We've also updated the Login_Click() method to set the local
avatar’s initial position using the FixPosition() method rather than directly setting
the Position property, and added a 'reset’ key, to reset the avatar to its original
position, again in the Window_KeyDown() method. The code changes are shown
below:

private void Login_Click(object sender, RoutedEventArgs e)

{

// Initialize the avatar’s position and color
this . mAvatar. FixPosition (new Vector3(50f, 50f, 0f));
this .mAvatar.Color = Colors.Blue;

}

private void RegularProcessing ()

{
if (this.mlIsLoggedIn)

{
NetworkFacade.Instance.ProcessNetworkState () ;
mAvatar. ComputePosition () ;

}

private void Window_KeyDown(object sender, KeyEventArgs e
)

45

Chapter 3. Badumna Basics R SCALIFY

switch (e.Key)
{

case Key.R:
this .mAvatar. FixPosition (new Vector3(50f, 50f
, 0£));
break;
}
if (moveDirection != 0)

{

Vector3 velocityChange = new Vector3();

double angle = this.mAvatar.Orientation * Math.PI
/ 180.0;

velocityChange.X = (float)(moveDirection *
MainWindow . MoveAmount * Math.Cos(angle));

velocityChange.Y = (float)(moveDirection x
MainWindow . MoveAmount * Math.Sin (angle));

this .mAvatar. Velocity += velocityChange;

}

e.Handled = true;

In this example, Position is still replicated every time it changes, as ComputePo-
sition() will set the Position property, which in turn will flag for update by calling
OnPositionUpdate(). Since the avatar’s position is being dead-reckoned on remote
peers, it is not always necessary to replicate the position data in addition to veloc-
ity. It is up to the application to determine a strategy for deciding when to flag
dead-reckoned entities” positions for update. A conservative strategy would be to
still replicate position data whenever it changes as in this demo. A less conser-
vative strategy, for example only replicating position data when velocity changes,
would reduce bandwidth consumption at the cost of increasing the probability of
positional errors creeping in. Most applications will be able to tolerate small errors
without impairing user experience.

Checklist:
v Configure connectivity by either:

v (a) Using a seed peer:

v Start the seed peer with the application name “api-example”

46

Chapter 3. Badumna Basics R SCALIFY

v Configure the API Example with the seed peer’s address and port
(see subsection 2.4.1).

v or (b) Configure the API Example to run in LAN mode (see subsec-
tion 2.4.1).

v/ Build and run ApiExample.

3.4 Multiple scenes

As described earlier in this chapter, Badumna uses the concept of a scene to rep-
resent a discrete part of a virtual world. Entities in a given scene will only be
replicated to other peers if that peer has joined the same scene. Scenes can be used
to represent different levels in a game, or distinct parts of a virtual world, that
cannot be ‘seen’ from each other.

3.4.1 Key Concepts
In order to change scenes, a peer simply has to unregister its original entities and
leave the current scene, join a new scene an reregister its original entities.

3.4.2 Badumna API usage

1. Unregister original entities:
NetworkScene.UnregisterEntity(ISpatialOriginal)
Entities will no longer be replicated to peers joined to that scene.

2. Leave the scene:
NetworkScene.Leave()
The local peer will leave the scene.

3. Join a new scene
NetworkFacade.JoinScene(string, CreateSpatialReplica, RemoveSpatialReplica)
The locak peer will join the new scene.

4. Reregister original entities:
NetworkScene.RegisterEntity(ISpatialOriginal, uint)
Local entities are registered with the new scene.

3.4.3 API Example 4 - Multiple Scene Demo

In this example we will demonstrate Badumna’s multiple scene functionality. Bad-
umna uses the concept of scenes to support multiple levels, instances or shards.

47

http://www.scalify.com/badumna/api/1.4/html/AE0FBDB7.htm
http://www.scalify.com/badumna/api/1.4/html/B29AF279.htm
http://www.scalify.com/badumna/api/1.4/html/F10E07D4.htm
http://www.scalify.com/badumna/api/1.4/html/61C5BCCF.htm

Chapter 3. Badumna Basics R SCALIFY

These are essentially physically disjoint parts of the game. At any one time an en-
tity can only belong to a single scene. Entities in different Badumna scenes will not
see each other and will not replicate state changes to each other.

As already shown in ApiExample 1, a Badumna client joins a scene using the
network facade’s JoinScene method, which takes a scene name and delegates for
dealing with when an entity on the network (a replica) joins or leaves the scene so
the local client can show the replica in its game display. Local entities (originals)
must be registered with the scene using its RegisterEntity method for them to be
replicated over the network to other clients that have joined the scene.

In the previous example there was a single scene. Now we add an additional
scene associated with a region of space. As the player moves between the two
zones, we need to:

1. Unregister our local entity (the avatar) from the scene we are leaving with
NetworkScene’s UnregisterEntity method.

2. Stop our client from receiving updates from that scene by calling the Net-
workScene’s Leave method.

3. Join the new scene to start receiving updates from entities in it by calling the
network facade’s JoinScene method.

4. Register our local entity with the new scene by calling its RegisterEntity
method.

To implement the new scene in our example application, we first add an event
to the local avatar class that will be triggered whenever the avatar moves:

class LocalAvatar : Avatar, ISpatialOriginal
{

public delegate void PositionChangedHandler(Vector3 position);
public event PositionChangedHandler PositionChangedEvent;

protected override void OnPositionUpdate ()

{
NetworkFacade . Instance . FlagForUpdate (this , (int)
SpatialEntityStateSegment. Position);

if (this.PositionChangedEvent != null)
{

)

this . PositionChangedEvent(this . Position);

48

Chapter 3. Badumna Basics R SCALIFY

In the main window class, when we create to local avatar we subscribe to this
event with a handler that will check to see if the avatar has changed zone as a
result, and if so, unregister the avatar from the old scene, leave it, join the new
scene, and register the avatar with that one:

private void Login_Click(object sender, RoutedEventArgs e)
{

// Register the position changed event handler
this .mAvatar. PositionChangedEvent += this.
CheckChangeScene;

}

private void CheckChangeScene(Vector3 position)

{
if (!this.mlIsLoggedIn)

{
}

return;

// Check the position of the local Avatar
if (position.X >= 135 && position.X <= 384
&& position.Y >= 87 && position.Y <= 282)
{
//change scene
if (this.mScene.Name. Equals(SceneName))
{
// change from the main scene to the inner scene
named "rectangle"
this .mScene. UnregisterEntity (this .mAvatar) ;
this .mScene. Leave () ;

this . mScene = NetworkFacade.Instance.JoinScene ("
rectangle”, this.CreateSpatialReplica, this.
RemoveSpatialReplica);

this .mScene. RegisterEntity (this .mAvatar, (uint)
EntityType. Avatar) ;

}

else

{
if (!this.mScene.Name.Equals (SceneName))
{
// change from the inner scene named "rectangle" to
the main scene.
this .mScene. UnregisterEntity (this .mAvatar) ;
this . mScene.Leave () ;

49

Chapter 3. Badumna Basics R SCALIFY

this .mScene = NetworkFacade.Instance.JoinScene (
MainWindow . SceneName, this.CreateSpatialReplica,
this .RemoveSpatialReplica);

this . mScene. RegisterEntity (this.mAvatar, (uint)
EntityType. Avatar) ;

You are now ready to run the multiple scene API example.

Checklist:
v Configure connectivity by either:

v (a) Using a seed peer:
v Start the seed peer with the application name “api-example”

v Configure the API Example with the seed peer’s address and port
(see subsection 2.4.1).

v or (b) Configure the API Example to run in LAN mode (see subsec-
tion 2.4.1).

v/ Build and run ApiExample.

3.5 Private Chat

In section 3.2 we saw how proximity chat allows messages to be sent from a local
entity to all other entities nearby. Badumna supports a second chat facility called
private chat which allows an application to send chat messages to other specific
users.

3.5.1 Key Concepts

To use private chat, users must announce themselves to the network, providing
a name by which they can be contacted. Others who know this name can invite
the user to a private chat. When a private chat invitation has been accepted, the
inviter can send private messages directly to the invitee. Private chat sessions are
uni-directional, so both users need to establish sessions in order to have a two-way
conversation.

50

Chapter 3. Badumna Basics R SCALIFY

A Unique user names not enforced

At present, uniqueness of user names is not enforced by Badumna,
and it is up to the application to resolve this.

3.5.2

Badumna API usage

. Create a chat service:

NetworkFacade.CreateChatService()
A peer can use a single chat service for multiple, simultaneous, separate pri-
vate chat sessions with friends.

Open private channels to allow other users to try to chat:
IChatService.OpenPrivateChannels(ChatInvitationHandler, username)
Pass a delegate to handle chat invitations and a username for other users to
identify us by.

Update presence information to the network:
IChatService.ChangePresence(ChatStatus)

Chat status can be Online, Away, Chat, Do Not Disturb, or Extended Away.
Please note, the Offline status is automatically set by Badumna when user
goes offline, application should not call ChangePresence to change the chat
status to Offline. The Dont Reply, Ask and Notify chat status are used inter-
nally by Badumna, they should not be set by calling ChangePresence.

Accept invitations from other users (if desired):

ChatInvitationHandler passed when opening private channels. It in turn
passes delegates for handling messages from other users and updates to
their presence information.

. Invite other users to chat privately:

InviteUserToPrivateChannel(string)
Once other users have opened a private chat channel using a given username,
we can invite them to chat with us.

Unsubscribe from a channel to stop the private chat:
IChatService.UnsubscribeFromChatChannel(ChatChannelld)

It is best practice to check for existing chat sessions with a given user when
receiving a private chat invitation, and closing them with this method before
accepting the invitation.

51

http://www.scalify.com/badumna/api/1.4/html/7EFDB926.htm
http://www.scalify.com/badumna/api/1.4/html/7DFD2AC9.htm
http://www.scalify.com/badumna/api/1.4/html/A98CF422.htm
http://www.scalify.com/badumna/api/1.4/html/BCA090ED.htm
http://www.scalify.com/badumna/api/1.4/html/F5CF2095.htm
http://www.badumna.com/scalify/api/html/ECDF65E.htm

Chapter 3. Badumna Basics R SCALIFY

3.5.3 API Example 5 - Private Chat Demo

This example demonstrates how to use Badumna’s private chat feature including
how to subscriber to presence information regarding specific users in the network.
Badumna will notify appropriately if the user is online, offline, or idle. This pres-
ence information coupled with Badumna’s private chat feature can be used to build
chat rooms or provide this functionality as part of a more complex game. The ex-
ample presented is a very simplfied example of a private chat example as our goal
is to demonstrate how to access Badumna functionality. We therefore want to keep
the graphics user interface to a bare minimum.

To use Badumna’s private chat feature, NetworkFacade.Instance.CreateChatService()
should be called to get an IChatService object, which provides access to all Badumna
private chat features. In the following example code, the private chat session is ini-
tialized in a few steps: (i) get the IChatService object, (ii) call OpenPrivateChannels to
register the Channel Invitation Handler and local peer’s user name, (iii) change lo-
cal peer’s presence status to the default status, which is Online and then (iv) invite
all friends on local peer’s buddy list to the private channel.

this .badumnaChatService = NetworkFacade.Instance.
CreateChatService () ;

if (this.badumnaChatService == null)

{

}

return false;

this .badumnaChatService.OpenPrivateChannels(this .
HandleChannellnvitation , this.myName) ;
this .badumnaChatService.ChangePresence (ChatStatus.Online);

// invite all users to private channel
foreach (Friend friend in friends)
{
this .badumnaChatService. InviteUserToPrivateChannel (friend
.Name) ;

The ChatInvitationHandler delegate specified when calling OpenPrivateChannels
will be invoked when there is any incoming request from other users to subscribe
the private channel. The following method is used in this private chat example
program.

52

Chapter 3. Badumna Basics R SCALIFY

private void HandleChannellnvitation (ChatChannelld channel,
string username)
{
Friend friend = this.friends.GetFriend (username);
if (friend != null)
{
if (friend.Channelld != null)
{
if (!friend.Channelld.Equals(channel))
{
this .badumnaChatService.
UnsubscribeFromChatChannel (friend .
Channelld) ;
friend . Channelld = channel;
this .badumnaChatService. Acceptlnvitation (
channel, this.HandlePrivateMessage, this.
HandlePresence) ;

)

return;
}
else
{
friend . Channelld = channel;
this .badumnaChatService. Acceptlnvitation (channel,
this . HandlePrivateMessage , this.
HandlePresence) ;

When the ChatInvitationHandler delegate is called, the specified chat channel
object and its associated user name parameters are provided to identify the re-
mote requesting user. AcceptInvitation should be called to accept the invitation or
return from ChatInvitationHandler without calling AcceptInvitation. The ChatMes-
sageHandler and ChatPresenceHandler delegates are specified in the above example
code when calling AcceptInvitation. ChatMessageHandler will be invoked for each
incoming chat message from the remote user and ChatPresenceHandler is invoked
to notify the local peer that the remote user has changed his/her presence status.
In our private chat example program, both the ChatMessageHandler delegate and
the ChatPresenceHandler delegate just pass the incoming message or present status
to the graphics user interface for display purpose.

When the ChatInvitationHandler delegate is invoked, the specified chat channel
object should be stored in some custom class, such as a friend list container, these

53

Chapter 3. Badumna Basics R SCALIFY

per remote user chat channel objects will be required when you call SendChan-
nelMessage to send messages to the remote user.

In Badumna 1.4, each peer may call the Network Facade’s CreateChatSer-
vice() method multiple times to get many IChatService objects, each of them rep-
resents a chat session. In most cases, each peer only needs to call NetworkFa-
cade.Instance.CreateChatService() once to get its IChatService, which will be used for
both proximity and private chat. Multiple IChatService objects are required when
there are more than one ISpatialOriginal objects registered on the local peer, for
example, if you are running multiple NPCs in the same process then each of these
NPCs should have its own IChatService object.

You are now ready to run the privat chat API example. When running the
private chat API example, you will prompted to select one of the included buddy
tiles (john.list or mary.list). This will load the buddies for the given player, who
can then be chatted with if they are online. Run two instances to try out the chat
feature, and see the presence feature in operation.

Checklist:
v Configure connectivity by either:

v/ (a) Using a seed peer:
v Start the seed peer with the application name “api-example”

v Configure the API Example with the seed peer’s address and port
(see subsection 2.4.1).

v or (b) Configure the API Example to run in LAN mode (see subsec-
tion 2.4.1).

v/ Build and run ApiExample.

54

http://www.scalify.com/badumna/api/1.4/html/80F72F52.htm
http://www.scalify.com/badumna/api/1.4/html/80F72F52.htm

Chapter 4

Centralised Services

The previous chapter focussed on Badumna’s functionality that can be offered us-
ing its decentralised architecture and does not require any centralised servers. This
chapter will focus on Badumna'’s functionality that requires centralised resources
in the network. Each new functionality is explained by means of an example. We
also demonstrate how to set up the server component of Badumna. In certain cases,
we have also provided the source code for the server component. This will allow
you to customise the server module to your requirements.

Applications are included as part of the Badumna Network Suite installation
package. Source code for the examples is included in the same Windows examples
package as used in the previous chapter. See section 2.2 to find out how to obtain
all downloads.

4.1 Authentication and user management

Dei Server provides the authentication and user management service used in con-
junction with the Badumna framework. The service is responsible for authenticat-
ing users, validating their permission to use the application and issuing certificates
that can be used by other users to verify the validity of the users in the network.

A user will require an account to join a Dei-enabled application. When a user
first starts the application, it connects to the Dei Server and sends their user name
and password for authentication. Once the user is authenticated and verified as
a valid user to join the network, the Dei server issues a series of digitally signed
security tokens to the user, which must be used to log in to the Badumna network.
In short, Dei Server ensures that only valid users are allowed to join the network
while providing identity protection.

To set up a secure Badumna network, you need to do the following four things:

e Configure and run an instance of Dei Server.

55

Chapter 4. Centralised Services ¥ SCALIFY

e Provide a means for end-users to obtain accounts.
e Configure your Badumna clients to use Dei.

¢ Configure your services (seed peer, overload peer, arbitration servers) to use
Dei.

4.1.1 Dei Server

Dei Server is preconfigured to work out of the box. It is recommended that you
configure Dei Server to use secure connections. By default, Dei Server uses a
SQLite database to store user account information, but can be configured to use
MySQL or Microsoft SQL Server instead.

Running Dei Server

Dei Server can simply be launched from the command line:
DeiServer.exe.

By default, Dei Server will listen for incoming connection on port 21248. Use
the ——port option if you wish to use a different port, e.g.:

DeiServer.exe —--port=1234

When you run Dei Server for the first time, in addition to creating the necessary
database tables for storing user account information, it will create an administra-
tion account with the user name ‘admin’ and the password ‘admin_password’.
This account does not have permission to join a Badumna network. Instead it has
special administration permissions to create and modify other user accounts. You
should change the password immediately using the administration tool described
in the following section.

A Do not forget to change the default admin password.

Using secure connections

Dei Server can be configured to use SSL for secure communication, using the
—--ss1 option.

56

Chapter 4. Centralised Services ¥ SCALIFY

A Unity 2.6 and SSL

Unity 2.6 does not support the use of SSL, so Dei Server cannot use
SSL for Unity-based games at present.

In order to offer secure communications with clients over SSL, your Dei Server
installation will need an SSL certificate signed by a trusted Certificate Authority.
The certificate will need to include the URL that your Dei Server is hosted at in
it’s common name. Certificates can be obtained from various certificate authorities
including VeriSign.

Once you have obtained a signed certificate it should be saved in the same di-
rectory as the Dei Server executable (DeiServer.exe) in a file named “certificate.pfx”.
This certificate file will be password-protected, and you will need to pass the pass-
word to Dei Server using the ——certificate-password option.

If you do not have a signed certificate from a Certificate Authority, you can
either configure Dei Server to not use SSL, or you can use a self-signed certificate
generated by Dei Server automatically for you. If you choose the latter option,
then you will have to configure your Badumna client applications to permit self-
signed certificates to be used (see subsection 4.1.3). The common-name used in the
self-signed certificate can be specified using the —~common-name option.

For example, to use SSL with an existing certificate with the password ‘foo”:

DeiServer.exe —--ssl —--certificate-password=foo

To use SSL with an auto-generated self-signed certificate using the host name
‘my.server.com’:

DeiServer.exe —--ssl —-—-common—-name=my.Server.com

Using a different database

Dei Server currently supports the following databases: Microsoft SQL Server, MySQL
and SQLite.

Dei Server is configured to use SQLite by default, and since SQLite is a “zero-
configuration” database, it does not require any database to be created prior to
use. However, if you want to use Microsoft SQL Server or MySQL instead, then
you will need to create an empty database called “DeiAccounts” or another name
of your choice. Dei Server will create the required tables in the database on its
first run. Please refer to your Database vendor’s documentation for instructions
on creating a new database.

57

http://www.verisign.com/

Chapter 4. Centralised Services ¥ SCALIFY

Please note that if you wish to use MySQL you will also need to install MySQL
Connector/Net, available from the MySQL web site.

A Using MySQL Connector/Net with Mono

On Windows, the MySQL Connector/Net installer will installed the
required mysql.data.dll in the global assembly cache (GAC), and ed-
its the machine.config file to indicate that the MySQL data provider
is available in that assembly.

There is no Linux or Mac OS X installer, so if you are on one of those
platforms you will need to either install mysql.data.dll into the GAC
yourself using gacutil or move it into the same directory as the Dei
Server executable. You will also need to edit the DeiServer.exe.config
to indicate that the MySQL data provider is available in that assem-
bly. To do this, just uncomment the relevant part of the DbProvider-
Factories configuration, and check that the version and public key
token match the version of MySQL Connector/Net that you are us-
ing.

Dei Server uses a data provider to connect to a database. It ships with data
providers for Microsoft SQL Server (version 7.0 or later), and SQLite, and the data
provider for MySQL (MySql Connector /Net) is freely available (see above).

Dei Server’s database configuration is set in the file DeiServer.exe.config. This
file contains an application setting specifying which data provider to use, and the
connection string to use for your chosen data provider. Edit this file to use your
chosen database as follows:

1. Specify the correct data provider to use with your database: System.Data.SQLite
for SQLite (shown), System.Data.SqlClient for Microsoft SQL Server, or MySql.-
Data.MySqlClient for MySql.

2. Specify the connection string to use to connect to your database. Default con-
nection strings for each supported database are already specified, assuming
that you created the database called “DeiAccounts” on the same machine as
the one Dei Server is hosted on. If you are using MySQL you will need to
specify the user name and password for the account Dei Server will use to
access the database. For more information on connection strings please refer
to connectionstrings.com or your database vendor’s documentation.

<?xml version= encoding= ?7>

58

http://dev.mysql.com/downloads/connector/net/
http://www.connectionstrings.com

Chapter 4. Centralised Services ' SCALIFY

<configuration>

<appSettings>

<!— Database Provider —>

<add key="dataProvider" value="System.Data.S5QLite" />
</appSettings>

<!— Connection strings —>
<connectionStrings>
<add name="System.Data.SqlClient"
connectionString="Data Source=(local)\SOLEXPRESS;
Integrated Security=SSPI;Initial Catalog=DeiAccounts"/>
<add name="System.Data.SQLite"
connectionString="Data Source=DeiAccounts.s3db"/>
<add name="MySql. Data. MySqlClient”
connectionString="5Server=localhost; Port=3306;Database=
DeiAccounts ; Uid=YourAccountName ;Pwd=YourPassword ; " />
</connectionStrings>

<!— Third party data providers —>
<system.data>
<DbProviderFactories>
<remove invariant="System.Data.SQLite"/>
<add name="SOQLite Data Provider"
invariant="5System.Data.SQOLite"
description=".Net Framework Data Provider for SQLite"
type="System.Data.SQLite.SQLiteFactory , System.Data.SQLite" />
</DbProviderFactories>
</system.data>
</configuration>

Listing 4.1: DeiServer.exe.config

Dei Server command line option summary

When launching Dei Server from the command line, the following optional argu-
ments are supported:

-p, ——port=VALUE Listen on the given port for client connections. If not speci-
fied, the default port is 21248.

—s, ——ssl Use SSL for secure client connections.

—c, ——certificate-password=VALUE The password for the provided SSL certifi-
cate. If this option is not specified when using SSL, an auto-generated self-
signed certificate will be used.

59

Chapter 4. Centralised Services ¥ SCALIFY

-n, ——commonname=VALUE The name to use in the auto-generated self-signed
SSL certificate.

-g, ——generate-keys Generate new keys.

4.1.2 Creating user accounts

Your application will require some means of creating user accounts. User ac-
counts must be created through the Dei Server, rather than accessing the accounts
database directly, since the database stores encrypted passwords, and Dei Server is
responsible for the encryption. To support this and other administrative function-
ality Dei provides an administration client class, Dei.AdminClient, in the Dei. Admin-
Client.dll library.

Badumna applications will typically be accompanied by a website that allows
users to sign up for new accounts, and the web application behind the site will use
Dei.AdminClient to achieve this. The Badumna Network Suite provides “DeiAd-
ministrationTool”, which serves as a development tool for creating test accounts
on the Dei Server, and includes the source code to show an example of how to use
DeiAdminClient to create your own account sign-up website.

Dei Administration Tool

The Dei Administration Tool can be found under the Dei directory in the directory
where you installed Badumna Network Suite.

The Dei Administration Tool must be configured to connect to your Dei Server
instance. The configuration is in the file Configuration.xml in the App_Data direc-
tory.

<?xml version= encoding= ?7>
<Configuration

DeiServer=

Username=

Password=

SslConnection= />

Listing 4.2: DeiAdministrationTool\ App_Data\Configuration.xml

The default configuration tries to connect to Dei Server on the local host using
the default Dei Server port, 21248, and the automatically created administration
account with its default password. Edit this configuration file to match the host
name, port and connection type of you running Dei Server instance.

60

Chapter 4. Centralised Services ¥ SCALIFY

To launch the Dei Administration Tool run the launcher executable found in-
side the Dei\DeiAdministrationTool\ directory:

DeiAdministrationTool.exe

Command line arguments that can be specified are:
-p, ——port The port to listen on.
—i, ——ip The IP address to host the application at.

The default port is 21255. The default IP address is localhost. To make DeiAD-
ministrationTool accessible remotely, you should use your machine’s internal IP
address. For remote access, you will also need to configure your router to perform
port forwarding to forward http requests to the specified port.

A Running DeiAdministrationTool on Windows Vista/7

On Windows Vista and Windows 7, DeiAdministrationTool needs to
be run with administrator privileges the first time it is using a partic-
ular port, including the very first time it is run.

When running with administrator privileges, DeiAdministrationTool
will add the port to the URL Access Control List. After this has been
done, DeiAdministrationTool will not need administrator privileges
on subsequent runs.

@ Running DeiAdministrationTool with administrator privileges

To run DeiAdministraionTool with administrator privileges, launch
Command Prompt with administrator privileges by right clicking on its
Start Menu shortcut (Start > All Programs > Accessories > Command
Prompt) and selecting ‘Run as administrator’. You can then launch
DeiAdministrationTool from the command line as described above.

When you run the tool, you can create new user accounts that can be used to
join your Badumna network.

Each user account (including the automatically created administrator account)
can have various permissions set on it. All user accounts should have participation
permission, which means they may join a Badumna Network. The other permis-
sions an account may be assigned relate to the creation and modification of user
accounts on Dei. The administration account created on Dei Server’s first run does
not have participation permission, but does have full permission to create and

61

Chapter 4. Centralised Services ¥ SCALIFY

modify other user accounts. User accounts created with the Dei Administration
Tool only have participation permission. For more information on permissions,
please refer to the Dei API documentation.

A Change default password.

Do not forget to change the admin account password when you first
run the tool.

@ Creating your own Dei Administration Tool

Full source code for the Dei Administration Tool is available in the
Source directory in the Badumna Network Suite installation direc-
tory. It is written as an ASP.NET MVC web application, and requires
the free ASPNET MVC installation from Microsoft. Open DeiAdmin-
istrationTool.csproj in Visual Studio to see the source code.

Dei Administration Tool uses the DeiAdminClient.dll library. Game
operators will typically host their own website where users can sign
up for an account, that uses an ASPNET web application using this
library.

To learn more about building web applications using ASPNET see
the official Microsoft site: www.asp.net.

4.1.3 Using Dei in Badumna clients

To use Dei security in your Badumna client, you need to use a DeiTokenSupplier.
The DeiTokenSupplier takes care of connecting to the Dei Server, authenticating
user account details, and retrieving the security tokens. It will then use these to-
kens to let you log in to the Badumna network.

The API requires three steps:

1. Create a DeiTokenSupplier.
2. Authenticate the DeiTokenSupplier.
3. Use the DeiTokenSupplier to log in to the Badumna network.

For example:

62

http://www.scalify.com/badumna/api/1.4/html/D4F07625.htm
http://www.asp.net/downloads
http://www.asp.net

Chapter 4. Centralised Services ¥ SCALIFY

// Create a token supplier passing the address of the machine where Dei
Server is running, the port to connect on, and a flag indicating
whether to use SSL for a secure connection.

Dei.DeiTokenSupplier tokenSupplier = new DeiTokenSupplier("deiserver.
example.com”, 21248, true);

// Retrieve security tokens from Dei Server, using an existing account.

Dei.LoginResult result = tokenSupplier.Authenticate (username, password,
null /+ No progress tracker x/);

if (result.WasSuccessful)

{
)

NetworkFacade . Instance .Login (tokenSupplier);

Listing 4.3: Example: using Dei in a Badumna client.

When creating a DeiTokenSupplier you pass in the host name of the Dei Server,
and the port to try to connect to, which must of course match the port you specified
when launching the Dei Server. The third argument is a flag indicating whether to
use SSL, again this must tally with the command line arguments you specified
when launching the Dei Server.

If flag for using SSL is set to true then by default the call to Authenticate will
fail if the Dei Server installation is not using an SSL certificate that is signed by a
trusted authority, and contains a name that matches the address of the machine it
is running on. To allow developers to use SSL when they do not have such a cer-
tificate, DeiTokenSupplier can be configured to ignore various SSL authentication
errors, with the following properties:

IgnoreSslErrors Ignore all SSL certificate validation errors (Dei Server must still
be using SSL).

IgnoreSslCertificateNameMismatch Ignore SSL certificate name mismatch errors.

IgnoreSslSelfSignedCertificateErrors Permit the use of self-signed SSL certificates.

These properties must be set on the DeiTokenSupplier object before Authenti-
cate is called.

The authenticate method takes a user name and password, and a delegate for
monitoring progress.

Please refer to the API documentation for further information.

4.1.4 Configuring a Seed Peer to use Dei

When running a secure network, any Seed Peers will also have to be configured
to use Dei. Seed Peers need to be configured with the address and port of the Dei

63

Chapter 4. Centralised Services ¥ SCALIFY

Server instance to connect to, a user name and password, and a flag indicating
whether to use SSL.

