
HeatMapper Expansion
Thesis BachelorProject IN 3405

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Bioinformatics

Sietse Au  1382756
Freek Kuethe  1522434

Firdina Lesmana  1037668



Foreword
This bachelor thesis is written in completion of our Bachelor degree in Computer Science at the 
Delft University of Technology. This is a collaborative project of the Department of Hematology of 
Erasmus MC Rotterdam and the department of Bioinformatics of the Faculty of Electrical 
Engineering, Mathematics and Computer Science at the Delft University of Technology.

The aim of this bachelor project is to aid and provide researchers at Erasmus MC as well as 
other researchers in similar fields in getting more accurate and rapid interpretation of large scale 
genomic data.

We would like thank all of the involved supervisors during this project, both from Delft 
University of Technology as well as from Erasmus MC, especially Marcel Reinders of the Delft 
University of Technology and Erdogan Taskesen of the Erasmus MC. Thank you for the useful 
input, suggestions, guidance and willingness to supervise our project.

Delft, February 2012

Sietse Au, Freek Kuethe and Firdina Lesmana



Table of Contents
Glossary................................................................................................................................................5
Part 1. Introduction...............................................................................................................................7
Part 2. Correlation: ..............................................................................................................................8

2.1 Pearson's correlation coefficient................................................................................................8
2.2 Computation of correlation coefficients....................................................................................8
2.3 Problem analysis........................................................................................................................9
2.4 Requirements...........................................................................................................................10

2.4.1 Reading Affymetrix annotation files................................................................................10
2.4.2 Reading human sample files containing GEP or DMP data values.................................10
2.4.3 Letting the user set a correlation threshold......................................................................11
2.4.4 Letting the user select genes of interest...........................................................................11
2.4.5 Letting the user select samples of interest........................................................................11
2.4.6 Displaying data in a circular diagram..............................................................................11

2.5 Design......................................................................................................................................11
2.5.1 Loading and parsing of data.............................................................................................12
2.5.2 Selection of genes and calculating correlations...............................................................12
2.5.3 Displaying the resulting visualization..............................................................................12

2.6 Implementation........................................................................................................................13
2.6.1 Model-view-controller.....................................................................................................13
2.6.2 Front end..........................................................................................................................13
2.6.3 Back end...........................................................................................................................14
2.6.3.1 Parsing the input data....................................................................................................14
2.6.3.2 Manipulating the input data..........................................................................................15
2.6.3.3 Creating a visualization of the input data based on the input.......................................16

Part 3. Pathways.................................................................................................................................17
3.1 Problem Analysis.....................................................................................................................17
3.2 Interactions and Design...........................................................................................................17
3.3 Methodology............................................................................................................................21

3.3.1 T-Test................................................................................................................................21
3.3.2 Multiple Testing...............................................................................................................22

3.4 Implementation........................................................................................................................22
3.4.1 Reading and Importing Files............................................................................................22
3.4.2 Processing data.................................................................................................................23

Part 4. Alignment................................................................................................................................25
4.1 Problem Analysis.....................................................................................................................25
4.2 Design......................................................................................................................................25

Input..........................................................................................................................................26
Interaction.................................................................................................................................26
Clinical data searcher................................................................................................................27
Visualization..............................................................................................................................27

4.3 Implementation........................................................................................................................28
Reading the input......................................................................................................................28
Data manipulation.....................................................................................................................29
Visualizing the output...............................................................................................................29

Part 5. Circos......................................................................................................................................30
5.1 Why Circos?.............................................................................................................................30
5.2 Implementation........................................................................................................................30

5.2.1 Structure of Circos...........................................................................................................31
5.2.2 Circos API specifications......................................................................................................32

CircosConfigCorrelation implementation.................................................................................32



CircosConfigHypergeo implementation...................................................................................32
Part 6. Evaluation...............................................................................................................................33

6.1 Correlation...............................................................................................................................33
6.2 Pathways..................................................................................................................................33
6.3 Alignment.................................................................................................................................33

Part 7. Conclusion and recommendations..........................................................................................33
Correlation ....................................................................................................................................34
Pathways........................................................................................................................................34
Alignments.....................................................................................................................................34

Appendix: Problem Description.........................................................................................................35
Appendix: Correlation class diagrams................................................................................................36

correlation.main.............................................................................................................................36
correlation.lib.................................................................................................................................39
correlation.components.clinicaldata..............................................................................................39
correlation.components.annotationdataselectionpane...................................................................40
correlation.circos.api......................................................................................................................42

Appendix: Class Diagram Alignment.................................................................................................44
Appendix: Pathway class diagram......................................................................................................45
Appendix: Correlation Test Plan........................................................................................................45
Appendix: User manual......................................................................................................................47



Glossary
neutriphil Most common type of white blood cells

dendritic cell  An immune cell

gene a molecular unit of heredity of a living organism, is made up of DNA

DNA Deoxyribonucleic Acid, is the inheritable characteristics of an organism

nucleotide base basic building block of DNA

DNA sequencing determining the order of the nucleotide bases in a DNA molecule

DNA microarray a collection of DNA spots attached to a chip

DNA spot a spot on a microarray in which a certain DNA sequence is defined

probe set a set of probes of a DNA microarray

DNA probe a labeled segment of DNA used to find a specific sequence of nucleotides in 
a DNA molecule

pathway a set of genes which have a relation with each other

methylation the addition of a methyl group (CH3) to an existing molecule. Methylation in 
promoter regions of a gene can lead to silencing of that specific gene.

DMP DNA Methylation Profile

gene expression the process which uses information in a gene to synthesize a gene product

GEP Gene Expression Profile

CNV Copy Number Variations, are alterations in DNA sequences where gains 
and/or losses of DNA sequences occur

SNPs / SNIPs Single Nucleotide Polymorphisms, are DNA sequence variations that occur 
when a single nucleotide (A,T,C or G) in the genome sequence is altered

HeatMapper an application developed by the Erasmus MC for displaying heat maps

correlation matrix matrix filled with correlation values

correlation value Pearson's correlation coefficient

Pearson's correlation 
coefficient

a value between -1 and 1, representing negative or positive correlation

genomic range a span of genomic positions

genomic position genomic position on the human genome

human genome entirety of a human's hereditary information

affymetrix a company that manufactures DNA microarrays

chromosomal location location on a chromosome

thread-safe code is thread-safe when its data remains consistent even if multiple 
threads manipulate the data

DNA sequence alignment an arranged representation of multiple DNA or RNA sequences, where 
areas of common properties are aligned. In the case of this project, probe 
data is aligned based on the location of the probe in the human genome

t-test a statistical hypothesis test that is used to evaluate whether two sets of 
measures are essentially different

hypergeometric distribution a discrete probabilty distribution that arises when a random draw is made 
among two distinct types without replacement

GO Gene Ontology



KEGG Kyoto Encyclopedia of Genes and Genomes

genome browser an application to visualize data concerning genomes and their expression. It 
is a graphical interface to display information read from a genomic data



Part 1. Introduction
Acute Myeloid Leukemia (AML), is a form of cancer, where immature blood cells do not properly 
develop into different types of blood cells such as neutrophils, dendritic cells and macrophages. It 
is characterized by the rapid growth of abnormal white blood cells in the bone marrow. It is caused 
by mutations and chromosomal aberrations that obstruct the development of stem cells to properly 
functioning blood cells. After years of research, several subtypes of AML have been revealed.

Technological advances in DNA sequencing has allowed computerized processing of DNA 
data. Raw data is hard to interpret for human researchers, therefor there is a lot of interest in 
having computers display bio-molecular data in visually attractive and informative way for humans. 

This thesis will discuss the expansion of an existing tool for visualizing biological data: 
HeatMapper. Three extra approaches to visualize data will be built into application. Each approach 
is elaborated in respectively the Correlation, Pathways, and Alignment chapter. The three 
approaches are:

• Correlation 
There exist applications to create correlation matrices, but it's mainly manual work 
done in general mathematical analysis packages. Visualization of correlation 
matrices is mostly done by heat mapping, but the disadvantage of heat mapping is 
that the context is lost, it's not clear for the user what each matrix element 
represents in human genome. The Correlation approach attempts to solve the 
contextual problem by allowing the user choose multiple groups of samples and 
choose genes of choice within one data set to generate specific visualizations of 
which the context can be altered by the user.

• Pathways
A genetic pathway is a set of interactions between multiple groups of genes, who 
depend on each other to provide a function to the cell. The Pathways approach aims 
to displays which pathways are significantly related to specific types of AML. Users 
are allowed to choose two groups within AML, which they can compare and 
visualize. Just like the correlation approach, the data is presented in a circular 
diagram.

• Alignment
Data is visualized by aligning multiple data sources. Unlike the other two 
approaches, the data is viewed not in a circle, but in horizontal tracks, each track 
contains data points of a certain data source, such as a specific patient. Each  data 
point corresponds to a specific location on the genome and displays its  value on a 
corresponding location on the track. By aligning different tracks below each other, 
one could easily compare different data sources, while looking at specific places of 
the human genome.

The elaboration of each approach will contain an analysis of the visualization, design of the 
functionality, design of the user-interface and implementation details and decisions. Finally the 
thesis will end with an evaluation of each way of visualization followed by the conclusion and 
recommendations chapter.



