User's Manual

Model IR400 Infrared Gas Analyzer

IM 11G02N01-01E

vigilantplant.®

PREFACE

We are grateful for your purchase of Yokogawa's Infrared Gas Analyzer, Model: IR400.

- First read this instruction manual carefully until an adequate understanding is acquired, and then proceed to installation, operation and maintenance of the analyzer. Wrong handling may cause an accident or injury.
- The specifications of this analyzer are subject to change without prior notice for further product improvement.
- Modification of this analyzer is strictly prohibited unless a written approval is obtained from the manufacturer. Yokogawa will not bear any responsibility for a trouble caused by such a modification.
- This instruction manual shall be stored by the person who actually uses the analyzer.
- After reading the manual, be sure to store it at a place easier to access.
- This instruction manual should be delivered to the end user without fail.

Manufacturer: Yokogawa Electric Corporation

Type: Described in Yokogawa's company nameplate on main frame

Date of manufacture: Described in Yokogawa's company nameplate on main frame

Product nationality: Japan

Request —

- It is prohibited to transfer part or all of this manual without Yokogawa's permission in written format.
- Description in this manual is subject to change without prior notice for further improvement.

CAUTION ON SAFETY

First of all, read this "Caution on safety" carefully, and then use the analyzer in the correct way.

• The cautionary descriptions listed here contain important information about safety, so they should always be observed. Those safety precautions are ranked in 3 levels, "DANGER", "CAUTION" and "PROHIBITION".

! DANGER	Improper handling may cause dangerous situations that may result in death or serious injury.
CAUTION	Improper handling may cause dangerous situations that may result in medium-level troubles, minor injury, or property damage.
> PROHIBITION	Items which must not be done are noted.

Caution on installation and transport of gas analyzer		
! DANGER	The unit is not of explosion-proof specifications. Do not use it in an atmosphere of explosive gases. Otherwise serious accidents such as explosion or fire may result.	
CAUTION	 Install the analyzer, observing the rules provided in this manual, in a place that endures the weight of the analyzer. Installation in an inadequate place may cause turnover or fall, resulting in injury. Be sure to wear protective gloves when lifting the analyzer. Lifting it with bare hands may result in injury. Be sure to fix the casing before transporting the analyzer. Transportation in unstable state may result in injury. The gas analyzer is heavy. Two or more persons should carry it, while exercising due care. Otherwise unexpected harm to your body or injury may result. Take care not to let cable chips and other foreign objects enter the unit during installation work. Otherwise fire, failure, or malfunction may result. 	

<Introduction> III

Caution on piping

Be sure to observe the following precautions while installing piping. Improper piping may result in gas leakage. If the leaking gas contains a toxic component, serious accidents may result. If it contains combustible gases, explosion or fire may result.

- · Connect pipes correctly referring to the instruction manual.
- Discharge the exhaust gas outdoors to prevent it from remaining within the sampling device or indoors.
- Relieve the exhaust gas from the analyzer to the atmospheric pressure to prevent buildup of undesirable pressure to the analyzer. Otherwise piping within the analyzer may be disconnected, resulting in gas leakage.
- Use pipes and pressure reducing valves to which no oil/ grease is attached for piping. Otherwise, fire may result.

Caution on wiring

- Be sure to turn off the power before installing wiring.
 Otherwise electric shock may result.
- Be sure to perform class D grounding work. Otherwise, electric shock or failure may result.
- Select a proper wiring material that satisfies the ratings of the instrument. Otherwise, electric shock or fire may result.
- Be sure to connect a power supply of correct rating.
 Otherwise, fire may result..

Caution on use

DANGER

• Be sure to read the instruction manual for reference gases before handling reference gases such as calibration gas to use them properly.

- Leaving the analyzer unused for a long time or restarting it after long-term suspension requires procedures different from normal operation or suspension procedures. Be sure to follow the instructions in each instruction manual.
 - Otherwise, intended performance may not be achieved, or accidents or injury may result.
- Do not operate the analyzer for a long time with its door left open. Otherwise, dust, foreign matter, etc. may stick on internal walls, thereby causing faults.

- Do not touch the input/output terminals with metal or finger. Otherwise, electric shock or injury may result.
- Do not smoke or use flames near the analyzer. Otherwise, fire may result.
- Do not allow water to enter the analyzer. Otherwise, electric shock or internal fire may result.

Caution on maintenance and check

 Before performing work with the cover of the analyzer kept open for maintenance and check, be sure to purge completely not only within the analyzer but also measuring gas lines with nitrogen or air. Otherwise, poisoning, fire, or explosion may result due to gas leakage.

Be sure to observe the following to perform work safely, avoiding electric shock or injury.

- Remove the watch and other metallic objects before work.
- Do not touch the instrument wet-handed.
- If the fuse is blown, eliminate the cause and replace it with the one of the same capacity and type. Otherwise, electric shock or accidents may result.
- Do not use replacement parts other than those specified by the manufacturer. Otherwise, intended performance may not be achieved, or accidents or failures may result.
- Dispose replacement parts such as maintenance parts as in combustibles according to the local waste disposal regulations.

Others

- If the cause of a fault cannot be identified by referring to the instruction manual, be sure to contact your dealer or Yokogawa technician in charge of adjustment. Disassembling the instrument carelessly may result in electric shock or injury.
- Do not use the supplied power cord with another device.

■ Notes on Use in Korea

The AC cord with the following products is not compliant with the safety standards in Korea.

Please do not use it to connect household appliances in Korea.

It is prohibited to use an adapter connector to change the plug shape for the AC cord of the following products.

♦ After-Sales Warranty

- Do not modify the product.
- Yokogawa warrants the product for the period stated in the pre-purchase quotation. Yokogawa shall conduct defined warranty service based on its standard. When the customer site is located outside of the service area, a fee for dispatching the maintenance engineer will be changed to the customer.
- During the warranty period, for repair under warranty carry or send the product to the local sales representative or service office. Yokogawa will replace or repair any damaged parts and return the product to you.
 - Before returning a product for repair under warranty, provide us with the model name and serial number and a description of the problem. Any diagrams or data explaining the problem would also be appreciated.
 - If we replace the product with a new one, we won't provide you with a repair report.
- In the following cases, customer will be charged repair fee regardless of warranty period.
 - Failure of components which are out of scope of warranty stated in instruction manual.
 - Failure caused by usage of software, hardware or auxiliary equipment, which Yokogawa did not supply.
 - Failure due to improper or insufficient maintenance by user.
 - Failure due to misoperation, misuse or modification which Yokogawa does not authorize.
 - Failure due to power supply (voltage, frequency) being outside specifications or abnormal.
 - Failure caused by any usage out of scope of recommended usage
 - Any damage from fire, earthquake, a storm and flood, lightning, disturbance, riot, warfare, radiation and other natural changes.
- Yokogawa does not warrant conformance with the specific application at the user site.
 - Yokogawa will not bear direct/indirect responsibility for damage due to a specific application.
- Yokogawa will not bear responsibility when the user configures the product into systems or resells the product.
- Maintenance service and supplying repair parts will be covered for five years after the production ends. For repair this product, please contact the nearest sales office described in this instruction manual.

Model IR400 Infrared Gas Analyzer

IM 11G02N01-01E 4th Edition

CONTENTS

INTF	RODUCT	ΓΙΟΝ		i
	PREF	ACE		i
	CAUT	ION ON SA	4FETY	ii
	◆ Afte	er-Sales W	arranty	v
1.	OVER	VIEW		1-1
2.	NAME	E AND DI	ESCRIPTION OF EACH UNIT	2-1
	2.1	Name a	nd description of main unit	2-1
	2.2	Input/O	utput terminal module	2-2
3.	INSTA	LLATIO	N	3-1
	3.1	Installa	tion conditions	3-1
	3.2	Installa	tion	3-2
		3.2.1	Installation of analyzer main frame	3-2
		3.2.2	Mounting input/output terminal module	3-3
	3.3	Piping .		3-4
	3.4	Samplii	ng	3-7
		3.4.1	Conditions of sampling gas	3-7
		3.4.2	Sampling gas flow	3-7
		3.4.3	Preparation of standard gas	
		3.4.4	Reduction of moisture interference	
		3.4.5	Purging of instrument inside	
		3.4.6	Pressure at sampling gas outlet	
		3.4.7	Example configuration of gas sampling system	
	3.5	ŭ		
		3.5.1	Power inlet	
		3.5.2	Input/Output terminal module	
4.	OPER	RATION		4-1
		•	ation for operation	
	4.2		up operation and regular operation	
5.	DESC	RIPTION	NOF DISPLAY AND OPERATION PANELS	5-1
	5.1		and description of operation panel	
	5.2	Overvie	ew of display and operation panels	5-2
	5.3		of display screen	
	5.4	Genera	I operation	5-6

6. SET	TING AND	CALIBRATION	6-1
6.1	Switch	of range	6-1
	6.1.1	Setting of range switch mode	6-1
	6.1.2	Manual range switch	6-2
6.2	Calibra	tion setting	6-3
	6.2.1	Setting of calibration concentration	6-3
	6.2.2	Setting of manual zero calibration	6-5
	6.2.3	Setting of calibration range	6-7
	6.2.4	Setting of auto calibration component/range	6-9
6.3	Alarm	setting	6-11
	6.3.1	Setting of alarm values	6-11
	6.3.2	Hysteresis setting	6-13
6.4	Setting	of auto calibration	6-14
	6.4.1	Auto calibration	6-14
	6.4.2	Forced run/stop of auto calibration	6-17
6.5	Setting	of auto zero calibration	6-20
	6.5.1	Auto zero calibration	6-20
	6.5.2	Forced run/stop of auto zero calibration	6-22
6.6	Peak a	arm setting	6-25
6.7	Parame	eter setting	6-27
6.8	Mainte	nance mode	6-34
6.9	Calibra	tion	6-40
	6.9.1	Zero calibration	6-40
	6.9.2	Span calibration	6-41
7. MAIN	NTENANO	CE	7-1
7.1	Daily c	heck	7-1
7.2	Daily c	heck and maintenance procedures	7-1
7.3	Mainte	nance of analyzer unit	7-2
	7.3.1	Cleaning method for sample cell (pipe cell)	7-2
	7.3.2	Cleaning method for sample cell (block cell)	7-4
	7.3.3	Optical zero adjustment method (optical balance adjustment)	7-6
	7.3.4	Moisture interference compensation adjustment method	7-7
	7.3.5	Replacement of fuse on analyzer unit	7-8
7.4	Inspec	tion and maintenance of limited service-life components	7-9
8. TRO	UBLE SH	OOTING	8-1
8.1	Error n	nessage	8-1
8.2	Trouble	eshooting	8-3

9.	SPE	CIFICATIONS	9-1
	9.1	General specifications	9-1
	9.2	Model and Suffix codes	9-7
	9.3	External Dimensions	9-12
Custo	omer I	Waintenance Parts List	CMPL 11G02N01-01E
Revis	sion In	formation	i

1. OVERVIEW

This infrared gas analyzer (type: IR400) measures the concentration of NO, SO_2 , CO_2 , CO_3 , CO_4 , and CH_4 contained in sampling gas on the principle that different atomic molecules have an absorption spectrum in the wave band of infrared rays, and the intensity of absorption is determined by the Lambert-Beer law.

Since this instrument incorporates a compact paramagnetic O_2 sensor, it allows measuring up to 5 components simultaneously by using the built-in O_2 sensor (up to 4 components if O_2 sensor is excluded).

Furthermore, use of a microprocessor or large sized liquid crystal display realizes improvement of operability, accuracy and multi-functions.

This instrument is optimum for measuring combustible gas exhausted from boilers or incinerators, and it is effective for steel gas analysis (blast furnace, steel converter, thermal treatment furnace, sintering (Pellet equipment), coke furnace), storage and maturity of vegetable and fruit, biochemistry (microbe), [fermentation], air pollution [incinerator, exhaust gas desulfurization, denitration], automotive emission (excluding tester), protection against disasters [detection of explosive gas and toxic gas, combustion gas analysis of new building material], growth of plants, chemical analysis [petroleum refinery plant, petroleum chemistry plant, gas generation plant], environment [landing concentration, tunnel concentration, parking lot, building management] and various physical and chemical experiments.

2. NAME AND DESCRIPTION OF EACH UNIT

2.1 Name and description of main unit

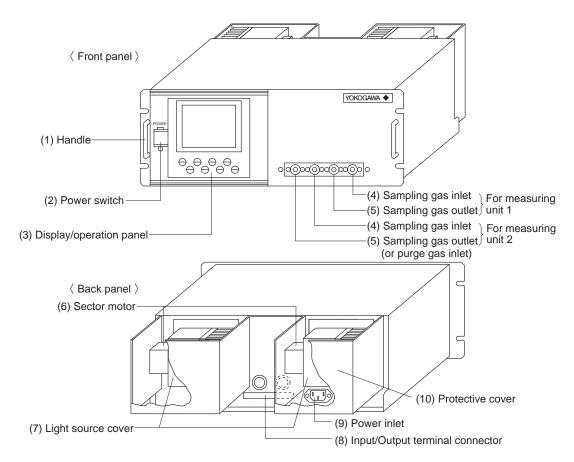


Fig. 2-1

Name	Description	Name	Description
(1) Handle	Used for withdrawing the main unit from the panel.	(6) Sector motor	For driving the rotation of sector.
(2) Power switch	Used for ON/OFF the analyzer.	(7) Light source cover	Infrared light source is arranged in the cover.
(3) Display/operation panel	Liquid crystal display and keys for setting various functions.	(8) Input/Output terminal connector	For connecting to the external input/output terminal module.
(4) Sampling gas inlet	For connecting to the measuring gas tube.	(9) Power inlet	For connecting the power cable.
(5) Sampling gas outlet	Connect to the exhaust line. (A pair of sampling gas inlet/outlet is provided for each measuring unit. When ordered with purge, the piping to measuring unit 2 is built inside. In this case, the sample gas outlet for measuring unit 2 is used for purge gas inlet.)	(10) Protective cover	Protective cover for the light source and the motor. May be removed during operation.

2.2 Input/Output terminal module

This analyzer provides input/output of various signals from the supplied input/output terminal module by connecting the instrument to this module.

⟨Input/Output terminal module⟩

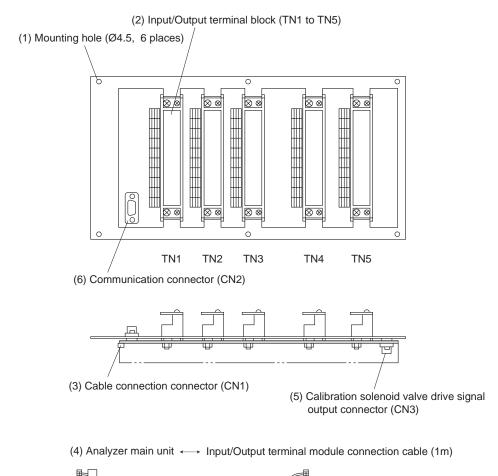


Fig. 2-2

Name	Description	Name	Description
(1) Mounting hole	Used for mounting input/ output terminal module. Ø4.5, 6 places	(4) Input/Output terminal module connection cable	Used for connecting the analyzer main unit to the input/output terminal module.
(2) Input/Output terminal block (TN 1 to TN 5)	Input/Output terminal for signals of analog output, range identification contact, alarm contact output, etc.	(5) Calibration solenoid valve drive signal output connector	Cable connector for connecting the analyzer to the relay board for automatic calibration.
(3) Cable connection connector (CN1)	Used for connecting the analyzer main unit and the input/output terminal module (4).	(6) Communication connector	Connect communication cable. *Please refer to another manual (IM 11G02P01-01E) about communication function.

.

3. INSTALLATION

!> DANGER

This unit is Non-Explosion-proof type. Do not use it in a place with explosive gases to prevent explosion, fire or other serious accidents.

! CAUTION

- Entrust the installation, movement or re-installation to a specialist or the supplier. A poor installation may cause accidental tip over, shock hazard, fire, injury, etc.
- The gas analyzer is heavy. It should be installed with utmost care. Otherwise, it may tip over or drop, for example, causing accident or injury.
- For lifting the gas analyzer, be sure to wear protective gloves. Bare hands may invite an injury.
- This unit should be installed in a place which conforms to the conditions noted in the instruction manual. Otherwise, it may cause electric shocks, fire or malfunction of the unit.
- During installation work, care should be taken to keep the unit free from entry of cable chips or other foreign objects. Otherwise, it may cause fire, trouble or malfunction of the unit.

3.1 Installation conditions

To install the analyzer for optimum performance, select a location that meets the following conditions;

- (1) This instrument is system built in type. This instrument should be used while embedded in a panel, locker, or enclosure of steel sheet.
- (2) Use this instrument indoors.
- (3) A vibration-free place
- (4) A place which is clean around the analyzer.
- (5) Power supply

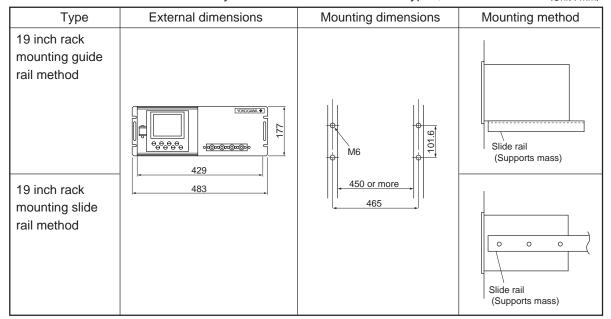
Rated voltage : 100 V to 240 V AC Operating voltage : 85 V to 264 V AC

Rated frequency: 50/60 Hz Power consumption: 250 VA max.

Inlet: Conformity to EN60320 Class I type 3-pin inlet

(6) Operation conditions

Ambient temperature : -5° to 45°C


Ambient humidity: 90% RH or less, no condensation

3.2 Installation

3.2.1 Installation of analyzer main frame

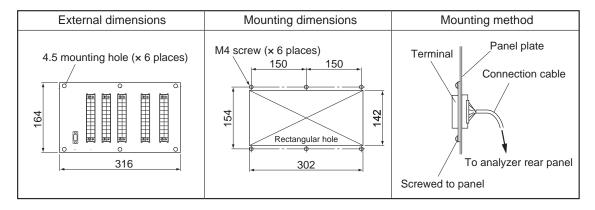
Installation methods for the analyzer main unit are divided into 2 types;

(Unit: mm)

- Note 1 Check and maintenance of the analyzer main unit may be carried out with the top cover detached.

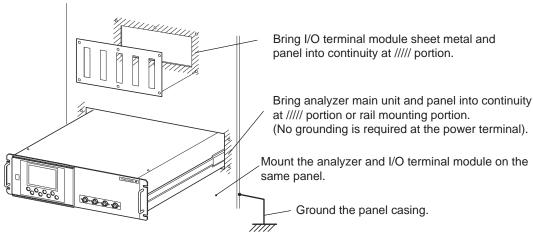
 The guide rail method may be used if a space accessible for maintenance is provided at the top of the main unit. If maintenance space is not provided specially, it is recommended to use the slide rail method.

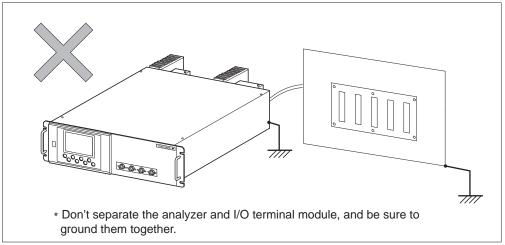
 Recommended slide rail: Product No.: 305A-24 manufactured by Accuride International Co.
- Note 2 For 19 inch rack mounting, the weight of the analyzer is supported with the bottom of the case (with the side of the case in case of slide rail method). For mounting dimensions of the slide rail, see "Item 9.3 External diagram".


 Don't install the analyzer at a place which is exposed to direct sunlight.

 The analyzer should be installed at a place where ambient temperature is within -5 to 45°C, and temperature fluctuation during use is minimum.

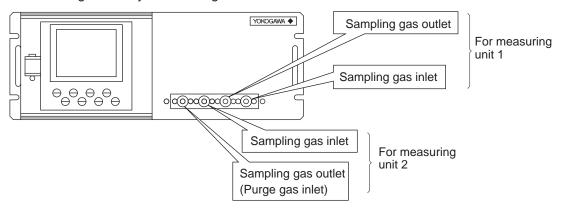
3.2.2 Mounting input/output terminal module


Mount the input/output terminal module on the panel; observing the following method.


(Note) To avoid the effect of noise generated from external units, mount the I/O terminal module mounting plate on the panel for continuity at the mounting surface and connect the panel to the same ground as the analyzer main unit.

Note) How to ground analyzer main unit and I/O terminal module

To avoid the effect of noises, etc. from external units, it is recommended to ground them by the procedure described below.



3.3 Piping

Piping should be connected to the gas inlets and outlets of the front panel of the analyzer.

- Use a corrosion resistant tube of Teflon, stainless or polyethylene to connect the instrument to a sampling system. Even if there is a danger of corrosion, refrain from using a tube of rubber or soft vinyl. The instrument provides inaccurate indication due to gas absorption by piping materials.
- Pipe connection port is Rc1/4 female thread (or 1/4 NPT). Piping should be cut as short as possible for a quick response. About 4 mm inner diameter is recommended.
- · Entry of dust into the instrument may result in defective operation. Use a clean piping or coupling.

Connect the gas tube by the following method.

Sampling gas inlet: Attach the gas tube to introduce gas to be measured such as one that has

completed dehumidification process and standard gases for zero and span

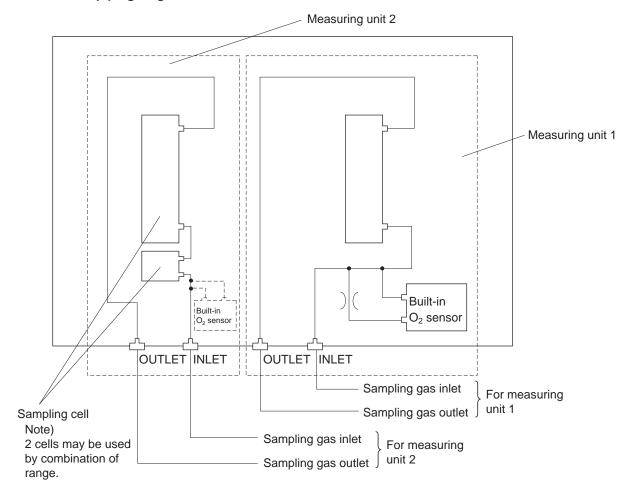
calibration to this inlet.

Gas flow to be introduced should be constant within the range of 0.5 ± 0.2

L/min.

Sampling gas outlet: Exhaust measured gas through the outlet. Attach the tube to exhaust

measured gas outdoors or to the atmosphere.

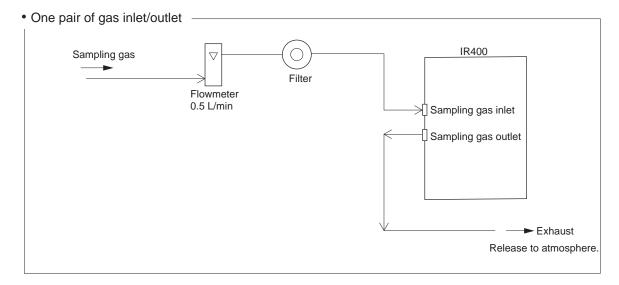

Purge gas inlet: It is used for purging the inside of the total gas analyzer. When the analyzer

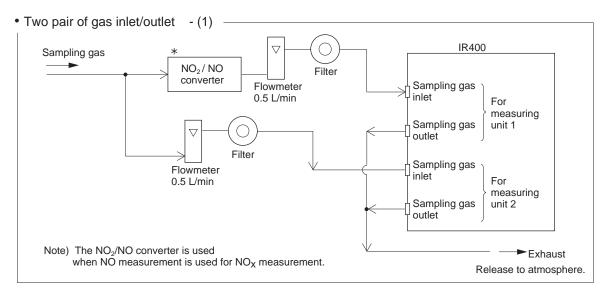
must be purged, refer to Item 3.4.5 Purging of instrument inside.

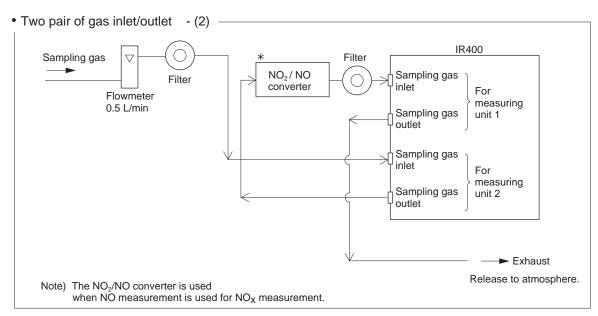
Use dry gas N_{2} or instrumentation air for purge gas. (flow rate of 1 L/min or

more should be used and no dust or mist is contained).

Internal piping diagram


Note) When the purge gas inlet is provided, the piping to measuring unit 2 is built inside.


Correspondence of measured components and measuring units


Measuring components	Measuring unit 1	Measuring unit 2
1-component Analyzer for NO, SO ₂ , CO ₂ , CO and CH ₄	Each component	None
2-component Analyzer for NO-SO ₂ and CO ₂ -CO	NO-SO ₂ CO ₂ -CO	None
2-component Analyzer for NO-CO	NO	СО
3-component Analyzer for NO-SO ₂ -CO	NO-SO ₂	СО
4-component Analyzer for NO-SO ₂ -CO ₂ -CO	NO-SO ₂	CO ₂ -CO

Note) When there are two measuring units, the built-in O₂ sensor must be connected to the measuring unit 2.

Example of connecting each measuring unit

3.4 Sampling

3.4.1 Conditions of sampling gas

- 1. Dust contained in the sampling gas should be completely removed with a filter. For the final stage filter, use a filter that allows removing dust particles of 0.3 mm.
- Dew point of sampling gas must be lower than the ambient temperature to avoid occurrence of drain in the gas analyzer. If vapor is contained in the sampling gas, dew point should be lowered to 0°C by using a dehumidifier.
- 3. If SO₃ mist is contained in the sampling gas, use a mist filter or cooler to remove SO₃ mist. Other mists should be removed by using a mist filter or cooler.
- 4. Corrosive gases such as Cl₂, F₂ and HCl, if they are contained in the sampling gas in considerable amounts, will shorten the life of instruments.
- 5. Temperature of sampling gas should be within 0 to 50°C. Provide a means that prevents entry of hot gas directly into the instrument.

3.4.2 Sampling gas flow

Flow of sampling gas should be 0.5 ± 0.2 L/min.

Avoid flow fluctuation during measurement.

Observe the flow reading by a flowmeter provided as shown in the example of the sampling system configuration (Item 3.4.7).

3.4.3 Preparation of standard gas

Routine calibration is required by standard gas for keeping this instrument under normal operation condition (once a week). Prepare a standard gas cylinder for zero calibration and span calibration.

	Analyzer without O ₂ measurement	Analyzer with built-in O ₂ sensor	Analyzer with external zirconia O ₂ sensor
Zero gas	N ₂ gas	N ₂ gas	Dry air or atmospheric air
Span gas other than for O ₂ measurement	Gas with concentration of 90% or more of full scale	Gas with concentration of 90% or more of full scale	Gas with concentration of 90% or more of full scale
Span gas for O ₂ measurement		Gas with concentration of 90% or more of full scale or atmospheric air (21%)	1 to 2% O ₂

3.4.4 Reduction of moisture interference

NO and SO₂ measurement is subject to moisture interference.

As shown by the configuration example on the next page, provide a device for humidifying zero calibration gas, thus controlling the moisture content at a constant level (moisture content in sample gas should also be controlled here) in configuring a sampling system. That allows the same moisture content as in the case of measurement to be contained in zero gas for calibration.

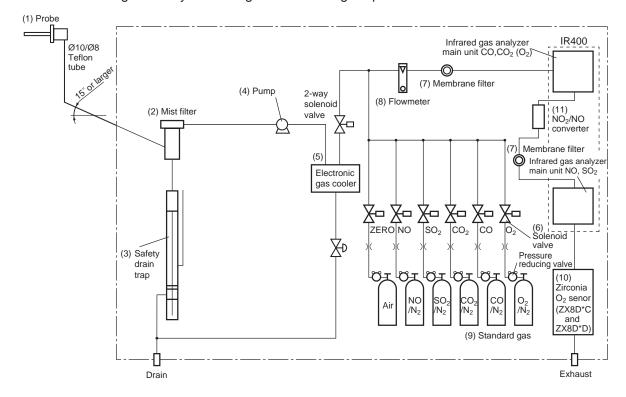
3.4.5 Purging of instrument inside

The inside of instrument need not be purged generally except for the following cases.

