
### THERMAL PRINTER MECHANISM

# Mini-Printer CM-RMBC CM-RMDG

**User Manual** 

# **Reference 3105978-Z**

April 2000



AXIOHM, 1-9 Rue d'Arcueil 92120 Montrouge, France Tel : (33) (0) 1 47 46 78 00 Fax (33) (0) 1 47 46 78 76



# **IMPORTANT**

This manual contains the basic instructions to run your printer. Read it carefully before using your printer paying full attention to section concerning recommendations .

| CM-RM Series User Manual | Page 2/43 | Ref: 3105978 Z |
|--------------------------|-----------|----------------|
|                          |           |                |



### **TABLE OF CONTENTS**

| 1. UNP                                                   | ACKING                                                                                                                                                                     | 5                          |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. OVE                                                   | RVIEW                                                                                                                                                                      | 5                          |
| 3. MEC                                                   | HANICAL SPECIFICATIONS                                                                                                                                                     | 6                          |
| 3.1. G                                                   | eneral description                                                                                                                                                         | 6                          |
| 3.2. D                                                   | imensions of the complete mechanism:                                                                                                                                       | 6                          |
| 3.3. M                                                   | Iechanical views                                                                                                                                                           | 7                          |
| 4. ELEC                                                  | CTRICAL SPECIFICATIONS                                                                                                                                                     | 11                         |
| 4.1. N                                                   | ominal Power supply                                                                                                                                                        | 11                         |
| 4.2. N                                                   | ominal Consumption                                                                                                                                                         | 11                         |
| <b>4.3. D</b> 4.3.1. 4.3.2. 4.3.3. 4.3.4.                | Function of printhead Function of each 64 bit IC (integrated circuit) Operation of the complete module Electrical specifications of 64-BIT LSI driver Printhead Connection | 11<br>12<br>13<br>14<br>17 |
| <b>4.4.</b> U: 4.4.1. 4.4.2. 4.4.3.                      | Inipolar paper feed motor General specification Connection Induction sequence                                                                                              | 19<br>19<br>19<br>19       |
| <b>4.5. B</b> i 4.5.1. 4.5.2. 4.5.3. 4.5.4.              | ipolar paper feed motor General specification Connections Induction sequence and timing Bipolar stepping motor electric control                                            | 20<br>20<br>20<br>21<br>22 |
| 4.6. Bi 4.6.1. 4.6.2. 4.6.3. 4.6.4. 4.6.5. 4.6.6. 4.6.7. | ipolar cutter motor Overview General specification Connection Induction sequence Cutter Initialisation Cutter Motor Acceleration Ramp-Up Cutter Driving Chart              | 23 23 23 23 23 23 25 25    |
| 4.7.1.<br>4.7.2.                                         | General specification Connection                                                                                                                                           | 27<br>27<br>27             |
| <b>4.8. O</b> 4.8.1. 4.8.2. 4.8.3.                       | Pto-sensor specification Electrical characteristics Connection External circuit                                                                                            | 27<br>27<br>28<br>28       |

Page 3/43

CM-RM Series User Manual

Ref: 3105978 Z



| 5. PF | RINTER CONTROL TECHNIQUES                       | 29 |
|-------|-------------------------------------------------|----|
| 5.1.  | Mode 1                                          | 29 |
| 5.2.  | Mode 2                                          | 30 |
| 5.3.  | Mode 3                                          | 31 |
| 6. RE | ECOMMENDATIONS                                  | 32 |
| 6.1.  | Mechanical recommendations                      | 32 |
| 6.2.  | Housing design recommendations                  | 32 |
| 6.3.  | Energising & de-energising printer              | 32 |
| 6.4.  | Printing recommendations                        | 32 |
| 6.5.  | Recommendations for paper                       | 33 |
| 6.6.  | General                                         | 33 |
| 6.7.  | Cleaning recommendations                        | 33 |
| 6.8.  | Special recommendation for cutter               | 34 |
| 7. P  | APER SUPPLIERS                                  | 35 |
| 8. SF | PARE PARTS                                      | 35 |
| 9. AF | PPENDICES                                       | 36 |
| 9.1.  | APPENDIX 1: THERMISTOR SPECIFICATIONS           | 36 |
| 9.2.  | APPENDIX 2: Paper specification                 | 38 |
| 9.3.  | APPENDIX 3: Heating time and historical control | 39 |
| 9.4.  | APPENDIX 4: CHANGE PRINTHEAD                    | 42 |
| 9.5   | APPENDIX 6 · PRODUCT NAME & CODIFICATION        | 43 |



### 1. UNPACKING

Each printer mechanism is packaged in an antistatic bag. Observe precautions for handling in electrostatic protected areas.

### 2. OVERVIEW

Based on static thermal printing technology, the RM series is a family of user-friendly, highly reliable devices which have been specially designed to fit in the minimum space.

CMxx: Printer only or printer with optional tear bar cover

RMxx: Printer with robust guillotine cutter

Very small size printer and cutter
Silent mechanism
Option of 4 dots/mm or 8 dots/mm print-heads
Easy to connect (only one connector for motor, printhead, opto-sensor and cutter)
Front and bottom paper introduction possible

#### SUMMARY OF PRINTER SPECIFICATIONS

| ITEM                                                    | VALUE             |                   | UNITS                    |
|---------------------------------------------------------|-------------------|-------------------|--------------------------|
|                                                         | CM-RMBC           | CM-RMDG           | -                        |
| Printing method                                         | Static thermal of | lot line printing | -                        |
| Number of resistor dots                                 | 192               | 384               | -                        |
| Resolution                                              | 4                 | 8                 | Dots/mm                  |
| Printing width                                          | 4                 | 8                 | mm                       |
| Paper width                                             | 6                 | 0                 | mm                       |
| Head temperature detection                              | By The            | rmistor           | -                        |
| Number of steps / dot line                              | 2                 | 1                 | -                        |
| Paper feed / dot line                                   | 0.250             | 0.125             | mm                       |
| Paper empty detection                                   | Opto-sensor       |                   | -                        |
| Operating voltage range Vcc (logic)                     | 4.75-5.25         |                   | V DC                     |
| Operating voltage range Vch (dot)                       | 20 - 28           | 20 - 26.4         | V DC                     |
| Peak printhead current (all dots "on" at nominal value) | 8.25              | 8.8               | A                        |
| Current consumption: V ch (at nominal value)            | 43                | 23                | mA per resistor dot "on" |
| Current consumption: V cc (at nominal value)            | 160               | 100               | μΑ                       |

| CM-RM Series User Manual | Page 5/43 | Ref: 3105978 Z |
|--------------------------|-----------|----------------|



| Current consumption:<br>Stepping motor for paper feed | 320 (600 bipolar)                   |                  | mA                              |
|-------------------------------------------------------|-------------------------------------|------------------|---------------------------------|
| Current consumption:<br>Stepping motor for cutter     | 500 (1000 bipolar)                  |                  | mA                              |
| Storage range                                         | - 20 t                              | o + 60           | °C                              |
| Operating range                                       | -10 to 50 for CMBC                  | 0 to 50 for CMDG | °C                              |
|                                                       | 0 to +50 version with cutter RM**   |                  |                                 |
| Electrical life time*                                 | $1.2 \times 10^8$ xMBC $10^8$ xMDG  |                  | pulses                          |
| Mechanical life time*                                 | 50 50                               |                  | Km                              |
| Relative Humidity (operating)                         | 20 to 85 no condensing              |                  | %                               |
| Recommended paper                                     | 2320061 / WS 752-57 (60μ)           |                  | Axiohm reference / Arjo Wiggins |
| Maximum paper thickness                               | 80                                  |                  | μ                               |
| Cutter life time (RMxx)                               | 1 000 000 cuts (with paper 2320061) |                  |                                 |

<sup>\*</sup> Per AXIOHM standard test conditions (which are mainly: 24V, 25°C, dot printing duty cycle = 30 %)

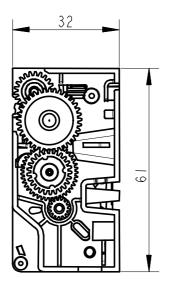
## 3. MECHANICAL SPECIFICATIONS

### 3.1. General description

The mechanism consists in:

- Plastic chassis
- Robust guillotine cutter (with relevant motor and switch) for RM versions
- Stepping motor
- Gear train
- Printhead
- End of paper opto-sensor

### 3.2. Dimensions of the complete mechanism:


 $\label{eq:cmax} Height: 32 (CMxx) / 36 (CMxx with cover) / 42.1 mm (RMxx) \\ Depth: 61 (CMxx) / 62.5 (CMxx with cover) / 65.75 mm (RMxx) \\ Width (without rewinder option). \\ 74.5 (CMxx) / 74.5 mm (RMxx)$ 

| CM-RM Series User Manual | Page 6/43 | Ref: 3105978 Z |
|--------------------------|-----------|----------------|



## 3.3. Mechanical views

Fig. 1 CM without cover dimensions



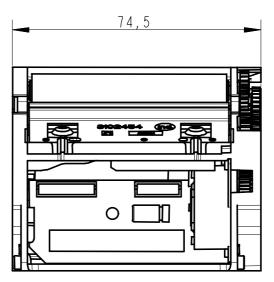
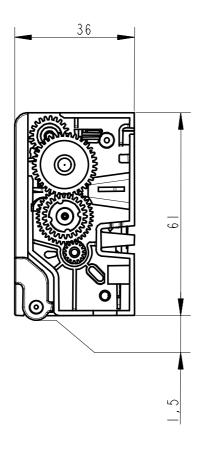