Part 2. Correlation: 
Different types of information can be measured from genes. For example the intensity of 
methylation near a certain gene and the intensity of the gene-expression of a gene. Research 
shows that methylation may play a role in the regulation of gene-expression. [Grewal SI, Rice JC]
Calculating the correlation between methylation and gene-expression data may help to gain a 
clearer insight into the relationship of methylation in the regulation of gene-expression. First the 
idea of correlation will be defined and in what way it is applied to the data sets. Then the problem 
analysis, requirements, design and implementation follow.

2.1 Pearson's correlation coefficient
The Pearson correlation coefficient is an indicator for a positive and negative linear correlation. The 
correlation coefficient r is calculated by taking two variables, say X,Y. 

r=
∑
i=1

n

( xi−x )( y i− y)

(n−1) sx s y
where X =xi ... xn , Y = y i ... yn ,

where x , y are the averages of X andY respectively .
and where sx , s y are the standard deviations of X and Y respectively

Observe the following:

•
if x i and yi are predominantly above average OR predominantly below average
then (x i−x)( yi− y) would be positive

•
if x i is predominantly below average and y i  is predominantly above average vice versa
then (x i−x)( yi− y) would be negative

What can be seen here is that a positive correlation indicates a general tendency that large values 
of X are associated with large values of Y and that small values of X are associated with small 
values of Y. A negative correlation would indicate that large values of X are associated with small 
values of Y and large values of Y are associated with small values of X.

2.2 Computation of correlation coefficients
The approach provides three ways to pick the genes to be correlated:

1. Select 1...24 chromosomes and correlate the GEP data with the DMP data of the genes in 
the chromosomes. 

2. Build two lists of gene-symbols, one list of gene-symbols in the GEP data and one list of 
gene-symbols in the DMP data. These genes are then correlated with one another. It is 
possible that gene-symbols in the GEP data do not exist in the DMP data vice versa. 
Therefor the computation of the output is split up in calculating the correlation of three sets 
A, B, C visualized by the colors red, green and blue respectively



Figure 1: Schematic overview of a matrix in which data has to be calculated.
DMP represents the columns of gene unique identifiers 
GEP represents the rows of gene unique identifiers

DMP and GEP are split up in three sets:

A. Intersection of GEP and GEP; whereas only half of the matrix needs to be 
calculated as the values are mirrored values of the values in the red area in A.

B. Intersection x DMP\intersection; this is a full heat map as each value in the matrix 
is unique. 

C. Intersection x GEP\intersection; this is also a full heat map as each value in the 
matrix is unique.

3. Create a heat map of all like the red area marked with the letter A in Figure 2. In a heat map 
both axes, in this case, the GEP axis and the DMP axis have corresponding elements 
(genes). Only half of the matrix has to be computed as the 2nd half (white) is an exact mirror 
image of the 1st half (red).

2.3 Problem analysis
The correlation approach allows the user to select a correlation-threshold for a large data set and 
visualize this in a circular diagram. It allows users to generate a circular diagrams given a threshold 
for the underlying correlation values.

Correlation between two variables, in this case a DMP variable and a GEP variable, can be 
computed by using the Pearson's correlation coefficient. Correlation is usually visualized in 
correlation matrices. however by displaying the correlation in a matrix, the context of each 
correlation value is fades away, the user will not be able to grasp the entire picture by just looking 
at the calculated correlation values.

A way to solve this is by visualizing each matrix entry as a relation between a DMP variable and a 
GEP variable as a link in a circular diagram see Figure 2. By visualizing the matrix entry in a 
circular diagram, it instantly becomes clear to the user how strongly genomic ranges relate to one 
another given a threshold. 



Figure 2: high-threshold (0.8) of the entire genome filtered on a clinical data set. The red gene-
symbols are from the GEP set and the black gene-symbols are from the DMP set.

 

2.4 Requirements

2.4.1 Reading Affymetrix annotation files
Affymetrix annotation files are comma separated values (CSV) files generated by a company 
named Affymetrix. The annotation files contain information about each probe from a DNA micro 
array. Reading annotation files is essential in order to information about probe sets such as gene-
symbol name, chromosomal location can be extracted, which can be used for filtering, selecting 
and grouping genes.

2.4.2 Reading human sample files containing GEP or DMP data values
Annotation files give information about each probe, but in order to calculate correlation coefficients 
sample values are needed. Each probe has n GEP samples and m DMP samples, each sample 
has a unique identifier. The identifier is essential, because the intersection of the sample identifiers 



of both the GEP and the DMP probe set needs to be used; as each sample represents a person, 
it's not useful to see if person X's GEP value has any linear relation with another person Y's DMP 
value. 

2.4.3 Letting the user set a correlation threshold
The user needs to set an absolute correlation threshold (both negatively and positively correlated 
variables will then be displayed) that will correlate the genes between GEP and DMP. The more 
stringent value will result in less correlation between GEP and DMP. 

2.4.4 Letting the user select genes of interest
With the same analogy as setting a correlation threshold, it is up to the use to decide which genes 
are interesting.

2.4.5 Letting the user select samples of interest
Samples represent patients and each patient has different properties. The user would like to select 
samples with certain properties.

2.4.6 Displaying data in a circular diagram
A circular representation of data gives more information about relations between genes than 
tabular data. An external perl script called Circos [Circos] will be used as it is an established tool for 
generating genomic visualizations. 
In the next section the general design will be elaborated with the help of a flow chart.

2.5 Design
The process of getting a visualization is split up in three distinct parts (see Figure 3):

• Loading and parsing of input data

• Selection and calculating correlations

• Displaying the resulting visualization

This is also the order of the flow of the application. 



2.5.1 Loading and parsing of data
To be able to do calculations, there has to be a way to take files as an input. A file location 
needs to be identified. Once the file location has been identified, the file has to be parsed. 
Once the file has been parsed, the following part will allow the user to select genes of 
interest.

2.5.2 Selection of genes and calculating correlations
Selection of genes is important, for convenience two extra ways of selecting genes have been 
added: “intersection of all genes” and “genes within selected chromosomes”. The first will only 
calculate correlations coefficients of genes which are contained in both the DMP and GEP files. 
The latter will allow users to correlate genes of entire chromosomes with one another.

2.5.3 Displaying the resulting visualization
Circos requires a configuration file and data files in a certain format. These files will need to be 
generated accordingly to the selection of genes. Once this is done, the perl script can be activated 
given the configuration and data files. The perl script will then generate a circular diagram.

GEP/DMP Correlation visualization
Lo

ad
in

g 
an

d 
pa

rs
in

g 
da

ta
Ca

lc
ul

at
in

g 
co

rr
el

at
io

n 
Ge

ne
ra

te
Ci

rc
os

 
vi

su
al

iza
tio

n

Check if there are any files selected in the 
GEP annotation and data file selectors

Optionally fill in correlation threshold ;
this is a positive number (the default value is 0.95)

Asynchronically parse the annotation and data files while
Showing a progress bar for the progress of the parsing

Click “selected genes”

Calculate the Pearson’s correlation coefficient for the selected gene (sets) 
for the selected samples from the clinical data

Iterate through the genes and create links for each 
pair of genes that have a coefficient >= correlation 

threshold.

Run Circos perl script through external program call in Java . Display Circos imageCircos image

Check that the correlation threshold is 
between within [0,1) where the 

correlation threshold is a real number.

Click “genes within selected 
chromosomes” tab

Click “intersection of all genes” tab

Check if there are any files selected in the 
DMP annotation and data file selectors

Both annotation and data files have been selectedBoth annotation and data files have been selected

Mark selected genes that exist in the parsed data in 
the respective lists

User fills the DMP list and GEP list with gene symbols to be correlated

Click “Correlate” button Mark selected 
chromosomes

User selects chromosomes to be correlated

Generate data and configuration files 
based on the pairs of genes created

User selects file for the annotation or data file selectorUser selects file for the annotation or data file selector

Check if there are any files selected in 
the Clinical data file selector

Asynchronically parse the data file while showing a 
progress bar for the progress of the parsing

User selects file for the clinical data file selector

Figure 3: Flow chart, “Calculating correlation” part represents the three ways to pick genes in 2.2



2.6 Implementation
This part will elaborate the implementation decisions made.

2.6.1 Model-view-controller
The software pattern used will be the model-view-controller. This is a way of separating, data 
object logic, program logic and user-interface logic. A package will be created for model, view and 
controller. In the case of the functionality to be implemented, the model will contain data objects 
which hold data parsed from input files, the view will contain the user-interface implementation, and 
finally the controller will contain the code for manipulating the data objects.

In Figure 4 the model-view-controller pattern is visible;the views do not have direct control over the 
data, they delegate high level instructions to the controllers which then manipulate the data in the 
models.

2.6.2 Front end
The front end is built with the built-in drag and drop user-interface editor of the NetBeans IDE. By 
using the NetBeans IDE more time can be spent on the implementation of back end of the 
functionality.

Figure 4: Overview of the code structure



Figure 5: NetBeans IDE for creating user interfaces

In Figure 5 the NetBeans IDE is shown. On the right hand side are components which can be 
dragged into the interface in the middle. It is also possible to create custom components, these 
should be dragged into the interface in the middle from the source tree on the left.