This information can be specified using the ——dei-config-string option,
or in a configuration file specified using the ~—dei-config-file option:

= SeedPeer.exe —-dei-config-string=localhost;21248;true;username;password

=l SeedPeer.exe —-dei-config-file=deiConfig

When using the —-dei-config-string option, the option value should be
a semi-colon delimitted string consisting of host, port, SSL flag, username and
password. Any double quotation marks in the password will have to be escaped
using the backslash character and if the password includes white space, the entire
configuration string will need to be quoted using double quotation marks. White
space is not permitted anywhere else in the configuration string.

When using the ——dei-config-file option, the specified file must be in the
local directory, and should be formatted as follows:

deiHost:deiserver.example.com
deiPort:21248
deiUsername:username
deiPassword:password
useSslConnection:true

Replace ‘deiserver.example.com’, "21248’, “‘username’, and “password’ with the
hostname or IP address of your Dei server, the port number your Dei server is run-
ning on, and the user name and password of the account to use when connecting
to Dei respectively. The SSL connection flag should be set to "true’ or "false’.

A White space is not permitted.

The Dei configuration file must not include white space around the
colons. The password is permitted to include leading white space
which is interpreted as part of the password itself.

A Participation permission required.

The account your Seed Peer uses must have participation permission,
so you cannot use the administration account. See subsection 4.1.2 to
learn how to create a user account with participation permission.

64

Chapter 4. Centralised Services ¥ SCALIFY

Make sure you have configured the networkconfig.xml file as described in sub-
section 2.4.2. To start the SeedPeer manually with Dei server settings use the fol-
lowing command:

SeedPeer.exe —-—dei-config-file=deiConfig

where ‘deiConfig’ is the file containing the Dei configuration information as
described above.

4.1.5 API Example 6: Dei Server Demo

The following tutorial will demonstrate how to add Dei security to the API Exam-
ple application.

In this example, we have added a login window to the application in the new
file LoginWindow.xaml. The window includes a text box for the user name, a
password box for the password, and a login button. The logic for this window is
in the file LoginWindow.xaml.cs.

When the user clicks on the login button the LoginWindow’s loginbutton_Click()
method is called, which gets the username and password and passes them to the
DoDeiLogin() method.

public partial class LoginWindow : Window

{

private void loginbutton_Click(object sender,
RoutedEventArgs e)
{

string username = this.username.Text = this.username.
Text.Trim () ;
string password = this.password.Password;

this .DoDeiLogin (username, password) ;

Listing 4.4: LoginWindow.xaml.cs

The DoDeiLogin() method creates a DeiTokenSupplier, using a known host and
port. You will need to change the host (“dei.example.com”) to the IP address or
host name of the machine where you are running Dei Server. In this example, SSL
is turned off by passing false as the third argument, so the Dei Server must not be
configured to use SSL.

65

Chapter 4. Centralised Services ' SCALIFY

The DeiTokenSupplier then authenticates the username and password using its
Authenticate() method.

public partial class LoginWindow : Window
{

private void DoDeilLogin(string username, string password)
{
this . mTokenSupplier = new DeiTokenSupplier("dei.
example.com", 21248, false);

LoginResult result = this.mTokenSupplier. Authenticate
(username, password, null);

if (result.WasSuccessful)
{
this .mlogin = true;
this .Close () ;
}
else
{
this .password. Clear () ;
this . password.Focus () ;

Listing 4.5: LoginWindow.xaml.cs

To use this login window, the application just needs to add the following code
to MainWindow.Login_Click() :

private void Login_Click(object sender, RoutedEventArgs e
)
{

// Create and show Log in window
LoginWindow mWindow = new LoginWindow () ;
mWindow . ShowDialog () ;

// If login not successful, close the window
if (!mWindow.mlogin)
{

this.Close () ;

return;

66

Chapter 4. Centralised Services ¥ SCALIFY

}

// Badumna specific: Log in to the network
NetworkFacade . Instance . Login (mWindow. mTokenSupplier) ;

Listing 4.6: MainWindow.xaml.cs

This is all that is required to enable Dei security in your Badumna client. Don’t
forget that before you can test this application, you need to have configured and
launched Dei Server, and created at least one user account.

Checklist:
v Launch an instance of Dei Server.
v Configure Dei Administration Tool to connect to the Dei Server.
v Run Dei Administration Tool:

v Change the default admin password.

v Create a new user account.
v Edit LoginWindow.xaml.cs to connect to the Dei Server.
v Configure connectivity as in previous chapter’s examples:
v Run seed peer with application name “api-example” and configure ApiEx-

ampleb6 to use this seed peer,

v or, configure ApiExample6 to run in LAN mode.

v/ Build and run ApiExample6.

4.2 Arbitration

In addition to the key peer to peer networking facilities offered by Badumna, the
network suite also provides the facility to host central servers. These may be used
for services such as reliably hosting persistent data, and arbitrating parts of the ap-
plication logic that might be vulnerable to cheating if it were run on peer machines.

To support this, Badumna allows arbitration services to be implemented, where
a special peer running on a central server can register with the network as an ar-
bitration server, and other peers can connect to them as arbitration clients, and
communicate reliably.

67

Chapter 4. Centralised Services ¥ SCALIFY

@ Germ Harnesses

e The Badumna Network Suite includes Control Center which can
be used to remotely start and stop central services (see chap-
ter 8). To be controlled via the Control Center, applications ned
to be implemented using a Germ Harness which will host a pro-
cess and listen to Control Center instructions for starting and
stopping it et cetera.

e There are two kinds of Germ Harness: Process Harness for host-
ing normal processes, and Peer Harness for hosting processes
that will be peers in a Badumna Network.

The arbitration servers in this section are implemented using
Peer Harnesses.

4.2.1 Arbitration Servers

In order to act as an arbitration server, a Badumna peer needs to specify the name
of the arbitration service it offers in its NetworkConfig.xml file. Each Badumna
peer can only offer a single arbitration service.

<Module Name="Arbitration">
<Server>
<Name>ExampleArbitrationService</Name>
<ServerAddress>arbitration.example.com:21260</ServerAddres>
</Server>
</Module>

Badumna API Usage

The responsibilities of an arbitration server include:

1. Register as an arbitrator with the network, and handle received messages:
void RegisterArbitrationHandler(HandleClientMessage handler, TimeS-
pan disconnectTimeout, HandleClientDisconnect disconnect)

The peer then registers with the network, passing in a client message han-
dler, a client disconnection handler, and a disconnection timeout. Connected

68

http://www.scalify.com/badumna/api/1.4/html/F6FCBB47.htm
http://www.scalify.com/badumna/api/1.4/html/F6FCBB47.htm

Chapter 4. Centralised Services ¥ SCALIFY

clients are automatically assigned a session ID, and when they send a mes-
sage to the server this ID is passed in to the client message handler along
with the message itself, serialized as a byte array. The server will receive no-
tification via the client disconnection handler if a client connection is lost (i.e.
a message sent to the client fails to be delivered). The disconnection handler
is also triggered if a client has not sent a message to the server for longer than
the disconnection timeout period.

2. Send replies to clients:
void SendServerArbitrationEvent(int destinationSessionld, byte[] message)
The server can send messages back to the client, passing it the session ID, and
the message again serialized as a byte array.

A Arbitration Callback Exception Safety

When running using a peer harness, the handlers passed to Register-
ArbitrationHandler will be called by the peer harness during regu-
lar processing. For this reason they should not throw exceptions, as
these exceptions will not be caught, and will cause the program to
arbitration server to crash.

4.2.2 Arbitration Clients

Badumna clients that need to use an abitration server, must specify the arbitration
service in their NetworkConfig.xml file. A Badumna client can connect to multiple
Arbitration Servers.

<Module Name="Arbitration">
<Server>
<Name>CombatArbitrationService</Name>
<ServerAddress>combatarbitration.example.com:21260</ServerAddres>
</Server>
<Server>
<Name>TradeArbitrationService</Name>
<ServerAddress>tradearbitration.example.com:21260</ServerAddres>
</Server>
</Module>

69

http://www.scalify.com/badumna/api/1.4/html/9CF5E088.htm

Chapter 4. Centralised Services ¥ SCALIFY

To use the arbitration service, clients must get an arbitrator from the network
facade by name using the GetArbitrator method, and connect to it using its Con-
nect method:

public interface INetworkFacade

{
Badumna. Arbitration.IArbitrator GetArbitrator(string name);

)

namespace Badumna. Arbitration

{

public interface Badumna. Arbitration.IArbitrator

{

void Connect(
ArbitrationConnectionResultHandler
connectionResultHandler,
HandleConnectionFailure connectionFailedHandler,
HandleServerMessage serverEventHandler);

The Connect method takes handlers for receiving the connection result, con-
nection failure notifications, and server messages. When the connected, the arbi-
trator’s SendEvent method can be used to send messages to the arbitration server.
Messages should be serialized to byte arrays using the ArbitrationEventSet class.

namespace Badumna. Arbitration

{

public interface Badumna. Arbitration.IArbitrator

{

void SendEvent(byte[] message);

Messages can only be sent when the arbitrator is connected.

70

Chapter 4. Centralised Services ¥ SCALIFY

4.2.3 Arbitration Events

To facilitate message serialization, Badumna provides two classes: Arbitration-
Event and ArbitrationEventSet. Applications should subclass ArbitrationEvent
to create application-specific event classes, that can serialize themselves to a byte
stream, and construct themselves from data read from a byte stream. These classes
should then be registered with an ArbitrationEventSet, which can then be used to
handle serialization and deserialization of arbitration events.

Since arbitration messages need to be used by both client and server applica-
tions, they will usually be defined in a separate project. When an arbitration events
are registered with an ArbitrationEventSet, they will be assigned unique IDs based
upon the order in which they are registered. The ArbitrationEventSet will encode
this ID into the byte array when serializing the event, and use it to decide how to
deserialize the byte array upon receipt of an event. For this reason it is necessary
that arbitration events are registered in the same order on both server and client.

A Arbitration Events and Exceptions

Arbitrtation Events will typically be deserialized in the call to Arbi-
tration Server’s client event handler, which is invoked during the call
to NetworkFacade’s ProcessNetworkStatus() method.

The client event handler should not throw any exceptions (see page
69). It is therefore recommended that any exceptions thrown dur-
ing ArbitrationEvent construction are caught in the constructor and
a single custom exception is rethrown. This exception can then eas-
ily be caught in the client event handler where deserialization is at-
tempted.

There are two example applications demonstrating the use of the arbitration
API: API Example 7 shows how to store persistent data on an arbitration server,
and API Example 8 shows how vulnerable parts of the game logic can be run on
arbitration servers.

4.2.4 API Example 7: Buddy List Demo

It may be desirable to store persistent data on a central server, to allow a user to
retrieve that data when joining the network from any machine. For example, the
application may support a “buddy list” storing users’ friends so they can chat with
them in the application. To illustrate this, API Example 7 builds on API example 5,
Private Chat, but instead of storing buddy lists to disc on the user’s local machine,
they are stored on an arbitration server.

71

http://www.scalify.com/badumna/api/1.4/html/6FB7D7D5.htm

Chapter 4. Centralised Services ¥ SCALIFY

The client application is called Private Chat Client, and is based upon API Exam-
ple 5. The NetworkConfig.xml has been updated to specify the arbitration server
to use:

<Module Name= >
<Server>
<Name>friendserver</Name>
<UseServiceDiscovery>Enabled</UseServiceDiscovery>
</Server>
</Module>

Listing 4.7: NetworkConfig.xml (partial listing)

Notice that rather than specifying the address of the arbitration server, the
configuration enables ‘service discovery” instead. This tells Badumna to use dis-
tributed lookup to locate the server on the network by its name. The server must
also register itself by name with the network for this to work. See section 4.5 for
more information on distributed lookup.

The only change to the client application code is in the ChatManager class.
Where previously the Initialize() method loaded the buddy list from a file, and then
immediately opened chat channels with found buddies, this method now calls the
new method RetrieveFriendsList(), which attempts to connect to the arbitrator:

private void RetrieveFriendsList ()
{
this .buddyListArbitrator = NetworkFacade.Instance.
GetArbitrator (),
this .buddyListArbitrator.Connect(
this.HandleArbitrationServerConnectionResult,
this.HandleArbitrationServerConnectionFailure,
this . HandleServerMessage) ;

Listing 4.8: ChatManager.cs (partial listing)

The connection result handler will, upon notification of successful connection,
send a message to the arbitrator requesting the buddy list:

72

Chapter 4. Centralised Services ¥ SCALIFY

private void HandleArbitrationServerConnectionResult (
ServiceConnectionResultType result)

{
if (result == ServiceConnectionResultType.Success)
{
BuddyListRequest request = new BuddyListRequest(this.
MyUsername) ;
this.buddyListArbitrator.SendEvent(
BuddyListArbitrationEvents.
BuddyListArbitrationEventSet. Serialize (request));

Listing 4.9: ChatManager.cs (partial listing)

Notice that the message is sent using a request object of type BuddyListRe-
quest. This arbiration event is defined in the separate project BuddyListArbitra-
tionEvents, as it will be required by the client and server projects. BuddyListAr-
bitrationEvents also includes a second arbitration event, BuddyListReply, along
with the arbitration event set that is used to serialize and deserialize the events.
The buddy list request just stores the user name of the user making the request.
The buddy list reply contains a list of the user names of the requestor’s buddies.

The client’s server message handler will process buddy lists received from the
server, and this is where the code for establishing private chat channels with bud-
dies that used to reside in the Initialize method has been moved to:

private void HandleServerMessage (byte[] message)
{
ArbitrationEvent reply = BuddyListArbitrationEvents.
BuddyListArbitrationEventSet. Deserialize (message) ;
if (reply is BuddyListReply)
{
BuddyListReply buddyListReply = reply as BuddyListReply;
foreach (string name in buddyListReply.BuddyNames)
{

}

this . friends . AddFriend (name) ;

// invite all users to private channel
foreach (Friend friend in friends)
{
this .badumnaChatService. InviteUserToPrivateChannel (
friend .Name) ;

73

Chapter 4. Centralised Services ¥ SCALIFY

this . UpdateFriendsList () ;
this . UpdateSendToList () ;

Listing 4.10: ChatManager.cs (partial listing)

That completes the changes required to the private chat client. The arbitrtaion
server that will service the client is a simple application that just processes incom-
ing buddy list requests and responds with the known list of the user’s buddies.

It has been implemented using Badumna’s PeerHarness which allows the Bad-
umna Control Centre to launch and monitor processes on remote machines, but
this not compulsory for an arbitration server. Applications using PeerHarness re-
quire a class implementing the IHostedProcess interface:

public interface IHostedProcess
{
void Onlnitialize (string[] arguments);
bool OnPerformRegularTasks(int delayMilliseconds);
byte[] OnProcessRequest(int requestType, byte[] request);
void OnShutdown () ;
bool OnStart();

Listing 4.11: IHostedProcess

The PeerHarness will take care of logging in to the Badumna network, and will
use this interface to initialize, start and shutdown the hosted process, as well as
trigger regular processing and pass messages to it. In our example the PeerHar-
ness hosts an instance of the ArbitrionProcess class. The arbitration process holds
an arbitrator which does the actual work. The arbitration process’s Onlnitialize
and OnShutdown pass on initialization and shutdown requests to the arbitrator
respectively. The OnStart method registers the arbitrator with the network as an
arbitration handler, by passing in it’s client event and disconnection handlers to
the network facade’s RegisterArbitrationHanler method:

public bool OnStart ()

{
// registering the ArbitrationEventHandler

NetworkFacade . Instance . RegisterArbitrationHandler (

74

Chapter 4. Centralised Services ¥ SCALIFY

this.arbitrator.HandleClientEvent,

TimeSpan . FromSeconds (60) ,

this.arbitrator.HandleClientDisconnect);
Console. WriteLine ("The arbitrator is in session.");
return true;

Listing 4.12: ArbitrationProcess (partial listing)

The arbitrator stores buddy lists in a database, and use of the database is en-
capsulated in a data access layer (DAL) called ArbitrationDAL. There are no re-
strictions on how arbitration servers handle requests or store data, however, it is
good practise to minimize disc reads and writes and database queries and updates,
particularly when there will be a rate of requests to be served. In this exaple, each
client is only likely to need to request its Buddy List once per session, so a database
hit is unlikely to cause a problem, even with thousands of users.

Since the arbitrator only receives one type of request, it’s HandleClientEvent
method simply deserializes the message that it knows is a BuddyListRequest. It
reads the user name of the requestor and retrieves the user’s buddy list from the
DAL. The buddy list is encoded in a BuddyListReply and sent back to the client
using the network facade’s SendServerArbitrationEvent method:

private void HandleBuddyListRequest(int sessionld,
BuddyListRequest request)
{
Console. WriteLine ("Handling buddy list request...");
Collection <string> buddyList = new Collection<string >(this.
arbitrationDAL . GetBuddies (request.UserName)) ;
Console. WriteLine (" {0} buddies found ({1})", buddyList.Count,
buddyList. ToString ()) ;
BuddyListReply reply = new BuddyListReply(buddyList);
this .networkFacade.SendServerArbitrationEvent (sessionld,
BuddyListArbitrationEventSet. Serialize (reply));

Listing 4.13: Arbitrator (partial listing)

The remainder of the code in the BuddyListArbitrator project relates to the stor-
age of buddy lists in a database, and the generation of test data, and is application
specific, so not further discussed here.

75

Chapter 4. Centralised Services ¥ SCALIFY

Running the example

The Buddy List Arbitration Server must be passed the application name to use on
the command line using the ——application-name option:

BuddyListArbitrationServer.exe —-—application—-name=api-example

The Private Chat Client has the application name “api-example” hard-coded,
so can be launched with no command line arguments.

Checklist:
v Configure connectivity for server and clients:

v Run a seed peer with the correct application name, and configure server
and clients’ initializer to point to it,

v or, configure server and clients to run in LAN mode.
v/ Build and run BuddyListArbitrationServer with the correct application name.

v Build and run PrivateChatClient.

4.2.5 API Example 8: Combat Arbitration Demo

The previous example demonstrated a minimal example of using an arbitration
server to store persistent data. The second general use for arbitration servers is
to run sensitive game logic on trusted machines to prevent cheating. To illustrate
this, API Example 8 shows how to use arbitration servers to police player combat.
It also shows how multiple arbitration servers can access a single database storing
game data, and ensure that they do not try to make conflicting updates.

The game

The client application is based upon the demo application developed through API
examples 1 to 3. A toy combat element is added to the game, by allowing users to
click on other players” avatars to attack them. Combat can only take place when
both players have ‘joined” a combat zone. Combat zones are conceptual artefacts
rather than ‘physical’ zones mapped to an area of space. The example has two
combat zones managed by separate combat arbitrators. Each client should connect
to both arbitrators. A player can ‘join” a combat zone by sending a join request to
the arbitrator. A player can only be in one combat zone at a time.

76

Chapter 4. Centralised Services ¥ SCALIFY

The client

In order to illustrate the interaction with the arbitration servers clearly, the client
interface are additional interface components. For each arbitrator, there is a panel
indicating whether the client is connected to the arbitrator, and whether the player
has joined its combat zone. There are buttons to allow the user to connect to the
arbitrator, join its combat zone, and also leave its combat zone. There is also a log
window which reports on the interaction with the arbitration servers. The example
uses this interface to allow users to make invalid join and requests to show that the
arbitration server will reject them.

The avatars have been updated to display a self-assigned user ID used to iden-
tify the player to the arbitration server, and also indicate any combat zone joined.
In a real application, if persistent data is used by an arbitration server, players
should be identified by their Dei user ID, and player avatars identified by the com-
bination of their Badumna ID and the users ’s Dei ID, but that is beyond the scope
of this example.

The client is implemented using the Model-View-View Model (MVVM) pattern
and interaction with the arbitration servers is managed by the CombatZoneView-
Model class. Command for connecting to the arbitrator, and joining and leaving
the arbitrator are exposed as ICommand objects. The ConnectCommand property
wraps the Connect method, which gets an arbitrator by name (using a name that
must be specified in the NetworkConfig.xml file), and tries to connect to it:

private void Connect()
{
this.arbitrator = this.networkFacade.GetArbitrator (this.
arbitratorName) ;
this.arbitrator.Connect(
this . HandleConnectionResult,
this.HandleConnectionFailure,
this . HandleServerMessage) ;
this .IsConnecting = true;

Listing 4.14: CombatZoneViewModel.cs (partial listing)

The connection result and failure handlers update the UI to enable and disable
the ConnectCommand. The server message handler will deserialize the received
message, and report on the request result received from the arbitrator:

77

Chapter 4. Centralised Services ' SCALIFY

private void HandleServerMessage (byte[] message)

{

ArbitrationEvent reply = CombatArbitrationEventSet.
Deserialize (message) ;
if (reply is StatusReply)

{
this .Log("Received status from " + this.arbitratorName);
StatusReply statusReply = reply as StatusReply;
if (statusReply.CurrentZone == this.arbitratorName)
{
this.IsJoined = true;
}
}
else if (reply is JoinReply)
{
JoinReply joinReply = reply as JoinReply;
if (joinReply.Result)
{
this .Log(this.arbitratorName + " accepted join
request.");
this.IsJoined = true;
}
else
{
this .Log(this.arbitratorName + " rejected join
request.");
}
}
else if (reply is LeaveReply)
{
this .Log("Received status from " + this.arbitratorName);
LeaveReply leaveReply = reply as LeaveReply;
if (leaveReply.Result)
{
this .Log(this.arbitratorName + " accepted leave
request.");
this.IsJoined = false;
}
else
{
this .Log(this.arbitratorName + " rejected leave
request.");
}
}
else if (reply is CombatResult)
{

this.Log("Received status from " + this.arbitratorName);
CombatResult combatResult = reply as CombatResult;
if (combatResult.IsValid)

{
if (combatResult. Attackerld == this.Playerld)

78

Chapter 4. Centralised Services ' SCALIFY

{
if (combatResult.Result)
{
this .Log(
"Attack on player " + combatResult.
VictimId +
succeeded (" + this.arbitratorName + ")
)
}
else
{
this .Log(
"Attack on player " + combatResult.
VictimId +
failed (" + this.arbitratorName + ").")
}
}
else if (combatResult.Victimld == this.Playerld)
{
if (combatResult.Result)
{
this . Log(
"Attack by player " + combatResult.
VictimId +
succeeded (" + this.arbitratorName + ")
¥
}
else
{
this .Log(
"Attack by player " + combatResult.
VictimId +
failed (" + this.arbitratorName + ").")
}
}
else
{
this . Log(
"Received irrelevent combat result (" +
combatResult. AttackerId + " on " +
combatResult. VictimId + ").");
}
}
else
{
this .Log(this.arbitratorName + " denied combat
attempt.");
}

79

Chapter 4. Centralised Services ¥ SCALIFY

else

this .Log("Received unknown message from " + this.
arbitratorName) ;

Listing 4.15: CombatZoneViewModel.cs (partial listing)

The servers

The combat arbitration server uses a PeerHarness to run an IHostedProcess as in
the previous example. The hosted process, ArbitrationProcess again holds an arbi-
trator object whose methods it registers with the network for arbitration handling:

public bool OnStart ()
{
// registering the ArbitrationEventHandler
NetworkFacade . Instance . RegisterArbitrationHandler (
this.arbitrator.HandleClientEvent,
TimeSpan . FromSeconds (60) ,
this.arbitrator.HandleClientDisconnect);
Console. WriteLine ("The arbitrator is in session.");
return true;

Listing 4.16: ArbitrationProcess.cs (partial listing)

The arbitrator uses the arbitration event set to deserialize messages from the
client, then it handles them according to their type:

public void HandleClientEvent(int sessionld, byte[] message)

{

ArbitrationEvent arbitrationEvent = CombatArbitrationEventSet
.Deserialize (message) ;

StatusRequest statusRequest = arbitrationEvent as
StatusRequest;
if (statusRequest != null)

{

Console. WriteLine ("Handling status request”);

80

Chapter 4. Centralised Services ¥ SCALIFY

this . HandleStatusRequest(sessionld , statusRequest);

return;
}
JoinRequest joinRequest = arbitrationEvent as JoinRequest;
if (joinRequest != null)
{
Console. WriteLine ("Handling join request");
this . HandleJoinRequest(sessionld , joinRequest);
return;
}
LeaveRequest leaveRequest = arbitrationEvent as LeaveRequest;
if (leaveRequest != null)

{
Console . WriteLine ("Handling leave request”);
this . HandleLeaveRequest(sessionld , leaveRequest);
return;

)

CombatRequest combatRequest = arbitrationEvent as
CombatRequest;

if (combatRequest != null)

{
Console . WriteLine ("Handling combat request”);
this . HandleCombatRequest(sessionld , combatRequest);
return;

Listing 4.17: Arbitrator.cs (partial listing)

The arbitrators share access to a database, and this is managed through a data
access layer (DAL). The database contains a table listing each player’s strength and
victory count. It also holds a table listing which combat zone each player is in, if
any. When a player make a join request to the arbitrator, the arbitrator will only let
the player join if it is not in another zone already, in which case it will update the
database table to show the player is now in the zone. The DAL makes this check
and update as a single atomic operation, and an arbitrator will only read or update
a player’s data in the database while the player is in it’s zone. This implements
the /emphpessimistic offline lock pattern to prevent database conflicts, and means
that multiple arbitrators can share access to the players’ combat data.

When a player successfully joins a zone, the arbitrator retrieves the player’s
combat data from the DAL, and caches it, reporting the success of the join request
to the client:

81

Chapter 4. Centralised Services ¥ SCALIFY

private void HandleJoinRequest(int sessionld, JoinRequest
joinRequest)
{
PlayerCombatData pcd = this.arbitrationDAL.JoinArbitrator (
joinRequest.Playerld);
if (pcd != null)
{
this .playerCombatData.Add(joinRequest.Playerld, pcd);
this .sessionldByPlayerld .Add(joinRequest.Playerld,
sessionld);
this.playerIdBySessionld .Add(sessionld , joinRequest.
Playerld);
}

JoinReply reply = new JoinReply(pcd != null);
this .networkFacade.SendServerArbitrationEvent (sessionld,
CombatArbitrationEventSet. Serialize (reply));

Listing 4.18: Arbitrator.cs (partial listing)

Combat requests are adjudicated on the basis of the two players” combat data,
with a victory awarded to the player with the highest strength value. The result is
returned to players involved:

private void HandleCombatRequest(int sessionld , CombatRequest
combatRequest)
{
if (this.playerCombatData.ContainsKey (combatRequest.
Attackerld) &&
this .playerCombatData.ContainsKey (combatRequest. VictimId)
)

float attackerStrength = this.playerCombatData|
combatRequest. AttackerId]. Strength;

float victimStrength = this.playerCombatData|
combatRequest. VictimId]. Strength;

if (attackerStrength >= victimStrength)

{
this .playerCombatData[combatRequest. AttackerId].

Victories++;

else

82

Chapter 4. Centralised Services ¥ SCALIFY

this . playerCombatData[combatRequest. VictimId].
Victories ++;

}

CombatResult result = new CombatResult(
true,
combatRequest. Attackerld,
combatRequest. VictimId ,
attackerStrength >= victimStrength);

byte[] message = CombatArbitrationEventSet. Serialize (
result);

this .networkFacade.SendServerArbitrationEvent (sessionld ,
message) ;

this .networkFacade.SendServerArbitrationEvent (this.
sessionldByPlayerId [combatRequest. VictimId], message)

7

}

else
{
CombatResult result = new CombatResult(
false ,
combatRequest. AttackerId,
combatRequest. VictimId ,
false);
byte[] message = CombatArbitrationEventSet. Serialize (
result);
this .networkFacade.SendServerArbitrationEvent (sessionld ,
message) ;

Listing 4.19: Arbitrator.cs (partial listing)

The DAL does not contain any Badumna-specific code, and so is not explicitly
described here. The important point about it is that its design allows each arbitra-
tor to operate on the same database, while minimizing database hits, and therefore
it should scale well to allow thousands of players easily.

Running the example

The server requires the arbitrator name to be passed on the command line, and also
specified in the network configuration file. A configuration file to be used instead
of the default NetworkConfig.xml can be specified on the command line using the
--network-configuration option. The server will also require the applica-
tion name to be specified on the command line using the ——application-name
option. This name must match the name used by the client (“api-example”).

83

Chapter 4. Centralised Services ¥ SCALIFY

For ease of use the combat arbitrator project includes two scripts to launch ar-
bitration servers with appropriately configured configuration files: LaunchCom-
batZoneA .bat and LaunchCombatZoneB.bat. The arbitration client (ApiExample)
should specify the arbitrators to use in its NetworkConfig.xml file.

Checklist:
v Configure connectivity for server and clients:

v Run a seed peer with the correct application name, and configure servers
and clients’ initializer to point to it,

v or, configure server and clients to run in LAN mode.

v N.B. the configuration for the two servers should be done in their indi-
vidual configuration files (CombatZoneAConfig.xml and CombatZoneB-
Config.xml), but the clients can share the usual NetworkConfig.xml.

v Build CombatArbitrationServer and launch two instances using the provided
batch scripts (LaunchCombatZoneA bat and LaunchCombatZoneB.bat).!.

v Build and run several instances of ApiExample8, picking a different player
ID each time when prompted.