- 1. A combustible gas component is contained in sample gas.
- 2. Corrosive gas is contained in the atmospheric air at the installation site.
- 3. The same gas as the sample gas component is contained in the atmospheric air at the installation site.

In such cases as above, the inside of analyzer should be purged with the air for instrumentation or N_2 . Purging flow rate should be about 1 L/min.

If dust or mist is contained in purging gas, it should be eliminated completely in advance.

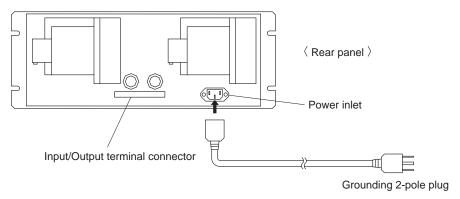

3.4.6 Pressure at sampling gas outlet

Pressure at the sampling gas outlet should be adjusted to atmospheric pressure.

3.4.7 Example configuration of gas sampling system

The following illustrates a typical system configuration for five component gas measurement for monitoring combustion exhaust gas from boiler, refuse incinerator, etc.

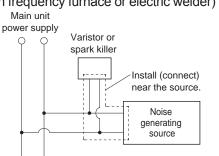
Contact Yokogawa for system configuration matching the particular use or further information.



Name	Description	Name	Description
(1) Probe	Gas extractor with a heating type stainless steel filter of standard mesh 40 µm.	(8) Flowmeter	Adjusts and monitors the flow rate of sample gas.
(2) Mist filter	Removes drain, mist, and dust.	(9) Standard gas	Reference gas used for calibrating
(3) Safety drain trap	The safety drain trap divided into two rooms for positive and negative pressure. It monitors and adjusts the sample gas pressure.		zero and span of the analyzer. Total 6 cylinders required for zero gas air, span gas NO, SO ₂ , CO, CO ₂ and O ₂ .
(4) Pump	For aspiration of sample gas	(10) Zirconia O ₂	External zirconia oxygen sensor
(5) Electronic gas cooler	Dries the moisture in sample gas to a dew point of approx. 2°C.	sensor	used for measuring the oxygen concentration in sample gas. (This is not necessary in case
(6) Solenoid valve	Used for introducing calibration gas.		when O ₂ sensor is built-in.)
(7) Membrane filter	PTFE filter used to eliminate fine dust particles and permit monitoring of dust adhering condition on the front panel of the gas analyzer.	(11) NO ₂ / NO converter	Added to NOx analyzer. A special catalyst material for efficient conversion of NO ₂ gas to NO is used.

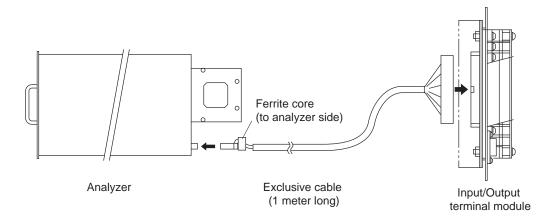
3.5 Wiring

3.5.1 Power inlet


The power inlet is provided at the rear panel. Connect supplied power cable to this power inlet.

When noise source is in the vicinity

- Avoid installing this instrument near an electrical unit (high frequency furnace or electric welder) that generates much electrical noise. If using the instrument near such a noise generating unit is unavoidable, use a different power line to avoid noise.


 Main unit power supply Varistor or spark killer
- Mount a noise suppressor such as varistor or spark killer as shown at right figure to the noise generating unit when noise is generated from relays or solenoid valves. Mount the suppressor near the noise generating source, or it will have no effect.

3.5.2 Input/Output terminal module

This analyzer should be connected to the input/output terminal module by supplied exclusive cable. Plug this cable connector into the receptacle at the rear panel of the analyzer and the receptacle on the PC board of the input/output module.

Connect the exclusive cable so that the ferrite core attached to the cable comes to the analyzer side.

(1) Analog output signal (AO): Terminal block 1, 1 to 20, Terminal block 2, 3 to 6.

Output signal: 4 to 20 mA DC or 0 to 1 V DC (selected when ordering)

Non-insulated output

Allowable load: 4 to 20 mA DC, 550 Ω or less

0 to 1 V DC, 100 k Ω or more

 Analog output is provided from each terminal corresponding to the channel displayed in the measurement screen.

All of analog output signals for the instrument are not isolated. It is recommended to isolate signals individually to prevent interference from unnecessary signals or to prevent external interference, especially leading the cable of more than 30 meters or to outdoor.

(2) O, sensor input: Terminal block 2, 1 to 2.

Input signal:

External zirconia O_2 analyzer: Zirconia O_2 sensor signal (ZX8D output) External O_2 analyzer: 0 to 1 V DC (DC input resistor of 1M Ω or more)

- It is used when the external zirconia O₂ analyzer or external O₂ analyzer is specified as order.
- To connect to the output of the external zirconia analyzer or external O₂ analyzer prepared separately.
- In case of an external O₂ analyzer, input a signal of 0 to 1 V DC with respect to O₂ full scale of the analyzer.
- In case of built-in O₂ analyzer, do not use the terminals.

 $\rm O_2$ sensor input is not isolated. It is recommended to isolate when an external $\rm O_2$ analyzer is installed apart from this analyzer. Zirconia $\rm O_2$ sensor (ZX8D) should be installed at a location that is as close to this instrument as possible.

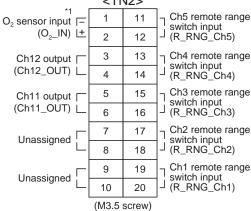
(3) Contact input (DI): Terminal block 2, 1 to 20, Terminal block 3, 5 to 10.

- It is for a contact input at no voltage. An input is provided when switching to short circuit (on) or open (off).
- No voltage is applied to the terminals.

(4) Contact output (DO): Terminal block 3, 11 to 20, Terminal block 4 and Terminal block 5

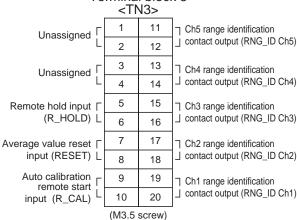
- Contact rating: 250 V AC/2 A, load resistance
- An output is for a relay contact output. An output is provided when switching to conductive (on) or open (off).

Wiring of analog output signal, O_2 sensor input and contact input should be fixed separately from the wiring of power supply and contact output.

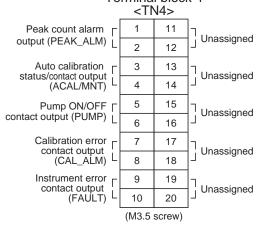

Note) To avoid the effect of noise generated from external units, be sure to ground the analyzer main unit. Continue between the I/O module mounting plate and the panel and connect the panel casing to the same ground as the analyzer.

(5) List of terminal blocks

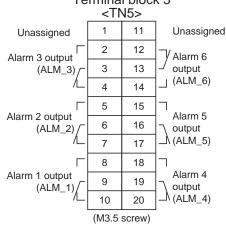
Terminal block 1 <TN1>


<11V1>				
Ch5 output ┌─	1	11	Ch10 output	
(Ch5_OUT) L+	2	12	(Ch10_OUT)	
Ch4 output ┌─	3	13	☐ Ch9 output	
(Ch4_OUT) L+	4	14	(Ch9_OUT)	
Ch3 output =	5	15	☐ Ch8 output	
(Ch3_OUT) <u>L+</u>	6	16	<u>+</u>] (Ch8_OUT)	
Ch2 output =	7	17	☐ Ch7 output	
(Ch2_OUT) <u>L+</u>	8	18	<u>+</u>] (Ch7_OUT)	
Ch1 output =	9	19	☐ Ch6 output	
(Ch1_OUT) <u>L+</u>	10	20	<u>+</u>] (Ch6_OUT)	
(M3.5 screw)				

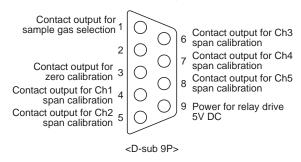
Terminal block 2 <TN2>



*1 : For external O2 sensor input.


Terminal block 3

Terminal block 4



Terminal block 5

Connector <CN3>

Solenoid valve drive signal output for calibration (Transistor output)

Note 1: Unassigned terminals are used for internal connection.

So they should not be used as repeating terminals either.

Note 2: The allocation of each channel (Ch1 to Ch12) depends on measured gas components. Refer to the table on the next page.

(6) Description on terminal block

Terminal block 1 <TN1> Ch10 output Ch5 output |-(Ch5_OUT) L+ <u>+</u>J (Ch10_OUT) 2 12 3 13 Ch4 output |= ☐ Ch9 output (Ch4_OUT) L+ + (Ch9_OUT) 4 14 5 15 Ch3 output [= ☐ Ch8 output (Ch3_OUT) i+ <u>+</u>] (Ch8_OUT) 6 16 17 7 Ch2 output = ☐ Ch7 output (Ch2_OUT) i+ <u>+</u> (Ch7_OUT) 18 9 19 Ch1 output = ☐ Ch6 output (Ch1_OUT) L+ + (Ch6_OUT) 10 20

(M3.5 screw)

Terminal block 2 <TN2> Note 1 O₂ sensor input ⊏ 11 Ch5 remote range 」switch input 」(R_RNG_Ch5) (O2_IN) ± 12 2 13 Ch4 remote range 3 Ch12 output ┌─ switch input (R_RNG_Ch4) (Ch12_OUT) ± 14 4 Ch3 remote range switch input (R_RNG_Ch3) 5 15 Ch11 output F (Ch11_OUT) ± 6 16 Ch2 remote range switch input (R_RNG_Ch2) 17 7 Unassigned 8 18 Ch1 remote range 9 19 Unassigned 」switch input 」(R_RNG_Ch1) 10 20 (M3.5 screw)

Note 1 : For external O_2 sensor input.

Terminal block 1 <TN1>

Terminal block for analog output (non-isolated output)

Between 1–2: Ch5 output
Between 3–4: Ch4 output
Between 5–6: Ch3 output

Between 7–8: Ch2 output

Between 9-10: Ch1 output

Between 11-12: Ch10 output

Between 13-14: Ch9 output

Between 15-16: Ch8 output

Between 17-18: Ch7 output

Between 19-20: Ch6 output

Terminal block 2 <TN2>

Between 1–2: O₂ sensor input

(For input of (ZX8D) zirconia oxygen sensor or externally oxygen sensor. Must not be used unless external O₂

sensor is provided.)

Between 3–4: Ch12 output Between 5–6: Ch11 output

Between 7–10: For internal connection. Must not be

wired. (Must not be used as junction

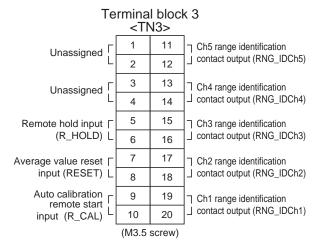
terminal).

Between 11–12: Ch5 remote range switch input

Between 13-14: Ch4 remote range switch input

Between 15-16: Ch3 remote range switch input

Between 17-18: Ch2 remote range switch input


Between 19-20: Ch1 remote range switch input

Action of remote range switch.

High range is selected when open.

Low range is selected when short-circuited.

For details of action, see "Item 6.1 Switch of range."

Terminal block 3 <TN3>

Between 1–4: For internal connection. Must not

be wired. (Must not be used as

junction terminal.)

Between 5–6: Remote hold input.

No hold when open. Output hold

when short-circuited.

For details, refer to "Item 6.7 Parameter setting, Output Hold".

Between 7–8: Average value reset input.

Short-circuiting the contact input (for at 1.5 sec. or more.) resets O₂ average and O₂ corrected average simultaneously.
Opening it restarts the average

value.

For details, refer to "Item 6.7 Parameter setting, Average

Value Resetting"

Between 9–10: Automatic calibration remote

start input.

After shorting for 1.5 sec. or more, automatic calibration is started by the opening input whether the automatic calibration setting is ON/OFF. For details, refer to "Item 6.4 Setting of auto calibration"

Between 11–12: Ch5 range identification contact

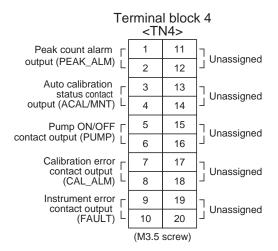
output

Between 13–14: Ch4 range identification contact

output

Between 15–16: Ch3 range identification contact

output


Between 17–18: Ch2 range identification contact

output

Between 19–20: Ch1 range identification contact

output

Action of range identification signal output is conductive at low and open at high range.

Terminal block 4 <TN4>

Between 1–2: Peak count alarm contact output

It is conductive when peak count exceeds the setting time. It remains open below the setting time. For setting and operation, refer to "Item 6.6 Peak alarm

setting".

Between 3–4: Contact output of auto

calibration status

When the auto calibration is carried out and remote hold is ON, it is conductive. Remains

open otherwise.

Between 5–6: Pump ON/OFF contact output

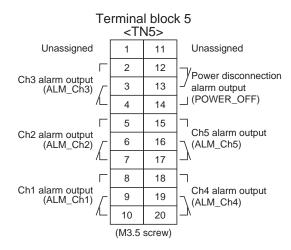
Used when turning ON/OFF the pump. It is open during auto and manual calibration status and conductive during measurement.

Between 7–8: Calibration error contact output

It is conductive when an error occurs during zero calibration or span calibration. It is normally

open.

Between 9–10: It is conductive when an error


occurs to the analyzer unit. It is

normally open.

Between 11–20 For internal connection, wiring

is not allowed. (Do not use it as

junction terminal).

Terminal block 5 < TN5>

Between 2, 3 and 4: Ch3 alarm output

When the output exceeds the set value, it is conductive between 2 and 3, and open between 3 and 4. Otherwise, it is open between 2 and 3 and conductive between 3

and 4.

Between 5, 6 and 7: Ch2 alarm output

When the output exceeds the set value, it is conductive between 5 and 6, and open between 6 and 7. Otherwise, it is open between 5 and 6, and conductive between 6 and 7.

Between 8, 9 and 10: Ch1 alarm output

When the output exceeds the set value, it is conductive between 8 and 9, and open between 9 and 10. Otherwise, it is open between 8 and 9.

Between 12, 13 and 14: Analyzer unit power OFF

output

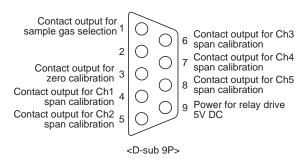
When the analyzer unit is turned ON, it is conductive between 12 and 13, and open between 13 and 14. When the analyzer unit is turned OFF, it is open between 12 and 13, and conductive between 13

and 14.

Between 15, 16 and 17: Ch5 alarm output

When the output exceeds the set value, it is conductive between 15 and 16, and open between 16 and 17. Otherwise, it is open between 15 and 16, and conductive between 16 and 17.

Between 18, 19 and 20: Ch4 alarm output


When the output exceeds the set value, it is conductive between 18 and 19, and open between 19 and 20. Otherwise, it is open between 18 and 19, and conductive between 19 and 20. For detailed action of the alarm contact, refer to "Item

6.3 Alarm setting".

Connector < CN3>

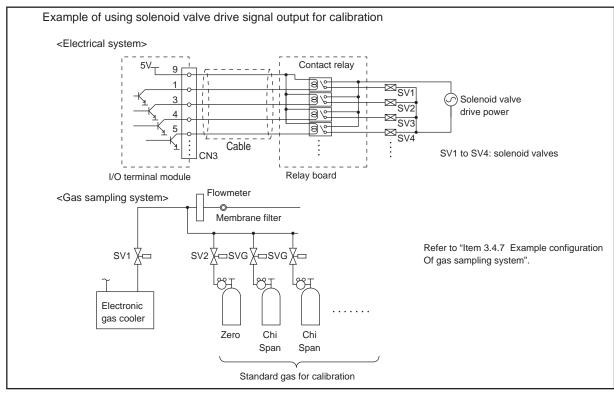
Solenoid valve drive signal output for calibration

Connector <CN3> (Transistor output)

Connector <CN3> provides outputs in combination with calibration action during auto calibration and manual calibration.

An output is from a transistor (ratings: 5 V/50 mA).

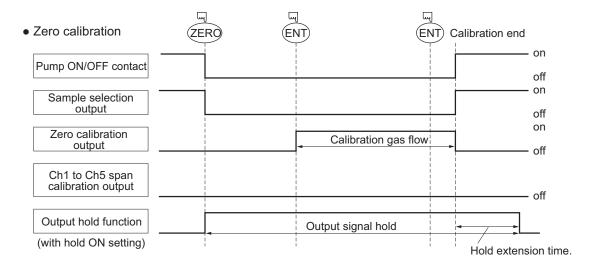
A transistor is turned ON before starting each calibration.

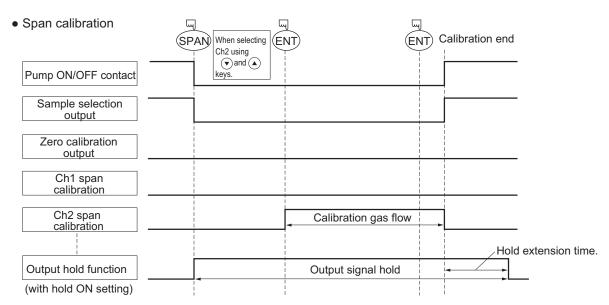

Sample selection output is ON during measurement and OFF during calibration.

If calibration is not performed, the other transistors are OFF.

In case of auto calibration, sequential output is ON/OFF according to the setting.

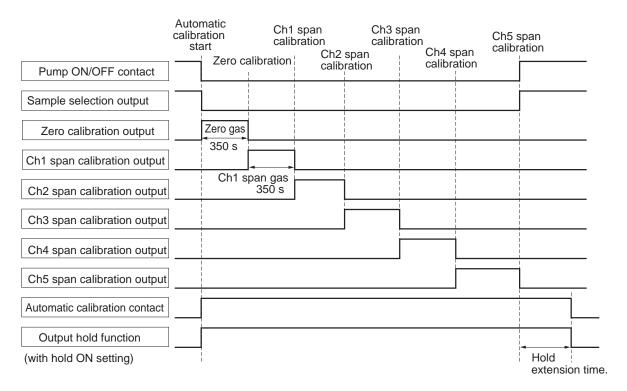
Refer to "Item 6.4 Setting of auto calibration".


Note) No. 9 pin is for solenoid valve ON/OFF relay drive power (5 V DC/0.5 A, max). Use No. 9 with reference to the diagram.



Relay board and exclusive cable (D-sub 9th straight cable: 1.5 meters) are available on request.

(7) Timing of solenoid valve drive signal for calibration


1. Manual calibration (see "Item 6.9 Calibration".)

Note) The hold extension time depends on the gas flow time of the automatic calibration settings.

2. In case of automatic calibration (example shown in Item 6.4.1, Automatic calibration settings)

4. OPERATION

4.1 Preparation for operation

(1) Tube and wiring check

Double-check if tubes of the gas sampling and exhaust ports are correctly connected. Double-check for proper wiring.

4.2 Warm-up operation and regular operation

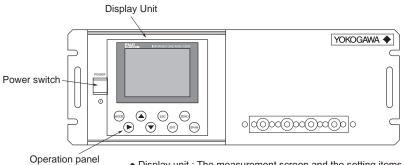
(1) Operation procedure

- 1) Turn ON the power switch on the front panel of the analyzer unit.

 The measurement screen appears on the front display panel in 1 or 2 seconds.
- Wait for about 4 hours until the instrument is warmed up.
 About 4 hours are required until the instrument allows accurate measurement.

Note)	When in warm-up,	the concentration readi	ng ma	y be be	yond

 upper limit of range or
lower limit of range.


But, it is not an error.

- Setting of various set values
 Perform the various settings according to "Chapter 6. Setting and Calibration".
- Zero calibration and span calibration
 Perform zero calibration and span calibration after warm-up operation.
 Refer to "Chapter 6.9. Calibration".
- 5) Introduction and measurement of measuring gas
 Introduce the measuring gas into the analyzer unit before starting measurement.

5. DESCRIPTION OF DISPLAY AND OPERATION PANELS

This section describes the display unit and operation panel of the analyzer unit. It also explains the name and description of function on the operation panel.

5.1 Name and description of operation panel

- Display unit: The measurement screen and the setting items are displayed.
- Operation panel : The configuration is as shown below.

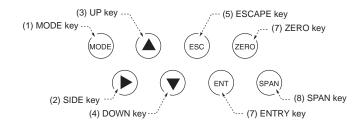


Fig. 5-1

Name	Description	Name	Description
(1) MODE key	Used to switch the mode.	(5) ESCAPE key	Used to return to a previous screen or cancel the setting midway.
(2) SIDE key	Used to change the selected item (by moving the cursor) and numeral digit.	(6) ENTRY key	Used for confirmation of selected items or values, and for execution of calibration.
(3) UP key	Used to change the selected item (by moving the cursor) and to increase numeral value.	(7) ZERO key	Used for zero calibration.
(4) DOWN key	Used to change the selected item (by moving the cursor) and to decrease numeral value.	(8) SPAN key	Used for span calibration.

5.2 Overview of display and operation panels

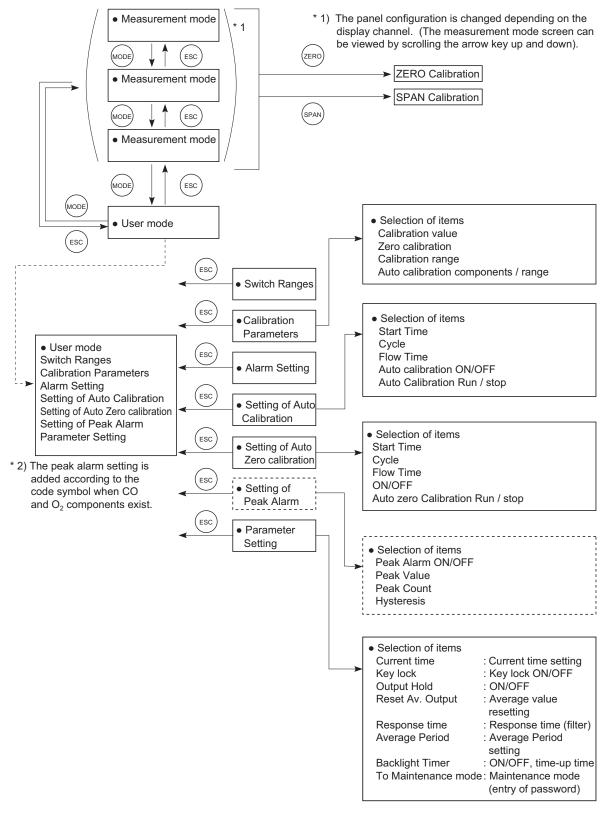


Fig. 5-2

5.3 Outline of display screen

(1) Measurement mode screen (appears when the power is turned ON)

The measurement screen depends on the number of components. The following screen configuration as shown as an example is for NO, SO_2 , CO_2 , CO and O_2 (output: 12 channel).

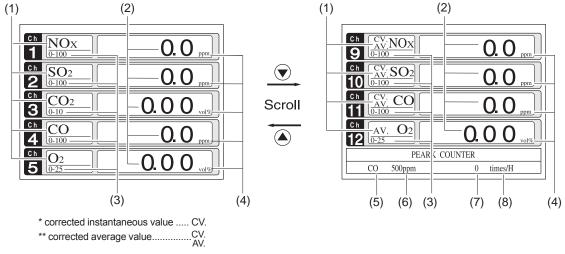


Fig. 5-3 Name and function of measurement mode screen

* For outputs of more than 5 channels, scroll the arrow key () or () to view.

No.	Name	Function	No.	Name	Function
(1)	Component display	Displays component of instantaneous value, corrected instantaneous value, corrected average value, etc.	(5)	Peak alarm component display	Displays peak alarm component.
(2)	Concentration display	Displays measured value of concentration.	(6)	Peak alarm concentration display	Displays peak alarm concentration display. (Upper limit value)
(3)	Range display	Displays range values.	(7)	Peak alarm times	Displays the alarm times exceeding the peak value.
(4)	Unit display	Displays unit with ppm and vol%.	(8)	Peak alarm unit display	Displays units of peak alarm with times/H.

• Instantaneous value and concentration value:

The concentration display of Ch (component) where sampling components such as "CO₂", "CO" or "O₂ are displayed in the component display, indicates current concentration values of the measured components contained in gas that is now under measurement.

• O₂ correction concentration values:

Ch components where "cv**" is displayed as "cv CO" in the component display are calculated from the following equation, by setting sampling components, O_2 instantaneous/concentration values and O_2 correction reference value (see item 6.8).

Correction output= $\frac{21 - On}{21 - Os}$ x Cs

On: The value of the O₂ correction reference value

(Value set by application)

Os: Oxygen concentration (%)

Cs: Concentration of relevant measured component.

Note that Os does not exceed the O2 limit value

The converted sampling components are NOx, SO₂ and CO only.

• O₂ correction concentration average value:

In the Ch (component) and O_2 average value where " $^{CV}_{AV}$ " is displayed as " $^{CV}_{AV}$ CO" in the component display, a value obtained by averaging O_2 correction concentration value or O_2 average value in a fixed time is output every 30 seconds.

Averaging time can be changed between 1 minute and 59 minutes or 1 hour and 4 hours according to the average time settings (See 6.7, Parameter setting).

(The set time is displayed as "1 h", for instance, in the range display.)

* The measurement ranges of O₂ correction concentration value and O₂ correction concentration average value are the same as that of the measuring components. Also, the measurement range of O₂ average value is the same as that of O₂.

(2) Setting/selection screen

The setting/selection screen is configured as shown below:

- In the status display area, the current status is displayed.
- In the message display area, messages associated with operation are displayed.
- In the setting item and selection item display area, items or values to be set are displayed, as required. To work on the area, move the cursor to any item by using (▲), (▼) and (▶) keys.

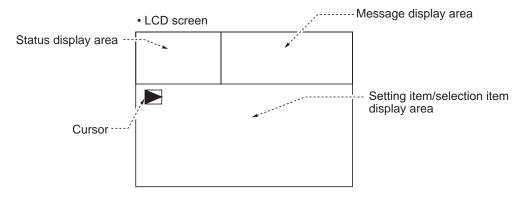
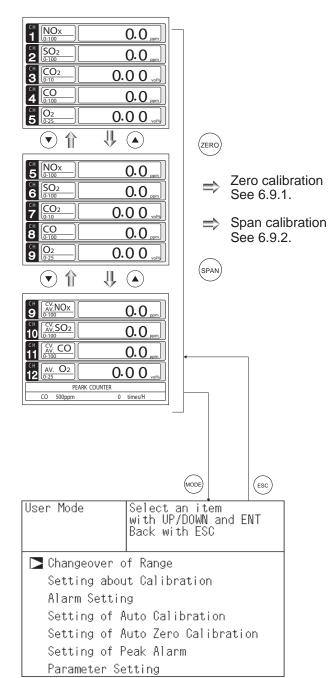


Fig. 5-4

(3) Contents of measured channel (Ch)

The following table gives measurement channels and their contents according to the symbols.