2.6.3 Back end
The implementation of the back end consists of three main parts:

1. Parsing input data

2. Manipulating the input data

3. Creating a visualization of the input data based on the input.

2.6.3.1 Parsing the input data
In total there are five different input files to be parsed all in CSV format: 

• GEP Affymetrix annotation file

◦ information of each probe set

• GEP data file

◦ measurements for multiple samples for each probe set

• DMP annotation file

◦ information of multiple probes in each probe set.

• DMP data file

◦ measurements for multiple samples for each probe set

• Clinical data file

◦ information about each sample

The attributes that needs to be extracted from the first four files are:



1. unique identifier of each probe set

2. chromosome in which the probe set is located

3. the starting position in the chromosome

4. the stopping position in the chromosome

5. the gene uid which is measured

6. mapping of sample name to value.

So the data structure containing these 6 attributes will be called a row. Here follows a definition of a 
row:

row :=〈uid , chr , start , stop ,g , s〉 ,where uid, chr, start, stop, g and s correspond to 1, 2, 3, 4, 
5, 6 respectively.

The extraction of the data for the DMP files are quite straightforward; the values in the columns of 
the DMP annotation file correspond to attributes 1 – 5 and the values in the columns of the DMP 
data file correspond to attribute 6.

The GEP Affymetrix annotation file is less straightforward; attributes 2 – 4 need to be extracted 
from the column called “Alignments”. The value in this column is formatted as follows: 

[chromosome]:[start position]-[stop position] ([strand]) // [alignment matching percentage] // 
[chromosomal location]

Example: chr6:30856165-30867931 (+) // 95.63 // p21.33

This would be an probe set in chromosome 6 with start position 30856165, stop position 
30867931, a positive strand, a matching percentage of 95.63 and at chromosomal location p21.33. 
It is also possible that there are multiple alignments; these are separated by a triple forward slash 
“///”. In that case the data of the alignment with the highest matching percentage will be used.

Example: chr6:30856165-30867931 (+) // 95.63 // p21.33 /// chr4:30856169-30867967 (+) // 
80.32 // p21.33

In this case the first data of the first alignment will be used: chromosome 6 with start position 
30856165 and stop position 30867931.

As a sanity check the column “chromosomal location” will be checked against the data with the 
highest matching percentage, if the chromosomes do not match the entry will not be used. Attribute 
1 has its own respective column in the GEP Affymetrix annotation file. As for attribute 5, the value 
is a string containing several gene-symbols separated by a triple forward slash “///”. 

In order to aggregate aliased gene-symbols, gene symbols are given an internal unique identifier, 
whereas multiple aliases of the same gene-symbol can be identified with one unique gene 
identifier. The GEP data file is similar to the DMP data file where the columns represent the value 
of a specific sample in a specific probe set.

A clinical data file is a file where the rows are samples and values and the columns the attribute 
name of said values. The extraction is therefore trivial: each row is represented by a data structure 
which has a attribute to value mapping. 

2.6.3.2 Manipulating the input data
The data has been extracted to compute correlations. The input for the correlations is a set of GEP 
gene symbols, a set of DMP gene symbols and a set of sample identifiers. Using the GEP and 
DMP gene-symbols sets, the rows containing the gene-symbols in those sets are gathered. 
Internally there is a conversion from gene-symbol to its respective gene unique identifier. 
Correlation values are then calculated given the input and saved in an Object.

Example:

Input for calculation



genesGEP={gene1}

genes DMP={gene3}

samples={1234,2345, 4566}

Conversion gene-symbol to gene unique identifier:
geneUidsGEP={1⇒[gene1]}

geneUids DMP={2⇒[ gene2]}

Rows containing gene1 for GEP and gene3 for DMP: (non-relevant attributes are excluded for 
convenience)

rowGEP={gene-uid ⇒1 ,[1234⇒1,2345⇒2, 4566⇒3]}

row DMP={gene-uid⇒2 ,[1234⇒4,2345⇒7,4566⇒6]}

Using the formula in 2.1 Pearson's correlation coefficient, if we take X as 
[1234⇒1, 2345⇒2,4566⇒3] and Y as [1234⇒4,2345⇒7,4566⇒6]

then the correlation value = 0.6546; a positive correlation.

The correlation matrix would look like this: 

1

2 0.65

2.6.3.3 Creating a visualization of the input data based on the input
See Part 5 Circos for the implementation of Circos. 



Part 3. Pathways
The expansion of the HeatMapper with visualization functionality pathways to visualize genes and 
possible pathways linked to those genes will be further elaborated in this chapter. First, problem 
analysis and its solutions will be explained. Thereafter, a UML diagram, a function diagram and 
several screenshots of the user interface will be displayed. Finally, details about the methodology 
and the implementation will be furthermore elaborated. 

3.1 Problem Analysis
It is essential for researchers to have a better visualization in pathway analysis, because of the 
increased complexity of data-sources. Therefore is this expansion to the HeatMapper MADEx. This 
expansion will be able to display pathways and their significantly related genes in a circular 
diagram. This circular diagram will also be visualized, in the sameway as Correlation part from 
chapter 1 using Circos. 

Cell behavior is regulated by a complex network of intracellular and extracellular signaling 
pathways. Researches and experiments have discovered the identification and characterization of 
the components that make up such signaling pathways. Researchers have discovered many 
important biological pathways through laboratory studies and experiments of cultured cells, 
bacteria, mice and other organisms. Many of these identified pathways have similar working in 
humans. How these pathways are controlled, how they communicate with each other and most 
importantly, what happens when they do not function properly, this is what pathway analysis 
implies. [MolDevices]

The main target of this project part is to get other form (circular presentation) of 
visualization. This gives researchers another view of visualization which genes belong to a specific 
pathway and which pathways are significantly related to specific AML type(s). It might be able to 
show a possible connection between a pathway and a specific AML type that is related to a 
mutated specific gene. 

 From several studies, It is known that there have been several mutated genes discovered 
that might be the cause of AML, such as CEBPα, K-RAS, etc. Users, in this case researchers will 
be able to compare genes from patients or samples that belong to one of these groups with 
another group or with samples from a control group. Comparing one AML type with a control group 
is mostly desired.

3.2 Interactions and Design
There will be some interactions between the users and this pathway part, namely users can access 
this new pathway functionality by pressing the pathway button on the HeatMapper, he will have to 
choose a .csv file containing clinical data to use/open that will be imported and read. The file 
containing the annotations will automatically imported once the next-button is pressed. This .csv 
file has to have comma as separator and the numbers have to use point to denote decimal. Users 
will have to choose totally two files as input for this program part.

Another form of interaction is that it is also possible for the users to choose which genes of 
AML types they want to compare and visualize. They will have to pick two genes from a list of 
several genes read from the annotation file and they will have to choose two of them or one from 
this list and control group to compare. For example, they can choose to compare CEBPα with the 
control group or CEBPα with K-RAS. After this interaction process they can also fill in an alpha to 
threshold p-values found from the t-tests before. Users also have the possibility to choose if he 
wants to apply multiple-test or not. Under this alpha field, there is a checkbox which he can check 
or uncheck. 

Thereafter, user has to choose one of five files: c1,...,c5; that contains gene set collections. 
These files are already downloaded from the Gene Set Enrichment Analysis site(GSEA). [GSEA]. 
Chosen file will then be imported and added to the database automatically. 



These five GSEA files are:
• c1: positional gene sets.
• c2: curated gene sets.
• c3: motif gene sets.
• c4: computational gene sets.
• c5: gene ontology (GO) gene sets. 

Figure 11 shows a diagram of some actions the users need to perform in order to get the desired 
end visualization.

Finally in Figure 6 below, an image that illustrates the expected end image that approximately will 
be displayed using circos. 

Figure 6: User interaction diagram.



Some screenshots of user interactions in pathway part are shown below.

Figure 7: Expected end result displayed in Circos. Outside the ring are categories of pathways that  
are significantly related to gene symbols in the two groups chosen before.Gene symbols that not  

belong to a group in a GSEA file will be connected to 'OTHER'.



Figure 8: First screen after pathway has started. User has to choose one .csv file, DMP or GEP 
data and one clinical data.

Figure 9: Screenshot when user has to choose two groups within AML.  
User can add one group at a time from left list to the list of selected  

groups. The Next button will be enabled when there are two groups are  
on the right list.

Figure 10: Screenshot when user has to fill an  
alpha to threshold found p-values. User can 

check or uncheck the checkbox for multiple-test.



This figure displays the whole process of pathway expansion step by step. It starts with choosing 
a .csv file (data file) as input and displaying a circular diagram in circos as output. Steps in 
between input and output will be elaborated in 3.3 below. 

3.3 Methodology
This methodology sub-chapter gives explanations about calculations and methods that need to be 
applied to the data in order to get end result of this pathway functionality: generating an input file 
for circos.

3.3.1 T-Test
After inserting and importing input file to a database file, next step would be to test two groups 
using t-test. T-test will give the observed significance level or p-value that associated with these 
two groups, this two-tailed t-test compares the means of these groups, even if they have different 
numbers of samples. Several p-values (p1,...,pn) are obtained from these p-tests which after that 
are thresholded by an alpha which filled in by the user. [TTest]

If the user choses to apply multiple-test, obtained p-values from t-tests will be corrected 
using recently developed multiple-test methods. Suppose that there are 20000 p-values, which 
means that there are 20000 separate hypothesis tests. If for example, a standard p-value cut-off 
(alpha) of 0.05 is being used, then 20000*0.05 = 1000 genes would be expected to be “significant” 
by chance.