4.3 Overload Server

Overload Server is a Badumna peer with special functionality associated with it.
It provides load balancing and fall back mechanism for normal Badumna peers
to share their load in the event of starvation (a Badumna node experiencing high
outgoing network traffic and unable to handle the load). This can happen due
to a flash crowd event, e.g. lots of people gathering in a small space. In such
a scenario, if a normal Badumna peer is unable to handle the network activity
by itself then it will offload some of its network load to an Overload Server (if
available). Hence, the Overload Server needs to be a Badumna peer running on an
operator controlled machine that can support such load balancing functionality.
Instructions to setup an Overload Server for your application are as follows:

1. Install the Overload Server application on an appropriate machine (Overload
Server is available as part of Badumna Network Suite installation package).

2. Edit the network configuration for the Overload Server, setting the port to
use (if the default is unsuitable) and enter the details of your Seed Peer in

f running under mono, launch them from the command line, using the commands in the batch
scripts preceded by mono or mono service

84

Chapter 4. Centralised Services ¥ SCALIFY

the Initializer tag. The network configuration is stored in a file called "net-
workconfig.xml" which you can find in the Overload Server folder. Within
the connectivity module of this file , you will find the following line:

<PortRange >21252, 21252</PortRange>

The port range specifies the port number at which Overload Server should
run at. You do not have to change this value unless for some reason, you are
not able to use the default port number 21252 on your machine. If this is the
case, then change the number 21252 (both occurrences) with a port number
that is available.

The connectivity module also has the following line:

<Initializer type= >seedpeer.example.com:21251</ Initializer
>

Please change “seedpeer.example.com” with the details of your Seed Peer and
also the port number to the port number of your Seed Peer.

3. Start the Overload Server. The Overload Server should be run from the com-
mand line, optionally specifying an application name:
OverloadPeer.exe ——application—-name=my-application
If Dei is being used to run a secure network, the Dei configuration can also
be specified using the command line options

e ——dei-config-file,or

e ——dei-config-string.
See subsection 4.1.4 for information on Dei configurations.

4. Now you need to specify the details of the Overload Server in your client
network configuration (Badumna network configuration). Please add the

85

Chapter 4. Centralised Services {* SCALIFY

following code to the network configuration of your client. If you are us-
ing NetworkConfig.xml file then add this to that file.

<Module Name= >
<EnableOverload >enabled </EnableOverload >
<OverloadPeer>overloadserver.example.com:21252 </ OverloadPeer
>
</Module>

where overloadserver.example.com is the hostname of your machine run-
ning the Overload Server and 21252 is the port number.

Alternatively, you can use distributed lookup to locate overload servers on
the network (see section 4.5):

<Module Name= >
<EnableOverload >enabled </EnableOverload >
<UseServiceDiscovery >enabled</UseServiceDiscovery >
</Module>

@ Multiple overload servers

If you require multiple overload servers, you must use distributed
lookup.

If you are a Unity3D user, then you need to include this network configuration
information within the networkinitialization.cs script (configurin badumna pro-
grammatically).

badumnaConfigOptions.IsOverloadEnabled = true;
badumnaConfigOptions . OverloadPeer = ;

Your Overload Server has now been configured and is ready for use.

86

Chapter 4. Centralised Services {* SCALIFY

’ Prefix ‘ Meaning ‘
http:/ /+:8080/ Listen for requests on all interfaces on port
8080.
https:/ /+:8080/ Listen for requests on all interfaces on port
8080 using SSL (a certificate must be config-
ured).
http:/ /localhost:8081/ | Listen for requests to localhost on port 8081.

Table 4.1: HTTP Prefix Examples

44 HTTP Tunnelling Service

44.1 Introduction

The HTTP Tunnelling Service allows clients to connect to the peer-to-peer net-
work using a client-server HTTP connection. This enables users behind restric-
tive firewalls to connect to the network. It can also support clients on bandwidth-
constrained devices. The client only makes a connection to the tunnelling service
and the tunnelling service is responsible for sending the appropriate messages
on the peer-to-peer network. The machine which runs the tunnel server must
have sufficient network, CPU, and memory resources to supported the connected
clients.

4.4.2 Server Configuration

The tunnel server is a process that can be run standalone or under the control
center. The tunnel server requires either Microsoft .NET Framework v2.0 or later
running on Microsoft Windows XP SP2 or later; or Mono on any platform. Because
the tunnel server acts as a proxy client, it requires the same NetworkConfig.xml as
used by the clients to be placed in its working directory. The only other configura-
tion information required for the tunnel server is the “URL prefix” to listen on. The
prefix is specified as the first parameter on the command line when in standalone
mode, or in the tunnel server’s configuration page in the control center. Some ex-
ample prefixes and their meanings are listed in Table 4.1. See UrlPrefix Strings on
Microsoft’s site for a full description of URL prefix strings. For example, to start
the tunnel listening for requests on all interfaces on port 8080:

Tunnel.exe http://+:8080/

Additional configuration may be required depending on the prefix used, see
below for details.

87

http://msdn.microsoft.com/en-us/library/aa364698.aspx

Chapter 4. Centralised Services ¥ SCALIFY

Permissions

When running the tunnel server on Microsoft Windows using the Microsoft NET
Framework, the user running the tunnel server must have permissions to listen
on the specified URL prefix. This requirement does not apply when using Mono
because Mono does not use Microsoft’s HTTP Server API. Note that when run-
ning the tunnel server on a Unix-based platform it may require root privileges if
configured to listen on a port below 1024.

On Windows Vista and later the netsh.exe program can be used to grant per-
missions to listen on a given prefix. For Windows XP, httpcfg.exe? must be used.
To grant permission for “Everyone” to listen on “http://+:8080/” use one of the
following commands:

Vista and later: netsh http add urlacl url=http://+:8080/ user=Everyone
XP: httpcfg set urlacl /u http://+:8080/ /a "D:(A;;GX;;;WD)"

See Configuring Namespace Reservations on Microsoft’s website for further
details.

4.4.3 Client Configuration

The client configuration consists of setting the tunnel mode and specifying a list of
URIs of tunnel servers. The configuration can be specified in the XML configura-
tion file or by using the ConfigurationOptions class. The XML configuration takes
the following form:

<Tunnel Mode="0On">
<Uri>http://tunnell . example.com:8085/</Uri>
<Uri>http://tunnel2.example.com:8085/</Uri>
</Tunnel>

The tunnel mode can be set as described in Table 4.2. By default the tunnel
mode is set to Auto. Note that if the tunnel mode is set to On and no URIs are
specified then the client will not be able to connect at all. At least one tunnel URI
must be specified for tunnelling to be used. If multiple tunnel URIs are specified
then Badumna will randomly select one to connect to. If a connection cannot be
formed then the remaining tunnels will be tried in a random order until a connec-
tion is successful or the list is exhausted.

2ht’cpcfg.exe is part of the Optional Tools component of the Windows XP SP2 Support Tools.

88

http://msdn.microsoft.com/en-us/library/ms733768.aspx
http://go.microsoft.com/fwlink/?LinkID=84085

Chapter 4. Centralised Services {* SCALIFY

| Mode | Description ‘

Off | Tunnelling will not be used. If a direct UDP connection
cannot be established then the client will not be able to
connect to the network.

On | Tunnelling will always be used. If a tunnel server cannot
be contacted then the client will not be able to connect to
the network.

Auto | A direct UDP connection will be attempted. If UDP
traffic is blocked then a tunnelled connection will be at-
tempted.

Table 4.2: Tunnel Modes

Note that when in Auto mode Badumna will try all ports in the range it is con-
figured to use before falling back to tunnelled mode. This occurs synchronously
when NetworkFacade.Instance is first accessed. If a large port range is specified
it could take a long time so it is recommended that the port range be restricted by
the “MaxPortsToTry” attribute when using Auto mode. e.g.:

<Module Name= >
<PortRange MaxPortsToTry="3">27350,27359</PortRange>
</Module>

Also note that when tunnelling is in use (i.e. tunnel mode is On or tunnel
mode is Auto and UDP is detected as blocked), a connection to the tunnel server
is not initiated until the Login(...) method is called. This is a safeguard — the initial
connection to the tunnel server must send the user’s credential so that the tunnel
server can validate the user’s permission to use the network.

4.4.4 Programming Considerations

When Badumna is using a tunnelled connection most API calls require a message
to be sent to the tunnel server. These calls all make synchronous (blocking) re-
quests to the tunnel server. If a tunnel request fails then the API method will
throw a TunnelRequestException (this can occur if, e.g., the network connection
to the tunnel server is lost). This behaviour should be taken into account when
deciding to support tunnelled connections. As an explicit exception, the Network-
Facade.FlagForUpdate(...) methods do not make a request to the tunnel server and
do not block.

89

Chapter 4. Centralised Services ¥ SCALIFY

Another restriction when using a tunnelled connection is that certain API meth-
ods are not supported. These will throw NotSupportedExceptions if called when
a tunnel connection is in use (the API documentation for each method indicates
if it’s not supported under tunnelling). NetworkFacade.IsTunnelled can be used
to determine if the connection is tunnelled. The unsupported methods are limited
to methods intended to be used for ‘server’-type behaviour such as the arbitration
server. All methods required by end-user clients are supported over tunnelled
connections.

90

Chapter 4. Centralised Services ¥ SCALIFY

4.5 Distributed lookup service

One of the new features introduced in Badumna 1.4 is Distributed Service Dis-
covery, also known as distributed lookup. Instead of requiring the IP addresses
and ports of centralised services to be known to all clients at start up, Distributed
Service Discovery allows clients to locate these services at runtime in a completely
decentralized manner. The benefits of using Distributed Service Discovery include:

1. Flexibility: Extra instances of centralised services can be added at runtime.
Clients can locate and start using them in a matter of minutes.

2. Reliability: Usually a central server is employed to store the address infor-
mation of all the servers in the game network and supply that information to
the clients at start-up. However, the central server introduces an additional
single point of failure to the already complex gaming system. Distributed
Service Discovery eliminates the single point of failure thereby increasing
the fault tolerance of the system significantly.

The Distributed Service Discovery feature can be used in Badumna based games
by configuring the NetworkConfig.xml files of both the server and client. For ex-
ample, for an arbitration server called combatzonea, the server side can enable the
Service Discovery feature by including the following XML snippet in the Network-
Config.xml file.

<Module Name= >
<Server>
<Name>combatzonea</Name>
<UseServiceDiscovery>enabled </UseServiceDiscovery >
</Server>
</Module>

The client side NetworkConfig.xml file should contain the same configuration
snippet as the one above. This will ensure that the client requests the address of
combatzonea arbitration server during runtime.

To use Service Discovery for Overload Service, the following configuration
should be used in Overload server’s NetworkConfig.xml.

<Module Name= >
<AcceptOverload>enabled </ AcceptOverload >
<UseServiceDiscovery>enabled </UseServiceDiscovery >

91

Chapter 4. Centralised Services {* SCALIFY

</Module>

The client networkconfig.xml should include the following:

<Module Name= >
<EnableOverload >enabled </EnableOverload >
<UseServiceDiscovery>enabled </UseServiceDiscovery >
</Module>

Or for Unity3D user you should use the following codes:

badumnaConfigOptions.IsOverloadEnabled = true;
badumnaConfigOptions.IsOverloadServiceDiscoveryEnabled = true;

In Badumna 1.4, both arbitration and overload servers can be located using the
Distributed Service Discovery method. Our results indicate that the vast majority
of clients can successfully locate the requested server in less than 30 seconds after
start up.

As already pointed out at the beginning of this section, the major benefits of
the Distributed Service Discovery feature is the flexibility and reliability it brings
to the system. Consider the situation where there is a deployed overload server
with service discovery enabled, when the game operator decides to add another
overload server to the network to increase the overall capacity of overload servers,
they can start another overload server with the exact same configuration. The
newly added overload server will be located by peers in minutes and peers will
randomly connect to one of the servers to access its functionality. On server fail-
ure, peers connected to the affected overload server will automatically reconnect
to the other server. Once the server failure is recovered, peers will start connecting
to the restarted server again to achieve server load balancing.

92

Chapter 4. Centralised Services {* SCALIFY

A Clients cannot mix distributed and direct lookup for a service.

If a client is using distributed lookup for a service type (arbitration or
overload), it cannot also specify some servers using a fixed address.
Clients can still use different lookup methods between service types,

e.g. direct connection for arbitration and distributed lookup for over-
load.

93

Chapter 5

Unity3D

Badumna has built-in support for Unity3D (www.unity3d. com). Badumna’s Unity
package provides ready-to-use scripts to enable multiplayer functionality. This
chapter provides a simple guide to using the Unity package. It will give step-by-
step instructions on how to create multiplayer games using the Unity package in a
series of tutorials.

5.1 Getting started with the Unity package

These tutorials refer to the Unity package that can be downloaded as an accom-
paniment to the Badumna Network Suite (see section 2.2). Extract the UnityPack-
ages.zip file and copy the contents into the Standard Packages directory inside your
Unity installation directory.

A Unity 3D required.

You will require a copy of Unity3D installed on your machine. These
packages are built using Unity 2.6.

The tutorials introduce Badumna concepts and features in the same order as the
API Example presented in chapters 3 and 4. It is recommended that developers
refer to those chapter for more details on the key concepts and Badumna API used
in the scripts.

Each demo, except for the first, builds upon an earlier demo. The Unity pack-
age includes are provided with full source code for each completed demo. These
tutorials provide a full description of the changes required to add the new func-
tionality in each demo. Developers can either use the completed demo file, or
follow the tutorial to add the new features to the previous demo themselves.

94

www.unity3d.com

Chapter 5. Unity3D R SCALIFY

5.2 Basic multiplayer game

The first Unity tutorial will demonstrate how to build a very simple game with just
a player character game object, and synchronise basic state information across the
network. Before following this tutorial it is recommended that you read section 3.1
to learn about how Badumna performs replication and interest management.

This tutorial refers to Demo 1 (Demo1l-BasicDemo.unitypackage). It makes use
of the SmallLerpz model for the player character. This is one of the default models
included in the Unity toolset.

The demo package includes an initial scene file (Demol-initial.unity) with some
basic objects (ground, camera, light and a cube). The tutorial will show how to
build a basic networked game using Badumna through a series of steps. The demo
package also includes a final scene file that shows the completed tutorial.!

521 Create a new project

Open the Unity editor and create a new project. If you successfully copy the pack-
ages into the Standard Packages directory you should be able to see it under the
list of available packages when you create a new project. Include the Demol-
BasicDemo.unitypackage only and press the create button.

5.2.2 Open the Unity scene file

Open Demol-initial.unity file. You will notice there are four objects initially - Cube,
Directional light, ground and Main Camera (see Figure 5.1).

5.2.3 Create an empty game object and rename it ‘Network
Initialization’

1. Drag and drop the NetworklInitialization script on to this object (NetworkIni-
tialization.cs can be found in /Plugins/NetworkingScript/).

2. In NetworkInitialization (see inspector window), see ListOfAvatars. In this
example we only have one type of avatar, so set the size to 1 and set the
element 0 with SmallLerpz prefab (see figures 5.2 and 5.3).

3. Make sure the position of the NetworkInitalization object is above the ground.
As you can see in 5.3, the position is set to 0,0,0. Set the y coordinate to -13.5
as the ground is located at -18.522 (y-coordinate). Set the X coordinate to -2.4
and the Z coordinate to 0.8 (i.e. make sure that the X and Z coordinates are
still within the ground level).

'The completed tutorial will still require one edit before you can build and run it — you must
set the SeedPeer address in the Awake() function (see autorefunity-network-configuration).

95

Chapter 5. Unity3D R SCALIFY

¥ Unity - Demo_initial.unity - Demo1-BasicDemo

v[Artwork (Default Asset)

Directional light
aground
Main Camera

Figure 5.1: Demol-initial.unity

5.2.4 Set the application to run in background

Make sure that your application runs in the background by performing the follow-
ing steps.

1. Select: Edit — Project Settings — Player, from the Menu bar.

2. In the Inspector window you will see all the player settings. Enable ‘Run in
Background’ (see Figure 5.4).

5.2.5 NetworklInitialization.cs

NetworklInitialization.cs handles Badumna Network initialization, joining and
leaving a scene, registering and unregistering the local entity (the local player ob-
ject) and creating remote entities in the current scene. Before initializing Badumna
ensure that the network configuration has been loaded successfully.

96

Chapter 5. Unity3D R SCALIFY

<t Unity - Demo1_initial.unity - Demo1-BasicDemo* X

it Assets GameOl omponent Terrain Window Help.

(OEA S =] (> [11 [pi]

#Scene = Hierarchy. O Inspector

Textured, SLLRCE S el ez @ o [Network Initialization
piEonalon Tog [Untsgged | Layer [Dermix_____z]
ground =
Main Camera ¥~ Transform @
Network Initialization i

vio lzfo]

Rotation
x ¥ lzfo]
Scale
X1 Y1 z1
v) ¥ Network Initialization (Script) B

Script [Networkinitialization |
¥ List Of Avatars

Size 1
Element 0 SmallLerpz

& Project

» (dsmallLerpz
Demol
Demel_initial

» (EController
¥ (EaNetwaringkscript

Figure 5.2: Network Initialization

© nspector [|

@ M Network Initialization |
Tag | Untagged # | Layer | Default t]
¥ .. Transform & =
Position '
X0 ¥ o |z o |
Rotation
X0 ¥ [o zlo]
Scale
x 1 J¥ 1 20]
¥ [| ¥ Network Initialization (Script) o #
Seript [“iNetworkinitialization
¥ List Of Avatars
Size 1

Figure 5.3: Network Initialization (inspector window)

97

Chapter 5. Unity3D R SCALIFY

& Inspector] =

¥ ioi Player Settings (Player Settings) g #.
Company Mame YourCompanyName
Product Name Demol-BasicDemo
Default Screen Width 1024
Default Screen Height 7EE
Default Web Screen Width 600
Default Web Screen Height 450
Display Resolution Dialog Enabled -
Default Is Full Screen -
Use Alpha In Dashboard -
Run In Background [
Capture Single Screen -
Always Display Watermark -
Resolution Dialog Banner Maone (Texture 20} T

b lcons
b Supported Aspect Ratios
First Streamed Level With Resouw 0

Figure 5.4: Setting player to run in background

Network Configuration

Configure Badumna’s network settings in the Awake() function. In general, it is a
good idea to use an XML file for network configuration. However, due to security
restrictions in the Unity web player, access to the file system is not allowed. Hence,
Badumna network configuration is done in the application program. The seed peer
discovery method is used in these examples (see section 2.4). You need to change
the IP address (host name) of DiscoverySource to the IP address or host name of
the machine that is running the seed peer (see the yellow highlighted section in
Listing 5.1).

//// set the options programatically

ConfigurationOptions badumnaConfigOptions = new ConfigurationOptions () ;
badumnaConfigOptions. DiscoveryType = DiscoveryType.SeedPeer;
badumnaConfigOptions. DiscoverySource = "seedpeer.example.com:21251";

//// The port used for discovery of peers via UDP broadcast.

//// 0 disables the use of broadcast
badumnaConfigOptions. BroadcastPort = 21250;

98

Chapter 5. Unity3D R SCALIFY

//// The broadcast port shouldn’t be within the peer port range,
//// otherwise Badumna will throw an exception
badumnaConfigOptions . MinumumPort = 21300;
badumnaConfigOptions . MaximumPort = 21399;

Debug . Log (badumnaConfigOptions . ToXml()) ;
//// For futher configurations operations see

//// http://www.badumna.com/api/1.4/badumna/
NetworkFacade . ConfigureFrom (badumnaConfigOptions) ;

Listing 5.1: Badumna network configuration

Joining the Badumna Network

This section will explain how to join the Badumna network. As commented in the
code, there are three steps required before replication can proceed:

1. Initialize Badumna by calling NetworkFacade.Instance.Initialize(appName)
function. In this case "unity-demo" will be used as the application name for
all the unity demos.

2. Login to a network by calling NetworkFacade.Instance.Login() function.

3. Joint the specific scene by calling NetworkFacade.Instance.JoinScene(sceneName,
CreateEntity, RemoveEntity), where:

e sceneName is a unique name identifying the scene.

o CreateEntity is a callback function that is called by Badumna when there
is anew remote entity in the scene and its position is within the area of
interest of the local entity.

e RemoveEntity is a callback function that is called by Badumna when a
remote entity from the same scene leaves the scene or its position is
outside the area of interest of the local entity.

The following code can be found inside the Awake() function in the NetworkIni-
tialization.cs file.

//// Check whether the network has been initialized yet

99

Chapter 5. Unity3D R SCALIFY

if (! NetworkFacade.Instance.IsInitialized)

{
//// Initialize the Badumna network library
NetworkFacade.Instance. Initialize ("unity —demo");
NetworkFacade . Instance . Login () ;

}

if (NetworkFacade.Instance.IsLoggedIn)
{
//// Register Entity Details
NetworkFacade . Instance . RegisterEntityDetails ((uint)PlayerType.
SmallLerpz, 20.0f, new Badumna.DataTypes.Vector3(6.0f, 6.0f, 6.0f

));

//// Join the chosen scene.
//// Scenes are identified by a name (a string) which should
//// be unique.
All entities within a scene will see each
//// other, but not any entities in other scenes.
this .networkScene = NetworkFacade.Instance.JoinScene (this.
networkSceneName, this.CreateEntity, this.RemoveEntity);
Debug . Log (NetworkFacade . Instance . GetNetworkStatus () . ToString ()) ;
}
else
{
Debug . LogError ("Login error");
return;

Listing 5.2: Starting Badumna network

Register Local Entity

After Badumna has been initialized and the scene has been successfully joined, the
local entities can be registered with the current scene. The steps that are required
to register a local entity are as follows:

1. First create the game object that will be used as a local player (i.e. call the
CreateLocalPlayer() function inside the NetworkInitialization.cs script).

2. Inside the CreateLocalPlayer function add all the necessary scripts that will
be attached to the local entity object (see Listing 5.3).

3. Register the entity by calling the RegisterEntity(ISpatialOriginal entity, uint
entityType) function.

100

Chapter 5. Unity3D R SCALIFY

private bool CreateLocalPlayer ()
{
try
{
string playerName = "SmalllLerpz";
uint entityType = (uint)PlayerType.SmallLerpz;
GameObject playerObject = (GameObject) GameObject. Instantiate (this
.ListOfAvatars[(int)entityType], transform.position,
transform . rotation);

if (playerObject != null)

{
//// set all the components required
playerObject . AddComponent(typeof (CharacterController));
playerObject . AddComponent(typeof (ThirdPersonController));
playerObject . AddComponent(typeof (ThirdPersonSimpleAnimation))

playerObject . AddComponent(typeof (AnimationHandler)) ;
playerObject . AddComponent(typeof (CameraFollowerScript)) ;
playerObject . AddComponent(typeof (LocalAvatar));

CharacterController controller = (CharacterController)
playerObject . GetComponent(typeof(CharacterController));
controller . radius = 0.4f;

controller.center = new UnityEngine.Vector3(0, 1.1f, 0);

this.localAvatar = (LocalAvatar)playerObject.GetComponent(
typeof(LocalAvatar));

if (this.localAvatar != null)

{
//// Set the game object used by the local avatar,
//// and give the returned entity type to the
//// RegisterEntity () method.

This type id will be

//// passed to the CreateEntity () method on remote
//// peers when this avatar’s replica is instantiated
this.localAvatar.SetAvatarToUse(playerObject, playerName)

if (entityType >= 0)
{
this .networkScene. RegisterEntity (this.localAvatar,
entityType) ;
this .isRegistered = true;
return true;

}
}

catch (Exception e)

101

Chapter 5. Unity3D R SCALIFY

Debug. LogError(e);
return false;

}

return false;

Listing 5.3: CreateLocalPlayer() function

Create Remote Entity

Entities from other peers will be represented as remote entities only if they are
within the interest radius of the local entity. Badumna will call the CreateEn-
tity function previously passed to JoinScene when a remote entity has entered the
sphere of interest. The steps that are required to create a remote entity are listed
below followed by the actual function listed in Listing 5.4.

1. Create a remote entity object based on the entity type passed to CreateEntity
(i.e. choose the right type of game object that will be used as a remote player
object).

2. Attach required scripts to the remote avatar object including the RemoteA-
vatar.cs script.

3. Add the remote object to the remote object list to keep track the number of
remote avatars that currently exist.

private ISpatialReplica CreateEntity (NetworkScene scene, Badumnald
entityld , uint entityType)
{
GameObject remotePlayerObject = (GameObject) GameObject. Instantiate (
this.ListOfAvatars[(int)entityType], transform.position,
transform . rotation);

RemoteAvatar remoteAvatar;

if (remotePlayerObject != null)
{
remotePlayerObject . AddComponent(typeof (SyncAnimation)) ;
remotePlayerObject . AddComponent(typeof (RemoteAvatar));
remoteAvatar = (RemoteAvatar)remotePlayerObject.GetComponent(
typeof (RemoteAvatar)) ;

102

Chapter 5. Unity3D R SCALIFY

}

if (remoteAvatar != null)

{

//// The network guid should be set to the given guid
remoteAvatar.Guid = entityld;
remoteAvatar.SetAvatarToUse (remotePlayerObject);

//// Add the remote avatar to mRemoteEntities
this.remoteEntities .Add(entityld , remoteAvatar);

ISpatialReplica spatialReplica = remoteAvatar as
ISpatialReplica;

return spatialReplica;

return null;

Listing 5.4: CreateRemoteEntity function

Remove Entity

Entity removal is the opposite of entity creation. Accordingly, the RemoveEntity
function will be called by Badumna when a remote entity from the same scene
leaves the scene or its position is outside the interest radius of the local entity (see

Listing 5.5).

private void RemoveEntity (NetworkScene scene, ISpatialReplica replica)

{

RemoteAvatar remoteAvatar = (RemoteAvatar)replica;
if (this.remoteEntities.TryGetValue(remoteAvatar.Guid, out

{

remoteAvatar))

remoteAvatar . DestroyRemoteAvatar () ;
this.remoteEntities.Remove(remoteAvatar.Guid) ;

Listing 5.5: RemoveEntity function

103

Chapter 5. Unity3D R SCALIFY

Process Network State

ProcessNetworkState() is called in Unity’s FixedUpdate() function which is called ev-
ery frame, if MonoBehaviour is enabled. ProcessNetworkState() will perform any
regular processing in Badumna and synchronize the network events (see Listing
5.6.

public void FixedUpdate ()

{
if (NetworkFacade.IsInstantiated && NetworkFacade.Instance.IsLoggedIn

)
{

}

NetworkFacade . Instance . ProcessNetworkState () ;

Listing 5.6: FixedUpdate() function

Shutdown Badumna

Badumna needs to be shutdown tidily before closing the application. Shutdown of
Badumna should be initiated inside the OnDisable() function. There are three steps
to shutdown the Badumna network properly:

e Unregister the local entity from the current scene before leaving the scene.
e Logout from Badumna.
e Shutdown Badumna.

The script is displayed in Listing 5.7

public void OnDisable ()
{
if (this.isRegistered)
{
this .networkScene. UnregisterEntity (this.localAvatar);
this .networkScene.Leave () ;
this.isRegistered = false;

//// when leave scene, clear the remote object containers
this.remoteEntities.Clear();

104

Chapter 5. Unity3D R SCALIFY

}

//// call this two functions when exiting not when move to other

//// level
if (NetworkFacade.Instance.IsLoggedIn)

{
}

NetworkFacade. Instance . Logout () ;

if (NetworkFacade.Instance.IsInitialized)

{
}

NetworkFacade . Instance . Shutdown () ;

Listing 5.7: Shutdown Badumna

5.2.6 LocalAvatar.cs

The LocalAvatar class implements ISpatialOriginal interface. For more informa-
tion about this interface please refer to section section 3.1. The LocalAvatar class
stores the position, rotation and animation of the local player and replicates these
variables across the Badumna network.

LocalAvatar Construction

There are three variables which need to be set during the class initialization (i.e. on
the Awake() function) which are radius, areaOfInterestRadius and position (see
Listing 5.8); radius represents the radius of the entity’s bounding shpere (i.e. the
size of the local entity) and areaOfInterestRadius is the radius of the entity’s sphere
of interest. This local entity will send its updates to every other entity within this
sphere of interest.

public void Awake()

{
this.position = new UnityEngine.Vector3(0f, 0f, 0f);
this .radius = 1.0f;
this.areaOflnterestRadius = 100.0f;

Listing 5.8: LocalAvatar Construction

105

Chapter 5. Unity3D R SCALIFY

Check for Update

As mention before, the LocalAvatar class is responsible for updating the local
player’s position and other properties and sending these updates to Badumna.
Badumna will then send the updates to relevant remote peers. LocalAvatar will
check for any changes in each variable in the FixedUpdate() function. If there is any
change in at least one of the variables then it will call the FlagForUpdate() function
to inform Badumna that there are some updates that need to be processed.

public void FixedUpdate ()

{
if (this.localPlayerObject == null)

{
}

return;

this.requiredParts.SetAll(false);

//// Check whether the entity (player) has moved since the last
//// update by comparing it with the current position.
This is

//// used to avoid unnecessary updates when a slight changes in

//// the position (less than 0.1 in this case) is made.