CO COT CO C	O ₂ correction
O ₂ av. O ₂ av.	NO ON
O ₂ av. O ₂ av.	Not specified SO ₂
O ₂ av. O ₂ av. O ₂ av. O ₂ av. Correct SO ₂ Correct NO ₂ av. Correct SO ₂ av. Correct CO av. Correct CO Correct NO ₂ av. Correct CO Correct NO ₂ av. Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av.	Not specified CO ₂
O ₂ av. O ₂ av.	Not specified CO
O ₂ av. Correct SO ₂ Correct SO ₂ av. O ₂ av. Correct CO Correct NO ₂ av. Correct CO av. Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₂ av. Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₃ Correct NO ₃ Correct SO ₂ Correct CO Correct SO ₂ av. Correct CO av.	Not specified CH ₄
O ₂ av. Correct SO ₂ Correct SO ₂ av. Correct SO ₂ av. Correct CO Correct NO _X av. Correct CO av. Correct CO av. Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct CO av. O ₂ Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct CO av. O ₂ Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct CO av. O ₂ Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct CO av. O ₂ Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct CO av.	Not specified NO SO ₂
O2 av. O2 av.	Not specified NO CO
O ₂ av. O ₂ av.	Not specified CO ₂ CO
O ₂ av. O ₂ av.	Not specified NO SO ₂
O ₂ av.	Not specified NO SO ₂
O ₂ av. O ₂ av. Correct SO ₂ Correct NO ₂ av. Correct SO ₂ av. Correct SO ₂ av. Correct SO ₂ Correct SO ₂ av. Correct CO av. Correct CO Correct SO ₂ Correct CO correct SO ₂ av. Correct CO av. Correct NO ₂ Correct SO ₂ Correct SO ₂ Correct SO ₂ av. Correct SO ₃ av. Correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO Correct SO ₃ av. Correct CO av. O ₂ Correct SO ₂ Correct SO ₂ Correct SO ₃ av. Correct SO ₃ av. Correct CO av. O ₂ Correct SO ₂ Correct SO ₂ Correct SO ₃ av. Co	/K NO _X O ₂
O ₂ av. Correct SO ₂ Correct NO ₃ av. Correct SO ₂ av. O ₂ av. Correct CO Correct NO ₃ av. Correct CO av. O ₂ av. Correct CO av. O ₂ av. Correct NO ₃ Correct SO ₂ Correct CO Correct NO ₃ av. Correct CO av. O ₂ Correct SO ₂ Correct SO ₂ Correct CO Correct CO correct CO av. O ₂ Correct NO ₃ Correct SO ₂ Correct CO correct CO av. O ₃ Correct NO ₃ Correct SO ₂ Correct CO correct CO av. O ₄ av. O ₅ Correct CO av. O ₆ av.	/K SO ₂ O ₂
Correct NO _x av. Correct SO ₂ (Dorrect NO _y av. Correct SO ₂ av.) O ₂ av. Correct NO _x (Correct CO Correct NO _x av.) Correct CO av. O ₂ av. Correct NO _x (Correct SO ₂ av.) O ₂ av. CO O ₂ av.	/K CO O ₂
Correct NO ₂ av. Correct SO ₂ Correct SO ₂ av. O ₂ av. O ₂ av. Correct CO Correct CO Correct CO av. O ₂ av. Correct NO ₂ Correct SO ₂ Correct CO Correct SO ₂ av. Correct CO av. CO O ₂ Correct NO ₂ Correct SO ₂ Correct CO correct SO ₂ av. Correct CO av. CO O ₂ Correct NO ₂ Correct SO ₂ Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Correct CO av. CO O ₂ Correct SO ₂ Correct SO ₂ av. Cor	$/$ K CH_4 O_2
Correct NO _x Correct CO Correct NO _x av. Correct CO av. O ₂ av.	/K NO _x SO ₂
Correct CO av. O ₂ av. O ₂ av. O ₂ av. O ₃ av. O ₄ av. O ₅ av. O ₇	/K NO _x CO
CO O ₂ Correct SO ₂ Correct CO Correct NO _x av. Correct CO av. O ₂ av. Correct CO av. Correc	/K CO ₂ CO
CO O ₂ Correct NO ₂ Correct CO Correct SO ₂ av. Correct CO av.	/K NO _x SO ₂
o o	/K NO _x SO ₂
00 00	except /K CO O ₂
00 00	except /K NO CO
O O CO	except /K CO ₂ CO
00	except /K NO SO ₂
	except /K NO SO ₂


(Note) : As for the NO meter within this range, the display on the indicator become NO_X. The peak count alam becomes a contact output. The "correct" means O₂ correction. The "av." means average value.

5.4 General operation

Measurement mode

The measurement mode can be displayed up to 5 channels in a single screen.

If 5 channels or more are to be displayed in a single screen, press the ▲ or ▼ key to scroll the channel one by one.

MODE)

(ESC)

• User mode displays;

Changeover of Range Setting about Calibration Alarm Setting Setting of Auto Calibration Setting of Auto Zero Calibration Setting of Peak Alarm Parameter Setting.

For the setting contents, refer to "Chapter 6. Setting and calibration".

6. SETTING AND CALIBRATION

6.1 Switch of range

6.1.1 Setting of range switch mode

Set the range switch mode as follows.

- (1) Press the (MODE) key in measurement mode to display the User mode screen.
- (2) Move the cursor to "Switch Ranges" and press the (ENT) key.

- (3) The "Channel Selection" screen appears.

 Move the cursor by pressing the or

 the key on the channel selection

 screen that appears, and select Ch

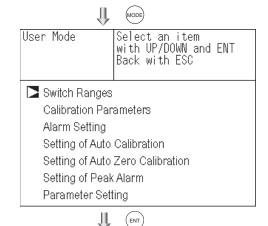
 (component).
- (4) Then press the $\binom{\text{ENT}}{\text{ENT}}$ key.
- (5) Selected range switch mode is highlighted.

 Press the ▲ or the ▼ key to select a desired switch mode.

Description of setting -

MR: Select a desired range on this screen.

RR: Select a desired range according to the remote range switch contact input.


AR: Automatically switched from Range 1 to Range 2 when the measured concentration exceeds 90 % of Range 1.

Automatically switched from Range 2 to Range 1 when the measured concentration becomes smaller than 80% of Range 1.

Operation set for each Ch only can be performed.

(6) Then press the (ENT) key to confirm the selection.

If "MR" is selected, the cursor moves to "Range Switch."

Switch Ra	ange	Select Ch No. with UP / DOWN and ENT Back with ESC
Ch1 NOx	MR	▶ Range1 0-100 ppm Range2 0-2000 ppm
Ch2 SO2	AR	▶ Range1 0-100 ppm Range2 0-2000 ppm
Ch3 CO2	RR	► Range1 0-10 vol; Range2 0-20 vol;
Ch4 CO	MR	▶ Range1 0-100 ppm Range2 0-2000 ppm
Ch5 O2	MR	► Range1 0-10 vol; Range2 0-25 vol;

	~		
Switch Ra	ange	Select method of	
	Ū	Switch ranges	
		with UP / DOWN and E	NT
		Back with ESC	
Ch1	MR	▶ Range1 0-100	ppm
NOx	IVIE	Range2 0-2000	ppm
Ch2	AR	Range1 0-100	ppm
SO2	AK	▶ Range2 0-2000	ppm
Ch3	DD	▶ Range1 0-10	vol%
CO2	RR	Range2 0-20	vol%
Ch4	MR	▶ Range1 0-100	ppm
CO	IVIK	Range2 0-2000	ppm
Ch5	N AID	▶ Range1 0-10	vol%
O2	MR	Range2 0-25	vol%
	m.	_	

Range switch or previous screen

6.1.2 Manual range switch

The range of the measured component can be switched manually as follows.

(1) Select "MR" as range switch mode, and then press the $\binom{\text{ENT}}{\text{ENT}}$ key.

(2)	Move the highlight of the cursor to range
	selection, and then select a desired range
	by pressing the ♠ or the ♥ key.
	(The mark indicates the currently selected
	range.)

(3) Then press the (ENT) key, and the measurement is carried out in the selected range.

Note) If "RR" or "AR" is selected as range switch mode, this operation cannot be performed.

The range for O_2 correction value, O_2 correction average value, and O_2 average value is automatically switched if corresponding instantaneous value range is switched.

- To close the setting -

Press the ESC key to end the setting of range switch mode or range switch operation or stop the operation in the middle, and the setting operation is made invalid and the previous screen appears.

		16	
Switch Range		Select method of	
	-	Switch ranges	
		with UP / DOWN and E	NT
		Back with ESC	
Ch1	MR	▶ Range1 0-100	ppm
NOx	IVIE	Range2 0-2000	ppm
Ch2	AR	Range1 0-100	ppm
SO2	AR	▶ Range2 0-2000	ppm
Ch3	nn	▶ Range1 0-10	-vol%
CO2	RR	Range2 0-20	vol%
Ch4	MR	▶ Range1 0-100	ppm
CO	IVIN	Range2 0-2000	ppm
Ch5	N.AD	▶ Range1 0-10	vol%
O2	MR	Range2 0-25	vol%

Swtich Ra	ange	Select range with UP/DOWN and ENT Back with ESC	
Ch1 NOx	MR	Range1 0-100 pp Range2 0-2000 pp	
Ch2 SO2	AR	Range1 0-100 pp ▶ Range2 0-2000 pp	
Ch3 CO2	RR	Range2 0-20 vo	1% 1%
Ch4 CO	MR	▶ Range1 0-100 pp Range2 0-2000 pp	m
Ch5 O2	MR		1% 1%

End of Range Switch

Range identification contact operation

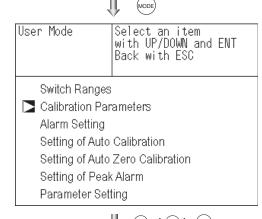
The range identification contact output corresponding to each Ch (component) is conductive when Range 1 is selected, and open when Range 2 is selected, which is applicable to any of the range switch mode selected.

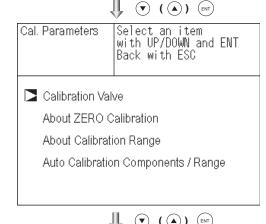
Note that even if the range is switched during the hold of measurement value by remote hold contact input or the hold of measurement value at the time of calibration, the range identification contact output maintains the contact state immediately before the hold. After stop of the hold, the contact state of the current range is resumed.

6.2 Calibration setting

This mode is used to set calibration concentration and actions. The calibration setting involves calibration concentration, zero calibration, calibration range and auto calibration component.

6.2.1 Setting of calibration concentration


It allows you to set concentrations of the standard gas (zero and span) of each channel used for calibration.


- (1) During measurement, press the MODE key to display the User Mode.
- (2) Point the cursor to "Calibration Parameters" by pressing the or key. Press the key.

(3) In the "Calibration Parameters" screen that appears, point the cursor to "Calibration Value" by pressing the ▲ or ▼ key.

Press the (ENT) key.

(4) In the "Calibration Concentration Ch Selection" screen that appears, point the cursor to Ch you want to set by using the ▲ or ▼ key. Press the (ENT) key.

	4		()	
Cal. Settings		Select (Ch No.	
Cal. Value		for setti	ng calibratio	on value
CH	RA	NGE	ZERO	SPAN
Ch1	0-10]ppm	+0000.0	0100.0
NOx	0-20][ppm	+00000	02000
Ch2	0-10]ppm	+0000.0	0100.0
SO2	0-201][ppm	+00000	02000
Ch3	0-10	vol%	+000.00	010.00
CO2	0-20	vol%	+000.00	020.00
Ch4	0-101]ppm	+0000.0	0100.0
CO	0-201][ppm	+00000	02000
Ch5	0-10	vol%	21.00	01.00
O2	0-25	vol%	21.00	01.00

(5) In the "Calibration Concentration Selection" screen that appears, select any concentration item you want to set by pressing the ▲ , ▼

Then press the $\binom{\text{ENT}}{}$ key, and the selected value is highlighted.

(6) In the "Calibration Concentration Value Setting" screen that appears, enter calibration gas concentration values (zero and span). For value entry, press the ▲ or ▼ key, and a 1-digit value increases or decreases. By pressing the ▶, the digit moves. After setting, save the entry by pressing the ENT key. The saved value becomes valid from the next calibration process.

Note) Enter settings that correspond to each range. If zirconia type is used as O_2 sensor, select 21.00 for the field of Zero (when air is used), and select the concentration listed on the cylinder if the air contained in a cylinder is used.

To close the setting -

To close the calibration concentration value setting process or cancel this mode midway, press the $\binom{\text{ESO}}{\text{key}}$ key.

A previous screen will return.

Cal. Setti Cal. Value		setting v	alue
CH	RANGE	ZER0	SPAN
Ch1	0-100ppm	+0000.0	0100.0
NOx	0-2000ppm	+00000	02000
Ch2	0-100ppm	+0000.0	0100.0
SO2	0-2000ppm	+00000	02000
Ch3	0-10vol%	+000.00	010.00
CO2	0-20vol%	+000.00	020.00
Ch4	0-100ppm	+0000.0	0100.0
CO	0-2000ppm	+00000	02000
Ch5	0-10vol%	21.00	01.00
O2	0-25vol%	21.00	01.00
	₩ •	▲ ► ENT	

Cursor for setting value <

		Set ca	Moration	value
Cal. Value	!			
CH	RA	NGE	ZER0	SPAN
Ch1	0-10]ppm	+0000.0	0<u>1</u>00. 0
NOx	0-20][ppm	+00000	02000
Ch2	0-10]ppm	+0000.0	0100.0
SO2	0-20][ppm	+00000	02000
Ch3	0-10	vol%	+000.00	010.00
CO2	0-20	vol%	+000.00	020.00
Ch4	0-10]ppm	+0000.0	0100.0
CO	0-20][ppm	+00000	02000
Ch5	0-10	vol%	21.00	01.00
O2	0-25	vol%	21.00	01.00

Concentration Setting

Setting range of value

 $\rm NOx,\,SO_2,\,CO_2,\,CO,\,CH_4,\,external\,O_2$ measurement and built-in paramagnetic $\rm O_2$ sensor

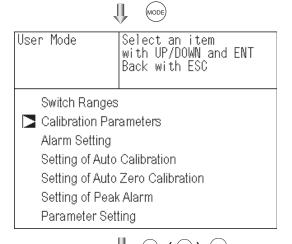
Span gas: 1 to 105% of full scale (Full scale (FS) is the same as each range value.)

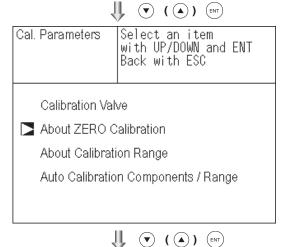
External Zirconia O₂ measurement

Zero gas: 5 to 25 vol% Span gas: 0.01 to 5 vol%

The setting cannot be performed beyond the range.

6.2.2 Setting of manual zero calibration


When zero calibration is made manually, set either all measurement components should be calibrated simultaneously or each component should be calibrated while selecting one by one.


- (1) During measurement, press the key to display the User Mode.
- (2) Point the cursor to "Calibration Parameters" by pressing the ▲ or ▼ key. Press the (ENT) key.

(3) In the "Calibration Parameters" screen that appears, point the cursor to "About ZERO Calibration" by pressing the ▲ or ▼ key. Press the (ENT) key.

(4) In the "Manual ZERO Calibration Ch Selection" screen that appears, point the cursor to Ch (component) you want to set by using the ▲ or ▼ key.

Press the ENT key.

Cal. Setti ZERO Cal.	ngs	Select Ch N	No.	
Ch1 NOx		e1 O-100 e2 O-2000	ppm ppm	at once
Ch2 SO2		e1 O-100 e2 O-2000	ppm ppm	at once
Ch3 CO2		e1 O-10 e2 O-20	vol% vol%	at once
Ch4 CO		e1 O-100 e <u>2 O-2000</u>	ppm ppm	at once
Ch5 O2		e1 O-10 e2 O-25	vol% vol%	each

(5) In the "Manual ZERO Calibration
Selection" screen that appears, select "at once" or "each" by pressing the ▲ or
▼ key. When selecting "at once", the
Ch (components) to be set can be zero-calibrated at the same time.
When selecting "each", either of the Ch (components) to be selected is zero-calibrated.
After setting, press the ENT key.

Cal. Setti ZERO Cal.	ngs	Set each o at ZERO C		
Ch1 NOx		e1 O-100 e2 O-2000	ppm ppm	at once
Ch2 SO2		e1 O-100 e2 O-2000	ppm ppm	at once
Ch3 CO2		e1 O-10 e2 O-20	vol% vol%	at once
Ch4 CO		e1 O-100 e2 O-2000	ppm ppm	at once
Ch5 O2		e1 O-10 e2 O-25	vol% vol%	each

End of Manual Zero Calibration Setting

- To close the setting -

To close the manual zero calibration setting or to cancel this mode midway, press the ESC key.

A previous screen will return.

Example

Whether "each" or "at once" can be determined for each Ch (component).

- Setting "each"
 Select the Ch (component) on the manual zero calibration screen and then perform zero calibration.
- Setting "at once"
 At a manual zero calibration, zero of Ch (components) for which "at once" was selected can simultaneously be calibrated.
- * When the cylinder air or atmospheric air is used for the zero gas, select "at once."

Manual Calibration screen

• When setting all components to "each":

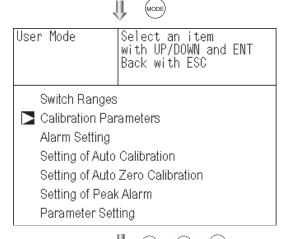
ZERO Cal.	ENT : Go on Calibration of selected Ch ESC : Not calibration
Ch1	▶Range1 0-100 ppm 🔼 -2.1
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm -0.5
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% 0.00
CO2	Range2 0-20 vol%
Ch4	▶Range1 0-100 ppm 0.0
CO	Range2 0-2000 ppm
Ch5	Range1 0-10 vol%
O2	▶Range2 0-25 vol% 21.00

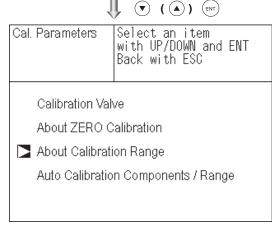
A single cursor will appear.

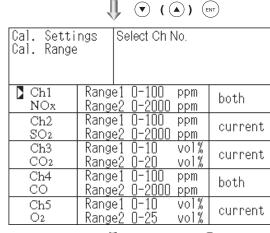
• When setting all components to "at once":

ZERO Cal.	ENT : Go on Calibration
	of selected Ch
	ESC : Not calibration
Ch1	▶Range1 0-100 ppm ▶ 0.0
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm 📘 0.3
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% ▶ 0.00
CO2	Range2 0-20
Ch4	▶Range1 0-100 ppm 📘 -0.1
CO	Range2 0-2000 ppm
Ch5	Range1 0-10 vol% _
O2	▶Range2 0-25 vol% ∑ 21.00

Cursors will appear at all components where "at once" is set.


6.2.3 Setting of calibration range


This mode is used to set if the range of each Ch (component) at the calibration (manual calibration or auto calibration) should be calibrated with a single range or 2 ranges.


- During measurement, press the (MODE) key to display the User Mode.
- (2) Point the cursor to "Calibration Parameters" by pressing the (▲)or (▼) key. Press the (ENT) key.

(3) In the "Calibration Parameters" screen that appears, point the cursor to "About Calibration Range" by pressing the (**\(\)**) or (▼) key. Press the (ENT) key.

(4) In the "Calibration Range Ch Selection" screen that appears, point the cursor to the Ch you want to set by pressing the (▲) or | key. Press the (ENT) key.

- (5) On the "calibration range selection" screen that appears, select "both" or "current" by pressing the ▲ or ▼ key.
 - If "both" is selected, zero or span calibration is performed with Range 1 and Range 2 of the selected Ch interlocked.
 - If "current" is selected, zero or span calibration is performed only for the range displayed when calibration of selected Ch is performed.

Press the (ENT) key after the selection, and the specified calibration is performed.

To close "Setting of Calibration Range" To close "Setting of Calibration Range" or
to cancel this mode midway, press the

(ESC) key. A previous screen will return.

Cal. Settings Cal. Range		Set cali current	bratio or bot	n range h range
Ch1 NOx		e1 O-100 e2 O-2000	ppm ppm	both
Ch2 SO2		e1 O-100 e2 O-2000	ppm ppm	current
Ch3 CO2	Rang	e1 O-10 e2 O-20	vol% vol%	current
Ch4 CO		e1 O-100 e2 O-2000	ppm ppm	both
Ch5 O2		e1 O-10 e2 O-25	vol% vol%	current

End of Calibration Range Setting

Example

Ch1 NOx	Range 1: 0 to 100 ppm Range 2: 0 to 2000 ppm	both
Ch2 SO ₂	Range 1: 0 to 100 ppm Range 2: 0 to 2000 ppm	current

Ch1: Range 1 and Range 2 are calibrated together with zero and span calibration.

Ch2: Only currently displayed range is calibrated with zero and span calibration.

Note

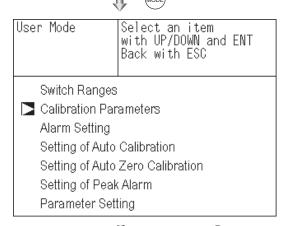
To perform calibration for "both", set the same calibration gas concentration for both ranges.

Manual Calibration screen

When setting NOx and CO to "both"

ZERO Cal.		EΝ	IT : Go o	n calib	rati	on
		of	selected	Ch		
			C : Not c		ion	
		-~	. 1401.0	allorat	1011	
Ch1	▶Rang	e1	0-100	ppm		- 0.6
NOx	Rang	e2	0-2000	ppm		
Ch2			0-100	ppm		0.4
SO2	Rang	e2	0-2000	ppm		
Ch3	▶Rang			vol%		0.00
CO2	Rang	e2	0-20	vol%		
Ch4	▶Rang	e1	0-100	ppm		- 0.1
CO	Rang	e2	0-2000	ppm		
Ch5	Rang	e1	0-10	vol%		
O2	▶Rang	e2	0-25	vol%		21.00

Two cursors will appear in both ranges (Ch1 and Ch4).


6.2.4 Setting of auto calibration component/range

Select the Ch (component) and the range with which auto calibration is to be performed. The Ch for which "AR" has been selected as range switch mode is calibrated in the range set here even when auto calibration is performed.

- (1) During measurement, press the MODE key to display the User Mode.
- (2) Point the cursor to "Calibration Parameters" by pressing the A or key. Press the ENT key.

(3) In the "Calibration Parameters" screen that appears, point the cursor to "Auto Calibration Components / Range" by pressing the or key. Press the

(4) In the "Auto Calibration Components /
Range" selection screen that appears, point the cursor to the Ch you want to set by pressing the ▲ or ▼ key. Press the ENT key.

Cal. Parameters

Select an item
with UP/DOWN and ENT
Back with ESC

Calibration Valve

About ZERO Calibration

About Calibration Range

Auto Calibration Components / Range

▼ (▲) (ENT)

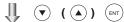
(A) (ENT) Cal. Settings Select Ch No. Auto Cal. ▶Range1 0-100 Range2 0-2000 ▶Range1 0-100 Ch1 ppm enable. NOx ppm Ch2 ppm enable. Range2 0-2000 SO2 ppm Ch3 ▶Range1 0-10 vol% enable. <u>vol%</u> CO2 Range2 0-20 ▶Range1 0-100 Ch4 ppm enable. Range2 0-2000 Range1 0-10 CO ppm vol% vol% Ch5 enable <u>▶Range2</u> 0-25 О2

- (5) The cursor next to the range of the selected Ch (component) is highlighted. Select the range to be calibrated mainly by pressing the ▲ or ▼ key.
- (6) Then press the (ENT) key, and calibration is performed in the selected range.

To close "Auto Calibration Component/range" setting

Auto calibration and the manual calibration of the component with which "AR" has been selected as range switch mode are performed in the range selected here. In this case, once the calibration is started, the range is automatically switched, and on completion of the calibration, the original range is resumed. The range identification contact is interlocked with the range after the switch.

However, if the hold setting is set to "ON," the contact status before calibration is maintained.


- (7) Press the key in the state described in (5), and the highlight is switched between "enable" and "disable" auto calibration.
- (8) Select "enable" of "disable" by pressing the ▲ or ▼ key.
- (9) Then press the $\binom{\text{ENT}}{}$ key.

To close the setting

Press the (ESC) key to exit Auto Calibration components/range setting, and the previous screen appears.

Cal. Setti Auto Cal.	ngs	Select a range fo auto calibration	ŗ
Ch1 NOx	≱ Rang Rang		enable
Ch2 SO2	▶Rang Rang	e1 O-100 ppm	enable
Ch3 CO2	▶Rang Rang	e1 0-10 vol%	enable
Ch4 CO	▶Rang Rang		enable
Ch5 O2	Rang ▶Rang		enable
	End	of Auto Calibratio Range Setting	n
Cal. Setti Auto Cal.	ngs	Set enable or for auto calib	

maso oan.				001116	
Ch1	Range	:1 t	J-1UU	ppm	enab1 e
NOx			<u>0-2000</u>	ppm	енаите
Ch2	Range			ppm	enable
SO2	Range	:2 (<u> </u>	ppm	enabre
Ch3	Range	:1 (0-10	vol%	enable
CO2	Range	:2 (<u> </u>	vol%	enabre
Ch4	Range	:1 (0-100	ppm	enable
CO	Range	:2 (<u> </u>	ppm	ellable
Ch5	Range	:1 (D-10	vol%	enable
O2	Range	2 (D-25	vol%	enable
0.5	Runge	<u>, </u>	7 20	V () 1 /0	

End of Auto Calibration Component Setting

Operation by setting

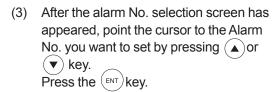
Auto calibration is performed under the following rules.

- 1. Zero calibration is performed at the same time, for the Ch (component) with which "enable" is selected at the time of auto calibration and auto zero calibration.
- 2. Span calibration is performed in the order from smallest Ch No., for the Ch (component) with which "enable" is selected at the time of auto calibration.

Note

ZERO calibration on auto calibration and auto zero calibration of the component with which "enable" is selected are performed in batch irrespective of the description in "6.2.2 Setting of manual zero calibration."

6.3 Alarm setting

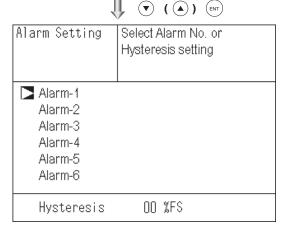

6.3.1 Setting of alarm values

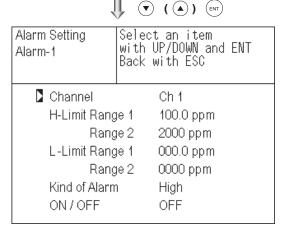
The High/Low limit alarm output setting for the measured concentration and power off alarm (alarm 6 only) setting can be made during measurement. Arbitrary 6 alarm contact outputs can be used.

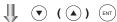
To change alarm setting, set the alarm ON/OFF setting to OFF, and then change the value.

- (1) During measurement, press the (MODE) key to display the User Mode.
- (2) Point the cursor to "Alarm Setting" by pressing the ♠ or ▼ key.

 Press the ♠ v. key.



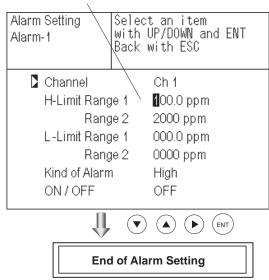

(4) After the alarm item selection screen has appeared, operate the ▲ or ▼ key until the cursor is aligned with a desired item and press the (ENT) key.


Note -

Set the values so that H-limit value > L-limit value and that (H-limit value-L-limit value) > hysteresis.

(5) After setting, the alarm setting is now completed by pressing the (ENT) key.

To close the "Alarm Setting"


To close the "Alarm Setting" or to cancel this mode midway, press the (ESC) key.

A previous screen will return.

Setting range

0% to 100% FS (Settable in each range).

Cursor for setting value

Description of setting items

The alarm contact assigned the same number as the alarm is operated accordingly.

Channel: Channel setting targeted for issuance of alarm (Power off alarm can be selected

for alarm 6.) One Ch No. can be selected for multiple alarms.

H-Limit value: Sets the high limit value (concentration) of alarm.

L-Limit value: Sets the low limit value (concentration) of alarm.

Kind of Alarm: Selects one of High limit alarm, Low limit alarm, and High limit or Low limit alarm,

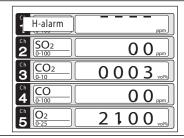
HH limit alarm, and LL limit alarm.

High, HH ... Alarm contact closes when above H-limit alarm. Low, LL ... Alarm contact closes when below L-limit alarm.

High or Low ... Alarm contact closes when above H-limit value or below lower limit

value.

If "Power" is selected for Channel, the contact is closed at all times while the power is on irrespective of the setting made here. (Alarm-6 only)


ON/OFF: Enables the alarm function if set at ON, or disables the alarm function if set at OFF.

•The H-limit value cannot be set below the L-limit value, and the L-limit value cannot be set above the H-limit value. If it is desired to set the H-limit value below the L-limit value already stored in the memory, reduce the L-limit value beforehand, and vice versa.

Typical on-screen display when an alarm occurs

When an H-limit alarm occurs, the "H-alarm" message comes on in the field of relevant Ch (component).

("L-alarm" for L-limit alarm, "HH-alarm" for HH-limit alarm, and "LL-alarm" for LL-limit alarm)

Note

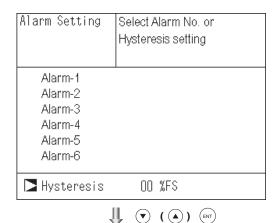
For 10 minutes after turning on power, the alarm judgment is inactive.

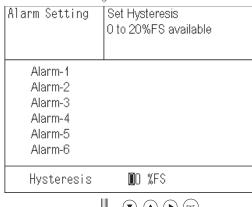
6.3.2 Hysteresis setting

To prevent chattering of an alarm output near the alarm setting values, set the value of hysteresis.

- (1) In the "Alarm No. Selection" screen that appears, point the cursor to "Hysteresis" by pressing the ♠ or ▼ key. Press the (ENT) key.