Figure 11: Function diagram of pathway functionality



3.3.2 Multiple Testing
H0 is true H0 is false

Do not reject H0 Correct decision
1-α

Incorrect decision
1-β

Reject H0 Incorrect decision
α

Correct decision
β

α = P(Type I Error) β = P(Type II error)

FWER or Family Wise Error Rate is then the probability of at least one type I under the global null 
hypothesis, FWER = P(V>=1). Back to the example above, suppose that p-values are 
approximately around 10-7, then the end result of p-values after being corrected by 104 will be 10-3. 
(Pm = P . N). [FWER]

Last step of this process is to generate config files that will be used as input for circos given 
genesets from tests mentioned above. 

3.4 Implementation

Figure 12 displays global UML diagram of pathway expansion with its main classes (important 
classes). For more details of this UML, please see appendix at the end of this report. 

3.4.1 Reading and Importing Files
Data in CSV file format will be read and imported using H2 Database engine. H2 is a relational 
database management system written in Java and is available as open source software. This 
database can be embedded in Java applications or in client-server mode. It is possible to create 
both in - memory tables, as well as disc-based tables and these tables can be temporary tables or 
even permanent.[H2] It is decided to use the disc-based tables in stead of memory tables, because 
it turns out after several tests that this program will stop working, it deals with java memory heap 
space problem. On the other hand, disc-based tables will work slower, but it can handle bigger 
data. 

The main programming APIs are SQL and JDBC, stands for The Java Database 
Connectivity, the industry standard for database - independent connectivity between the Java 

Figure 12: Simplifed UML diagram of pathway part



programming language and a wide range of databases - SQL databases and other data sources, 
such as spreadsheets or flat files. The JDBC API also provides a call-level API for SQL-based 
database access. It is possible to use Java programming language to utilize “Write Once, Run 
Anywhere” capabilities for applications that require access to enterprise data.[JDBC] 
The JDBC API mainly has three features:

• Establish connection with a database or access any tabular data source
• Send SQL statements
• Process the resultsets

3.4.2 Processing data
After importing files to a database, next step would be comparing which sample numbers 

belong to two groups that have been chosen by the user. This step can be found in class 
GroupAndAnnoCrossCheck.java. This class has doCrossCheck() method that returns sample 
numbers that can be found in the annotation file as well as in that groups. 

Applying t-test to these sample numbers from two groups is the next step. How many times 
this t-test are done, would be the same as the total number probesets in the annotation file. 
Suppose that there are 20000 number of probesets, for every probeset, that is probeset1, 
probeset2, ... ,probesetn, a t-test is being applied. 20000 p-values from these t-tests will be found.
This t-test process could be found in TtestTwoGroups.java. 

For Example: in Table 1, four samples are found that are positive to AMLgroup1 and in Table 2 six 
samples are found from AMLgroup2.

Probeset Sample1 Sample3 Sample7 Sample29

Probeset1 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx
Probeset2 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx
... ... ... ... ...
... ... ... ... ...
Probeset20000 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx

Table 1: Samples from AML group 1

Probeset Sample2 Sample9 Sample30 Sample34 Sample72 Sample219

Probeset1 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx
Probeset2 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx
... ... ... ... ... ... ...
... ... ... ... ... ... ...
Probeset20000 x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx x.xxxxxx

Table 2: Samples from AML group 2
Next step, these 20000 p-values might have to be corrected using FWER multiple-test, 

depends on what the user choses. Class MultipleTest.java will handle this multiple-test. These 
20000 found p-values would then have to be filtered or thresholded using alpha that is filled in by 
the user, a standard alpha of 0.05 would be displayed in the field, but users can fill another alpha 
value. Suppose that 100 probesets are found from this thresholding process, then this pathway 
process would go on further with this 100 probesets. These probesets use special probeset 
annotations that are different from the ones in the Gene Set Enrichment Analysis (GSEA) files. 
These annotations have to be matched using either DMP-annotation or GEP-annotation file loaded 
earlier. Results from this matching are gene symbols. This matching process finds place in 
DMPAnnotation.java or GEPAnnotation.java. 

Found gene symbols from steps above will further be matched with one of the five 



selectable GSEA files. Only one file that has been chosen by the user will be loaded. A matching 
process finds place after this loading process and it will return a list of pathways or categories that 
these gene symbols belong to.

 These gene symbols and their pathways will then be used in CircosConfig.java to 
automatically generate input .txt files for Circos. Two HashMaps have to be created in order to 
create an object. The first one contains mapping between the two chosen groups and their gene-
symbols, while the second one contains mapping between gene-symbols to their related pathways. 
Please refer to Circos implementation part 5.



Part 4. Alignment

4.1 Problem Analysis
It may be useful to the researchers to  view certain parts of their data as graphs, and compare it to 
other types of data. This can be done using a DNA sequence alignment. A sequence alignment is 
when the different data points, such as probe sets for expression data, are placed in a track 
according to their location on a chromosome[Bioinformatics: Sequence and Genome Analysis]. 
This way, multiple types of data or different samples can be placed in different tracks to be 
compared. This allows researchers to find certain regions of interest on the genome.

The goal for the Alignment part of the project is to visualize expression, methylation. CNV 
and SNP data per sample, using tracks. There are already programs able to do this, called 
genome browsers. These programs are great for comparing different types of data, as long as it is 
links to specific locations on chromosomes. They often already contain basic information about the 
different genes on the human genome. A detailed description and comparison between different 
commonly used genome browsers can be found in the orientation report of this project.

While these genome browsers can certainly be used to visualize the data, they often 
require very specific input formats and are not very interactive. This part of the project will be to 
allow the user to not just visualize the data, but also interact with it. The requirements for this 
project will be to create a tool where the user, after uploading the data, can first select what types 
of data and samples he wants to show. The user should also be able to set thresholds. This will 
allow the user to focus on extreme values. Lastly, the user should be able to merge samples into 
groups. These group samples will show the average values in their tracks. This can be useful when 
comparing groups, such as control groups versus patients. This tool should then be able to 
visualize the data quickly, and allow the user to readjust the options.

4.2 Design
The alignment part of the project will be a simple tool where the researchers can import the data. 
This data is then stored in tracks, each assigned to a sample. Each sample has multiple tracks for 
each type of data. These different types of data are referred to as attributes. The tool will have a 
simple one window GUI, where the user can perform all the required steps, before pressing a 
button and visualizing the data. This can be seen in the function diagram shown bellow. Let us first 
focus on the input.



Input
The input looks the same as in the other parts of this project. Each attribute is imported as a CSV 
file with a corresponding annotation file. The data file contains a large table. Each row represents a 
probe set. The first  column give an ID and the following columns represent each sample. The 
annotation file is also a large table that provides the chromosome number, gene symbol, start and 
stop for each probe set. The tool will need to collect the data for each probe set out of both files, by 
matching the names on the 

On the GUI, the user should be able to browse to these files. Once the location of both files 
have been chosen he can give the attribute a name and start importing it. He can repeat this for 
multiple attributes. He should also be able to delete attributes he no longer needs. 

Interaction
Once one or more attributes have been loaded the user should be able to do some simple tasks. 
The user should be able to see what attributes are loaded. He should also be able to see how 
many samples have been loaded and how many of those are selected. 

He can then enable and disable certain samples and attributes. This will give the user 
control over what tracks should be visualized. He should also be able to set thresholds per 
attribute, so that he can look for extreme values. Finally, he should be able to make sample 

Figure 1: function diagram, showing the different actions a user can  
take



groups, where multiple samples are merged into one sample, by averaging out all the tracks per 
attribute. This could be useful when a researcher wants to compare groups of samples.

A drop-down box should allow the user to easily select an attribute and get some basic 
information about this attribute, such as its name, if the attribute is enabled and disables and what 
the current thresholds, if any, are. The user should then be able to change this information via 
some text-fields and buttons.

An effective way to allow the user to enable or disable certain samples is to keep a list of 
sample names. The user should be able to add or remove names from this list. The user should be 
able to add or remove multiple samples at a time, perhaps by typing multiple sample names into a 
text-field.

The merge function will work in a similar way. The user can type multiple sample names 
into a text field. Using a button, the user can then create a new sample, containing the average 
values of all the input samples, and automatically add it to the list to be displayed.

Clinical data searcher
To help the user find samples he might want to select or merge, an extra tool will be created. This 
tool can select a clinical data file. This is also a csv file, containing properties of each sample (test 
subject) such as age and gender. After browsing to such a file, the user can give a property to 
search on as well as the requested value. 

To give an example, consider a clinical data file with three columns. The first column gives 
the sample-ids. The second and third column give the age and gender respectively. The first row 
gives the name of each column, and all following rows the values for each sample. The user can 
select “gender” as the search property and “male” as the requested value. This will return the 
sample-ids of all male samples. These ids can then be used to select, deselect or merge the 
samples as explained previously.

Visualization
Once the user is done modifying the tracks, he should be able to visualize the tracks. This should 
be a relatively quick process, so that the user can go back, make new modifications and visualize 
again. At first, an implementation using awt and swing was considered, but it is more practical to 
use an existing genome browser for this. This will allow the user to also compare other data to the 
data visualized by the tool.

