
Geant4-based Architecture for
Medicine-Oriented Simulations

(GAMOS)

Version 2.0.1

User’s Guide

Pedro Arce

August 28, 2009

Contents

1 Introduction 1

1.1 About this document . 1

1.2 Structure of GAMOS . 1

1.3 The plug-in concept . 3

2 Getting started 5

2.1 Getting the code and installing it 5

2.2 Running an example . 6

2.3 Compiling GAMOS . 7

2.3.1 Compiling your new code 7

3 Geometry 11

3.1 Building your geometry with a text file 11

3.1.1 Description of geometry text file format 11

3.1.2 Dumping your Geant4 geometry in text file format . . 34

3.1.3 Adding new tags to your input text file 35

3.1.4 Parallel geometries . 36

3.2 Building simple geometries 38

3.3 Building your geometry with C++ code 38

3.4 Reading DICOM files . 38

3.4.1 Simple phantom geometries 40

3.5 Movements . 40

3.6 Geometry utilities . 41

3.7 Magnetic field . 43

4 Generator 45

4.1 Using GAMOS generator . 45

4.1.1 Introduction . 45

4.1.2 Single particle source 46

4.1.3 Isotope source . 46

4.2 Building your generator with C++ 55

4.3 Reading your generator particles from a text file 55

4.4 Reading your generator particles from a binary file 55

i

ii CONTENTS

4.4.1 Event generator histograms 56

5 Physics 57

5.1 GAMOS electromagnetic physics list 57

5.2 GAMOS hadronic physics list 58

5.3 Building your physics list with C++ code 60

5.4 Other physics lists . 60

5.5 Production cuts . 60

5.5.1 Production cuts by region 60

5.5.2 Energy cuts to range cuts conversion 61

5.6 User limits . 62

5.7 Automatic optimisation of cuts 63

5.7.1 Automatic determination of production cuts for an
accelerator simulation 64

5.7.2 Automatic determination of production cuts for a dose
in a phantom simulation 66

5.7.3 Automatic determination if user limits for an acceler-
ator simulation . 67

5.7.4 Automatic determination for a dose in phantom sim-
ulation . 68

5.7.5 Range rejection . 68

5.7.6 Automatic determination for an accelerator simulation 68

6 User Actions 71

6.1 Adding a filter . 71

6.2 Adding an indexer (= classifier) 72

6.3 Creating your GAMOS user action 72

7 Sensitive Detector and Hits 75

7.1 Attaching a sensitive detector to a volume 75

7.2 Building your sensitive detector with C++ code 76

7.3 Hits . 77

7.4 Detector effects . 77

7.4.1 Energy and time resolutions 77

7.4.2 Detector measuring time 78

7.4.3 Detector dead time . 78

7.5 Hits digitization and reconstruction 79

7.5.1 Hits digitization . 79

7.5.2 Hits and digits reconstruction 79

7.5.3 Examples of reconstructed hit builders 80

7.6 Identifying each sensitive detector copy 81

7.7 Storing and retrieving hits . 81

7.7.1 File format . 82

7.8 Hits histograms . 83

CONTENTS iii

8 Scoring 85

8.1 Scorer classes . 87

8.2 Filter classes . 90

8.3 Scorer printers . 90

8.4 Classifier classes . 91

9 Analysis (extracting information) 93

9.1 Using histograms . 93

9.1.1 Histogram files common name 93

9.1.2 Histograms in CSV format 93

9.1.3 Using a common histogram class 94

9.2 User action utilities . 95

9.2.1 Counting the number of tracks and events 96

9.2.2 Counting the processes 96

9.2.3 Counting the number of tracks in a volume 97

9.2.4 Killing all tracks . 98

9.2.5 Histograms of track information 98

9.2.6 Histograms of step information 98

9.2.7 Histograms of secondary track information 99

9.2.8 Event classification by interaction types 100

9.2.9 Table of tracks and steps 100

9.2.10 Detailed report of where CPU time is spent 101

9.3 Creating your own histograms 102

10 Filters and classifiers 103

10.1 Filters . 103

10.1.1 Simple filters . 104

10.1.2 Filters of filters . 105

10.1.3 Volume filters . 106

10.2 Classifiers . 107

10.2.1 Passing parameter values to a classifier 109

11 Managing the verbosity 111

11.1 GAMOS verbosity managers 111

11.2 Using a GAMOS verbosity manager in your code 112

11.3 Creating your own verbosity manager 113

11.4 Controlling the Geant4 verbosity by event and track 113

12 PET application 115

12.1 PET geometry . 115

12.2 PET analysis . 116

12.2.1 PET event classification 116

12.2.2 PET histograms: event classification 117

12.2.3 PET output for reconstruction 118

iv CONTENTS

12.2.4 PET histograms: positrons 118
12.2.5 PET histograms: distance between two gammas . . . 119
12.2.6 Histograms of gammas at sensitive detectors 119

13 Radiotherapy application 123
13.1 Using phase spaces . 123

13.1.1 Writing phase spaces 123
13.1.2 Phase space histograms 124
13.1.3 Reading phase spaces 125
13.1.4 Adding extra information to a phase space 127
13.1.5 Reusing a particle at a phase space without filling the

phase space file . 128
13.2 Optimisation of a linac simulation 129

13.2.1 Bremsstrahlung splitting 129
13.2.2 Killing particles at big X/Y 130

13.3 Scoring dose in phantom . 131
13.3.1 Saving scores in file 131
13.3.2 Saving scores in histograms 133

13.4 Analysis utilities . 133
13.4.1 Summing phase space files 134
13.4.2 Comparing number of particles per event in two phase

space files . 134
13.4.3 Making histograms out of a phase space file 135
13.4.4 Merging ’3ddose’ files 135
13.4.5 Merging ’sqdose’ files 136
13.4.6 Making histograms out of a ’sqdose’ file 136

14 Appendix 137
14.1 Converting a Geant4 example into a GAMOS example 137
14.2 Creating your plug-in . 138
14.3 Managing the input data files 140
14.4 Checking the usage of parameters 141
14.5 Using a parameter in your C++ code 141

14.5.1 Log files . 142
14.6 Identifying touchables . 143
14.7 Using wildcards to get volume names 144
14.8 Using particle names . 144

Chapter 1

Introduction

1.1 About this document

This manual refers to GAMOS version 2.0.1. It is written in LATEX and it
is maintained at the following address

http://fismed.ciemat.es/GAMOS/doc/gamos uguide 2.0.1.pdf

We will use through this manual many terms common to the detector
simulation terminology and specifically to the Geant4[1] terminology. If you
are new to it, please read before, for example, the Geant4 documentation
[2]. We have tried though to make this manual self-consistent, and we hope
that, unless you need a deep knowledge of the Geant4 software, you will not
need to refer to any further documentation.

If you find that some of the instructions given here do not give the
expected result, please send a mail to pedro.arce@ciemat.es detailing the
problem, the GAMOS version and providing as much information as possi-
ble. We will also warmly welcome any kind of comment or suggestion you
would like to send us about this guide, or about the GAMOS functionalities
or user interface.

1.2 Structure of GAMOS

The acronym GAMOS stands for “Geant4-based Architecture for Me-
dicine-Oriented Simulations”. It is therefore a detector simulation soft-
ware and it is based on the Geant4 toolkit [1]. The objective of GAMOS is
to provide a software framework that serves the unexperienced user to sim-
ulate his/her medical physics project without having to code in C++ and
with a minimal knowledge of Geant4, and at the same time, let an advanced
user add new functionalities and easily integrate it with the rest of GAMOS
functionality.

We have also tried to provide you with several tools that help you to
understand in detail your simulation (controlling the verbosity, making his-

1

2 CHAPTER 1. INTRODUCTION

tograms about many variables, scoring different quantities, etc.), as well as
other tools to help you in optimising your simulation. GAMOS is composed
of a core software that covers the main functionality of a Geant4 simulation
and a set of example of medicine applications.

GAMOS source code is organized in the following subsystems, each one
subdivided in the following packages:

• GamosCore: core software covering main Geant4 functionality

– GamosBase: parameter manager, analysis manager, filters, clas-
sifiers and other basic functionalities

– GamosFactories: factories to convert the different simulation
components (geometry, physics, generator, user actions, ...) in
plug-in’s

– GamosGeometry: geometry-related utilities and support for
text detector description

– GamosMovement: support for displacements and rotations of
volumes during a job

– GamosSD: classes for sensitive detectors, hits and digitization

– GamosGenerator: utilities to support single particle and iso-
tope generators as well as different initial particle distributions

– GamosPhysics: example of common physics list for medicine
applications

∗ GamosPhysicsList: example of electromagnetic physics list,
supporting standard, low-energy and Penelope classes, and
example of hadronic physics list (meant for hadrontherapy)

∗ GamosOtherPhysicsLists: other examples of electromag-
netic and hadronic physics lists

∗ GamosCuts: management of production cuts and user lim-
its, including tools to automatically optimise them

∗ GamosVarianceReduction: implementation of several bremsstrahlung
splitting techniques

– GamosUserActionMgr: user action manager to allow several
user actions of the same type, selectable by user commands

– GamosScoring: scoring manager and messenger and examples
of scoring plug-in classes (scorers, filters and printers)

– GamosAnalysis: utilities that can help the advanced user to
analyse results

– GamosReadDICOM: code to read in DICOM files containing
patient data

1.3. THE PLUG-IN CONCEPT 3

– GamosUtilsUA: user action utilities (tracking verbosity con-
trol, track counting, process counting, time study, ...)

– GamosUtils: general C++ utilities

– GamosApplication: GAMOS run manager and the “main”
program

• text read, text build: packages to read geometry from text files (to
be moved to Geant4 official release

• PET: example of PET simulation

– PETGeometry: example to simulate the most common PET
devices by defining its properties in an input text file

– PETAnalysis: PET event classifier and PET histograms

• RadioTherapy: example of RadioTherapy simulation, including writ-
ing and reading phase space files

Each package has the following subdirectories:

• src: the source code

• include: the header files

You do not need to follow this file distribution if you want to create a
new package, but we recommend you to do so.

There are also several directories containing examples of the different
GAMOS functionalities as well of how to extend them. Please refer to the
examples chapter in this guide or the README files in each example for a
detailed explanation.

In the directory tutorials you can find three step-by-step tutorials:
PET, Radiotherapy and plug-in’s. They include several exercises with in-
creasing difficulty, and the exercise outputs as well as the exercise solutions
are provided. We recommend you to follow one or several of these tutorials
to become acquainted with GAMOS.

1.3 The plug-in concept

To provide the user with a big flexibility in choosing different simulation
components (geometry, physics, user actions, histograms, ...) and combin-
ing them to his/her will in a simple way, GAMOS is based on the plug-in
concept. This means that the “main” program runs without predefined
components and the user tells it which components are being loaded at run
time (without needing to recompile) by simply listing them in a text input
file. This mechanism also lets the user define a new component that was

4 CHAPTER 1. INTRODUCTION

not foreseen by GAMOS and easily tell GAMOS to use it together with any
other of his/her own components or GAMOS components.

For each of the simulation component types we will describe in the cor-
responding section which is the command to select it and how to transform
a new user component into a GAMOS plug-in.

For the implementation of plug-in’s GAMOS has chosen the CERN li-
brary SEAL [3].

A common example to better understand the plug-in concept is the plug-
in’s that are installed on your computer when you open some Internet page
with your web browser. Your web browser can use these plug-in’s to get
an extra functionality (viewing videos, animated figures, ...) without your
having to recompile it and even if the web browser designers had never before
heard of the new plug-in.

Chapter 2

Getting started

This chapter explains the practical details to obtain the GAMOS code, com-
pile and run it.

2.1 Getting the code and installing it

GAMOS has been tested in several Linux distributions (Scientific Linux,
Fedora Core and Ubuntu 1), as well as Mac OS 8.10.

You can download GAMOS from
http://fismed.ciemat.es/GAMOS

GAMOS depends on Geant4 and on a number of other libraries (CLHEP
[4] and, optionally, ROOT[5]). To download and install everything you can
follow the instruction in the ’Code download’ area. As explained there
you need to get first the installation scripts and uncompress them in the
scripts directory (you may do it automatically by downloading the scripts
installation utility from the web page). After that you just need to type the
command

sh installGamos.csh MY INSTALLATION DIR

where MY INSTALLATION DIR is the directory where you want to
install GAMOS.

This command will download the GAMOS code as well as CLHEP,
Geant4 and ROOT packages, and it will compile them all. It will first
make sure that you have a C++ compiler. Then it will check if you have
the X11 and the OpenGL libraries installed and if not it will install GAMOS
without OGLIX visualisation. After that follow the instructions below on
how to run an example.

1do not use the test version Ubuntu 8.10, as it has been publicly reported to have

problems with plu-in’s

5

6 CHAPTER 2. GETTING STARTED

2.2 Running an example

If you have done a standard installation, you will have your code compiled
and ready to run.

Before running any example you have to set some configuration variables,
mainly where you have installed GAMOS and the depending libraries. This
is all done in the file

MY GAMOS DIR/config/confgamos.csh

or

MY GAMOS DIR/config/confgamos.sh

depending on your shell flavour.

Therefore before running you have to source this file:

source MY GAMOS DIR/config/confgamos.csh

or

source MY GAMOS DIR/config/confgamos.sh

Remember to type this command every time you start a new
session to run GAMOS.

To run your application inside GAMOS you do not have to write a
“main” program, as GAMOS provides a unique “main” that serves to run
any application. When you run the GAMOS “main” it will load and call
the components you want (geometry, physics, generator, hits building, his-
tograms, ...) by simply defining them in the input command file. Therefore
to run your application simply type

gamos MY INPUT FILE

where MY INPUT FILE is a typical Geant4 macro file that includes
Geant4 and GAMOS commands.

The minimum set of commands that you need are those to select a ge-
ometry, a physics list and a generator, to initialize Geant4 and to run N
events. In this case your input file may look like this one:

/tracking/verbose 1

/gamos/setParam GmGeometryFromText:FileName geom.txt

/gamos/geometry GmGeometryFromText

/gamos/physicsList GmEMPhysics

/gamos/generator GmGenerator

/gamos/generator/addSingleParticleSource MY_ELEC e- 1. MeV

/run/initialize

/run/beamOn 10

This will create the geometry of a simple geometry described in the file
geom.txt lying in the current directory or in the MY GAMOS DIR/data

2.3. COMPILING GAMOS 7

directory, set the physics as the standard electromagnetic Geant4 physics
and run 10 events with an electron of 1 MeV as primary particle.

You can then add any of the command described in this document, or
any Geant4 command or any command you created yourself.

Beware that Geant4 is a state machine, and the list of available com-
mands depends on the current state. The main state change is triggered by
the /run/initialize command, which changes the state from G4State PreInit
to G4State Idle. You may get a full list of the available commands at any
moment with the command /control/manual.

To run your first example you can use the one at the directory exam-
ples/test. Simply type the commands:

cd MY GAMOS DIR/examples/test; gamos test.in

2.3 Compiling GAMOS

If you installed GAMOS as explained in the previous section, the compilation
will be done automatically. Then you may run your application in GAMOS
by writing your user commands without any need of compiling ever more.

Only if you want to extend the GAMOS functionality by providing new
code, you will have to follow the instructions in this section.

GAMOS uses the GNU make tool to manage the compilation and gener-
ation of executables. It uses a set of configuration files based on the Geant4
ones. Therefore, if you are familiar to Geant4, you will find no difficulty in
compiling GAMOS.

After untarring the installation file, you will have a directory called
MY INSTALLATION DIR/GAMOS.2.0.1. This is the directory where
the GAMOS code is, the rest are the external libraries used by GAMOS and
the configuration utilities.

Before compiling, you have to define a few variables, mainly the location
of the different external packages. All this is done by sourcing the file

source MY GAMOS DIR/config/confgamos.csh
To compile any directory of GAMOS, and all the directories below, you

just have to go to that directory and type make. This will compile the .cc
files found in the src directory, build the library and the plug-in’s, and in
the case of the directory GamosCore/GamosApplication it will also create
the gamos executable. You may need to type the Linux command rehash
to refresh your environmental variables in case there was no executable file
before starting the compilation.

2.3.1 Compiling your new code

If you have created a new directory with your code you have to compile it
following the Geant4 way. The implementation files should have the suffix
.cc and should be in a subdirectory called src. For the declaration files,

8 CHAPTER 2. GETTING STARTED

you have a greater freedom; the Geant4 way is that they have the suffix .hh
and lie in a subdirectory called include, but you can do it your own way
(and after that, you have to be consistent in the GNUmakefile, as explained
below).

You then have to build a GNUmakefile, that will steer the compilation
and library building when you type the command make. For building it you
may follow the examples in the GamosCore/GamosXXX directories. We
take as example the file GamosCore/GamosGeometry/GNUmakefile:

name := GamosGeometry

G4TARGET := $(name)

G4EXLIB := true

.PHONY: all

all: lib plugin

include $(GAMOSINSTALL)/config/binmake.gmk

include $(GAMOSINSTALL)/config/general.gmk

EXTRALIBS += -lG4geomtextread -lG4geomtextbuild -lGamosBase

-lGamosUtils -lGamosFactories -lGamosUserActionMgr

Let’s go one by one through the lines:
In the first one you define the name of your library:

name := GamosGeometry

The following two lines are used internally by the GAMOS scripts and
are mandatory:

G4TARGET := $(name)

G4EXLIB := true

Then you define what you want to do when you type make:

.PHONY: all

all: lib plugin

There are several possibilities:

• lib Compile and build the library.