//// Note : Change the value of 0.1 to an appropriate value

/177 depending on the scale of you units.

if ((this.position — this.localPlayerObject.transform.position).
magnitude > 0.1f)

{
this . position = this.localPlayerObject.transform.position;
this.requiredParts[(int)SpatialEntityStateSegment.Position] =

true;

if (this.controller != null)
{
this.velocity = this.controller.velocity;
this.requiredParts [(int)SpatialEntityStateSegment. Velocity]
true;

}
else if (this.rigidBody != null)
{
this.velocity = this.rigidBody.velocity;
this.requiredParts [(int)SpatialEntityStateSegment. Velocity]
true;

}

//// Note : If rotation is only about a single axis then it will be

106

Chapter 5. Unity3D R SCALIFY

/177 more efficient , to serialize only that component of the
/177 rotation.
if (this.orientation != this.localPlayerObject.transform.rotation.

eulerAngles.y)
{
this.orientation = this.localPlayerObject.transform.rotation.
eulerAngles.y;
this.requiredParts [(int)UpdateParameter. Orientation] = true;

}

if (this.isAnimationChange)

{
this.requiredParts [(int)UpdateParameter. AnimationName] = true;
this .isAnimationChange = false;

}

//// Tell Badumna which parts have changed and should thus
//// be updated.
NetworkFacade . Instance.FlagForUpdate (this , this.requiredParts);

Listing 5.9: Check for Update

As it can be seen from Listing 5.9, requiredParts is a Boolean array with flags
that are set to indicate the properties that have changed. Badumna will use this
Boolean array to update the changed properties only.

Serialize Packet

After Badumna gets the notification about the property changes, it will call the Se-
rialize() function in LocalAvatar.cs which is part of the ISpatialOriginal interface.
The Serialize function will serialize the updates before sending them through Bad-
umna based on the flags set in the FlagForUpdate() function (refer to Check for
Update section on page 106). Badumna will therefore serialize only the properties
that have changed.

public void Serialize (BooleanArray requiredParts, Stream stream)

{

BinaryWriter writer = new BinaryWriter (stream);

/177 1.

Orientation
if (requiredParts[(int)UpdateParameter.Orientation])
{

107

Chapter 5. Unity3D R SCALIFY

writer . Write(this.orientation);

}
/1117 2.

Animation
if (requiredParts[(int)UpdateParameter.AnimationName])
{
writer . Write (this .animationName) ;

}

//// Note : Add any additional update parameters here.
//// Don’t forget to modify the UpdateFlag enumeration
/177 as well

Listing 5.10: Serialize Packet

5.2.7 RemoteAvatar.cs

RemoteAvatar.cs implements the ISpatialReplica interface. It stores the position, ro-
tation and animation of the corresponding remote entity and it will receive updates
from Badumna and apply those updates by deserializing the packet.

Deserialize and Apply update

While LocalAvatar is responsible for sending updates, the RemoteAvatar class is
responsible for applying the updates. The incoming data packets from the other
peers will be deserialized in this class, specifically inside the Deserialize() function.
This function will only be called if there is an incoming update. Deserialization is
the exact opposite of the Serialization process (see Listing 5.11). The position and
rotation updates should be applied in the FixedUpdate() function (see Listing 5.12).

public void Deserialize (BooleanArray includedParts, Stream stream, int
estimatedMillisecondsSinceDeparture)

{

BinaryReader reader = new BinaryReader(stream);

////7 1.

Orientation
if (includedParts[(int)UpdateParameter.Orientation])
{

this.rotation = Quaternion.AngleAxis(reader.ReadSingle (),
UnityEngine . Vector3 .up);

108

Chapter 5. Unity3D R SCALIFY

}
/1117 2.

Animation
if (includedParts[(int)UpdateParameter.AnimationName])

{
}

this .animationName = reader.ReadString();

//// You can add any additional parameters that are applicable here.
//// Don’t forget to add them in the Serialize () method too.

Listing 5.11: Deserialize incoming data stream

public void FixedUpdate ()

{
//// NOIE : If there are more parameters required for update add them

here
this.remotePlayerObject. transform. position = this.position;
this.remotePlayerObject. transform.rotation = this.rotation;

Listing 5.12: Apply Update

5.2.8 Enumeration.cs

The Enumeration.cs file contains both player type and update parameter enumera-
tions. Player type is a list of all types of player that are available in the game.
In this example, there are two types of player which are SmallLerpz and Mon-
sterLerpz character. The update parameters enumeration is used to index which
parameter has been modified when generating and applying updates. The value
is used as the index in the Boolean array, passed to Serialize and Deserialize in
the LocalAvatar and RemoteAvatar class respectively (refer to Check for Update
section on page 106 for more details on how the Boolean array is used).

109

Chapter 5. Unity3D R SCALIFY

5.2.9 AnimationHandler.cs and SyncAnimation.cs

AnimationHandler.cs and SyncAnimation.cs are two additional scripts used to
synchronize the animation from the local entity to the remote entities on other
machines. Neither script uses Badumna — they are just standard Unity scripts.

public enum PlayerType

{

/// <summary>

/// A small lerpz model
/// </summary>
SmallLerpz = 0,

/// <summary>

/// A big lerpz model
/// </summary>
MonsterLerpz = 1

Listing 5.13: PlayerType enumeration

public enum UpdateParameter : int

{

/// <summary>

/// The first unused index for update parameters will be used.
/// Orientation paramater.

/// </summary>

Orientation = SpatialEntityStateSegment.FirstAvailableSegment,

/// <summary>

/// Animation name paramter.
/// </summary>

AnimationName

Listing 5.14: UpdateParameter enumeration

110

Chapter 5. Unity3D R SCALIFY

Figure 5.5: Two instances running simultaneously (Demo 1)

5.2.10 Build and run the game

Checklist:

v Make sure you have set the seed peer address in the Awake() function before
building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

After you have completed all the above steps you are ready to run the game.
Alternatively, you can use the completed example instead, but you will still need
to edit it to set the address of your seed peer. If the game runs without any error
within the editor, you can build the game and run two instances simultaneously.
You should see that the two games are connected through Badumna network. You
can test the game on different machines and make sure that the player objects can
communicate via Badumna (see Figure 5.5).

5.3 Proximity chat demo

This tutorial will demonstrate how to use Badumna’s proximity chat feature. As a
prerequisite, please read section 3.2 to learn how proximity chat works.

Demo 2 is derived from Demo 1 with a slight modification on the scripts. You
can complete the tutorial by following the steps below and editing the completed
version of Demo 1, or just look at the completed example in Demo2-ProximityChat
(Demo2-ProximityChat.unitypackage). demo.

111

Chapter 5. Unity3D R SCALIFY

5.3.1 Create a new project

As in the previous tutorial, create a new unity project and import the Demo2-
ProximityChat.unitypackage.

5.3.2 Open the Unity scene file

Open Demo2.unity file.

5.3.3 Changes in NetworkInitialization.cs

In order to instantiate the ChatInterface on the runtime, the NetworklInitialization
class will call InitiateChatInterface() function as soon as the local player is created
successfully (see Listing 5.15).

public void Start ()

{
if (!this.CreateLocalPlayer())

{
Debug. LogError ()
return;

}

this.InitiateChatInterface ();

Listing 5.15: Call InitiateChatInterface function on Start

InitateChatInterface() adds a GUIChatScript into the Network Initialization ob-
ject (see Listing 5.16).

private void InitiateChatInterface ()

{
GameObject parentObject = (GameObject)transform .gameObject;
parentObject . AddComponent<GUIChatScript >() ;
GUIChatScript chatScript = transform.GetComponent<GUIChatScript>();
chatScript.LocalAvatar = this.localAvatar;

Listing 5.16: InitiateChatInterface function

112

Chapter 5. Unity3D R SCALIFY

Chat Window

anonymous : test

Figure 5.6: Chat GUI

5.3.4 GUIChatScript.cs

The GUIChatScript class is used to handle the chat messages including incoming
and outgoing messages. It is also responsible for displaying the messages. The
current layout is just one example of a chat GUI (see Figure 5.6). The implemen-
tation of MakeWindow() can be modified and customized to change the layout and
the GUI style according to your application’s requirements.

IChatService (Badumna’s chat interface) is used in this class to handle incoming
messages from other peers and send the messages to the proximity channel. See
the IChatService API documentation for more information.

Setup IChatService

Before you can send and receive chat messages, you need to subscribe the local
entity to a chat channel. For proximity chat use the proximity channel. The steps
that are required for setting up the IChatService are as follows:

1. Initialize the IChatService class within the Start() function (see Listing 5.17).

2. Subscribe to proximity channel by calling SubscribeToProximityChannel as shown

in Listing 5.18 where HandleChatMessage is a callback function that is called
when there is a new incoming chat message.

public void Start ()
{

113

http://www.scalify.com/badumna/api/1.4/html/E0BFCFB3.htm

Chapter 5. Unity3D R SCALIFY

if (NetworkFacade.IsInstantiated && NetworkFacade.Instance.IsLoggedIn

)
{

}

this.chatService = NetworkFacade.Instance.CreateChatService () ;

Listing 5.17: Initialize IChatService

public void Update()
{
if (this.LocalAvatar != null && this.localAvatarName == null &% this.
LocalAvatar.LocalAvatarName != null)
{
this .localAvatarName = this.LocalAvatar.LocalAvatarName;
if (this.chatService != null)
{
this.chatService.SubscribeToProximityChannel (this.LocalAvatar
.Guid, this.localAvatarName, this.HandleChatMessage);
}

else

{

this.chatService = NetworkFacade.Instance.CreateChatService ()

this.chatService.SubscribeToProximityChannel (this.LocalAvatar
.Guid, this.localAvatarName, this.HandleChatMessage);

Listing 5.18: Subscribe to proximity channel

Dispatch messages

When there is a message from the local player that is ready for dispatch, Dis-
patchMessage() will be called, which in turn calls IChatService’s SendChannelMes-
sage() method to send the message to the proximity channel (see Listing 5.19).

114

http://www.scalify.com/badumna/api/1.4/html/TO DO.htm
http://www.scalify.com/badumna/api/1.4/html/TO DO.htm

Chapter 5. Unity3D R SCALIFY

private void DispatchMessage ()
{
this.chatService.SendChannelMessage (ChatChannelld . Proximity , this.
localAvatarName + " : " + this.textEntered);
this . textEntered = string.Empty;

Listing 5.19: Dispatch message

Handle incoming messages

When there is a new incoming message from other Badumna entities, the Han-
dleChatMessage() function will be called. In this demo, HandleChatMessage has
responsibility for storing the incoming messages in a collection of messages (i.e.
messageHistory) and displaying it on the screen immediately (see Listing 5.20).

private void HandleChatMessage(ChatChannelld channel, Badumnald userld,
string message)

{

this.scrollPosition.y += 25;

//// Store the message in messageHistory
if (!this.chatBox)

{

}

this .chatBox = true;

if (this.messageHistory.Count == GUIChatScript.MaximumNumberOfLines)

{
this . messageHistory .RemoveAt(0) ;
this . messageHistory .Add(message) ;
}

else

{
}

this . messageHistory .Add(message) ;

Listing 5.20: HandleChatMessages function

115

Chapter 5. Unity3D R SCALIFY

[Demo2 ProximityChat AX] 2 Demo2-proximitychat

@ Hide Chat

Figure 5.7: Two instances running simultaneously (Demo2)

5.3.5 Build and run the game

Checklist:
v/ Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

Build the game and run two instances simultaneously. You should see that the
two games are connected through Badumna network. You can test the game on
different machines and make sure that the player objects can chat with each other
(see Figure 5.7).

5.4 Dead reckoning demo

This tutorial will demonstrate how to use dead reckoning. When performing dead
reckoning, Badumna replicates entities” velocities over the network, and uses them
to estimates replicas’ positions between updates using extrapolation and smooth-
ing. This eliminates the jerkiness in replicas” movement that could be seen in the
previous demo. Before following this tutorial, please read section 3.3 to find out
about the key concepts and API usage involved in implementing dead reckoning.

The tutorial will explain the changes that are required to the previous com-
pleted tutorial to add dead reckoning. Completed code for this tutorial is in Dermo3-
DeadReckoning.unitypackage.

116

Chapter 5. Unity3D R SCALIFY

5.4.1 Create a new project

Create a new unity project and import the Demo3-DeadReckoning.unitypackage.

5.4.2 Open the Unity scene file
Open Demo3.unity file (under Demo3-DeadReckoning/Assets/).

5.4.3 LocalAvatar.cs

In order to integrate the dead reckoning in Badumna, Local Avatar has been modi-
tied to also implement the IDeadReckonable interface. See the IDeadReckonable API
documentation for more information about this interface. The AttemptMovement
function is left empty since the local entity position should not be extrapolated.

5.4.4 RemoteAvatar.cs

RemoteAvatar must also implement the IDeadReckonable interface. The RemoteA-
vatar position needs to be extrapolated and smoothed in order to reduce jitter on
the display. Thus, the AttemptMovement function is implemented in this class and
uses the reckoned position to update the position (see Listing 5.21).

public void AttemptMovement(Badumna.DataTypes. Vector3 reckonedPosition)

{
)

this.Position = reckonedPosition;

Listing 5.21: AttemptMovement implementation

5.4.5 Build and run the game

Checklist:
v Make sure you have set the seed peer address before building the game.

v/ Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

117

http://www.scalify.com/badumna/api/1.4/html/EF9DC11B.htm

Chapter 5. Unity3D R SCALIFY

Build the game and run two instances simultaneously. You should see that the
movement of remote avatars is now much smoother.

5.5 Multiple scenes demo

This tutorial will demonstrate how to use more than one Badumna scene in a Unity
game. To understand about scenes, please refer to sections 3.1 and 3.4 before fol-
lowing this tutorial.

Multiple scenes are useful when a game has more than one level or scene (for
example, when a character enters a different world or enters into a dungeon). It is
not necessary that a Badumna scene has to match a Unity scene. One Unity scene
can have multiple Badumna scenes and vice versa. Players in different Badumna
scenes will not be able to see each other.

This demo will show you how to create two different Badumna scenes inside
one Unity scene. As in the previous demo, you are not required to modify any-
thing. The tutorial will explain how to use multiple Badumna scenes. The mul-
tiple scene demo is derived from the Dead reckoning demo. The tutorial refers
to Demo4-MultipleScene (Demo4-MultipleScene.unitypackage), and describes the
changes that have been made since the preceding demo.

5.5.1 Create a new project

Create a new unity project and import the Demo4-MultipleScene.unitypackage.

5.5.2 Open the Unity scene file
Open Demo4.unity file.

5.5.3 NetworklInitialization.cs

To accommodate the multiple Badumna scene demo, the following modifications
to the NetworkInitialization class need to be made:

1. Add GUI text, to display the current Badumna scene name (see Listing 5.22).

2. Add a new function called ChangeScene() to this class (see Listing 5.23). This
function tests the local avatar’s position in the Z dimension and will change
the scene (un-join one, and join another) if the player has moved across the
boundary.

3. Call the ChangeScene() function regularly from FixedUpdate() (see Listing
5.24).

118

Chapter 5. Unity3D R SCALIFY

/// <summary>

/// GUIText display the current badumna scene name on the screen
/// </summary>

public GUIText SceneName;

Listing 5.22: Badumna Scene name

private void ChangeScene ()
{
if (this.localAvatar.Position.Z < —11 && this.networkSceneName.Equals
("Demo4_Scenel"))
{

//// Change the badumna scene
if (this.isRegistered)
{
Debug.Log(string .Format("Leave a scene: {0}", this.
networkSceneName)) ;
this .networkScene. UnregisterEntity (this.localAvatar);
this .networkScene.Leave () ;
this.isRegistered = false;

this .networkSceneName = "Demo4 Scene2";
this .SceneName. text = "Demo4 Scene2";
Debug.Log(string . Format("Join new scene : {(0}", this.

networkSceneName)) ;
this .networkScene = NetworkFacade.Instance.JoinScene (this.
networkSceneName, this.CreateEntity, this.RemoveEntity);

this .networkScene. RegisterEntity (this.localAvatar, (uint)
PlayerType.SmallLerpz) ;
this.isRegistered = true;

}

else if (this.localAvatar.Position.Z > —11 && this.networkSceneName.
Equals (" Demo4_Scene2"))
{

//// Change the badumna scene

Debug.Log(string .Format("Leave a scene: {0}", this.
networkSceneName)) ;

this .networkScene. UnregisterEntity (this.localAvatar);

this .networkScene.Leave() ;

this .isRegistered = false;

this .networkSceneName = "Demo4 Scenel";

this .SceneName. text = "Demo4_Scenel";

119

Chapter 5. Unity3D R SCALIFY

Debug.Log(string.Format("Join new scene : {0}", this.
networkSceneName)) ;

this .networkScene = NetworkFacade.Instance.JoinScene (this.
networkSceneName, this.CreateEntity , this.RemoveEntity);

this .networkScene. RegisterEntity (this.localAvatar, (uint)
PlayerType.SmallLerpz) ;
this .isRegistered = true;

Listing 5.23: ChangeScene function

public void FixedUpdate ()
{
if (NetworkFacade.IsInstantiated && NetworkFacade.Instance.IsLoggedIn
)
{

NetworkFacade . Instance . ProcessNetworkState () ;
this . ChangeScene () ;

Listing 5.24: FixedUpdate() function

5.5.4 Build and run the game

Checklist:
v Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

Build the game and run two instances simultaneously. You can test the demo
by moving one avatar between the two scenes and seeing the other avatar appear
and disappear.

Figure 5.8 shows two instances that are in the different scene, one in Demo4_Scenel
and the other in Demo4_Scene2 and they cannot see each other.

120

Chapter 5. Unity3D R SCALIFY

% Demod-MultipleScene
Display Chat

Figure 5.8: Two instances running simultaneously (Demo4)

5.6 Private chat demo

This tutorial will show you how to use private chat in a Badumna network. To
understand the concepts behind private chat, please refer to section 3.5.

This demo builds upon Demo2-ProximityChat. In this demo, both Proximity
and Private chat will be used. The completed tutorial can be found in Demo5-
PrivateChat (Demo5-PrivateChat.unitypackage). The changes for this tutorial are
detailed in the steps below.

5.6.1 Create a new project

Create a new unity project and import the Demo5-PrivateChat.unitypackage.

5.6.2 Open the Unity scene file
Open Demo5.unity file.

5.6.3 GUILoginScript.cs

The GUI login script is used to display the login GUL In this demo you will be
required to enter a username before starting the game. For demo purposes, (i.e.
to test the private chat) you should pick JOHN, MARY, PETER or SUSAN as your
username, as the demo is pre-configured with buddy lists for these users.

A Usernames are case-sensitive.

The GUILoginScript will block the game from starting, it will start only when
the GameStarted boolean variable is set to true (see Listing 5.25 and 5.26).

121

Chapter 5. Unity3D R SCALIFY

private void DoLogin ()

{
this .hideLoginWindow = true;
NetworklInitialization . GameStarted = true;

Listing 5.25: DoLogin() function

5.6.4 NetworklInitialization.cs

In order to block the game from starting, the NetworklInitialization class is modi-
fied by replacing the old Start() function with the code shown in Listing 5.26.

public IEnumerator Start ()

{

while (! NetworklInitialization .GameStarted)

{

yield return null;

}

if (!this.CreateLocalPlayer())

{
Debug. LogError (" Failed to create local avatar.");
yield break;

}

this.InitiateChatInterface () ;
yield break;

Listing 5.26: IEnumerator Start function

The following code is added to the CreateLocalPlayer() function to grab the user-
name from GUILoginScript and use it to create a local player (see Listing 5.27).

GUILoginScript loginScript = transform.gameObject.GetComponent<
GUILoginScript >() ;

if (loginScript != null)

{

playerName = loginScript.Username;

122

Chapter 5. Unity3D R SCALIFY

Listing 5.27: Grab username from GUILoginScript

5.6.5 GUIChatScript.cs

In this demo the GUIChatScript class has a slightly different role compared with
the one used in Demo2-ProximityChat. Here, GUIChatScript will be used as a
chat manager. Proximity chat will be handled by the ProximityChat class and each
private chat channel will be handled by an instance of the PrivateChat class. Both
of these classes are derived from the Chat class. The GUIChatScript class also has
responsibility for displaying the buddy list which in this case is just a static list of
buddies.

Setup IChatService

The IChatService is set up as in Demo2-ProximityChat. Before you can send and
receive chat messages, you need to subscribe the local entity to the chat channel
(this script uses the proximity channel).

1. Initialize the IChatService class within the Start() function (see Listing 5.28).

public void Start ()

{
if (NetworkFacade.IsInstantiated && NetworkFacade.Instance.IsLoggedIn

)
{

}

this.chatService = NetworkFacade.Instance.CreateChatService () ;

Listing 5.28: Setup IChatService

Set up the proximity chat and private chat channels

After successfully initializing the chat service, in the Update() function, initialize a
proximity chat (i.e. initialize the ProximityChat class) and invite all buddies from

123

Chapter 5. Unity3D

the buddy list to private chat by calling the the IChatService’s OpenPrivateChan-
nels method, and change your presence to online. HandleChannellnvitation is a call-
back function that will be called when there is a private channel invitation received
from other user.

public void Update()

{

if (this.LocalAvatar != null && this.LocalAvatar.LocalAvatarName !=
null && !this.initialized)

{

/1/7
this
this
this

this

Initialize proxmity chat.

.proximityChat.ChatService = this.chatService;
.proximityChat.LocalAvatar = this.LocalAvatar;
.proximityChat. Init () ;

.chatService.OpenPrivateChannels(this . HandleChannellnvitation
this.LocalAvatar.LocalAvatarName) ;

7

this . chatService.ChangePresence(ChatStatus.Online);

//// Invite all users to private channels.
foreach (string buddyName in this.buddys)

{

}

//// Note: we don’t want to have the local avatar name

displayed on the buddy list.

//// However the buddy list should be obtained from the

arbitration server, not from the static list,

//// its only for demo purposes and on the real application

this case shouldn’t be happening.

if (buddyName != this.LocalAvatar.LocalAvatarName)

{

Buddy buddy = new Buddy(buddyName) ;
PrivateChat privateChat = new PrivateChat();

this . privateChatChannels.Add(buddyName, buddy);
this . privateChatWindows . Add (buddyName, privateChat);

privateChat.Buddy = buddy;

privateChat.ChatService = this.chatService;

privateChat.ChatWindowld = chatWindowld;

privateChat.LocalAvatarName = this.LocalAvatar.
LocalAvatarName ;

privateChat. Init () ;

chatWindowlId ++;

this.initialized = true;

124

' SCALIFY

http://www.scalify.com/badumna/api/1.4/html/7DFD2AC9.htm
http://www.scalify.com/badumna/api/1.4/html/7DFD2AC9.htm

Chapter 5. Unity3D R SCALIFY

Listing 5.29: Setup proximity chat and private chat channel

HandleChannellnvitation function

When a private channel invitation is received from another user, you need to check
whether this user is in your buddy list. If they are on the buddy list then check
whether the chat channel used needs to be updated (see Listing 5.30). After up-
dating the channel, call the IChatService’s Acceptlnvitation method to accept the
invitation and pass two call back functions HandlePrivateMessage and HandlePres-
ence, where HandlePrivateMessage will be called when there is incoming message
from this user and HandlePresence when the user’s presence status changes.

private void HandleChannellnvitation (ChatChannelld channel, string
username)
{
PrivateChat privateChat = null;
if (this.privateChatWindows.TryGetValue(username, out privateChat))
{
if (privateChat.Buddy != null)
{
if (privateChat.Buddy.Channelld != null)
{
if (!privateChat.Buddy.Channelld.Equals(channel))
{
this.chatService . UnsubscribeFromChatChannel (
privateChat.Buddy.Channelld) ;
privateChat.Buddy.Channelld = channel;
this.chatService. Acceptlnvitation (channel,
privateChat.HandlePrivateMessage, privateChat.
HandlePresence) ;

}

return;

}

else

{
privateChat.Buddy.Channelld = channel;
this.chatService. Acceptlnvitation (channel, privateChat.
HandlePrivateMessage , privateChat.HandlePresence);

125

http://www.scalify.com/badumna/api/1.4/html/647EF9C7.htm

Chapter 5. Unity3D R SCALIFY

Listing 5.30: HandleChannellnvitation

5.6.6 Buddy.cs

The Buddy class stores information about a particular buddy (friend), e.g. buddy
name, chat channel ID used for private chat with this buddy, and the buddy’s
presence status.

5.6.7 Chat.cs

A chat base class stores information including the local player name, current chat
message, messages history and IChatService passed from GUIChatScript. The chat
class has properties that are common to both proximity and private chat class. The
implementation of the Buddy and Chat classes can be altered according to your
needs.

5.6.8 ProximityChat.cs

The ProximityChat class handles the sending and receiving of messages to and
from the proximity channel. There are three important operations that need to be
implemented in this class:

e Subscribe to the proximity channel by calling SubscribeToProximityChannel
inside the Init() function (see Listing 5.31).

e Implement the HandleChatMessage callback function as can be seen in 5.32.

e Send messages to the proximity channel by calling SendChannelMessage as
shown in Listing 5.33.

public override void Init ()
{
this .ChatWindowld = 1; //// ChatWindowld 1 is for ProximityChat
this .ChatWindow = new Rect(2, 45, 220, 275);
if (!this.initialized && this.localAvatar != null && this.ChatService
= null)

{

126

http://www.scalify.com/badumna/api/1.4/html/B1B8B63D.htm
http://www.scalify.com/badumna/api/1.4/html/8688D6C.htm

Chapter 5. Unity3D R SCALIFY

this . ChatService.SubscribeToProximityChannel (this.localAvatar.
Guid, this.localAvatar.LocalAvatarName, this.
HandleChatMessage) ;

this .LocalAvatarName = this.localAvatar.LocalAvatarName;

this.initialized = true;

}

base.Init ();

Listing 5.31: Subscribe to proximity channel

private void HandleChatMessage(ChatChannelld channel, Badumnald userld,
string message)

{
this.ScrollPosition += new Vector2(0, 25);

//// Store the message in messageHistory
if (!this.ShowingChatBox)
{

}

this .ShowingChatBox = true;

this . MessageHistory .Add(message) ;

Listing 5.32: HandleChatMessage callback function

HandleChatMessage is responsible for storing the incoming messages in the
message history and displaying the chat box when there is a new message received.

protected override void DispatchMessage ()
{
this . ChatService.SendChannelMessage (ChatChannelld . Proximity , this.
LocalAvatarName + " : " + this.TextEntered);
this . TextEntered = string.Empty;

Listing 5.33: Sennding message to proximity channel

127

Chapter 5. Unity3D R SCALIFY

When a message from the local user is ready to be dispatched, call DispatchMes-
sage() which in turn calls the SendChannelMessage function.

5.6.9 PrivateChat.cs

Each PrivateChat class handles one private chat channel, which means if you have
three buddies then GUIChatScript class will create three instances of the Private-
Chat class, one for each buddy (see Listing 5.29). As in the ProximityChat class,
the PrivateChat class has to subscribe to a particular channel to establish a private
channel connection. In the Init() function it calls the InviteUserToPrivateChannel
method (see Listing 5.33).

public override void Init ()

{
this .ChatWindow = new Rect(50 x this.ChatWindowld, 45, 220, 275);

if (!this.initialized && this.buddy != null && this.ChatService !=
null)

{
this . ChatService.InviteUserToPrivateChannel (this .buddy.Name) ;
this.initialized = true;

}

base.Init ();

Listing 5.34: Invite user to private channel

Where the ProximityChat has a HandleChatMessage callback and a DispatchMes-
sage function for receiving and sending message to the proximity channel, Pri-
vateChat has the callbacks HandlePrivateMessage and HandlePresence for handling
incoming messages and presence status changes, and a DispatchMessage function
which is used for sending private messages on the particular channel.

public void HandlePrivateMessage (ChatChannelld channel, Badumnald userld,
string message)

{

this.ScrollPosition += new Vector2(0, 25);
//// Store the message in messageHistory

if (!this.ShowingChatBox)
{

128

http://www.scalify.com/badumna/api/1.4/html/8688D6C.htm
http://www.scalify.com/badumna/api/1.4/html/F5CF2095.htm

Chapter 5. Unity3D R SCALIFY

this .ShowingChatBox = true;
}

this . MessageHistory . Add(message) ;

Listing 5.35: HandlePrivateMessage

public void HandlePresence (ChatChannelld channel, Badumnald userld,
string username, ChatStatus status)
{
Debug.Log(string.Format (" (PrivateChatMessageType.cs) [0} is {1}",
username, status.ToString()));
if (this.buddy.Name. Equals(username))
{
Debug.Log(string . Format (" (PrivateChatMessageType.cs) change
status of {0}", username));
this .buddy. Status = status;

Listing 5.36: HandlePresence

protected override void DispatchMessage ()

{
string message = this.LocalAvatarName + " : " + this.TextEntered;
this . ChatService.SendChannelMessage(this .buddy.Channelld, message) ;
this . MessageHistory .Add(message) ;
this . TextEntered = string.Empty;

Listing 5.37: DispatchMessage

5.6.10 Build and run the game

Checklist:

129

Chapter 5. Unity3D R SCALIFY

2 Demo5-PrivateChat

Figure 5.9: Demob Login screen

v Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

v/ Make sure to use a valid username to test the private chat (i.e. JOHN, PETER,
MARY or SUSAN)

Build the game and run two instances simultaneously. Make sure to use a valid
username to test the private chat (i.e. JOHN, PETER, MARY or SUSAN).