In the orientation report, a comparison of different genome browsers is given. Integrative 
genomics viewer (IGV) was chosen, due to its simple java based api and the ability to run it locally, 
instead of through a website.[IGV user guide]

The tool will create output files, which can be loaded into IGV using a socket call. If the user 
does not have IGV open at the time that these files are generated, he can still import them 
manually into IGV later. In both cases, the results will look similar to the picture below. 



4.3 Implementation

The design of the Alignment part of the project can be divided into three distinct functions: reading 
the input, allowing the user to manipulate the data and visualizing the output. These functions are 
performed using a GUI called AlignmentWindow and a manager class called Alignment. 

Reading the input
 The reading of the input works much alike the other parts of the project. For each attribute (RNA 
expression, methylation, CNP, SNPs) a file must be uploaded with the values for each probe and 
sample pair, as well as an annotation file to map the probes to the correct location on the correct 
chromosome. The Alignment class contains an instance of a class called AlignmentParser, whichs 
reads and stores the data. Due to the similarities, an abstract class called FileParser, which is used 
throughout the entire project to parse CSV files, is inherited by the class AlignmentParser. The 
AlignmentParser in turn also uses another sub-class of FileParser called AnnotationParser.

To store the data, the program uses a Probe objects, each containing the chromosome 
number, start and end value for a specific probe set. These objects are basically little containers for 
the data. For performance, these containers need to remain as small as possible, which is why 
they do not contain a probeset id or sample value. Two other container classes, annotationProbe 
and ValueProbe, in turn each contain a Probe objects, but add a name for the Probeset (the 
Probeset id used in the input files) and the value for a specific sample respectively. 
AnnotationProbes are used during the loading process and ValueProbes are finally stored until the 
program terminates. The ValueProbes are stored in Track objects. A sample object contains 
multiple of these tracks representing each attribute. Finally, an ArrayList of Sample objects is 
stored in the Alignment class, which will perform most operations. This can be seen in the UML.

Once activated, the AlignmentParser will first call upon AnnotationParser to provide a full list 
of annotation probes, containing the name, chromosome number, start and stop for every probe 
set, but no values. This data is obtained from the annotation file. The AlignmentParser will then 
read each row of the data file, each row corresponding to a probe set. For each row, it will search 
for the corresponding AnnotationProbe. It will then create a ProbeRow objects, containing the 
Probe object contained in the AnnotationProbe as well as a list of values for each sample column, 

Figure 2: A screenshot of IGV, showing different data tracks



stored as a float. A list of these ProbeRows is then loaded into the Allignment class. The Alignment 
class also receives a list of sample names from the parser, which matches the order of the 
ValueProbes. Using this list and the list of ProbeRows, ValueProbes for each sample and probe set 
pair are created. These ValueProbes are stored in separate tracks for each samples. The 
Alignment class will then generate a sample object to attach the track to. If the sample already 
exist, because a previously loaded file also generated a sample with the same sample-id, the track 
is added to that sample object, instead of generating a new one. Because of the high performance 
requirements for all these processes, the entire loading process is done on a background thread.

Data manipulation
 Once the data is stored, it can be manipulated. The Alignment class contains a list of selected 
samples as well as a list of attribute objects. These objects contain a boolean to see if it is enabled 
or disabled as well as the lower and upper thresholds. When the write method of Alignment is 
called, the attribute list will be used to determine what tracks and Probes are displayed. This will be 
explained further in visualizing the input.

Each attribute object in the attribute list can be modified via the GUI. A dropdown box will 
allow the user to select the attribute he wants to modify. A button can set the enabled boolean to 
true or false. Another button and two text-fields will allow the user to set the thresholds of the 
attribute. Lastly, the user can delete the attribute completely.

The GUI also enables the user to modify the selected samples. This is done by a large text 
field and four buttons. The four buttons are “select”,”deselect”, “select all” and “deselect all”. In the 
text-field the user can enter multiple sample names separated by semicolons. The smart thing 
about this is that these names can be copied easily from the input CSV files. These sample names 
are then used for the select and deselect buttons. The alignment class will then search for those 
samples and set a boolean called “selected” to true or false.

The merge function works similar. A large text-field will allow the user to enter multiple 
sample names. A merge button will then call the the merge method of Alignment. The merge 
method of Alignment will accept an array of sample names. It will then look up the corresponding 
samples. It will then retrieve all the tracks from the samples and call a helper method 
attributeMerge(Track[] tracks) for each attribute.

This helper method will return a new Track, by averaging out all the probes of the input 
tracks. The Track class has a sum(Track other) and divide(int n) method for this purpose. The 
merge method can then use the newly created tracks to create a new Sample. This Sample is then 
added to the ArrayList.

Clinical Data Searcher
The clinical data searcher is a simple gui where a file location can be given (with the help of a file 
chooser) as well as a search column and search value. A search button will create a clinicalparser 
object, which will read the selected file, searching the search column for the requested search 
value. This parser will then print the corresponding sample names in a results area. 

If the search column is empty, the parser instead merely provides the first line of the csv 
file. This gives a list of column names, from which the user can select. If the search value is empty, 
the parser will print a list of all unique values in the search column. This to allows the user to make 
a selection.

Once the user has successfully searched for a list of samples, three buttons allow him to 
immediately select, deselect or merge those samples. The implementation for this is simple. The 
clinical data searches simply copies the list into the select or merge field of the main gui and calls 
the doClick() method of the corresponding button.

Visualizing the output
 When the user is done, he can press a button to visualize the data. The program will produce an 
output file for each Track in the bedGraph format. In the bedGraph format, the first line of the file 
gives some basic information about the track, such as the name that has to be displayed. The 



following lines provide the probe information, with the chromosome number, start, end, and value 
separated by spaces.

This output file is created using write methods in Probe, Track, Sample and Alignment. 
These method must also check to ensure that only the required data is written. The write method in 
Alignment will check what samples are selected. It will then call the write method of the selected 
samples, with the boolean and threshold lists as parameters. The write method of the samples will 
then check the boolean list to see what Tracks must be written. The write method of the Tracks 
receive the thresholds that apply to them. These two integers are then passed to the Probes write 
method, which will check its own value to determine whether it needs to write. If so, it will write its 
own data as a line in an output BEDgraph file.

Using a socket, these BEDgraph files are loaded into IGV via a port call. This is done using 
a class called AllignmentSocket, which handles the connection to IGV. That means that if IGV is 
running and set to allow port commands, this program can directly load the data into IGV to be 
visualized. This option allows the user to make further adjustments to the visualization in IGV and 
compare the data to other tracks loaded into IGV.

Part 5. Circos
Circos is a visualization tool used to generate circular visualizations in Part 2 and Part 3.

5.1 Why Circos?
Circos is an established visualization tool for generating circular visualizations of data which 
contain a lot of relationships between objects.  

5.2 Implementation
To integrate Circos into Part 2 and Part 3, a Java wrapper around the original Circos perl package 
had to be implemented. 

In Figure 13 it is visible that there are 3 classes dedicated to export files: Genes, Karyotypes and 
Links. Each of these writes an output data file for Circos, while CircosColors writes its output to a 
predefined circos configuration file (circos.conf) which is written to the user's disk by CircosConfig. 
In the next section the structure of Circos is explained, what it requires and what the Circos API 
implementation can provide. After that the specific implementations of CircosConfig: 
CircosConfigCorrelation and CircosConfigHypergeo will be explained.



5.2.1 Structure of Circos
To be able to generate an image with Circos, the following files need to be generated:

• a Circos configuration file

◦ this file contains settings for the size and height of the image, spacings, etc
file location of the genes, karyotype and links file

• a genes file

◦ this file contains the genes and its location on a certain chromosome

• a karyotype file

◦ this file contains the size, name and color of each chromosome

• a links file

◦ this file contains source and destination locations where links needs to be drawn

On top of that the following files need to be copied to the system

• circos-0.56

◦ Circos script

• custom fonts

◦ Circos uses certain custom fonts which need to be included

• bundlelinks tool

◦ this is a tool to reduce the number of links in the links file given a minimum link span.

Figure 13: Circos API code structure



5.2.2 Circos API specifications
The implementation of the Circos API does not contain the entire set of functionality of the Circos 
perl package, but it is a subset which suffices for this project.

This subset allows

• the display of gene-names at specific locations on a circular diagram

• the display of links between 2 arbitrary locations on a circular diagram

• the display of category span names on a circular diagram

• the user to select any color each category span on a circular diagram

• the user to select any color for links

• bundling of links

All of these functionalities are displayed in  Figure 14 except for the bundling of links.

CircosConfigCorrelation implementation
The specific implementation for the Correlation approach in Part 2 for Circos was quite 
straightforward. As correlations are calculated, each correlation value is linked to two genes. Given 
a threshold, a correlation value becomes a link when the ∣(correlation value)∣≥threshold , the 
names of the genes can be extracted by looking the data up with the GeneSymbols (see 
Appendix), and at the same time the chromosomes can be looked up by extracting the data from 
gene-symbols as well. These links, genes and chromosomes are then put into the CircosConfig.

CircosConfigHypergeo implementation
The implementation for the Pathways approach in Part 3 for Circos is even more simple than the 

Figure 14: Screenshot of a part of a circular diagram generated using CircosConfig



CircosConfigCorrelation. The Pathways approach has a set of genes which are linked to two group 
and multiple pathways. The set of genes can be enumerated at the group's category span and 
links can then be drawn between the groups and the multiple pathways modeled as category 
spans.