• plugin Build the plug-in. Use it if and only if you are creating a new
plug-in.

2.3. COMPILING GAMOS 9

• plugin check Check that you are linking with all the libraries that
will be needed. This check is not mandatory, but if you do not do it
and you are missing some library, when you run you will get an error
message.

• bin Build the executable. You will probably never need this, as
GAMOS is based on dynamic loading and plug-in’s.

The following two lines are needed for configuration

include $(GAMOSINSTALL)/config/binmake.gmk

include $(GAMOSINSTALL)/config/general.gmk

If you edit the file general.gmk, you will see that it is just including a
different file for each package. Therefore, instead of using it, you may include
all or only a subset of them if you do not need them all.

Finally, you define the GAMOS libraries that will be linked to yours, i.e.
the libraries of each of the files that you have included in your code 2

EXTRALIBS += -lG4geomtextread -lG4geomtextbuild -lGamosBase

-lGamosUtils -lGamosFactories -lGamosUserActionMgr

If you have doubts about which GAMOS libraries to include, you may in-
clude them all, as in GamosCore/GamosApplication/GNUmakefile.

If you have built several levels of directories you may want to have the
possibility of typing make at the top most directory to trigger the com-
pilation of all the directories. To do this you just have to add a GNU-
makefile at the top level directory similar to the one at $(GAMOSIN-
STALL)/source/GamosCore/GNUmakefile, that we reproduce here:

include $(GAMOSINSTALL)/config/architecture.gmk

SUBDIRS = GamosUtils GamosFactories GamosBase GamosUserActionMgr

GamosAnalysis GamosGeometry GamosMovement GamosPhysics

GamosGenerator GamosSD GamosUtilsUA GamosReadDICOM

GamosScoring GamosApplication

include $(GAMOSINSTALL)/config/globlib.gmk

You only have to change the line starting by SUBDIRS =, to list the name
of your subdirectories.

2For the external packages the set of libraries is fixed and defined in the configuration

files

10 CHAPTER 2. GETTING STARTED

Chapter 3

Geometry

You can describe your detector in three different ways: by defining your
setup in a text file, by using one of the geometry examples provided or in
the standard Geant4 way, by writing your C++ class inheriting from
G4VUserDetectorConstruction.

3.1 Building your geometry with a text file

You can define your geometry in a simple text file as described in the fol-
lowing subsection.

You can also use as example the one at

MY GAMOS DIR/data/g4geom.*.txt

Once your file is ready, you have to tell GAMOS to use your geometry
definition, first telling the name of your file with the command

/gamos/setParam GmGeometryFromText:FileName MY FILENAME1

and then telling GAMOS to use the constructor of geometry from text file

/gamos/geometry GmGeometryFromText

3.1.1 Description of geometry text file format

The description of the geometry is based on tags. A tag is a word that
appears at the first one in a line and sets what the line means.

There are no constraints on the order of the tags in the file, except
some logical restrictions, e.g. a volume cannot be positioned or given at-
tributes if it has not been defined (e.g. no ’:PLACE’, ’:VIS’, ’:COLOUR’,
’:CHECK OVERLAPS’ tags before ’:VOLU’ tag).

We will explain in this section the tags used to describe the geometry,
also explaining the meaning of each of the words that follow the tag, and an
example of each tag. Tags can be given with any combination of upper case

1The default path to look for this file is defined by the variable

GAMOS SEARCH PATH. For details see section on “Managing the input data files”

11

12 CHAPTER 3. GEOMETRY

and lower case letters. Each tag has a fixed number of arguments, known
by the parser; therefore you may write all arguments in a line or in several
lines at your will.

Isotope

:ISOT

1. Name

2. Z

3. N

4. A

Example:

:ISOT Cl35 17 18 35.

Element made of one unique isotope

:ELEM

1. Name

2. Symbol

3. Z

4. A

Example:

:ELEM Hydrogen H 1. 1.

Element composed of several isotopes

:ELEM FROM ISOT

1. Name

2. Symbol

3. Number of components

One line per isotope with

1. isotope name

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 13

2. fraction of number of atoms per volume

Example:

:ELEM_FROM_ISOT Chlorine Cl 2

Cl35 0.4

Cl36 0.6

Material made of one element

:MATE

1. Name

2. Z

3. A

4. Density

Example:

:MATE Iron 26. 55.85 7.87

Material made of a mixture of elements or materials

:MIXT

1. Name

2. Density

3. Number of components

One line per material or element with

1. material name

2. proportion of material in the mixture.

The components can be either all elements or all materials, but both
types cannot appear in the same mixture.

There are three mixture tags, depending of the way the proportions are
defined:

• Proportions by weight fractions

:MIXT BY WEIGHT

This tag is equivalent to the ”:MIXT” tag

14 CHAPTER 3. GEOMETRY

• Proportions by number of atoms

:MIXT BY NATOMS

• Proportions by volume

:MIXT BY VOLUME

The first two tags can be used to build material mixtures out of elements
or materials, but the last tag can only be applied with material components
(elements do not have density).

Example:

:MIXT Fiber_Lead 9.29 2

Lead 0.9778

Polystyrene 0.0222

Geant4 internal database of materials and elements

Geant4 provides a list of predefined materials, whose compositions corre-
spond to the NIST definition [13]. Among them you can find all single
elementary materials, from Z = 1 (Hydrogen) to Z = 98 (Californium). You
can use those materials when building a volume without the need to redefine
them on your ASCII file. It is just enough that the material name you assign
to a volume corresponds to the name of one of these predefined materials
(they all start with “G4 ”). The Geant4 materials have the mean excitation
energy set explicitly, instead of allowing an automatic calculation from its
components. You may override those materials if you want by redefining
them in your ASCII file.

Also Geant4 provides the definition of all elements from Z = 1 (Hy-
drogen) to Z = 107 (Bohrium). Their names are the usual symbol in the
periodic table of elements (no “G4 ”). These elements take into account the
isotope composition.

Apart from the elementary materials, many other are available, usually
related to medical physics applications. you may find the details of their
composition in the Geant4 file
source/materials/src/G4NistMaterialBuilder.cc:

The full list is the following:

G4 A-150 TISSUE, G4 ACETONE,

G4 ACETYLENE, G4 ADENINE,

G4 ADIPOSE TISSUE ICRP, G4 AIR,

G4 ALANINE, G4 ALUMINUM OXIDE,

G4 AMBER, G4 AMMONIA,

G4 ANILINE, G4 ANTHRACENE,

G4 B-100 BONE, G4 BAKELITE,

G4 BARIUM FLUORIDE, G4 BARIUM SULFATE,

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 15

G4 BENZENE, G4 BERYLLIUM OXIDE,

G4 BGO, G4 BLOOD ICRP,

G4 BONE COMPACT ICRU, G4 BONE CORTICAL ICRP,

G4 BORON CARBIDE, G4 BORON OXIDE,

G4 BRAIN ICRP, G4 BUTANE,

G4 N-BUTYL ALCOHOL, G4 C-552,

G4 CADMIUM TELLURIDE, G4 CADMIUM TUNGSTATE,

G4 CALCIUM CARBONATE, G4 CALCIUM FLUORIDE,

G4 CALCIUM OXIDE, G4 CALCIUM SULFATE,

G4 CALCIUM TUNGSTATE, G4 CARBON DIOXIDE,

G4 CARBON TETRACHLORIDE, G4 CELLULOSE CELLOPHANE,

G4 CELLULOSE BUTYRATE, G4 CELLULOSE NITRATE,

G4 CERIC SULFATE, G4 CESIUM FLUORIDE,

G4 CESIUM IODIDE, G4 CHLOROBENZENE,

G4 CHLOROFORM, G4 CONCRETE,

G4 CYCLOHEXANE, G4 1,

2-DICHLOROBENZENE, G4 DICHLORODIETHYL ETHER,

G4 1,2-DICHLOROETHANE,

G4 DIETHYL ETHER, G4 N,

N-DIMETHYL FORMAMIDE, G4 DIMETHYL SULFOXIDE,

G4 ETHANE, G4 ETHYL ALCOHOL,

G4 ETHYL CELLULOSE, G4 ETHYLENE,

G4 EYE LENS ICRP, G4 FERRIC OXIDE,

G4 FERROBORIDE, G4 FERROUS OXIDE,

G4 FERROUS SULFATE, G4 FREON-12,

G4 FREON-12B2, G4 FREON-13,

G4 FREON-13B1, G4 FREON-13I1,

G4 GADOLINIUM OXYSULFIDE, G4 GALLIUM ARSENIDE,

G4 GEL PHOTO EMULSION, G4 Pyrex Glass,

G4 GLASS LEAD, G4 GLASS PLATE,

G4 GLUCOSE, G4 GLUTAMINE,

G4 GLYCEROL, G4 GUANINE,

G4 GYPSUM, G4 N-HEPTANE,

G4 N-HEXANE, G4 KAPTON,

G4 LANTHANUM OXYBROMIDE, G4 LANTHANUM OXYSULFIDE,

G4 LEAD OXIDE, G4 LITHIUM AMIDE,

G4 LITHIUM CARBONATE, G4 LITHIUM FLUORIDE,

G4 LITHIUM HYDRIDE, G4 LITHIUM IODIDE,

G4 LITHIUM OXIDE, G4 LITHIUM TETRABORATE,

G4 LUNG ICRP, G4 M3 WAX,

G4 MAGNESIUM CARBONATE, G4 MAGNESIUM FLUORIDE,

G4 MAGNESIUM OXIDE, G4 MAGNESIUM TETRABORATE,

G4 MERCURIC IODIDE, G4 METHANE,

G4 METHANOL, G4 MIX D WAX,

16 CHAPTER 3. GEOMETRY

G4 MS20 TISSUE, G4 MUSCLE SKELETAL ICRP,

G4 MUSCLE STRIATED ICRU, G4 MUSCLE WITH SUCROSE,

G4 MUSCLE WITHOUT SUCROSE, G4 NAPHTHALENE,

G4 NITROBENZENE, G4 NITROUS OXIDE,

G4 NYLON-8062, G4 NYLON-6/6,

G4 NYLON-6/10, G4 NYLON-11 RILSAN,

G4 OCTANE, G4 PARAFFIN,

G4 N-PENTANE, G4 PHOTO EMULSION,

G4 PLASTIC SC VINYLTOLUENE, G4 PLUTONIUM DIOXIDE,

G4 POLYACRYLONITRILE, G4 POLYCARBONATE,

G4 POLYCHLOROSTYRENE, G4 POLYETHYLENE,

G4 MYLAR, G4 PLEXIGLASS,

G4 POLYOXYMETHYLENE, G4 POLYPROPYLENE,

G4 POLYSTYRENE, G4 TEFLON,

G4 POLYTRIFLUOROCHLOROETHYLENE, G4 POLYVINYL ACETATE,

G4 POLYVINYL ALCOHOL, G4 POLYVINYL BUTYRAL,

G4 POLYVINYL CHLORIDE, G4 POLYVINYLIDENE CHLORIDE,

G4 POLYVINYLIDENE FLUORIDE, G4 POLYVINYL PYRROLIDONE,

G4 POTASSIUM IODIDE, G4 POTASSIUM OXIDE,

G4 PROPANE, G4 lPROPANE,

G4 N-PROPYL ALCOHOL, G4 PYRIDINE,

G4 RUBBER BUTYL, G4 RUBBER NATURAL,

G4 RUBBER NEOPRENE, G4 SILICON DIOXIDE,

G4 SILVER BROMIDE, G4 SILVER CHLORIDE,

G4 SILVER HALIDES, G4 SILVER IODIDE,

G4 SKIN ICRP, G4 SODIUM CARBONATE,

G4 SODIUM IODIDE, G4 SODIUM MONOXIDE,

G4 SODIUM NITRATE, G4 STILBENE,

G4 SUCROSE, G4 TERPHENYL,

G4 TESTES ICRP, G4 TETRACHLOROETHYLENE,

G4 THALLIUM CHLORIDE, G4 TISSUE SOFT ICRP,

G4 TISSUE SOFT ICRU-4, G4 TISSUE-METHANE,

G4 TISSUE-PROPANE, G4 TITANIUM DIOXIDE,

G4 TOLUENE, G4 TRICHLOROETHYLENE,

G4 TRIETHYL PHOSPHATE, G4 TUNGSTEN HEXAFLUORIDE,

G4 URANIUM DICARBIDE, G4 URANIUM MONOCARBIDE,

G4 URANIUM OXIDE, G4 UREA,

G4 VALINE, G4 VITON,

G4 WATER, G4 WATER VAPOR,

G4 XYLENE, G4 GRAPHITE,

G4 lH2, G4 lN2,

G4 lO2, G4 lAr,

G4 lKr, G4 lXe,

G4 PbWO4, G4 Galactic

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 17

Solid

:SOLID

1. solid name

2. solid type name

3. ... List of solid parameters

The meaning and order of the solid parameters is the same as in the
corresponding Geant4 solid constructor. All the Geant4 CSG and ”specific”
solids are implemented. The list of solid types and the corresponding pa-
rameters is the following (for better understanding of the solid parameters
meaning we refer to the Geant4 user’s manual [7]):

BOX: box

1. X Half-length

2. Y Half-length

3. Z Half-length

TUBE: tube

1. Inner radius

2. Outer radius

3. Half length in z

TUBS: tube section

1. Inner radius

2. Outer radius

3. Half length in z

4. Starting phi angle

5. Delta angle of the segment

CONE: cone

1. Inner radius at -fDz

2. Inner radius at +fDz

3. Outer radius at -fDz

18 CHAPTER 3. GEOMETRY

4. Outer radius at +fDz

5. Half length in z (=fDz)

CONS: cone section

1. Inner radius at -fDz

2. Inner radius at +fDz

3. Outer radius at -fDz

4. Outer radius at +fDz

5. Half length in z (=fDz)

6. Starting angle of the segment

7. Delta angle of the segment

TRD: trapezoid

1. Half-length along x at the surface positioned at -dz

2. Half-length along x at the surface positioned at +dz

3. Half-length along y at the surface positioned at -dz

4. Half-length along y at the surface positioned at +dz

5. Half-length along z axis

PARA: paralellepiped

1. Half-length along x at the surface positioned at -dz

2. Half-length along x at the surface positioned at +dz

3. Half-length along y at the surface positioned at -dz

4. Angle formed by the y axis and by the plane joining the centre of the
faces G4Parallel to the z-x plane at -dy and +dy

5. Polar angle of the line joining the centres of the faces at -dz and +dz
in z

6. Azimuthal angle of the line joining the centres of the faces at -dz and
+dz in z Half-length along y at the surface positioned at +dz

TRAP: generic trapezoid

1. Half-length along the z-axis (=pDz)

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 19

2. Polar angle of the line joining the centres of the faces at -/+pDz

3. Azimuthal angle of the line joining the centre of the face at -pDz to
the centre of the face at +pDz

4. Half-length along y of the face at -pDz (=pDy1)

5. Half-length along x of the side at y=-pDy1 of the face at -pDz

6. Half-length along x of the side at y=+pDy1 of the face at -pDz

7. Angle with respect to the y axis from the centre of the side at y=-pDy1
to the centre at y=+pDy1 of the face at -pDz

8. Half-length along y of the face at +pDz (=pDy2)

9. Half-length along x of the side at y=-pDy2 of the face at +pDz

10. Half-length along x of the side at y=+pDy2 of the face at +pDz

11. Angle with respect to the y axis from the centre of the side at y=-pDy2
to the centre at y=+pDy2 of the face at +pDz

or alternatively, if your trapezoid is a simpler one, you can use the parame-
ters

1. Length along z

2. Length along y

3. Length along x at the wider side

4. Length along x at the narrower side

SPHERE: sphere

1. Inner radius

2. Outer radius

3. Starting angle of the segment

4. Delta angle of the segment

5. Theta starting angle of the segment

6. Theta delta angle of the segment

ORB: full solid sphere

1. Outer radius

20 CHAPTER 3. GEOMETRY

TORUS: torus

1. Inside radius

2. Outside radius

3. Swept radius of torus

4. Starting Phi angle (fSPhi+fDPhi <= 2PI, fSPhi > −2PI)

5. Delta angle of the segment

POLYCONE: polycone

1. Initial phi starting angle

2. Total phi angle

3. Number of z planes or Number of rz points

For each z plane:

1. Position of z plane

2. Tangent distance to outer surface

3. Half-length along the z-axis

For each rz corner:

1. R coordinate of these corners

2. Z coordinate of these corners

The software will know which if the numbers refer to plane or rz points
by looking at the number of parameters provided and comparing it with the
number expected

Example:

:SOLID polyc POLYCONE 0 360 6

3 -2

3.5 -2

3.5 0.75

3.75 1

3.75 2

3 2

or equivalently

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 21

:SOLID polyc POLYCONE 0 360 4

-2 3 3.5

0.75 3 3.5

1. 3. 3.75

2. 3. 3.75

POLYHEDRA: polyhedra

1. Initial phi starting angle

2. Total phi angle

3. Number of sides

4. Number of z planes or Number of rz points

For each z plane:

1. Position of z plane

2. Tangent distance to outer surface

3. Half-length along the z-axis

For each rz corner:

1. R coordinate of these corners

2. Z coordinate of these corners

The software will know which if the numbers refer to plane or rz points
by looking at the number of parameters provided and comparing it with the
number expected

Example:

:SOLID polyh POLYHEDRA 20. 180. 3 4

1900. 32.