To close the "Hysteresis Setting"

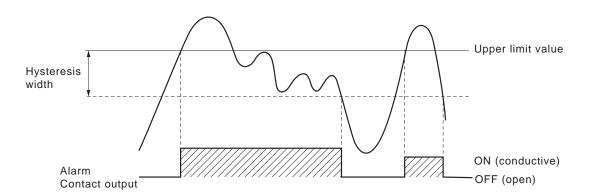

To close the "Hysteresis Setting" or to cancel the mode midway, press the (ESC) key.


A previous screen will return.

Setting range

0 to 20% of full scale

[% full scale (FS)] represents the percentage with the width of the range of each component regarded as 100 %.


End of Hysteresis Setting

Note

The hysteresis is common to all alarms (components).

Hysteresis (In case of upper limit alarm)

An alarm output is turned ON if measurement value exceeds the upper limit value as shown below. Once the alarm output has been turned ON, it is not turned OFF as long as the indication does not fall below the hysteresis width from the upper limit value.

6.4 Setting of auto calibration

6.4.1 Auto calibration

Auto calibration is automatically carried out at the time when zero calibration and span calibration are set.

Before changing the setting of auto calibration, set the ON/OFF to OFF.

- (1) During measurement, press the (MODE) key to display the User Mode.
- (2) Point the cursor to "Setting of Auto Calibration" by pressing the ♠ or ♥ key. Press the (ENT) key.

- (3) In the "Setting of Auto Calibration" screen that appears, point the cursor to any item you want to set by pressing the ▲ or ▼ key. Press the (ENT) key.
- (4) In the "Auto Calibration Parameter Setting" screen that appears, perform the value entry or the setting. For the value entry or setting change, use the 🛕 or
 - key. To change the setting, use thekey to move the cursor to the right.

After setting, press the (ENT) key, and setting of auto calibration is carried out .

Description of setting items

• Start Time : Setting at the first calibration

(day of the week, hour, minute)

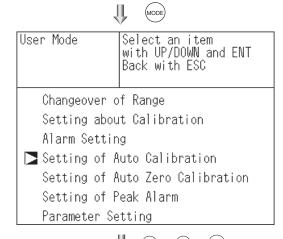
• Cycle : A period between the start time of

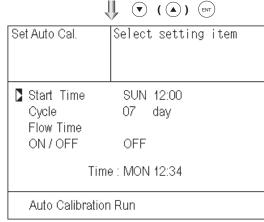
one calibration and another

(unit: hour/day)

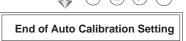
• Flow Time : The time required for replacement

by calibration gas


Time required for replacement of sample gas after the calibration is completed (Set by calibration gas.

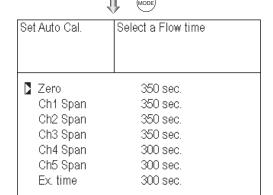

See the next page.)

• ON/OFF: ON/OFF of auto calibration


To close "Setting of Auto calibration"

To close the "Setting of Auto calibration" or cancel this mode midway, press the key. A previous screen will return.

<Gas flow time> setting


(1) Press the ENT key in a state where the cursor is placed next to "Flow Time," and the flow time setting screen shown at right appears.

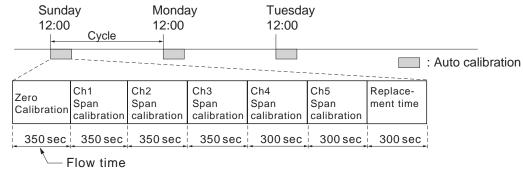
(2) On the flow time setting screen that appears, move the cursor to the gas you want to change the setting by pressing the ▲ or ▼ the key, and then press the (ENT) key.

- (3) The highlighted value can be changed.
 Change the value by pressing the ▲ or
 ▼ key, and then move the cursor to the right by pressing the ♠ key.
- (4) After changing the value, press the $\binom{\text{ENT}}{}$ key.
- (5) Press the (ESC) key to return to the automatic calibration setting screen.

Note) Only the Chs used are displayed on this screen.
The Ex. time is the output signal hold extension time after the completion of calibration.
It is valid only when the hold setting is set to "ON."
The Ex. time set here is also the hold extension time at the time of manual calibration.

Set Auto Cal.	Select setting item			
Start Time Cycle Start Time ON/OFF	SUN 12:00 07 day OFF			
Time : MON 12:34				
Auto Calibration Run				

	(A) (ENT)
Set Auto Cal.	Set flow time of calibration gas 60 to 900 sec
Zero Ch1 Span Ch2 Span Ch3 Span Ch4 Span Ch5 Span Ex time	3 50 sec. 350 sec. 350 sec. 350 sec. 300 sec. 300 sec.
EX. timo	000 000.


End of Gas Flow Time Setting

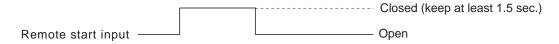
Auto calibration status contact output is closed during auto calibration (including Ex. time), and is open in other cases.

Start Time	SUN	12:00
Cycle	1	day
Flow Time	Zero Ch1 Span Ch2 Span Ch3 Span Ch4 Span Ch5 Span EX. time	350 sec 350 sec 350 sec 350 sec 300 sec 300 sec 300 sec
ON/OFF	ON	

In case where auto calibration is carried out at the above setting.

(An example of "Ch1: through Ch5: enable", as given in Item 6.2.4 "Auto Calibration Components/range")

Setting range


Cycle: 1 to 99 hours or 1 to 40 days (initial value 7 days)
Flow time: 60 to 900 sec (initial value 300 sec)

Caution

- When an auto calibration starts, the measurement screen automatically appears.
- Any key operation other than key lock ON/OFF and "Stop Auto Calibration" (see Item 6.4.2) is not permitted during auto calibration. "Stop Auto Calibration" cannot be performed with the key lock to ON. To cancel auto calibration forcedly, set the key lock to OFF and then execute "Stop Auto Calibration".
- Turn on the power again after it is turned off (including the case of power failure) at the time set as the next start time in auto calibration, and then repeat it in the set cycle.

Remote start

Whether the auto calibration is set at ON or OFF, an auto calibration is available by keeping the remote start input closed for at least 1.5 seconds.

6.4.2 Forced run/stop of auto calibration

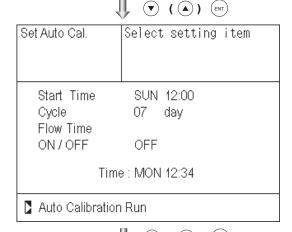
Auto calibration can be performed just once or forcibly stopped while the calibration is performed.

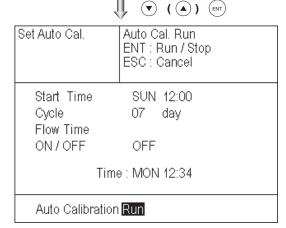
6.4.2.1 Execution of auto calibration (only once)

(1) Display the User Mode screen. Move the cursor to "Setting of Auto Calibration" by pressing the ▲ or the ▼ key, and then press the (ENT) key.

(2) In the "Setting of Auto Calibration" item selection screen that appears, point the cursor to "Auto Calibration Run" by pressing the ▲ or ▼ key.

Press the (ENT) key.


(3) "Run" is highlighted, displaying a message to confirm the execution of auto calibration. Press the key to execute the auto calibration forcibly, and press the key to cancel.


User Mode

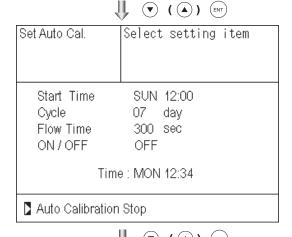
Select an item
with UP/DOWN and ENT
Back with ESC

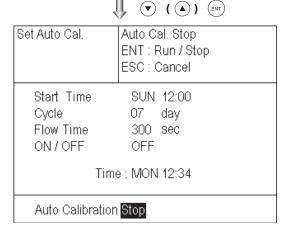
Changeover of Range
Setting about Calibration
Alarm Setting

Setting of Auto Calibration
Setting of Auto Zero Calibration
Setting of Peak Alarm
Parameter Setting

6.4.2.2 Forced stop of auto calibration

This mode is used to stop the auto calibration forcedly.


(1) In the User Mode that is displayed, point the cursor to "Setting of Auto Calibration" by pressing the ▲ or ▼ key. Press the (ENT) key.


(2) In the "Setting of Auto Calibration" item selection screen that appears, point the cursor to "Auto Calibration Stop" by pressing the ▲ or ▼ key. Press the key.

("Auto Calibration Stop" appears when the screen is selected while auto calibration is performed.)

(3) "Stop" is highlighted, displaying a message to confirm the stop of auto calibration. Press the (ENT) key to stop the auto calibration forcibly, and press the (ESC) key to cancel (not stopped).

User Mode Select an item with UP/DOWN and ENT Back with ESC
Changeover of Range Setting about Calibration Alarm Setting Setting of Auto Calibration Setting of Auto Zero Calibration Setting of Peak Alarm Parameter Setting

- "Auto Calibration" screen -

Example

In case where setting the auto calibration components (see Item 6.2.4) to "Ch1: enable" and "Ch2: enable"

Zero calibration

A message, "ZERO cal." blinks at Ch1 and Ch2.

ZERO cal.	0.5
ZERO cal.	0.3
Ch CO ₂ 0-10	0.0 0 0 vol%
Ch CO 4 0-100	0.0 ppm
5 O ₂ O ₋₂₅	2 1.0 2 vol%

• Ch1 span calibration

A message, "SPAN cal." blinks at Ch1.

SPAN cal.	9 0.8
2 SO ₂ 0-100	0.0 _{ppm}
CO ₂ 0-10	0.0 0 vol%
CO 0-100	0.0 ppm
5 O ₂ O ₋₂₅	0.0 0 vol%

• Ch2 span calibration

A message, "SPAN cal." blinks at Ch2.

1 NOx 0-100	0.0
SPAN cal.	9 5.0 ppm
CO ₂ 0-10	0.0 0 vol%
4 CO 0-100	0.0 ppm
5 O ₂	0.00

Caution

During auto calibration, any key operation is not permitted other than operations such as key lock ON/OFF and "Stop Auto Calibration."

When the key lock is set at ON, even the "Auto Calibration Stop" cannot be used.

To stop "Auto Calibration" forcedly, set the key lock to OFF and then execute "Auto Calibration Stop."

6.5 Setting of auto zero calibration

6.5.1 Auto zero calibration

Auto zero calibration is automatically carried out at the time when zero calibration is set. Components for which a calibration is to be made are determined by setting of auto calibration component in Item 6.2.4.

Before changing the setting of auto zero calibration, set the ON/OFF to OFF.

- (1) During measurement, press the key to display the User Mode.
- (2) Point the cursor to "Setting of Auto Zero Calibration" by pressing the ▲ or ▼ key. Press the (ENT) key.
- (3) In the "Setting of Auto Zero Calibration" screen that appears, point the cursor to any item you want to set by pressing the ▲ or ▼ key. Press the (ENT) key.
- (4) In the "Auto Zero Calibration Parameter Setting" screen that appears, perform the value entry or the setting. For the value entry or setting change, use the ♠ or ★ key. To change the setting, use the ★ key to move the cursor to the right. After setting, press the ★ key, and auto zero calibration is carried out by the entered setting value.

Description of setting items

• Start Time : Setting at the first calibration

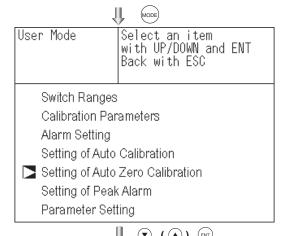
(day of the week, hour, minute)

• Cycle : A period between the start time of

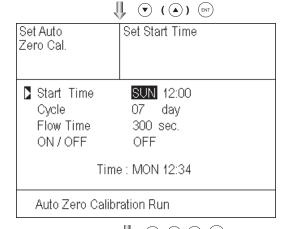
one calibration and another

(unit: hour/day)

• Flow Time : The time required for the


calibration gas to be replaced in

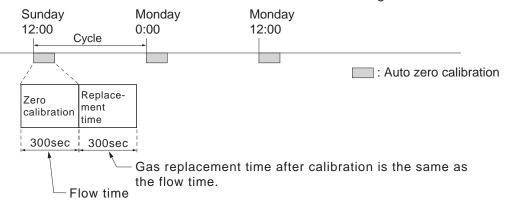
the cell


ON/OFF: ON/OFF of auto zero calibration

To close "Setting of Auto Zero calibration"

To close the "Setting of Auto Zero calibration" or cancel this mode midway, press the (ESC) key. A previous screen will return.

4	(A) (ENT)
Set Auto Zero Cal.	Select setting item
Start Time Cycle Flow Time ON / OFF	SUN 12:00 07 day 300 sec. OFF
Time	e : MON 12:34
Auto Zero Calibration Run	


End of Auto Zero Calibration Setting

Auto calibration status contact output is closed during auto zero calibration, and is open in other cases.

Example

Start Time	SUN	12:00
Cycle	12	hour
Flow Time	300	sec
ON/OFF	ON	

In case where auto zero calibration is carried out at the above setting.

(An example of "Ch1: through Ch5: enable", as given in Item 6.2.4 "Auto Calibration Components/range")

Setting range

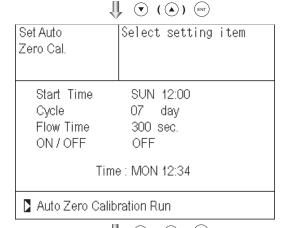
Cycle: 1 to 99 hours or 1 to 40 days (initial value 7 days)
Flow time: 60 to 900 sec (initial value 300 sec)

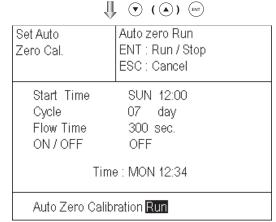
Caution

- When an auto zero calibration starts, the measurement screen automatically appears.
- Any key operation other than key lock ON/OFF and "Stop Auto Zero Calibration" (see Item 6.5.2) is not permitted during auto zero calibration. "Stop Auto Zero Calibration" cannot be performed with the key lock to ON. To cancel auto zero calibration forcedly, set the key lock to OFF and then execute "Stop Auto Zero Calibration."
- If the auto calibration period and auto zero calibration period have overlapped, the auto calibration is retained, ignoring the auto zero calibration of that period.
- When the hold setting is set to ON, the hold time of auto calibration contact and measurement value output signal is extended after calibration for gas replacement time.
- Turn on the power again after it is turned off (including the case of power failure) at the time set as the next start time in auto zero calibration, and then repeat it in the set cycle.

6.5.2 Forced run/stop of auto zero calibration

Auto zero calibration can be performed just once, or auto zero calibration can be forcibly stopped during calibration.


6.5.2.1 Execution of auto zero calibration (just once)


(1) Move the cursor to "Setting of Auto Zero Calibration" by pressing the ▲ or ▼ key on the User Mode screen, and then press the (ENT) key.

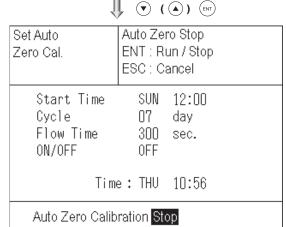
(2) In the "Setting of Auto Zero Calibration" item selection screen that appears, point the cursor to "Auto Zero Calibration Run" by pressing the ▲ or ▼ key. Press the (ENT) key.

(3) "Run" is highlighted, displaying a message to confirm execution of auto zero calibration. Press the (ENT) key to execute the calibration forcibly, and press the (ESC) key to cancel.

User Mode	Select an item with UP/DOWN and ENT Back with ESC
Switch Ranges Calibration Par Alarm Setting Setting of Auto Setting of Auto Setting of Peak Parameter Set	ameters Calibration Zero Calibration : Alarm

6.5.2.2 Forced stop of auto zero calibration

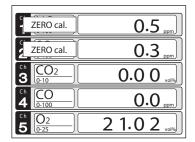
This mode is used to cancel the auto zero calibration forcedly.


(1) In the User Mode that is displayed, point the cursor to "Setting of Auto Zero Calibration" by pressing the ▲ or ▼ key. Press the (ENT) key.

- (2) In the "Setting of Auto Zero Calibration" item selection screen that appears, point the cursor to "Auto Zero Calibration Stop" by pressing the ▲ or ▼ key. Press the ENT key.

 ("Auto Zero Calibration Stop" appears when the screen is selected while auto zero calibration is performed.)
- (3) "Stop" is inverted. A message appears, prompting you to verify that you want to stop auto zero calibration. Press the key to stop the auto zero calibration forcibly, and the key to cancel (not stopped).

User Mode	Select an item with UP/DOWN and ENT Back with ESC
Switch Ranges	
Calibration Parameters	
Alarm Setting	
Setting of Auto Calibration	
Setting of Auto Zero Calibration	
Setting of Peak Alarm	
Parameter Setting	


"Auto Zero Calibration" screen

Example

In case where setting the auto calibration components (see Item 6.2.4) to "Ch1: enable" and "Ch2: enable"

Zero calibration

A message, "ZERO cal." blinks at Ch1 and Ch2.

Caution

During auto zero calibration, any key operation is not permitted other than operations such as key lock ON/OFF and "Stop Auto Zero Calibration."

When the key lock is set at ON, even the "Stop Auto Zero Calibration" cannot be used.

To stop "auto zero calibration" forcedly, set the key lock to OFF and then execute "Auto Zero Calibration Stop."

6.6 Peak alarm setting

When the peak number of times CO concentration exceeds the upper limit value during measurement exceeds the set number, an alarm is provided.

The peak alarm and this setting screen appear only when an option is added.

- (1) Press the Mode key in the Measurement mode, and the User mode appears.
- (2) Point the cursor to "Setting of Peak Alarm" by pressing the ▲ or ▼ key. Press the (ENT) key.

- (3) In the "Peak Alarm Setting" item selection screen that appears, point the cursor to any item you want to set by pressing the ▲ or ▼ key. Press the (ENT) key.
- (4) Then, enter numeric values and perform the setting.

Entering the numeric values or setting the items should be carried out by using the
vertex or v

After setting, press the (ENT) key, and the set values are saved.

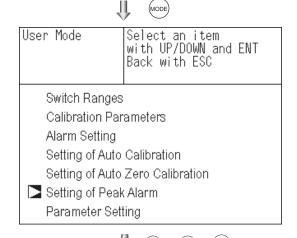
Description of setting items

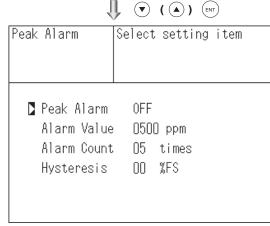
• Peak Alarm : ON/OFF of peak alarm

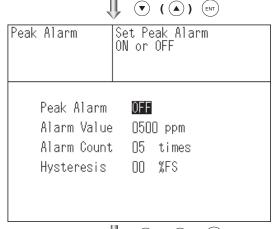
Alarm Value : If measuring value exceeds the

set alarm value, a peak counter

counts 1 time.


Alarm Count: When a peak in excess of the

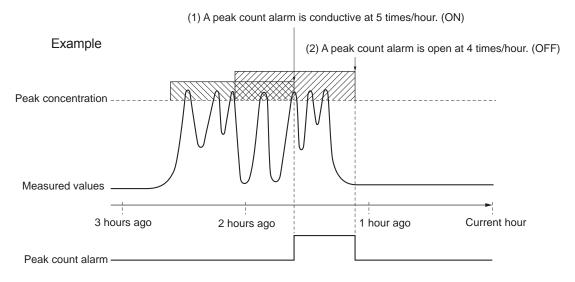

setting time occurs, a peak count


alarm output is provided.

Hysteresis: To prevent possible chattering

when the measuring value may exceed the set peak concentration by only 1 time, the peak count has an allowance in the hysteresis width.

Setting range


• Alarm value : 10 to 1000 ppm → 5 ppm step (initial value: 500 ppm)

• Alarm count : 1 to 99 times → (initial value: 5 times)

• Hysteresis : 0 to 20% of full scale → (initial value: 0% of full scale)

[% full scale] represents the percentage with the CO range regarded as 100%.

Action of peak alarm

If CO concentration exceeds the alarm value, counting will begin. If the number of peaks is over the set times per hour, a peak alarm contact output becomes closed (ON). If it is less than the set times per hour, it is open (OFF). Since 5 times of peaks /hour is marked at (1) section from the above graph, the peak count alarm is turned ON. Since peaks of more than 5 times per 1 hour occur at the interval between (1) and (2) , the peak count alarm remains ON. Since at (2), peaks are reduced to 4 times per hour, it is turned OFF.

Like the hysteresis of the alarm setting , the hysteresis prevents possible chattering when measured gas is fluctuated near the alarm value.

Releasing peak count alarm

To release the peak count alarm, set the peak alarm to OFF.

Turning on the peak alarm initiates counting from 0.

^{*} For 10 minutes after the power is turned ON, a peak alarm counting is not carried out.

6.7 Parameter setting

It allows you to carry out the parameter setting such as time, key lock, etc., as required. Items to be set are as follows:

Description of setting items

Current Time: Current year, month, date, day of the week, hour, and minute setting

(The display appears in this order.)

Note: The clock backup time is 2 days. If power is turned on after it is kept off for 2 days or longer,

make the time setting again.

• Key Lock : Sets with ON/OFF so that any key operation except the key lock OFF

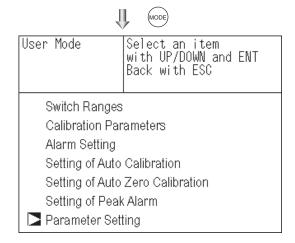
cannot be performed.

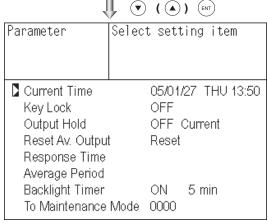
• Output Hold: Sets whether Calibration Output is held or not, and the holding value setting.

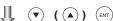
Reset Av. Output: Resets the average value.

• Response time : Sets the response time of electrical system.

• Average Period : Sets the moving average time.


Backlight Timer: Sets automatic OFF of the backlight of display unit and the time until


backlight out.


• Maintenance mode: Enters passwords to switch to the Maintenance mode.

- (1) To display the User mode, press the key in the measurement mode.
- (2) Point the cursor to "Parameter Setting" by pressing the ♠ or ▼ key. Press the ♠ key.

(3) In the "Parameter Setting" screen that appears, point the cursor to any item you want to set by pressing the ▲ or ▼ key. Press the (ENT) key.

^{*} For the maintenance mode, see Item 6.8.

(4). In the Parameter Setting screen that appears, enter the numeric values and set the items. Entering the numeric values or setting the items should be carried out by using the ▲ or ▼ key. To move the cursor to the right, press the ▶ key. After setting, press the ♠ key, that the parameter setting is carried out with the value you set.

To close Parameter Setting screen

To close the "Parameter Setting" screen or cancel this mode midway, press the (ESC) key.

A previous screen will return.

Parameter Set	day of week
Current Time	05/01/27 THU 13:50
Key Lock	OFF
Output Hold	OFF Current
Reset Av. Output	Reset
Response Time	
Average Period	
Backlight Timer	ON 5 min
To Maintenance Mode	9 0000
	▼

End of Parameter Setting

Setting Range

Hold setting: 0 to 100% FS

• Response time : 1 to 60 sec. (initial value: 15 sec)

• Average period : 1 to 59 min or 1 to 4 hours (initial value: 1 hour)

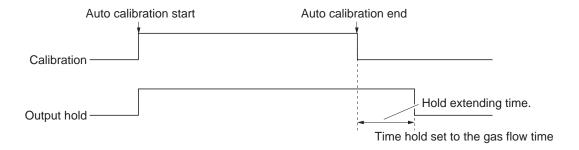
When setting the unit of 1 to 59 minutes is terms of minute or 1 to 4 hours

with hour

• Backlight Timer: 1 to 60 min (initial value: OFF)

• Maintenance mode: 0000 to 9999 (initial value: 0000)

Output Hold


By setting an output hold to ON, an output signal of each channel are held during the calibration (manual calibration and auto calibration) and for the gas flow time (refer to Item 6.4, Setting of Auto Calibration). Regardless of Hold ON/OFF setting, an output signal can be held via an external input.

(1) Manual calibration

Time set to gas flow time (See Item 6.4 Auto Calibration.)

(2) Auto calibration

(3) External hold

(4) Screen display during Holding

The "on Hold" message blinks on the measuring screen.

Since the screen displays the process of calibration is displayed during the manual calibration, "on Hold" is not displayed even if the output signal is held, but the screen is displayed with the hold extending time.

(5) If calibration is cancelled after the calibration gas is supplied regardless of during manual calibration or auto calibration, the holding extending time will be performed.

(6) You can select the value for hold from the value immediately before entering output hold, "current," and arbitrary value, "setting."

Follow the procedures shown below to make the setting.

1) Press the (ENT) key in a state where the cursor is placed next to Hold.

Parameter :	Select setting item
Current Time Key Lock	05/01/27 THU 13:50 OFF
Output Hold	ON Current
Reset Av. Output Response Time	Reset
Average Period Display OFF To Maintenance N	ON 5 min Mode 0000

2) "ON" or "OFF" is highlighted. Press the

▲ or the ▼ key to select ON or OFF.

Press the _{ENT} key to return to (1).

Parameter	Select	Hold (o MC	r OFF	
Current Time		05/0	1/27	THU	13:50
Key Lock		OFF			
Output Hold		ON	Cur	rent	
Reset Av. Output		Rese	t		
Response Time					
Average Period					
Display OFF		ON	5	min	
To Maintenance	Mode	0000	Ü		

I (ENT)

3) Press the key in a state ON/OFF is highlighted, and "Current" or "Setting" is highlighted. Select "Current" or "Setting" by pressing the or the key.

4) Press the FNT key while "Current" is selected to return to (1). Press the FNT key while "Setting" is selected to go to the setting entering screen.

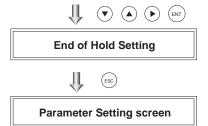
"Current": Holds the value immediately before the hold.

"Setting": Holds the value arbitrarily set.

Û		(()	(ENT	
Parameter :	Select	Hold set	ttin	g	
Current Time		05/01/2	27	THU	13:50
Key Lock		OFF			
Output Hold		ON	Se	etting	
Reset Av. Output		Reset	Т		
Response Time					
Average Period					
Display OFF		ON	5	min	
To Maintenance N	Vlode	0000			
)			

5) On the parameter hold screen that appears, move the cursor next to the Ch (component) you want to make the setting by pressing the ▲ or the ▼ key, and then press the (ENT) key.

- Select Ch No. Parameter | Hold Ch1 NOx 010 %FS Ch2 SO2 020 %FS Ch3 %FS CO₂ 015 Ch4 CO 012 %FS Ch5 022 %FS О2 | (A) (FNT)
- 6) The value is highlighted, indicating that the value can be changed. Change the value by pressing the ▲ or the ▼ key, and then move the cursor to the right by pressing the ▶ key.
- 7) After the value is changed, press the key.


Meaning of setting -

The setting is expressed in % against the range for both ranges.

When 0 to 1000 ppm is selected as the range, for example, if 10% FS is selected as hold setting, the output equivalent to 100 ppm is output and held irrespective of the measurement value at that time.

8) Press the (ESC) key to return to the parameter setting screen.

	4	, •	(A) ENI	
Parameter		Set Hold	value	
Hold		0 to 100°	%FS	
Ch1	NOx	0 10	%FS	
Ch2	SO2	020	%FS	
Ch3	CO2	015	%FS	
Ch4	CO	012	%FS	
Ch5	O2	022	%FS	

Description of setting

- Instantaneous value display of the measurement cannot be held. (Output only can be held.)
- If set value is selected for hold, instantaneous O₂ correction value is calculated and held based on the set value.
- Range identification contact output cannot be switched even if the range is switched during the hold.

Average value reset

This mode is used to clear all average values O_2 correction average and O_2 average, and restarts averaging. All average values are reset at a time. The indication value and output value is 0 ppm, vol% or so at the time of the reset input (Refer to the average period).

So long as close, resetting lasts.

At the edge of changing from closing to opening, the average action restarts.

Response time

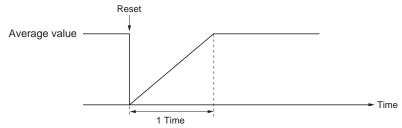
The response time of the electrical system can be changed.

Setting is available by components.

Note) It does not provide exact seconds for the setting time, but it gives a guide of the setting time. The setting value can be modified as requested by the customer.