Part 6. Evaluation
This chapter will discuss the results of the project. This includes how the quality of the produced 
programs have been measured as well as the clients feedback.

Part of the evaluation process is testing. Both automatic and manual testing has been used, 
throughout the project, to ensure that all the code does what it is supposed to do. This includes unit 
testing, where individual classes and methods are tested, as well as manual functional testing, 
where the entire program is run to see if it performs as required by the design.

The second part is ensuring that the program meets all the demands of the client. 
Throuhgout the project, the client has frequently tested the final build and provided featback, such 
as new feature requests or usability issues. 

Listed below are both the testing methods used in each part of the project as well as the 
clients comments regarding the final build.

6.1 Correlation
Complex methods have been tested using automated unit testing and testing of the user-

interface has been done with a Test Plan (see Appendix: Correlation Test Plan).

6.2 Pathways

6.3 Alignment
Most classes and methods in the alignment tool have been tested using automated unit testing 
using Junit, an Eclipse plugin. However, the functionality of the gui and the output generation and 
visualization in IGV have been tested manually.

The Alignment tool was able to meet most requirements but not all. For example, the client 
requested the feature to give different data types, different colors in IGV. He also asked that the 
thresholds feature would highlight certain probe sets, instead of hide all other probe sets. These 
requests appeared difficult to implement in IGV. However, all the requirements requested originally 
where met.

One problem with the program is its memory usage. The loading of large input files can 
sometimes take up to 10 minutes and the java heap size can get quite large. This requires the user 
to adjust his maximum heap size if he wants to load large files. Visualization can also be slow, if 
the user wants to display a large number of samples in IGV.

Part 7. Conclusion and recommendations
This chapter is a summary of the overall results of the project and gives recommendations to 
improve the created tools.



Correlation 

The aim of this part of the expansion was “Calculating the correlation between gene expression 
profile data and DNA methylation profile data and consequently displaying the correlations in a  
circular diagram given a certain threshold. “

The part of the expansion does exactly this and more. During the project new requirements such 
as filtering by samples came up which defined this part of the expansion in more detail. But while 
the application is functioning properly when used as explained in the manual, it misses error 
messages and bug reporting functionality; at some points it's not clear for the user whether an 
error has occurred in the background or that the program is still running. 

Pathways
This program part is able to produce a visualization in a circular diagram, but there are still plenty 
of improvements need to be considered. First of all, much faster processing is inquired, it takes at 
least 5 minutes, from starting the program part until an image shows up. Optimization is highly 
recommended regarding this pathways part. Stability is also an issue, there are not enough 
warning showed during process. Program part will stop working when an error occurs without 
showing any warning, it also has to do with a better user-friendly user-interface. 

As mentioned in part 3, this program part imports data into a database. Database file can 
be temporary stored in memory or in the disc. Perhaps another approach of importing data might 
have worked better, more stable and even more robust. 

Alignments
While not all requested features where able to be implemented, the program can perform most of 
the required functions. For other features, such as changing the color of tracks or being able to 
highlight certain probes, other output file formats or genome browsers would need to be 
considered.

The greatest problem with the program is its performance. In hindsight, a better 
implementation would not have stored all the values in memory. Instead, the program should only 
read values when it needs to. For example, if the user wants to load in a data file, select a sample 
and visualize only that sample, a better implementation would first only read the sample names, 
then allow the user to select the sample, and then read the corresponding values, to generate the 
output file, that must be loaded into IGV.

Bibliography
Grewal SI, Rice JC: Grewal SI, Rice JC, Regulation of heterochromatin by histone methylation and 
small RNAs", 2004
Circos:     Martin I Krzywinski,    Jacqueline E Schein,    Inanc Birol,    Joseph Connors,    Randy 
Gascoyne,    Doug Horsman,    Steven J Jones, and Marco A Marra, Circos: An information 
aesthetic for comparative genomics, 2009
MolDevices: Molecular Devices, Inc, Pathway Analysis, 2011, 
http://www.moleculardevices.com/Applications/Drug-Discovery/Pathway-Analysis.html
GSEA: BROAD Institute, Gene Set Enrichment Analysis, 2011, 
http://www.broadinstitute.org/gsea/index.jsp
TTest: Richard Lowry, Concepts and Applications of Inferential Statistics, 1999, 
http://faculty.vassar.edu/lowry/ch11pt1.html
FWER: Mark J. van der Laan, et al., Multiple Testing. Part III. Procedures for Control of the 
Generalized Family-Wise Error Rate and Proportion of False Positives, 2004
H2: H2, H2 Database Engine Version 1.3.164, 2012, http://www.h2database.com/html/main.html
JDBC: Oracle, JDBC Overview, 2011, http://www.oracle.com/technetwork/java/overview-
141217.html



Bioinformatics: Sequence and Genome Analysis: Mount D.W., Bioinformatics: Sequence and 
Genome Analysis, 2004
IGV user guide: Judy McLaughlin, IGV user guide, 2011

Appendix: Problem Description
Acute myeloid leukemia (AML) is a form of leukemia. Leukemia is a type of cancer of the blood, the 
adjective myeloid suggests that the cancer is related to the bone marrow or spinal cord. There are 
different subtypes of AML, each marked by certain combination of genetic mutations. The Erasmus 
University Medical Center Rotterdam is conducting several researches in determining many 
subtypes of AML.

At this moment, some researchers at the Erasmus University Medical Center Rotterdam 
use an existing visualization tool, called HeatMapper, a visualization tool that allows accurate and 
rapid interpretation of the data obtained by large scale gene expression profiling. Our assignment 
will be to expand the HeatMapper which is developed by several researchers of the Department of 
Hematology and the Department of Bioinformatics at the Erasmus University MC Rotterdam. 

The expansion of the HeatMapper should aid researchers at the Erasmus University 
Medical Center Rotterdam as well as other researchers in similar field.

The expansion should consist of three new functions:
• Calculating the correlation between gene expression profile data and DNA methylation 

profile data and consequently displaying the correlations in a circular diagram given a 
certain threshold.

• Displaying pathways of a gene expression profile or a DNA methylation profile in a circular 
diagram that significantly related to specific genes. 

• Create a tool to easily align expression, methylation, SNP and CNV data in a genome 
browser.



Appendix: Correlation class diagrams

Figure 15: The class overview
In the pages hereon, each class will have a short description.

correlation.main

• CorrelationView

◦ This is the user-interface of the application.

• LinksExporter



◦ An interface for correlation value containers to export links

• HeatMapResultContainer

◦ A data structure which saves a heat map in a one-dimensional array

• CorrelationResultContainer

◦ A data structure which saves correlations in a two-dimensional array

• PRowContainer

◦ A container for PRow objects

• GEP

◦ A container for GEPRows, it represents the data extracted from the GEP annotation and 
data files

• DMP

◦ A container for DMPRows, it represents the data extracted from the DMP annotation and 
data files

• PRow

◦  A data structure which holds the variables needed to identify a row in a an annotation 
and data file.

• GEPRow

◦ A data structure which represents a row in the GEP annotation and data file.

• DMPRow

◦ A data structure which represents a row in the DMP annotation and data file.

• GeneSymbols

◦ A static class which is thread-safe, it contains data about every gene parsed into the 
application.

• ChromosomeListModel

◦ Model for an element in the user-interface

• GenesListModel

◦ Model for an element in the user-interface

• InvalidElementException

◦ An exception thrown when an element in a parsed row in either the annotation or the 
data file is deemed invalid. 



• StatusFeedBack

◦ An abstract class which lets the CorrelationController dispatch status messages to the 
user interface (incomplete)

• CorrelationController

◦ An abstract class containing all the methods to correlate selected genes and samples.

• SelectedGenesCorrelationController

◦ The controller for the selected genes tab.

• ChromosomeCorrelationController

◦ The controller for the chromosomes tab

• AllGenesIntersectionCorrelationController

◦ The controller for the all genes intersection tab

• CorrelationControllerPropertyChangeListener

◦ A listener for CorrelationController which keeps track of the progress of the 
calculations.

• PFileParserPropertyChangeListener

◦ A listener for the PFileParser classes, it also keeps track of the progress of the parsing of 
files.

• ProgressPrinter

◦ A class dedicated to printing the progress in the console for debugging purposes.

• CorrelationController.CorrelationType

◦ An enum which holds the type for each of the 3 children classes of 
CorrelationController.

• DualPFileParser<T>

◦ A class for parsing 2 files at once namely annotation and data files.



• DMPDualPFileParser

◦ A class for parsing DMP annotation and data files

• GEPDualPFilePaser

◦ A class for parsing GEP annotation and data files

correlation.lib

• CorrelationSet

◦ A static class which contains frequently used methods for calculating set operations on 
correlation results

• PearsonsCorrelationBoxedFloat

◦ A class which is a wrapper around the Apache Commons Math library component, it has 
extended the existing class to support arguments for boxed floats.

correlation.components.clinicaldata

• ClinicalDataFileParser

◦ A parser for clinical data files



• ClinicalDataSamplePicker

◦ The user-interface component for selecting samples based on properties in clinical data.

• ClinicalData

◦ A data structure for holding clinical data. It also serves as a model for selecting and 
deselecting certain clinical data attributes

• ClinicalDataComboBoxModel

◦ A model for a user-interface ComboBox component

• ClinicalDataListModel

◦ A model for a user-interface List component

• Sample

◦ A data structure holding the attribute to value mappings of clinical data.