1800. 30

1800. 0.

1900. 0.

or equivalently

:SOLID polyh POLYHEDRA 20. 180. 3 2

1800. 0. 30.

1900. 0. 32.

ELLIPTICAL TUBE: elliptical tube

22 CHAPTER 3. GEOMETRY

1. Half length X

2. Half length Y

3. Half length Z

ELLIPSOID: ellipsoid

1. Semiaxis in X

2. Semiaxis in Y

3. Semiaxis in Z

4. Lower cut plane level, z

5. Upper cut plane level, z

ELLIPTICAL CONE: elliptical cone

1. Semiaxis in X

2. Semiaxis in Y

3. Height of elliptical cone

4. Upper cut plane level

HYPE: hyperbolic profile

1. Inner radius

2. Outer radius

3. Inner stereo angle

4. Outer stereo angle

5. Half length in Z

TET: tetrahedron

1. Anchor point

2. Point 2

3. Point 3

4. Point 4

5. Flag indicating degeneracy of points

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 23

TWISTED BOX: box twisted along one axis

1. Twist angle

2. Half x length

3. Half y length

4. Half z length

TWISTED TRAP: trapezoid twisted along one axis

1. Twisted angle

2. Half x length at y=-pDy

3. Half x length at y=+pDy

4. Half y length (=pDy1)

5. Half z length (=pDz)

6. Polar angle of the line joining the centres of the faces at -/+pDz

7. Half y length at -pDz (=pDy2)

8. Half x length at -pDz, y=-pDy1

9. Half x length at -pDz, y=+pDy1

10. Half y length at +pDz

11. Half x length at +pDz, y=-pDy2

12. Half x length at +pDz, y=+pDy2

13. Angle with respect to the y axis from the centre of the side

TWISTED TRD: twisted trapezoid with the x and y dimensions vary-
ing along z

1. Half x length at the surface positioned at -pDz

2. Half x length at the surface positioned at +pDz

3. Half y length at the surface positioned at -pDz

4. Half y length at the surface positioned at +pDz

5. Half z length (=pDz)

6. Twisted angle

24 CHAPTER 3. GEOMETRY

TWISTED TUBS: tube section twisted along its axis

1. Twisted angle

2. Inner radius at end-cap

3. Outer radius at end-cap

4. Half z length

5. Phi angle of a segment

Boolean solids
The three types of Geant4 boolean solids are supported: union, subtrac-

tion and intersection. The same tag should be used as for normal solids, but
putting as solid type the type of boolean operation. The parameters are

1. Solid name

2. Solid boolean operation (UNION/SUBTRACTION/INTERSECTION)

3. First component solid name

4. Second component solid name

5. Name of relative rotation matrix

6. Relative X position

7. Relative Y position

8. Relative Z position

Example:

:SOLID myunion UNION solid1 solid2 RM30 -11.8 12.5 0.

Volume

There are two ways to define a volume. You can build if from a previously
declared solid associating a material to it,

:VOLU

1. Volume name

2. Solid name

3. Material name

Example:

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 25

:VOLU HALL HALL Air

or you can skip the definition of the solid and in one unique line define
the solid and the material (valid also for boolean solids). You should then
use the same format as for the :SOLID tag, but adding as last word the
material name

Example: Instead of

:SOLID HALL BOX 5000. 5000. 20000.

:VOLU HALL HALL Air

use

:VOLU HALL BOX 5000. 5000. 20000. Air

Placement of a volume

All the possible ways to place a volume in Geant4 are supported: a single
placement, a parameterised one, a division, a replica and an assembly.

Single placement
:PLACE

1. Volume name

2. Copy number

3. Parent volume name

4. Name of rotation matrix

5. X position

6. Y position

7. Z position

Example:

:VOLU yoke :TUBS Iron 3 620. 820. 1270. \\

:PLACE yoke 1 expHall R00 0.0 0.0 370.

Parameterisation
The parameterisations supported are the placement of several copies of

a volume along a line, in a circle and in a bidimensional grid (other types of
parameterisation may be added at user request).

:PLACE PARAM

1. Volume name

26 CHAPTER 3. GEOMETRY

2. Copy number

3. Parent volume name

4. Parameterisation type

5. Name of rotation matrix

6. Number of copies

7. Step (separation between copies)

8. Offset

9. Extra arguments (optional, depend on parameterisation type)

There are three types of linear parameterisation, along the three axis
X,Y,Z (types: LINEAR X, LINEAR Y, LINEAR Z) and a general
one (type LINEAR) for which you have to add as extra arguments the axis
direction DIR X DIR Y DIR Z. The offset for linear parameterisations
represents the distance from the centre of the first copy to the point (0,0,0)
along the line.

In the case of circle parameterisation, the circle is around the Z axis by
default. If you want a circle around another axis you can provide as extra
arguments the axis and, optionally, the position of the first copy.

There are three types of square parameterisation, in the planes
XY,XZ,YZ (types: SQUARE XY, SQUARE XZ, SQUARE YZ) and
a general one (type SQUARE). For this bidimensional parameterisations
you have to provide two copy numbers, two steps and, optionally, two offsets.
For the general case, SQUARE the offset is not needed, but you have to
add as extra arguments the two axis, that do not have to be orthogonal, and,
optionally, the position of the first copy. In the case of this paramerisation
type, you have to provide two number of copies, one for each axis.

Example:

:PLACE_PARAM mytube 1 subworld2 LINEAR_X RM0 5 20. 0.

:PLACE_PARAM mytube 1 subworld1 LINEAR RM0 5 20

0. 1. 1. 1. -50. 0. 0.

:PLACE_PARAM mybox 0 mother CIRCLE RM0 30 0.209 1 150

:PLACE_PARAM mybox 1 subworld2 SQUARE_XZ RM0 5 5 20. 20.

:PLACE_PARAM mybox 1 subworld1 SQUARE RM0 5 8

20. 10. 0. 1. 1. 0. 1. 0.

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 27

Be aware that putting offset = 0 means that the first copy is placed at
(0,0,0). This may be not what you want if, for example, you are filling a
box with an square of small boxes using an square parameterisation: offset
0 will mean that all the copies are placed in the positive-positive quarter of
the mother box.

Division
There are several ways to define a division in Geant4, by giving:

• the number of divisions (so that the width of each division will be
automatically calculated)

• the division width (so that the number of divisions will be automati-
cally calculated to fill as much of the mother as possible)

• both the number of divisions and the division width (this is especially
designed for the case where the copies do not fully fill the mother)

To each of these types correspond a different tag
:DIV WIDTH

1. Volume name

2. Parent volume name

3. Material name

4. Axis of division

5. Division width

6. Offset (not mandatory)

:DIV NDIV

1. Volume name

2. Parent volume name

3. Material name

4. Axis of division

5. Number of divisions

6. Offset (not mandatory)

:DIV NDIV WIDTH

1. Volume name

28 CHAPTER 3. GEOMETRY

2. Parent volume name

3. Material name

4. Axis of division

5. Number of divisions

6. Division width

7. Offset (not mandatory)

Example:

:DIV_WIDTH mybox mother AIR Z 10.

:DIV_NDIV_WIDTH mytube mother copper PHI 12 10.*deg

Replica
To define a replica the following tag must be used:
:REPL

1. Volume name

2. Parent volume name

3. Axis of division

4. Number of divisions

5. Division width

6. Offset (not mandatory)

Example:

:REPL crystal Block X 10 5.*cm

Remember, that different to the divisions, where the solid type and di-
mensions are calculated automatically be Geant4, in the case of replicas the
volume name used must be the name of a previously defined volume. This
solid is not really used for navigation but should have the correct type and
dimensions for visualisation.

Assembly volumes
Assembly volumes are sets of logical volumes that are combined together,

so that they act as if there were in a real mother, but without creation of
the mother.

To define assembly volumes you have to define the relative rotations and
positions of all the logical volumes

:VOLU ASSEMBLY

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 29

1. Volume name

2. Number of logical volumes

3. Axis of division

4. Number of divisions

5. Division width

6. Offset (not mandatory)

One line per logical volume with

1. Logical volume name

2. Rotation matrix name

3. position X

4. position Y

5. position Z

Then to place the assembly volume you can use:
:PLACE ASSEMBLY

1. Volume name

2. Copy number

3. Parent volume name

4. Name of rotation matrix

5. X position

6. Y position

7. Z position

Example:

:SOLID Crystal BOX 10 10 10

:SOLID Crystal2 BOX 5 5 5

:VOLU_ASSEMBLY CrystalSet 3

Crystal RM0 0. 0. 0.

Crystal RM1 0. 0. 20.

Crystal2 RM0 0. 20 -10

:PLACE_ASSEMBLY CrystalSet 1 expHall R00 100. 0. 0.

30 CHAPTER 3. GEOMETRY

Rotation matrix

A rotation matrix is interpreted as the rotation that should be applied to
the object in the reference system of its mother. It can be defined in three
ways:

a) By giving the three rotation angles around the X, Y and Z axis (in
this order of rotations)

b) By giving the polar and azimuthal angles of the X, Y and Z axis after
the rotation is applied

c) By giving the nine matrix elements of the rotation matrix: XX, XY,
XZ, YX, YY, YZ, ZX, ZY, ZZ

The tag for the three cases is the same. The parser will know which case
is meant by the number of parameters.

a) :ROTM

1. Name

2. Angle of rotation around global X axis

3. Angle of rotation around global X axis

4. Angle of rotation around global X axis

Example:

:ROTM R0 0. 0. 0.

b) :ROTM

1. Name

2. Polar angle for axis X

3. Azimuthal angle for axis X

4. Polar angle for axis Y

5. Azimuthal angle for axis Y

6. Polar angle for axis Z

7. Azimuthal angle for axis Z

Example:

:ROTM R0 90. 0. 90. 90. 0. 0.

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 31

c) :ROTM

1. Name

2. 9 parameters defining the rotation matrix

Example:

:ROTM R0 1. 0. 0. 0. 1. 0. 0. 0. 1.

Visibility

:VIS

1. Volume name

2. ON or TRUE, OFF or FALSE

Example:

:VIS yoke OFF

By default the visibility of all volumes is set to ON

Colour and transparency

To define the colour of a volume

:COLOUR/:COLOR

1. Volume name

2. Red colour proportion

3. Green colour proportion

4. Blue colour proportion

5. Transparency

The four parameters can take a value between 0 and 1. The transparency
parameter is not mandatory.

Example:

:COLOUR NDC_chamber 0.2 0.4 0.1

By default, the three colour proportions will be set to -1.

32 CHAPTER 3. GEOMETRY

Check overlaps

Geant4 offers the possibility to check if a volume overlaps with other vol-
umes. By default it is not set, but you can activate it with the commands

:CHECK OVERLAPS

1. Volume name

2. ON or TRUE, OFF or FALSE

Example:

:CHECK_OVERLAPS NDC_chamber 0.2 0.4 0.1

By default, the three colour proportions will be set to -1.

Use of ’*’ in names

In the case of the :VIS, :COLOUR and :CHECK OVERLAPS tags,
you may use ’*’ to define the volume name. This ’*’ will be replaced by ’any
name’. For example Crys* means all the volume names starting by ’Crys’,
* means all volume names.

Use of parameters

You can also define a parameter for later use in any tag.
:P

1. parameter name

2. parameter value

You can then use the parameter as: ’$’ + parameter name
Example:

:P InnerR 12.

:VOLU yoke :TUBS Iron 3 $InnerR 820. 1270.

Units

Any value in a tag has a default unit that depends on the dimension of
the value (automatically known by the parser). The default units are the
following:

• length: mm

• angle: degrees

• density: g/cm3

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 33

• atomic mass: g/mole

The user can override the default value of a unit by indicating the unit of
each value. This can be done adding at the end of the value the unit name
(see CLHEP file Units/SystemOfUnits.h) preceded by a ’*’ character;
e.g. 3*mm, 1.4*rad,...

Arithmetic Expressions

For any value you want to define in a tag you can use the most common
mathematical expressions instead of directly writing the figures, e.g.

3-sin(8.2/3.5) , (3+4)*(7-log(3))

You can also use parameters in the expressions, e.g.

7.2*RADIUS−X LENGTH/1.5

If you use a regular expression, remember that there can only be a unit
in the whole expression, and it must be at the end.

The regular expressions used include (their meaning is evident): +, -,
*, /, sin, cos ,tan ,asin ,acos ,atan ,atan2 ,sinh ,cosh ,tanh ,sqrt
,exp ,log ,log10 ,pow).

Including other files

You can next several files by using the #include’ directive any where in
your geometry files.

Example:

#include mygeom2.txt

Combining C++ and ASCII files

If you want to define part of your geometry with C++ and another part
with ASCII files, you should follow the following instructions.

Write a C++ class inheriting from G4VuserDetectorConstruction
and in the Construct() method build the geometry from a set of ASCII
files

G4tgbVolumeMgr* volmgr = G4tgbVolumeMgr::GetInstance();

volmgr->AddTextFile(‘‘mifile1.txt’’);

volmgr->AddTextFile(‘‘mifile2.txt’’);

G4VPhysicalVolume* physiSubWorld =

volmgr->ReadAndConstructDetector();

34 CHAPTER 3. GEOMETRY

You can then use the returned G4VPhysicalVolume as the world vol-
ume or get its logical volume and place it inside any other logical volume.

You can also use the materials and volumes of the ASCII geometry in
your C++ geometry retrieving them by name. To retrieve the pointer of a
material:

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();

G4Material* mate =

geomUtils->GetMaterial("Air",exists=true);

To retrieve a logical volume

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();

// one volume

G4LogicalVolume* world_logic =

(geomUtils->GetLogicalVolumes("world",true))[0];

// several volumes with same name

std::vector<G4LogicalVolume*> crystal_logic =

(geomUtils->GetLogicalVolumes("crystal",exists=true));

To retrieve the physical volumes

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();

std::vector<G4VPhysicalVolume*> crystal_phys =

(geomUtils->GetPhysicalVolumes("crystal",exists=true));

3.1.2 Dumping your Geant4 geometry in text file format

If you have already a Geant4 geometry written with C++ code or any other
method you can get a geometry text file by simply adding a line in your
code

G4tgbGeometryDumper::GetInstance()

->DumpGeometry(theFileName);

This line should be executed once your geometry has been built, for example
in a BeginOfRunAction method, or at the end of the Construct method
in your detector constructor class.

You can do this in GAMOS by simply adding in your command file the
user action named GmGeomTextDumperUA :

/gamos/userAction GmGeomTextDumperUA
The name of the output file can be set by setting the parameter (before the
user action)

/gamos/setParam GmGeomTextDumperAction:OutputName FILE NAME

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 35

3.1.3 Adding new tags to your input text file

You may want to add new tags to your text file and give them any meaning
you like. For example you may use your text file to define your G4Region’s
and assigning different production cuts to each region, as it will be illustrated
in the following lines.

The first step is to define a class inheriting from G4tgrLineProcessor
(see for example GamosCore/GamosGeometry/include/ GmGeom-
TextLineProcessor.hh). You should then define a method

virtual G4bool GmGeomTextLineProcessor::

ProcessLine(const std::vector<G4String>& wl)}

This is the method that will be invoked each time a line in your file is read,
passing to it the line as a vector of strings. In this method you should first
call the default line processor to process the standard tags defined through
this chapter.

G4bool iret = G4tgrLineProcessor::ProcessLine(wl);

iret will be set to 1 if the tag is found, else you should process the tag
yourself. For example

if(!iret) {

//------------------------------- parameter number

if(wl0 == ":REGION") {

GmRegionCutsMgr::GetInstance()->AddRegionData(wl);

iret = 1;

}

}

The second step is to define a class inheriting from
G4tgbDetectorBuilder (see GamosCore/GamosGeometry/include/
GmGeomTextDetectorBuilder.hh). You should then define a method

virtual const G4tgrVolume*

GmGeomTextDetectorBuilder::ReadDetector()

to set as line processor the one you have created, and to trigger the reading
of the file

//------------------- construct g4 geometry

GmGeomTextLineProcessor* tlproc =

new GmGeomTextLineProcessor;

G4tgrFileReader* tfr = G4tgrFileReader::GetInstance();

tfr->SetLineProcessor(tlproc);

36 CHAPTER 3. GEOMETRY

tfr->ReadFiles();

//---------- find top G4tgrVolume

G4tgrVolumeMgr* tgrVolmgr = G4tgrVolumeMgr::GetInstance();

const G4tgrVolume* tgrVoltop = tgrVolmgr->GetTopVolume();

return tgrVoltop;

You should also define another method

virtual G4VPhysicalVolume* GmGeomTextDetectorBuilder::

ConstructDetector(const G4tgrVolume* tgrVoltop)

You should first call the default detector builder to build the Geant4
geometry using the standard tags defined through this chapter.