Parameter		Select C	h No.	
Response	Time			
▶ Ch1	NOx	10	sec.	
Ch2	SO2	20	sec.	
Ch3	CO2	15	sec.	
Ch4	CO	12	Sec.	
Ch5	O2	22	Sec.	

Average period


It allows you to set an average period of the average value of O_2 correction and O_2 average. It enables you to set an average time of 1 to 59 minutes (1-minute step) or 1 to 4 hours (1-hour step).

Changing the setting resets the average value of O_2 correction and O_2 average value. (Pressing the validates the resetting only for components whose setting was changed.)

Parameter Average Period	Select Ch No.
Ch10 % S	NOx 01 hour 302 01 hour 302 01 hour 302 01 hour

Example of average action

In case the average period was set to 1 hour.

- Sampling occurs every 30 seconds.
- Every 30 seconds, the average for last 1 hour (time setting) is output.
- At the instant of resetting, zero is assumed for all past values. It means that the average value will not be correct for 1 hour after resetting.

Backlight Timer

Automatic OFF setting of the backlight of the LCD unit can be made.

When the specified time elapses from when the measurement screen is resumed, the backlight is automatically turned off. Press any key to reset backlight OFF.

Only when ON is selected, the time until auto OFF is displayed. Press the key in this state, and the time setting can be changed by pressing the or the key.

Press the key to confirm the selection.

If OFF is selected, the backlight is not turned off.

Parameter	Select	ON or t	OFF	=	
Current Time		05/01/	27	THU	13:50
Key Lock		OFF			
Output Hold		ON	Pr	evious	s value
Reset Av. Outpu	t	Reset			
Response Time					
Average Period					
Backlight Timer		ON	5	min	
To Maintenance	Mode	0000			

Maintenance mode

Enter the password and then press the (ENT) key to enter the maintenance mode. The password can be set by the password setting in maintenance mode. Default password setting at the time of delivery from the factory is "0000." You can enter the maintenance mode with the value before it is changed.

Maintenance mode 6.8

This mode is used for check of sensor input values, display of error log files or setting of passwords, etc. First, enter a password and then use it from the next operation. This mode is displayed by selecting the Maintenance Mode from "Item 6.7 Parameter Setting".

- Select the Maintenance mode from the Parameter Setting screen to display the Password Setting screen.
- (2) Enter the password, and the Maintenance Mode item selection screen will be displayed. Point the cursor to the item you want to set by pressing the (▲) or (▼) key and press the (ENT) key.
- Next, each Maintenance screen is displayed.
- Note) "To Factory Mode" is used for our service engineers only. Refrain from using this mode.
- Press the (ESC) key to return to the Maintenance Mode item selection screen from each screen.

Description of Sensor Input Value screen

- NOx M: NOx sensor input value
- NOx C: NOx interference compensation sensor input value
- SO, M: SO, sensor input value
- SO, C: SO, interference compensation sensor input value
- CO₂ M: CO₂ sensor input value
- CO₂ C: CO₂ interference compensation sensor input value
- CO M: CO sensor input value
- CO C: CO interference compensation sensor input value
- Temperature: temperature sensor input value
- : O₂ sensor input value

Error Log screen

Description of Error Log screen

Error history. Fourteen newest errors are logged. For error number, date and time (year, month, day, period) of occurrence, channel and other details of error, refer to Item 8.1 Error message. Select Clear Error Log and press the (ENT) key, and the error log is cleared completely.

Main1 Mode	tenance Select operating item			
	Sensor Input Value			
	Error Log			
3.	Cal. Log			
4.	Optical Adjustment			
Interference Compensation Adj.				
6.	6. Output Adj.			
7.	Other Parameter			
8	To Eactory Mode			

1	•	(()	ENT
Each "Main	itenai	nce" scr	een

Maintenan Sensor In	ice iput				
sensor	r inp	ut		sensor	input
NOx	M 6	648)2	20785
	C 4	199	7	TEMP	15785
SO ₂	M 15	518			
	C 4	125			
CO2	M 11	[20]			
	C	80			
CO	M	39			
	C	80			

Maintenan	ce	ENT	: Clea	r Error	Log	
Mode		ESC	: Back			
Error Log						
Error No.	Υ	M	D	Н	M	Ch
No. 4	04	2	11	18	10	5
No. 1	04	1	10	12	2	1
No. 6	03	12	1	10	10	2
No. 9	03	12	1	10	10	2
No. 5	03	12	1	0	0	2
No. 9	03	12	1	0	0	2
Next page						Page 1
Class	Error	Loa				

Calibration Log screen

Description of Calibration Log screen

Past calibration history.

Sensor input value, concentration value, and the date when zero/span calibration is performed are logged. The 10 newest calibration data is logged by each component.

Move the cursor to Clear Calibration Log and press the $\binom{\text{ENT}}{}$ key, and the calibration log is cleared completely.

Z1: Zero calibration (Z) of Range 1

S1: Span calibration (S) of Range 1

M: Value of measuring detector at the time of calibration

C: Value of the interference compensation detector at the time of calibration

Con: Concentration value displayed before calibration

Maintenance Cal. Log		Select Ch No.
Ch1 Ch2 Ch3 Ch4 Ch5	NOx SO2 CO2 CO	
Clear I	Error	Log

		ENT)	
Mainte				
Cal. Lo	-			
Ch1 N	UX			
R	М	С	Con	YDHM
Z1	00023	00045	-0.2	12111810
S1	05439	01254	189.5	12111810

Caution

If the following operation is maladjusted, the measurement may be adversely and excessively affected. Carry out the operation with utmost attention.

Optical adjustment screen

For details of this item, refer to "Item 7.3.3 Optical zero adjustment method".

Press (ENT) key and turn ON the solenoid valve signal for each calibration gas by using the (▲) or (▼) key.

Mainten Optical	ance Adj.	ENT	: Selecta	ble flow gas	
1-1	9		2-1	24	
	٥			1	
1-2	21		2-2	40	
1 2	27		2 2	80	
☐ GAS Sample					

• Moisture interference adjustment screen

For details of this item, refer to "Item 7.3.4 Moisture interference adjustment method."

Description of moisture interference adjustment screen

In values on the left side of screen, the moisture interference for each component is already offset. The figures at right are interference compensation coefficients.

Move the cursor to a desired Ch (component) by pressing the ▲ or the ▼ key, and then press the ENT key, and the selected value at right is highlighted.

Check that the gas for moisture interference compensation is flowing, change the moisture interference compensation coefficient using the ▲ or the ▼ key, adjust the value at left so that it becomes near zero, and then press the ⟨ENT⟩ key to log moisture interference compensation value.

Caution

Since an interference compensation detector is not provided if the 1st range is beyond 0 to 10 vol%, no interference adjustment can be performed (no need).

Maintenance		Select Ch No. with UP / DOWN and ENT Back with ESC		
▶ Ch1	NOx		10	1.252
Ch2	SO2		-33	0.983
Ch3	CO2		13	0.000
Ch4	CO		20	1.922
ALL				
Valve ()FF			

1	lacksquare	lack	lacksquare	ENT

Maintenance		Adjust with UP / DOWN ENT : Memorized ESC : Back		
Ch1	NOx		0	1.263
Ch2	SO2		-33	0.983
Ch3	CO2		13	0.000
Ch4	CO		20	1.922
ALL				
Valve (DFF			

Output adjustment screen

Description of output adjustment screen

Analog output adjustment screen.

Connect the digital multi meter to the output terminal corresponding to the number of OUT to be adjusted, and adjust the value so that 4 mA or 0 V is output at zero and 20 mA or 1 V is output at span.

Move the cursor using the , , , or the key to the output (OUT No. and zero/ span) to be adjusted, and then press the selected value is highlighted.

Adjust the value, while watching the output, by pressing the or the key.

Press the key to select the next digit.

On completion of the adjustment, press the central key.

Mainter Mode Output				st OUTP O and Si		
OUT	Zero	S	pan	OUT	Zero	Span
1	1245	11	1845	7	01900	12500
2	01245	11845		8	01900	12500
3	01245	11	1845	9	01900	12500
4	01245	11	1845	10	01900	12500
5	01245	11845		11	01900	12500
6	01245	1	1845	12	01900	12500

Maintenance Mode Output Adj.			Zero	/ Span a	adjustme	nt
OUT	Zero	S	pan	OUT	Zero	Span
1	01245	11845		7	01900	12500
2	01245	11845		8	01900	12500
3	01245	11	1845	9	01900	12500
4	01245	11	1845	10	01900	12500
5	01245	11	1845	11	01900	12500
ก	01245	11	1845	12	01900	12500

Other parameter

Description of each setting screen

Password Set: Set the password used to move

from the parameter setting screen

to the maintenance mode. Arbitrary 4-digit number can be

selected.

O₂ ref. Value: Set the oxygen concentration

reference value at the time of oxygen correction calculation. Settable in the range from 00 to

19% (default 4%).

Limit: Set the oxygen concentration limit

at the time of oxygen correction calculation. Settable in the range from 01 to 20% (default 17%).

* Refer to the O₂ correction concentration value in "5.3 Outline of display screen" for oxygen correction calculation procedure.

Station No.: Set the station No. for MODBUS

communication. Settable in the

range from 00 to 32.

Range setting: Moves to the screen on which

measuring range is changed.

Press the
or the
key to move the cursor to the item whose setting is to be changed.

The values for password, oxygen correction, limit, and station No. are highlighted.

Press the
or the
key to change the value to desired one, and then press the

ENT) key.

Note: Pay attention not to forget the password.

Otherwise you cannot enter the maintenance mode.

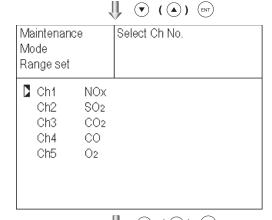
Maintenance Mode setting	Select an item
Password Set O2 ref. Value Station No.01 Range setting	2 465 4% O2 limit 17% O2

<How to set/change the range>

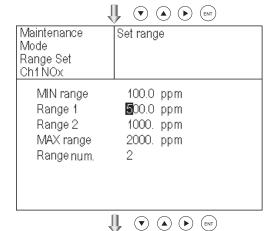
The measuring range can be arbitrarily selected in the minimum and the maximum range specified at the time of purchase. The range to be used can be selected 1 or 2.

- (1) Move the cursor to the item to be set by pressing the or the key, and then press the key.
- (2) Move the cursor to the Ch (component) whose setting is to be changed by pressing the ▲ or the ▼ key, and then press the ♠ key.

(3) Move the cursor to the item whose setting is to be changed by pressing the ▲ or the ▼ key, and then press the (ENT) key.


Settable range

The value for range 1 and range 2 must fall within the range from the MIN and the MAX range (including the MIN and the MAX range), and at the same time range 1 must be smaller than range 2.


The number of ranges is 1 or 2.

- (4) Press the ▲ or the ▼ key to change the value. Press the ▶ key to select the next digit. In a state where the decimal point is highlighted, press the ▲ or the ▼ key, and the decimal point position can be changed.
- (5) When necessary change is made, press the key.

Maintenance Mode setting	Select an item
Password set O2 ref. Value Station No.01 Range setting	2465 12% O2 limit 20% O2

▼ (▲) (ENT) Maintenance Select range or Mode range num. Range Set Ch1 NOx MIN range 100.0 ppm Range 1 500.0 ppm Range 2 1000. ppm MAX range 2000. ppm Range num.

End of Set/Change the Range

6.9 Calibration

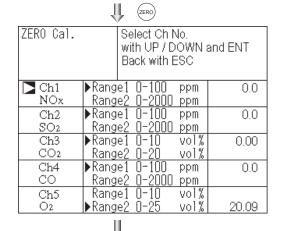
6.9.1 Zero calibration

It is used for zero point adjustment. For zero calibration, gas suited for an application should be used according to "(3) Standard gas in Item 3.3 Sampling."

- (1) Press the (ZERO) key on the Measurement screen to display the Manual Zero Calibration screen.
- (2) Select the Ch (component) to be calibrated by pressing the ▲ or the ▼ key.
 After selection, press the ENT key, and zero gas will be supplied.

Caution

For the Ch (components) that is set to "both" in the "Zero Calibration" of the Calibration Setting mode, zero calibration is also carried out at the same time.


(3) Wait until the indication is stabilized with the zero gas supplied. After the indication has been stabilized, press the ENT key.

Zero calibration in range selected by the cursor is carried out.

Note: For the Ch (component) for which "AR" is selected in "6.1.1 Setting range switch mode," the cursor automatically moves to the range selected in "Setting of auto calibration component/range" (6.2.4), and calibration is carried out within that range.

To close "Zero Calibration" -

To close the "Zero Calibration" or cancel this mode midway, press the (ESC) key. A previous screen will return.

	•	
ZERO Cal.	Select Ch No.	
	Press the ENT ke	V
	to feed calibration	n gas
Ch1	▶Range1 0-100 ppm	0.0
NOx	Range2 0-2000 ppm	
► Ch2	▶Range1 0-100 ppm	0.0
SO2	Range2 0-2000 ppm	
Ch3	▶Range1 0-10 vol%	0.00
CO2	Range2 0-20	
Ch4	▶Range1 0-100 ppm	0.0
CO	Range2 0-2000 ppm	
Ch5	Range1 0-10 vol%	
O2	▶Range2 0-25 vol%	20.09

ZERO Cal.	ENT : Go on calibration of selected Ch. ESC : Not calibration
Ch1	▶Range1 0-100 ppm ○ 0.0
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm ○ 0.9
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% ▶ 0.34
CO2	Range2 0-20 vol%
Ch4	▶Range1 0-100 ppm 1.1
CO	Range2 0-2000 ppm
Ch5	Range1 0-10 vol%
O2	▶Range2 0-25 vol% ≥ 20.09

To Measurement screen after executing Manual Zero Calibration

6.9.2 Span calibration

It is used to perform a span point adjustment. Supply calibration gas with concentration set to the span value to perform the span calibration. For the span calibration gas for the NOx, SO_2 , CO_2 , CO_3 measurement, use the standard gas with a concentration of 90% or more of the range value. For the span calibration gas for the O_2 measurement, use the standard gas with a concentration of 90% or more of the range value when measuring with the built-in O_2 sensor, and use the standard gas of 1 to 2 vol% when measuring with an external zirconia O_2 sensor.

(1) Press the (SPAN) key on the Measurement screen to display the Manual Span Calibration screen.

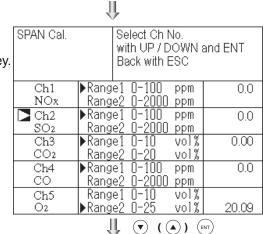
	***	G. 7.1.9		
SPAN Cal.		elect Ch Nith UP / D		and ENT
		ack with E		
► Ch1	▶Range1	0-100	ppm	0.0
NOx		0-2000	ppm	
Ch2	▶Range1		ppm	0.0
SO2		<u>0-2000 </u>	ppm	
Ch3	▶Range1		vol%	0.00
CO2	Range2		vol%	
Ch4	▶Range1		ppm	0.0
CO		<u>0-2000</u>	ppm	
Ch5	Range1		vol%	
O2	▶Range2	2 0-25	vol%	20.09

(SPAN)

Ш

(2) Select Ch (component) to be calibrated by pressing the ♠ or ▼ key and press the ENT key. The calibration gas is supplied.

- Caution -


When "both" from "Calibration Range" of the Calibration Setting mode is set, span calibration is performed together with 2 Ranges.

(3) Wait until the indication is stabilized in the state where the calibration gas is supplied. After the indication has been stabilized, press the (ENT) key. Span calibration of Range selected by the cursor is performed.

Note: For the Ch (component) for which "AR" is selected in "6.1.1 Setting range switch mode," the cursor automatically moves to the range selected in "Setting of auto calibration component/range" (6.2.4), and calibration is carried out within that range.

To close "Span Calibration"

To close the "Span Calibration" or cancel this mode midway, press the (ESC) key. A previous screen will return.

SPAN Cal.	ENT : Go on calibration of selected Ch. ESC : Not calibration
Ch1	▶Range1 0-100 ppm ▶ 0.0
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm 🚺 0.9
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% □ 0.34
CO2	Range2 0-20 vol%
Ch4	▶Range1 0-100 ppm 🔼 1.1
CO	Range2 0-2000 ppm
Ch5	Range1 0-10 vol% _
O2	▶Range2 0-25 vol% 20.09
	(ENT)

To Measurement screen after executing Manual Span Calibration

7. MAINTENANCE

7.1 Daily check

(1) Zero calibration and span calibration

- 1. Perform zero calibration. For the calibration procedures, refer to "Item 6.9.1 Zero calibration".
- 2. Then, perform span calibration. For the calibration procedures, refer to "Item 6.9.2 Span calibration".
- 3. Zero calibration and span calibration should be carried out once a week, as required.

(2) Flow rate check

- 1. Sampling gas flow and purge gas flow are as follows:
 - Sampling gas flow: 0.5 ± 0.2 L/min
 - Purge gas flow: About 1 L/min
- 2. Check and maintenance should be carried out every day, as required.

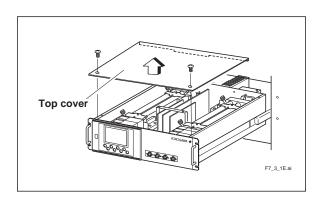
7.2 Daily check and maintenance procedures

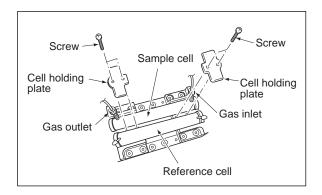
Table 7.1 Maintenance and check table

	Parts to be checked	Phenomena	Causes	Remedy
×	Indication value	Indication values are lower. Indication values are	(1) Dust is mixed in sampling cell	(1) Clean the sampling cell. In addition, check sampling devices, especially gas filter.
y check		higher.	(2) Air is absorbed midway in the sampling pipe.	(2) Find out cause of leak and repair.
Daily	Purge gas flow is included when purging gas in sample gas flow rate.	Standard flow is beyond the specified flow rate of 0.5 L/min, 0.3 to 0.7 L/min.		Adjust be needle valve of flow rater.
check	Zero point of gas analyzer	It is deflected.		Adjust.
Weekly	Span point of gas analyzer	It is deflected.		Adjust.
Yearly check	Gas analyzer	Regardless of any phenomena		Overhaul.

7.3 Maintenance of analyzer unit

7.3.1 Cleaning method for sample cell (pipe cell)


This section is strictly factory adjusted. Handle it with utmost attention. If it is absolutely required, contact us.


- (1) Turn off the power switch, stop the sample gas, and allow the zero gas to flow for several minutes to purge the cell interior.
 - Loosen the setscrew (2 pieces) from the top cover and remove it.
- (2) Remove the internal gas inlet tube.
- (3) Loosen both right and left screws for cell holding plate.
 - Remove the sample cell only.
- (4) Turn to the left the sample cell window and remove it from the sample cell (see Fig. 7-1).
- (5) For cleaning the window and cell inside surface, first eliminate coarse dust by soft brush or the like and then wipe them by soft rag.

 The window is easy to get scratched. Pay utmost attention so as not to damage it.
- mount the cell in place and proceed to running.

 After cleaning sample cell, be sure to perform optical zero adjustment (see Item 7.3.3) and moisture interference compensation adjustment (see Item

(6) After the end of sample cell cleaning,

Caution

7.3.4).

If the window or the cell interior is very dirty, use a soft cloth moistened with absolute alcohol. A slightly corroded infrared transmission window or sample cell can be remedied by gently rubbing with chromium oxide powder on cleaning cloth but an excessively corroded one must be replaced. When cleaning, do not exert an excessive stress.

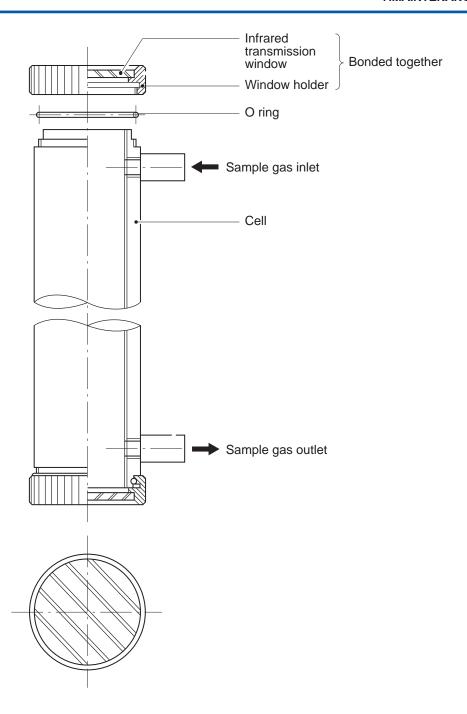
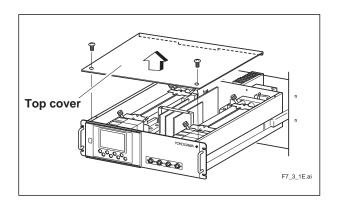
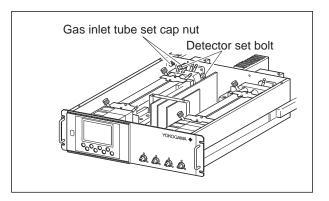
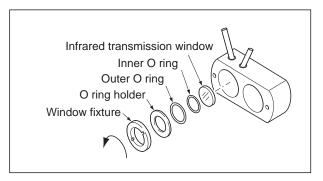


Fig. 7-1 Structure of sample cell (pipe cell)

7.3.2 Cleaning method for sample cell (block cell)

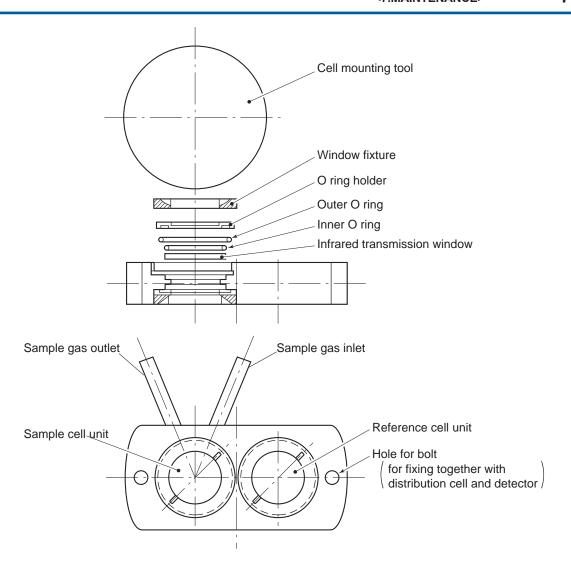

(1) Turn off the power switch, stop the sample gas, and allow the zero gas to flow for several minutes to purge the cell interior.


Loosen the setscrew (2 pieces) from the top cover and remove it.


- (2) Remove the internal gas inlet tube.
- (3) Loosen the 2 detector set bolts.

 Note) The distribution cell, block cell and detector are fastened by the same bolts.
- (4) Using the furnished cell mounting tool, turn the window fixture to the left and remove it from the cell. (See the structure of sample cell (block cell) in Fig. 7-2.)
- (5) For cleaning the infrared transmission window and cell inside surface, first eliminate coarse dust by soft brush or the like and then wipe them by soft rag. The window is easy to get scratched. Pay utmost attention so as not to damage it.
- (6) After the end of sample cell cleaning, mount the cell in place and proceed to running.

After cleaning sample cell, be sure to perform optical zero adjustment (see Item 7.3.3) and moisture interference compensation adjustment (see Item 7.3.4).



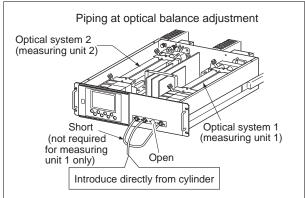
Caution

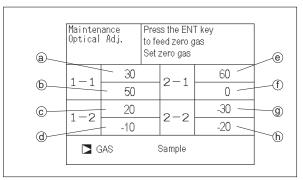
If the window or the cell interior is very dirty, use a soft cloth moistened with absolute alcohol. A slightly corroded infrared transmission window or sample cell can be remedied by gently rubbing with chromium oxide powder on cleaning cloth but an excessively corroded one must be replaced. When cleaning, do not exert an excessive stress.

Structure of sample cell (of 32, 16, 8, 4, 2 mm long) (sample cell and reference cell are integrated)

Note) Use the dedicated cell mounting tool (furnished).

Fig. 7-2 Structure of sample cell (block cell)


7.3.3 Optical zero adjustment method (optical balance adjustment)


Caution

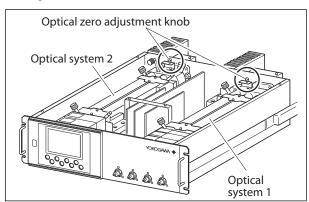
If the following operation is maladjusted, the measurement may adversely be affected. If you are not trained for adjustment, do not carry out this operation but contact the distributor or our serviceman.

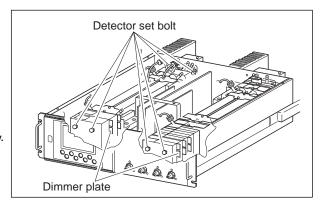
The adjustment is performed at reassembly after removing the sample cell, etc. for cleaning, etc.

- (1) Remove the top cover. Allow dry N₂ or air to flow through the analyzer unit sample gas inlet until the reading stabilizes. The sample gas is introduced directly to the INLET of analyzer unit through the gas cylinder.
- (2) Proceed to an optical adjustment in the maintenance mode. The display on the operation panel of the main unit is as illustrated on the right. Balance adjustment is not required if the display falls within ±100.

<Correspondence between measurement detector and indicated position>

	of components e measured	a	(b)	©	(d)	e	f	9	h
1-cc	mponent meter	Main	Comp	_	_	_	_	_	_
ent	NO-SO ₂	NO Main	NO Comp	SO ₂ Main	SO ₂ Comp	_	_	_	_
2-component meter	CO ₂ -CO	CO ₂ Main	CO ₂ Comp	CO Main	CO Comp	_	_	_	_
2-00	NO-CO	NO Main	NO Comp	_	_	CO Main	CO Comp	_	_
	omponent meter SO ₂ -CO	NO Main	NO Comp	SO ₂ Main	SO ₂ Comp	CO Main	CO Comp	_	_
	omponent meter SO ₂ -CO ₂ -CO	NO Main	NO Comp	SO ₂ Main	SO ₂ Comp	CO ₂ Main	_	CO Main	CO Comp


^{*} O₂ is excluded from the number of components.


Sensor values of which are not included in measuring components should be ignored.

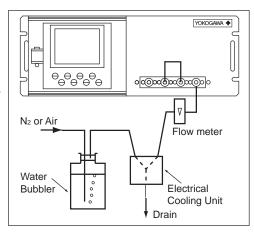
^{*} Main is signal input value from the main detector of each component. Comp is signal input value from interference compensation detector of each component. If low range exceeds the range of 0 to 10 vol%, detector signal of comp is not usable.

- (3) Carry out the adjustment in the procedure in (4) and subsequent.
 - Adjust on the primary side of the optical system so that the values for ⓐ to ⓓ in 1-1 and 1-2 become as close to 0 as possible within ±100 range.
 - Adjust on the secondary side of the optical system so that the values for

 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 for
 <lu>
 for
 <lu>
- (4) Operate the optical zero adjustment knob to change the value displayed at (a) (or(e)).
- (5) Move the dimmer plate side view to change the value displayed at (a) (or (f)).
- (6) Move the dimmer plate sidewise to change the value displayed at © (or (a)).
- (7) Move the dimmer plate sidewise to change the value displayed at (a) (or (b)).
- (8) Repeat the procedures in (4) to (7) to make all the displayed values come close to 0 as possible within ±100 range.
 - * Adjust the dimmer plate which is the nearest to the zero adjustment knob first, and sequentially.

- (9) After the optical balance adjustment, mount the top cover of the analyzer unit, then carry out a moisture interference compensation adjustment, and perform zero and span calibrations.
 - * Before moving the dimmer plate, loosen the detector set bolts (just enough to make the plate movable for snug adjustment).

7.3.4 Moisture interference compensation adjustment method


Caution

If the following operation is maladjusted, the measurement may adversely be affected. If you are not trained for adjustment, do not carry out this operation but contact the distributor or our serviceman.

Proceed to an adjustment if excessively (beyond $\pm 2\%$ FS) affected by moisture interference.

After the end of optical balance adjustment, be sure to carry out moisture interference compensation adjustment.

 After warm-up, select the low range, allow dry gas (N₂, air) to flow at 0.5 L/min and carry out zero calibration.