• ClinicalDataFileParserPropertyChangeListener

◦ A listener which listens to which values at which attributes are selected.

correlation.components.annotationdataselectionpane



• AnnotationDataSelectionPanel

◦ A user-interface component for selecting a annotation and data file

• GEPAnnotationDataSelectionPanel

◦ A user-interface component for selecting a GEP annotation and data file

• DMPAnnotationDataSelectionPanel

◦ A user-interface component for selecting a DMP annotation and data file



correlation.circos.api

• CircosConfig

◦ An abstract class for generating Circos configuration files and for running the perl 
Circos script

• CircosConfigCorrelation

◦ A specific implementation of CircosConfig made for the Correlation approach

• CircosConfigHypergeo

◦ A specific implementation of CircosConfig made for the Pathways approach

• CircosDataWriter

◦ An abstract class which allows classes to write a data string to a given file

• Links

◦ A class representing a links data file for Circos

• Karyotypes

◦ A class representing a karyotypes data file for Circos

• Genes

◦ A class representing a genes data file for Circos

• CircosColors

◦ A data structure for storing all the colors used in CircosConfig

• CircosColor

◦ A single color definition for Circos

• Gene

◦ A data structure for saving the gene name, chromosomal location

• Karyotype



◦ A data structure for saving the category span 

• Link

◦ A data structure for saving a Circos link.



Appendix: Class Diagram Alignment
This appendix contains the UML class diagram of the Alignment part of the project. The Alignment 
part of the project is explained in chapter 4.

figure 16: UML of the alignment tool



Appendix: Pathway class diagram
In this appendix part is shown complete UML class diagram of this pathway part. Details 
explanation about the processes of this class diagram is elaborated in chapter 3.

Appendix: Correlation Test Plan
This test plan contains several test cases which are manually performed by a tester on program 
execution.

Test case Description Expected result

Figure 17: UML Class Diagram pathway part



Test case 1 User clicks on choose file field Open File dialog pops up
Test case 2 User presses OK after choosing a file in Open 

File dialog
File name is written in the 
choose file field.

Test case 3 User has selected both an annotation and data 
file for GEP or DMP

File starts loading and fills in 
the chromosomes in the 
chromosomes tab and selects 
the genes (if any) in the 
selected genes tab.

Test case 4 User has selected a clinical data file File starts loading and after 
finishing fills both the checkbox 
and list.

Test case 5 User has pressed the correlate button on the 
chromosomes tab or intersection of all genes 
tab or selected genes tab

Correlation of data has started 
and after it has finished it will 
show an image if there are 
correlations with a certain 
threshold or an empty image if 
there aren't any.

Test case 6 User has selected some properties in the clinical 
data section

Selections stay in place unless 
user changes.



Appendix: User manual



User Manual

_HeatMapper Expansion_



Table of Contents
Part 1. Input...........................................................................................................................................4

Data file.......................................................................................................................................4

Annotation file.............................................................................................................................4

Clinical file...................................................................................................................................5

Part 2. Correlation.................................................................................................................................6

The user interface........................................................................................................................6

File input......................................................................................................................................7

Filtering on Clinical Data..............................................................................................................8

Correlation options......................................................................................................................9

Part 3. Pathways..................................................................................................................................11

File Input....................................................................................................................................11

AML groups selection................................................................................................................12

Multiple Test (FWER).................................................................................................................13

Gene Set Collections Chooser....................................................................................................14

Displaying Result Using Circos...................................................................................................14

Part 4. Alignment.................................................................................................................................15

Loading in attributes..................................................................................................................15

Data type options......................................................................................................................16

Selecting samples......................................................................................................................17

Merging samples.......................................................................................................................17

The clinical data searcher..........................................................................................................17

Loading into IGV........................................................................................................................18



Introduction
Currently HeatMapper draws heatmaps and displays clinical data next to the heatmap, but  it 
is not clear enough for the researchers what each matrix element represents in human 
genome. Therefor this expansion to HeatMapper is made. 

This expansion provides three manners of visualizing DNA data.  

• Correlation

This expansion is an environment in which the user can select genes and samples to 
correlate and consequently visualize the results in a circular diagram.

• Pathways

This second expansion provides another view, also in a circular diagram, between 
two AML groups and their significantly related pathways, according to the the 
Molecular Signatures Database (MsigDB).

• Alignment

The final expansion is a tool, that can load the data files and visualize them in 
Integrative Genomics Viewer(IGV). This is a genome browser, where the data is 
shown on horizontal tracks, aligned based on their location on the genome.

This software users manual describes how to use these three expansions to HeatMapper. 



Part 1. Input
This first part of the manual deals with the input files used in all three tools. The different 
input files used can be divided in three catagories:

• data files

• annotation files

• clinical files

However, they all have the following characteristics. They are comma seperated value tables 
(.csv) where each element in the table is seperated by a ";". Numeric elements should use a 
"." as a decimal seperator.

Data file
Data files provide the values of sample and probe set pairs. The correlation and pathways 
tools use GEP and DMP data files. The alignment tool uses any data file that follows the 
format outlined here.

In a data file, the first row provides a list of sample names. Each row after that denotes a 
probe set. The first column provides the probe set id for each probe set and further columns 
provide the value that the probe set has in that corresponding sample. An example is given 
below.

Probeset;sample1;sample2

probe1; 2.2; 1.2

probe2; 2.4; 0.8

Annotation file
An annotation file provides info about a specific probe set. Annotation files are always linked 
to a specific data file and most often be provided alongside one.

Just as in the data file, the rows represent probe sets and the first column provides the probe 
set ID. The columns however, represent properties of the probe set, such as the start and 
end location on the genome or the chromosome on which it is located.

Probeset;start;end;chromosome

probe1; 50000; 50200; 1

probe2; 60000; 60200; 1

These columns can be in any order, but they need to have specific names to be recognized. 

The Alignment tool requires the chromosome number, start and end position of the probe 
set. It will search for columns containing "chr", "start" or "end" for the chromosome number. 
Alternatively, a single column named "Alignment" can be provided. This column must contain 
the chromosome number, start and end for each probe set in the following format.



Chromosome:start-end 

For example: 2:50000-50200

Clinical file
The clinical file is used to provide info about specific sample patients. Each row represents a 
sample, with the first column giving the sample ID. The folowing rows provide info about the 
patient. For example:

sample-id; gender; age

sample1;male;48

sample2;female;36



Part 2. Correlation

The user interface
The user interface consists of 3 parts: 

1. Loading the annotation and data files

2. Loading of the clinical data file

3. Selecting genes of interest and generate a correlation image.



File input
By clicking on the text fields it's possible to choose the respective input files by selecting 
them in a file dialog.



Filtering on Clinical Data

It is possible to choose an attribute and then select the items that you desire. Only the 
samples matching the selected criteria will be used in the calculations.

The “Deselect all” button deselects everything in the list of the currently selected attribute.

The “Select all” button selects everything in the list of the currently selected attribute.

The “Reset” button deselects everything, if nothing is selected, all samples will be used.



Correlation options
There are 3 ways to select genes of interest, each with a slightly different user-interface.

Selected genes
There is a delimiter field, two text areas and two lists. The delimiters are applied to the input 
in the two text areas. The input is parsed real-time and parsed symbols will be displayed in 
the respective lists. 

The user can choose to put genes of interest in the text areas, and there's a quick checkbox 
for selecting all genes of either the GEP or DMP data set.

Intersection of all genes
This mode only has a Correlate button, as it computes the intersection of gene-symbols of 
both the GEP data and the DMP data. Press the correlate button to start.



Genes within selected chromosomes
After parsing has finished, chromosomes which were parsed will be displayed in the select 
chromosomes list. After 1 or more chromosomes have been selected, the correlate button 
can be pressed and progress will be displayed in the progress bar.



Part 3. Pathways
This part 2 describes step by step how to operate this pathways expansion in order to obtain 
an end visualization in the form of a circular diagram, visualized using Circos.

File Input
To enter this part, just click on the Pathways Button on HeatMapper initial screen. 

This pathway home screen will then appear:

Functionalities of the buttons on this screen:

• First, please choose an input file of a gene expression or a methylation data.
If it is a methylation data, click on “DMP file”-button, for a gene expression data, click 
on “GEP file”-button.

• After choosing a DMP or a GEP file, the “Annotation file”-button will become 
selectable. 

Please choose a clinical data file as input by clicking on the “Annotation file”-button. 

• Clicking “Cancel”-button will return to HeatMapper initial screen.

• “Clear all fields”-button will reset chosen file(s). 

• ”Next “-button will become selectable when an appropriate input file and a clinical 
data file are entered, pressing this button will go on further to the next screen.

Note: It might take a little while to load the .csv files completely.

figure 1: Home screen of pathways part. In this example, a DMP .csv file  
is already selected.



AML groups selection
After previous steps, a screen with two columns (left and right) will appear.

The left column contains a number of AML groups, which exactly two of these groups have 
to be selected. Groups that have been selected will  show up on the right column. Due to the 
limitation of two groups being selected, this program allows maximum two groups on the 
right column. 

Functionalities of the buttons on this screen:

• Click on one group on the left column and click on  ”Add” –button to move it to the 
right column or to select it.