Fig. 2 CM with cover dimensions



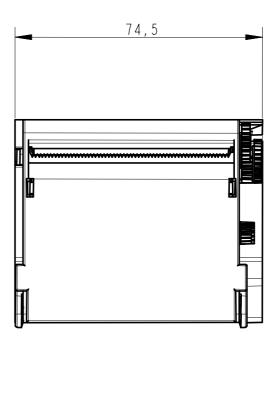





Fig. 3 Side view with cover

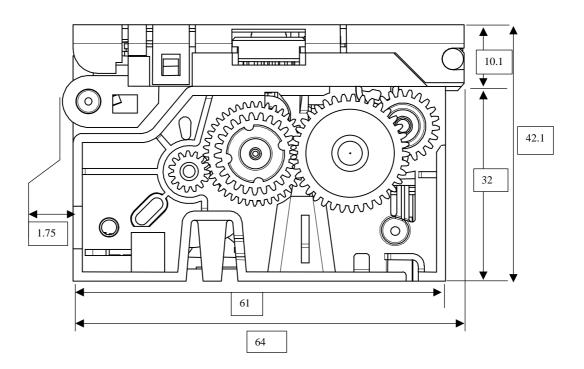



Fig. 4 front view with cover

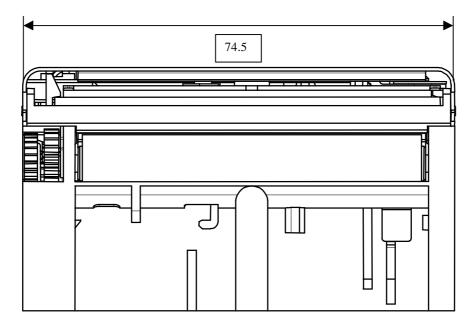
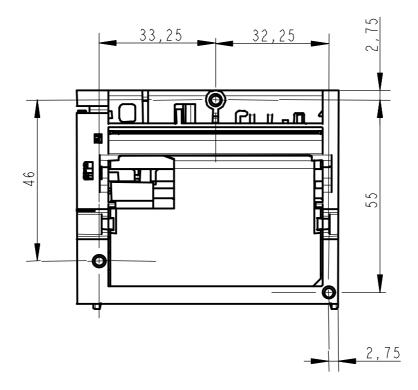






Fig. 5 bottom view / fixing holes



Use self threader screws for plastic, the fixing holes diameter being 2.5 mm, use a maximum diameter of 3 mm for screws and a maximum depth in chassis of 7 mm (from the external edge of holes).



Fig. 4 cutter top view

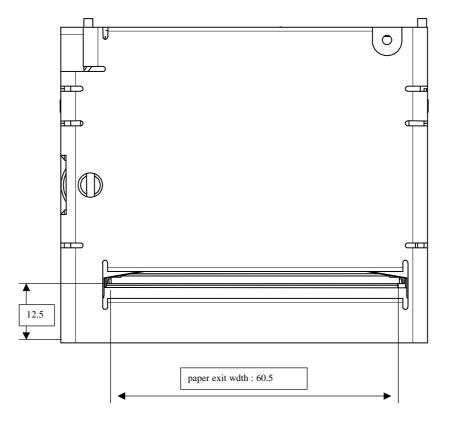
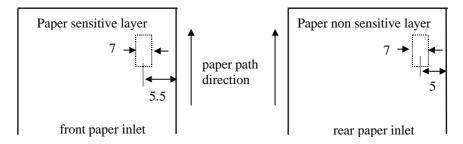




Fig. 5 Opto- sensor position

The position of the end of paper opto-sensor relatively to the paper allows top off form detection





# 4. ELECTRICAL SPECIFICATIONS

# 4.1. Nominal Power supply

| Printer                                | CM-RMBC<br>CM-RMDG | Units        |
|----------------------------------------|--------------------|--------------|
| Printhead :<br>Logic (Vcc)<br>Dot line | 5<br>24            | V DC<br>V DC |
| Stepping motor                         | 24                 | V DC         |

# 4.2. Nominal Consumption

| Printer                                                             | RMBC                        | RMDG | Units |
|---------------------------------------------------------------------|-----------------------------|------|-------|
| Printhead:                                                          |                             |      |       |
| Heating                                                             |                             |      |       |
| current / dot                                                       | 43                          | 23   | mA    |
| (Vch) at nominal values                                             |                             |      |       |
| Logic current / dot (Vcc)                                           | 160                         | 100  | μА    |
| Stepping Motor (2 activated phases) for paper feed                  | 320 unipolar<br>600 bipolar |      | mA    |
| Stepping Motor (2 activated phases) for versions with cutter (RMxx) | 1000 bipolar                |      | mA    |
| Maximum instantaneous current per dot line (at 24V)                 | 8.25                        | 8.8  | A     |

# 4.3. Description of printhead

| Printer                                                                  | CM-RMBC      | CM-RMDG      | UNIT   |
|--------------------------------------------------------------------------|--------------|--------------|--------|
| Driver chips<br>(64 bit BiCMos LSI)                                      | 3            | 6            | -      |
| Nominal dot resistance                                                   | 530 (± 15 %) | 1000 (± 3 %) | ohms   |
| Nominal dot energie (in standard conditions)                             | 2.0          | 0.8          | mJ     |
| Max printing speed (with 24V power supply) (with dot historical control) | 8            | 8            | cm/sec |

| CM-RM Series User Manual | Page 11/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|
|                          |            |                |



## 4.3.1. Function of each 64 bit IC (integrated circuit)

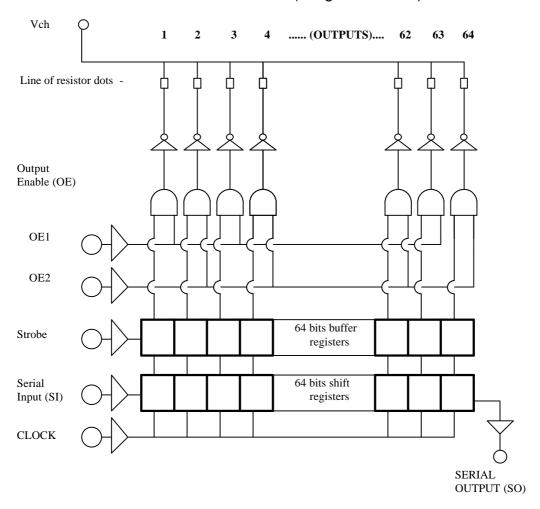



Fig.6 Driver IC schematic

| These circuits are supplied by | 5V +/- 5% logic voltage           |  |
|--------------------------------|-----------------------------------|--|
| Each circuit features          | 64 open collector transistors     |  |
|                                | 64-bit shift register             |  |
|                                | 64-bit memory register            |  |
| Each circuit controls          | 64 resistor dots on the printhead |  |

The heating element power supply VCH is not connected to the Driver ICs but only to the resistive line of dots itself. The driver ICs are connected via a pattern of high current gold interconnecting traces to the line of resistor dots.

The dot line is of the interdigitated type, in order to maintain the tight definition of the dot geometry and resistance. In such a scheme the heating element power supply VCH forms a 'comb' of traces over which the resistive line of dots is laid. The outputs of the driver ICs form a second comb interdigitated with the first.

| CM-RM Series User Manual | Page 12/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



## 4.3.2. Operation of the complete module

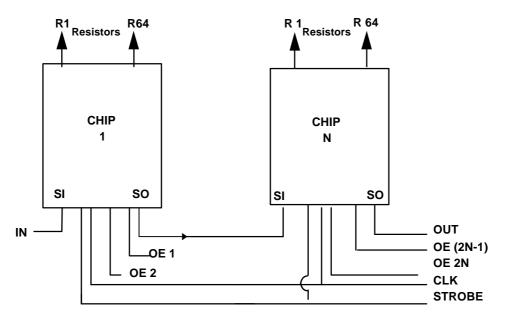



Fig.7

- Data to be printed is clocked into a shift register formed by cascading "n" chips.
- E.g. 384 dot head uses 6 chips with the SO output of chip 1 used as the SI input for chip 2 etc. Respectively, the SO output of chip 2 is used as the SI input for chip 3 etc.

After 384 clocks, the initial piece of data entered corresponds to the last (384<sup>th</sup>) dot of the line (the R64 output of the 6<sup>th</sup> chip). The last bit of data entered will correspond to the first dot of the line(R1 of the first chip).

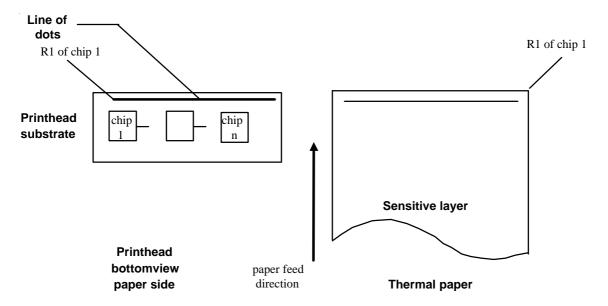



Fig.8 Routing of data to the resistor dots

| CM-RM Series User Manual | Page 13/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



# 4.3.3. Electrical specifications of 64-BIT LSI driver

## 4.3.3.1. General

|                                | CM-RMBC |     | CM-F  |      |      |
|--------------------------------|---------|-----|-------|------|------|
| PARAMETER                      | MIN     | MAX | MIN   | MAX  | UNIT |
| Max.voltage at outputs 1 to 64 | -0.5    | 28  |       | 26.4 | V    |
| Max.input voltage              | -0.5    | 7   |       | Vch  | V    |
| Max.output current/dot*        | - 60    |     | -27.3 |      | mA   |
| Total max.output current *     | - 2.9   |     | -1.7  |      | A    |

<sup>\*</sup> $64 \times 60 \text{ mA} \times 0.75 \% = 2.9 \text{ A} \text{ (for RMBC)}$ 

4.3.3.2. Other

The specifications given below are given for the following conditions:

- Room temperature

- Logic voltage on chip : 4.75 V < Vdd < 5.25 V,

- Clock frequency: 10 MHz (CM-RMBC) / 4MHz (CM-RMDG).