G4VPhysicalVolume* topPV =

G4tgbDetectorBuilder::ConstructDetector(tgrVoltop);

After that you can add your code that will process your new tags

//--- Create regions

GmRegionCutsMgr::GetInstance()->BuildRegions();

Finally, in your detector construction class, inheriting from
G4VUserDetectorConstruction, you have to set up your detector builder

//---- Construct your detector builder

GmGeomTextDetectorBuilder* gtb =

new GmGeomTextDetectorBuilder;

//---- Inform G4tgbVolumeMgr to use your detector builder,

// instead of the default one

G4tgbVolumeMgr* volmgr = G4tgbVolumeMgr::GetInstance();

volmgr->SetDetectorBuilder(gtb);

//----- Trigger the detector construction

G4VPhysicalVolume* physiWorld =

volmgr->ReadAndConstructDetector();

return physiWorld;

3.1.4 Parallel geometries

You can define a parallel geometry by including a second file for GmGe-
ometryFromText, with the command

/gamos/setParam GmGeometryFromText:FileNameParallel FILE NAME
FILE NUMB ER

3.1. BUILDING YOUR GEOMETRY WITH A TEXT FILE 37

where FILE NAME is the name of a file similar to the one that describe
your mass geometry (you can indeed interchange them). FILE NUMBER
is the number you associate to the parallel geometry, as you may have several
parallel geometries at the same time. The only difference between a parallle
geometry file and a mass geometry file is that in the case of parallel geometry,
the volume at the top of the hierarchy (world volume) should not appear in
the file, as Geant4 creates it automatically copying the mass world volume.
This means that you should place your geometry in the same world as the
volumes of the mass geometry.

The parallel geometry will not be seen by Geant4 unless a process is in-
statntiated to take care of it. To do it you can create a G4ParallelWorldScoringProcess
with the following command

/gamos/physics/useParallelScoringProcess

When it is a parallel geometry volume boundary the one that limits the
step, the process that defined the step is called parallelWorldProcess N,
where N is the number you gave to the parallel geometry that is acting.

The G4ParallelWorldScoringProcess process takes care of changing
the touchable so that it points to the parallel geometry, therefore if an scorer
acts on a step, the G4PreStepPoint and G4PostStetPoint will return
a touchable corresponding to a volume of the parallel geometry in case the
track navigates in it, else a touchable of the mass geometry. Nevertheless,
the G4VPhysicalVolume is not cahnged and it will always point to the
mass geometry volumes. In this way the user can access at the same time the
volume of the parallel geometry and the volume of the mass geometry (see an
example in the Histograms and scorers tutorial). The user must be aware
that is the scorer mechanism that makes these changes, therefore the user
actions will not see the parallel geometry. Please ask for this functionality
in case you think you need it.

Simulating materials and interactions in parallel geometries

In any case, Geant4 can navigate in the parallle geometries, but the materials
are never taken into account. This means that a track never interacts on
a parallel geometry volume. We have developed in GAMOS an utility that
allows to have interactions in both geometries at the same time, that is to
have real overlapping geometries. This maybe useful for example to simulate
the real geometry of brachytherapy seeds or ionisation chambers inside a
phantom. This utility is based on making a copy of the parallel geometry in
the mass geometry. When a particle is going to enter the parallel geometry
volume its position is shifted to the border of the copy of it in the mass
geometry and when a particle exits the parallel volume copy its position is
shifted back to the border of the parallel geometry. To activate this utility
you just have to use the command:

38 CHAPTER 3. GEOMETRY

/gamos/geometry/copyParallelToMassGeom VOL NAME 1 VOL NAME 2
... VOL NAME N DISP X DISP Y DISP Z
where VOL NAME 1 VOL NAME 2 ... VOL NAME N is the list of
volumes in a parallel geometry that will be copied and DISP X DISP Y
DISP Z are the values of the displacement vector.

The user should check that the copy of the parallel geometry volumes
in the mass geometry are inside the user-defeind world volume, and also
that they do not overlap with any of the preexisting mass geometry vol-
umes. GAMOS will check that these two conditions are satisfied, but only
a warning message will be sent. We also recommend taht the copy is placed
far from the rest of the mass geometry voules. If this is not done, it may
happen taht some particles navigating in the mass geometry will enter the
copy, what is a non-physical situation. Alternatively, the user can take care
of killing the particles that approach the copy, for example by using the user
action GmKillAllUA with the corresponding filters.

3.2 Building simple geometries

There are several examples of geometries for common medical devices, for
example the ones you find in the PET directory and the one to build simple
voxelised phantoms. They have been designed to be used for describing dif-
ferent devices by simply changing the configuration data. For more details,
please see the corresponding sections of this manual.

3.3 Building your geometry with C++ code

You can build your geometry by writing your C++ class inheriting from
G4VUserDetectorConstruction (see example in [7]). After that you have to
transform it into a GAMOS plug-in. To learn how to do this, see the instruc-
tions in the section Creating your plug-in, using the GmGeometryFactory.

3.4 Reading DICOM files

GAMOS is able to read the patient data resulting from a CT, PET, SPECT,
NMR, etc. in DICOM format. To convert the DICOM format to a format
readable by GAMOS adding the material and density information you may
use the Geant4 example examples/extended/medical/DICOM. In this
example you can also find the description of the DICOM format readable
by Geant4 and GAMOS.

To use this utility you should define as your geometry the class
/gamos/geometry GmReadPhantomG4Geometry
You should have then a file where your phantom is described, whose

name is set with the parameter

3.4. READING DICOM FILES 39

/gamos/setParam GmReadPhantomGeometry:Phantom:FileName
MY FILENAME

and another file where you describe the rest of your geometry (at least the
world volume where the phantom is placed). The name of this file is set
with the parameter

/gamos/setParam GmReadPhantomGeometry:FileName
MY FILENAME

In a phantom file, the voxels of the same material may have a different
density. GAMOS allows you to group densities in intervals. You have to set
true the parameter

/gamos/setParam GmReadPhantomGeometry:RecalculateMaterialDensities
1

and choose the interval width with the parameter

/gamos/setParam
GmReadPhantomGeometry:Phantom:DensityStep
DENSITY INTERVAL

so that that the voxels of each material will be grouped in density intervals
of DENSITY INTERVAL and a new material will be created for each
group of voxels.

The navigation in the voxels is done using the Geant4 algorithm, G4RegularNavigation,
that is the optimal one for regular geometries (see [8]). The user may select
if when a track navigates through contiguous voxels with the same material
the frontier between will be skipped or not, with the parameter

/gamos/setParam
GmReadPhantomGeometry:Phantom:SkipEqualMaterials VALUE

that by default takes a value of 1.

For testing purposes, other navigation algorithms may be selected, namely
voxel navigation with 1-dimensional optimization (that occupies similar mem-
ory as RegularNavigation but is very slow)

/gamos/setParam
GmReadPhantomGeometry:Phantom:RegularStructureID 0

or 3-dimensional optimization (that occupies a lot of memory and it is almost
as fast as G4RegularNavigation)

/gamos/setParam GmReadPhantomGeometry:Phantom:OptimAxis
kUndefined

GAMOS is also able to read the DOSXYZnrc format for DICOM files
that is commonly used in EGSnrc. Simply use

/gamos/geometry GmReadPhantomEGSGeometry

and the rest of parameters are the same as for the Geant4 DICOM files.

By default the phantom is placed in the world volume. If you want to
place it into another physical volume, you can set the parameter

/gamos/setParam GmReadPhantomGeometry:MotherName
PHYSVOL NAME

40 CHAPTER 3. GEOMETRY

3.4.1 Simple phantom geometries

The user may build simple regular phantom geometries without the need of
writing a DICOM file by using

/gamos/geometry GmSimplePhantomGeometry

The number of voxels is defined with the parameter

/gamos/setParam GmSimplePhantomGeometry:NVoxels
NVOXEL X NVOXEL Y NVOXEL Z

The minimum and maximum extensions in the three axes are defined
with the parameter

/gamos/setParam GmSimplePhantomGeometry:PhantomDims
MIN X MAX X MIN Y MAX Y MIN Z MAX Z

Then you can divide the phantom in different regions along the Z axis
with the parameter

/gamos/setParam GmSimplePhantomGeometry:MaterialZVoxels
NZ 1 NZ 2 ...

where NZ i is the number of voxels along Z of the i region.

Then you can assign the material and material densities of each Z region
with the parameters

/gamos/setParam GmSimplePhantomGeometry:MaterialNames
MATERIAL 1 MATERIAL 2 ...

/gamos/setParam GmSimplePhantomGeometry:MaterialDensities
DENSITY 1 DENSITY 2

3.5 Movements

Thanks to the functionality of Geant4, it is possible to displace or rotate
a volume during a run. To do this in GAMOS you have first to select the
volume you want to move and if you want to move it after a certain number
of events or after a certain time is elapsed (the time will be checked after
each event, therefore the time interval will only be approximated). You also
have to choose how much you want to move it and the axis (the axis of
displacement or the axis around which happens the rotation). You have
then to set the interval of events or time between movements. After you can
define an offset so that the first interval does not start at 0. Finally you can
choose that your movement is done forever (i.e. until the number of events
in the run are exhausted) or it is only done n times.

The commands to tell GAMOS to make a movement are:

/gamos/movement/moveEachTime

if you want that the movement happens after a certain interval of time, and

/gamos/movement/moveEachNEvents

if you want that the movement happens after a certain number of events.

In both cases the command has to be followed by these arguments:

3.6. GEOMETRY UTILITIES 41

’displace/rotate’ volume name value axis x axis y axis z time interval/nevents interval
(offset=0) (number of intervals=infinite)
where the first word has to be either displace or rotate, volume name
must be one of the Geant4 volumes of your geometry, value is the amount
by which you want to displace or rotate (default Geant4 units are as-
sumed, i.e. ’mm’ and ’rad’; you can change them in the usual way, e.g.,
’*cm’, ’*deg’), axis x axis y axis z are the three coordinates of the axes,
time/nevents interval is the interval after which the movements will hap-
pen, (offset=0) is an optional argument (0 if not set) to change the value for
the first movement, and (number of intervals=infinite) is an optional
argument (infinite by default) to set the number of times the movement will
happen.

If you want several movements in your run, you can use these commands
as many times as you want. Then after each event GAMOS will check which
of the movements must be done. If you want for example to move the same
volume with different types of movements one after the other, you can use
the ’number of intervals’ and ’offset’ arguments to do it.

The movements are managed in GAMOS by a user event action, called
GmMovementEventAction, that checks at the beginning of event if the
movement must be done. Therefore you cannot forget to activate this action
with the GAMOS command:

/gamos/userAction GmMovementEventAction
If you forget it, the above commands will not exist and you will get a Geant4
exception.

There is an example of GAMOS movements that you can run in the
directory MY GAMOS DIR/examples/test. Just run

gamos testMovement.in
and you will see an OpenGL view of a moving box.

3.6 Geometry utilities

There is a set of geometry utilities that are meant to help the user that is
writing some C++ code to for example debug the geometry, get a touchable
or a volume by name, etc. They are all in the GmGeometryUtils class,
which is a singleton. To use them in your C++ code you can do it like in
the following example:

GmGeometryUtils::GetInstance()->DumpG4LVList();

We list here the available methods, with an explanation of their func-
tionality:

• void DumpSummary(std::ostream& out = G4cout): Dumps
a summary of the geometry, i.e. number of solids, logical volumes,
physical volumes, touchables and materials

42 CHAPTER 3. GEOMETRY

• void DumpG4LVList(std::ostream& out = G4cout): Dumps
list of logical volumes

• void DumpG4LVTree(std::ostream& out = G4cout): Dumps
the hierarchy of logical volumes

• void DumpG4PVLVTree(std::ostream& out = G4cout): Dumps
in the following order:

1. a logical volume with details

2. list of physical volumes that are daughters of this logical volume
with details

3. list of logical volumes daughters of this logical volume and for
each go to 1

• void DumpMaterialList(std::ostream& out = G4cout): Dumps
list of materials

• void DumpSolid(G4VSolid* sol, size t leafDepth, std::ostream&
out = G4cout): Dumps a solid with its attributes

• void DumpLV(G4LogicalVolume* lv, size t leafDepth, std::ostream&
out = G4cout): Dumps a logical volume with its attributes

• void DumpPV(G4VPhysicalVolume* pv, size t leafDepth, std::ostream&
out = G4cout): Dumps a physical volume with its attributes

• G4LogicalVolume* GetTopLV(): Gets a pointer to the logical vol-
ume on top of the geometry hierarchy

• G4VPhysicalVolume* GetTopPV(): Gets a pointer to the phys-
ical volume on top of the geometry hierarchy

• G4Material* GetMaterial(const G4String& name, bool ex-
ists): Gets the material with the given name

• std::vector<G4LogicalVolume*> GetLogicalVolumes(const G4String&
name, bool exists): Gets the list of logical volumes with the given
name

• std::vector<G4VPhysicalVolume*> GetPhysicalVolumes(const
G4String& name, bool exists): Gets the list of physical volumes
with the given name

• std::vector<GmTouchable*> GetTouchables(const G4String&
name, bool exists): Gets the list of touchables with the given name.

• std::set¡G4String¿ GetAllSDTypes(): Gets all distinct sensitive
detector types

3.7. MAGNETIC FIELD 43

3.7 Magnetic field

You can set a constant magnetic field with the command
/gamos/magneticField/setField FIELD X FIELD Y FIELD Z

+ where FIELD X FIELD Y FIELD Z are the field values along the
three axes. Remember than in Geant4 internal units 1 Tesla is equal to
0.001; therefore if you do not use any unit it will be understood as 1, that
is 1000 Teslas.

44 CHAPTER 3. GEOMETRY

Chapter 4

Generator

You can use the GAMOS generator selecting the time, energy, position and
momentum distribution, using the generator that reads the primary particles
from a text file or a binary file or in the standard Geant4 way, by writing
your C++ class inheriting from
G4VUserPrimaryGeneratorAction.

4.1 Using GAMOS generator

4.1.1 Introduction

The GAMOS generator provides several time, energy, position and direction
distributions that the user may combine to his/her will. The user can select
to generate as primary particles one or several single particles together with
one or several isotopes and set any of the available time, energy, position or
direction distributions for each one of the single particles or isotopes.

We describe below the commands to select the single particles, the com-
mands to select the isotopes and then the commands for selecting the time,
energy, position and direction distributions.

The first command you have to use is the one that tells GAMOS that
you want to use the GAMOS generator:

/gamos/generator GmGenerator
This command, apart from instantiating the GAMOS generator man-

ager, also instantiates the messenger. Therefore, if you forget to write this
command first, the other generator commands described below will not exist
and Geant4 will throw an exception.

After this command you have to add one or several particle sources (there
is no default primary particle source, therefore if you do not choose one,
GAMOS will throw an exception). You may combine several particle sources
in each event by repeatedly using the commands described below. Each
type of particle source has default distributions of time, energy, position
and direction, that you may change with the commands described below.

45

46 CHAPTER 4. GENERATOR

An important point not to forget is that when you define a particle source
you have to give it a name. This name serves to distinguish it when you
want later to change its time, energy, position or direction distribution.

4.1.2 Single particle source

To add a single particle source you have to use the command

/gamos/generator/addSingleParticleSource
SOURCE NAME PARTICLE NAME ENERGY

SOURCE NAME is the name of this source, that you have to use if you
want later to change its time, energy, position or direction distribution.

PARTICLE NAME can be any of the Geant4 particles 1.

ENERGY is the initial energy of the particle.

If you don’t change any property the particle will be generated at time
0., position (0,0,0) and random direction.

4.1.3 Isotope source

GAMOS implements an isotope generator, that simulates the activity of dif-
ferent isotopes that decay in one or several photons, electrons or positrons.
First a file is read with the description of the isotope decays in a format as
the one that can be found at
MY GAMOS DIR/src/GamosCore/GamosGenerator/test/isotopes.dat,
part of which we reproduce here

:ISOTOPE Na22

215.5 0.905 e+

1275.0 0.9995 gamma

:ISOTOPE F18

249.8 0.967 gamma

For each isotope there must be a first line starting by :ISOTOPE and
followed by the isotope name. Then there is a line for each of the possible
isotope decays with three columns describing the decay particle energy, the
probability of the decay and the particle type. This file contains the most
common isotopes in medical physics. If you want to use another isotope you
can add it following the format described above.

If you selected this generator, each event will be generated with one of
several primary particles in the decay list of each of the selected isotopes.
The presence of each decay particle will occur following its corresponding
probability.

1For a list of the names of the available particles use the Geant4 command

/run/particle/dumpList or see Appendix

4.1. USING GAMOS GENERATOR 47

To choose an isotope as particle source you have to use the command:

/gamos/generator/addIsotopeSource SOURCE NAME
ISOTOPE NAME ACTIVITY

SOURCE NAME is the name of this source, that you have to use if you
want later to change its time, energy, position or direction distribution.

ISOTOPE NAME is one of the isotopes read from the input file,

ACTIVITY is the activity you want to set for that isotope2.

You may choose several isotopes by repeatedly writing this command.

This command triggers the reading of the file named “isotopes.dat”
if it has not been read yet. You may change the name of this file with the
command

/gamos/setParam Generator:Isotope:FileName MY FILENAME

To learn how to change the directory list where GAMOS looks for this file,
please read the section “Managing the input data files”.

If you don’t change any property the particle will be generated with a
time distribution of type “Decay”(see below), energy distribution of type
“constant isotope decay” (see below), position at (0,0,0) and random direc-
tion.