Figure 5.9 shows two instances run with different usernames — one uses JOHN’
and the other instance uses 'MARY’ for login. After successfully logging in, press
the BuddyList toggle button to get your buddy list and if the two instances are
connected, on JOHN's instance you should be able to see the status of MARY to be
online and vice versa. Press the Buddy’s name to open the private chat windows
as you can see in Figure 5.10.

5.7 Authentication and user management demo

This section will demonstrate how to use Badumna’s authentication server (Dei
Server) with Unity. This demo is derived from Demo3-DeadReckoning and refers
to the Demo6-DeiServer (Demo6-DeiServer.unitypackage) tutorial. This tutorial
will show you how to integrate the unity game with Dei server.

130

Chapter 5. Unity3D R SCALIFY

Figure 5.10: Two instances running simultaneously (Demob)

5.71 Create a new project

Create a new unity project and import the Demo6-DeiServer.unitypackage.

5.7.2 Open the Unity scene file
Open the Demo6.unity file.

5.7.3 GUILoginScript.cs

GUILoginScript is used in the previous demo (Demo5-PrivateChat) for obtaining
the username only. GUILoginScript needs to be modified so it will obtain the user-
name and password from the user and use this information to login to a specified
Dei server. The new GUILoginScript will still block the game from starting un-
til it successfully logs in to Dei server. The DoLogin function is replaced with the
following code (see Listing 5.38).

private void DoLogin ()
{
//// The token supplier is responsible for issuing user certificates,
which in turn
//// are used to authenticate users for forming connections and
performing other
//// security operations.
/177
//// The Dei token supplier is a centralised remote service which can
be customised to any
//// back end data base.

131

Chapter 5. Unity3D R SCALIFY

////this . tokenSupplier = new DeiTokenSupplier ("www. deiserver.com",
21259, false);

//// lIgnore the ssl errors when running the Dei server on localhost
this.tokenSupplier = new DeiTokenSupplier("localhost", 21256, false);
this.tokenSupplier.IgnoreSslErrors = true;

LoginResult result = this.tokenSupplier. Authenticate (this.username,
this .password, null);

if (result.WasSuccessful)

{
this .hideLoginWindow = true;
NetworklInitialization . GameStarted = true;

}

else

{
}

Debug.Log(result.ErrorDescription);

Listing 5.38: DoLogin function

Specify the Dei server address when creating a new instance of DeilokenSupplier
and remember to set the third argument to false (i.e. Unity2.6 doesn’t support SSL
connections, use TCP connections instead). You should set IgnoreSslErrors to true
when the DeiServer is on the local machine. Call the Authenticate() function to log
in to Dei server. When the result is successful set the GameStarted variable to true.
Please refer to section 4.1 for more details on starting a Dei server.

5.7.4 NetworklInitialization.cs

NetworkInitialization.cs is modified to block the game until the GameStarted vari-
able is set to true, by replacing the Start function with the following code (see
Listing 5.39).

public IEnumerator Start ()
{

while (! NetworklInitialization.GameStarted)

{
}

yield return null;

//// Note: when dei is used, badumna should be initialized after we
got the token from Dei.

132

Chapter 5. Unity3D R SCALIFY

//// Check whether the network has been initiated yet
if (!NetworkFacade.Instance.IsInitialized)

{

}

//// Initialize the Badumna network library
NetworkFacade. Instance. Initialize () ;

loginScript = transform.gameObject. GetComponent<GUILoginScript >()

if (loginScript != null)
{

}

else

{
}

NetworkFacade . Instance . Login (loginScript. TokenSupplier) ;

NetworkFacade . Instance .Login () ;

if (NetworkFacade.Instance.IsLoggedIn)

{

}

else

{

}

//// Join the chosen scene.

//// Scenes are identified by a name (a string) which should be
unique.

//// All entities within a scene will see each other, but not any
entities

//// in other scenes.

this .networkScene = NetworkFacade.Instance.JoinScene (this.
networkSceneName, this.CreateEntity, this.RemoveEntity);

Debug.Log (NetworkFacade . Instance . GetNetworkStatus () . ToString ()) ;

Debug. LogError("Login error");
yield break;

if (!this.CreateLocalPlayer())

{

}

Debug. LogError (" Failed to create local avatar.");
yield break;

this.InitiateChatInterface () ;
yield break;

Listing 5.39: Start function

133

Chapter 5. Unity3D R SCALIFY

Badumna Initialization

When Dei is used, Badumna has to log in using the Dei token obtained from the
authentication process earlier. Thus the Badumna initialization process is moved
from Awake() to Start(), to occur after the game has started (i.e. a token has been
obtained from Dei).

5.7.5 Build and run the game

Checklist:
v/ Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the applica-
tion name and make sure that the seed peer starts with Dei as well (refer to
subsection 4.1.4 for more information).

v Make sure that DeiServer is running.
v/ Make sure that the Dei server address is set properly in GUILoginScript.cs.
v Make sure the run in the background option is set.

Start the Dei Server and make sure the Dei server address has been set prop-
erly on the GUILoginScript.cs. Build the game and run two instances simultane-
ously. You have to use a valid Dei username and password to test this demo. See
subsection 4.1.2 to learn how to create Dei server accounts.

5.8 Buddy list Demo

The buddy list demo is a simple example to demonstrate how to fetch persistent
data from an arbitration server. This demo will show how to use a buddy list ar-
bitration server using Unity3D. It is derived from Demo5-PrivateChat, but here
the buddy list will be obtained from an arbitration server. To be able to use the
buddy list arbitration server you need to modify some of the classes from Demo5-
PrivateChat. The completed tutorial can be found in Demo7-BuddyList (Demo?7-
BuddyList.unitypackage). Two files that needed to be modified were NetworkIni-
tialization.cs and GUIChatScript.cs.

5.8.1 Create a new project

Create a new unity project and import the Demo7-BuddyList.unitypackage.

134

Chapter 5. Unity3D R SCALIFY

5.8.2 Open the Unity scene file
Open Demo7.unity file.

5.8.3 NetworklInitialization.cs

The buddy list arbitration server configuration is added to the Awake() function as
part of the Badumna configuration options (see Listing 5.40).

//// Additional configuration for buddyList (arbitration server)
ArbitrationConfig arbitrationConfig = new ArbitrationConfig("friendserver

)

List<ArbitrationConfig> arbitrations = new List<ArbitrationConfig >();
arbitrations .Add(arbitrationConfig);

badumnaConfigOptions. ArbitrationServers = arbitrations;
badumnaConfigOptions. IsArbitrationEnabled = true;

Listing 5.40: Buddy list arbitration configuration

The name of the arbitrator used to create ArbitrationConfig has to match the
arbitrator name specified in the NetworkConfig.xml file of Buddy list arbitration
application. In this case, ‘friendserver’ is used as the name of the arbitrator. Also,
do not forget to set IsArbitrationEnabled to true. If you do not specify the address of
the arbitration server, the discovery lookup module will be used automatically.

5.8.4 GUIChatScript.cs

Instead of using a static buddy list, the buddy list will be obtained from the arbitra-
tion server. The two steps required to fetch the buddy list data from the arbitration
server are as follows:

e Connect to arbitration server by calling the Connect() function (see Listing
5.41).

o Call the RetrieveFriendList function after successfully connecting to the arbi-
tration server to retrieve a friend (buddy) list (see Listing 5.43).

private void Connect()

{

135

Chapter 5. Unity3D R SCALIFY

Debug.Log(" (GUIChatScript.cs) try connect to arbitration server");
this.buddyListArbitrator = NetworkFacade.Instance.GetArbitrator ("
friendserver");
this.buddyListArbitrator.Connect(
this . HandleArbitrationServerConnectionResult,
this. HandleArbitrationServerConnectionFailure ,
this . HandleServerMessage) ;

Listing 5.41: Connect() function

Get the arbitrator by calling NetworkFacade.Instance.Get Arbitrator(”friendserver”)
where “friendserver” is the arbitration name. Then, connect to the arbitration server
by calling the Connect() function and passing three delegate functions for handling
the connection result (HandleArbitrationServerConnectionResult, connection failures
(HandleArbitrationServerConnectionFailure, and incoming server events (HandleServer-
Message), see Listing 5.42).

private void HandleArbitrationServerConnectionResult (
ServiceConnectionResultType result)

{
if (result.Equals(ServiceConnectionResultType.Success))
{
this.isConnected = true;
Debug.Log("Connected to BuddyList arbitration server');
}
else if (result.Equals(ServiceConnectionResultType.ConnectionTimeout)
)
{
Debug.Log (" Unsucessfuly connected to arbitration server (
connection timeout)");
}
else
{
Debug.Log("BuddylList arbitration server is not available");
}
}

private void HandleArbitrationServerConnectionFailure ()

{
}

Debug.Log("The connection to BuddyList arbitration server was lost");

private void HandleServerMessage(byte[] message)

{

136

Chapter 5. Unity3D R SCALIFY

ArbitrationEvent reply = BuddyListArbitrationEvents.
BuddyListArbitrationEventSet. Deserialize (message) ;
if (reply is BuddyListReply)
{
BuddyListReply buddyListReply = reply as BuddyListReply;
this .buddys = new string[buddyListReply.BuddyNames.Count];
for (int i = 0; i < buddyListReply.BuddyNames.Count; i++)
{
string buddyName = buddyListReply.BuddyNames[i];
this .buddys[i] = buddyName;

//// Invite all users to private channels.

Buddy buddy = new Buddy(buddyName) ;
PrivateChat privateChat = new PrivateChat () ;

this . privateChatChannels .Add(buddyName, buddy) ;
this . privateChatWindows . Add (buddyName, privateChat);

privateChat.Buddy = buddy;

privateChat.ChatService = this.chatService;

privateChat.ChatWindowld = chatWindowld;

privateChat.LocalAvatarName = this.LocalAvatar.
LocalAvatarName;

privateChat.Init ();

chatWindowlId ++;

Listing 5.42: HandleServerMessage function

private void RetrieveFriendList ()
{
if (this.isConnected)
{
BuddyListRequest request = new BuddyListRequest(this.LocalAvatar.
LocalAvatarName) ;
this .buddyListArbitrator.SendEvent(
BuddyListArbitrationEvents.BuddyListArbitrationEventSet.
Serialize (request));

137

Chapter 5. Unity3D R SCALIFY

Listing 5.43: Retrieve buddy list

5.8.5 Build and run the game

Checklist:

v Start the BuddyList arbitration server using “unity-demo” as the application
name.

v/ Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

v Make sure to use the specified username to test the private chat (i.e. JOHN,
PETER, MARY or SUSAN)

Start the BuddyList arbitration application first. Please refer to subsection 4.2.3
for more details on starting this server. Build the game and run two instances
simultaneously, to test this buddy list demo you should use the specified username
(i.e. JOHN, PETER, MARY or SUSAN) as the username. When the game instance
has successfully connected to the buddy list arbitration server you should be able
to see name and status of your buddies on the buddy list window.

5.9 Combat Arbitration Server demo

This demo will show how to use multiple arbitration servers in one Unity game.
The tutorial refers to Demo8-ArbitrationServer. This demo is derived from Demo3-
Dead Reckoning with minor changes in the scene. We have added multiple blocks
with different colour for indicating different combat zones. The combat zone ar-
bitration server application from the API example 8 (see subsection 4.2.5) will be
used for this purpose. Two instances of the combat zone arbitration server must
be started (i.e. Combat Zone A and Combat Zone B arbitrators). Please refer to
subsection 4.2.5 for more details on starting these arbitration server instances.

5.9.1 Create a new project

Create a new unity project and import the Demo8-ArbitrationServer.unitypackage.

138

Chapter 5. Unity3D R SCALIFY

5.9.2 Open the Unity scene file
Open the Demo8.unity.

5.9.3 CombatZone.cs

CombatZone class stores the information about a particular combat zone arbitration
server including the arbitration server name and the connectivity status. It also
has responsibility for connecting to the combat zone arbitration server, sending
requests to join and leave this combat zone and handling the server reply messages
(see HandleServerMessage in Listing 5.44). A player can be connected to multiple
combat zone servers simultaneously, but it can only join one combat zone at a time.

To be able to join to a specific combat zone you have to do the following steps:

e Connect to the relevant combat zone arbitration server by calling the Con-
nect() function, see Listing 5.45.

o After successfully connecting, you can send a join request or a leave request
to the server (see Listing 5.46 and 5.47).

private void HandleServerMessage(byte[] message)
{
ArbitrationEvent reply = CombatArbitrationEventSet. Deserialize (
message) ;

if (reply is StatusReply)
{
Debug.Log(string .Format("Received status from {(0}", this.
arbitrationName));
StatusReply statusReply = reply as StatusReply;
if (statusReply.CurrentZone.Equals(this.arbitrationName))
{

}

this.isJoined = true;

this .isLeaving false;
this.isJoining = false;

}
else if (reply is JoinReply)
{
JoinReply joinReply = reply as JoinReply;
if (joinReply.Result)
{
Debug.Log(string . Format(" {0} accepted join request.", this.
arbitrationName)) ;
this.isJoined = true;

139

Chapter 5. Unity3D R SCALIFY

}
else
{
Debug.Log(string . Format(" {0} rejected join request.", this.
arbitrationName)) ;
}
this.isJoining = false;
}
else if (reply is LeaveReply)
{
LeaveReply leaveReply = reply as LeaveReply;
if (leaveReply.Result)
{
Debug.Log(string .Format(" (0} accpeted leave request", this.
arbitrationName)) ;
this.isJoined = false;
}
else
{
Debug.Log(string . Format(" {0} rejected leave request", this.
arbitrationName)) ;
}
this .isLeaving = false;
}
else if (reply is CombatResult)
{
//// Is not implemented in this demo (see ApiExample).
}

Listing 5.44: HandleServerMessage function

public void Connect()

{

Debug.Log(string .Format (" (CombatZone.cs) connecting to {0}", this.
arbitrationName)) ;

this.combatZoneArbitrator = NetworkFacade.Instance.GetArbitrator (this
.arbitrationName) ;

this.combatZoneArbitrator.Connect(
this . HandleArbitrationServerConnectionResult,
this . HandleArbitrationServerConnectionFailure ,
this . HandleServerMessage) ;

140

Chapter 5. Unity3D R SCALIFY

Listing 5.45: Connect function

public void Join(int playerld)
{
this.isJoining = true;
JoinRequest request = new JoinRequest(playerld);
this.combatZoneArbitrator.SendEvent(CombatArbitrationEventSet.
Serialize (request));

Listing 5.46: Join to combat zone request

public void Leave(int playerld)
{
this .isLeaving = true;
LeaveRequest request = new LeaveRequest(playerld);
this.combatZoneArbitrator.SendEvent(CombatArbitrationEventSet.
Serialize (request));

Listing 5.47: Leave combat zone request

5.9.4 CombatZoneManager.cs

The CombatZoneManager class manages multiple combat zone arbitration servers.
In this demo there are only two zones which are ‘combatzonea’ and ‘combatzoneb’.
The main responsibility of this class is to automatically get the player to join or
leave a particular combat zone based on its position. In this demo the red coloured
ground represents ‘combatzonea’ and the green area is ‘combatzoneb’. Connect to
all available combat zones in Start() (see Listing 5.48).

public IEnumerator Start ()

{

141

Chapter 5. Unity3D R SCALIFY

while (! NetworkInitialization.GameStarted)

{
}

yield return null;

if (NetworkFacade.IsInstantiated && NetworkFacade.Instance.IsLoggedIn

)
{
Debug.Log (" (CombatZoneManager.cs) Connecting to each combatzone
arbitration server");
this .combatZoneA . Connect () ;
this .combatZoneB . Connect () ;

}

yield break;

Listing 5.48: Connect to all available combat zone server

5.9.5 NetworklInitialization.cs

As in to Demo7-BuddyList, you have to add the arbitration configuration as part
of Badumna'’s configuration before start initializing Badumna network (see Listing
5.49).

//// Additional configuration for buddyList (arbitration server)
ArbitrationConfig combatZoneA = new ArbitrationConfig("combatzonea");
ArbitrationConfig combatZoneB = new ArbitrationConfig("combatzoneb");

List<ArbitrationConfig> arbitrations = new List<ArbitrationConfig >();
arbitrations .Add(combatZoneA) ;
arbitrations .Add(combatZoneB) ;

badumnaConfigOptions. ArbitrationServers = arbitrations;
badumnaConfigOptions. IsArbitrationEnabled = true;

Listing 5.49: Arbitration server configuration

5.9.6 Build and run the game

Checklist:

142

Chapter 5. Unity3D R SCALIFY

¥ DemoB-ArbitrationServer AEE < DemoB-ArbitrationServer

Display Chat,

Figure 5.11: Demo 8 login screen and non-zone region

v/ Start two combat zone arbitrators with “unity-demo” as the application name.
v Make sure you have set the seed peer address before building the game.

v Make sure you have started a seed peer with “unity-demo” as the application
name.

v Make sure the run in the background option is set.

Start two combat zone arbitration servers, using the combat zone server that
used in the ApiExample. Make sure the name of the arbitration servers are ‘com-
batzonea” and ‘combatzoneb’ to match the name used by this demo. Refer to chap-
ter 4 for instructions on how to run the arbitration servers. Note that the scripts
for launching the combat arbitrators for use with the API examples in chapter 4
use “api-example” as the application name, and “unity-demo” must be used here.
Build the game and run two instances simultaneously. Each instance should use
a unique playerID, as this playerID will be passed to the combat zone arbitration
server and used to uniquely identify a player.

Figure 5.11 shows an instance of Demo8 that uses playerID 1 for login. After
successful login, the player will be spawned in the non-zone region (see Figure
5.11). As you move the player to the red region on the right, it should be automat-
ically join to combat zone A, on the other hand if you move the player to the green
region it will join to combat zone B (see Figure 5.12).

143

Chapter 5. Unity3D R SCALIFY

‘%! DemoB-ArbitrationServer

Display Chat

Figure 5.12: Demo 8 Combat Zone A and B

144

Chapter 6

Non Player Characters

This chapter focuses on non player characters (NPCs) and how to support them
using Badumna. Depending on the behaviour of the NPC, there are three general
methods you can use. This chapter will describe the three methods in detail and
provide a Unity demo for each of the methods.

6.1 Server based NPCs

Server based NPCs are NPCs that are hosted on a dedicated machine. This ap-
proach is ideal for supporting NPCs that are very reliable and must be in the game
all the time. For example, a manager that allows people to enter a room or a mon-
ster that each player has to fight before they can cross a bridge. In terms of Bad-
umna’s functionality, these NPCs are just regular entities in a scene and Badumna
will treat them as regular entities. The only difference between such entities and
regular players is that the NPCs have a pre-defined behaviour and are not con-
trolled by user input.

We will now demonstrate how to support such behaviour using Unity3D’s
headless mode. The tutorial refers to Demo9-HeadlessServer (Demo9-Headless
Server.unitypackage). This demo is derived from Demo3-DeadReckoning, but as
mentioned before, the player is now controlled by an NPC script instead of user
input. This demo uses RandomWalker NPC behaviour (i.e. NPCs walk around ran-
domly). This is a simple NPC behaviour used for demonstration purposes. You
can create your own script according to your application needs. This tutorial will
explain the Badumna specific steps required to support this functionality.

6.1.1 Create a new project

Create a new unity project and import the Demo9-HeadlessServer.unitypackage.

145

Chapter 6. Non Player Characters {* SCALIFY

6.1.2 Open the Unity scene file
Open Demo9.unity file.

6.1.3 NetworklInitialization.cs

In this demo, two NPCs will be created and both of them will have the same be-
haviour (RandomWalker). Badumna’s NetworkInitialization class is responsibility
for creating those NPCs. Hence, this class now has to be able to handle multiple lo-
cal entities instead of just a single local entity. To support this, a slight modification
is required in the NetworkInitialization class.

1. Use a dictionary to store the collection of local avatars instead of just using a
single variable (see Listing 6.2). This dictionary is very similar to the dictio-
nary we use to store the list of remote avatar entities.

2. The Start function is responsible for creating two NPC characters. As shown
in listing 6.1 the Start function calls the CreateNPC function twice to create
NPC1 and NPC2.

3. The CreateNPC function is responsible for creating an NPC and attaching
all the required scripts including the RandomWalker script to this NPC ob-
ject. The code for CreateNPC function is listed in Listing 6.3. You will notice
the RandomWalker script has been added to the NOC player object instead
of the ThirdPersonController script. You will also notice that after the local
entity has been created it is registered in the Badumna scene by calling the
RegisterEntity function. Finally the function adds the local avatar instance to
the localEntities dictionary collection using the Add function. This dictionary
keeps track of the number of local avatars that are currently in the game.

4. OnDisable function should now unregister all the local entities instead of just
one single local entity (see Listing 6.4).

5. Note that we have not subscribed the local entities to Badumna’s chat chan-
nel in this demo. However, if you application requires that the NPC’s receive
chat messages from other players and respond to them automatically, you
can subscribe to Badumna’s chat channel.

public void Start ()
{
//// Create two NPC (SmallLerpz type)
if (!(this.CreateNPC(PlayerType.SmallLerpz, "NPC1") && this .CreateNPC
(PlayerType.SmallLerpz, "NPC2")))

146

Chapter 6. Non Player Characters {* SCALIFY

Debug. LogError (" Failed to create local avatar.");
return;

Listing 6.1: Start function

private Dictionary <Badumnald, LocalAvatar> localEntities = new Dictionary
<Badumnald, LocalAvatar >();

Listing 6.2: Collection of local avatar

private bool CreateNPC(PlayerType playerType, string playerName)
{
try
{
uint entityType = (uint)playerType;
GameObject playerObject = (GameObject) GameObject. Instantiate (this
.ListOfAvatars[(int)entityType], transform.position,
transform . rotation);

if (playerObject != null)

{
//// set all the components required
playerObject . AddComponent(typeof(CharacterController));
playerObject. AddComponent (typeof (RandomWalker)) ;
playerObject. AddComponent(typeof (AnimationHandler)) ;
playerObject . AddComponent(typeof (LocalAvatar));

CharacterController controller = (CharacterController)
playerObject . GetComponent(typeof(CharacterController));

controller.radius = 0.4f;

controller.center = new UnityEngine.Vector3(0, 1.1f, 0);

LocalAvatar localAvatar = (LocalAvatar)playerObject.
GetComponent(typeof (LocalAvatar));

if (localAvatar != null)

{

147

Chapter 6. Non Player Characters ' SCALIFY

this.localAvatar.SetAvatarToUse(playerObject, playerName)

if (entityType >= 0)
{
this .networkScene. RegisterEntity (localAvatar,
entityType) ;
this.localEntities .Add(localAvatar.Guid, localAvatar)

7

return true;

}

}

catch (Exception e)

{
Debug. LogError(e);
return false;

}

return false;

Listing 6.3: Create NPC funtion

public void OnDisable ()

{

foreach (LocalAvatar localAvatar in this.localEntities. Values)

{
}

this .networkScene. UnregisterEntity (localAvatar);

this.networkScene.Leave () ;
//// when leave scene, clear the remote entities and local entities
this.remoteEntities.Clear () ;

this.localEntities.Clear () ;

if (NetworkFacade.Instance.IsLoggedIn)
{

}

NetworkFacade . Instance . Logout () ;

if (NetworkFacade.Instance.IsInitialized)

{
}

NetworkFacade . Instance .Shutdown () ;

148

Chapter 6. Non Player Characters {* SCALIFY

Listing 6.4: OnDisable function

6.1.4 RandomWalker.cs

The RandomWalker script is a normal Unity script that defines the NPC behaviour.
This script is not specific to Badumna and hence is not explained in this tutorial.

6.1.5 Build and run the game

Checklist:
v Make sure you have set the seed peer address before building the game.
v Make sure you start a seed peer with “unity-demo” as the application name.
v Make sure the run on the background option is set.

v Make sure both Demo3 and Demo9 use the same network scene name. It can
be set on NetworklInitialization.cs, by default both demos used “Demo3” as the
network scene name.

Run the application from the Unity editor and make sure there are no errors. The
easiest way to test the application is by running this demo and Demo3-Dead Reck-
oning. Make sure you have set up the same seed peer address for both applications
before you start them. If it succeed, you should be able to see two Lerpz (NPCs)
walking around from Demo3-DeadReckoning window. You can also test this demo
by starting it in headless mode. Demo3-Deadreckoning should still be able to see
the two NPCs. (Note: only Unity Professional provides the headless mode functionality).

6.2 Client based NPCs

If you want to support NPCs that are tied to a specific user, then you can use this
approach. The NPCs are hosted on the client machines. As long as the user is on-
line the NPC will also be online. When the user goes offline, the NPC disappears.
For example, a user has a pet that they are allowed to have in the game and it exists
only if the user exists. Once again, in terms of Badumna functionality, the NPC is
a regular entity running on the client machine.

149

Chapter 6. Non Player Characters {* SCALIFY

We will now demonstrate how to support such NPCs using a Unity exam-
ple (i.e. multiple originals on the Unity game). The tutorials refers to Demo1l1-
LocalNPC (Demo11-LocalNPC.unitypackage). This demo is derived from Demo3-
DeadRekconing by adding the extra model Canetoad that will be used as a NPC.
Each SmallLerpz will spawn with its pet. This tutorial will show you how to sup-
port multiple original on your Unity game.

In addition, Follower behaviour script will be used instead of RandomWalker
script as it used on the previous tutorial. According to the name, the NPC with
this behaviour will follow to something which in this case it will follow its owner
(i.e. SmallLerpz object).

6.2.1 Create a new project

Create a new unity project and import the Demo11-LocalNPC.unitypackage.

6.2.2 Open the Unity scene file
Open Demol1l.unity file.

6.2.3 Enumeration.cs

As mention before a new model will be used in this demo (i.e the Canetoad model).
The PlayerType enumeration needs to be modified, replacing the MonsterLerpz with
Toad. MonsterLerpz was used in Badumna 1.3 and it is not longer used.

6.2.4 NetworklInitialization.cs

This demo will created two local objects which are the SmallLerpz and NPC with
Follower behaviour. The NetworkInitialization class is responsible for initializing
those two and some modifications is required as follow.

1. Use a dictionary to store the collection of local avatar class instead of just
using a single variable see Listing 6.2).

2. Register the entity details for the Canetoad type (see Listing 6.5).

3. CreateLocalPlayer function now take three arguments: player name, player
type and a boolean indicating whether this object is a pet (NPC) or just a nor-
mal player (see Listing 6.6). It is called from the Start() function (see Listing
6.7).

4. The OnDisable function should now unregister all the local entities instead of
just one single local entity (see Listing 6.4).

150

Chapter 6. Non Player Characters ' SCALIFY

5. The CreateEntity function has to be modified as the canetoad model has a
slightly different structural hierarchy compared with SmallLerpz model. Add
the SyncAnimation script inside the toad game object, instead of adding the
SyncAnimation script to the remote player object (see Listing 6.8).