|                                             | CM-RMBC     |          | RM-R         |         |        |
|---------------------------------------------|-------------|----------|--------------|---------|--------|
| Logic Current (5 V)                         | Conditions  | Values   | Conditions   | Values  | Symb   |
| <b>Current per controlled element (dot)</b> | Vdd = 5V    | 160 μΑ   | -            | -       | Idd    |
| Min.high-level input voltage                |             | 2.8V     | Vcc = 5V     | 0.7Vcc  | Vih    |
| Max.low-level input voltage                 |             | 0.8 V    | $Vcc \le 5V$ | 0.3 Vcc | Vil    |
| Max.high-level input current                |             | +/-10µA  |              | 0.5μΑ   | Iih    |
| Max.low-level input current                 |             | +/-10 μA |              | 0.5μΑ   | Iil    |
| Min.high-level output voltage               | Io = Iohmax | 2.8 V    | Vcc = 4.5    | 4.45 V  | Voh    |
| Max.low-level output voltage                | Io = Iolmax | 0.4 V    | Vcc = 4.5    | 0.05 V  | Vol    |
| Max.high-level output current               |             | 0.1 mA   | -            | -       | Iohmax |
| Max.low-level output current                |             | -0.5 mA  | -            | -       | Iolmax |

| Heating current (xMBC)   | Conditions   | Values  | Symb    |
|--------------------------|--------------|---------|---------|
| Max.power output current | Vdon=Vdonmax | -60 mA  | Idomax  |
| Max.output leakage       | Vdon=24 V    | 1 μΑ    | Idoleak |
| current                  |              |         |         |
| Max.output voltage       | Idout=Idomax | 1300 mV | Vdonmax |
| Deviation for Vdonmax    |              | 200 mV  | dVdon   |

| CM-RM Series User Manual | Page 14/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



# 4.3.3.3. Timing

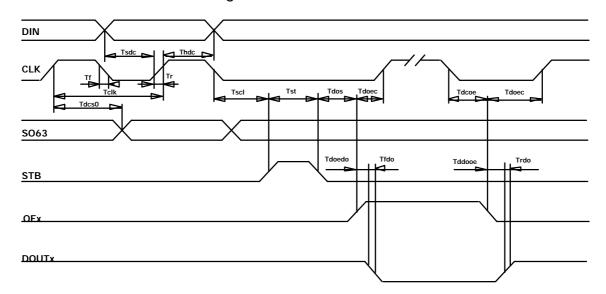



Fig.9 Timing Diagram for CM-RMBC

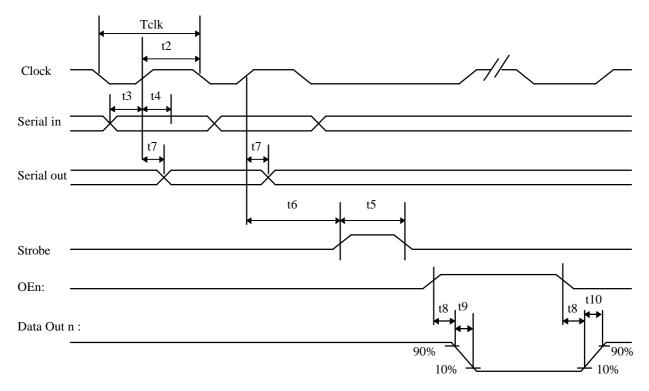



Fig.10 Timing diagram for CM-RMDG

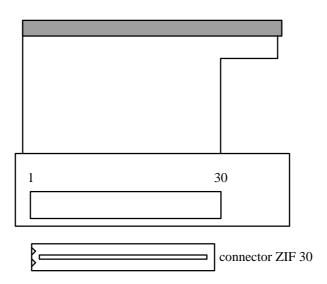
| CM-RM Series User Manual | Page 15/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



|             |                                     | CM-I | RMBC | CM-F | RMDG |    |
|-------------|-------------------------------------|------|------|------|------|----|
| Sym         | Description                         | Min  | Max  | Min  | Max  | Un |
|             |                                     |      |      |      |      | it |
| Tclk        | Serial clock period                 | 100  |      | 250  |      | ns |
| Tr, Tf      | Rise, fall time f clock, 10% -> 90% |      | 10   | -    | -    | μs |
| Tdoec       | Clock to OE delay time              | 10   |      | -    | -    | μs |
| Tdcoe       | OE to clock delay time              | 100  |      | -    | -    | ns |
| Tsdc / t3   | Data in to clock setup time         | 20   |      | 50   |      | ns |
| Thdc / t4   | Data in from clock hold time        | 20   |      | 10   |      | ns |
| Tdcs0 / t7  | Serial data out from clock delay *  |      | 80   |      | 120  | ns |
| Tdcs1       | Serial data out from clock delay ** |      | 110  | -    | -    | ns |
| Tscl / t6   | Clock to strobe delay time          | 100  |      | 100  |      | ns |
| Tst / t5    | Strobe high time                    | 100  |      | 100  |      | ns |
| Tdos        | Strobe to OE delay time             | 100  |      | -    | -    | ns |
| Tdoedo / t8 | OE to data out delay time ***       |      | 0.25 |      | 2    | μs |
| Tfdo / t9   | Data out fall time, 10% -> 90% ***  |      | 1    |      | 0.5  | μs |
| Tddooe      | OE to data out delay time ***       |      | 1    |      | -    | μs |
| Trdo / t10  | Data out rise time, 10% -> 90% ***  |      | 1    |      | 2    | μs |

- \*, \*\*, \*\*\* have to be considered only for CM-RMBC
- \* 10 pf load on output, all inputs Vil = Vss + 0.5V Vih = VDD 0.5V.
- \*\* 10 pf load on output, standard Vil and Vih.
- \*\*\* Vdd = 5V, Temp =  $25^{\circ}$ C, with a resistant load, R1 =  $500 \Omega$ , connected to 24V.Can not be measured. These parameters will be assured by design after characterisation of the prototypes.

#### TIMING RESTRICTIONS (CM-RMBC)


- No clock transistions may take place during Tscl, tst, Tdoes, Tdoec, and Tdcoe,
- Data input must change on the falling edge of the clk-input,
- Data must be stable during Tsdc, Tr and Thdc.



### 4.3.4. Printhead Connection

#### PINOUT OF ZIF 30 CONNECTOR

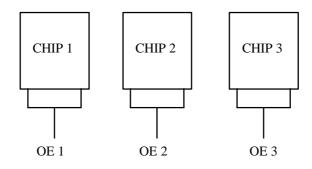
| PIN N° | SIGNAL                | PIN N° | SIGNAL              |
|--------|-----------------------|--------|---------------------|
| 1      | Vch                   | 16     | GND                 |
| 2      | Vch                   | 17     | GND                 |
| 3      | Cutter motor B2       | 18     | GND                 |
| 4      | Cutter motor B1       | 19     | GND                 |
| 5      | Cutter motor A1       | 20     | GND                 |
| 6      | Cutter motor A2       | 21     | Thermistor 1        |
| 7      | Switch Out            | 22     | Thermistor 2        |
| 8      | Anode Opto-sensor     | 23     | OE1                 |
| 9      | Collector Opto-sensor | 24     | Data In             |
| 10     | Data Out              | 25     | Paper feed motor B2 |
| 11     | Clock                 | 26     | Paper feed motor B1 |
| 12     | Strobe                | 27     | Paper feed motor A2 |
| 13     | OE3                   | 28     | Paper feed motor A1 |
| 14     | Vec                   | 29     | Vch                 |
| 15     | OE2                   | 30     | Vch                 |



This connector (fitted on your printer) should be connected to your board with a 30 pins flex to another compatible connector.

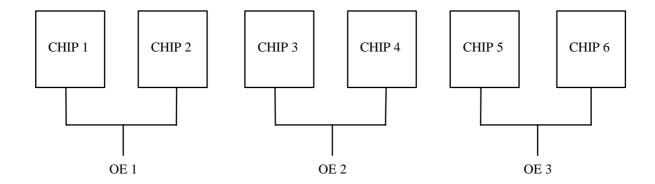
Compatible connectors suppliers and references: Molex 5597 3951 3304 straight connector

: Molex 5597 3951 3303 bent connector


: Stocko MZF 9390 60 3030 straight connector

: Stocko MZF 8900 60 3030 bent connector

| CM-RM Series User Manual Page 17/43 Ref: 3105978 Z |
|----------------------------------------------------|
|----------------------------------------------------|




Chip connection for 4 dots/mm print-head CM-RMBC ( 3 chips to connect )



**Fig.11** 

Chip connection for 8 dots/mm print-head CM-RMDG (  $6\ chips$  to connect )



**Fig.12** 



### 4.4. Unipolar paper feed motor

### 4.4.1. General specification

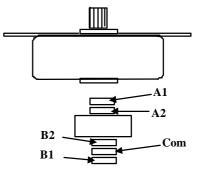
- Operating range : 20V < V < 28V (24V nominal)

- Coil resistance :  $150 \Omega \pm 10\%$ 

- Number of phases : 4

Drive method: 2 phases onCurrent drawn 160 mA per phase

Maximum starting frequency
Steps to initialize paper feed
Step angle:
Number of steps per revolution:


Acceleration table : this motor takes 20 steps to reach its maximum speed (  $1600~\mu s$  which means 600~pps and 75~mm/s). In this table the first row shows the motor pitch and the second one shows the motor phase time in  $\mu s$ .