Time distributions

• Constant time

/gamos/generator/timeDist SOURCE NAME
GmGenerDistTimeConstant TIME

All the primary particles will be generated at time 0. If you want to
set it at a different time, you can add the extra parameter TIME.

• Decay time

/gamos/generator/timeDist SOURCE NAME
GmGenerDistTimeDecay ACTIVITY

The primary particles will be generated with a time following a typical
decay distribution, with the activity of the particle source. To be con-
crete the time is sampled with a Poisson distribution that is obtained
as follows:

rnd poiss = -(1.0/ (activity/second)) * log(RandFlat::shoot());

the activity is given by the parameter ACTIVITY.

Energy distributions

• Constant energy

2The available units in Geant4 are becquerel and curie

48 CHAPTER 4. GENERATOR

/gamos/generator/energyDist SOURCE NAME
GmGenerDistEnergyConstant ENERGY

All the primary particles will be generated with energy given by the
parameter ENERGY.

• Constant decay energy

/gamos/generator/energyDist SOURCE NAME
GmGenerDistEnergyConstantIsotopeDecay

All the primary particles will be generated with energy given by the
energy of the isotope decay selected by the isotope source, as read from
the file ”isotopes.dat”.

• Random flat energy

/gamos/generator/energyDist SOURCE NAME
GmGenerDistEnergyRandomFlat MIN ENERGY MAX ENERGY

The primary particles will be generated with an energy given by a
random distribution between the minimum and maximum energy.

• Beta decay energy

/gamos/generator/energyDist SOURCE NAME
GmGenerDistEnergyBetaDecay

The energy will be sampled following the energy distribution of the
decay of the isotope 3. The energy distribution will be read from a file
called ”EnergyDist.”+source particle name+”.dat”. The data
is taken from the LBNL/LUND Table of Radioactive Isotopes,
http://ie.lbl.gov/toi.html; goto “LBNL/LUND Table of Ra-
dioactive Isotopes”, then “Nuclide search” and save the table
“Beta Spectrum”. There are several examples at
MY GAMOS DIR/src/data/EnergyDist.XXX.dat.

• Gaussian

/gamos/generator/energyDist SOURCE NAME
GmGenerDistGaussian MEAN SIGMA

Primary particles will be generated with an energy given by the gaus-
sian distribution of mean MEAN and sigma SIGMA.

Position distributions

• Position at a point

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionPoint POS X POS Y POS Z

3This distribution can not be used for single particle sources

4.1. USING GAMOS GENERATOR 49

All primary particles are generated at the same position. If no extra
argument is given the point is (0.,0.,0.).

• Position in a Geant4 volume

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionInG4Volumes LV NAME1 LV NAME2
...

The position is distributed randomly inside one or several volumes of
the Geant4 geometry. The user must add as extra parameters the list
of volume names. The volumes can be physical volumes or touchables4.

This distribution can only be used if the volumes are G4Box, G4Orb,
G4Sphere, G4Ellipsoid, G4Tubs or G4Cons 5. If you want to use it
for any other volume shape, you have to use the distribution

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionInG4VolumesGeneral LV NAME1 LV NAME2
...

This distributions works with any solid shape, including boolean solids,
but it is in general quite slower than the previous one (it creates a
random position in the whole world volume and then looks if it is in
one of the selected volumes, which can be quite slow if the volume
dimensions are small).

• Position in a user defined volume

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionInUserVolumes POS X POS Y POS Z
ANG X ANG Y ANG Z SOLID TYPE SOLID DIMENSIONS

The particles are randomly distributed inside a volume defined by
the user (it does not need to be a real volume in the geometry).
The user must provide the definition of the volume as extra parame-
ters. SOLID TYPE can be Orb, Sphere, Ellipsoid, Tubs, Box.
SOLID DIMENSIONS are the solid dimensions. For the order
and meaning of the solid dimensions, please look at the corresponding
Geant4 solid.

By default the volume is placed at position (0.,0.,0). If you want it
placed at a different position you have to add three optional extra
parameters POS X POS Y POS Z

By default the volume is not rotated. If you want it rotated you have
to add three optional extra parameters (and always add the three

4For understanding the notation to identify touchables in GAMOS, see Identifying
touchables section.

5Other volume types may be added at user request

50 CHAPTER 4. GENERATOR

positions, even if they are (0.,0.,0.)) ANG X ANG Y ANG Z.
Those angles are interpreted rotating the volume first around the X
axis, then around the Y axis and finally around the Z axis.

• Position in a Geant4 volume surface

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionInG4Surfaces LV NAME1 LV NAME2
...

The position is distributed randomly in the surface of one or several
volumes of the Geant4 geometry. The user must add a number of
extra parameters with the list of volume names. The volumes can be
physical volumes or touchables6.

This distribution can only be used if the volumes are G4Box, G4Orb,
G4Sphere, G4Tubs or G4Cons7.

• Position in a user defined volume surface

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionInUserSurfaces POS X POS Y POS Z
ANG X ANG Y ANG Z SOLID TYPE SOLID DIMENSIONS

The particles are randomly distributed in a volume surface of a volume
defined by the user. The user must provide the definition of the volume
as extra parameters. SOLID TYPE can be Box, Orb, Sphere,
Tubs, Cons. SOLID DIMENSIONS are the solid dimensions. For
the order and meaning of the solid dimensions, please look at the
corresponding Geant4 solid.

By default the volume is placed at position (0.,0.,0). If you want it
placed at a different position you have to add three optional extra
parameters POS X POS Y POS Z

By default the volume is not rotated. If you want it rotated you have
to add three optional extra parameters (and always add the three
positions, even if they are (0.,0.,0.)) ANG X ANG Y ANG Z.
Those angles are interpreted rotating the volume first around the X
axis, then around the Y axis and finally around the Z axis.

• Adding an extra volume

If you have defined a distribution of type GmGenerDistPosition-
InG4Volumes, GmGenerDistPositionInUserVolumes, GmGen-
erDistPositionInG4Surfaces or GmGenerDistPositionInUser-
Surfaces you can add more volumes with the following user command

6For understanding the notation to identify touchables in GAMOS, see Identifying
touchables section.

7Other volume types may be added at user request

4.1. USING GAMOS GENERATOR 51

/gamos/generator/GmPositionVolumesAndSurfaces/addVolumeOrSurface
SOURCE NAME LV NAME1 LV NAME2

for the Geant4 volumes or

/gamos/generator/GmPositionVolumesAndSurfaces/addVolumeOrSurface
SOURCE NAME POS X POS Y POS Z ANG X ANG Y
ANG Z SOLID TYPE SOLID DIMENSIONS

for the user-defined volumes. The primary particles will be distributed
equally in the volumes proportionally to their volume or surface.

• Position in steps along a line

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionLineSteps POS X POS Y POS Z DIR X
DIR Y DIR Z STEP

The position is distributed uniformly along a line starting at position
POS X POS Y POS Z and with direction given by the three di-
rector cosines DIR X DIR Y DIR Z. Each event is generated in a
different point along the line, starting at the initial position, and in
steps given by STEP.

• Position in a square

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionSquare WIDTH POS X POS Y POS Z
DIR X DIR Y DIR Z

The position is randomly distributed in a 2D square in the XY plane
of width WIDTH at position (0.,0.,0.). If you want it placed at a
different position you have to add three optional extra parameters
POS X POS Y POS Z. By default the square is not rotated. If you
want it rotated you have to add three optional extra parameters (and
always add the three positions, even if they are (0.,0.,0.)) DIR X
DIR Y DIR Z. Those are the director cosines of the Z axis of the
square (the axis perpendicular to the 2D surface).

• Position in a rectangle

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionRectanglee WIDTH X WIDTH Y POS X
POS Y POS Z DIR X DIR Y DIR Z

The position is randomly distributed in a 2D rectangle in the XY
plane of widths WIDTH X in X and WIDTH Y in Y at position
(0.,0.,0.). If you want it placed at a different position you have to add
three optional extra parameters POS X POS Y POS Z. By default
the rectangle is not rotated. If you want it rotated you have to add
three optional extra parameters (and always add the three positions,

52 CHAPTER 4. GENERATOR

even if they are (0.,0.,0.)) DIR X DIR Y DIR Z. Those are the
director cosines of the Z axis of the rectangle (the axis perpendicular
to the 2D surface).

• Position in a disc

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionDisc RADIUS POS X POS Y POS Z
DIR X DIR Y DIR Z

The position is randomly distributed in a disc in the XY plane of radius
RADIUS at position (0.,0.,0.). If you want it placed at a different
position you have to add three optional extra parameters POS X
POS Y POS Z. By default the cylinder is not rotated. If you want
it rotated you have to add three optional extra parameters (and always
add the three positions, even if they are (0.,0.,0.)) DIR X DIR Y
DIR Z. Those are the director cosines of the Z axis of the cylinder
(the axis perpendicular to the 2D surface).

• Position in a disc with gaussian distribution

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionDiscGaussian SIGMA POS X POS Y
POS Z DIR X DIR Y DIR Z

The position is distributed in a disc in the XY plane with the radius in
a gaussian distribution of sigma SIGMA and random in phi, at posi-
tion (0.,0.,0.). If you want it placed at a different position you have to
add three optional extra parameters POS X POS Y POS Z. By de-
fault the cylinder is not rotated. If you want it rotated you have to add
three optional extra parameters (and always add the three positions,
even if they are (0.,0.,0.)) DIR X DIR Y DIR Z. Those are the
director cosines of the Z axis of the cylinder (the axis perpendicular
to the 2D surface).

• Position in the voxels of a phantom

/gamos/generator/positionDist SOURCE NAME
GmGenerDistPositionVoxelPhantomMaterials MATERIAL1
MATERIAL2 ...

The position is randomly distributed in the voxels of a phantom with
material equal to one of the materials in the list of parameters. There
must be at least one volume defined by a parameterisation of type
G4PhantomParameterisation.

Direction distributions

• Random distribution

4.1. USING GAMOS GENERATOR 53

/gamos/generator/directionDist SOURCE NAME
GmGenerDistDirectionRand

The primary particles will be generated in a random distribution so
that each solid angle receives the same number of particles.

• Constant distribution

/gamos/generator/directionDist SOURCE NAME
GmGenerDistDirectionConst

The primary particles will be generated all in the same direction, given
by the extra parameters DIR X DIR Y DIR Z.

• Cone distribution

/gamos/generator/directionDist SOURCE NAME
GmGenerDistDirectionCone

The primary particles will be generated in a random distribution around
a cone, given by the extra parameters DIR X DIR Y DIR Z OPEN-
ING ANGLE, so that each solid angle receives the same number of
particles.

Position and direction distributions

It is also possible to create distributions where several of the four variables
(time, energy, position and direction) are generated at the same time, so
that they are related. You have nevertheless to keep in mind that the order
of calling will be time, position, energy and direction distributions.

In case you need a different order, for example if the position is deter-
mined by the value of the direction, you can calculate both the direction
and the position in the GeneratePosition method, return only the position
and keep the direction in a class data so that it can be returned in the
GenerateDirection method.

• Position in volume surface, pointing towards centre

GmGenerDistPositionDirectionInVolumeSurface SOLID TYPE
SOLID DIMENSIONS POS X POS Y POS Z ANG X ANG Y
ANG Z

The position is distributed in the surface of a volume defined by the
user. The user must provide the definition of the volume as extra pa-
rameters. SOLID TYPE can be of type Box. SOLID DIMENSIONS
are the solid dimensions.

By default the volume is placed at position (0.,0.,0). If you want it
placed at a different position you have to add three optional extra
parameters POS X POS Y POS Z

54 CHAPTER 4. GENERATOR

By default the volume is not rotated. If you want it rotated you have
to add three optional extra parameters (and always add the three
positions, even if they are (0.,0.,0.)) ANG X ANG Y ANG Z.
Those angles are interpreted as rotating the volume first around the
X axis, then around the Y axis and finally around the Z axis.

The direction is taken as the line that goes from the position to the
point (0.,0.,0.).

As this distribution is of position and direction types at the same time,
you have to use the two commands

/gamos/generator/positionDist
/gamos/generator/directionDist
You can see editing the file

GamosCore/GamosGenerator/src/GmGenerDistPositionDirectionInVolumeSurface.cc
that internally the method GenerateDirection knows the position by inter-
rogating the source.

Creating your own distribution

If you want to use a time, energy, position or direction distribution that is
not foreseen in GAMOS, you can easily create your own one. Let’s see as
example the creation of a time distribution randomly distributed between
two values.

You have to create your class inheriting from the class GmVGenerDist-
Time (see for example the class GmGenerDistTimeConstant). You
have then to implement the method

virtual G4double GenerateTime(const GmParticleSource* source);

that will return the time value for each event. If you want the user to be
able to input some parameters of your class from the command line, like the
minimum and maximum time, you have to implement the method

virtual void SetParams(const std::vector<G4String>& params);

This method will be called automatically passing the extra parameters
in the command line selecting your distribution.

Last, you have to transform your distribution into a plug-in. To learn
how to do this, see the instructions in the section Creating your plug-in,
using the GmGenerDistTimeFactory.

Then you can choose that any of the particle sources use your new dis-
tribution in any GAMOS job by adding the command line
/gamos/generator/directionDist SOURCE NAME MyTimeDist
where MyTimeDist is the name you chose when defining your plug-in
(which can be different from the name of the class itself).

4.2. BUILDING YOUR GENERATOR WITH C++ 55

4.2 Building your generator with C++

You can build your generator by writing your C++ class inheriting from
G4VUserPrimaryGeneratorAction (see example in [9]). After that you have
to transform it into a GAMOS plug-in. To learn how to do this, see the
instructions in the section Creating your plug-in, using the GmGenerator-
Factory.

4.3 Reading your generator particles from a text
file

You can also define your event primary particles with a text file. The format
of the input file is the following:

The first line of each primary event should start with a line that contains
as first word EVENT: and as second word the number of primary particles
in the event. After this each line corresponds to a particle, with a first word
P: followed by the following variables: particle ID (PDG encoding), position
x, y, z (in mm), momentum x, y, z (in MeV), time (in ns).

To select this generator you have to use the command
/gamos/generator GmGeneratorFromFileText
By default the file to be read is called “generator.txt”, you can see an

example at MY GAMOS DIR/data/generator.txt. You can change its name
with the command

/gamos/setParam GmGeneratorFromFileText:FileName MY FILENAME

To change the search path please read the section “Managing the input
data files”.

4.4 Reading your generator particles from a bi-

nary file

You can also define your event primary particles with a binary file. The
format of the input file is the following:

The first word is an integer containing the number of particles. Then
follows a record for each particle of the type GenerFileData

struct GenerFileData

{

int partID;

float posx, posy, posz, momx, momy, momz, time;

};

To select this generator you have to use the command

/gamos/generator GmGeneratorFromFileBin

56 CHAPTER 4. GENERATOR

By default the file to be read is called “generator.bin”. You can change
its name with the command

/gamos/setParam GmGeneratorFromFileBin:FileName MY FILENAME
To change the search path please read the section “Managing the input

data files”.

4.4.1 Event generator histograms

These are histograms of event generator particles that may serve to check
that you have actually generated what you meant.

The names of all these histograms start with GmGenerHistosUA: and
they are all dumped into the file gener.root/csv. The following histograms
are produced:

• Kinetic energy of primary particles (” Primary Generator kinEnergy”)

• X position (” Position X”)

• Y position (” Position Y”)

• Z position (” Position Z”)

• Theta angle (” Angle theta”)

• Phi angle (” Angle phi”)

• Difference between consecutive event times (taken as time of the first
primary particle) (” Time between source decays (ns)”)

The user can control the minimum, maximum and number of steps of
these histograms, with the following parameters:

/gamos/setParam gener:hEMin
/gamos/setParam gener:hEMax
/gamos/setParam gener:hENbins
/gamos/setParam gener:hPosMin
/gamos/setParam gener:hPosMax
/gamos/setParam gener:hPosNbins
/gamos/setParam gener:hAngleMin
/gamos/setParam gener:hAngleMax
/gamos/setParam gener:hAngleNbins
/gamos/setParam gener:hTimeMin
/gamos/setParam gener:hTimeMax
/gamos/setParam gener:hTimeNbins
To activate this user action use the command:
/gamos/userAction GmGenerHistosUA

Chapter 5

Physics

Yo can build your physics list using one of the Geant4 physics lists or,
following the standard Geant4 way, by writing your C++ class inheriting
from
G4VUserPhysicsList or using anyone of the Geant4 physics lists.

5.1 GAMOS electromagnetic physics list

The GAMOS electromagnetic physics list is based on the hadron-therapy
Geant4 advanced example. Only photons, electrons, positrons and opti-
cal photons are defined. This physics list lets the user choose among the
standard, low energy or Penelope models.