• Click on one group on the right column and click on “Remove”-button to return this 
group  to the left column.

• When two groups are added, the “Next”-button will become selectable. Pressing this 
button will go on further to the next screen.

• “Exit”-button will close the application.

Note: clinical data DMP and GEP will also be automatically loaded to determine which AML 
groups are available to compare as shown in figure 2. In this figure, one group is already 
added to the right column.

figure 2: Choices of several AML groups. User has to choose  
2 groups to compare.



Multiple Test (FWER)
On this screen, there is a field to threshold. User can fill in another value for this threshold. A 
standard threshold is set to 0.05. This number must use point to denote decimal, otherwise 
this application will not accept it. Below this field, there is a checkbox to decide whether to 
apply multiple test or not. 

Functionalities of the buttons on this screen:

• Clicking on “Exit”-button will exit the application.

• Pressing “Next”- button will go on further to the next screen.

Gene Set Collections Chooser

There are totally five gene set collections that are one at a time selectable, namely:

• c1: positional gene sets.

• c2: curated gene sets.

• c3: motif gene sets.

• c4: computational gene sets. 

• c5: gene ontology (GO) gene sets.

figure 4: Five gene set collections that one of them has to be chosen.

figure 3: Multiple test screen.



Please choose one of these five collections and press ”Next”-button to go on further with the 
process or “Exit”-button to quit the application. 

Note: It might take a little while to complete this step.

Displaying Result Using Circos
Note: It might take a little while to complete this last step.



Part 4. Alignment
This final part describes the functions of the alignment tool. The alignment tool is created to 
load genomic data into IGV from the format used in the other parts of this project. On top of 
that, the user can manipulate the data to influence what is visualized and how.

To ensure the correct functioning of the program, make sure IGV is started up before 
opening the tool. In IGV, open the preference window under view and go to the advanced 
tab as shown in figure 5. Ensure that port commands are enabled for port 60151. Also 
consider how much memory IGV will need for your intended goal. After that, run the 
alignment tool.

Loading in attributes
The first two things you will see on the tools graphical user interface (seen on figure 6) are 
the info window, which is not displaying much info for now, and the “Add a new data type” 
section. Data types refer to different types of data files that can be loaded into the program, 
such as expression or methylation data. Any type of genomic data can be loaded into the 
program as long as a data file, containing the values for all the probe set and sample pairs, 
as well as an annotation file, containing the chromosome, start and end position for each 
probe set, are provided. These files must be provided in the same csv format as used in the 
other parts of this project. To program will store the data per sample. Each sample will have 
multiple tracks for each data type. 

First, you should give the data type a name. This name will be used in IGV. After that, the 
“select data File” and “select annotation” buttons will allow you to browse to the files you 
want to import. You can also type in the path manually, but you will need to use double 
backslashes. After that, you can press load. The loading process can take a while, 
depending on the size of the input files. You can load multiple files at once, manipulate 

figure 5: Setting IGV to allow port commands.



already loaded data types and use the clinical searches while you wait. Please note that the 
sample selection and merge functions may not work properly, until all data types are loaded.

Once the data types are loaded, the info window will display the total amount of samples 
loaded and selected as well as some basic info about each loaded data type.

An unfortunate property of the tool is that the program can be quite memory intensive. If you 
find that you have performance issues when loading in large files, it may be required to 
increase the heap size allocated to java. The most reliable way to do this is to create a new 
system variable called ”_JAVA_OPTIONS” with a body of “-Xmx500m” or -Xmx1g. This 
should set the java maximum heap space to 500 megabyte or 1 gigabyte respectively. 
Please ensure that you have enough RAM for this.

Data type options
In the “data type options” section, loaded data types can be selected via the dropdown box. 
You may then:

figure 6: The main graphical user interface of the alignment tool



• set thresholds for the data type,

• enable or disable the data type or,

• delete the data type.

Thresholds determine what probe sets are shown or not shown when the data is visualized 
in IGV. Probe sets with values that fall outside the threshold range will be ignored. To set the 
thresholds, edit the upper and lower thresholds valued and click "set Thresholds". What if 
you only want to see outliers? If the upper thresholds is equal or lower then the lower 
Thresholds, the program will only display outliers and ignore all probe sets in between the 
two values. Note that the default of zero for both  thresholds means that all probe sets are 
shown by default.

The next button in this section can be used to enable or disable the entire data type. 
Disabled data types are entirely ignored during visualization. If you permanently want to 
remove a data type, you can unload it with the delete button.

Selecting samples
The next section on the main panel is allow you to select what samples should be shown in 
IGV. By default all samples are enabled when they are added. You can select or deselect all 
samples by using the select all and deselect all buttons. To select or deselect specific 
samples, you must write their names in the field seperated by semicolons. 

Lets give an example, where you only want to display the samples 2281, 2282 and 2283. 
The easiest way to do this would be to first deselect all samples and then enter 
2281;2282;2283 in the text field. Press select to select these samples. The info window will 
always give up to date info on how many samples are loaded and selected.

You can also select and deselect via the clinical searcher, which will be explained later in 
this manual.

Merging samples
Merging samples works much the same as selecting samples. Merging takes the tracks from 
several selected samples and creates a new sample with the average of all those tracks. 
First you must give a name for the new sample. You then write the names of the samples 
you want to merge, seperated by semicolons, and press the merge button. If any of the 
selected samples have tracks of the same data type, the new merged sample will recieve a 
track of that data type where the values for all probe sets in that track are averaged. Merging 
samples can also be done via the clinical searcher.

The clinical data searcher
The clinical data searcher, as shown in figure 7, is a tool to allow users to find samples 
based on a clinical data file. A clinical data file is a comma seperated value file where every 



row represents a sample. The first column is always the sample id. Aditional columns 
provide properties such as gender and age. 

You can browse to such a file using the "choose clinical data file button". By giving a specific 
column to search in (such as "gender") as well as a desired value (such as "male") you can 
search for a group of samples that meet that search criteria. 

If you press search without giving a column name, you will recieve a list of all column names 
and if you press search without giving a search value, but only a column name, you will 
recieve a list of possible values present in that column.

After you have recieved a list of samples, you can directly select, deselect or merge these 
samples from the Clinical data search window.

Loading into IGV
Once you are done selecting samples and data types, you can press finish. This will load all 
selected tracks into IGV. Tracks will be sorted on sample first and data type second. To load 
the files into IGV, the program will create output files called .bedGraph files. These files are 
stored into C:\AlignmentOutput. After loading is done, the result should look something like 
figure 8.

figure 7: The clinical data searcher tool

figure 8: Example visualization in IGV

file:///AlignmentOutput

	BScEindverslag
	Glossary
	Part 1. Introduction
	Part 2. Correlation: 
	2.1 Pearson's correlation coefficient
	2.2 Computation of correlation coefficients
	2.3 Problem analysis
	2.4 Requirements
	2.4.1 Reading Affymetrix annotation files
	2.4.2 Reading human sample files containing GEP or DMP data values
	2.4.3 Letting the user set a correlation threshold
	2.4.4 Letting the user select genes of interest
	2.4.5 Letting the user select samples of interest
	2.4.6 Displaying data in a circular diagram

	2.5 Design
	2.5.1 Loading and parsing of data
	2.5.2 Selection of genes and calculating correlations
	2.5.3 Displaying the resulting visualization

	2.6 Implementation
	2.6.1 Model-view-controller
	2.6.2 Front end
	2.6.3 Back end
	2.6.3.1 Parsing the input data
	2.6.3.2 Manipulating the input data
	2.6.3.3 Creating a visualization of the input data based on the input


	Part 3. Pathways
	3.1 Problem Analysis
	3.2 Interactions and Design
	3.3 Methodology
	3.3.1 T-Test
	3.3.2 Multiple Testing

	3.4 Implementation
	3.4.1 Reading and Importing Files
	3.4.2 Processing data


	Part 4. Alignment
	4.1 Problem Analysis
	4.2 Design
	Input
	Interaction
	Clinical data searcher
	Visualization

	4.3 Implementation
	Reading the input
	Data manipulation
	Visualizing the output


	Part 5. Circos
	5.1 Why Circos?
	5.2 Implementation
	5.2.1 Structure of Circos

	5.2.2 Circos API specifications
	CircosConfigCorrelation implementation
	CircosConfigHypergeo implementation


	Part 6. Evaluation
	6.1 Correlation
	6.2 Pathways
	6.3 Alignment

	Part 7. Conclusion and recommendations
	Correlation 
	Pathways
	Alignments

	Appendix: Problem Description
	Appendix: Correlation class diagrams
	correlation.main
	correlation.lib
	correlation.components.clinicaldata
	correlation.components.annotationdataselectionpane
	correlation.circos.api

	Appendix: Class Diagram Alignment
	Appendix: Pathway class diagram
	Appendix: Correlation Test Plan
	Appendix: User manual

	UsersManual_Main
	Part 1. Input
	Data file
	Annotation file
	Clinical file

	Part 2. Correlation
	The user interface
	File input
	Filtering on Clinical Data
	Correlation options

	Part 3. Pathways
	File Input
	AML groups selection
	Multiple Test (FWER)
	Gene Set Collections Chooser
	Displaying Result Using Circos

	Part 4. Alignment
	Loading in attributes
	Data type options
	Selecting samples
	Merging samples
	The clinical data searcher
	Loading into IGV