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------|------|------|------|------|------|------|------|------|------|
| 2000 | 1997 | 1990 | 1981 | 1967 | 1950 | 1930 | 1908 | 1883 | 1858 |
|      |      |      |      |      |      |      |      |      |      |
| 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
| 1832 | 1806 | 1781 | 1757 | 1734 | 1715 | 1698 | 1683 | 1674 | 1667 |

#### 4.4.2. Connection

#### Connection to the PCB

| Wire color | Motor                           |
|------------|---------------------------------|
| black      | <b>A1</b>                       |
| brown      | A2                              |
| yellow     | B2                              |
| orange     | B1                              |
| empty      |                                 |
| red        | COM                             |
|            | black brown yellow orange empty |

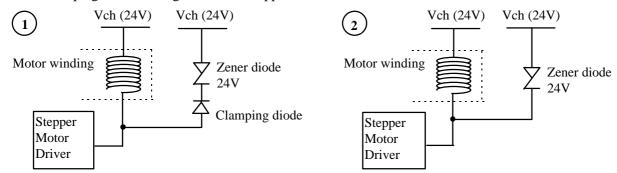


The PCB is then connected to the flexible containing all supply and control, see page 16.

### 4.4.3. Induction sequence

|        | BLACK | BROWN | ORANGE                                 | YELLOW | RED      |
|--------|-------|-------|----------------------------------------|--------|----------|
|        |       |       |                                        |        | RED      |
| Step 1 | -     |       |                                        | -      |          |
| Step 2 | -     |       | -                                      |        | <b>+</b> |
| Step 3 |       | -     | -                                      |        |          |
| Step 4 |       | -     |                                        | -      |          |
|        |       | _     | s negative where<br>floating except it |        |          |

| CM-RM Series User Manual | Page 19/43     | Ref: 3105978 Z |
|--------------------------|----------------|----------------|
|                          | - 1.61 - 1, 12 |                |




#### **External circuit**

#### **Examples:**

1 when clamping diode is not integrated to the stepper motor driver

2 when clamping diode is integrated to the stepper motor driver



Note: If the phase currents are switched to zero, the position in the sequence must be memorised. When the winding currents are re-applied the polarities corresponding to the last known position should be used. This ensures that the motor will re-start correctly. (this is still true for next chapter (bipolar motor))

#### 4.5. Bipolar paper feed motor

An optional bipolar motor is available for paper feed

#### 4.5.1. General specification

- Recommended control voltage: 24V

- Coil resistance :  $20 \Omega \pm 10\%$ 

- Number of phases : 4

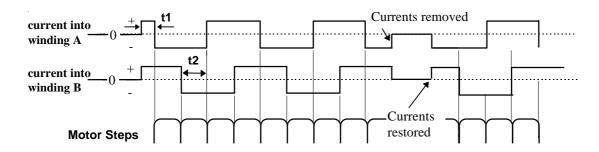
- Step angle: 7° 30'

- Paper feed for one printing line : 2 (CMBC) / 1 (CMDG)

- Recommended control current : 300 mA (peak)

- Maximum starting frequency: 500 pps

#### 4.5.2. Connections


| PIN n° | Wire color | Motor     | 1 ∭                    |
|--------|------------|-----------|------------------------|
| 1      | black      | <b>A1</b> |                        |
| 2      | brown      | A2        | A1 A2<br>B1 B2         |
| 3      | yellow     | B1        |                        |
| 4      | orange     | B2        | Wire length            |
| 5      | empty      |           | $60 \pm 10 \text{ mm}$ |
| 6      | empty      |           | ]                      |
| ,      |            | Connec    | tion to flexible       |



## 4.5.3. Induction sequence and timing

|        | BLACK | YELLOW | BROWN | ORANGE |
|--------|-------|--------|-------|--------|
| STEP 1 |       |        | +     | +      |
| STEP 2 | +     |        |       | +      |
| STEP 3 | +     | +      |       | _      |
| STEP 4 |       | +      | +     |        |

Voltage on cable is negative where shown as "-". Voltage on cable is positive where shown as "+".



- There are 4 different conditions for the motor windings:

The sequence is:

$$AB \Longrightarrow AB \Longrightarrow AB \Longrightarrow AB \Longrightarrow AB$$

Where

• This electrical sequence corresponds to a sequence of 4 consecutive mechanical positions. The sequence is repeated 12 times for each revolution.

$$- t1 = 0.4 \text{ ms}$$

$$- t2 = 2 ms$$

Motor initialisation

Once the initial winding currents have been applied they must be maintained for a time t1. Once this time has passed the motor may be operated by changing the winding currents in the usual way.

The same acceleration table can be used for bipolar motor than for unipolar motor (see page 18)

To take-up the play in the gears it is necessary to operate the motor for 16 steps before starting to print.

| CM-RM Series User Manual Page 21/43 Ref: 3105978 Z | CM-RM Series User Manual | Page 21/43 | Ref: 3105978 Z |
|----------------------------------------------------|--------------------------|------------|----------------|
|----------------------------------------------------|--------------------------|------------|----------------|



## 4.5.4. Bipolar stepping motor electric control

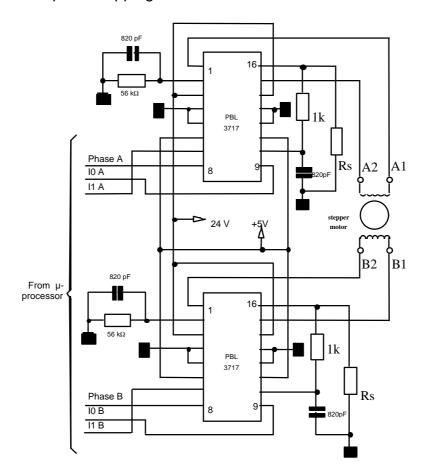



Fig.13 Example

Note 1: Rs: resistors of 0.8 ohm with I0A and I0B = 1 and

I1A and I1B = 0 --->I = 0,3 A (the required control current for paper feed).

with IOA and IOB = 0 and

I1A and I1B = 0  $\rightarrow$  I = 0,5 A (the required control current for cutter).

Note 2 : to optain  $0.8 \Omega$  (which is not standard) it is possible to set  $1\Omega$  and  $4.75\Omega$  in parallel.

- For other stepping motor control requirements, please contact us.



## 4.6. Bipolar cutter motor

#### 4.6.1. Overview

The cutter is mounted to the printer cover and includes parts below:

- Stepping motor
- Cutter drive wheel & rack
- Switch

This cutter can achieve partial or total cuts

### 4.6.2. General specification

- Coil resistance :  $8\ \Omega$  - Step angle :  $15^{\circ}$  - Number of steps per revolution : 24

#### 4.6.3. Connection

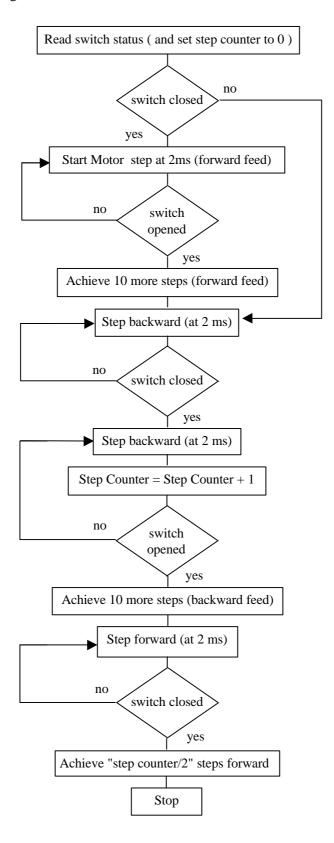
Connected to the PCB

## 4.6.4. Induction sequence

|        | A1 | A2 | B1 | B2 |
|--------|----|----|----|----|
| Step 1 | -  | +  | -  | +  |
| Step 2 | -  | +  | +  | -  |
| Step 3 | +  | -  | +  | -  |
| Step 4 | +  | -  | -  | +  |

## 4.6.5. Cutter Initialisation

The sequence described next page with logic chart allows the cutter to be well positioned when the system (mechanism & controller board) is powered on (or reset).


#### Notes:

- The logic chart is designed to place the cutter in the middle of the "closed switch area".
- When ten additional steps in are achieved after a switch status reading, this avoid reading mistake due to switch bounce.

| CM-RM Series User Manual | Page 23/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|
|                          |            |                |



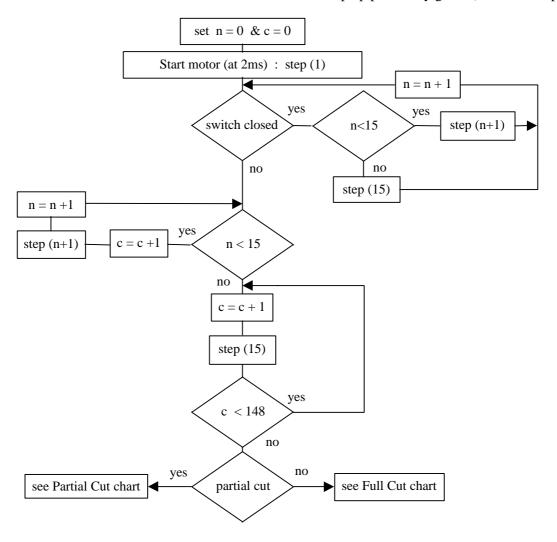
### Cutter initialisation logic chart:





## 4.6.6. Cutter Motor Acceleration Ramp-Up

The cutter can be started with a motor step time of 2 ms, then the speed can be increased by reducing this cycle time up to 1 ms following the curve given here after.


| Step      | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-----------|------|------|------|------|------|------|------|------|
| Time (µs) | 2000 | 2000 | 2000 | 2000 | 2000 | 1800 | 1660 | 1530 |
|           |      |      |      |      |      |      |      | _    |
| Step      | 9    | 10   | 11   | 12   | 13   | 14   | 15   |      |
| Time (µs) | 1420 | 1330 | 1250 | 1170 | 1110 | 1050 | 1000 |      |

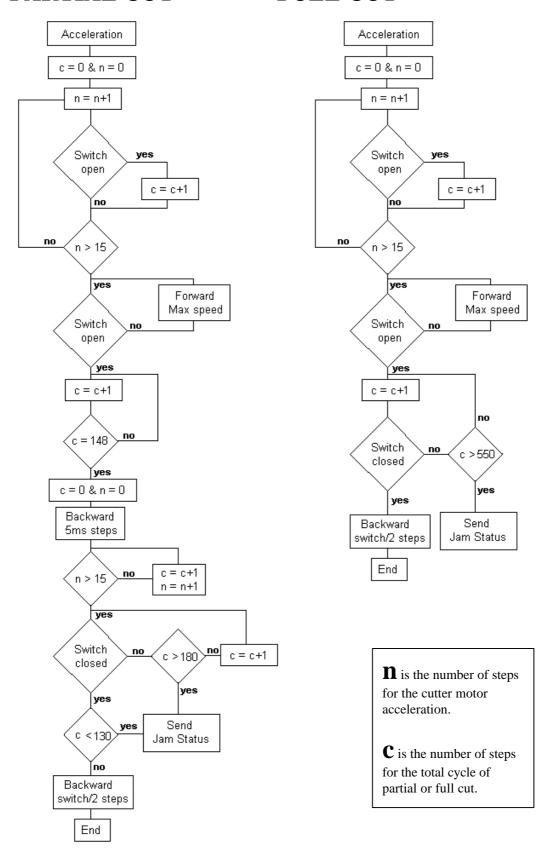
#### Notes:

- This curve uses 2000µs on the first 5 steps, this does not correspond to an acceleration but to a routine applied in the next logic chart (where "step (n)" means one motor step is achieved with the step time given above).
- This acceleration ramp up can be used either for forward or backward blade movement.