The following physics models are available:

• photons

– photon-standard: standard electromagnetic processes (no low
energy)

– photon-epdl: low energy Evaluated Particle Data Library

– photon-penelope: processes a’ la Penelope [6]

• electrons

– electron-standard: standard electromagnetic processes (no low
energy)

– electron-eedl: low energy Evaluated Particle Data Library

– electron-penelope: processes a’ la Penelope [6]

• positrons

– positron-standard: standard electromagnetic processes (no low
energy)

57

58 CHAPTER 5. PHYSICS

– positron-penelope: processes a’ la Penelope [6]

• optical photons

– opticalphoton: the scintillation process is activated for all the
particles and the G4OpAbsorption, G4OpRayleigh and
G4OpBoundaryProcess processes are activated for optical pho-
tons

To tell your job to use one of the possible combinations of physics models
just described, you have first to select the GAMOS electromagnetic physics
list, using the command:

/gamos/physicsList GmEMPhysics

and then you can select one of the physics models for each particle with the
command

/gamos/GmPhysics/addPhysics PHYSICS MODEL NAME

where PHYSICS MODEL NAME is one of the above names. If you do
not select anyone for a given particle, the first one in each list is taken as
default.

For details on the physics implemented in each of these physics models,
please read the Geant4 physics manual [10].

5.2 GAMOS hadronic physics list

The GAMOS hadronic physics list is based on the hadron-therapy Geant4
advanced example. It includes the previously defined electromagnetic physics
list and adds several options for the physics models for protons and ions.

The following physics models are available (plus all the models described
in the previous section):

• photons

– photon-nuclear: include photo-nuclear reactions (not included
by default)

• electrons

– electron-nuclear: include electro-nuclear reactions for electrons
(not included by default)

• positrons

– positron-nuclear: include electro-nuclear reactions for positrons
(not included by default)

• muons

5.2. GAMOS HADRONIC PHYSICS LIST 59

– muon-standard: standard electromagnetic processes

• protons

– proton-precompound: precompound evaporation model

– proton-precompoundFermi: precompound evaporation plus
Fermi break-up models

– proton-precompoundGEM: precompound GEM evaporation
model

– proton-precompoundGEMFermi: precompound GEM evap-
oration plus Fermi break-up models

– proton-precompund-binary: binary cascade model with the
default precompound

• ions

– ion-LowE: low energy processes, with ICRU49 as stopping power
parameterisation

– ion-standard: standard electromagnetic processes

– ion-LowE-ziegler1977: low energy processes, with Ziegler 1977
as stopping parameterisation

– ion-LowE-ziegler1985: low energy processes, with Ziegler 1985
as stopping parameterisation

– ion-LowE-ziegler2000: low energy processes, with SRIM2000
as stopping parameterisation

– ion-inelastic-binary-cascade: ion binary cascade model

To tell your job to use one of the possible combinations of physics models
just described, you have first to select the GAMOS electromagnetic physics
list, using the command:

/gamos/physicsList GmHadronicPhysics

and then you can select one of the physics models for each particle. If you
do not select anyone for a given particle, the first one in each list is taken
as default.

and then you can select one of the physics models for each particle with the
command

/gamos/GmPhysics/addPhysics PHYSICS MODEL NAME

where PHYSICS MODEL NAME is one of the above names or the
names of the GAMOS electromagnetic physics list. If you do not select
anyone, the first one in each list is taken as default.

For details on the physics implemented in each of these physics models,
please read the Geant4 physics manual [10].

60 CHAPTER 5. PHYSICS

5.3 Building your physics list with C++ code

To build your physics list, first write it in the usual Geant4 way, that is, in-
heriting from G4VUserPhysicsList (see example in [10]). After that you have
to transform it into a plug-in. To learn how to do this, see the instructions
in the section Creating your plug-in, using the GmPhysicsFactory.

5.4 Other physics lists

You can use easily in GAMOS any of the Geant4 physics lists [12]. All you
have to do to use a Geant4 physics list is to add in the src/module.cc file
(in any of the ones in GAMOS code or create your own one) two lines like:

#include "QGSP.hh"

DEFINE_GAMOS_PHYSICS(QGSP);

Compile it and then you can use it in your command file with the line
/gamos/physicsList QGSP
There is also in GAMOS a GmDummyPhysicsList that defines all

the particles, but only the process G4Transportation.

5.5 Production cuts

Several physics processes, namely bremsstrahlung, ionization and e+e- pair
production from muons have very high cross sections at low energies. It
is therefore necessary to implement a production cut so that all particles
below it are not generated, but their energy is accounted as energy deposited.
Geant4 uses production cuts in range, instead of in energy as used previously
by GEANT3 and most Monte Carlo codes. A cut of for example 1. mm for
photons means that no photon will be produced if the expected range in the
current material is less than 1. mm.

If you use the GAMOS electromagnetic physics list, the default produc-
tion cut value is 0.1 mm for all processes in all materials. The Geant4 com-
mand /run/particle/setCut ’value’ ’unit’ set the cuts for all process
to the desired value. But do not forget to use the command run/initialize
after setting the cuts, if you want that your change is effective. The Geant4
command /run/particle/dumpCutValues dumps the list of materials
and for each one the list of cuts for each particle.

5.5.1 Production cuts by region

A region in Geant4 is a set of G4LogicalVolume’s that share common proper-
ties. You can define a region in the text file where you defined your geometry,
by using the tag

5.5. PRODUCTION CUTS 61

:REGION REGION NAME LOGICAL VOLUME NAME(s)

where REGION NAME is the name that identifies the region and LOGI-
CAL VOLUME NAME(s) is the list of G4LogicalVolume’s that belong to
the region. For example:

:REGION myRegion Crystal Wall

Alternatively you can define a new region in your user script through a
user command:

/gamos/geometry/createRegion REGION NAME LOGICAL VOLUME NAME

Do not forget that in Geant4 when a logical volume belongs to a region
automatically all its daughters belong to the same region, unless there is
another region explicitly defined for some of the daughters.

Also do not forget that regions in Geant4 have to be set in a hierarchical
way: if you place a volume A in the world and inside it you place a volume
B, you cannot create a new region for B unless you have explicitly created
a region for A.

Once you have defined a region, you may set a cut for the particles that
traverse that region with the tag

:CUTS REGION_NAME gamma_CUT e-_CUT e+_CUT

where REGION NAME is the name of a previously defined region, gamma CUT
e- CUT e+ CUT are the cuts for gamma, electrons and positrons (the cut
for positron is optional; if not set it will take the one for electrons).

Alternatively you can set the cuts in your user script through a user
command:

/gamos/physics/setCuts REGION NAME gamma CUT e- CUT
e+ CUT

5.5.2 Energy cuts to range cuts conversion

If you want to know the traslation from an energy cut value to a range cut
value for a given particle in a given material, you can do with the following
instructions. First you have to instantiate the user action

/gamos/userAction GmCutsEnergy2RangeUA

and then you can use the command

/gamos/physics/ECuts2RangeCuts MATERIAL NAME CUT VALUE
PARTICLE NAME

You may use in the material name an ’*’ if you want to name several
materials at the same time. For the particle name only the following names
have a meaning: gamma, e-, e+, e*, *. This will produce a table with
the conversion for each material and particle similar to the following one:

62 CHAPTER 5. PHYSICS

GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: gamma

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 286588

GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: e-

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 129.155

GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: e+

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 131.938

GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: gamma

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 334.152

GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: e-

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 0.134781

GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: e+

ENERGY CUT: 0.1 (MeV) = RANGE CUT: 0.137686

5.6 User limits

User limits are the way Geant4 gives the user to limit the tracking of a
particle. There are five types of user limits:

• Limit the step size

• Limit the track length

• Limit the time of flight

• Stop the particle when the kinetic energy is below a limit (and deposit
its energy locally)

• Stop the particle when the expected range is below a limit (and deposit
its energy locally)

Different user limits can be applied in Geant4 for different logical vol-
umes, although there is the limitation that all particles must have the same
user limits in the same logical volume.

In GAMOS a user can set the user limits through simple user commands
and user limits can be set independently for different particle types in the
same or different logical volumes. The set of commands to set user limits is

• /gamos/physics/userLimits/setUserLimits USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MAX STEP
MAX TRK LENGTH MAX TOF MIN KIN E MIN RANGE

where USER LIMITS NAME is the name of the user limits (every user
limits must have a name, so that new logical volumes and particles can
be added with user commands later), MAX STEP MAX TRK LENGTH
MAX TOF MIN KIN E and MIN RANGE are the values of the five
user limit types described above. If you want to set only one user limit
type you can use one of the following commands:

5.7. AUTOMATIC OPTIMISATION OF CUTS 63

• /gamos/physics/userLimits/setMaxStep USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MAX STEP

• /gamos/physics/userLimits/setMaxTrkLen USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MAX TRK LENGTH

• /gamos/physics/userLimits/setMaxTOF USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MAX TOF

• /gamos/physics/userLimits/setMinEKin USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MIN KIN E

• /gamos/physics/userLimits/setMinRange USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MIN RANGE

There is another command in GAMOS that serves to set the minimum
range user limit using a distance value, but internally it is applied as a
minimum kinetic energy limit. This permits to use range values but avoids
the lengthy process of converting the kinetic energy at each step into range.
For this you can use the command:

• /gamos/physics/userLimits/setMinEKinByRange USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME MIN RANGE

Once a user limit is set, you may apply it to a new pair of logical volume
and particle type with the following command:

• /gamos/physics/userLimits/addLVAndParticle USER LIMITS NAME
LOGICAL VOLUME NAME PARTICLE NAME

for the list of particle names in GAMOS, see section Particle names.

5.7 Automatic optimisation of cuts

The production cuts and user limits are powerful methods to tune your sim-
ulation so that you can save a lot of CPU time by not tracking the particles
that are not going to contribute to your results. Neverthelss the tuning of
cuts is usually a long and difficult task. We have developed in GAMOS a
method to help the user to obtain the optimal value of the production cuts
and user limits for her/his application in a single job. We describe here the
basic idea of the method and then in the corresponding sections the details
of its implementation for different cases.

To use this utility you have to define in a clear way which are the results
you don’t want to change when cuts change, for example

• Number of particles reaching a region

64 CHAPTER 5. PHYSICS

• Dose distribution

• Number/Energy/spatial distribution of hits

• Shower shape in a volume

•

For each track that contributes to your result GAMOS stores all its his-
tory: for the track itself and each of its ancestors stores energy, range, region,
process and particle type. In the case of production cuts this information
is stored at particle creation. In the case of user limits this information is
stored at each step (for parents only the steps before the creation of the
interesting track).

At the end of run you can can get for each region/process/particle a list
of all the ranges or energies of all the particles created. Then you can easily
know if you apply a cut how many particles are below it.

This is valid if you are only interested in counting how many particles
you lose. For other cases another approach should be used. For example if
you want to check how your dose distribution changes, you can build a set of
filters, each one with a set of cut values. These filters do not really cut the
particles but only serve to tag a particle if it would have been killed by the
set of cuts in the filter. Therefore, for each track that contributes to your
results, GAMOS can check if it (or any of its ancestors) would have been
killed by each of these sets of cut values. If you build your results N times,
each one using only those tracks that pass one filter, you can compare each
result to see how it changes with each set of cuts.

5.7.1 Automatic determination of production cuts for an ac-
celerator simulation

The method used in GAMOS to determine the best production cuts is based
on what we can call an ’inverse reasoning’. We count each particle that
reaches a given Z plane (corresponding to the phantom surface) and we
calculate first the range of the particle in the region where it is created.
Then we can know that if we put a range cut in that region smaller than the
calculated range, that particle would not reach our target plane. We also
compute the range of the mother particle in the region where it was created
and the same consecutively for all the ancestors. We know then that if we set
in any of the regions where each of the ancestor particles are created a cut
smaller than the corresponding range, we would stop the chain of particles
and therefore we would have no particle in the target plane. After running a
big number of tracks we can know for each particle type and for each region
which is the biggest range we can put if we do not want to lose any particle.
Indeed we may allow to lose a small amount of particles if this speeds up

5.7. AUTOMATIC OPTIMISATION OF CUTS 65

our simulation. To know easily which is the biggest cut you can use to lose
less than a given percentage of particles, GAMOS provides a set of plots
(one per each particle type and per each region) and a simple script to get
automatically the cut values.

One warning is due here: as mentioned above when a track reaches the
target, its range fills a histogram, but also the range of all the ancestors of
this track. It may happen then that when you set a certain cut and the
abovementioned script gives you how many tracks would be killed, more
than one killed track correspond to the same track reaching the target (i.e.,
with a cut you kill the track that reaches the target and the parent track).
Therefore you might have an overcounting of the number of tracks killed by
a cut. To avoid this the total number of tracks (the last lines of output)
is not computed as the sum of tracks in the region. This number uses a
histogram that contains only one entry per track reaching the target, the
one corresponding to the track with the smallest range. If you want to set
a different cut for each region and are worried for this double counting, you
may have a look at the histogram named ”trackInfos per Track in target”,
that plots per each track reaching the target how many track informations
are kept in the histograms. Another useful histogram for this case may be
the 2D histogram ”trackInfo Region vs trackInfo Region”, that plots all the
region number of all the pairs of track informations that correspond to the
same track reaching the target (you can get a list of which region number
corresponds to which region at the end of the standard output file).

Although as mentioned above, the production cuts are only necessary
for ionization and bremsstrahlung processes, this method allows to extend
the production cuts to other processes. To do this we provide the above-
mentioned numbers and plots separately for each process so that the cuts
can be automatically set in an easy way. If you want to apply the same cuts
to all processes you can use the GAMOS command

/gamos/GMphysics/applyCutsToAllProcesses
that will instantiate an object of type G4EmProcessOptions and invoke

the method SetApplyCuts(true).
To use this utility in GAMOS it is only needed to add this command in

your script: /gamos/userAction GmProdCutsStudyUA PETCutsStudy-
Filter

that will use as target condition that a track enters a sensitive detector
/gamos/userAction GmProdCutsStudyUA RTCutsStudyFilter

or that will use as target condition that a track reaches a plane perpen-
dicualr to the Z axis defined with the parameters

/gamos/setParam RTCutsStudyFilter:PlaneZ ZPOS
/gamos/setParam RTCutsStudyFilter:PlaneXDim XDIM
/gamos/setParam RTCutsStudyFilter:PlaneYDim YDIM
These commands will produce at the end of run a table and a histogram

66 CHAPTER 5. PHYSICS

file with the needed information. The table will contain the minimum range
that can be applied for each region/particle/process not to lose any track
reaching the target, and it will look like this

%%%%% PRODUCTION CUTS STUDY RESULTS

GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=

gamma PROCESS= ALL MIN RANGE= 353161.38

GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=

gamma PROCESS= eBrem MIN RANGE= 353161.38

To get the cuts values for not losing a given percentage of particles in
the target plane you can execute the ROOT script that can be found at
GamosCore/GamosPhysics/GamosCuts/getProdCutsEffect.C :

root -b -p -q .x getProdCutsEffect.C++\(\"prodcuts.root\",percentage\)

and look at the last lines of output, those that contain the word ’FINAL’,
like the following ones

PARTICLE= e+ FINAL= 17 / 19

PARTICLE= e- FINAL= 72 / 34185

PARTICLE= gamma FINAL= 72 / 34184

5.7.2 Automatic determination of production cuts for a dose
in a phantom simulation

The use of production cuts in a dose computation may introduce a bias
when a particle is killed (and then its energy is deposited locally) and it
has enough energy to reach the next phantom voxel, or enough energy to
create a particle that reaches the next phantom voxel (this happens mainly
for electrons creating gammas, which have a much higher range).

To calculate automatically the best production cut, that is the one
that gives the smallest CPU while biasing the dose computation a mini-
mal amount, GAMOS uses an inverse reasoning. For a given set of cuts
for electron and gamma it does not apply them but tags the particles that
would have been killed by them. It also tags the voxel in which the parti-
cle is produced and then it computes all the dose deposited by the tagged
particle or any of its children in a voxel that is not the same as the tagged
voxel.

To use this utility in GAMOS you just have to associate to your dose
scorer a filter of type GmProdCutOutsideVoxelFilter, passing to it as argu-
ments the gamma cut and the electron cut, like in the following example

/gamos/scoring/addFilter2Scorer ProdCutFilter GmProdCutOut-
sideVoxelFilter PDDscorerPC10.1. 10.*mm 1.*mm

5.7. AUTOMATIC OPTIMISATION OF CUTS 67

You should add another scorer without filter to get the total dose. After
running your job with as many scorer-filter combinations as you like, you
can look at the total dose deposited by each scorer and compare it with the
total dose. It may happen that the dose lost with certain cuts, despite being
a small proportion of the total dose, is distributed in a different manner than
the total dose, introducing some bias in some region that you consider not
acceptable. To check in detail the dose produced with a certain filter you
can add a scorer printer of type RTPSPDoseHistos, that will produce several
histograms of the dose (PDD, X & Y profiles, dose, dose-volume):

/gamos/scoring/addPrinter2Scorer PDDhistoPC10.1. RTPSP-
DoseHistos PDDscorerPC10.1.

The name of the printer will be passed to the name of the file containing
the histograms.

5.7.3 Automatic determination if user limits for an acceler-
ator simulation

The method used in GAMOS to determine the minimum range user limits
is similar to the one used to determine the best production cuts. The main
difference is that when a track reaches the target we do not have to look at
the range it had when created, but at the range it had in every step. This
is because even if we want the minimum step, the track may have crossed
several regions and the smallest range may not correspond to the last step.
What we do nevertheless is only consider the last step when there are a set
of contiguous steps in the same region. Also for the ancestor tracks we have
to store the information of each step, starting of course with the one when
the track that reached the target (or its n-th ancestor if we are looking at
the (n+1)-th ancestor) was created.