6. Only the SmallLerpz should subscribe to proximity chat. To be able to do this
you have to modified the InitiateChatInterface() function (see Listing 6.9).

if (NetworkFacade.Instance.IsLoggedIn)
{
//// Register Entity Details
NetworkFacade . Instance . RegisterEntityDetails ((uint)PlayerType.
SmallLerpz, 20.0f, new Badumna.DataTypes.Vector3(6.0f, 6.0f, 6.0f
));
NetworkFacade . Instance . RegisterEntityDetails ((uint)PlayerType.Toad,
20.0f, new Badumna.DataTypes.Vector3(3.0f, 3.0f, 3.0f));

//// Join the chosen scene.
//// Scenes are identified by a name (a string) which should be
unique.
//// All entities within a scene will see each other, but not any
entities
//// in other scenes.
this .networkScene = NetworkFacade.Instance.JoinScene (this.
networkSceneName, this.CreateEntity , this.RemoveEntity);
Debug.Log(NetworkFacade . Instance . GetNetworkStatus () . ToString ()) ;
}
else
{
Debug. LogError("Login error'");
return;

Listing 6.5: Join badumna scene

private bool CreateLocalPlayer(string playerName, PlayerType playerType,
bool isPet)
{
try
{
uint entityType = (uint)playerType;

151

Chapter 6. Non Player Characters ' SCALIFY

GameObject playerObject = (GameObject) GameObject. Instantiate (this
.ListOfAvatars[(int)entityType], transform.position,
transform . rotation);

if (playerObject != null)

{

if (isPet)

{

}

else

{

playerObject . AddComponent(typeof(CharacterController));
playerObject . AddComponent(typeof (AnimationHandler)) ;
playerObject. AddComponent(typeof (LocalAvatar));
playerObject . AddComponent(typeof (Follower));

CharacterController controller = (CharacterController)
playerObject . GetComponent(typeof (CharacterController)
);
controller.height = 1.0f;

controller.radius 0.4f;

controller.center = new UnityEngine.Vector3(0, 0.5f, 0);

Follower follower = (Follower)playerObject.GetComponent(
typeof (Follower));
if (this.localEntities.Count > 0)
{
//// Get the first local entity and follow it, it
just a hack with the purpose of demo
//// shouldn’t be used for the real games.
foreach (KeyValuePair<Badumnald, LocalAvatar> pair in
this.localEntities)
{
//// TODO : fix this, is ugly
follower . FollowedObject = pair.Value. transform.
gameObject;

GameObject toad = playerObject.
GetComponentInChildren (typeof
(Animation)) . transform.
gameObject;
follower .Toad = toad;

//// set all the components required

playerObject. AddComponent(typeof(CharacterController));

playerObject. AddComponent(typeof (ThirdPersonController));

playerObject . AddComponent(typeof (
ThirdPersonSimpleAnimation));

playerObject . AddComponent(typeof (AnimationHandler)) ;

playerObject . AddComponent(typeof (CameraFollowerScript));

152

Chapter 6. Non Player Characters ' SCALIFY

playerObject . AddComponent(typeof (LocalAvatar));

CharacterController controller = (CharacterController)
playerObject . GetComponent (typeof (CharacterController)
);
controller.radius = 0.4f;

controller.center = new UnityEngine.Vector3(0, 1.1f, 0);

}

LocalAvatar localAvatar = (LocalAvatar)playerObject.
GetComponent(typeof (LocalAvatar));

if (localAvatar != null)
{
localAvatar.SetAvatarToUse (playerObject, playerName);
if (entityType >= 0)
{
this .networkScene. RegisterEntity (localAvatar,
entityType);
this.localEntities .Add(localAvatar.Guid, localAvatar)

7

return true;

}
}

catch (Exception e)

{
Debug. LogError(e);
return false;

}

return false;

Listing 6.6: CreateLocalPlayer function

public void Start ()

{
if (!this.CreateLocalPlayer("SmallLerpz", PlayerType.SmallLerpz, false

) 1
'this.CreateLocalPlayer ("Toad", PlayerType.Toad, true))

Debug.LogError("Failed to create local avatar.");
return;

153

Chapter 6. Non Player Characters ' SCALIFY

this.InitiateChatInterface () ;

Listing 6.7: Start() function

Check the player type. If the player type is Toad then added the SyncAnimation
to the toad object where the object animation is stored.

if (playerType.Equals(PlayerType.Toad))
{

GameObject toad = remotePlayerObject.GetComponentInChildren (typeof (
Animation)) . transform . gameObject;

toad . AddComponent(typeof (SyncAnimation)) ;
}

else

{

remotePlayerObject . AddComponent(typeof (SyncAnimation));
}

Listing 6.8: CreateEntity function

You have to pass the right local avatar class to GUIChatScript class. In this case

pass the SmallLerpz local avatar instance. This is not a good solution but it will
work for this demo.

private void InitiateChatlnterface ()

{

GameObject parentObject = (GameObject)transform .gameObject;
parentObject. AddComponent<GUIChatScript >() ;

GUIChatScript chatScript = transform .GetComponent<GUIChatScript >();

foreach (KeyValuePair<Badumnald, LocalAvatar> pair in this.
localEntities)
{

//// NOIE: this will only work with this demo, the right thing to
do

//// is to inlcude a unique identifier for the local player
controller

//// by human that differentiate from other local entities.
if (pair.Value.LocalAvatarName.Equals("SmalllLerpz"))

154

Chapter 6. Non Player Characters {* SCALIFY

chatScript.LocalAvatar = pair.Value;
break;

Listing 6.9: InitiateChatInterface() function

6.2.5 Follower.cs

The Follower script is an NPC behaviour script which is a normal Unity script. This
script is not specific to Badumna and hence is not explained in this tutorial.

6.2.6 SyncAnimation.cs

Make the SyncAnimation class more general, as previously it was used only by the
SmallLerpz object, but in this demo this class will be used by both SmallLerpz and
Canetoad objects. The Canetoad object has a different structural hierarchy, where
the RemoteAvatar class is not stored on the same level as the SyncAnimation class.
In order to solve the problem, you have to modify the Start() function so it will
look for RemoteAvatar in two different places (see Listing 6.10). Also remove the
use of jumpland and run animations as canetoad doesn’t have those animations
(i.e. remove animation.Blend("jumpland”, 0); and animation["run”].normalizedSpeed
=1.0F)).

public void Start ()
{

if (this.remoteAvatar == null)
{
this .remoteAvatar = (RemoteAvatar)transform.GetComponent(typeof (
RemoteAvatar)) ;

}

if (this.remoteAvatar == null)

{
//// Check the remote avatar from the parent object

this .remoteAvatar = (RemoteAvatar) transform.parent.GetComponent(
typeof (RemoteAvatar)) ;

155

Chapter 6. Non Player Characters {* SCALIFY

Listing 6.10: Start() function

6.2.7 Build and run the game

Checklist:
v/ Make sure you have set the seed peer address before building the game.
v Make sure you start a seed peer with “unity-demo” as the application name.
v Make sure the run on the background option is set.

Run the game from Unity editor and make sure there are no errors. Build the game
and run two instances and make sure you have set the seed peer address correctly.
On success, you should be able to see the others players with their own pet.

6.3 Distributed Controller based NPCs

Badumna 1.4 comes with an advanced feature called Distributed Controller that
supports executing game code reliably in a non-reliable distributed environment
such as the game network.

Many games have NPCs that have non-critical roles. Such NPCs are usually
designed to allow players to interact (e.g. fight/talk) with them and gain expe-
rience points, gold, weapons, etc. Due to the non-critial nature of these NPCs,
as long as the majority of such NPCs keep functioning correctly, it doesn’t affect
the overall gaming experience. To support a large number of such NPCs would
typically require significant server resources(in terms of CPU, memory and band-
width requirements) for the game operator. In Badumna, the Distributed Con-
troller is provided to host such NPCs within the game network without the need
for dedicated servers. The Distributed Controller therefore offloads the CPU and
bandwidth requirements that are imposed by such NPCs. It has been designed
to ensure that majority of the NPCs will work consistently even as players keep
joining and leaving the game.

Before we demonstrate the use of Distributed Controller NPCs via a Unity ex-
ample, we would like to introduce certain relevant concepts.

1. NPC Migration: A distributed controller NPC is hosted on a regular user
computer. If a user decides to exit the game, their computer will be dis-
connected from the Badumna network immediately. In order to ensure that

156

Chapter 6. Non Player Characters {* SCALIFY

NPCs keep running irrespective of users joining and leaving the game net-
work, the NPCs need to relocate to a different computer and resume working
as quickly as possible. This automatic relocation of NPCs is termed as NPC
migration in Badumna.

Checkpoint/Recover: To support NPC migration, NPCs need to save their
current status, called Checkpoint, and Recover from this saved status on a dif-
ferent computer.

Non-critical NPCs: As mentioned above, the distributed controller should
only be used to implement NPCs that are non-critical. Game developers
should expect that some of the NPCs would occasionally stop working for
a few seconds during migration or even disappear for an extended period of
time during the game session. Badumna ensures that most NPCs will work
consistently when there are enough peers in the network.

To use this feature, a custom controller class inherited from DistributedSceneCon-
troller in the Badumna.Controllers namespace needs to be implemented. The follow-
ing methods must be overridden in the child controller class:

1.

TakeControlOfEntity is called when the controller is created. It should cre-
ate an ISpatialOriginal object, which is usually an NPC avatar. This object
needs to be initialized and then returned. The ISpatialOriginal object is inac-
tive when returned from the TakeControlOfEntity function. This means that
the ISpatialOriginal object is created and stored locally by the Distributed
Controller module, but it has not been registered to any scene yet. There
will be no processing or communications overhead from such inactive ISpa-
tialOriginal objects.

The InstantiateRemoteEntity and RemoveEntity methods are called when
the NPC is notified to create a replica of a remote entity and when the NPC
becomes no longer interested in the remote entity respectively.

Checkpoint and Recover are used to checkpoint the status of the NPC avatar
and recover from the saved status respectively.

Sleep is called to notify the controller that the NPC avatar is going to be
switched to inactive status.

. Wake is used to notify the controller that the NPC avatar will become active.

Process is called regularly when the NPC avatar is active. You can invoke
any game logic within this method. For example, it is common to execute the
NPC'’s behaviour code within this method ®.

'Unity3D provides other functions such as FixedUpdate to define NPC behaviour. This will be
clear in the demo

157

Chapter 6. Non Player Characters {* SCALIFY

To start or stop the Distributed Controller based NPCs in the game, the game
code should call one of the following APlIs:

1. NetworkFacade.Instance.StartController<T>(string uniqueName) will start a
controller named uniqueName. There will only be one NPC character created
if all computers call this StartController method using the same uniqueName
parameter. This is because the NPC instances are identified by this string
(unigueName). The uniqueName parameter also must follow a defined pat-
tern to include the Scene Name for which the NPC will join.

2. string NetworkFacade.Instance.StartController<T>(string sceneName, string
controllerName, ushort max) will start a controller of type T with the name
controllerName, and have the created NPC to join the scene specified by sce-
neName. The parameter max defines the maximum number of such NPCs
to be created. If all computers call this method with the same max param-
eter, then up to max instances of the specified NPCs will be created in the
game. The returned value of this method is the uniqueName of the created
controller instance.

3. NetworkFacade.Instance.StopController<T>(string uniqueName) is used to
stop the controller and its associated NPC identified by the unigueName pa-
rameter.

Please note that a maximum of one NPC is created per game client. For exam-
ple, if you set the vale of max to 50, Badumna will start a maximum of one NPC
on each game client. Therefore, you will require more than 50 online users (each
will call StartController with same parameters on the local machine) to have all 50
NPCs created. When the number of online users drops to say 20, the total number
of such NPCs will also eventually drop to 20 in about one minute.

It is possible to call StartController multiple times on the same machine with
different controllerName to start different types of distributed controller based NPCs.
Each peer can start up to 64 different types of NPCs.

We now demonstrate how to use a Distributed Controller NPC using a Unity
demo. This tutorial refers to Demo10-DistributedController (Demo10-Distributed
Controller.unitypackage). This demo is derived from Demo3-DeadRekconing. This
tutorial will explain how to integrate Demo3 with the DistributedController fea-
ture. In this demo, the NPCs will be created using distributed controllers. They
will use the same behaviour script as before (i.e. RandomWalker script). Two ad-
ditional classes are added in this demo which are NPCController and NPCManager.

6.3.1 Create a new project

Create a new unity project and import Demo10-DistributedController.unitypackage.

158

http://www.scalify.com/badumna/api/1.4/html/87B69867.htm
http://www.scalify.com/badumna/api/1.4/html/3F07A939.htm
http://www.scalify.com/badumna/api/1.4/html/3F07A939.htm
http://www.scalify.com/badumna/api/1.4/html/B3912191.htm

Chapter 6. Non Player Characters {* SCALIFY

6.3.2 Open the Unity scene file
Open Demo10.unity file.

6.3.3 NetworklInitialization.cs

In order to integrate the distributed controller, you need to modify some parts of
NetworkInitialization class as follows:

1. Start the distributed controller by calling StartController function (see Listing
6.11).

2. Modify CreateEntity callback function (see Listing 6.12). CreateEntity func-
tion is called by Badumna every time a new remote entity enters the clients
area of interest.

//// Start the distributed controller.
NetworkFacade.Instance.StartController <NPCController >(this .
networkSceneName, "Random—walk-NPC", 1);

Listing 6.11: Start Controller

As explained before, NPCController is the type of distributed controller that
needs to be created (see NPCController section at page 162). This is usually the
name of the class that implements the NPC behaviour. You will also need to specify
the network scene name, a name to recognise the NPCs and the maximum number
of NPCs in the game.

private ISpatialReplica CreateEntity (NetworkScene scene, Badumnald
entityld , uint entityType)
{

GameObject remotePlayerObject = (GameObject) GameObject. Instantiate (
this.ListOfAvatars[(int)entityType], transform.position,
transform . rotation);

bool isLocalNPCReplica = false;

//// Check whether the replica is a replica of the distributed
controller NPC
if (entityld.ToString().Contains("Dht"))

{
//// Check if the local NPC of this replica is on this machine.

159

Chapter 6. Non Player Characters 2 SCALIFY

Debug.Log(string .Format (" (NetworklInitialization.cs) NPC replica
with entity id {0}", entityld));

if (GameObject.Find (entityld.ToString()) != null)

{
Debug.Log(string . Format (" (NetworklInitialization.cs) NPC
replica have local avatar on this machine"));
isLocalNPCReplica = true;
remotePlayerObject. transform .name = string.Format("{0}
remoteNPC" , entityld.ToString());
}
else
{

Debug.Log(string . Format("(NetworklInitialization.cs) NPC
replica with entity id {0} is created", entityld));
remotePlayerObject. transform .name = entityld.ToString () ;

}
RemoteAvatar remoteAvatar;

if (remotePlayerObject != null)
{
remotePlayerObject . AddComponent(typeof (SyncAnimation));
remotePlayerObject . AddComponent(typeof (RemoteAvatar));
remoteAvatar = (RemoteAvatar)remotePlayerObject.GetComponent(
typeof (RemoteAvatar)) ;
if (remoteAvatar != null)
{
//// The network guid should be set to the given guid
remoteAvatar.Guid = entityld;
remoteAvatar.SetAvatarToUse (remotePlayerObject) ;

//// Add the remote avatar to mRemoteEntities
this.remoteEntities .Add(entityld , remoteAvatar);

ISpatialReplica spatialReplica = remoteAvatar as
ISpatialReplica;

if (isLocalNPCReplica)
{
//// Deactivate this replica, since the original of this
//// replica is here.
remotePlayerObject.SetActiveRecursively (false);
NPCManager. Instance . NonActiveReplica.Add(entityld ,
remotePlayerObject);

}

return spatialReplica;

160

Chapter 6. Non Player Characters {* SCALIFY

return null;

Listing 6.12: CreateEntity function

The CreateEntity callback function for this example is a little complex. The key
points that you must know are as follows.

Firstly check whether the replica is a replica representing a distributed con-
troller NPC, by checking the entity Id of the replica. All distributed controller
NPCs have the string “Dht’” as part of their entity id. Hence we check for this string
in the entityld. If the replica is a distributed controller NPC then you have to treat
it differently. You need to check whether this distributed controller NPC is already
present as a local entity on the client. This is checked by going through the list
of game objects and trying to find a match with the entityld. A positive match
indicates that the distributed controller is currently running on this machine as a
local entity, hence we shouldn’t create an active remote replica for this remote en-
tity on this client machine. Creating an active remote entity would mean having a
local and remote entity for the same NPC on the machine which is not desirable.
Hence we set a flag isLocalNPCReplica and give this remote entity a different name
0-remoteNPC. You cannot ignore this remote entity as it may be required if the local
entity (distributed controller object) migrates to another machine. Hence we keep
track of this remote entity and set the remote entity to a non-active state. In this
demo, we keep track of the inactive replicas by storing them in the list NPCMan-
ager.Instance.NonActiveReplica. This allows us to access the remote entity if required
at a later stage. This is done when the isLocalNPCRelica flag is true in the CreateEn-
tity function.

if (isLocalNPCReplica)
{
//// Deactivate this replica, since the original of this
//// replica is here.
remotePlayerObject.SetActiveRecursively (false);
NPCManager. Instance . NonActiveReplica.Add(entityld , remotePlayerObject
)i

If the remote entity is a normal remote entity, then we just add it to the list
of remote entities as we have done in the other Unity demos. This is done in the

161

Chapter 6. Non Player Characters ' SCALIFY

following code that is part of the CreateEntity function.

else
{
Debug.Log(string .Format("(NetworkInitialization.cs) NPC replica with
entity id {0} is created", entityld));
remotePlayerObject. transform .name = entityld.ToString();

The rest of the CreateEntity function does all the usual list of things that need
to be done for a remote entity such as adding all the relevant components (Syn-
cAnimation, RemoteAvatar); setting the global unique id; and adding the remote
entity to the mRemoteEntities list.

6.3.4 NPCContoller

NPCController class is derived from DistributedSceneController. It is mandatory to
implement this class. The name of this class should match the distributed con-
troller type specified in StartController function. As explained before this class
needs to implement the following DistributedSceneController functions - TakeCon-
trol OfEntity, InstantiateRemoteEntity, Checkpoint and Recover, Sleep, Awake and Pro-
cess.

The following code shows all the private methods for the class

public class NPCController : DistributedSceneController
{

/// <summary>

/// Local NPC character.

/// </summary>

private LocalAvatar localAvatar;

/// <summary>

/// Collections of remote entities.

/// </summary>

private Dictionary <Badumnald, RemoteAvatar> remoteEntities = new
Dictionary <Badumnald, RemoteAvatar>();

/// <summary>

/// Collections of remote object

/// (i.e. object with remote avatar script attached to it).
/// </summary>

162

Chapter 6. Non Player Characters ' SCALIFY

private Dictionary <Badumnald, GameObject> remoteObjects = new
Dictionary <Badumnald, GameObject>();

/// <summary>

/// Last time this controller does the checkpoint.
/// </summary>

private DateTime lastCheckpoint;

The constructor for this class creates an instance of an NPC character. In this

demo, we use SmallLerpz as our NPC character.

/// <summary>
/// Initializes a new instance of the NPCController class.
/// </summary>
/// <param name="uniqueName">The controller unique name.</param>
public NPCController(string uniqueName)
base (uniqueName)

{

//// Create one small lerpz.

this . ConstructControlledEntity ((uint)PlayerType.SmallLerpz) ;

We will now explain the member functions. TakeControlOfEntity is called

when Badumna wants the client to create the controller. We first check if a remote

replica of this NPC exists on this client machine. If it exists then we deactivate the
remote entity.

//// Check whether the NPC has a replica in this peer.
GameObject replica = GameObject.Find(entityld.ToString());
if (replica != null)

{

//// Deactivate its replica first.

Debug.Log(string .Format(" (NPCController.cs) {0} replica is found,
deactivate first", entityld.ToString()));

replica.transform .name = string.Format("{0} —remoteNPC", entityld.
ToString ());

replica.SetActiveRecursively (false);
NPCManager. Instance . NonActiveReplica.Add(entityld , replica);

163

Chapter 6. Non Player Characters {* SCALIFY

After this check, you then create a new local entity and assign all the relevant
components to this object.

//// Create the instance of this entity type
GameObject playerObject = (GameObject) GameObject. Instantiate (NPCManager.
Instance.ListOfAvatars[(int)entityType]);
if (playerObject != null)
{
playerObject. transform .name = entityld.ToString();
playerObject . AddComponent<CharacterController >() ;
playerObject . AddComponent<RandomWalker > () ;
playerObject. AddComponent<AnimationHandler >() ;
playerObject . AddComponent<LocalAvatar >();

CharacterController controller = (CharacterController)playerObject.
GetComponent(typeof(CharacterController));

controller .radius = 0.4f;

controller.center = new UnityEngine.Vector3(0, 1.1f, 0);

this.localAvatar = (LocalAvatar)playerObject.GetComponent(typeof (
LocalAvatar));

We finally set the local avatar to use and assign the entityld as its global unique id
and return this object.

if (this.localAvatar !'= null)

{
// Set the game object used by the local avatar
this.localAvatar.SetAvatarToUse(playerObject, "NPC");
this.localAvatar.Guid = entityld;
this .lastCheckpoint = DateTime.Now;

return this.localAvatar as ISpatialOriginal;

InstantiateRemoteEntity is called when there is a new remote entity that has
entered the NPCs area of interest. Hence this remote entity has to be added to its
list of the remote entities.

164

Chapter 6. Non Player Characters ' SCALIFY

protected override ISpatialReplica InstantiateRemoteEntity (Badumnald
entityld , uint entityType)

{

GameObject remoteObject = new GameObject(entityld.ToString () + '

remoteObject");

if (remoteObject != null)

{

}

//// Attach the remote avatar script to the object.
RemoteAvatar remoteAvatar = remoteObject.AddComponent<
RemoteAvatar > () ;

//// Set the remote avatar network id (entity id).
remoteAvatar.Guid = entityld;

//// Add the remote avatar to the collection of remote enttities
and its game object

//// to the collections of remote objects.

this.remoteEntities .Add(entityld , remoteAvatar);

this .remoteObjects .Add(entityld , remoteObject);

return remoteAvatar as ISpatialReplica;

return null;

RemoteEntity is called when a particular remote entity leaves the NPC’s area of
interest. Hence the remote entity has to be removed from its list of remote avatars.

protected override void RemoveEntity(ISpatialReplica replica)

{

RemoteAvatar remoteAvatar;
GameObject remoteObject;

if (this.remoteEntities.TryGetValue(replica.Guid, out remoteAvatar))

{
}

this.remoteEntities.Remove(remoteAvatar.Guid);

if (this.remoteObjects.TryGetValue(replica.Guid, out remoteObject))

{

GameObject . Destroy (remoteObject) ;
this .remoteObjects .Remove(replica.Guid);

165

Chapter 6. Non Player Characters {* SCALIFY

Checkpoint needs to save the status of the NPC. In this example, the only status
information for our NPC is its position. Hence we save this position to the binary
writer that is passed as a parameter. Badumna enforces checkpoint data to be
smaller than 4Kbytes each.

protected override void Checkpoint(System.IO.BinaryWriter writer)
{

writer . Write (true) ;

writer . Write (this.localAvatar.transform. position.x);

writer . Write (this.localAvatar.transform. position.y);

writer . Write (this.localAvatar. transform. position.z);

Recover is the opposite of Checkpoint. Hence in this function you read the
properties from the binary reader and assign them to your NPC.

protected override void Recover(System.IO.BinaryReader reader)
{

bool containsData = reader.ReadBoolean () ;

if (containsData)

{

UnityEngine . Vector3 position = new UnityEngine.Vector3(reader.
ReadSingle () , reader.ReadSingle(), reader.ReadSingle());

if (this.localAvatar != null)
{

}

this.localAvatar.transform.position = position;

)

protected override void Recover ()

{
if (this.localAvatar != null)

{
}

this.localAvatar. transform. position = UnityEngine. Vector3.zero;

166

Chapter 6. Non Player Characters ' SCALIFY

Recover() method will be called when there is no existing checkpoint has been
made. In this case, when there is no checkpoint data, set the position of the NPC
to a valid position. Note that position (0, 0, 0) is a valid position in this demo.

A Position must be verified during recovery.

When you recover from a checkpoint image, the position of the NPC
must be verified to ensure it is always valid.

Sleep is called when the NPC controller is going to migrate to another client.
Therefore, we need to perform the following steps. First, we need to check if the
client holds a remote replica of the NPC controller. If it does have a remote replica
of the controller, then it needs to be activated. Once the replica is activated, the
distributed controller object can be destroyed as it is no longer needed.

protected override void Sleep ()

{

Debug.Log(" (NPCController.cs) Sleep is called");
if (this.localAvatar != null)

{

//// Check whether there is an inactive replica of local avatar,
since the local avatar

//// will migrate, then have to reactivate it.

GameObject nonActiveReplica = null;

if (NPCManager. Instance.NonActiveReplica.TryGetValue (this.
localAvatar .Guid, out nonActiveReplica))

{
if (nonActiveReplica != null)
{
Debug.Log (" (NPCController.cs) Found a non—active replica”
);
nonActiveReplica.SetActiveRecursively (true);
nonActiveReplica.transform .name = this.localAvatar.Guid.
ToString () ;
NPCManager. Instance . NonActiveReplica .Remove(this .
localAvatar.Guid) ;
Debug.Log(" (NPCController.cs) Re—activate replica");

}

Debug.Log (" (NPCController.cs) Destroy NPC object");
GameObject. Destroy (this .localAvatar . transform . gameObject) ;
this .localAvatar = null;

167

Chapter 6. Non Player Characters {* SCALIFY

Wake is called when the NPC Controller is activated on the client. This call is
immediately followed by the InstantiateRemoteEntity call. Hence, we don’t need to
perform any specific actions.

protected override void Wake()
{

)

Debug.Log (" (NPCController.cs) Controller is awake.");

Process is called regularly by Badumna. One of the important tasks to be per-
formed in this function is to save the status of the NPC. This can be done by calling
the Badumna function Replicate. In this demo, we call Replicate every 10 seconds,
the latest checkpoint data will be stored on Badumna networks for up to 90 sec-
onds. This will save the NPC status every 10 seconds. Since the Process function
is called regularly by Badumna, normally it is a good place to define the NPC
behaviour. In this demo, we use Unity3D’s FixedUpdate function to trigger NPC
behaviour.

protected override void Process(TimeSpan duration)
{
//// Call the replication method every 10 seconds.
DateTime now = DateTime .Now;
if ((now — this.lastCheckpoint).TotalSeconds > 10)
{
this .lastCheckpoint = now;
this . Replicate () ;

All the above functions are designed in such a manner that most Unity users
can reuse use them in their application without any modification. All that needs to
be done is to define the NPC behaviour as has been done in RandomWalker class
in this demo.

168

Chapter 6. Non Player Characters {* SCALIFY

6.3.5 NPCManager

NPCManager is a class that derives the MonoBehaviour class. Its main role is to
help the NPCController class obtain the information from the Unity game objects.
This class is required as NPCController class is not derived from MonoBehaviour.
NPCManager stores a collection of inactive replicas and a list of available avatars.
This class is fairly straightforward and it does not have to be modified. This class
should be included inside the NPCManager game object — refer to Demo10.unity
scene.

6.3.6 Build and run the game

Checklist:
v Make sure you have set the seed peer address before building the game.
v/ Make sure you start a seed peer with “unity-demo” as the application name.
v Make sure the run on the background option is set.

You can now build the game and run two instances simultaneously. If you set
the number of maximum NPC to be 1 then you should be able to see an NPC
started using distributed controller and one of your game instance should have
the controller awake. You should be able to see three players — two players are
normal players and the third player is an NPC. You can test the game on different
machines and make sure that two instances can communicate via Badumna.

6.3.7 Additional Note

When you build a game with multiple unity scenes and use the distributed con-
troller to host the NPCs, you have to make sure that the NPCs have the terrain
information. For example, assuming your game have two unity scenes (i.e. scene
A and B). The player is located on scene A and one of the NPC is located on scene
B, then to ensure both player and NPC has the terrain information, the game must
load both scene A and B.

169

Chapter 6. Non Player Characters {* SCALIFY

A Make sure the NPCs have terrain/unity scene information

Failure to load the scene when using Distributed Controller based
NPCs can cause high bandwidth consumption. If the terrain at the
NPC'’s location is not loaded, the NPC will fall rapidly towards neg-
ative infinity, and Badumna will send many unnecessary position or
velocity updates. It is the application’s responsibility to ensure that
the scene is loaded where required for NPCs.

@ Windows distributed controller example

The Windows examples download includes a bonus distributed con-
troller demo in API Example 9. See section 2.2 for information on
where to find the Windows examples download.

170

Chapter 7

Additional Features

This chapter will explain three additional features of the Badumna Network Suite.
The features covered in this chapter are:

1. Custom messages - Sending and receiving of custom messages between local
and remote entities.

2. Streaming - Badumna’s streaming protocol and its use.

3. Debugging - Debug version of Badumna library with trace enabled.

7.1 Custom messages

The previous chapters have explained how Badumna supports game state syn-
chronisation so that all the entities in the game have an accurate representation of
all the remote entities. There may also be a need in the game to exchange custom
messages between original and replicated entities. This is especially important if
you are not using the Arbitration Server and want to provide client-side arbitra-
tion. Note that custom messages are not intended for regular state updates (e.g.
position and velocity changes) which occur frequently and are insensitive to miss-
ing some intermediate changes. Custom messages are guaranteed to arrive reliably
and in order, so they are more costly than normal replication messages. This relia-
bility makes them ideal for sending transient events, such as a player waving their
hand. Because this action lasts only a short time it may not be seen by all replicas
if it were sent using the normal replication system. By sending a custom message
all replicas are guaranteed to be notified of the event.
Badumna provides two methods to support this functionality — SendCustomMes-

sageToRemoteCopies and SendCustomMessageToOriginal. ~ SendCustomMes-
sageToRemoteCopies sends a single message directly to all remote replicas of the

171

http://www.scalify.com/badumna/api/1.4/html/A3F59D6E.htm
http://www.scalify.com/badumna/api/1.4/html/A3F59D6E.htm
http://www.scalify.com/badumna/api/1.4/html/45E99C3C.htm
http://www.scalify.com/badumna/api/1.4/html/A3F59D6E.htm
http://www.scalify.com/badumna/api/1.4/html/A3F59D6E.htm

Chapter 7. Additional Features R SCALIFY

specified entity. SendCustomMessageToOriginal is used to send a custom mes-
sage from a specific remote replica to its original entity.

We will now demonstrate how to use these two functions using sample code.
Let us assume a scenario where a specific remote entity was hit by a weapon and
as a result of that has reduced its health value. The remote entity is just a spatial
replica and hence this information needs to be sent to the original entity that is
responsible so that it can incorporate the health change. To do this operation we
will be using the SendCustomMessageToOriginal method. This functions takes
two arguments - the instance of the remote avatar and a binary stream that holds
the custom message. Let us assume that the health damage is stored as a float.
The following code will enable us to send the health damage information to the
original entity. This code will typically appear just after the health damage has
happened.