## 4.6.7. Cutter Driving Chart

This first chart allows to start the cutter with the acceleration ramp up previously given (for motor step time).




| CM-RM Series User Manual | Page 25/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



The chart changes now here depending on the type of cut required: partial or full cut.

# **PARTIAL CUT**

# **FULL CUT**





## 4.7. Cutter micro-switch specifications

# 4.7.1. General specification

| Reference                 | <b>DB3A-A1BA Switch Cherry</b> |  |
|---------------------------|--------------------------------|--|
| <b>Contact resistance</b> | 50 mΩ Maximum.                 |  |
| <b>Maximum Current</b>    | 0,1A - 125 V AC (UL V0)        |  |
| <b>Maximum Rating</b>     | 2 000 000 Open-Close cycles    |  |

### 4.7.2. Connection

#### Connected to the PCB with cutter motor and integrated to the flexible

| Wires         | Contact Status | 'guillotine' blade |
|---------------|----------------|--------------------|
|               | Open           | Closed             |
| White / White |                |                    |
|               | Closed         | Open               |

## 4.8. Opto-sensor specification

#### 4.8.1. Electrical characteristics

### **Absolute Maximum ratings**

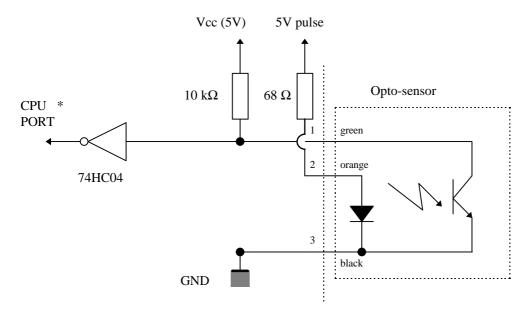
|                                    | SYMBOL | RATING | UNIT |
|------------------------------------|--------|--------|------|
| LED                                |        |        |      |
| Continuous Forward Current         | If     | 50     | mA   |
| Pulsed forward current *           | IFP    | 1      | A    |
| Reverse voltage                    | VR     | 5      | V    |
| Max. Power Dissipation at 25°C max | P      | 75     | mW   |
| PHOTO-TRANSISTOR                   |        |        |      |
| Collector Emitter Voltage          | VCEO   | 30     | V    |
| Collector Current                  | IC     | 20     | mA   |
| Collector Dissipation at 25°C max  | PC     | 50     | Mw   |

<sup>\* (</sup>Time On, Time Off) T On =  $100\mu$ s, T On + T Off = 10 ms

Note: Driving the sensor with pulse current allows to use higher current to improve paper detection.



#### **Input/Output Conditions**


|                        | SYMBOL               | CONDITIONS        | Min. | TYP. | Max. | UNIT |
|------------------------|----------------------|-------------------|------|------|------|------|
| LED Forward voltage    | VF                   | IF=10 mA          |      |      | 1.3  | v    |
| Reverse current        | IR                   | VR=5v             |      |      | 10   | μΑ   |
| TRANSFER CHARAC.       |                      |                   |      |      |      |      |
| Collector dark current | ICE0                 | VCE=10V           |      |      | 200  | nA   |
| Light Current          | IL                   | VCE=5V, IF=10mA   | 90   |      |      | μA   |
| Leakage Current        | ICE0D                | _VCE= 5V, IF=10mA |      |      | 200  | nA   |
| Rise time              | tr                   | VCE= 2V, IC=100μA |      | 30   |      | μs   |
| Fall time              | tf                   | L RL= 1kΩ         |      | 25   |      | μs   |
| Peak wave length       | $\lambda \mathbf{p}$ |                   |      | 940  |      | nm   |

## 4.8.2. Connection

Connected to the PCB, the opto-sensor is then clipped in front or bottom position

## 4.8.3. External circuit

### Example



**Fig. 14** 

| CM-RM Series User Manual | Page 28/43   | Ref: 3105978 Z |
|--------------------------|--------------|----------------|
|                          | 1 480 20, 10 | 11011 01007,02 |

<sup>\*</sup> Rise time and fall time depend on the voltage and current driving conditions. In the example above we recommend to measure the sensor response  $300~\mu s$  after the current leading edge of the pulse (or current establishment) in the sensor LED.



#### 5. PRINTER CONTROL TECHNIQUES

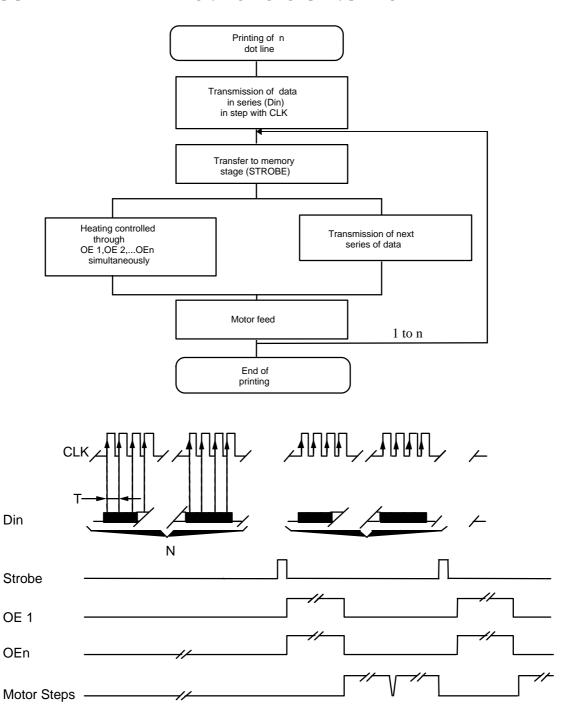
Printer control techniques in order to operate the printer. We depict hereafter three possible modes.

#### 5.1. Mode 1

- The paper feeds itself automatically during the heating cycle thereby permitting a high speed to be achieved. (in this mode, it is recommended to use historical control, see page 35)



T: Clock frequency 10 MHz maximum for CM-RMBC / 4MHz for CM-RMDG


Fig. 15 Timing diagram for mode 1

| CM-RM Series User Manual | Page 29/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|

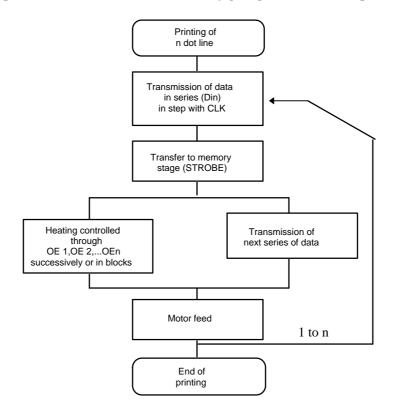


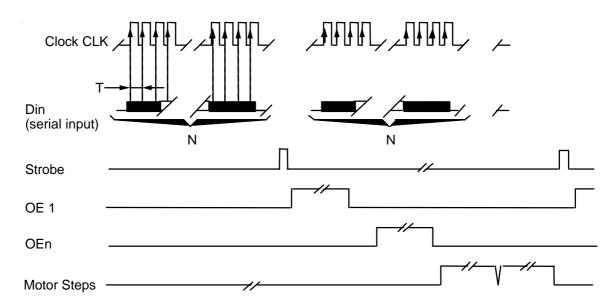
## 5.2. Mode 2

The paper feed occurs after the heating cycle giving high quality printing.



T: Clock frequency 10 MHz maximum for CM-RMBC / 4MHz for CM-RMDG


Fig. 16 Timing diagram for mode 2


| CM-RM Series User Manual | Page 30/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|



#### 5.3. Mode 3

This mode is used in conditions where there is a limit of electrical current. The dot line is printed in stages heating only a portion of the line at a time, effectively giving reduced consumption.





T: Clock frequency 10 MHz maximum for CM-RMBC / 4MHz for CM-RMDG

Fig. 17 Timing diagram for mode 3

| CM-RM Series User Manual Page 31/43 Ref: 3105978 Z | CM-RM Series User Manual | Page 31/43 | Ref: 3105978 Z |
|----------------------------------------------------|--------------------------|------------|----------------|
|----------------------------------------------------|--------------------------|------------|----------------|



#### 6. RECOMMENDATIONS

#### 6.1. Mechanical recommendations

Never apply mechanical stress to the printer, this could result in misalignment and thus degradation of the print quality.

The thermal printhead must have 1 degree of freedom. Never hinder the printhead from pivoting on its axis.

#### 6.2. Housing design recommendations

Forecast space for paper guide to use one of the two possible paper inlets (or both)

When the front paper inlet is used, we recommend an additional paper guiding to facilitate correct paper introduction.