The same warning as for the production cuts should be mentioned here,
but in this case it is more than a mere warning: when a track reaches the
target, we accumulate one-track information of the last step in each region,
for each of the ancestor tracks. Therefore it is very likely that there are
more than one track information per track reaching the target, and therefore
there will be overcounting of the number of tracks killed by a cut. As for
the production cuts you should keep an eye on this and in any case use only
the statistics.

To use this utility in GAMOS it is only needed to add the command in
your script:

/gamos/userAction GmMinRangeLimitsStudyUA RTCutsStudy-
Filter

what will produce at the end of run a table and a histogram file with
the needed information.

root -b -p -q .x getMinRangeCutsEffect.C++\(\"prodcuts.root\",percentage\) |& tee out

68 CHAPTER 5. PHYSICS

and look at the last lines of output, those that contain the word ’FINAL’,
like the following ones

PARTICLE= e+ FINAL= 17 / 19

PARTICLE= e- FINAL= 72 / 34185

PARTICLE= gamma FINAL= 72 / 34184

5.7.4 Automatic determination for a dose in phantom simu-
lation

The method used in GAMOS to determine the minimum range user limits
is similar to the one used to determine the best production cut.

To use this utility in GAMOS you just have to associate to your dose
scorer a filter of type GmProdCutOutsideVoxelFilter, passing to it as argu-
ments the gamma cut and the electron cut, like in the following example

/gamos/scoring/addFilter2Scorer ProdCutFilter GmMinRange-
CutOutsideVoxelFilter PDDscorerPC10.1. 10.*mm 1.*mm

After running your job with as many scorer-filter combinations as de-
sired, you can look at the total dose deposited and compare it with the
dose with very small cuts. It may happen that the dose with certain cuts,
despite being a small number, is distributed in a different manner than with
very small cuts, introducing some bias that you consider not acceptable. To
check in detail the dose produced with a certain filter you can add a scorer
printer of type RTPSPDoseHistos, that will produce several histograms of
the dose (PDD, X & Y profiles, dose, dose-volume):

/gamos/scoring/addPrinter2Scorer PDDhistoPC10.1. RTPSP-
DoseHistos PDDscorerPC10.1.

The name of the printer will be passed to the name of the file containing
the histograms.

5.7.5 Range rejection

The range rejection technique consists on killing a particle at creation and
depositing all its energy locally if it is not going to leave the current volume.
To do this in practical terms, the particle is killed if the range is smaller
than the distance to the volume boundary (although it would have a chance
to exit the volume, this chance is considered negligible).

5.7.6 Automatic determination for an accelerator simulation

You can analyze which would be the effect of applying this technique by
using the same user action as for the production cuts:

/gamos/userAction GmProdCutsStudyUA RTCutsStudyFilter
It will produce a table with the number of tracks that would be killed by

the range rejection and would not reach the target (the tracks themselves

5.7. AUTOMATIC OPTIMISATION OF CUTS 69

or any of their children). As for the production cuts, they are printed by
region, by particle and by creator process type. To get a closer inside on this
technique several plots are produced (one per each region, each particle and
each creator process) representing the logarithm of the difference safety-
range vs the logarithm of the range. To distinguish the cases where the
range is bigger than the safety (no range rejection) those cases are plotted
in the bins -15 to -5, while the cases where the range is smaller than the
safety occupy the bins -5 to 5 (if there is a case, not likely for a radiotherapy
simulation) where the log10(fabs(safety-range)) is smaller than -5 (of course
before the -10 substraction), it is set to -5 and if is bigger than 5 it is set to
5.

70 CHAPTER 5. PHYSICS

Chapter 6

User Actions

Geant4 user actions are the way the user can interact with a job at the
beginning/end of each run, beginning/end of each event, beginning/end of
each track or at each step. The user can write a class, inheriting from one of
the Geant4 user action abstract classes, and Geant4 will take care of calling
the user code.

The GAMOS user actions classes provide all the functionality of the
Geant4 classes, and also allow the user to define several user actions of the
same type in the same job and to define a class that inherits from several
user action types at the same time. Moreover, as they are plug-in’s, the user
can activate them by means of a user command.

User actions can be associated to filters or classifiers, as explained below.

Several functionalities are already implemented in GAMOS as user ac-
tions (like the example histograms, the event classifiers, ...) and you may
use them as examples for creating your own one.

See the Geant4 user manual for a more detailed explanation of the user
actions.

6.1 Adding a filter

One or several filters can be added to a user action by simply adding their
names in the user command where an action is selected. See section on
Filters to get a list of the available filters in GAMOS and how to add pa-
rameters to a filter.

If the filter you are using is a step filter and your user action is a stepping
user action, the method SteppingAction will only be called if all the filters
accept the step. If the filter you are using is a track filter it affects the
callings to the PreUserTrackingAction and PostUserTrackingAction
for tracking actions and ClassifyNewTrack for stacking actions.

For example

/gamos/userAction GmTrackHistosUA GmGammaFilter

71

72 CHAPTER 6. USER ACTIONS

will only produce histograms for tracks whose particle is a gamma.

6.2 Adding an indexer (= classifier)

One or several classifiers can be added to a user action by simply adding
their names in the user command where an action is selected. See section
on Classifiers to get a list of the available classifiers in GAMOS and how to
add parameters to a classifier.

It is up to the concrete user action to use the classifiers or not.

6.3 Creating your GAMOS user action

To create your class you have to inherit from one or several of the GAMOS
user actions: GmUserRunAction, GmUserEventAction, GmUser-
TrackingAction, GmUserSteppingAction, GmUserStackingAction.

Then you implement the same methods as for the Geant4 user actions:

• GmUserRunAction:

– virtual void BeginOfRunAction(const G4Run* aRun);

– virtual void EndOfRunAction(const G4Run* aRun);

• GmUserEventAction:

– virtual void BeginOfEventAction(const G4Event* anEvent);

– virtual void EndOfEventAction(const G4Event* anEvent);

• GmUserTrackingAction:

– virtual void PreUserTrackingAction(const G4Track* aTrack);

– virtual void PostUserTrackingAction(const G4Track* aTrack);

• GmUserSteppingAction:

– virtual void UserSteppingAction(const G4Step* aStep);

• GmUserStackingAction:

– virtual G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track* aTrack, G4ClassificationOfNewTrack oldClassificationx
) = 0;

– virtual void NewStage();

– virtual void PrepareNewEvent();

6.3. CREATING YOUR GAMOS USER ACTION 73

Finally you have to transform your class into a plug-in. To learn how to
do this, see the instructions in the section Creating your plug-in, using the
GmUserActionFactory.

If you define twice the same user action in your command file, you will
get a warning message, but it will be executed twice.

74 CHAPTER 6. USER ACTIONS

Chapter 7

Sensitive Detector and Hits

7.1 Attaching a sensitive detector to a volume

The sensitive detector class in Geant4 has the task of creating hits (de-
posits of energy) each time a track traverses a sensitive volume and loses
some energy. You can write your own sensitive detector class, inheriting
from G4VSensitiveDetector, that produces your own hits, and attach it to
any volume in your geometry. However GAMOS provides some utilities to
make this easier and without the need of C++ programming or a detailed
knowledge of how the sensitive detector and hits work in Geant4.

GAMOS provides several predefined sensitive detectors, that you can
find in GamosCore/GamosSD:

• GmSDSimple. It is a general-purpose class, that produces hits with
the position at the centre of the detector. The identification of each
detector unit is done as explained in the sub-chapter Identifying each
sensitive detector copy.

• GmSDSimpleExactPos. It is similar to GmSDSimple but the
hits position is the centroid of the energy depositions of the different
tracks that produced it (weighted by their energy).

• GmSDOpticalPhoton. This class inherits from GmSDSimple, but
only produces hits if the process that defined the step is ”OpAbsorp-
tion”

There are other classes that serve to make a virtual segmentation, when
you have a big sensitive volume that you want to segment in different pieces,
although you have not segmented it in your geometry. The classes currently
implemented are

• GmSDVirtSegmentedSphereThetaPhi. It divides a sphere into
cubes of equal size in R-phi and R-theta

75

76 CHAPTER 7. SENSITIVE DETECTOR AND HITS

• GmSDVirtSegmentedSphereRThetaPhi. It divides a sphere into
cubes of equal size in R, R-phi and R-theta

To attach a GAMOS sensitive detector to a logical volume in your ge-
ometry, you have to use the command

/gamos/SD/assocSD2LogVol SD CLASS SD TYPE
LOGICAL VOLUME NAME

The SD CLASS has to be one of the sensitive detector types described
above (or any other that you create). The SD TYPE serves to differen-
tiate your different sensitive detectors, so that you can later apply differ-
ent properties to them (e.g. different energy resolutions) 1. The LOGI-
CAL VOLUME NAME is the name of the G4LogicalVolume in your geom-
etry that you want to make sensitive. You may repeat this command with
different logical volumes.

7.2 Building your sensitive detector with C++ code

To build a new sensitive detector you can do it the usual Geant4 way, that
is, inheriting from G4VSensitiveDetector (see example in [10]). After that
you have to transform it into a plug-in. To learn how to do this, see the
instructions in the section Creating your plug-in, using the GmSensDetFac-
tory.

You may also choose to inherit your sensitive detector from the GAMOS
class GmVSD, so that you can profit easily from its extra functionality.
Namely, it will take care of applying the energy and time resolutions by
detector type, accumulating the energy of different energy depositions if
they happen in the same detector unit, taking into account the measuring
time and the dead time and invoking the digitization and reconstruction of
hits at the end of the event. There are at least two methods that you have
to define in your class:

virtual long int GetDetUnitID(G4Step* aStep);

Serves to define the logic you want to apply to give a different number to
each detector unit (for example to each individual crystal)

virtual void CalculateAndSetPosition(GmHit* hit,

G4Step* aStep) = 0;

Serves to define the way you want to define the position of the hit.

1You may see the PET application for an illustration of this

7.3. HITS 77

7.3 Hits

If you have activated any of the GAMOS sensitive detectors, each time a
track deposits some energy in any copy of the selected logical volume (you
can indeed select several volumes by repeating the command) a GmHit will
be created. If the energy deposition happens in the same volume copy (a
real one, or a virtual one in case of a virtually segmented sensitive detector)
than a previous one in the same event, a new hit is not created, but the
existing hit is updated, adding to it the new energy deposition.

The GmHit stores the following variables:

• long int theDetUnitID; Identification of the touchable

• G4int theEventID; Event number

• G4double theEnergy; Total energy

• G4double theTimeMin; Minimum time of energy depositions2

• G4double theTimeMax; Maximum time of energy depositions

• G4ThreeVector thePosition; Position (it is defined in the Sensitive
detector class; it can be the centre of gravity of the energy depositions,
the centre of the volume, ...)

• std::set<G4int> theTrackIDs; The list of track numbers

• std::set<G4int> theOriginalTrackIDs; The list of original track
numbers (a track is called original if it is a gamma, electron or positron
and it is a primary particle, or if it is a gamma created in an original
positron annihilation)

• std::vector<GmEDepo*> theEDepos; The list of energy deposi-
tions. A GmEDepo contains the energy and position of each step.

• G4String theSDType; The type of sensitive detector

7.4 Detector effects

7.4.1 Energy and time resolutions

If you use one of the GAMOS sensitive detectors or you inherit your own one
from GmVSD you can smear automatically the energy and time of the hits
for each detector type with a gaussian given by the value of the parameters

/gamos/setParam SD:EnergyResol:SDTYPE

2This is the time considered when you call the method GetTime(). You may also invoke

explicitly GetTimeMin() or GetTimeMax()

78 CHAPTER 7. SENSITIVE DETECTOR AND HITS

/gamos/setParam SD:TimeResol:SDTYPE3

If you have a resolution function that is not gaussian you may implement
it by creating a new sensitive detector class inheriting from GmVSD (or
GmSDSimple if you don’t want to change the logic to define the detector
unit IDs) and overwrite the methods:

virtual G4double SmearEnergy(G4double energy, G4double enerResol);

virtual G4double SmearTimeMin(G4double time, G4double timeResol);

7.4.2 Detector measuring time

A detector has a finite time resolution, so that it is not able to distinguish
hits that come from different events when their time is close.

This effect is simulated in GAMOS with the help of the GmHitsEvent-
Mgr class. This class accumulates the hits of several events and for each
event builds up a list of good hits, i.e. those that have a time after the event
time minus the measuring time4. You can define the value of the measuring
time for each detector type (SDTYPE) with the parameter

/gamos/setParam SD:MeasuringTime:SDTYPE

that takes a default value of 10 ns.

7.4.3 Detector dead time

A detector takes a finite time to transform an energy deposit into an elec-
tronic signal, and during that time it is dead and cannot account for any
other energy deposition.

This effect is simulated in GAMOS also with the help of the GmHitsEv-
entMgr class. It holds a list of the dead sensitive detectors, i.e. those that
have produced a hit in a time prior than the current time minus the dead
time. You can define the value of the dead time for each detector type with
the parameter

/gamos/setParam SD:DeadTime:SDTYPE

that takes a default value of 100 ns.

The dead time affects by default all detectors in a block. This means
that if a detector is dead it considers that all detectors that are placed in
the same mother are also dead (the usual behaviour for example in a PET
detector, where all crystals in a block share the readout). You can tell
GAMOS to consider dead only the crystal itself by setting the parameter

/gamos/setParam SD:DeadTimeType:SDTYPE byCrystal

that by default takes the value byBlock

You also have the option to define your detector as paralizable (default)
or non-paralizable by setting the parameter

3The time smeared is theTimeMin
4The event time is computed as the time of creation of the first particle in the event

7.5. HITS DIGITIZATION AND RECONSTRUCTION 79

/gamos/setParam SD:DeadTimeParalizable:SDTYPE TRUE/FALSE
In a non-paralizable detector, an event happening during the dead time

since the previous event is simply lost, while in a paralizable detector, an
event happening during the dead time since the previous one will not just
be missed, but will restart the dead time.

7.5 Hits digitization and reconstruction

7.5.1 Hits digitization

The conversion of the hits into digital signals is very dependent on the
detector. Therefore GAMOS just provides a general class, GmVDigitizer.
The user may inherit her/his own digitizer from it and implement the two
methods:

virtual std::vector<GmDigit*> DigitizeHits(const

std::vector<GmHit*>&) = 0;

virtual void ClearDigits();

These two methods will be called automatically. The first one at the
end of each event, to convert the hits in digits, and the second one at the
beginning of each event, to clear the digits of the previous event.

You can then convert your digitizer into a GAMOS plug-in. To learn
how to do this, see the instructions in the section Creating your plug-in,
using the GmDigitizerFactory. After this, you select it with the command
/gamos/digitizer MY DIGITIZER

7.5.2 Hits and digits reconstruction

The digital signals are usually treated so that they become “reconstructed
hits”, which contain sensible variables, like energy, time, This conversion
is also very dependent on the detector, and therefore GAMOS just provides
a general class, GmVRecHitBuilderFromDigits. There is also another
class GmVRecHitBuilderFromHits, which serves in case the user wants
to transform the hits into reconstructed hits directly.

The user may inherit her/his own reconstructed hit builder from it and
implement the two methods:

virtual std::vector<GmRecHit*> ReconstructDigits(const

std::vector<GmDigit*>&) = 0;

virtual void ClearDigits();

in the case of GmVRecHitBuilderFromDigits, or

80 CHAPTER 7. SENSITIVE DETECTOR AND HITS

virtual std::vector<GmRecHit*> ReconstructHits(const

std::vector<GmHit*>&) = 0;

virtual void ClearDigits();

in the case of GmVRecHitBuilderFromHits.

These two methods will be called automatically. The first one at the end
of each event, to convert the digits or hits into reconstructed hits, and the
second one at the beginning of each event, to clear the reconstructed hits of
the previous event.

You can then convert your reconstructed hit builder into a GAMOS
plug-in. To learn how to do this, see the instructions in the section Creating
your plug-in, using the GmRecHitBuilderFactory. After this, you select it
with the command /gamos/recHitBuilder MY RECHITBUILDER

7.5.3 Examples of reconstructed hit builders

There are a few simple reconstructed hit builders implemented in GAMOS
that serve to merge hits that are close to each other. The energy of the
reconstructed hit is the sum of the hit energies, while the position is the
weighted sum of the hit positions (weighted by the energy of each hit).

This can be useful, for example, for recovering the total energy of a
photon when it has suffered a Compton scattering near the photoelectric
interaction (the user has always the freedom to choose how near the other
hits are); or for clustering together all the energy depositions of the particle
shower produced by the electron following a photoelectric interaction.

The merging of this is always started by the hit that has bigger energy in
each detector type (only hits in the same detector type are merged). Then
the hits are looked one by one to check if they are close. Each time a hit is
added, the centre is recalculated.

The reconstructed hit builders implemented are:

• GmRecHitBuilderByDistance. Two hits are merged if they are
separated by a distance closer than the parameter

/gamos/setParam SD:GmRecHitBuilderByDistance:HitsDistInRecHit

that by default takes a value of 10 mm.