RemoteAvatar remoteAvatarl;
float healthDamage = —50f;
using (MemoryStream eventStream = new MemoryStream ())
{
BinaryWriter writer = new BinaryWriter (eventStream) ;
writer . Write (healthDamage) ;
NetworkFacade . Instance . SendCustomMessageToOriginal (remoteAvatarl,
eventStream) ;

In the code above, you will notice that we have written healthDamage into
eventStream via a binary writer. The stream is then passed as the second argument
to the SendCustomMessageToOriginal method.

When the message arrives at the original its HandleEvent function will be
invoked. Hence we need to implement that method in the LocalAvatar class (which
implements ISpatialOriginal).

public void HandleEvent(Stream stream)

{
// In this example, for simplicity reasons we assume there is only
// one type of event so we just read it directly as the healthDamage
// variable.

BinaryReader reader = new BinaryReader (stream);
float healthDamage = reader.ReadSingle();

// Apply the healthDamage to the original here. e.g. You might call

172

http://www.scalify.com/badumna/api/1.4/html/45E99C3C.htm
http://www.scalify.com/badumna/api/1.4/html/45E99C3C.htm
http://www.scalify.com/badumna/api/1.4/html/45E99C3C.htm
http://www.scalify.com/badumna/api/1.4/html/5F89D4EF.htm
http://www.scalify.com/badumna/api/1.4/html/30F664EC.htm

Chapter 7. Additional Features R SCALIFY

// a method that applies this value to the LocalAvatar health

// property and flags it as changed. This will ensure that the new
// health value gets serialised during the next update and all remote
// entities will be updated.

All we have to do in the HandleEvent callback is to read from the binary stream
in the same order as we have written. In this example, we have only written a float
so the first value we read is a float and represents the health damage on the local
entity. If you wanted to implement custom messages for different events such as
one for health damage, one for being attacked, etc, then you can use an integer
to identify the different commands and always write that integer as the first data
item in the binary reader. Therefore at the receiving end, you can read the integer
and based on the value, take appropriate action.

The method SendCustomMessageToRemoteCopies is implemented in exactly
the same manner. This method will send the custom message from the original
entity to all its remote replicas. Hence the HandleEvent callback in the class im-
plementing ISpatialReplica will be triggered. Everything else is exactly the same
as demonstrated above. For more details regarding these API methods please refer
to the API documentation.

7.2 Streaming protocol

The Badumna streaming protocol provides a high performance yet easy to use and
reliable way of streaming content (data stream or file) between Badumna peers. A
peer can request to send content to a remote peer or it can also request the remote
side to start sending content. The following two methods can be used to subscribe
to requests:

1. SubscribeToSendStreamRequests

2. SubscribeToReceiveStreamRequests

An EventHandler delegate, which will be invoked on receiving incoming re-
quests, is specified when invoking the above methods. This handler is described
in more detail below.

A peer can call one of the following two methods to request to start sending
content to a specified remote peer. The data transmission is asynchronous meaning
that the begin send methods will return immediately. The completion callback
specified when invoking the send methods will be called on completion.

1. BeginSendReliableFile

173

http://www.scalify.com/badumna/api/1.4/html/5F89D4EF.htm
http://www.scalify.com/badumna/api/1.4/html/A3F59D6E.htm
http://www.scalify.com/badumna/api/1.4/html/5F89D4EF.htm
http://www.scalify.com/badumna/api/1.4/html/F8DA3268.htm
http://www.scalify.com/badumna/api/1.4/html/A70ACDA.htm
http://www.scalify.com/badumna/api/1.4/html/BBA28FA6.htm
http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm

Chapter 7. Additional Features R SCALIFY

2. BeginSendReliableStream

A peer can also request the remote peer to start sending file or content by calling
one of the following two methods:

1. BeginRequestReliableFile

2. BeginRequestReliableStream

To learn more about the streaming protocol, you can refer to the associated
API documentation for the Streaming namespace. The StreamingManager class
provides all the API for streaming related functions whereas the IStreamController
interface controls the streaming operation and provides information on its current
status.

We will now take you through the steps that are required to support streaming
functionality in your application and demonstrate that using sample code written
in C#.

The first thing that a client has to do is to subscribe to Badumna’s streaming
service. This allows the client to receive files from other clients. This step is typ-
ically done during application start up. To subscribe to receive files you use the
SubscribeToReceiveStreamRequests method that is part of the StreamingManager
class as follows:

public void Initialize ()

{
//

other initialization code

NetworkFacade . Instance . Streaming . SubscribeToReceiveStreamRequests (
"MyTag", this.HandleMyTagStreamEvent) ;

//

other initialization code

}

This above method takes two arguments. The first argument is a string used
to identify the type of streaming request. Multiple calls may be made to Sub-
scribeToReceiveStreamRequests to associate different tags with different handlers.
When sending a file, the string passed to the BeginSendReliableStream or Begin-
SendReliableFile method must match one of the strings registered on the remote
end. The second argument is the handler that will get invoked when a request is

174

http://www.scalify.com/badumna/api/1.4/html/1D41F288.htm
http://www.scalify.com/badumna/api/1.4/html/95AA553A.htm
http://www.scalify.com/badumna/api/1.4/html/7FCC63FB.htm
http://www.scalify.com/badumna/api/1.4/html/FFBAF9A0.htm
http://www.scalify.com/badumna/api/1.4/html/DD00C381.htm
http://www.scalify.com/badumna/api/1.4/html/8A000471.htm
http://www.scalify.com/badumna/api/1.4/html/BBA28FA6.htm
http://www.scalify.com/badumna/api/1.4/html/DD00C381.htm
http://www.scalify.com/badumna/api/1.4/html/BBA28FA6.htm
http://www.scalify.com/badumna/api/1.4/html/BBA28FA6.htm
http://www.scalify.com/badumna/api/1.4/html/1D41F288.htm
http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm
http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm

Chapter 7. Additional Features R SCALIFY

received from a remote client. In the example above we have used a handler called
HandleMyTagStreamEvent (defined below).

We will now explain how to send a file using the streaming interface. You can
send a file using the BeginSendReliableFile method as shown below. We have de-
fined a class called FileTransfer which will initiate a transfer when it is constructed.
It will also update details in a GUI as the transfer progresses, via the IStreamCon-
troller instance returned from BeginSendReliableFile.

public class FileTransfer

{

private IStreamController transferController;

public FileTransfer (string filename, Badumnald destinationld , string
username)
{
this.transferController = NetworkFacade.Instance.Streaming.
BeginSendReliableFile ("MyTag", filename, destinationId,
username, this.Complete, null);
this . transferController.InformationChanged +=
this . UpdateProgress;
}

private void UpdateProgress(object sender, EventArgs args)

{
// Update progress display on the GUI from data on

// transferController.

}

private void Complete(IAsyncResult ar)

{
// Execute any actions required on completion such
// as removing the progress display from the GUI.

The call to BeginSendReliableFile takes six arguments:

string The unique string that should match what was used in the sub-
scribe call at the destination client.

string The full path to the file to be sent.

Badumnald The Badumnald of an entity owned by the destination client.

175

http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm
http://www.scalify.com/badumna/api/1.4/html/8A000471.htm
http://www.scalify.com/badumna/api/1.4/html/8A000471.htm
http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm
http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm
http://www.scalify.com/badumna/api/1.4/html/89D6264D.htm

Chapter 7. Additional Features R SCALIFY

string The username of the client sending the file, this is not validated
and is only an aid for the destination user.

AsyncCallback The callback function that will be invoked when the streaming
operation is complete.

object Custom state passed to the callback.

The BeginSendReliableFile method will cause the HandleMyTagStreamEvent
method to be invoked on the destination client. We now describe how to imple-
ment this method.

public void HandleMyTagStreamEvent(object sender, StreamRequestEventArgs
args)
{
// The StreamRequestEventArgs parameter provides access to
// information about the stream, and methods to accept or
// reject it. For full details refer to the API
// Documentation.

// This is the name that we’ll save the file to. Here we're
// using the original name of the file from the source client.
string filename = args.StreamName;

// Make sure that the user is happy to accept the file and set
// the value of ’"agree’ accordingly.
bool agree = true;

if {agree}

IStreamController transferController = args. AcceptFile(filename,
this .Complete, null);
transferController . InformationChanged +=
this . TriggerPropertyChanged;
}
else
{
// The user does not want to receive the file
args.Reject () ;

On receiving a stream request, the handler must call AcceptFile or Accept-
Stream to accept the transfer, or call Reject to reject the transfer. If the transfer is
accepted then an IStreamController is returned and can be used to monitor the

176

http://www.scalify.com/badumna/api/1.4/html/A6E693B.htm
http://www.scalify.com/badumna/api/1.4/html/B06BA358.htm
http://www.scalify.com/badumna/api/1.4/html/59E755D2.htm
http://www.scalify.com/badumna/api/1.4/html/59E755D2.htm
http://www.scalify.com/badumna/api/1.4/html/E2EEB421.htm
http://www.scalify.com/badumna/api/1.4/html/8A000471.htm

Chapter 7. Additional Features R SCALIFY

transfer in the same way as shown in the FileTransfer class above. In particular,
IStreamController has properties such as BytesTotal (total bytes to be transferred),
BytesTransfered (number of bytes transferred so far), and TransferRateKBps (esti-
mated transfer rate in KBps).

There are several other methods available in the streaming API but their usage
all follows the pattern above. Refer to the Badumna.Streaming section of the API
documentation for full details.

7.3 Debugging

A version of the Badumna Network Library with trace enabled is available for
Scalify customers upon request from Scalify. This version of the library will write
trace information to a log according to the configuration specified in the Network-
Config.xml file.

Full instructions will be distributed with the trace version of Badumna.

A Trace version is for development only.

The trace version of Badumna is intended for development use only
and should not shipped.

177

http://www.scalify.com/badumna/api/1.4/html/8A000471.htm
http://www.scalify.com/badumna/api/1.4/html/3B93D722.htm
http://www.scalify.com/badumna/api/1.4/html/4F28C99F.htm
http://www.scalify.com/badumna/api/1.4/html/7D707686.htm
http://www.scalify.com/badumna/api/1.4/html/FFBAF9A0.htm
http://www.scalify.com/contact.php

Chapter 8

The Control Center

Control Center is a central administrative tool for managing all Badumna related
services. It is ideal for large-scale deployments which may involve multiple ser-
vices deployed across several remote machines. The Control Center provides game
administrators with the ability to install services on remote machines and manage
(start/stop/update/monitor) them via a web interface. It uses a program called
Germ to communicate with remote machines. You have to install and start a Germ
on a remote machine that you want to use for Badumna related services. Once the
Germ is running on the remote machine, you can use the Control Center to install
and start new services on this remote machine. You can also monitor the services
that are running on this remote machine via the Control Center. As the Control
Center comes with a web interface, you can access it from any machine using a
web browser.

8.1 Initial Configuration

Before you can use the Control Center, you need to understand how the Control
Center operates. For obvious security reasons, we want the Control Center to com-
municate with its Germs only (and not any other Germ processes from some other
Control Center). The Control Center uses a certificate based system to support this
feature. The first time you start the Control Center, it will auto generate a certificate
(that includes a private key and a public key). As part of the certificate generation,
you will be asked to enter a pass phrase. Please enter a unique pass phrase and
store it in a secure place. You cannot change this pass phrase once the certificate
has been generated (refer to section 8.14 if you forget your pass phrase).

As the Control Center can be accessed via a web browser, it can be accessed
from any remote machine. In order to make it secure, the Control Center comes
with a user authentication system. This ensures that you have the convenience
of accessing the Control Center from anywhere you want but at the same time

178

Chapter 8. The Control Center {* SCALIFY

you can restrict who is allowed to access the Control Center. The Control Cen-
ter uses a SQLite database to store user information. The default installation of
Control Center includes all the necessary database files that are required for this
operation and it is preconfigured to work with this database. If you wish to use a
different database application such as MySql for this purpose, then please refer to
section 8.15 for more details.

Finally, you can use one Control Center to manage one application. Therefore,
if you intend to deploy multiple applications and manage them via the Control
Center, you will require one instance of Control Center for each application.

8.2 Starting the Control Center

The Control Center application can be found in the ControlCenter directory. To
start the Control Center, run the launcher executable from the command line:

ControlCenter.exe
Command line options the can be specified are:

—p, ——port The port to listen on.

—i, ——ip The IP address to host the application at.

The default port is 21254. The default IP address is localhost. To make Control
Center accessible remotely, you should use your machine’s internal IP address.
For remote access, you will also need to configure your router to perform port
forwarding to forward http requests and TCP connections to the specified port.
For example, to start an instance of the Control Center at port number 1234 on the
local host:

ControlCenter.exe —-port=1234 —-ip=127.0.0.1

If you want to start a second instance of the Control Center for another application,
you can do so by using a different port number. The port number is therefore
important. It allows you to identify the Control Center that you are using for a
specific application.

179

Chapter 8. The Control Center {* SCALIFY

A Running Control Center on Windows Vista/7

On Windows Vista and Windows 7, Control Center needs to be run
with administrator privileges the first time it is using a particular
port, including the very first time it is run.

When running with administrator privileges, Control Center will add
the port to the URL Access Control List. After this has been done,
Control Center will not need administrator privileges on subsequent
runs.

@ Running Control Center with administrator privileges

To run Control Center with administrator privileges, launch Com-
mand Prompt with administrator privileges by right clicking on its
Start Menu shortcut (Start > All Programs > Accessories > Command
Prompt) and selecting ‘Run as administrator’. You can then launch
Control Center from the command line as described above.

If it is the first time you are starting the Control Center, it will auto-generate a
certificate and will prompt you to enter a pass phrase for the certificate. Please en-
ter a unique pass phrase and store the information in a secure location. The Control
Center will now start and run in the background. If you restart the Control Center
at some point in the future, it will start automatically using the same certificate.
You will be asked to enter the pass phrase if you restart the Control Center.

8.3 Accessing the Control Center

Once you have the Control Center running, you can access it from any machine
using a standard web browser. To access the Control Center you can enter the
IP address/hostname of the machine that is running the Control Center followed
by its port number. For example if you are accessing the Control Center from
the local machine, you can enter the following address in the browser window:
http:/ /localhost:21254. This will start the Control Center that is running on port
21254 of the local machine. If you are accessing the Control Center from a remote
machine, you need to enter the complete IP address or hostname along with the
port number. Please note that when you start the Control Center (as explained in
section 8.2) it will automatically start a browser on the local machine for conve-
nience.

180

Chapter 8. The Control Center R SCALIFY

BRADUMNA CONTROL CENTER P SCALIFY

Create New Network Configuration ®

ALIFY PTY LTD. ALL RIGHTS RESERVED, DESIGH B

Figure 8.1: Control Center - Application settings

8.4 Authentication and user accounts

As the Control Center can be accessed from any remote machine, its access is con-
trolled by an authentication system. You need a valid username and password.
The default installation of Control Center comes with an admin account that has
been created. Hence, the first time you access the Control Center, you need to use
the following account details:

Username: admin

Password: admin_pass

After you login, it will ask you to enter an application name and a unique
application protocol hash (string) (see Figure 8.1). You can enter an application
name that will allow you to identify your application. The application protocol
hash is the same unique string which is used by the Badumna client to join the
network. Make sure that you use the same string in both places. Please refer to
the chapter 3 for details on how to specify the application protocol hash in the
Badumna client. Once you enter this information and click submit, you will go to
the main page for your application.

At the top of the page, you will see the change password link (see Figure 8.2).
Please change the password. The admin account will allow you to login to all the
Control Centers that you may have running on a particular machine.

181

Chapter 8. The Control Center R SCALIFY

BRODUMNRA CONTROL CENTER {2 SCALIFY

MyApp Notification (0} Custom Service Builder Admin

Network Details ®

Running Services : L

Service Name Germ Host la il Ping response

Germs Host: @

Host name Status CpuLoad Memory Available

Global Settings : ®

Wodule

Available Services : ®

LIFY BT LTD. ALL RIGHTS RESERVED. DESIGN BY FREE C55 TEMPLATES.

Figure 8.2: Control Center - Main page

A Please change the password to the admin account.

When you login as admin, you can add users and give them permission to
access the Control Center. If you have multiple applications deployed (being man-
aged by multiple Control Centers) you can set the permissions for a user so that
they have access to only certain applications. In order to manage users, click on
the “Admin’ tab.

To add a new user, click on “Create user’ link. You will see a screen as shown
in Figure Figure 8.3. Enter the details for the new user as requested and then click
the ‘Register” button. Once you add a user, you need to give them permission to
access the Control Center. This is done by assigning the role. Each application is
identified by a role. You therefore need to create a role that corresponds with the
application name. You can create a role by clicking on the ‘Manage or Create Role’

182

Chapter 8. The Control Center R SCALIFY

BRADUMNA CONTROL CENTER P SCALIFY

Create A New Account

Email

Figure 8.3: Control Center - Account registration

link. You will see a screen similar to Figure Figure 8.4. Enter the same name as
the application name and click “Add Role” button. You will notice a new role being
added to the list. Now you can click on the ‘Manage’ link corresponding to the
new role that you just created. You will see a list of all existing users including the
user you just created. To give this user permission to access the Control Center, en-
able the corresponding radio-button as shown in Figure Figure 8.5. You have now
successfully created a new user and given them permission to access the Control
Center. In order to remove a user or change permissions, you can click on ‘Manage
user’ link. You will see a screen similar to Figure Figure 8.6. To delete a user, click
on the corresponding ‘Delete” link next to that user. When you login as a normal
user, you don’t have access to the “Admin’ tab.

8.5 Germ installation

In order to access remote machines and start services you first need to install the
Germ package on the remote machine. It is important that you perform this step
only after you have started your Control Center. This ensures that the public key

183

Chapter 8. The Control Center R SCALIFY

BRDUMNA CONTROL CENTER RN SCALIFY

MyApp Netification (0} Custom Service Builder Admin

ManageRole

Role Name

Admin

Figure 8.4: Control Center - Manage role

BADUMNA CONTROL CENTER X SCALIFY

Manage Admin Role

User name User is in role

admin

PTY LTD. ALL RIGHTS RESERVED.

Figure 8.5: Control Center - Manage a specific role

184

Chapter 8. The Control Center R SCALIFY

BRDUMNA CONTROL CENTER ' SCALIFY

MyApp Ntification {0 Custo ilde Admin

ManageUser

E-mail

Figure 8.6: Control Center - Manage user

information specific to the Control Center is copied on the remote machine. To
install and start a Germ on a remote machine, perform the following steps:

1. Go to the Germ directory under Control Center directory. Copy this directory
to the remote machine that you want to use as a Badumna server. Make
sure you have create a certificate by running the Control Center first (i.e. the
publicKey.key is included in Germ directory).

2. To start the Germ, use the following command line:

LaunchGerm.exe

The above command will start a Germ on that machine at it will listen at the
default port 21253. If for some reason the default port (21253) is not available on
that machine, you can start the Germ and have it listen on a different port number
using the following command:

LaunchGerm.exe —-—-port=1000

Vista users must start the program with administrator privileges. The above
command will start the Germ process and it will listen on port number 1000.

185

Chapter 8. The Control Center {* SCALIFY

8.6 Main information page

We will now explain the main information page of the Control Center. To go to the
main information page, you can click on the first menu item which should show
your application name. In Figure 8.2, the menu item with ‘"MyApp’. As you can
see from the figure, the main page is divided into four sections - Running Services,
Germs Host, Global Settings and, Available Services. ‘Running Services’ lists all
the services that are currently running as part of your application. If you have
started the Control Center for the first time, there won’t be any services listed un-
der this section. ‘Germs Host” provides a list of remote machines that you have
access to. These machines can be used to start new services specific to your appli-
cation. ‘Global Settings’” section stores all the settings that are relevant to the entire
application. ‘Available Services’ section lists all the services that are available for
the application and can be started on remote machines. We will now explain these
sections in details.

8.7 Germs host

This section lists all the machines that can be used to start Badumna specific ser-
vices. To add a machine to this list, click on the “Add Germ’ link. You will see a
screen as shown in Figure 8.7 Enter the hostname or IP address of the machine that
you want to add. Enter the port number that the Germ process is listening on. This
is the port number that you specified when you started the Germ process on the
machine (defaul port is 21253). Click on the ‘Submit” button. This will take you
back to the main information page. If the Control Center is able to establish con-
nection with the remote machine (via the Germ process), it will show the details
of the remote machine in the list of ‘Germs Host’. Along with the host name, the
status of the machine is displayed (Online/Offline). This section also displays the
CPU load and the available physical memory on this machine. If you click on the
‘View details’ link next to the Germ, you can get further information about your
remote machine such as the total number of bytes sent and received per second.
You will also see two graphs - one plots the CPU usage and memory available and
the other plots the incoming and outgoing network traffic in kilo bytes per second
(see Figure 8.8).

8.8 Global Settings

The ‘Global Setting” sections allows you to configure parameters that are applied
to the entire application. The Global Setting section is divided into two modules
- application setting and connectivity setting. If you click on the ‘Configure” link
next to “Application Setting’, you will see there is only one parameter that you can

186

Chapter 8. The Control Center R SCALIFY

MyApp MNotification (0) Custom Service Builder

Add Germ @

Germ Host

Faort:

Subrmit

Figure 8.7: Control Center - Adding a Germ

configure (application name). This is the application protocol hash that is unique to
your application. This string should match what is used in your client application
(refer to section 3.1 for more details about the application protocol hash.

The ‘Connectivity Settings” allow you to configure all the parameters associ-
ated with network connectivity. Click on the ‘Configure” link next to “‘Connectivity
Settings’. There is only one parameter that you can configure as part of the basic
settings (broadcast option). If you want your Badumna server processes to have
broadcast enabled, then click on the radio button next to ‘Is broadcast enabled’.
You need to specify a port number at which the relevant processes should broad-
cast. The default port number is 32864. You can use that port number or change it
to a more appropriate port number if 32864 is not available.

Connectivity Settings also provides advanced configuration options. These op-
tions are intended for advanced users only. It is recommended that you do not
access these options unless you are an advanced user. Please refer to section 8.16 if
you intend to make changes to the advanced connectivity options.

8.9 Available services

This section lists all the services that are available for the application and are ready
to be started. You will observe that there are four standard services that are avail-
able for all applications - Dei account management, Seed Peer, Overload peer, Http
tunneling. These services are included as part of the installation and are ready to

187

Chapter 8. The Control Center R SCALIFY

BRAODUMNA CONTROL CENTER (;3 SCALIFY

MyApp otil (0) Custom S e Admin

Germ Host : Localhost:21257 @

Running Services : L

Germ Host Time of last ping

1075Mb

1050Mb

1025Mb

Figure 8.8: Control Center - Germ details

188

Chapter 8. The Control Center R SCALIFY

MyApp Naotification {0} Custom Service Builder

'Dei Account Management' Setting ®

The portthe dei server listens on; | 21248
Listening with S5l connection: d

P: details:

Figure 8.9: Control Center - Dei Server Config

be started. For more details on each service please refer to chapter 4. Apart from
these four services, you can add custom services that are specific to your applica-
tion such as an Arbitration Server that manages combat functionality in your ap-
plication. We will now explain how to start the default services available. Please
make sure that you have added at least one Germ host to your Control Center
before you start any services.

8.9.1 Starting Dei Server

If you are planning to use Dei server for user authentication then you will need
to start a Dei server (Dei account management service). If you click on the “Start’
button next to Dei account management, it will start Dei server with default set-
tings. Itis a good idea to click on ‘Configure” and make sure the settings are correct
before starting any service. When you click on ‘Configure’ link next to Dei account
management, you will see a screen as shown in Figure 8.9.

The first option allows you to set the port number for Dei server. The default
port number for Dei service is 21248. If for some reason, your remote machine does
not allow using that port number, you can change it here. The second option allows
you to specify if you want to use an SSL connection when communicating with Dei
server. If you are using Unity3D (ver 2.6) for your game development then you
cannot use SSL. This is because version 2.6 of Unity3D uses mono 1.2.5 which does
not support SSL connections. If you are using a different game environment that

189

Chapter 8. The Control Center {* SCALIFY

supports SSL connections, then you can select this option. The last option provides
details about the Dei installation package.

You are now ready to start Dei server. Click on ‘Start” link. The first option
allows you give a custom name to your Dei service (for e.g MyAppDeiService). In
the second option, you have to pick the machine from the drop-down list that you
want to start Dei server on. If you had enabled SSL connections, you will see two
more options. These options allows you to specify which certificate to use (please
refer to section 4.1 for more information on the different types of certificates that
Dei supports). If you are using an Autogenerated certificate then select “Autogen-
erate certificate” and click ‘Submit’. If you intend to use a custom certificate, then
select ‘Custom certificate’. You will have to enter a passphrase for your custom
certificate and then click ‘Submit’. If the Control Center is able to start Dei service,
you will see a message at the bottom of the screen to that effect. If for some reason,
the Control Center is unable to start Dei service, you will see a message as to why
it was not able to start Dei server on the Germ host. If the service has started, you
will also see an entry under the ‘Running Services’ section on the main page. The
entry will display the service name, the germ host that the service is running on,
the last time the machine was pinged and the response received.

8.9.2 Starting a Seed Peer

Starting a Seed Peer from the Control Center is fairly easy. First you click on the
‘Configure’ link next to Seed Peer. You will see a screen as shown in Figure 8.10 The
tirst option allows you to specify if you are using Dei authentication system as part
of this application. If you are using Dei server, then select this option by clicking on
the radio button. You will be asked to enter further details about your Dei Server
such as the IP address, username/password and whether to use a SSL connection
(please refer to subsection 4.1.4 for more information related to Dei setup).

The second option allows you to specify if you are starting a new network or
joining an existing game network. If this is a new application that you are starting
and currently there are no users in the network then you should select this option
by clicking on the radio button. However, if this is an application that has been
running for some time and you want the Seed Peer to join the existing network
then you should leave this option unchecked.

The third option allows you to specify the listening port for the Seed Peer. This
port number must match the port number that you will specify in the client con-
figuration (see subsection 2.4.1 for more information on client configuration).

The fourth option allows you to specify if you wish to monitor the service.
Monitoring a service allows you to be notified if the service goes down for some
reason. If you check the Monitor Service Performance button, you will be asked to
enter the monitoring frequency in seconds. Please enter the frequency. Make sure
that you do not enter a number that is very small as it will increase the network

190

Chapter 8. The Control Center R SCALIFY

MyApp Motification {6) Custom Senvice Builder

'Seed Peer' Setting @

Listening port:

Monitor Service Performance:
Wonitor frequency

Fackage details:

Figure 8.10: Control Center - Seed Peer Config

traffic. Monitoring the service performance every 5 minutes (300 seconds) is a good
idea.

The last option displays details of the Seed Peer package. You can now click on
the “Start’ link to start the Seed Peer. You will see a screen as shown in Figure 8.11.
You can give your service a custom name (for e.g. SeedPeer-A). Select the machine
you want to start the service by selecting the Germ host from the drop down list.
Now click on the ‘Submit” button. The Control Center will start the service and
display a message accordingly. You will also see the Seed Peer service listed under
the ‘Running Services’ section.

8.9.3 Starting a Overload Peer

To start an Overload Peer from the Control Center, you need to configure it first by
clicking on the ‘Configure” button. You will see a screen as shown in Figure 8.12.
The first option allows you to specify if you are using Badumna’s distributed
lookup option for service discovery (see section 4.5 for more details). Check this
box if you are using the distributed lookup option.

191

Chapter 8. The Control Center R SCALIFY

Start SeedPeer service

service Name:

Start service on: [lalstEl el R v

Figure 8.11: Control Center - Start service

MyApp Notification (11) Custom Service Builder

'Overload Peer' Setting @

Distributed Lookup:

Listening port:

monitor Serice Performance:
Fackage details:

Figure 8.12: Control Center - Overload Peer Config

192

Chapter 8. The Control Center R SCALIFY

MyApp Notification (13} Custom Service Builder

'Http Tunneling' Setting @

The hitp prefi for tunneling serer | hitpef+e2] 247

Figure 8.13: Control Center - Http Tunnel Config

The second option allows you to specify if you are using a Dei authentication
service. If you are using Dei, then check the box, next to “Use Dei Authentication
Server’. You will be asked to enter further details about your Dei Server such as
the IP address, username/password and whether to use a SSL connection (please
refer to subsection 4.1.4 for more information related to Dei setup). Unity3D users
should leave this box unchecked as Unity 2.6 does not support SSL.

The next option in the Overload peer configuration allows you to specify the
port number for the Overload peer. The default port number is 2002. You can
change this to a different port number if 2002 is not available on that machine.

Monitor Service Performance option is exactly the same as for Seed Peer. It
gives you an option to monitor the performance of the Overload Peer and make
sure that it is running all the time.

The last option ‘Package details” provides details on the Overload Peer installa-
tion package. After completing the configuration, you can start the Overload Peer
service by clicking on the ‘Start” link. You will then see a pop-up window that will
allow you to give your service a name (for e.g. Overload Peer - USA) and also
select the machine to start the service from the drop down list. You can now click
on ‘Submit’ to start the service. An appropriate message will be displayed and you
will see the service name included in the ‘Running Services’ section.