See the fixation position, make sure it is easy enough to release printer, this operation is necessary for easy maintenance (change of printhead for example)

Space to open cover: the cover (which contains the cutter) is strongly clipped, it is necessary to leave enough place to catch it in order to open it.

## 6.3. Energising & de-energising printer

When energising the thermal printhead (Vcc, 5 V) it is important to apply all the logic signals within 10 ms (particularly to de-energise all the OEs).

If the line of dots (Vch, 24 V) is supplied before the control logic, resistor dots may be destroyed. Because the control logic has a random state, resistors might be heated for a longer period than the specified maximum, burning out the heated resistor.

To avoid this, we recommend applying the heating voltage (Vch) after the logic supply voltage (Vcc, 5V).

The same precaution should be taken when shutting down. The supply voltage Vch must be switched off before the logic supply voltage Vcc. Care should be taken to allow enough time for residual capacitive charge to dissipate.

## 6.4. Printing recommendations

- In order to avoid excessive noise from the stepper motor, avoid using it at the following frequencies: between 150 and 250 pps (for better printing quality, avoid fast speed variations).
- To avoid the paper feed motor temperature rise, use a time ratio of 2 "on" 3 "off" up to 2 minutes maximum of continuous printing.

Examples: 2 seconds "on" followed by 3 seconds "off", 20 seconds "on" followed by 30 seconds "off".

| CM-RM Series User Manual Page 32/43 Ref: 3105978 Z |
|----------------------------------------------------|
|----------------------------------------------------|



## 6.5. Recommendations for paper

- As paper roll bearing, use an AXIOHM reference (or approved by).
- Use a paper roll of maximum diameter 80 mm when paper slides on its bucket, this value can be overshot up to 120 mm when paper roll is mounted on a friction-less axis (the maximum diameter also depends on the acceleration ramp up because of inertia).
- Leave the paper stock spool free to turn.
- The printer should not operate without paper as this will damage the surface of the platen.
- Paper with bad factor may affect the printhead life.

#### 6.6. General

- Ensure that there is adequate air circulation around the printhead support/heatsink as poor ventilation of the printhead can degrade the print quality.
- Never open the cover whilst the cutter is operating.
- Never introduce tools inside the printer, wires could be de-soldered or short circuited.
- It is very important that the printhead support/heatsink is connected to the customer appliance chassis (see p16 pinout connection GND).
- Ensure that the cutter blades are in the correct position before use in order to ensure that they do not deteriorate.
- when continuous printing is performed, the supply energy should be reduced so that the head temperature monitored through the thermistor will remain below the maximum temperature.
- When setting 'power on / power off', strobe (STR) shall be on 'disable'.
- Heat elements and IC's shall be anti-electrostatic in order to prevent electrostatic destruction. Do not touch the connector pins with fingers.
- Make sure no foreign particles roll on the head surface, this would cause damage.
- If condensation occurs, do not switch on the printer until it has disappeared.

#### 6.7. Cleaning recommendations

The CM/RMBC and CM/RMDG mechanisms are high reliable units which require very little maintenance but may benefit from cleaning as detailed below.

Depending on the environment in which the printer is used, the printer can accumulate dust. Therefore it is necessary to clean it periodically in order to maintain a good print quality. The cleaning period is dependant on the environment and the usage of the printer, but the printhead should be cleaned at least once a year or up to one month in heavy duty applications. The printhead should always be cleaned immediately if the print becomes visibly fainter due to its contamination.

#### **Cleaning Instructions:**

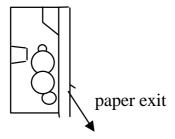
- Switch off printer. Never clean the head immediately after printing, the head may be hot.
- Open the printer cover and remove the paper from its slot.
- Clean the heating dots of the head with a cotton stick containing a solvent alcohol (ethanol, methanol, or IPA) but **do not touch the printhead with your fingers!**
- Allow the solvent to dry.
- Reload the paper and close cover.

#### N.B AXIOHM is able to provide cleaning kits **Ref**: **CK60000A**

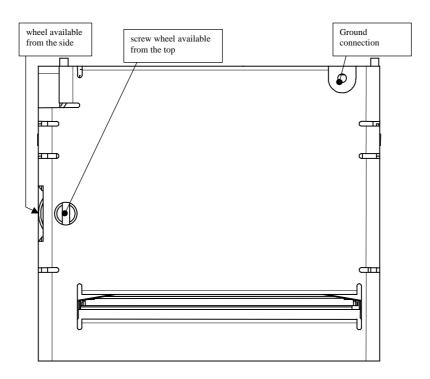
| CM-RM Series User Manual   Page 33/43   Ref: 3105978 Z | CM-RM Series User Manual | Page 33/43 | Ref: 3105978 Z |
|--------------------------------------------------------|--------------------------|------------|----------------|
|--------------------------------------------------------|--------------------------|------------|----------------|



## 6.8. Special recommendation for cutter


Mechanical stress should not be applied to the cutter cover, it would lead to a blade movement perturbation.

Make sure the ground is connected. Ground must stay connected while operating and manipulating the cutter cover.


**Do not keep the cutter motor phase "on"** while the cutter is not operating (this would also lead to an increasing motor temperature).

To avoid paper jam, it is recommended to feed 2 mm of paper (16 motor steps) after cutting.

A vertical position, as shown on next drawing, is better for paper dust elimination.



To release blades in case of jam, use the wheel shown on next drawing:





### 7. PAPER SUPPLIERS

**ARJO WIGGINS** Ref: S752-57 (2320061 in AXIOHM classification) (see appendix 2 for specifications)

### 8. SPARE PARTS

All spare parts for kits are supplied as individually packaged loose parts.

Mechanism Kits: Those kits contain: chassis, paper feed motor, gear train and platen.

| MECHANISM KITS |                                            |     |  |
|----------------|--------------------------------------------|-----|--|
| REF            | DESIGNATION                                | QTY |  |
| 3103166        | Mechanism Kit for CM/RM** (unipolar motor) | 1   |  |
| 3103223        | Mechanism Kit for CM/RM** (bipolar motor)  | 1   |  |

Print- head Kits: those kits contain the print-head, the flexible and the opto-sensor.

| PRINT-HEAD KITS |                                        |     |  |
|-----------------|----------------------------------------|-----|--|
| REF             | DESIGNATION                            | QTY |  |
| 3103168         | Print-head Kit for CM/RMBC (4 dots/mm) | 1   |  |
| 3103169         | Print-head Kit for CM/RMDG (8 dots/mm) | 1   |  |

Cover with cutter kit: this kit contains the guillotine cutter, the cutter motor, and the cutter switch all integrated to the cover

| COVER WITH CUTTER KIT |                                         |     |  |
|-----------------------|-----------------------------------------|-----|--|
| REF                   | DESIGNATION                             | QTY |  |
| 3105976               | Cover Kit with cutter and Bipolar motor | 1   |  |

Flex cable kit: those cables (10 per kit) are designed to connect the printer to its controller board

|         | FLEX CABLE KIT                                 |     |
|---------|------------------------------------------------|-----|
| REF     | DESIGNATION                                    | QTY |
| 3103578 | Standard flex cable adapted to ZIF connections | 10  |



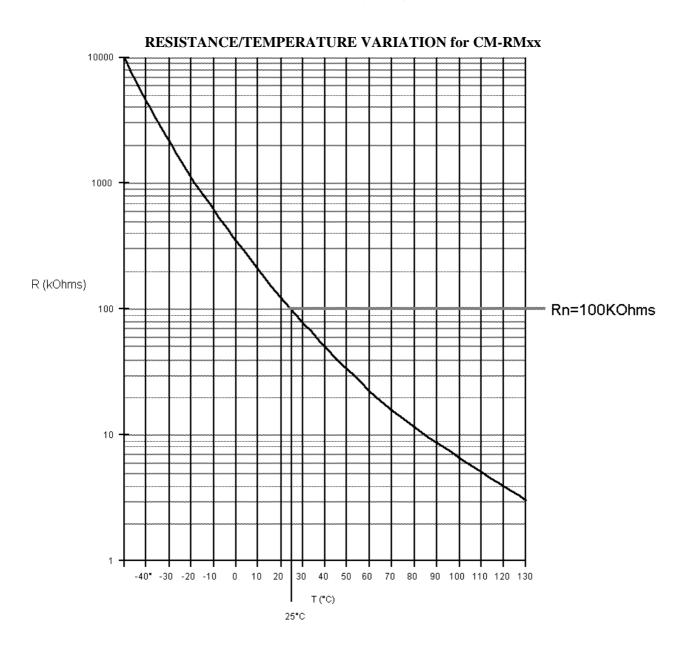
### 9. APPENDICES

### 9.1. APPENDIX 1: THERMISTOR SPECIFICATIONS

| GENERAL CHARACTERISTICS                                                                               | xMBC        | xMDG                      |  |  |  |
|-------------------------------------------------------------------------------------------------------|-------------|---------------------------|--|--|--|
| Climatic category (IEC) 40/85/56 (for xMBC)                                                           |             |                           |  |  |  |
| Maximum operating temperatures $-55^{\circ}$ C to $+150^{\circ}$ C $-20^{\circ}$ C to $+80^{\circ}$ C |             |                           |  |  |  |
| Rated resistance at 25° C Rn (see table of values)                                                    |             |                           |  |  |  |
| Tolerance for Rn                                                                                      | 5 %         |                           |  |  |  |
| Maximum dissipation at $25^{\circ}$ C                                                                 |             |                           |  |  |  |
| Thermal dissipation factor                                                                            | _ = 4 mW/°C | $_{\rm = 5~mW/^{\circ}C}$ |  |  |  |
| Thermistor time constant/dot line $t = 7 \text{ sec}$ $t = 30 \text{ sec}$                            |             |                           |  |  |  |
| Resistance value as a function of temperature (see curves)                                            |             |                           |  |  |  |

This thermistor has a rated value of 100 k $\Omega$ . Its resistance variation can be expressed as follows :

$$\label{eq:Resolvent} \textbf{R} = \textbf{Rn exp B} \ \left(\frac{1}{T} - \frac{1}{Tn}\right) \qquad \text{where $T$ is in kelvin degrees ($^{\circ}$K)}$$


$$B = 4170^{\circ} \text{ K (for xMBC)} / 4066^{\circ} \text{ K (for xMDG)}$$

Rn = reference value at temperature Tn (295° K)

The main specifications of the thermistor are listed in the following pages. NTC thermistor, rectangular size (IEC 12.05), silver palladium metallic coating.