- (2) Display the moisture interference compensation screen of the analyzer unit (see "6.8 Maintenance mode"). Set the dew point to 2°C by using an electronic cooler, and introduce bubbled N₂ or air gas to the analyzer (shown on the figure).
- (3) On the screen, select a desired Ch (component) by pressing the (ENT) key, adjust the value at right by pressing the or the very key so that the value at left falls within ±10 (make it as close to 0 as possible), and then press the (ENT) key to memorize the value. (Exiting by "(ESC)" cancels the adjustment.)

Or, selecting the "ALL" and pressing the " (ENT)" key, zeroes all components integrally.

(First, adjust all components by selecting ALL and then perform fine adjustment for components one by one using (A) and

* If any components exceed the range of 0 to 10 vol%, no adjustment can be performed (No interference compensation is required).

Moisture interferend Compens		Select Ch No. with UP / DOWN and ENT Back with ESC			
Ch1	NOx		10	1.252	
Ch2	SO2		-33	0.983	
Ch3	CO2		13	0.000	
Ch4	CO		20	1.922	
ALL					
Valve (DFF				

((A) (ENT)							
Moisture interference Compensation Adj.			just with UP / IT : Memorize C : Back				
Ch1	NOx		10	1.25 <mark>2</mark>			
Ch2	SO2		-33	0.983			
Ch3	CO2		13	0.000			
Ch4	CO		20	1.922			
ALL							
Valve C)FF						

7.3.5 Replacement of fuse on analyzer unit

(**▼**)keys.)

Note) Before the following work, be sure to remove the cause of blown fuse (short, etc) and repair.

- (1) Turn OFF the main power supply SW of the analyzer.
- (2) Loosen setscrews (4 pcs.) from the top of the analyzer and remove the top cover.
- (3) Turn the fuse holder (shown in Fig. 7-3) counterclockwise and put it out, and the cap will be removed. Remove the fuse (250 V AC/3 A) from the holder. Replace it with a new one.
- (4) Mount the fuse holder cap and cover for analyzer indication unit in the reverse procedure. Turn ON the power supply SW. The work will be completed if the analyzer is normally worked.

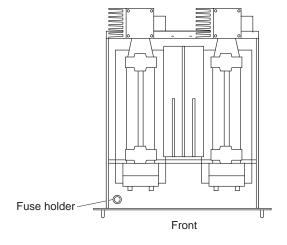


Fig. 7-3

7.4 Inspection and maintenance of limited service-life components

The analyzer uses limited-life components. The recommended replacement periods are listed in the below table.

- (1) Limited service-life components are those which wear out or for which failure is presumed within five years under normal operating or storage conditions. Components with more than five years of service life are the exception.
- (2) The following table only involves the recommended periods for conducting preventive maintenance for limited service-life components; these periods do not guarantee that accidental failures will not occur.
- (3) The recommended replacement periods are tentative and depend on operating conditions.
- (4) The recommended replacement periods may vary depending on the field date.

	Check and maintenance items				Recommended check and maintenance periods								
Checkpoint			Procedure and criteria	Routine	Once a week	Once a month	Every three months	Every six months	Once a year	Every two years	Every five years		
	1.	Light source	Recommended replacement period: Every five years (*1)								*		
	2.	Sector motor	Recommended replacement period: Every two years (*1)							*			
analyzer	3.	Detector without O ₂ sensor	Recommended replacement period: Every five years (*1)								*		
gas ana	4.	O-ring	Recommended replacement period: Every two years, inspect it when cleaning of measuring cell. See Sec. 7.3						0	*			
ed g	5.	LCD panel	panel Recommended replacement period: Every five years (*1)								*		
Infrared	6.	Power supply	Recommended replacement period: Every five years (*1)								*		
	7.	Measuring cell	Set up an appropriate maintenance period (by referring to the check results)				0						
	8.	Reference cell	Recommended replacement period: Every five years (*1)								*		

^(*) In the check and maintenance columns, place a check mark (O) for check and confirmation work, a dark star (★) for replacement, and a white star (★) for parts preparation for preventive maintenance.

Precautions to be taken while checking

- (1) When handling reference gas (during calibration), carefully read the reference-gas instruction manual to use the gas correctly. In particular, special attention must be taken in handling carbon monoxide gases; otherwise, you may suffer from gas poisoning.
- (2) During maintenance checks, be sure to keep the near fan on. If any gas leaks, you may suffer from gas poisoning.
- (3) When replacing the analyzer gas filter or conducting maintenance service of the washer, completely shut the calibration-gas valve. Otherwise, you may suffer from gas poisoning.

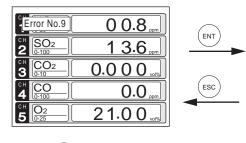
^(*1) These are work of service person, contact our service persons.

8. TROUBLE SHOOTING

8.1 Error message

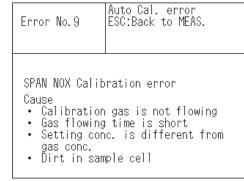
If errors occur, the following contents are displayed.

Error display	Error contents	Probable causes		
Error No.1	Motor rotation detection signal faulty	Motor rotation is faulty or stopped. Motor rotation detector circuit is faulty. Note) Sector motor is a consumption part. It is recommendable to exchange the motor once two years.		
Error No.4	Zero calibration is not within.	Zero gas is not supplied.		
Error No.5	Amount of zero calibration (indication value) is over 50% of full scale.	 Zero is deflected much due to dirty cell. Detector is faulty. Optical balance is maladjusted.		
Error No.6	Span calibration is not within the allowable range.	Span gas is not supplied. Calibrated concentration setting does not match		
Error No.7	Amount of span calibration (difference between indication value and calibrated concentration) is over 50% of full scale.	 cylinder concentration. Zero calibration is not performed normally. Span is deflected much due to dirty cell. Detector sensitivity has deteriorated. 		
Error No.8	Measured values fluctuate too much during zero and span calibration.	Calibration gas is not supplied. Time for flowing calibration gas is short.		
Error No.9	Calibration is abnormal during auto calibration.	Error corresponding to No. 4 to No. 8 occurred during auto calibration.		
Error No.10	Output cable connection is improper.	Wiring is detached between analyzer and interface module. Wiring is disconnected between analyzer and interface module		

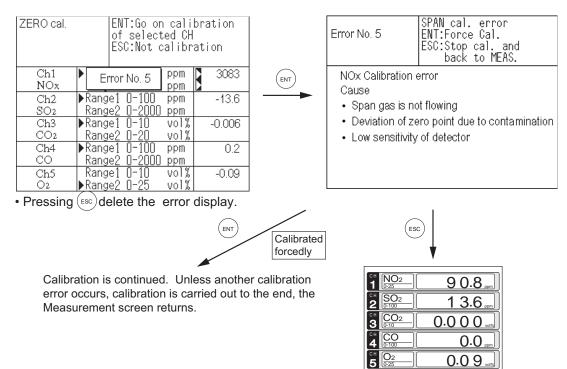

When errors No. 1 and No. 10 occur, analyzing block error contact output is closed.

When errors No. 4 to No. 9 occurs, calibration error contact output is closed.

Screen display and operation at the occurrence of error

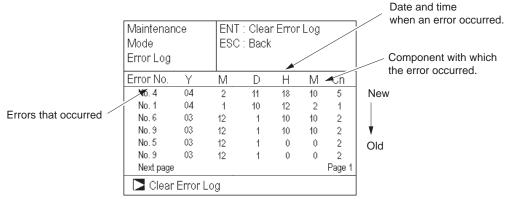

In case of Error No. 1 to No. 4, No. 6, No. 8 to No. 10

Measurement screen


- Press the (ESC) key to delete the error display.
- If the (ESC) key is pressed without removing the cause of an error, the error will be displayed again.

Display of error contents

 When more than one error occurs, pressing the (▶) key moves to another error display.


In case of Error No. 5 and No. 7

Error log file

If error occurs, the history is saved in an error log file. The error log file exists in the maintenance mode.

Error log screen

^{*} Up to 14 errors can be saved in the error history; the oldest error will be deleted one by one every time a new occurs.

* If the power supply is turned OFF, the contents in the error log file will not be lost or damaged.

Deletion of error history

Press the (ENT) key on the above screen, and the "Error Log Clear" will be inverted. Further pressing the (ENT) key will clear the error history.

8.2 Troubleshooting

The following table shows how to remedy other troubles, such as faulty readings.

Symptom	Checking Item	Remedy, etc.
Zero calibration fails. Error No. 4, 5, or 8 occurs.	Check if the zero gas is supplied to the analyzer at the specified flow rate. Check the optical balance. (See Subsection 7.3.3, "Optical zero adjustment method.") Check the count value on the display panel. (Refer to the sensor input value by maintenance mode.)	Locate and check gas leaking points, and take the proper remedy. Adjust the optical balance.
Span calibration fails. Error No. 6, 7, or 8 occurs.	 Check if the span gas is supplied to the analyzer at the specified flow rate. Check if zero calibration can be performed properly. Check the count value on the display panel. (Refer to the sensor input value by maintenance mode.) 	 Locate and check gas leaking points, and take the proper remedy. If zero calibration fails, first attempt remedies for zero calibration trouble. Are there any changes from when zero gas is supplied?
Error occurs during auto calibration. Error No. 9 occurs.	Take either of the above remedies depending on the source of the error: zero calibration or span calibration trouble.	
Drift.	Check if the sample gas is supplied to the analyzer at the specified flow rate. Check the optical system, e.g., the sample cell window, O-ring, detector window and inside of the cell for heavy dirt.	Locate and check gas leaking points, and take the proper remedy. (See Section 3.3.) Clean the cell and window. Replace the part. (See Subsections 7.3.1 and 7.3.2.)
Readings are abnormally high or low.	Check for the influence of interference from moisture. Check if the sample gas contains interfering components in large quantities or not.	Adjust interference from moisture. Investigate the components of the sample gas and then contact our service person.
Readings do not increase.	Check if the sample gas is supplied to the analyzer at the specified flow rate. Check if the zero and span calibration is enabled.	Locate and check gas leaking points, and take the proper remedy. (See Section 3.3.) If enabled, sampling (check the points relating only to the sample gas and take the proper remedy.) If not enabled, check the calibration related error items.

9. SPECIFICATIONS

9.1 General specifications

Measurable gas components and measuring range:

	Minimum range	Maximum range
NO	0 – 50 ppm	0 – 5000 ppm
SO ₂	0 – 50 ppm	0 – 10 vol%
CO ₂	0 – 20 ppm	0 – 100 vol%
СО	0 – 50 ppm	0 – 100 vol%
CH ₄	0 – 200 ppm	0 – 100 vol%
O ₂ (paramagnetic)	0 – 5 vol%	0 – 25 vol%
O ₂ (Zirconia)	0 – 5 vol%	0 – 25 vol%

- Max. 5 components measurement including O₂.
- Measuring range ratio ≤ 1:5 (O₂)
 ≤ 1:25 (except for O₂)
- For measurable components and possible combinations of measuring ranges, refer to Tables 9-1 to 9-7.

Principle of measurement:

NO, SO₂, CO₂, CO, CH₄; Non-dispersion infrared-ray absorption method

Single light source and double beams (double-beam system)

O₂; Paramagnetic O₂ sensor (built in) or zirconia O₂ sensor (externally

installed)

Display: Digital indication in 4 digits (LCD with back light)

- Instantaneous value of each component
- Instantaneous value after O₂ correction (only in NO, SO₂, CO measurement with O₂)
- Average value after O₂ correction (only in NO, SO₂, CO measurement with O₂)
- O₂ average value

Analog output signals:

* Inputs/outputs of analog signals are possible by combining with the input/ output terminal module.

4 to 20 mA DC or 0 to 1 V DC, non-isolated output; 12 points max.

max. load 550 Ω for 4 to 20 mA DC min. load 100 k Ω for 0 to 1 V DC

 * Refer to Table 9.2, for the channel No. of displayed values and analog output signals.

Analog input signal:

For signal input from externally installed O₂ sensor.

Signal requirement; (1) Signal from Zirconia O₂ sensor (when ZX8D*C or ZX8D*D)

(2) 0 to 1 V DC from an O₂ sensor. Input section is not isolated. This feature is effective when an O₂ sensor is not built in.

(Depend on O_2 input signal, measured concentration indication and

O₂ conversion.)

Relay Contact output:

1a contact (250 V AC/2 A, resistive load)

Instrument error, calibration error, range identification, auto

calibration status, pump ON/OFF, peak alarm.

1c contact (250 V AC/2 A, resistive load)

Selectable 6 outputs

High/Low limit alarm contact output.

Power disconnection alarm.

* All relay contacts are isolated mutually and from the internal circuit.

Contact input: No-voltage contact (ON/0 V, OFF/5 V DC, 5 mA flowing at ON)

Remote range switch, auto calibration remote start, remote holding, average value resetting, pump ON/OFF Isolated from the internal circuit with photocoupler. Contact inputs are not isolated from one

another.

Transmission output: Solenoid valve drive signal for automatic calibration.

Transistor output (100 mA or less)

Power supply: Voltage rating; 100 V to 240 V AC

Allowable range; 85 V to 264 V AC Frequency; 50 Hz/60 Hz Power consumption; 250 VA max.

Inlet; Conform to EN60320

Protection Class I type

Operation conditions: Ambient temperature; -5°C to 45°C

Ambient humidity; 90% RH max., non-condensing

Storage conditions: Ambient temperature; -20°C to 60°C

Ambient humidity; 90% RH max., non-condensing

Dimensions (H´W´D): Analyzer main unit; 177 x 483 x 578 mm (Excluding handles.)

Input/Output terminal module; 164 x 318 x 55 mm

Weight: Approx. 22 kg (only Analyzer)

Finish color: Front panel; Off-white (Munsell 10Y7.5/0.5 or equivalent)

Casing; Steel-blue (gray)

Enclosure: Steel casing, for indoor use

Material of gas-contacting parts: Gas inlet/outlet; SUS304

Sample cell; SUS304, chloroprene rubber

Infrared-ray transmitting window; CaF2

O₂ sensor sample cell : SUS316 Internal piping; Toaron, Teflon

Gas inlet/outlet: Rc1/4 or 1/4 NPT internal thread

Purge gas flow rate: 1 L/min (when required)

Installation altitude: 2000 m or less

9-3

Safety and EMC conforming standards:

Safety: EN61010-1: 2001, Pollution degree 2 (Note)

Installation category II (Note)

Note: Installation category, called over-voltage category, specifies impulse withstanding voltage.

Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor environment

EMC: EN61326-1: 1997, A1: 1998, A2: 2001 Class A

EN61000-3-2: 2000, , EN61000-3-3: 1995, A1, 2001

Note: The product mounted in a steel enclosure conforms to the requirements of EMC directive.

A CAUTION

This instrument is a Class A product, and it is designed for use in the industrial environment. Pleaseuse this instrument in the industrial environment only.

2. Standard Functions

Output signal holding: Output signals are held during manual and auto calibrations by

activation of holding (turning "ON" its setting).

The values to be held are the ones just before start calibration mode or setting value. It is selectable. Indication of instantaneous values

will not be held.

Remote output holding: Output signal is held at the latest value or setting value by short-

circuiting the remote output holding input terminals. Holding is maintained while the terminals are short-circuited. Indication of

instantaneous values will not be held.

Switch ranges: The switch ranges is available in manual, auto, and remote modes.

Only preset switch method is effective.

Manual: Allows range to switch by key operation.

Auto: Allows range to switch from low to high range when 90%FS or more

is available in the low range.

Allows range to switch from high to low range when 80%FS or less

is available in the low range.

Remote: No-voltage contact input (for measurable components)

Allows range to switch via an external signal when remote range

switch input is received.

When the contact input terminals for each component are short-circuited, the first range is selected, and it is switched to the second

range when the terminals are open.

Range identification signal: The present measuring range is identified by a contact signal.

The contact output terminals for each component are short-circuited when the first range is selected, and when the second range is

selected, the terminals are open.

Auto calibration: Auto calibration is carried out periodically at the preset cycle.

When a standard gas cylinder for calibration and a solenoid valve for opening/closing the gas flow line are prepared externally by the customer, calibration will be carried out with the solenoid valve drive contacts for zero calibration and each span calibration turned

on/off sequentially at the set auto calibration timing.

Auto calibration cycle setting: Auto calibration cycle is set.

Setting is variable within 1 to 99 hours (in increments of 1 hour) or 1

to 40 days (in increments of 1 day).

Gas flow time setting: The time for flowing each calibration gas in auto calibration is set.

Settable within 60 to 900 seconds (in increments of 1 second)

Auto calibration remote start: Auto calibration is carried out only once according to an external

input signal. Calibration sequence is settable in the same way as the general auto calibration. Auto calibration is started by opening the auto calibration remote start input terminals after short-circuiting for

1.5 seconds or longer.

Auto zero calibration: Auto zero calibration is carried out periodically at the preset cycle.

This cycle is independent on "Auto calibration" cycle.

When zero calibration gas and solenoid valve for opening/closing the calibration gas flow line are prepared externally by the customer, zero calibration will be carried out with the solenoid valve drive contact for zero calibration turned on/off at the set auto zero

calibration timing.

Auto zero calibration cycle setting: Auto zero calibration cycle is set.

Setting is variable within 1 to 99 hours (in increments of 1 hour) or Setting is variable within 1 to 40 days (in increments of 1 day)

Gas flow time setting: The timing for flowing zero gas in auto zero calibration is set.

Settable 60 to 900 seconds (in increments of 1 second)

Upper/lower limit alarm: Alarm contact output turns on when measurement value reach to

the preset high or low limit alarm value.

Contacts close when the channel value of each channel becomes larger than the high alarm limit value or smaller than the low alarm

limit value.

Instrument error contact output: Contacts close at occurrence of analyzer error No. 1, 3 or 10.

Calibration error contact output: Contacts close at occurrence of manual or auto calibration error

(any of errors No. 4 to 9).

Auto calibration status contact outputs: Contacts close during auto calibration.

Pump ON/OFF contact output: During measurement, this contact close.

While calibration gas is flowing, this contact open. This contact is connected in power supply of pump, and stop the sample gas while

calibration gas flowing.

3. Optional function

O, correction: Correction of measured NO, SO, and CO gas concentrations into

values at reference O2 concentration

Correction formula:

$$C = \frac{21-On}{21-Os} \times Cs$$

C: Sample gas concentration after O₂ correction

Cs: Measured concentration of sample gas

Os: Measured O₂ concentration (Limit setting: 1 to 20% O₂, default 17%)

On: Reference O₂ concentration (value changeable by setting.0 to 19% O₂, default 4%)

The result of calculation is indicated and output in an analog output signal.

Average value after O₂ correction and O₂ average value calculation:

The result of O_2 correction or instantaneous O_2 value can be outputted as an average value in the preset period of time. Used for averaging is the moving average method in which

sampling is carried out at intervals of 30 seconds.

(Output is updated every 30 seconds. It is the average value in the

determined period of time just before the latest updating.)

Averaging time is settable within 1 to 59 minutes (in increments of 1

minute) or 1 to 4 hours (in increments of 1 hour).

Average value resetting: The above-mentioned output of average value is started from the

initial state by opening the average value resetting input terminals

after short-circuiting for 1.5 seconds or longer.

Output is reset by short-circuiting and restarted by opening

CO concentration peak count alarm: (added only for CO/O, measurement)

Alarm output turns on according to the preset concentration and count. Whenever the instantaneous value of CO exceeds the preset concentration value, count increments. If the count exceeds the

preset value in one hour, the alarm contacts close.

Communication function: RS-232C (9pins D-sub), Half-duplex bit serial

Start-stop synchronization, Modbus™ protocol

Contents: Read/Wright parameters, Read measurement

concentration and instrument status

Remark: When connecting via RS-485 interface,

a RS-232C \leftarrow \rightarrow RS-485 converter should be used.

4. Performance

Repeatability: $\pm 0.5\%$ of full scale Linearity: $\pm 1\%$ of full scale

Zero drift: ±1% of full scale/week

(±2% of full scale/week; range between 0 to 50 ppm and 0 to 200 ppm) (±2% of full scale/day; smaller than 0 to 50 ppm range)

Span drift: ±2% of full scale/week

(±2% of full scale/day; smaller than 0 to 50 ppm range)

Response time (for 90% FS response):

Within 60 seconds including replacement time of sampling gas (when gas flow rate is 0.5 L/min). Gas replacement time depends on the number of measuring components, and measuring range

effects of interfering gases

When sample gas contains gas components listed below, the measurement accuracy may suffer. Consult Yokogawa for countermeasures or effect on accuracy.

Analyzer	Interference gas	Effect	
SO ₂ analyzer NO ₂ 50 ppm		50 ppm of NO ₂ is equivalent to -6 ppm of SO ₂	
CO analyzor	CO ₂	15% of CO ₂ is equivalent to 7 to 10 ppm of CO	
CO analyzer	N ₂ O	1000 ppm of N ₂ O is equivalent to 80 ppm of CO	
CH ₄ analyzer CO ₂		15% of CO ₂ is equivalent to approx. 3 ppm of CH ₄	

5. Standard Requirements for Sample Gas

Flow rate : 0.5 ± 0.2 L/min

Temperature: 0 to 50°C

Pressure: 10 kPa or less (Gas outlet side should be open to the atmospheric

air.)

Dust : $100 \,\mu g/Nm^3$ or less in particle size of 1 μm or less

Mist: Unallowable

Moisture: Below a level where saturation occurs at 2°C (condensation

unallowable).

Corrosive component: HCl, 1 ppm or less

Standard gas for calibration: Zero gas; Dry N₂

Span gas; Each sample gas having concentration 90 to 100%

of its measuring range (recommended).

Gas beyond concentration 100%FS is unusable.

In case a zirconia $\rm O_{\rm 2}$ analyzer is installed externally and calibration

is carried out on the same calibration gas line:

Zero gas; Dry air or atmospheric air (provided without CO₂ sensor)

Span gas; For other than O₂ measurement, each sample gas

naving

concentration 90 to 100% of its measuring range. For O₂

measurement, O₂ gas of 1 to 2 vol%.

6. Installation Requirements

- Indoor use. (Select a place where the equipment does not receive direct sunshine, draft/rain
 or radiation from hot substances. If such a place cannot be found, a roof or cover should be
 prepared for protection.)
- · Avoid a place where receives heavy vibration.
- Select a place where atmospheric air is clean.

9.2 Model and Suffix codes

[Style: S3]

Model	Suffix cod	<u>α</u> Ωr	ption code		Dos	scription	[Style: S3]
IR400	Julia cou	e O	ption code	Infrared gas ana	lyzer 19-inch rac	k mounting type	with slide rail
Measurable				1st	2nd	3rd	4th
component	-A			NO			
(note 8)	-B -C			SO ₂			
(11010 0)	-C			CO,			
	-D			CO			
	-F -G			CH ₄	000		
	-G -H			NO NO	SO2		
	-J			CO ₂	CO ₂ CO ²		
	-K			NO ²	SO,	со	
	-L			NO	SO	CO,	CO
O A = = h == = =	N			Without O ₂ analy	zer	1 2	
O ₂ Analyzer	1			External zirconia	type O ₂ sensor (purchase sepa	rately: ZX8D) (Note 10)
	2 3			External O ₂ anal	vzer (note 1)		
				Built-in paramag		isor	
1st Component	V			0 - 20 ppm (note	3)		
1st Range	A			0 - 50 ppm \			
(note 2)	B			0 - 100 ppm 0 - 200 ppm			
, ,	Ď			0 - 250 ppm			
	W			0 - 300 ppm			
	ΙE			0 - 500 ppm			
	F			0 - 1000 ppm			
	G			0 - 2000 ppm			
	H			0 - 5000 ppm 0 - 1%			
	J K			0 - 1%			
	Ľ			0 - 2%			
	M			0 - 5%			
	Р			0 - 10%			
	Q			0 - 20%			
	R			0 - 40%			
	S			0 - 50%			
	lΰ			0 - 70% 0 - 100%			
	T A			0 - 100% 0 - 50 ppm			
1st Component	B			0 - 100 ppm			
2nd Range	c			0 - 200 ppm			
(note 2)	D			0 - 250 ppm			
	W			0 - 300 ppm			
	Ę			0 - 500 ppm			
	F G			0 - 1000 ppm			
	H			0 - 2000 ppm 0 - 5000 ppm			
	l'j'			0 - 1%			
	K			0 - 2%			
	L			0 - 3%			
	M			0 - 5%			
	P			0 - 10%			
	Q			0 - 20%			
	R S T			0 - 40% 0 - 50%			
	1			0 - 70%			
	U			0 - 100%			
	N			Not available			
2nd Component		A		0 - 50 ppm			
1st Range		B C		0 - 100 ppm 0 - 200 ppm			
(note 2)		D		0 - 200 ppm 0 - 250 ppm			
,		W		0 - 250 ppm			
		le l		0 - 500 ppm			
		F		0 - 1000 ppm			
		G		0 - 2000 ppm			
		H		0 - 5000 ppm			
		J		0 - 1%			
		K L		0 - 2% 0 - 3%			
		M		0 - 3% 0 - 5%			
		P		0 - 5%			
		Q		0 - 20%			
		R		0 - 40%			
		S T		0 - 50%			
		T		0 - 70%			
		U		0 - 100%			
		N		Not available			

To be continued.

Model	Suffix code	Option code	Description
IR400 2nd Component 2nd Range (note 2)	BCDWEFGHJKLMPQRSTUN		Infrared gas analyzer 19-inch rack mounting type with slide rail 0 - 100 ppm 0 - 200 ppm 0 - 250 ppm 0 - 300 ppm 0 - 500 ppm 0 - 1000 ppm 0 - 2000 ppm 0 - 5000 ppm 0 - 5000 ppm 0 - 5000 ppm 0 - 1% 0 - 2% 0 - 3% 0 - 5% 0 - 10% 0 - 20% 0 - 40% 0 - 20% 0 - 40% 0 - 50% 0 - 70% 0 - 100% Not Available
3rd Component 1st Range (note 2)	A B C D S E F G H J K L M P Q R S F U Z		0 - 50 ppm 0 - 100 ppm 0 - 200 ppm 0 - 250 ppm 0 - 300 ppm 0 - 500 ppm 0 - 500 ppm 0 - 1000 ppm 0 - 2000 ppm 0 - 5000 ppm 0 - 5000 ppm 0 - 1% 0 - 2% 0 - 3% 0 - 5% 0 - 10% 0 - 20% 0 - 30% 0 - 50% 0 - 10% 0 - 20% 0 - 40% 0 - 50% 0 - 70% 0 - 100% Not available
3rd Component 2nd Range (note 2)	BCDSEFGHJKLMPGR%FJZ		0 - 100 ppm 0 - 200 ppm 0 - 250 ppm 0 - 300 ppm 0 - 300 ppm 0 - 500 ppm 0 - 1000 ppm 0 - 1000 ppm 0 - 5000 ppm 0 - 5000 ppm 0 - 5000 ppm 0 - 30% 0 - 2% 0 - 3% 0 - 5% 0 - 10% 0 - 20% 0 - 40% 0 - 40% 0 - 50% 0 - 70% 0 - 70% 0 - 100% Not available
4th Component 1st Range (note 2)	A B C D N E F G I J K L N P G R N F J Z		0 - 50 ppm 0 - 100 ppm 0 - 200 ppm 0 - 250 ppm 0 - 250 ppm 0 - 300 ppm 0 - 500 ppm 0 - 1000 ppm 0 - 1000 ppm 0 - 2000 ppm 0 - 2000 ppm 0 - 50% 0 - 50% 0 - 3% 0 - 5% 0 - 10% 0 - 20% 0 - 40% 0 - 40% 0 - 50% 0 - 70% 0 - 100% Not available

To be continued.

Model	Suffix code	Option code	Description
IR400	Sullix code	Option code	Infrared gas analyzer 19-inch rack mounting type with slide rail
4th Component 2nd Range (note 2)	B C D W E F G H J K L M P Q R S T U N		0 - 100 ppm 0 - 200 ppm 0 - 250 ppm 0 - 300 ppm 0 - 500 ppm 0 - 1000 ppm 0 - 2000 ppm 0 - 5000 ppm 0 - 1% 0 - 2% 0 - 3% 0 - 5% 0 - 10% 0 - 20% 0 - 40% 0 - 50% 0 - 70% 0 - 70% 0 - 100% Not Available
O ₂ Analyzer 1st Range (note 2)	1 2 3 N		0 - 5% 0 - 10% 0 - 25% Not available
O ₂ Analyzer 2nd Range (note 2)	2 3 N		0 - 10% 0 - 25% Not available
Output	-4 -1		4 - 20 mA DC, non-isolation 0 - 1 V DC, non-isolation Rc 1/4
Piping	R T		1/4 NPT
Indication, Power Cable (note 7)	J		Japanese, Power Cable; rated voltage 125 V AC English, Power Cable; rated voltage 125 V AC (UL) English, Power Cable; rated voltage 250 V AC (CEE)
Option O ₂ correction ar Communication Internal purge (in Relay board (no	note 5)	/K /A /C /P	With O ₂ correction and O ₂ average value With peak count alarm (note 4) RS-232C (note 9) Analyzer internal purging With dedicated cable

Footnotes:

- 2:
- A signal from the external O₂ analyzer should be 0-1 V DC linear to full scale.