8.9.4 Starting an Http tunnelling service

To start an Http tunnelling service from the Control Center, you first configure
the service by clicking on the ‘Configure’ link. You will see a screen as shown

193

Chapter 8. The Control Center {* SCALIFY

in Figure 8.13. Enter the Http prefix for your tunnelling service (please refer to
section 4.4 for more details on setting the prefix). Package details provides details
on the installation package for the tunnelling server. Enter a name for your Http
tunnelling service (for e.g. MyApp-Tunnel) and select the machine that you want
to start the service. You can then click on the “‘Submit’ button to start the service. An
appropriate message will be displayed and you will see the service name included
in the ‘Running Services” section.

8.10 Monitoring service performance

Control Center allows you to monitor the performance of the services that you are
running as part of your game network. You can even obtain detailed network sta-
tus for certain services such as Seed Peer and Overload Peer. The Running Services
section displays all the services that are running in your network along with de-
tails of the machine they are running on and the status of the last ping response.
If you would like to ping your service you can click on the "Ping" link next to it.
The Control Center will ping that service and display the response in the appro-
priate column. To obtain more details about a service, you can click on the ‘Show
status’ link next to the service. Depending on the service, the Control Center will
display relevant information. For Badumna specific services such as Seed Peer and
Overload Peer, the Control Center will display connectivity information, the dis-
covery status, the scene information (number of local/remote entities), and Dht
information. The Dht details are specific to Badumna’s internal working and can
be ignored. This page also displays a graph that plots the total network traffic to
and from this process.

Custom services and Dei server do not show such details. The only informa-
tion available for these services is ping information (whether they are online and
active).

8.11 Starting services on Windows

Please note that when you are starting a service on a Windows machine for the
first time, you will receive a security alert from Windows and you will have to
manually unblock the program and permit the service to accept connections (Fig-
ure 8.15). Hence if your remote machine is running Windows OS, then you will
have to unblock the program manually for the first time. Alternatively, you can
configure the firewall settings on your remote windows machine so that it does
not complain when a new program is trying to access the Internet when started.

194

Chapter 8. The Control Center R SCALIFY

BADUMNA CONTROL CENTER (1} SCALIFY

MyApp

MyCustomService ®

Build

FY PTY LTD. ALL RIGH DESIGN BY

Figure 8.14: Control Center - Custom service

"= Windows Security Alert

@ Tao help protect your computer. Windows Firewall has blocked

some features of this program.

Do you want to keep blocking this program?
@ Mame: Test-demo
Publisher: Unknawn

Keep Blacking] [Unblack l [Aszk Me Later

YWindows Firewall has blocked thiz program from accepting connections from the
Internet or a netwark, [F pou recognize the program or bzt the publisher, you can
unblock it. When should | unblack a program?

Figure 8.15: Windows Security Alert

195

Chapter 8. The Control Center {* SCALIFY

8.12 Custom services

Control Center allows you to start any custom services that are specific to your
application. In order to start a custom service you first need to build the service.
You do that by clicking on the ‘Custom Service Builder” menu at the top of the
page. If this is the first time you have clicked Custom Service Builder, you will not
have any applications listed under ‘Applications’. Click on “Add Service” link to
add a new service. You will be asked to enter a name for the service and choose
whether its an ‘Arbitration service’ or a ‘Non-Badumna service’. If your new ser-
vice is a customised Arbitration Server for your application, then you should select
the type as “Arbitration service’. However if your service is some other application
such as a Unity headless server process then you should select ‘Non-badumna ser-
vice’. Make sure you enter a relevant name for your service (for e.g. Guest Book
Arbitrator). Once you click on the ‘Create’ link, your service will appear in the list
of Application in Custom Service Builder.

Before you can start the service, you need to build your service installation
package. Click on the ‘Configure’ link next to your service name. You will see a
screen as shown in Figure 8.14 If this is the first time you are installing this partic-
ular package, then you should check both the options - ‘Include all contents” and
‘Include package extraction tools’. The first option informs the Control Center that
all the files in the package need to be uploaded on the remote machine as it is the
first time the service is being installed. The second option informs the Control Cen-
ter that since this is the first time you are building the service in the Control Center,
it should include all the extraction tools as part of the installation. However, if you
are installing an update to an already installed service, then you can choose not to
include all contents. The Control Center will only upload the files that have been
modified or newly added to this particular update. Also, for subsequent updates
you don’t have to check the ‘Include package extraction tools” option. As these
tools have already been included as part of the base installation. This reduces the
package size for the update and makes the installation process faster.

You now have to select the package contents. In order to add files to the pack-
age, you should right-click on your service name as listed there. There are two
ways to add files in the package. You can include all your package files inside a
zip file and upload the zip file or you can add the files one after the other. Once you
have included all the files that are necessary for the package, you need to tell the
Control Center the executable file that starts your custom service. Right click on
the executable file and select ‘Set as executable file’. You are now ready to build the
package. Click on the ‘Build” button. You will be asked to enter a short description
for the service. The Control Center will then build the custom service and you will
see the service listed in the list of “Available Services” section on the main page.

You can click on the ‘Configure” link next to your new service. You will have
the option to enter any command line arguments that are required to start the

196

Chapter 8. The Control Center R SCALIFY

BAODUMNA CONTROL CENTER

MyApp Notification (0) Custom Service Builder Admin

Setup Email Notification ®

Email Notification Setup
Send Motification via email | [l
Smitp Client
Smip Fort

Username

Fram
To

Subrmit

Figure 8.16: Control Center - Email notification

service. You can also view the package details. You can now start the service by
clicking the ‘Start” link on this page or you can click the ‘Start” link next to the
custom service on the main page. You will be asked to give the service a name
(for e.g. Guestbook - EU Users) and select a remote machine to start the service.
Click on the ‘Submit’ button. The Control Center will start the custom service and
display a message accordingly. You will also see the custom service listed under
the ‘Running Services” section.

8.13 Notification

If you want to be notified via email if any of the remote machines or services are
down, you can configure that via the Notification menu item. Click on the ‘No-
tification” menu item on the main page and then click on the ‘Notification Email’

197

Chapter 8. The Control Center {* SCALIFY

link. You will see a screen as shown in Figure 8.16 Check the box next to ‘Send
Notification via email’. Fill the rest of the fields with the following information:

Smtp server: Enter your Smtp server (for e.g. smtp.example.com).
Smtp port: Enter your Smtp port number (for e.g. 25).
Username: Enter the username if that is required by your Smtp server.

Password: Enter a password if required by your Smtp server.

From: Enter a name that will appear in the from field (for e.g. Control Cen-
ter).
To: Enter the recepient email address. Control Center will send the email

to this email address.

After you have entered all the detail, click on the’Submit” button. You will now see
the message saying - (currently the notification via e-mail is enabled). You have
successfully configured your Control Center’s email notification service.

8.14 Certificate update

The Control Center uses a certificate based system to ensure that all the server pro-
cesses are connected in a secure network and can only talk to their Control Cen-
ter. When you start the Control Center for the first time, it will generate a unique
certificate for your application. You are asked to enter a pass phrase during the
certificate generation process. It is important that you enter a unique pass phrase
and store it in a secure place. After the certificate is generated, the Control Center
inserts the corresponding public key in the Germ folder. Hence, when you install
Germs on remote machines, they have the public key required to communicate
with the Control Center. The pass phrase for your certificate cannot be changed.
To access the Control Center you don’t require the pass phrase (just a valid user-
name and password). However, if you happen to restart the Control Center for
some reason, then it will ask you to enter the pass phrase.

If for some reason you forget the pass phrase then you have to perform the fol-
lowing steps to start the Control Center and get it reconnected with the application
network.

1. Go to the Control Center folder and look for the Certificate folder. Inside this
folder, you will find a file with this name - certificate.pfx. Delete this file.

2. Now start the Control Center (refer to section 8.2 for more information on
starting the Control Center). At this stage the Control Center will not display
any running services if you had any. This is because the Control Center has a

198

Chapter 8. The Control Center {* SCALIFY

new certificate and is not able to communicate with any of the remote Germ
processes.

3. If you have any Germs listed in your ‘Germs Host” section, you have to
remove them all (refer to section 8.5 for more information on removing a
Germ).

4. Now you have to repeat the process of copying the Germ folder to all the
remote machines and then restarting the Germ processes on all the remote
machines. Please refer to section 8.5 for more information on starting a Germ
process. Make sure that you stop the existing Germ process before you start
the new Germ process.

5. Now you have to add all the remote machines using the “Add Germ’ link in
the Control Center.

6. The next step is to restart all the running services. You will have to first
manually stop all running services on the remote machines.

7. You can now start the services from the Control Center (please refer to sec-
tion 8.9 for more information on starting new services).

You have now setup the Control Center and reconnected to the existing network
with a new certificate.

8.15 Using a different database application

As you learnt in section 8.1, to access the Control Center you require a valid user-
name and password. Control Center stores the user account information in a
database. The default installation of Control Center uses MySQLite database. The
Control Center installation includes the necessary database files that are required.
However, if you want to use a different database application such as MySql or Sql
Server for the Control Center user account storage you can configure the Control
Center accordingly.

We will provide instructions to configure the Control Center to use MySQL
database application. We assume that you have already installed MySQL on the
machine that will host the database. You will need to perform the following steps:

1. Install MySQL Connector on the machine that is running the Control Center.
You can download this package from the MySQL website. This installation
includes two dlls (MySql.data.dll and MySql.web.dll). Copy these two files
in the bin folder inside the Control Center folder.

199

http://dev.mysql.com/downloads/connector/net/

Chapter 8. The Control Center {* SCALIFY

2. The Control Center installation comes with a sql dump file. Use this file to
generate the MySQL database for the Control Center. Lets call the database
file controlcenter_data.sql. This file can be found under App_Data directory
inside ControlCenter directory. Command line use to generate the database
from sql file is as follow.

mysgl —-u user_id -p < controlcenter_data.sqgl

3. Edit the web.config file that is located in the Control Center folder. You will
find the connectionStrings module in the file:

<connectionStrings >
<remove name ="lLocalSQLite"/>
<add name="localSOLite" connectionString="Data Source="./
App_Data/Provider. sqlite" ;; Version=3;"/>
</connectionStrings >

You will have to change this to the following:

<connectionStrings >
<remove name ="'LocalMySqlServer"/>

<add name="lLocalMySqlServer" connectionString="Data Source=
server_name; user id=username;password=password;database=
control_center;" providerName="MySql.Data. MySqlClient"/>

</connectionStrings >

where server_name is the hostname or IP address of the machine that has
MySQL installed, username is a valid username with admin privileges to
access the database and password is the corresponding password for that
username, and controlcenter_data.sql is the database file that was generated
earlier.

4. There are three other sections that have to be updated in the web.config
file. These sections are <profile>, <roleManager>, and <membership>. Go
through these sections and replace :

e SQLiteRoleProvider with MySQLRoleProvider,

200

Chapter 8. The Control Center R SCALIFY

BADUMNRA CONTROL CENTER R SCALIFY

MyApp Natification (0) Custom Service Builder Admin

'Connectivity Setting’ Setting

ALIFY PTY LTD. ALL RIGHTS RESERVED. DESIGH BY

Figure 8.17: Control Center - Advanced connectivity options

¢ SQLiteMembershipProvider with MySQLMembershipProvider,
¢ and SQLiteProfileProvider with MySQLProfileProvider.

You have now configured Control Center to work with MySQL database. You
can start the Control Center and use it as described in this section. The rest of
the functionality should be the same. You can use the same steps to configure the
Control Center to work with SQL server or any other SQL compliant database.

8.16 Advanced connectivity options

Connectivity settings are applied to all Badumna services in your game network.
There may be an occasion when you may have to change the default settings of
certain parameters within Badumna’s connectivity module. This section describes
those advanced options. Figure 8.17 shows a screen dump of the advanced con-
nectivity options.

Port forwarding is enabled by defaul in Badumna and it is recommended that
you keep that enabled. Port forwarding ensures that the service peer obtains an
open NAT connection if it happens to be behind a NAT device. However, if under
certain special circumstances you want to disable port forwarding for your service,

201

Chapter 8. The Control Center {* SCALIFY

you can disable port forwarding. Examples of when you would disable port for-
warding is during testing or if you are making a specific build for users that are on
a corporate proxy and have their UDP ports blocked.

Stun is another option that is enabled by default. Stun allows Badumna to
detect the type of NAT device a particular peer is connected and hence apply ap-
propriate setting so that it is able to communicate with the rest of the users. If you
happen to test your application on a private LAN (without internet connection) or
if you are testing http tunnelling where UDP is blocked, you may choose to disable
Stun.

The Stun server list is a list of servers that Badumna uses during its Stun pro-
cess. If you edit this list to add or remove stun servers if you have concrete infor-
mation about such servers in the Internet. Once again, we don’t recommend that
you modify this list unless you are certain of what you are doing.

8.17 User administration

If you login to the Control Center with the admin account, you will notice an ad-
ditional menu item at the top (Admin). This allows you to manage access permis-
sions to the Control Center. If you click on the "Admin" tab, you will notice three
links - Manage User, Create User, and Manage or Create Role. The Create User link
allows you to add new users who can access the Control Center. The Manage or
Create Role link allows you to add new roles and manage existing roles. The con-
cept of role is important if you have multiple Control Centers that are running for
different games. Each Control Center will be referred by a role. The name of the
role must match the name of the application. Hence if your application name is
MyApp, the corresponding role that identifies this Control Center will be called
MyApp. A user can be permitted to access a Control Center (running application
name MyApp) by assigning the role MyApp to the user. You can assign roles to a
user by using the Manage User link.

Therefore, it is important that you create at least one role with the name of your
application. When you add new users who can access your Control Center, make
sure that you include the role in their list of roles. As an administrator (when you
use the admin account), you are allowed to login to any Control Center.

202

Appendix A

Changes from Badumna 1.3 to
Badumna 1.4

This appendix covers all the changes between the current release (version 1.4) and
the previous release (version 1.3). This appendix is useful if you already have a
game developed using Badumna 1.3 and you want to upgrade it to Badumna 1.4
to fully utilize the new features.

A.1 Local spatial replicas

In Badumna 1.3, each peer held replicas of all registered local spatial original en-
tities. This has been changed in version 1.4. In Badumna 1.4, each peer only
hold replicase for remote spatial entities. This means that the network status re-
turned by GetNetworkStatus() may report fewer number of replicas compared to
version 1.3. This change is completely transparent to existing games and requires
no change to the game code.

A.2 Initializing Badumna

In Badumna 1.4, we have added a new method to initialize Badumna. public void
Initialize(string appName) has been added to the NetworkFacade. This allows game
developers to specify a unique application name that will become the name for
the Badumna network for that game. Badumna peers from different games will
then be unable to communicate with each other. The older method to initialize
Badumna is still supported in this version and can be used by developers.

203

Appendix A. Changes from Badumna 1.3 to Badumna 1.4 R SCALIFY

A.3 UPnP port forwarding

The default value for UPnP port forwarding is set to enabled. You can disable the
UPnP port forwarding in the NetworkConfig.xml or by setting IsPortForwardin-
gEnabled to false in ConfigurationOptions.

A.4 GetNetworkStatus()

The GetNetworkStatus() method has been updated and it now contains information
on whether the UPnP port forwarding succeed or not.

A.5 Presence information

void ChangePresence(ChatChannelld channel, ChatStatus status) has been removed from
IChatService. Badumna 1.4 no longer support setting different chat presences for
different types of chat (proxmity or private chat). Each player will have a uniform
presence status for both proximity and private chat. The same presence status will
be displayed to all other users in private chat.

A.6 Hittp tunnel

In version 1.3, the suport for Http tunnelling was not automated. Developers had
to provide an interface for the end users to manually select Http tunnelling in
order to connect using the tunnel. In version 1.4, the support for Http tunnelling
has been automated. If you have a Http tunnel server running, you just need to
specify that in the network configuration. The client can automatically use the
Http tunnel server if it is unable to connect to the network using UDP. Please refer
to section 4.4 for more details on how to configure the Http tunnel.

A.7 API calling order

As a result of the automatic tunnelling feature, NetworkFacade.ConfigureFrom can
only be called before NetworkFacade.Instance object is accessed. Hence, for most
games, you will need to call NetworkFacade.ConfigureForm before you call Network-
Facade.Instance.Initialize() method.

If you are a Unity3D user, there are two required changes that you will have
to make. The first change is in the FixedUpdate function within Badumna’s Net-
workInitialization.cs script. You will notice that we now an extra check for Net-
workFacade.Instance.IsLoggedIn before we call ProcessNetworkState. Please refer
to one of the Unity demo’s in chapter 5 for more details.

204

Appendix A. Changes from Badumna 1.3 to Badumna 1.4 R SCALIFY

The second change required is to move the network configuration set-up from
the NetworkInitialization constructor into Unity’s Awake function. Please refer to
the Unity demos in chapter 5 for more details.

You will also notice in the Unity demos that the other Badumna classes such as
LocalAvatar and RemoteAvatar now perform their initialization within the Awake
function as opposed to their constructor. This change is optional but is considered
to be optimal as these classes derive from MonoBehaviour. Refer to the Unity
demos in chapter 5 for more details.

A.8 Arbitration Server

The Arbitration Server in version 1.4 is not backwards compatible with version
1.3. Therefore, if you have a game that uses the Arbitration Server, you will have
to make a small change for it to work in the new version. We have added an extra
function in version 1.4 that makes the Arbitration Server more reliable and robust
under adverse network conditions. Please refer to section 4.2 for more details on
how to use this new function.

A.9 Decentralized Service Discovery Support

In Badumna 1.3, the addresses of centralized servers, such as Arbitration and Over-
load server had to be specified in the client configuration. The Service Discovery
feature introduced in Badumna 1.4 allows clients to locate such servers during
runtime dynamically in a completely decentralized manner. To use this feature the
only change required is in the client configuration and it is completely transparent
to the existing game code. Please refer to section 4.5 for more details.

A.10 Dei server

Version 1.3 came with two different versions of the Dei server, one that supported
MySql database and the other that supported SqLite database. In version 1.4 we
have combined the two Dei server packages into one package. You specify the
database in the configuration options for the Dei server. Apart from MySql and
Sqlite, it also supports SqlServer. We have also included a simple web application
along with the source code that allows you to add and manage users to the Dei
server database. You can customise this program according to your applications
requirements. There are no changes required in the client in terms of how you
access the Dei server. In version 1.3, Dei server used an auto-generated certificate
to secure the connection between the client and the server. However, in version
1.4, you have the option of using your custom certificate that is signed by a trusted
authority. Please refer to section 4.1 for more details.

205

Appendix A. Changes from Badumna 1.3 to Badumna 1.4 R SCALIFY

A.11 Distributed non-player objects

Version 1.4 provides a new method to support non-player characters (NPC) that

can be hosted on client machines. A method called public string StartController<T>(string
sceneName, uint max) has been added to NetworkFacade. This method allows you

to run dynamic objects on clients machines. The NPCs automatically migrate from

one client to another if a client goes offline. If you are developing a game that re-
quires hundreds of NPCs in the game then you can use this functionality. Please
refer to section 6.3 for more details about this feature.

A.12 Unity and API Examples

In Badumna 1.4, the API examples have been rearranged based on functionality
and several new examples have been added. New examples include demonstra-
tions for private chat, database access, and arbitration servers. Unity3D exam-
ples have also been rearranged to follow the same style as the API examples. The
Unity3D examples in 1.3 used Unity tags to identify the different type of char-
acters. However, tags have been removed in 1.4. The demos now use a simple
enumeration list (Enumeration.cs) to store the list of player types.

We have also added a comprehensive example on how to access a database
from multiple arbitration servers. The example demonstrates how to selectively
lock parts of the database so that you can access unlocked parts of the database
from other remote servers. Please refer to section 4.2 for more details.

A.13 Buddy list

Badumna 1.4, includes support for Buddy lists. There is a Windows API exam-
ple and a Unity example that demonstrates how to support Buddy lists when the
information is stored in a database and accessed by Arbitration Server.

A.14 Control Center

Control Center now works on Windows, Mac and Linux operating systems (pre-
vious version only supported Windows). The Control Center interface has been
redesigned to improve usability. It also comes with a user authentication system.
You therefore require a valid username and password to access the Control Center
making it more secure. The connection between the Control Center and the Germ
host is now secured by the use of SSL. When you start the Control Center, it will
generate a certificate for you. Please refer to chapter 8 for more details.

206

Appendix A. Changes from Badumna 1.3 to Badumna 1.4 R SCALIFY

A.15 Seed Peer

Badumna 1.4 provides the ability to support multiple Seed Peers for a application.
Multiple Seed Peers provide more reliability to the network. Having multiple Seed
Peers ensures that if a Seed Peer goes down for a certain period, the network is still
operational and the application continues to function as normal.

A.16 Default port numbers

Default port numbers for the different services such as Seed Peer and Dei server
have been changed. This means that when you start these services in default mode,
then you will have to change the port numbers in your client network configura-
tion. Please refer to Appendix C for the list of port numbers that Badumna utilises
for the different services.

A.17 Bug fixes

Apart from the new features, Badumna 1.4 includes a number of bug fixes. Some
of them are listed here:

1. Timing: A bug in Environment.TickCount in the Mac version of Mono 1.2.5
led to a noticeable lag on Macs.

2. Replication: Bug in the replication module caused flashing of entities under
some rare conditions.

3. Replication: Multiple scenes do not work correctly when there are multiple
original entities registered on the same peer.

4. Replication: Resent updates are not always correctly delivered.

5. Connection table inconsistency: Connection table can become inconsistent
when there are many peers on the same LAN.

6. UPnP: The UPnP module does not work in the Unity Web Player.
7. UPnP: The UPnP module does not work with some routers.

8. Chat: Chat messages will be recieved multiple times when there are multiple
original entities on the same peer.

9. Chat Presence: The user presence state will not be updated when the remote
user crashes.

10. DHT: Some objects stored on the DHT will never expire.

207

Appendix A. Changes from Badumna 1.3 to Badumna 1.4 ' SCALIFY

11. Transport: The rate limiter can cause excessive CPU load when there are
large number of connections.

12. Configuration: The verbosity level Information can not be set when using
ConfigurationOptions.

208

Appendix B

Game development on a
residential network

Badumna is able to handle different types of Network Address Translation (NAT)
devices, including residential broadband routers. However, Badumna networks
require at least one peer to have an open connection (i.e. all other peers should be
able to communicate directly with it). The Seed Peer fulfils the role of having an
open connection. This appendix explains how to set up a working development
environment in a typical residential network environment. Please note that the set
up steps are only required when you want to have your Badumna game devel-
opment environment in a residential network. End users do not need to set up
anything on their routers to play Badumna based games.

This appendix assumes the development machine is behind a residential broad-
band router with build-in NAT and is assigned a private address. We first intro-
duce how to use UPnP and port forwarding to start a Seed Peer with open connec-
tion. Then we will discuss the Lan test mode feature which allows the connectivity
issues to be bypassed during development.

B.1 Universal Plug and Play (UPnP)

UPnP is enabled by default in Badumna 1.4. It will automatically try to set up
a port forwarding entry on the NAT and make the Seed Peer appear to have an
open connection to all other peers. If everything works as expected, when the
verbose command line option is set, the Seed Peer will print out its NetworkStatus
information on the standard output and that should contain the public address
details as shown in B.1.

In B.1, the public address is marked as a Full cone NAT type. Together with the
Open NAT type, these two NAT types are regarded as open connections.

209

Appendix B. Game development on a residential network R SCALIFY

rights reserved. Copyri
P IGD in IS05 6.82b

: Full coneil28.25@.79.221:22992
: Internalil?2.168.1.5:22992

Active connections: A
Initiali=ing connections: @
UPnP Enabled: True

UPnP Succeeded: True

Figure B.1: Badumna - Network Status output

B.2 Port Forwarding

The majority of routers support UPnP (universal plug and play) feature. However,
this is not 100% guaranteed as there may be defects in the router’s implementation
of UPnP. It is also possible that UPnP is not supported or has been disabled in the
router.

Due to the different brands and models of routers, the exact procedure of man-
ually setting up port forwarding on the router may be different. The 3rd party web
site http://portforward.com maintains detailed steps on how to set up port
forwarding on hundreds of different router models. Please refer to that web site
for more details. The general idea is to map an external port, say X, to the internal
port, Y, that the Seed Peer is going to use. This will ensure that all UDP traffic sent
to the external port X will be redirected to port Y on the Seed Peer’s machine.

Once the port forwarding is set up on the router, you can restart the Seed Peer
and check whether the reported public address is of type Full Cone NAT.

B.3 LAN Test Mode

It also possible to bypass the connectivity issue during the development phase by
using the LAN test mode. In the LAN test mode, Badumna assumes all peers
are running on PCs within the same LAN and all peers can directly communicate
with each other via the private IP addresses. Peers will find out each other through
subnet broadcasting. Hence the Seed Peer is no longer required.

The LAN test mode can be enabled by adding the following configuration into
the NetworkConfig.xml file:

<Module Name= >
<PortRange>21300,21399 </ PortRange>
<Broadcast Enabled= >21250</Broadcast>
<LanTestMode Enabled= />

</Module>

210

http://portforward.com

Appendix B. Game development on a residential network R SCALIFY

It can also be enabled by setting the IsLanTestModeEnabled property in Configu-
rationOptions to be true.
Please note, when running in the LAN test mode:

1. All regular peers and services must be configured to run in LAN test mode.
2. Peers will not be able to communicate with external peers on the Internet.

3. This feature is for testing purpose only. LAN test mode must be disabled in
the release version of your products.

211

Appendix C

Default port numbers

Service Port

HTTP Tunnel Server: 21247 (TCP)
Dei Server: 21248 (TCP)
Broadcast: 21250 (UDP)
Seed Peer: 21251 (UDP)
Overload Server: 21252 (UDP)
Germ: 21253 (TCP)
Control Center: 21254 (TCP)
DeiAdministrationTool: 21255 (TCP)

Arbitration Servers:

21260 - 21270 (UDP)

Clients:

21300 - 21399 (UDP)

Table C.1: Default port numbers

212

Appendix D

Known issues in Badumna 1.4

This appendix lists all the known issues that exist in the current release of Badumna
(ver 1.4.0).

1. Changing the system clock on Mac could stop Badumna when running
with Unity 2.6. Due to a bug in the version of Mono shipped with Unity ver-
sion 2.6, Badumna may stop working if the system clock is changed during a
game session on Mac OS X. It will only affect the local machine.

213

	Preface
	1 Introduction
	1.1 What's in this manual?
	1.2 Badumna Overview
	1.3 How Badumna works
	1.4 Services and features
	1.5 Network Structure

	2 Setting up
	2.1 Requirements
	2.2 Where to get Badumna Network Suite.
	2.3 Installation
	2.4 Setting up a Badumna network

	3 Badumna Basics
	3.1 Replication and interest management
	3.2 Proximity Chat
	3.3 Dead Reckoning
	3.4 Multiple scenes
	3.5 Private Chat

	4 Centralised Services
	4.1 Authentication and user management
	4.2 Arbitration
	4.3 Overload Server
	4.4 HTTP Tunnelling Service
	4.5 Distributed lookup service

	5 Unity3D
	5.1 Getting started with the Unity package
	5.2 Basic multiplayer game
	5.3 Proximity chat demo
	5.4 Dead reckoning demo
	5.5 Multiple scenes demo
	5.6 Private chat demo
	5.7 Authentication and user management demo
	5.8 Buddy list Demo
	5.9 Combat Arbitration Server demo

	6 Non Player Characters
	6.1 Server based NPCs
	6.2 Client based NPCs
	6.3 Distributed Controller based NPCs

	7 Additional Features
	7.1 Custom messages
	7.2 Streaming protocol
	7.3 Debugging

	8 The Control Center
	8.1 Initial Configuration
	8.2 Starting the Control Center
	8.3 Accessing the Control Center
	8.4 Authentication and user accounts
	8.5 Germ installation
	8.6 Main information page
	8.7 Germs host
	8.8 Global Settings
	8.9 Available services
	8.10 Monitoring service performance
	8.11 Starting services on Windows
	8.12 Custom services
	8.13 Notification
	8.14 Certificate update
	8.15 Using a different database application
	8.16 Advanced connectivity options
	8.17 User administration

	A Changes from Badumna 1.3 to Badumna 1.4
	A.1 Local spatial replicas
	A.2 Initializing Badumna
	A.3 UPnP port forwarding
	A.4 GetNetworkStatus()
	A.5 Presence information
	A.6 Http tunnel
	A.7 API calling order
	A.8 Arbitration Server
	A.9 Decentralized Service Discovery Support
	A.10 Dei server
	A.11 Distributed non-player objects
	A.12 Unity and API Examples
	A.13 Buddy list
	A.14 Control Center
	A.15 Seed Peer
	A.16 Default port numbers
	A.17 Bug fixes

	B Game development on a residential network
	B.1 Universal Plug and Play (UPnP)
	B.2 Port Forwarding
	B.3 LAN Test Mode

	C Default port numbers
	D Known issues in Badumna 1.4