### APPENDIX 1 (Contd.)





# 9.2. APPENDIX 2 : Paper specification

## Paper WS 752-57 (ref 2320061 in Axiohm classification for 5 cm diameter roll)

| Property           | Method           | Unit    | Value     |
|--------------------|------------------|---------|-----------|
| Gramms             | ISO 536          | g/m2    | 56 +/- 3  |
| Thickness          | ISO 534          | μm      | 61 +/- 4  |
| Surface            | ISO 5627 (Beckk) | sec     | 300 min   |
| smoothness         |                  |         |           |
| Brightness         | BNL2             | %       | 91 min    |
| Whiteness          | Macbeth RD 914   | OD      | 0.09 min  |
| Opacity            | TAPPI            | %       | 83 min    |
|                    | T425(BNL2)       |         |           |
| Tensile strength   | ISO 1924/1       | N/15 mm | 40 min MD |
|                    |                  |         | 20 min CD |
| Tear Strength      | ISO 1974         | mN      | 300min MD |
|                    |                  |         | 33 min CD |
| Colour Image       | -                | -       | Black     |
| Saturation Density | Dynamic test     | Macbeth | 1.25 min  |
|                    |                  | RD914   |           |
| Initiation T°      | Heated platen    | °C      | 70 maxi   |
| Saturation T°      | Heated platen    | °C      | 105-110   |

| Property           | Conditions            | Image Loss<br>(Macbeth<br>RD914) | Whiteness Loss<br>(Macbeth<br>RD914) |
|--------------------|-----------------------|----------------------------------|--------------------------------------|
| Heat stability     | 60°C, 24 hrs          | 10% maxi                         | 0.10 maxi                            |
| Moisture stability | 90% RH-40°C<br>24 hrs | 5% maxi                          | 0.01 maxi                            |
| Light stability    | 5000 lux, 100<br>hrs  | 5% maxi                          | 0.01 maxi                            |

| CM-RM Series User Manual Page 38/43 Ref: 3105978 Z | CM-RM Series User Manual | Page 38/43 | Ref: 3105978 Z |
|----------------------------------------------------|--------------------------|------------|----------------|
|----------------------------------------------------|--------------------------|------------|----------------|



#### 9.3. APPENDIX 3: Heating time and historical control

The heating time tables are presented on next pages

The motor cycle time for one dot line is given in the second top line of the table, it is the time for one (or two) motor step(s).

The column 3 (indicated with : speed <xxx mm/s and motor cycle time > xxx ms) gives the required heating time, giving the necessary energy to obtain an optical density of 1.2.

Two areas are then defined in tables:

Area 1: "white"

The motor cycle time for one dot line is greater than the heating time indicated in column 3

Area 2: high lighted

The maximum heating time is greater than the motor cycle time

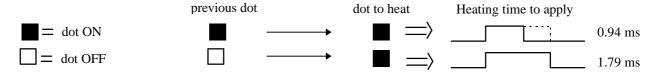
Note: when the required heating time (function of speed, voltage and temperature) becomes greater than the motor cycle time, printer cannot be operated. This does not occur for xMxx printers at voltages and speeds indicated in this manual.

#### How to use tables?

heating time can be controlled either with or without historical control.

- Without historical control: apply the indicated heating time given as a function of speed, voltage and temperature. At high speed, printing quality for isolated dots might be affected with this method.

Example: for CM/RMBC at 70mm/s, 30°C and 24 volts, heating time = 1.26


- With historical control in area 1: apply the indicated heating time (function of speed, voltage and temperature) when the dot has been heated on the previous subline, and the time from column 3 when it has not. This method gives the best printing quality.

Example: for xMBC at 50 mm/s, 20°C and 24 volts:

|                  | previous dot | dot to heat  | Heating time to apply |         |
|------------------|--------------|--------------|-----------------------|---------|
| = dot ON         |              | <b>→</b> ■ ⇒ |                       | 1.57 ms |
| $\Box$ = dot OFF |              | <b>→ ■</b> ⇒ |                       | 2.79 ms |

- With historical control in area 2: apply the indicated heating time (function of speed, voltage and temperature) when the dot has been heated on the previous subline, and the motor cycle time when it has not. At high speed, printing quality for isolated dots might be slightly affected with this method.

Example: for xMDG at 70 mm/s, 0°C and 22 volts:



| CM-RM Series User Manual | Page 39/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|
|                          |            |                |



# Heating time for CM-RMBC (with paper WS 752-57)

| Tension | Temp °C |     | -    | Speed (m |         |         |         | R= 518 Oh | ms      |
|---------|---------|-----|------|----------|---------|---------|---------|-----------|---------|
| Volts   |         | < 5 | mm/s | 30 mm/s  | 40 mm/s | 50 mm/s | 60 mm/s | 70 mm/s   | 75 mm/s |
|         |         | >50 | mm/s | 8.33 ms  | 6.25 ms | 5 ms    | 4.17 ms | 3.58 ms   | 3.33 ms |
| 20      | -10     |     | 5.29 | 3.49     | 3.2     | 2.98    | 2.79    | 2.64      | 2.57    |
| 20      | 0       |     | 4.9  | 3.23     | 2.97    | 2.76    | 2.58    | 2.44      | 2.38    |
| 20      | 10      |     | 4.51 | 2.97     | 2.73    | 2.54    | 2.38    | 2.25      | 2.19    |
| 20      | 20      |     | 4.12 |          |         |         | 2.17    |           |         |
| 20      | 30      |     | 3.73 |          |         |         | 1.96    |           |         |
| 20      | 40      |     | 3.33 |          |         |         | 1.76    |           |         |
| 20      | 50      |     | 2.94 |          |         |         | 1.55    |           |         |
| 22      | -10     |     | 4.32 |          |         |         |         |           |         |
| 22      | 0       |     | 4    |          |         |         |         |           |         |
| 22      | 10      |     | 3.68 |          |         |         |         |           |         |
| 22      | 20      |     | 3.36 |          | 2.03    |         |         |           |         |
| 22      | 30      |     | 3.04 |          | 1.84    |         | 1.6     |           |         |
| 22      | 40      |     | 2.72 |          | 1.64    |         |         |           |         |
| 22      | 50      |     | 2.4  |          |         | 1.35    |         | 1.2       |         |
| 24      | -10     |     | 3.59 |          |         | 2.02    | 1.89    | 1.79      |         |
| 24      | 0       |     | 3.32 | 2.19     | 2.01    | 1.87    | 1.75    | 1.66      | 1.61    |
| 24      | 10      |     | 3.06 | 2.02     | 1.85    | 1.72    | 1.61    | 1.52      | 1.48    |
| 24      | 20      |     | 2.79 | 1.84     | 1.69    |         |         | 1.39      | 1.35    |
| 24      | 25      |     | 2.66 | 1.75     | 1.61    | 1.49    | 1.4     | 1.33      | 1.29    |
| 24      | 30      |     | 2.52 | 1.66     | 1.53    | 1.42    | 1.33    | 1.26      | 1.23    |
| 24      | 40      |     | 2.26 |          | 1.37    | 1.27    | 1.19    | 1.13      |         |
| 24      | 50      |     | 1.99 | 1.31     | 1.21    | 1.12    | 1.05    | 0.99      | 0.97    |
| 26      | -10     |     | 3.03 |          |         |         | 1.6     |           | 1.47    |
| 26      | 0       |     | 2.8  |          | 1.7     |         |         |           |         |
| 26      | 10      |     | 2.58 | 1.7      | 1.56    |         |         |           | 1.25    |
| 26      | 20      |     | 2.36 | 1.55     | 1.42    |         |         | 1.17      | 1.14    |
| 26      | 30      |     | 2.13 |          | 1.29    |         |         |           |         |
| 26      | 40      |     | 1.91 |          |         |         |         |           |         |
| 26      | 50      |     | 1.68 |          | 1.02    |         | 0.89    |           |         |
| 28      | -10     |     | 2.59 |          | 1.57    |         | 1.37    | 1.29      | 1.26    |
| 28      | 0       |     | 2.4  |          | 1.45    | 1.35    | 1.26    | 1.2       | 1.16    |
| 28      | 10      |     | 2.21 | 1.46     |         | 1.24    | 1.16    | 1.1       | 1.07    |
| 28      | 20      |     | 2.01 | 1.33     | 1.22    | 1.13    | 1.06    | 1         | 0.98    |
| 28      | 30      |     | 1.82 |          | 1.1     | 1.02    | 0.96    | 0.91      | 0.88    |
| 28      | 40      |     | 1.63 |          | 0.99    | 0.92    | 0.86    | 0.81      | 0.79    |
| 28      | 50      |     | 1.44 |          | 0.87    | 0.81    | 0.76    | 0.72      | 0.7     |
| 30      | -10     |     | 2.24 |          | 1.36    | 1.26    | 1.18    | 1.12      | 1.09    |
| 30      | 0       |     | 2.08 |          | 1.26    | 1.17    | 1.09    | 1.03      | 1.01    |
| 30      | 10      |     | 1.91 |          | 1.15    | 1.07    | 1.01    | 0.95      | 0.93    |
| 30      | 20      |     | 1.74 |          | 1.05    | 0.98    | 0.92    | 0.87      | 0.85    |
| 30      | 30      |     | 1.58 | 1.04     | 0.95    | 0.89    | 0.83    | 0.79      | 0.77    |
| 30      | 40      |     | 1.41 | 0.93     | 0.85    | 0.79    | 0.74    | 0.7       | 0.69    |
| 30      | 50      |     | 1.25 | 0.82     | 0.75    | 0.7     | 0.66    | 0.62      | 0.6     |

| CM-RM Series User Manual | Page 40/43  | Ref: 3105978 Z                        |  |
|--------------------------|-------------|---------------------------------------|--|
|                          | 1 420 70/73 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |



Heating time table for CM-RMDG ( with paper WS 752-57 )

| Voltage  | Temp °C          | Speed (mm,   | /s)          |              | R =          | 970 Ω        |              |             |
|----------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| (Volts)  |                  | <5mm/s       | 30 mm/s      | 40 mm/s      | 50 mm/s      | 60 mm/s      | 70 mm/s      | 75 mm/s     |
|          |                  | >25 ms       | 4.17 ms      | 3.13 ms      | 2.5 ms       | 2.08 ms      | 1.79 ms      | 1.67 ms     |
| 21       | -10              | 2.27         | 1.48         | 1.36         | 1.26         | 1.18         | 1.11         | 1.08        |
| 21       | 0                | 2.1          | 1.37         | 1.26         | 1.17         | 1.09         | 1.03         | 1           |
| 21       | 10               | 1.93         | 1.26         | 1.16         | 1.07         | 1            | 0.95         | 0.92        |
| 21       | 20               | 1.76         | 1.15         | 1.06         | 0.98         | 0.92         | 0.87         | 0.84        |
| 21       | 30               | 1.59         | 1.04         | 0.96         | 0.89         | 0.83         | 0.78         | 0.76        |
| 21       | 40               | 1.43         | 0.93         | 0.86         | 0.79         | 0.74         | 0.7          | 0.68        |
| 21       | 50               | 1.26         | 0.82         | 0.75         | 0.7          | 0.66         | 0.62         | 0.6         |
| 22       | -10              | 2.06         | 1.35         | 1.24         | 1.15         | 1.07         | 1.02         | 0.99        |
| 22       | 0                | 1.91         | 1.25         | 1.15         | 1.06         | 1            | 0.94         | 0.91        |
| 22       | 10               | 1.76         | 1.15         | 1.05         | 0.98         | 0.92         | 0.86         | 0.84        |
| 22       | 20               | 1.61         | 1.05         | 0.96         | 0.89         | 0.84         | 0.79         | 0.77        |
| 22       | 30               | 1.45         | 0.95         | 0.87         | 0.81         | 0.76         | 0.71         | 0.69        |
| 22       | 40               | 1.3          | 0.85         | 0.78         | 0.72         | 0.68         | 0.64         | 0.62        |
| 22       | 50               | 1.15         | 0.75         | 0.69         | 0.64         | 0.6          | 0.56         | 0.55        |
| 23       | -10              | 1.89         | 1.24         | 1.13         | 1.05         | 0.98         | 0.93         | 0.9         |
| 23       | 0                | 1.75         | 1.15         | 1.05         | 0.97         | 0.91         | 0.86         |             |
| 23       | 10               | 1.61         | 1.05<br>0.96 | 0.96<br>0.88 | 0.89<br>0.82 | 0.84<br>0.76 | 0.79<br>0.72 | 0.77        |
| 23       | 20               | 1.47<br>1.33 | 0.96         | 0.8          | 0.82         | 0.76         | 0.72         | 0.7<br>0.64 |
| 23<br>23 | 30<br><b>4</b> 0 | 1.19         | 0.87         | 0.71         | 0.74         | 0.62         | 0.58         | 0.57        |
| 23       | 50               | 1.19         | 0.78         | 0.63         | 0.58         | 0.55         | 0.52         | 0.5         |
| 24       | -10              | 1.73         | 1.14         | 1.04         | 0.96         | 0.9          | 0.85         | 0.83        |
| 24       | 0                | 1.61         | 1.05         | 0.96         | 0.89         | 0.84         | 0.79         | 0.77        |
| 24       | 10               | 1.48         | 0.97         | 0.89         | 0.82         | 0.77         | 0.73         | 0.71        |
| 24       | 20               | 1.35         | 0.88         | 0.81         | 0.75         | 0.7          | 0.66         | 0.65        |
| 24       | 25               | 1.28         | 0.84         | 0.77         | 0.71         | 0.67         | 0.63         | 0.61        |
| 24       | 30               | 1.22         | 0.8          | 0.73         | 0.68         | 0.64         | 0.6          | 0.58        |
| 24       | 40               | 1.09         | 0.72         | 0.65         | 0.61         | 0.57         | 0.54         | 0.52        |
| 24       | 50               | 0.96         | 0.63         | 0.58         | 0.54         | 0.5          | 0.47         | 0.46        |
| 25       | -10              | 1.6          | 1.05         | 0.96         | 0.89         | 0.83         | 0.79         | 0.76        |
| 25       | 0                | 1.48         | 0.97         | 0.89         | 0.82         | 0.77         | 0.73         | 0.71        |
| 25       | 10               | 1.36         | 0.89         | 0.82         | 0.76         | 0.71         | 0.67         | 0.65        |
| 25       | 20               | 1.24         | 0.81         | 0.75         | 0.69         | 0.65         | 0.61         | 0.59        |
| 25       | 30               | 1.12         | 0.74         | 0.67         | 0.63         | 0.59         | 0.55         | 0.54        |
| 25       | 40               | 1.01         | 0.66         | 0.6          | 0.56         | 0.52         | 0.49         | 0.48        |
| 25       | 50               | 0.89         | 0.58         | 0.53         | 0.49         | 0.46         | 0.44         | 0.42        |
| 26       | -10              | 1.48         | 0.97         | 0.89         | 0.82         | 0.77         | 0.73         | 0.71        |
| 26       | 0                | 1.37         | 0.9          | 0.82         | 0.76         | 0.71         | 0.67         | 0.65        |
| 26       | 10               | 1.26         | 0.82         | 0.75         | 0.7          | 0.66         | 0.62         | 0.6         |
| 26       | 20               | 1.15         | 0.75         | 0.69         | 0.64         | 0.6          | 0.57         | 0.55        |
| 26       | 30               | 1.04         | 0.68         | 0.62         | 0.58         | 0.54         | 0.51         | 0.5         |
| 26       | 40               | 0.93<br>0.82 | 0.61<br>0.54 | 0.56<br>0.49 | 0.52         | 0.48         | 0.46         | 0.45        |
| 26       | 50               | 1.37         | 0.54         | 0.49         | 0.46         | 0.43         | 0.4          | 0.39        |
| 27       | -10<br>0         | 1.37         | 0.83         | 0.82         | 0.76         | 0.71         | 0.67         | 0.60        |
| 27<br>27 | 10               | 1.27         | 0.83         | 0.76         | 0.65         | 0.61         | 0.62         | 0.56        |
| 27       | 20               | 1.17         | 0.76         | 0.64         | 0.59         | 0.56         | 0.52         | 0.50        |
| 27       | 30               | 0.96         | 0.63         | 0.58         | 0.54         | 0.5          | 0.47         | 0.46        |
| 27       | 40               | 0.86         | 0.57         | 0.52         | 0.48         | 0.45         | 0.42         | 0.40        |
| 27       | 50               | 0.76         | 0.5          | 0.46         | 0.42         | 0.4          | 0.37         | 0.36        |
| 4/       | 50               | 0.70         | 0.5          | 0.40         | 0.44         | 0.4          | 0.57         | 0.50        |



### 9.4. APPENDIX 4: CHANGE PRINTHEAD

The printhead kit contains the opto-sensor and the flexible, it is necessary to change the whole kit.

Instructions to change printhead:

Remove existing printhead

- unscrew chassis
- remove printhead springs
- unclip flex
- unclip the opto-sensor and release wires
- unscrew paper feed motor and remove it
- pull out the printhead

#### Fit the new one

- fit the new printhead
- fit and screw the paper feed motor
- fit the opto-sensor wires and clip the opto-sensor
- clip the flex cable
- fit the printhead springs
- fit and screw the chassis



#### 9.5. APPENDIX 6: PRODUCT NAME & CODIFICATION

Axiohm's Products are codified with height digits. This appendix explains the digit signification.

## **Digits 1,2,3,4** (XXXX xxxx)

The digits 1,2,3,4 indicate the printhead chosen:

|           | 24 V | 12 V |
|-----------|------|------|
| 4 dots/mm | CMBC | CMBN |
| 8 dots/mm | CMDG | CMDL |

#### C becomes R when a robust cutter is fitted to the mechanism.

**Digit 5** (xxxx **X**xxx)

Cover option (for printer without cutter) : 0 without cover

: 1 with cover (or with cutter)

Reference for cover only is: CMCV0001

**Digit 6** (xxxx x**X**xx)

Additional gear for rewinder: 0 without rewinder gear, 1 with rewinder gear \*

## **Digit 7** (xxxx xxXx)

Type of stepper motor:

|                           | Stepper motor for paper advance : |         |  |
|---------------------------|-----------------------------------|---------|--|
| Stepper motor for cutter: | Unipolar                          | Bipolar |  |
| Unipolar                  | 0                                 | 1       |  |
| Bipolar                   | 2                                 | 3       |  |

## **Digit 8** (xxxx xxx**X**)

Position of paper end detector: 3 front, 4 bottom

#### **Example**

Mini-printer mechanism (4 dots/mm - 24 v ) with robust cutter and front paper entry : RMBC 1003

## **Customized printers**

The codification of customized printers is different. The codes are given by the product management with a chronological number starting at xxxx S000 (or specific codes that are listed below ).

| CM-RM Series User Manual | Page 43/43 | Ref: 3105978 Z |
|--------------------------|------------|----------------|

<sup>\*</sup> contact Axiohm for availability