 Possible combinations of ranges are specified in separate tables.

 Only available for CO₂ measurement. Option code "/P," Analyzer internal purging, must be specified.

 O₂ correction is available only for NO, CO, and SO₂. Both average value output after O₂ correction and average O₂ value output 4: are provided at the same time.
- A peak count alarm can be provided only for CO measurement.

 When internal purging is specified with 3- or 4-component analyzers, only one set of gas inlet/outlet can be used and thus NO₂/NO converter cannot be connected between two measurement sections. 5.
- 6: Should be specified when using a solenoid valve for automatic calibration.
- Suffix Codes "E" and "U" are power cables with different voltage rating and plug type. Select appropriate code according to the operating power supply voltage to be used in the field.
- Suffix Code "E" is of the North American plug type and "U" of the European type. For NOx measurement, a NO₂/NO converter (P/N K9350LE or K9350LF) should be purchased separately. 8:
- Should be specified when using Modbus™ communication.
- ZX8D style D is specified for CE marking.

Measurable component and range - availability check table -

Table 9.1 Single-component analyzer (NO, SO_2 , CO_2 , CO or CH_4)

	2nd range	Α	В	С	D	W	Е	F	G	Н	J
1s	t range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm	0-1%
٧	0-20ppm	0	0	0	0	0	0	_	_	_	_
Α	0-50ppm	_	☆ □◎○	☆ □◎○	☆ □◎○	☆□◎○	☆ □◎○	☆ □◎○	_	_	_
В	0-100ppm	_	_	☆ □◎○	☆□◎○	☆□◎○	☆ □◎○	☆ □◎○	☆□◎○	_	_
С	0-200ppm	_	_	_	☆ □◎○△	_					
D	0-250ppm	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □◎○△	_
W	0-300ppm	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □◎○△	_
Е	0-500ppm	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □◎○△	
F	0-1000ppm	_	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	
G	0-2000ppm	_	_	_	_	_	_	_	_	☆ □◎○△	
Н	0-5000ppm		_	_	_	_	_	_	_	_	
J	0-1%	_	_	_	_	_	_	_	_	_	_
K	0-2%	_	_	_	_	_	_	_	_	_	-
L	0-3%	_	_	_	_	_	_	_	_	_	_
М	0-5%	_	_	ı	_		_	-	-	_	_
Р	0-10%	_	_		_		_	_		_	_
Q	0-20%	_	_	_	_	_	_	_	_	_	_
R	0-40%	_	_	I	_	_		_	ı		
S	0-50%	_	_	_	_	_	_	_	_	_	_
Т	0-70%	_	_	_	_	_	_	_	_	_	_
U	0-100%	_	_	_	_	_	_	_	_	_	_

	2nd range	K	L	М	Р	Q	R	S	Т	U
1st	t range	0–2%	0–3%	0–5%	0–10%	0–20%	0-40%	0-50%	0-70%	0–100%
٧	0-20ppm	_	_	_	_	_	_	_	_	_
Α	0-50ppm	_	_	_	_	_	_	_	_	_
В	0-100ppm	_	_	_	_	_	_	_	_	_
С	0-200ppm	_	_	_	_	_	_	_	_	_
D	0-250ppm	_	_	_	_	_	_	_	_	_
W	0-300ppm	_	_	_	_	_	_	_	_	_
Е	0-500ppm	_	_	_	_	_	_	_	_	_
F	0-1000ppm		_	_	_	_	_	_	_	_
G	0-2000ppm			_	_	_	_	_	_	_
Н	0-5000ppm					_	_	_	_	_
J	0–1%					@OA	_	_	_	_
Κ	0-2%	-				©○△	©O∆	1	_	
L	0-3%	_	_			@OA	@OA	©O∆	_	
М	0–5%	_	_			©○△	©O∆	©O∆	©○△	©O∆
Р	0-10%	_	_			@OA	@OA	©O∆	©0∆	©O∆
Q	0–20%	_	_	_		_	@OA	@OA	@OA	@OA
R	0-40%	_	_			_	_	©○△	@OA	©O∆
S	0-50%	_	_	1		_	_	-	@OA	©O∆
Т	0-70%	_	_	_	_	_	_	_	_	@OA
U	0-100%	_	_		_	_	_		_	@OA

^{⊚:}CO₂ analyzer measurable range ☐:SO₂ analyzer measurable range

Table 9-2 Double-component analyzer (NO and SO₂)

			2nd comp	onent (SO ₂),	1st range	→ SO ₂					
1	st	component	Α	В	С	D	W	Е	F	G	Н
1 (1	NO),1st range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm
	Α	0-50ppm	0	0	0	0	0	0	0	0	_
	В	0-100ppm	0	0	0	0	0	0	0	0	_
	С	0-200ppm	0	0	0	0	0	0	0	0	_
NO	D	0-250ppm	0	0	0	0	0	0	0	0	_
INO	W	0-300ppm	0	0	0	0	0	0	0	0	_
	E	0-500ppm	0	0	0	0	0	0	0	0	0
	F	0-1000ppm	0	0	0	0	0	0	0	0	0
	G	0-2000ppm	0	0	0	0	0	0	0	0	0
	Н	0-5000ppm	_	_	_	_	_	0	0	0	0

^{○:} Double components measurable range. 1st component; NO, 2nd component; SO₂.

2nd range, both NO and SO2 measurements are available up to 5000 ppm.

 $[\]bigcirc$:CO analyzer measurable range $\quad \triangle$:CH4 analyzer measurable range $\quad \bigstar$:NO analyzer measurable range

^{* 1}st range (low range) must meet the combination in above table.

Table 9.3 Two-component analyzer (NO and CO)

Both NO and CO analyzer must meet the range in Table 9.1; Single component analyzer.

Table 9.4 Two-component analyzer (CO, and CO)

			2nd compone	ent (CO), 1st rar	nge 	СО						
1st	cor	nponent	Α	В	С	D	W	E	F	G	Н	J
†(CC) ₂),'	1st range	0-50 ppm	0-100 ppm	0-200 ppm	0-250 ppm	0-300 ppm	0-500 ppm	0-1000 ppm	0-2000 ppm	0-5000 ppm	0-1 %
	ΑC)-50 ppm	0	0	0							
	В)-100 ppm	0	0	0	0	0	0				
	C	0-200 ppm	0	0	0	0	0	0				
CO ₂	D	0-250 ppm						0				
	W	0-300 ppm						0				
	Е	0-500 ppm						0	0			
	F	0-1000 ppm							0			
	G	0-2000 ppm		□× 2.5	□× 2.5	□× 2.5	□× 2.5	□×5	□× 10	□×10	0	0
	Н	0-5000 ppm		□×1	□×1	□×1	□× 1	□×2	□×4	□×4	0	0
	J	0-1%						□×1	□×2	□×2	□× 10	0
	K)-2%							□×1	□×1	□×5	□× 10
	L	0-5%									□×2	□×5
	М	0-10%	□×2	□×2	□×2	□×2	□×2	□×2	∆×2×10	△×2×5	□×2	□×5
	N	0-20%	□×1	□× 1	□× 1	□×1	□×1	□×1	△×1×10	△×1×5	□×1	□×1

 \bigcirc \square \triangle : Double components measurable. 1st component ; CO_2 , 2nd component ; CO.

Note: 1st range (low range) must meet the combination in above table. (For 0-200 ppm range, measurement is available up to 25 times.)

2nd range, \bigcirc is specified; both CO₂, and CO measurements are available up to 20 times of the 1st range.

 $\ \square$ is specified; CO measurement is available up to 20 times of the 1st range.

CO2 measurement is available up to the ratio written after the \square mark. \triangle is specified; both CO2 and CO measurements are available up to ratio written after the \triangle mark.

The ratio, first value is for CO₂, second value is for CO.

Example: $\triangle \times 2 \times 5$ means, 2nd range of CO₂ is available up to double of 1st range, 2nd range of CO is available up to 5 times of 1st range.

x 1 means only 1st range.

Table 9.5 Three-component analyzer (NO + SO₂ + CO)

See Table 9.2 for NO + SO_2 measurement of three-component analyzer (NO + SO_2 + CO). See Table 9.1 for CO measurement.

Table 9.6 Four-component analyzer (NO + SO₂ + CO₂ + CO)

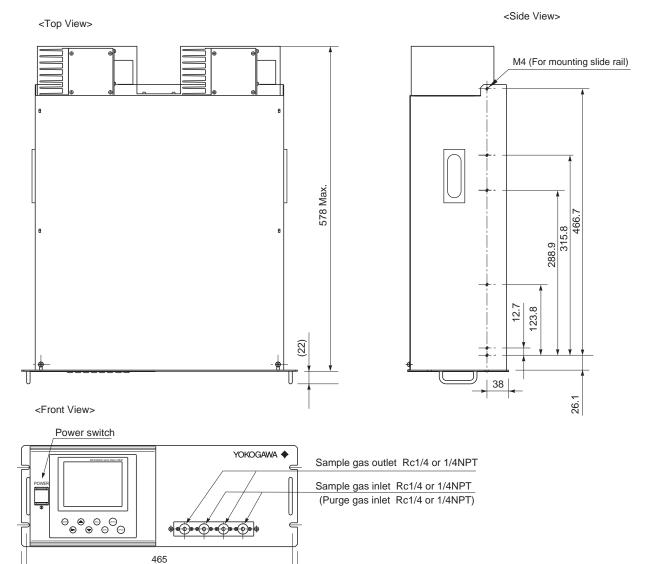
See Table 9.2 for NO + SO_2 measurement and Table 9.4 for CO_2 + CO measurement.

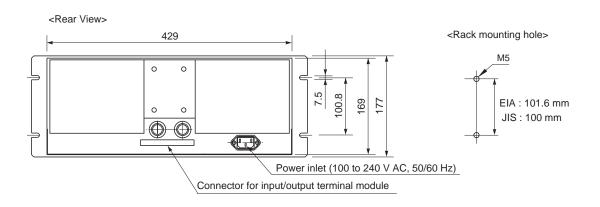
Table 9.7 O2 analyzer

	2nd range	2	3
1st	range	0-10%	0-25%
1	0-5%	ОΔ	ОΔ
2	0-10%		ОД
3	0-25%	_	ΟΔ

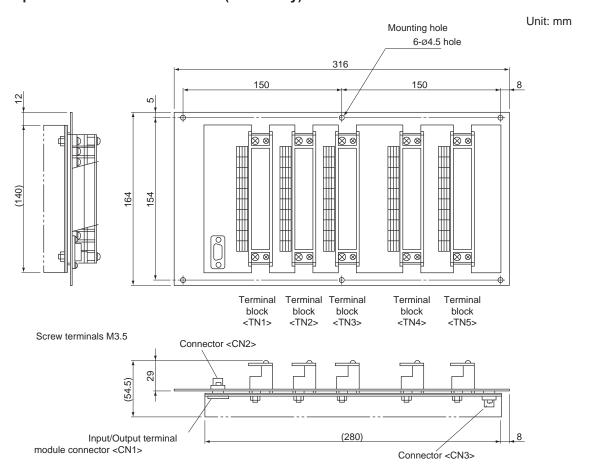
TOS oi

- ○: Built-in O₂ analyzer measurable range

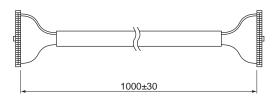

^{*}O₂ analyzer is selectable independently of combination with other components.

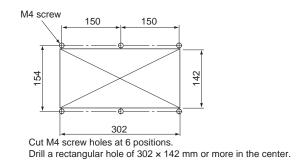

9.3 External Dimensions

483

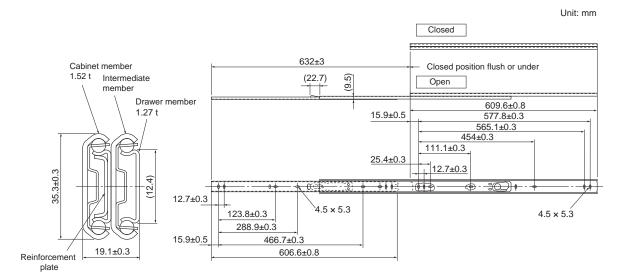

<Analyzer main unit>

Unit: mm



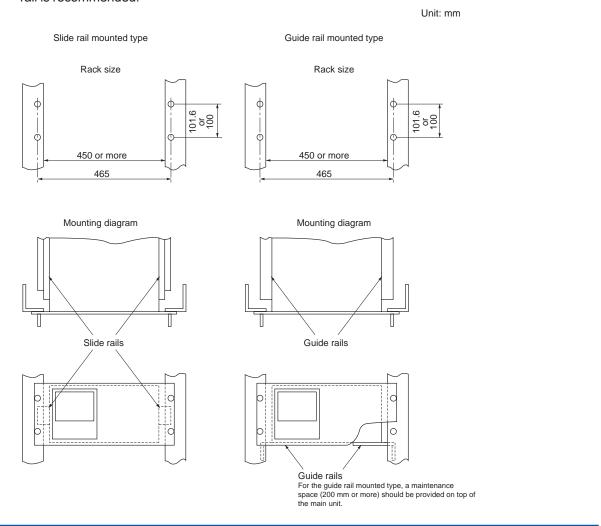

Input/Output Terminal Module: K9218SC (Accessory)

Cable for Connecting Input/Output Terminal: K9218SD (Accessory)


Dimensions for Mounting Input/Output Terminal Module

F05.EPS

EXTERNAL DIMENSIONS of ACCESSORY SLIDE RAIL


Model: 305A-24/Accuride International Inc.

19 inch rack mounting method:

The weight of the instrument should be supported at the bottom of the unit (or the side of the unit when mounted with the slide rails).

Also, for facilitate maintenance, a structure which allows extraction of the main unit by using the slide rail is recommended.

STANDARD ACCESSORIES

Name	Pert Number	Description	Qty
Power cable	K9218SA	standard inlet type (2.5 m)	1
Fuse	K9218SB	replacement fuse (250 V AC, 3.15 A, delay type) ×1	2
Input/Output terminal module	K9218SC	External terminal module	1
Cable	K9218SD	Connection cable between main unit and input/output terminal module (1 m)	1
Slide rail	K9218SE	Slide rail	2

Note: Quantity in this is number of accessories supplied as standard. For instance, two K9218SE parts, i.e., two slide rails, are supplied as standard. When ordering separately, the required number of should be considered.

Dedicated Zirconia O₂ Sensor (to be purchased separately)

For O_2 correction, the IR400 can accept linearized 0 to 1 V DC signal coming from an analyzer calibrated to 0 to 25% O_2 of full scale. Dedicated zirconia O_2 sensor , Model ZX8D, is available from Yokogawa.

Measuring method: Zirconia system Measurable component and measuring range:

Measurable component	Minimum range	Maximum range
Oxygen (O ₂)	0-5 vol%	0-25 vol%

Repeatability: Within \pm 0.5% of full scale Linearity: Within \pm 1% of full scale

Zero drift: Within \pm 1% of full scale/week Span drift: Within \pm 2% of full scale/week

Response time: Approx. 20 seconds (for 90% response)

Measured gas flow rate: 0.5 ± 0.25 L / min

Remark: The Zirconia system, due to its principle, may produce a measuring error

due to relative concentration versus the combustible O_2 gas concentration. Also, a corrosive gas (SO_2 of 250 ppm or more, etc.) may affect the life of

the sensor.

Gas inlet/outlet size: Rc1/4

Power supply: 90 to 126 V AC or 200 to 240 V AC, 50/60 Hz

Enclosure: Steel casing, for indoor application

Indication: Temperature indication (LED)

Temperature alarm output: Contact output 1a contact,

Contact capacity 220 V AC, 1 A (resistive load)

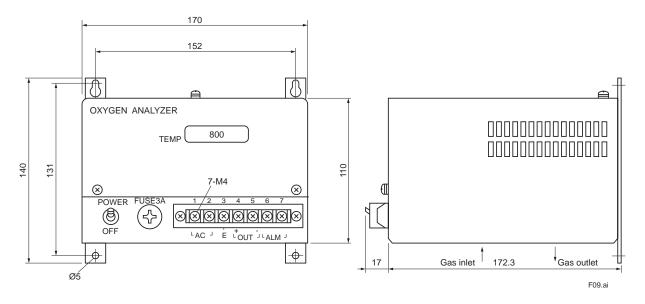
Safety and EMC conforming standards:

Safety: EN61010-1, Pollution degree 2 (Note), Installation category II (Note)

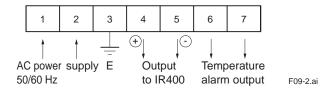
Note:

Installation category, called over-voltage category, specifies impulse withstanding voltage. Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor

environment.


EMC: EN61326, EN61000-3-2, EN61000-3-3

Dimensions (H x W x D): 140 x 170 x 190 mm

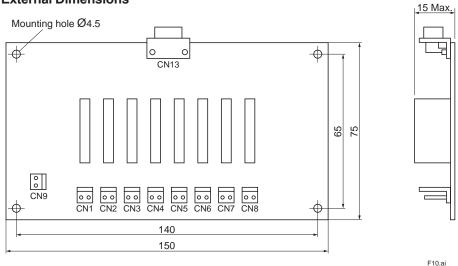

Weight: Approx. 3 kg
Finish color: Munsell 5Y 7/1

Model	Sut	ffix code	Option code	Description
ZX8D				Dedicated zirconia O ₂ sensor
Power supply	-5 -3			90-126 V AC, 50/60 Hz 200-240 V AC, 50/60 Hz
Style code		*C *D		Non-CE conformity CE conformity

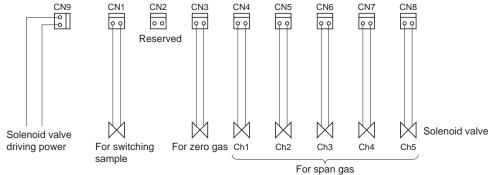
External Dimensions of ZX8D

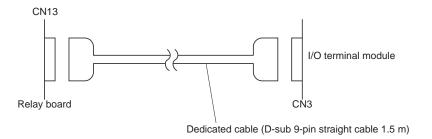
External Connection Diagram

Dedicated relay board (Option code: /R)


This relay board receives signals from connector CN3 of the IR400 I/O terminal module and activates the calibration solenoid valve directly.

• Relay contact: 1 normally closed contact, contact capacity; 250 V AC/2 A (resistive load)


Part Numbers


Item	Part No.	Description	Qty
Relay board	K9218SF	For external contact point	1
Cable	K9218SG	For relay board	1

External Dimensions

Connections

Contact action

During measurement: CN1; ON Others; OFF

• During calibration: CN1; OFF

Others; Contact corresponding to calibration timing is ON

Recommended Connector

• CN1 to CN9: Housing; VHR-2N (Japan Solderless Terminals (JST))

Contact; SVH-21T-1.1 (Japan Solderless Terminals (JST))

NO₂/NO Converter

Part number: K9350LE (Non-CE conformity), K9350LF (CE conformity)

Mounting: Indoor surface mounting

Target Gases: General boiler exhaust gas, atmosphere

Catalyst: Amount; 2 cm³

Replacement cycle; Approx. 8 months (at flow rate of 0.5 L/min with 5%O₂, 10 ppm NO)

Temperature setpoint; 220 ±10°C (Sensing tip: K thermocouple)

Wetted materials: Ceramic, Viton, glass filter, SUS31

Conversion efficiency: 90% or higher, conforms to JIS

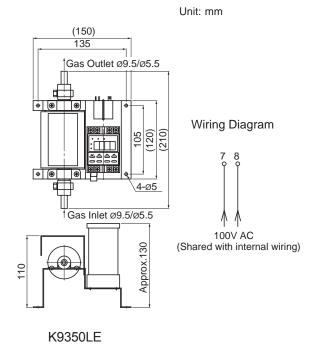
Gas Flow Rate: 0.5 L/min

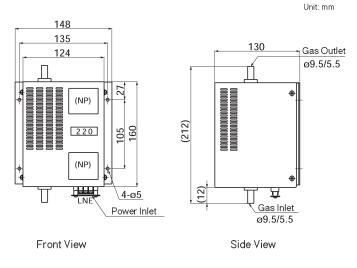
Ambient Temperature: -5 to +45°C

Power Supply: 100 VAC, 50/60 Hz (K9350LE), 100 to 240 VAC, 50/60 Hz (K9350LF)

Power Consumption: Approx. 85 VA

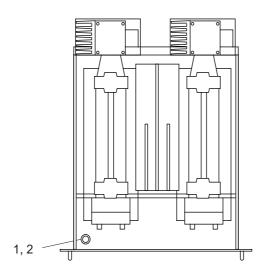
Safety conforming standards: EN61010-1, Pollution degree 2, Installation category II


Weight: Approx. 1.1 kg (K9350LE), Approx. 1.2 kg (K9350LF)


Sample gas requirements: Dust/drain removed, gas temperature at 150°C or less

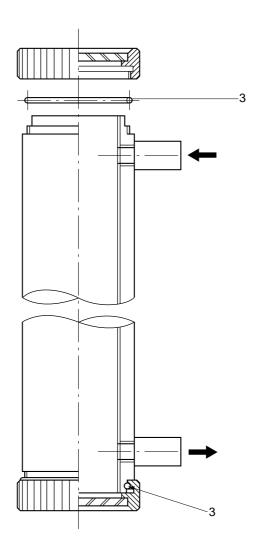
One-year-Use Spare Parts

Item	Part No.	Qty
Catalyst for NO ₂ /NO converter	K9350LP	2
Glass wool for NO ₂ /NO converter	K9350LQ	2
Fitting for NO ₂ /NO converter	K9350LV	2

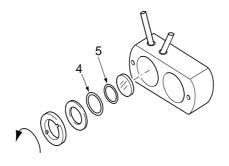

External Dimensions

Customer Maintenance Parts List

Model IR400 Infrared Gas Analyzer



Item	Parts No.	Qty.	Description
1	K9218SB	1	Fuse (Time Lag Fuse)
2	K9358QL	1	Fuse holder



2nd Edition : Aug. 2006 (YK)

Pipe Cell

Block Cell

Item	Parts No.	Qty.	Description
3	K9358SD	2	O-ring
4	K9358SQ	1	O-ring (Out-side)
5	K9358SR	1	O-ring (Out-side)

CMPL 11G02M01-01E CMPL 11G02N01-01E

Revision Information

Model IR400 Infrared Gas Analyzer Title:

Manual No.: IM 11G02N01-01E

Edition Date Remark (s) Oct. 2002 **Newly published** 1st

2nd Aug. 2006

Fully revised due to style change to S3

- P. v., Added "After-Sales Warranty"
- "Name and description of main unit": Changed drawing partly; 2.1
- "Piping": Changed drawing partly; 3.4
- 3.4.7 "Example configuration of gas sampling system": Changed drawing;
- "Name and description of operation panel": Changed drawing partly: 5.1
- "Standard specifications": Changed table "Measurable component and measurement range"; 9.1
- "Standard Requirements for Sample Gas": Changed description 9.1.5
- "Model and Suffix codes": Changed table partly; 9.2

"Measurable component and range 2 availability check table 2 ": (4);

"Double-component analyzer": Changed table partly

3rd Aug. 2007

- 5.4 "General operation": Partially changed the figure.
- "Calibration setting": Partially changed the figure and descriptions in "Setting range of values." 6.2
- 6.4.1 "Auto calibration": Partially changed the figure and descriptions in Caution.
- "Execution of auto calibration": Partially changed descriptions in (3); 6.4.2

"Forced stop of auto calibration": Partially changed descriptions in (3).;

- 6.5.1 "Auto zero calibration": Partially changed descriptions in Caution.;
- 6.5.2 "Forced run/stop of auto zero calibration": Partially changed descriptions in (3).; "Forced stop of auto zero calibration": Partially changed descriptions in (3).;
- 6.6 "Peak alarm setting": Partially changed the figure and descriptions.
- 6.9.1 "Zero calibration": Partially changed the figure and descriptions in Caution.;
- 6.9.2 "Span calibration": Partially changed the figure.
- 9.1 "General specifications," Safety and EMC conforming standards: Changed descriptions and added Note.:
- 9.2 "Model and Suffix code": Deleted Footnote 8 and changed descriptions of Footnote 8 (former 9).
- 9.3 "External Dimensions": Changed power supply specification of NO2/NO converter.; "External Dimensions," NO2/NO Converter: Changed "Part number" descriptions, added "Safety conforming standards" descriptions, deleted "CE Marking" descriptions, and changed "External Dimensions" drawings,

4th Jun. 2012

- "CAUTION ON SAFETY" Others: Addition of the description. p.iv,
 - Addition of the "Notes on Use in Korea".
- Changed the description of the "After-Sales Warranty".
- p.6-38, Section 6.8, "Description of each setting": Addition of the "default value".
- Section 9.1, "General specifications" Safety and EMC conforming standards: Addition of p.9-1, the "CAUTION".

- p.9-5, Section 9.2, "Model and Suffix codes" Table: Addition of the "W (0-300 ppm)". p.9-8, Section 9.2, "Model and Suffix codes" Table 1: Addition of the "W (0-300 ppm)". p.9-13, Section 9.3, "External Dimension" STANDARD ACCESSORIES: Changed the rating level of the fuse (K9218SB).
- p.9-18 Section 9.3, "NO2/NO Converter" Replacement cycle: Changed of the description.

■ If you want have more information about Yokogawa products, you can visit Yokogawa's home page at the following website.

Home page: http://www.yokogawa.com/an/

■ Written by Environmental & Analytical Products PMK Dept.

IA Div., Product Business Center Yokogawa Electric Corporation

■ Published by Yokogawa Electric Corporation

2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, JAPAN

■ Printed by KOHOKU PUBLISHING & PRINTING INC.

User's **Manual**

Model IR400 **Infrared Gas Analyzer**

Supplement

Thank you for selecting "Model IR400 Infrared Gas Analyzer".

The user's manual IM 11G02N01-01E 4th edition, supplied with the product has been amended as follows, please replace the corresponding page in your copy with the attached, revised page.

Note

- Page 5-2,	Section 5.2,	"Overview of display and operation panels": Changed of figure 5.2.
- Page 5-5,	Section 5.3,	"Outline of desplay screen" (3): Changed of table.
- Page 6-40,	Section 6.9.1,	"Zero calibration": Changed of attached figure.
- Page 6-41,	Section 6.9.2,	"Span Calibration": Changed of attached figure.
- Page 8-2,	Section8.1,	"Error message" In case of Error No. 5 and No. 7: Changed of at tached figure.
- Page 9-2,	Section 9.1,	"General Specifications," Changed the dimensions of the input/output terminal module.
- Page 9-3,	Section 9.1,	"General Specifications,": Modify description of the safety and EMC conforming standards.
- Page 9-10	Section 9.2,	"Model and Suffi x codes" Table 9-2 Double-component analyzer (NO-SO2) : Changed of the table 9-2.
- Page 9-11,	Section 9.2,	"Model and Suffi x codes" Measurable component and range - avail ability check table -: Changed the writing of the table 9.7.
- Page 9-15,	Section 9.3,	"External Dimensions," Dedicated Zirconia O ₂ Sensor: Modify description of the safety and EMC conforming standards.
- Page 9-16,	Section 9.3,	"External Dimensions," External Dimensions of ZX8D: Change of figure.
- Page 9-18,	Section 9.3,	"External Dimensions," NO ₂ /NO Converter: Modify description of the safety conforming standards.

4th Edition

5.2 Overview of display and operation panels

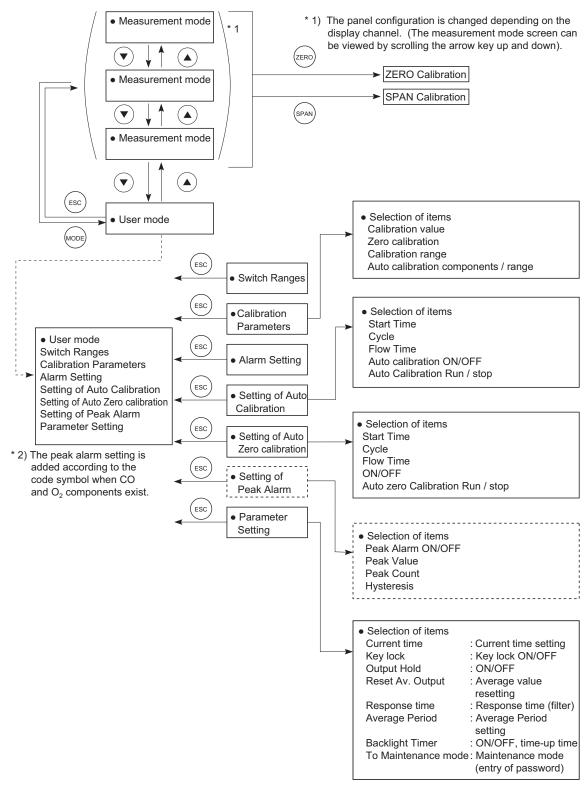


Fig. 5-2

(3) Contents of measured channel (Ch)

The following table gives measurement channels and their contents according to the symbols.

CO	Code symbol						Outbr	Output corresponding to channels	ling to cha	nels				
Measurable component	O ₂ analyzer	O ₂ correction	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7	CH8	Ch9	Ch10	Ch11	Ch12
Ą-	z	Not specified	9											
ą	z	Not specified	SO ₂											
Ϋ́	z	Not specified	CO ₂											
Ģ	z	Not specified	8											
Ļ	z	Not specified	₽											
တု	z	Not specified	9	SO ₂										
Ŧ	z	Not specified	9	8										
?	z	Not specified	CO ₂	8										
ż	z	Not specified	9	SO ₂	8									
Ļ	z	Not specified	9	SO ₂	CO ₂	00								
Ą-	1, 2, 3	¥	×ON	02	Correct NO _X Correct NO _X av.	Correct NO _x av.	O ₂ av.							
Ą	1, 2, 3	¥	SO ₂	02	Correct SO ₂ Correct SO ₂ av.	Correct SO ₂ av.	O ₂ av.							
Ģ	1, 2, 3	¥	8	02	Correct CO Correct CO av.	Correct CO av.	O ₂ av.							
Ļ	1, 2, 3	¥	CH₄	02	O ₂ av.									
တု	1, 2, 3	¥	×ON	SO ₂	02	Correct NO _x av. Correct SO ₂ Correct NO _x av. Correct SO ₂ av.	Correct SO ₂	Sorrect NO _x av.C	orrect SO ₂ av.	0 ₂ av.				
Ŧ	1, 2, 3	X	NOX	8	02	Correct NO _x Correct CO Correct NO _x av. Correct CO av.	Correct CO	Sorrect NO _X av.	correct CO av.	0 ₂ av.				
?	1, 2, 3	Ä	CO ₂	00	02	Correct CO av. Correct CO av.	Correct CO av.	O ₂ av.						
¥	1, 2, 3	¥	×ON	SO_2	8	02	Correct NO _X	Correct SO ₂ C	Sorrect CO	Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct SO ₂ av. Correct CO av.	correct SO ₂ av.	Correct CO av.	O ₂ av.	
٠٢	1, 2, 3	Ж	NOx	SO ₂	CO ₂	00	02	Correct NO _X	Sorrect SO ₂	Correct NO _X Correct SO ₂ Correct CO Correct NO _X av. Correct SO ₂ av. Correct CO av.	Sorrect NO _x av.	Correct SO ₂ av.	Correct CO av.	O ₂ av.
Q-	1, 2, 3	except /K	00	02										
Ŧ	1, 2, 3	except /K	ON	00	02									
7	1, 2, 3	except /K	CO ₂	00	02									
Υ-	1, 2, 3	except /K	ON	SO_2	00	02								
7	1, 2, 3	except /K	9	SO_2	CO ₂	00	02							
														T08.ai

(Note) : As for the NO meter within this range, the display on the indicator become NO_x. The peak count alarm becomes a contact output.

The "correct" means O₂ correction.

The "av." means average value.

6.9 Calibration

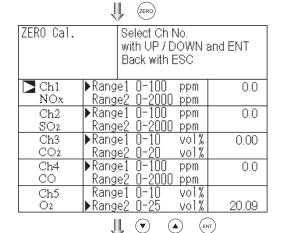
6.9.1 Zero calibration

It is used for zero point adjustment. For zero calibration, gas suited for an application should be used according to "(3) Standard gas in Item 3.3 Sampling."

- (1) Press the (ZERO) key on the Measurement screen to display the Manual Zero Calibration screen.
- (2) Select the Ch (component) to be calibrated by pressing the ▲ or the ▼ key. After selection, press the ENT key, and zero gas will be supplied.

- Caution -

For the Ch (components) that is set to "both" in the "Zero Calibration" of the Calibration Setting mode, zero calibration is also carried out at the same time.


(3) Wait until the indication is stabilized with the zero gas supplied. After the indication has been stabilized, press the ENT key.

Zero calibration in range selected by the cursor is carried out.

Note: For the Ch (component) for which "AR" is selected in "6.1.1 Setting range switch mode," the cursor automatically moves to the range selected in "Setting of auto calibration component/range" (6.2.4), and calibration is carried out within that range.

To close "Zero Calibration"

To close the "Zero Calibration" or cancel this mode midway, press the (ESC) key. A previous screen will return.

	~		
ZERO Cal.	Select Ch N	10.	
	Press the E	NT ke	V
	to feed calil		
Ch1	▶Range1 0-100	ppm	0.0
NOx	Range2 0-2000	ppm	
Ch2	▶Range1 0-100	ppm	0.0
SO ₂	Range2 0-2000	ppm	
Ch3	▶Range1 0-10	vol%	0.00
CO2	Range2 0-20	vol%	
Ch4	▶Range1 0-100	ppm	0.0
CO	Range2 0-2000	ppm	
Ch5	Range1 0-10	vol%	
O2	▶Range2 0-25	vol%	20.09

ZERO Cal.	ENT : Go on calibration of selected Ch. ESC : Not calibration
Ch1	▶Range1 0-100 ppm 0.0
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm 0.9
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% 0.34
CO2	Range2 0-20 vol%
Ch4	▶Range1 0-100 ppm 1.1
CO	Range2 0-2000 ppm
Ch5	Range1 0-10 vol%
O2	▶Range2 0-25 vol% 20.09

To Measurement screen after executing Manual Zero Calibration

6.9.2 Span calibration

It is used to perform a span point adjustment. Supply calibration gas with concentration set to the span value to perform the span calibration. For the span calibration gas for the NOx, SO_2 , CO_2 , CO_3 measurement, use the standard gas with a concentration of 90% or more of the range value. For the span calibration gas for the O_2 measurement, use the standard gas with a concentration of 90% or more of the range value when measuring with the built-in O_2 sensor, and use the standard gas of 1 to 2 vol% when measuring with an external zirconia O_2 sensor.

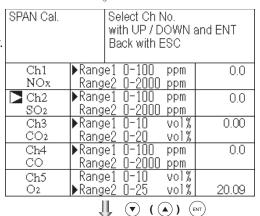
(1) Press the SPAN key on the Measurement screen to display the Manual Span Calibration screen.

	V	
SPAN Cal.	Select Ch No. with UP / DOWN	and ENT
	Back with ESC	G114 E141
► Ch1	▶Range1 0-100 ppm	0.0
NO _x	Range2 0-2000 ppm	
Ch2	▶Range1 0-100 ppm	0.0
SO2	Range2 0-2000 ppm	
Ch3	▶Range1 0-10 vol%	0.00
CO2	Range2 0-20	
Ch4	▶Range1 0-100 ppm	0.0
CO	Range2 0-2000 ppm	
Ch5	Range1 0-10 vol%	
O2	▶Range2 0-25 vol%	20.09

Щ

(2) Select Ch (component) to be calibrated by pressing the ♠ or ▼ key and press the ENT key. The calibration gas is supplied.

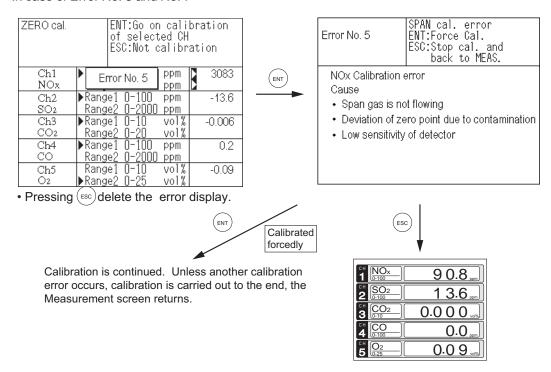
Caution


When "both" from "Calibration Range" of the Calibration Setting mode is set, span calibration is performed together with 2 Ranges.

(3) Wait until the indication is stabilized in the state where the calibration gas is supplied. After the indication has been stabilized, press the (ENT) key. Span calibration of Range selected by the cursor is performed.

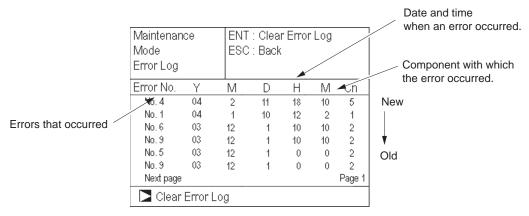
Note: For the Ch (component) for which "AR" is selected in "6.1.1 Setting range switch mode," the cursor automatically moves to the range selected in "Setting of auto calibration component/range" (6.2.4), and calibration is carried out within that range.

To close "Span Calibration"


To close the "Span Calibration" or cancel this mode midway, press the (ESC) key. A previous screen will return.

SPAN Cal.	ENT : Go on calibration of selected Ch. ESC : Not calibration
	200 : Not calibration
Ch1	▶Range1 0-100 ppm ∑ 0.0
NOx	Range2 0-2000 ppm
Ch2	▶Range1 0-100 ppm 🕨 0.9
SO2	Range2 0-2000 ppm
Ch3	▶Range1 0-10 vol% 🔁 0.34
CO2	Range2 0-20 vol%
Ch4	▶Range1 0-100 ppm 📘 1.1
CO	Range2 O-2000 ppm
Ch5	Range1 0-10 vol%_
O2	▶Range2 0-25 vol% 20.09
	(ENT)

To Measurement screen after executing Manual Span Calibration


In case of Error No. 5 and No. 7

Error log file

If error occurs, the history is saved in an error log file. The error log file exists in the maintenance mode.

Error log screen

^{*} Up to 14 errors can be saved in the error history; the oldest error will be deleted one by one every time a new occurs.

Deletion of error history

Press the $\binom{\text{ENT}}{}$ key on the above screen, and the "Error Log Clear" will be inverted. Further pressing the $\binom{}{}$ key will clear the error history.

^{*} If the power supply is turned OFF, the contents in the error log file will not be lost or damaged.

Relay Contact output:

1a contact (250 V AC/2 A, resistive load)

Instrument error, calibration error, range identification, auto

calibration status, pump ON/OFF, peak alarm.

1c contact (250 V AC/2 A, resistive load)

Selectable 6 outputs

High/Low limit alarm contact output.

Power disconnection alarm.

* All relay contacts are isolated mutually and from the internal circuit.

Contact input: No-voltage contact (ON/0 V, OFF/5 V DC, 5 mA flowing at ON)

Remote range switch, auto calibration remote start, remote holding, average value resetting, pump ON/OFF Isolated from the internal circuit with photocoupler. Contact inputs are not isolated from one

another.

Transmission output: Solenoid valve drive signal for automatic calibration.

Transistor output (100 mA or less)

Power supply: Voltage rating; 100 to 240 V AC

Allowable range; 85 to 264 V AC Frequency; 50/60 Hz Power consumption; 250 VA max.

Inlet; Conform to EN60320

Protection Class I type

Operation conditions: Ambient temperature; -5 to 45°C

Ambient humidity; 90% RH max., non-condensing

Storage conditions: Ambient temperature; -20 to 60°C

Ambient humidity; 90%RH max., non-condensing

Dimensions (H´W´D): Analyzer main unit; 177 x 483 x 578 mm (Excluding handles.)

Input/Output terminal module; 164 x 318 x 55 mm

Weight: Approx. 22 kg (only Analyzer)

Finish color: Front panel; Off-white (Munsell 10Y7.5/0.5 or equivalent)

Casing; Steel-blue (gray)

Enclosure: Steel casing, for indoor use

Material of gas-contacting parts: Gas inlet/outlet; SUS304

Sample cell; SUS304,chloroprene rubber Infrared-ray transmitting window; CaF2

O₂ sensor sample cell : SUS316 Internal piping; Toaron, Teflon

Gas inlet/outlet: Rc1/4 or 1/4 NPT internal thread

Purge gas flow rate: 1 L/min (when required)

Safety and EMC conforming standards:

Installation altitude: 2000 m or less Pollution degree: 2 (Note) Installation category: II (Note)

Note: Installation category, called over-voltage category, specifies impulse withstanding voltage.

Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor environment

Safety: EN61010-1

EMC: EN61326-1 Class A, (For use in industrial locations),

EN61326-2-3, EN61000-3-2, EN61000-3-3

EMC Regulatory Arrangement in Australia and New Zealand

Note: The product mounted in a steel enclosure conforms to the requirements of EMC directive.

! CAUTION

This instrument is a Class A product, and it is designed for use in the industrial environment. Pleaseuse this instrument in the industrial environment only.

2. Standard Functions

Output signal holding: Output signals are held during manual and auto calibrations by

activation of holding (turning "ON" its setting).

The values to be held are the ones just before start calibration mode or setting value. It is selectable. Indication of instantaneous values

will not be held.

Remote output holding: Output signal is held at the latest value or setting value by short-

circuiting the remote output holding input terminals. Holding is maintained while the terminals are short-circuited. Indication of

instantaneous values will not be held.

Switch ranges: The switch ranges is available in manual, auto, and remote modes.

Only preset switch method is effective.

Manual: Allows range to switch by key operation.

Auto: Allows range to switch from low to high range when 90%FS or more

is available in the low range.

Allows range to switch from high to low range when 80%FS or less

is available in the low range.

Remote: No-voltage contact input (for measurable components)

Allows range to switch via an external signal when remote range

switch input is received.

When the contact input terminals for each component are short-circuited, the first range is selected, and it is switched to the second

range when the terminals are open.

Range identification signal: The present measuring range is identified by a contact signal.

The contact output terminals for each component are short-circuited when the first range is selected, and when the second range is

selected, the terminals are open.

Auto calibration: Auto calibration is carried out periodically at the preset cycle.

When a standard gas cylinder for calibration and a solenoid valve for opening/closing the gas flow line are prepared externally by the customer, calibration will be carried out with the solenoid valve drive contacts for zero calibration and each span calibration turned

on/off sequentially at the set auto calibration timing.

Measurable component and range - availability check table -

Table 9.1 Single-component analyzer (NO, SO₂, CO₂, CO or CH₄)

	2nd range	А	В	С	D	W	E	F	G	Н	J
1st	range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm	0-1%
V	0-20ppm	0	0	0	0	0	0	_	_	_	_
Α	0-50ppm	_	☆ □◎○	☆ □◎○	☆ □◎○	☆ □◎○	☆ □◎○	☆ □⊚○	_	_	_
В	0-100ppm	_	_	☆ □◎○	☆ □◎○	☆ □◎○	☆□◎○	☆ □◎○	☆□◎○	_	_
С	0-200ppm	_	_	_	☆ □◎○△	_					
D	0-250ppm	-	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □⊚○△	- 1
W	0-300ppm	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □◎○△	- 1
Е	0-500ppm	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	☆ □◎○△	
F	0-1000ppm	_	_	_	_	_	_	_	☆ □◎○△	☆ □◎○△	
G	0-2000ppm	_	_	_	_	_	_	-	_	☆ □◎○△	
Н	0-5000ppm	_	_	_	_	_	_	-	_	_	
J	0-1%	_	_	_	_	_	_	-	_	_	- 1
K	0-2%	_	_	_	_	_	_	-	_	_	- 1
L	0-3%	_	_	_	_	_	_	_	_	_	- 1
M	0-5%	_	_	_	_	_	_	_	_	_	-
Р	0-10%	_	_	_	_	_	_	_	_	_	-
Q	0-20%	_	_	_	_	_	_	_	_	_	_
R	0-40%	_	_	_	_	_	_		_	_	
S	0-50%	_	_	_	_	_	_	_	_	_	-
Т	0-70%	_		_	_	_		_	_	_	
U	0-100%	_	_	_	_	_	_	_	_	_	_

	2nd range	K	L	М	Р	Q	R	S	Т	U
1st	range	0–2%	0–3%	0–5%	0–10%	0-20%	0-40%	0-50%	0–70%	0-100%
٧	0-20ppm	_	_	_	_	_	_	_	_	_
Α	0-50ppm	_	_	_	_	_	_	_	_	_
В	0-100ppm	_	_	_	_	_	_	_	_	_
С	0-200ppm		_	_	_	_		_	_	_
D	0-250ppm		_	_	_	_		_	_	_
W	0-300ppm	1	_	_	_	_		_	_	_
Е	0-500ppm	-	_	_	_	_	-	_	_	_
F	0-1000ppm		_	_	_	_	_	_	_	_
G	0-2000ppm			_	_	_	_	_	_	_
Н	0-5000ppm					_	ı	_	_	_
J	0-1%					@OA	ı	_	_	_
Κ	0–2%	İ				©○△	©○△	_	_	_
L	0-3%	İ	_			©○△	©○△	©O∆	_	_
М	0-5%	ĺ	_	_		©○△	©○△	©O∆	©○△	©O∆
Р	0-10%	ĺ	_	_	_	©○△	©○△	©O∆	©O∆	©O∆
Q	0–20%		_	_	_	_	@OA	©O∆	@OA	@OA
R	0-40%	_	_	_	_	_	-	©O∆	@OA	@OA
S	0-50%	_	_	_		_	_	_	@OA	@OA
Т	0–70%	_	_	_	_	_	_	_	_	©O∆
U	0-100%	_	_	_	_	_	_	_	_	©O∆

^{©:}CO₂ analyzer measurable range □:SO₂ analyzer measurable range ★:NO analyzer measurable range

T03-2.ai

Table 9-2 Double-component analyzer (NO and SO₂)

			2nd comp	onent (SO ₂),	1st range	→ SO ₂					
1	st o	component	Α	В	С	D	W	Е	F	G	Н
1) ↓	VO),1st range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm
	Α	0-50ppm	O*1	O*2	O*2	O*2	O*2	O*2	O*2	O*2	_
	В	0-100ppm	O _{*3}	O*4	O*4	O*4	O*4	O*4	O*4	O*4	_
	С	0-200ppm	O _{*3}	O*4	○*5	O*5	○*5	O*5	○*5	O*5	○*5
\	D	0-250ppm	O,3	O*4	○*5	○*5	○*5	○*5	O*5	○*5	○*5
NO	W	0-300ppm	O _{*3}	O*4	○*5	○*5	○*5	○*5	O*5	○*5	○*5
	Е	0-500ppm	○,3	O*4	○*5	O*5	○*5	○*5	O*5	○*5	○*5
	F	0-1000ppm	O,3	O*4	O*5	O*5	O*5	○*5	O*5	○*5	○*5
	G	0-2000ppm	O _{*3}	O*4	○*5	O*5	O*5	○*5	○*5	○*5	○*5
	Н	0-5000ppm	_	_	○*5	○*5	○*5	○*5	○*5	○*5	○*5

^{○:} Double components measurable range. 1st component; NO, 2nd component; SO₂.

T04.EPS

¹st range (low range) must meet the combination in above table.

^{*1. 2}nd range of both NO and SO₂ measurements are available up to 1000 ppm.
*2. 2nd range of NO and SO₂ measurements are available up to 1000 ppm and 2000 ppm, respectively.
*3. 2nd range of NO and SO₂ measurements are available up to 2000 ppm and 1000 ppm, respectively.

^{*4. 2}nd range of both NO and SO₂ are available up to 2000 ppm.

^{*5. 2}nd range of both NO and SO₂ are available up to 5000 ppm.

Table 9.3 Two-component analyzer (NO and CO)

Both NO and CO analyzer must meet the range in Table 9.1; Single component analyzer.

Table 9.4 Two-component analyzer (CO₂ and CO)

	_		2nd compone	ent (CO), 1st rar	nge —	СО						
		mponent	Α	В	С	D	W	E	F	G	Н	J
(CC)2),	1st range	0-50 ppm	0-100 ppm	0-200 ppm	0-250 ppm	0-300 ppm	0-500 ppm	0-1000 ppm	0-2000 ppm	0-5000 ppm	0-1 %
	Α	0-50 ppm	0	0	0							
	В	0-100 ppm	0	0	0	0	0	0				
	C	0-200 ppm	0	0	0	0	0	0				
CO ₂	D	0-250 ppm						0				
	П	0-300 ppm						0				
	Ε	0-500 ppm						0	0			
	F	0-1000 ppm							0			
	G	0-2000 ppm		□× 2.5	□× 2.5	□× 2.5	□× 2.5	□×5	□× 10	□× 10	0	0
	Н	0-5000 ppm		□×1	□×1	□×1	□×1	□×2	□×4	□×4	0	0
	J	0-1%						□×1	□×2	□×2	□× 10	0
	Κ	0-2%							□×1	□×1	□×5	□× 10
	L	0-5%									□×2	□×5
	М	0-10%	□×2	□×2	□×2	□×2	□×2	□×2	∆×2×10	△×2×5	□×2	□×5
	N	0-20%	□× 1	□×1	□×1	□×1	□×1	□×1	△×1×10	△×1×5	□×1	□×1

 \bigcirc \square \triangle : Double components measurable. 1st component ; CO₂, 2nd component ; CO.

Note: 1st range (low range) must meet the combination in above table. (For 0-200 ppm range, measurement is available up to 25 times.)

2nd range, \bigcirc is specified; both CO₂, and CO measurements are available up to 20 times of the 1st range.

CO₂ measurement is available up to the ratio written after the ☐mark.

 \triangle is specified; both CO₂ and CO measurements are available up to ratio written after the \triangle mark.

The ratio, first value is for CO2, second value is for CO.

Example: $\triangle \times 2 \times 5$ means, 2nd range of CO₂ is available up to double of 1st range, 2nd range of CO is available up to 5 times of 1st range. \times 1 means only 1st range.

Table 9.5 Three-component analyzer (NO + SO₂ + CO)

See Table 9.2 for NO + SO_2 measurement of three-component analyzer (NO + SO_2 + CO). See Table 9.1 for CO measurement.

Table 9.6 Four-component analyzer (NO + SO₂ + CO₂ + CO)

See Table 9.2 for NO + SO₂ measurement and Table 9.4 for CO₂ + CO measurement.

Table 9.7 O₂ analyzer

ı		2nd range	2	3
ı	1st	range	0-10%	0-25%
ı	1	0-5%	ОΔ	ΟΔ
ı	2	0-10%	_	ОД
ı	3	0-25%	_	ОД

T06.ai

- ○: Built-in O₂ analyzer measurable range
- $\dot{\triangle}$: External zirconia type O_2 analyzer (in this case, Yokogawa's ZX8D Style C) measurable range

^{*}O₂ analyzer is selectable independently of combination with other components.

STANDARD ACCESSORIES

Name	Pert Number	Description	Qty
Power cable	K9218SA	standard inlet type (2.5 m)	1
Fuse	K9218SB	replacement fuse (250 V AC, 3.15 A, delay type) ×1	2
Input/Output terminal module	K9218SC	External terminal module	1
Cable	K9218SD	Connection cable between main unit and input/output terminal module (1 m)	1
Slide rail	K9218SE	Slide rail	2

Note: Quantity in this is number of accessories supplied as standard. For instance, two K9218SE parts, i.e., two slide rails, are supplied as standard. When ordering separately, the required number of should be considered.

Dedicated Zirconia O, Sensor (to be purchased separately)

For O_2 correction, the IR400 can accept linearized 0 to 1 V DC signal coming from an analyzer calibrated to 0 to 25% O_2 of full scale. Dedicated zirconia O_2 sensor , Model ZX8D, is available from Yokogawa.

Measuring method: Zirconia system Measurable component and measuring range:

Measurable component	Minimum range	Maximum range	
Oxygen (O ₂)	0-5 vol%	0-25 vol%	

Repeatability: Within \pm 0.5% of full scale Linearity: Within \pm 1% of full scale

Zero drift: Within \pm 1% of full scale/week Span drift: Within \pm 2% of full scale/week

Response time: Approx. 20 seconds (for 90% response)

Measured gas flow rate: 0.5 ± 0.25 L/min

Remark: The Zirconia system, due to its principle, may produce a measuring error

due to relative concentration versus the combustible O_2 gas concentration. Also, a corrosive gas (SO_2 of 250 ppm or more, etc.) may affect the life of

the sensor.

Gas inlet/outlet size: Rc1/4

Power supply: 90 to 126 V AC or 200 to 240 V AC, 50/60 Hz

Enclosure: Steel casing, for indoor application

Indication: Temperature indication (LED)

Temperature alarm output: Contact output 1a contact,

Contact capacity 220 V AC, 1 A (resistive load)

Safety and EMC conforming standards:

Installation altitude: 2000 m or less

Pollution degree : 2 (Note) Installation category: II (Note)

Note: Installation category, called over-voltage category, specifies impulse withstanding voltage.

Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor

environment.

Safety: EN61010-1

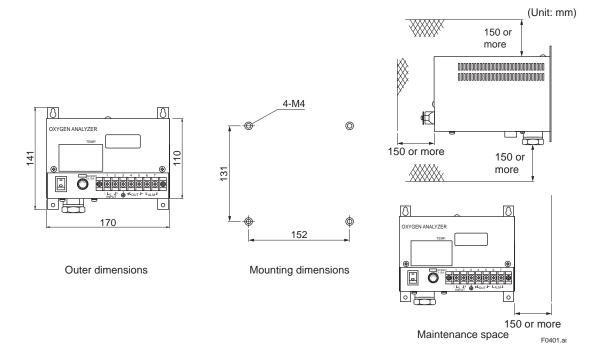
EMC: EN61326-1 Class A, (For use in industrial locations),

EN61326-2-3, EN61000-3-2, EN61000-3-3

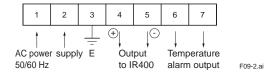
EMC Regulatory Arrangement in Australia and New Zealand

Note: The product mounted in a steel enclosure conforms to the requirements of EMC directive.

CAUTION


This instrument is a Class A product, and it is designed for use in the industrial environment. Pleaseuse this instrument in the industrial environment only.

Dimensions (H x W x D): 140 x 170 x 190 mm


Weight: Approx. 3 kg
Finish color: Munsell 5Y 7/1

Model	Suffix code		Option code	Description
ZX8D				Dedicated zirconia O ₂ sensor
Power supply	-5 -3			90-126 V AC, 50/60 Hz 200-240 V AC, 50/60 Hz
Style code		*C *D		Non-CE conformity CE conformity

External Dimensions of ZX8D

External Connection Diagram

NO₂/NO Converter

Part number: K9350LE (Non-CE conformity), K9350LF (CE conformity)

Mounting: Indoor surface mounting

Target Gases: General boiler exhaust gas, atmosphere

Catalyst: Amount; 2 cm³

Replacement cycle; Approx. 8 months (at flow rate of 0.5 L/min with 5%O₂, 10 ppm NO)

Temperature setpoint; 220 ±5°C (Sensing tip: K thermocouple)

Wetted materials: Ceramic, Viton, glass filter, SUS316

Conversion efficiency: 90% or higher, conforms to JIS

Gas Flow Rate: 0.5 L/min

Ambient Temperature: -5 to +45°C

Power Supply: 100 VAC, 50/60 Hz (K9350LE), 100 to 240 VAC, 50/60 Hz (K9350LF)

Power Consumption: Approx. 85 VA Safety and EMC conforming standards:

Installation altitude: 2000 m or less

Pollution degree: 2 (Note)
Installation category: II (Note)

Note: Installation category, called over-voltage category, specifies impulse withstanding voltage.

Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor

environment.

Safety: EN61010-1

EMC: EN61326-1 Class A, (For use in industrial locations),

EN61326-2-3, EN61000-3-2, EN61000-3-3

EMC Regulatory Arrangement in Australia and New Zealand

Note: The product mounted in a steel enclosure conforms to the requirements of EMC directive.

! CAUTION

This instrument is a Class A product, and it is designed for use in the industrial environment. Pleaseuse this instrument in the industrial environment only.

Weight: Approx. 1.1 kg (K9350LE), Approx. 1.2 kg (K9350LF)

Sample gas requirements: Dust/drain removed, gas temperature at 150°C or less

One-year-Use Spare Parts

Item	Part No.	Qty
Catalyst for NO ₂ /NO converter	K9350LP	2
Glass wool for NO ₂ /NO converter	K9350LQ	2
Fitting for NO ₂ /NO converter	K9350LV	2