• GmRecHitBuilderByBlock. Two hits are merged if they are in
sensitive detectors that belong to the same block, i.e. a volume whose
parent volume is the same. To check if two hits belong to the same
block, the detector unit ID (i.e. the identification of the touchable
where the hits is located) , is used. Usually the detector unit ID is

7.6. IDENTIFYING EACH SENSITIVE DETECTOR COPY 81

built from the volume copy numbers of the volume ancestors (e.g. vol-
ume copy number + 100 * parent volume copy number + 100*100*grand-
parent volume copy number), and therefore two detector unit IDs are
considered to belong to the same block if their division by a number
given by the parameter

/gamos/setParam SD:GmRecHitBuilderByBlock:NShift

gives the same results. This parameter takes a default value of 100.

• GmRecHitBuilder1to1. Two hits are never merged, so that a re-
constructed hit is built for each hit.

If you want any of these reconstructed hit builders to be active you can
select one of them with the command

/gamos/recHitBuilder RHITBUILDER NAME
where RHITBUILDER NAME is one of the classes described above.

7.6 Identifying each sensitive detector copy

To identify each detector unit individually you have to give a different de-
tector unit ID to each copy of your sensitive detectors (each G4Touchable
in Geant4 terminology). GAMOS does this automatically for you. If you
use the GmSDSimple class, it will give each SD copy a detector unit ID
that will be the

copy number of physical volume + 100 * copy number of parent
physical volume + 100*100* copy number of grandparent physical
volume

You can change the number of ancestor particles to build the detector unit
ID with the parameter

/gamos/setParam SD:DetUnitID:NAncestors
that takes a default value of 3.
You can also change the value of the “shift” that multiplies each ancestor
copy number using the parameter

/gamos/setParam SD:DetUnitID:NShift
that takes a default value of 100.

7.7 Storing and retrieving hits

GAMOS provides yuo with the option of storing in a file the hits produced
during a run, and reading them back in another run. Creating hits from
track in the sensitive detector or reading them from a file will produce the
same in-memory representation, therefore you can apply any of the above
described effects and produce any histogram in the same way independently
on how the hits are produced.

82 CHAPTER 7. SENSITIVE DETECTOR AND HITS

This can serve you for example for doing a study on how much your
results change with different energy resolutions: you produce the hits (with
zero resolution) and store them, and in another run you can read applying
a certain energy resolution; this way you spare the time to recreate them
(what usually is several orders of magnitude slower than reading them).

To use this utility you just have to activate the user action

/gamos/userAction GmHitsWriteUA

The name of the file can be controlled with the parameter
/gamos/setParam Output:hits:FileNameOut MY FILENAME

If this parameter is not found the name will be hits.out

You can read back the hits by activating the user action

/gamos/userAction GmHitsReadUA

The name of the file can be controlled with the parameter
/gamos/setParam Output:hits:FileNameIn MY FILENAME

If this parameter is not found the name will be hits.out

As commented above, you can use all the other options in your script
and just read the hits instead of generating them. But probably you do not
want that new hits are created when you are reading them from a file; in
this case, you should also activate the user action

/gamos/userAction GmKillAllUA

7.7.1 File format

The file to be written can be a text file or a binary file. The format depends
on the value of the parameter

/gamos/setParam SD:GmHitsWriteUA:BinFile TRUE/FALSE

The text file contains a line for each hit with the following information:

• Event ID

• Sensitive detector type

• Detector unit ID

• Energy (MeV)

• Minimum time (ns)

• Maximum time (ns)

• Position X (mm)

• Position Y (mm)

• Position Z (mm)

• Number of original tracks One line per original track with track ID

7.8. HITS HISTOGRAMS 83

• Number of tracks One line per track with track ID

The binary file contains the same information in the following format

• Event ID : float

• Sensitive detector type : char[10] (only first 10 characters are stored,
if type has less than 10 characters blank spaces will be added at the
end)

• Detector unit ID: unsigned long long

• Energy (MeV) : float

• Minimum time (ns) : unsigned long long

• Maximum time (ns) : unsigned long long

• Position X (mm) : float

• Position Y (mm) : float

• Position Z (mm) : float

• Number of original tracks : unsigned int One line per original track
with track ID : unsigned int

• Number of tracks : unsigned int One line per track with track ID :
unsigned int

7.8 Hits histograms

There are two user actions that provide a number of hits statistics. GmHit-
sHistosUA provides statistics about simulated hits, while GmRecHit-
sHistosUA provides statistics about reconstructed hits.

84 CHAPTER 7. SENSITIVE DETECTOR AND HITS

Chapter 8

Scoring

Geant4 provides several classes to score different quantities in the selected
volumes. GAMOS provides all the Geant4 functionality through user com-
mands and also some extra functionality that we describe in this section.

The first thing you should do to use GAMOS scoring is to create a
multifunctional detector [15] and associate it with a list of logical volumes,
with the user command

/gamos/scoring/createMFDetector MFD NAME
LOGICAL VOLUME NAME(s)

where MFD NAME is the detector name that will be used later. and
LOGICAL VOLUME NAME(s) is a list of logical volumes that you
associate to this detector.

Then you should add to the detector one of the GAMOS scorers, or your
own ones, with the user command

/gamos/scoring/addScorer2MFD SCORER NAME
SCORER CLASS MFD NAME SCORER PARAMETERS

SCORER NAME is a name you give to the scorer to be used later,
SCORER CLASS is one of the available scorer classes, MFD NAME
is one of the multifunctional detectors created above and
SCORER PARAMETERS are the extra parameters a scorer may need
(see below for the description of the scorers). You may repeat this command
to associate several scorers to the same detector.

To each of the defined scorers you can add a filter, to select for which
track conditions the scoring will be done:

/gamos/scoring/addFilter2Scorer FILTER NAME/CLASS SCORER NAME

FILTER NAME/CLASS is the name of a GmVFilter class or the name
you gave to a filter built from a filter class by using the command /gamos/filter
(see section on Filters) and SCORER NAME is one of the scorers defined
above.

You may repeat this command to associate several filters to the same
scorer. See section on Filters for a description of the available filters and

85

86 CHAPTER 8. SCORING

how to create your own one.

Finally you may select the format of the scoring results by associating
one of the available scorer printers for each scorer,

/gamos/scoring/addPrinter2Scorer PRINTER NAME/CLASS
SCORER NAME

PRINTER NAME/CLASS is the name of a GmVPSPrinter class
or the name you gave to a printer built from a printer class by using
the command /gamos/printer (see section on Scorer printers below) and
SCORER NAME is one of the scorers defined above.

If no printer is attached to a scorer, it will use the printer type
GmG4PSPrinterDefault.

By default a different count is scored for each of the copies of the se-
lected volumes with different copy number. This is managed by the scorer
classifier GmScorerClassifierBy1Ancestor. The user can attach differ-
ent classifiers to the different scorers so that the counts are done in different
ways:

/gamos/scoring/assignClassifier2Scorer CLASSIFIER NAME/CLASS
SCORER NAME

CLASSIFIER NAME/CLASS is the name of a GmVClassifier class or
the name you gave to a classifier built from a classifier class by using the com-
mand /gamos/classifier (see section on Classifiers) and SCORER NAME
is one of the scorers defined above.

The scoring is done by default taking into account the track weight, ex-
cept for the scorers when it is explicitly mentioned (see scorers description).
If you do not want to take weights into account you can switch them off
with the command

/gamos/scoring/useTrackWeight SCORER NAME FALSE

SCORER NAME is one of the scorers defined above.

The quantities scored are given per event by default. If you want the
score without dividing by the number of events, use the command

/gamos/scoring/printByEvent PRINTER NAME FALSE

PRINTER NAME is one of the printers defined above.

The error in the scored quantity per voxel is also calculated by default,
using the following formula:

√

(SumW2 ∗ nEvents − SumW ∗ SumW)/(nEvents − 1)/nEvents

;

where nEvents is the total number of events in the run, SumW is the sum
of the scored quantity value times its weight (i.e. the scored quantity itself)
and SumW2 is the sum of squares of scored quantity value × weight. When
the scoring is done per event, this sum of squares is done summing first all
the values × weight belonging to all the particles of the same event and then

8.1. SCORER CLASSES 87

squaring this quantity. In this way the correlations between particles of the
same event is properly taken into account. If the scoring is not by event, the
error calculation uses the same formula, but the sum of squares is not done
summing the contribution of the particles of the same event, but squaring
each contribution individually.

Calculating the errors makes it necessary to store the square of the
weights, increasing substantially the memory usage and CPU time. If you
want to deactivate this option for a scorer, use the command

/gamos/scoring/scoreErrors SCORER NAME FALSE
SCORER NAME is one of the scorers defined above. You can substitute
FALSE by TRUE if you want to activate back the error calculation.

As mentioned above the errors that are calculated taking into account
the number of events. You have to be careful then if you set to off the option
of scoring by event and keep on the option of calculating the errors. In the
default GAMOS scorer printers, the errors are printed are relative, i.e. the
error divided by the value, so no caution is necessary, but be careful if you
define a printer yourself.

8.1 Scorer classes

All the available scorers in Geant4 are also available in GAMOS. The classes
have been slightly changed to provide the extra functionality.

The scorers can be classified in the following types:

• Track length scorers

– GmG4PSTrackLength The track length is defined by the sum
of step lengths of the particles inside the cell (i.e., the volume
where the scoring happens). A particle weight is not applied by
default. There are two extra parameters, that are FALSE by de-
fault and can be set TRUE or FALSE: to multiply by the kinetic
energy and to divide by the velocity. If the energy track flux is
required then you should set them to TRUE FALSE. Alterna-
tively to measure the flux per unit velocity then you should set
them to FALSE TRUE. Finally to measure the flux energy per
unit velocity then you should set them to TRUE TRUE.

– GmG4PSPassageTrackLength The passage track length is
the same as the track length in GmG4PSTrackLength, except
that only tracks which pass through the volume are taken into
account. This means that newly-generated or stopped tracks in-
side the cell are excluded from the calculation. A particle weight
is not applied by default.

• Deposited energy scorers

88 CHAPTER 8. SCORING

– GmG4PSEnergyDeposit This scorer stores a sum of particles’
energy deposits at each step in the cell.

– GmG4PSDoseDeposit In some cases, dose is a more conve-
nient way to evaluate the effect of energy deposit in a cell than
simple deposited energy. The dose deposit is defined by the sum
of energy deposits at each step in a cell divided by the mass of the
cell. The mass is calculated from the density and volume of the
cell taken from the methods of G4VSolid and G4LogicalVolume.

• Current and flux scorers

There are two different definitions of a particle’s flow for a given
geometry. One is a current and the other is a flux. In our scorers,
the current is simply defined as the number of particles (with the
particle’s weight) passing through a certain surface or volume,
while the flux takes the particle’s injection angle to the geome-
try into account. The current and flux are usually defined at a
surface, but volume current and volume flux are also provided.

– GmG4PSFlatSurfaceCurrent Flat surface current is a surface
based scorer. The present implementation is limited to scoring
only at the -Z surface of a G4Box solid. The quantity is defined
by the number of tracks that reach the surface. The user must
choose a direction of the particle to be scored (as extra argument
in /gamos/scoring/addScorer2MFD). The choices are IN,
OUT or INOUT. Here, IN scores incoming particles to the cell,
while OUT scores only outgoing particles from the cell. INOUT
scores both directions. The current is normalized for a unit area
if an extra second parameter is set to TRUE.

– GmG4PSCylinderSurfaceCurrent Cylinder surface current
is a surface based scorer, and similar to the GmG4PSFlatSurfaceCurrent.
The only difference is that the surface is defined at the inner sur-
face of a G4Tubs solid.

– GmG4PSSphereSurfaceCurrent Sphere surface current is a
surface based scorer, and similar to the GmG4PSFlatSurfaceCurrent.
The only difference is that the surface is defined at the inner sur-
face of a G4Sphere solid.

– GmG4PSPassageCellCurrent Passage current is a volume-
based scorer. The current is defined by the number of tracks that
pass through the volume.

– GmG4PSFlatSurfaceFlux Flat surface flux is a surface based
flux scorer. The surface flux is defined by the number of tracks
that reach the surface. The expression of surface flux is given
by the sum of W/cos(t)/A, where W, t and A represent parti-
cle weight, injection angle of particle with respect to the surface

8.1. SCORER CLASSES 89

normal, and area of the surface. The user must enter one of the
particle directions, as in GmG4PSFlatSurfaceCurrent.

– GmG4PSCylinderSurfaceFlux Cylinder surface flux is a sur-
face based flux scorer, and similar to the GmG4PSFlatSurfaceFlux.
The only difference is that the surface is defined at the inner sur-
face of a G4Tubs solid.

– GmG4PSSphereSurfaceFlux Sphere surface flux is a surface
based flux scorer, and similar to the GmG4PSFlatSurfaceFlux.
The only difference is that the surface is defined at the inner sur-
face of a G4Sphere solid.

– GmG4PSCellFlux Cell flux is a volume based flux scorer. The
cell flux is defined by a track length (L) of the particle inside a
volume divided by the volume (V) of this cell. The track length is
calculated by a sum of the step lengths in the cell. The expression
for cell flux is given by the sum of (W*L)/V, where W is a particle
weight, and is multiplied by the track length at each step.

– GmG4PSPassageCellFlux Passage cell flux is a volume based
scorer similar to G4PSCellFlux. The only difference is that tracks
which pass through a cell are taken into account. It means that
tracks generated or stopped inside the volume are excluded from
the calculation.

• In/Out behaviour For the following scorers GmG4PSCylinderSurfaceCurrent,
GmG4PSCylinderSurfaceFlux, GmG4PSFlatSurfaceCurrent,
GmG4PSFlatSurfaceFlux, GmG4PSSphereSurfaceCurrent, GmG4PSSphereSurfaceFlux,
GmG4PSTrackCounter you can make the scoring only for tracks
that are entering, only for tracks that are exiting or both for tracks
that are entering or exiting (default behaviour). To select among these
three options you can add an extra parameter when defining the scorer
that can be In, Out or InOut

• Other scorers

– GmG4PSMinKinEAtGeneration This scorer records the min-
imum kinetic energy of secondary particles at their production
point in the volume in an event. This primitive scorer does not
integrate the quantity, but records the minimum quantity.

– GmG4PSNofSecondary This class scores the number of sec-
ondary particles generated in the volume. A particle weight is
not applied by default. The user can choose if the scoring is done
for all types of particles (default) or only for a set of particles, by
naming them as extra parameters.

– GmG4PSNofStep This class scores the number of steps in
the cell. A particle weight is not applied by default. If an extra

90 CHAPTER 8. SCORING

parameter is set to TRUE those steps with step length zero will
not be taken into account.

– GmG4PSCellCharge This class scores the total charge of par-
ticles which have stopped or have been created in the volume, i.e.
the tracks that enter count as +1 and the tracks that exit count
as -1.

– GmG4PSTrackCounter This class scores the number of tracks
in a cell.

• for Event Biasing

Scoring for event biasing is a very specific use case whereby particle
weights and fluxes through importance cells are required. The goals
of the scoring technique are to:

– appraise particle quantities related to special regions or surfaces,

– be applicable to all ”cells” (physical volumes or replicas) of a
given geometry,

– be customizable.

A number of scorers have been created for this specific application:

– GmG4PSNofCollision This scorer records the number of col-
lisions that occur within a scored volume/cell.

– GmG4PSPopulation This scores the number of tracks within
in a given cell per event. A particle weight is not applied by
default.

– GmG4PSTermination This scores the number of tracks that
are terminated in a given cell per event. A particle weight is not
applied by default.

8.2 Filter classes

See section on Filters and classifiers.

8.3 Scorer printers

A scorer printers serves to select the format of the output of a scorer. These
classes are unique to GAMOS, as Geant4 does not provide this functionality.
As mentioned above, several printers can be associated to the same scorer.
The general use printer scorers currently in GAMOS are the following:

• GmPSPrinterDefault Prints in the standard output the summary
of scoring in the following format:

8.4. CLASSIFIER CLASSES 91

MultiFunctionalDet: MFD_NAME

PrimitiveScorer: SCORER_NAME

Number of entries= 5

copy no.: 0 = 2.6625344e-18 +-(REL) 0.031622777 Gy

copy no.: 1 = 8.6617421e-17 +-(REL) 0.011622713 Gy

copy no.: 2 = 2.1034987e-17 +-(REL) 0.021166675 Gy

copy no.: 6 = 5.9651155e-17 +-(REL) 0.01418326 Gy

copy no.: 7 = 8.2850179e-17 +-(REL) 0.013747866 Gy

where MFD NAME is the name of multifunctional detector and
SCORER NAME is the name of the scorer. The columns after
copy no.: have the following meaning:

Index, scorer value, scorer error (relative, i.e. error/value), unit name.

Other scorer printers are provided for specific applications. See corre-
sponding sections in this guide.

8.4 Classifier classes

See section on Filters and classifiers.

92 CHAPTER 8. SCORING

Chapter 9

Analysis (extracting
information)

9.1 Using histograms

GAMOS supports several data analysis formats. The format is selected at
run time by the user, so that the same C++ code can be used to write any
format. In this GAMOS version there are two formats implemented, ROOT
and CSV (Comma Separated Value). For the ROOT format, we refer you
to the ROOT documentation [5]. The CSV format is explained below.

You can choose which format to use with the command

/gamos/analysis/fileFormat FORMAT

where FORMAT can be ROOT, root, CSV, csv

9.1.1 Histogram files common name

If you are running a job and you want to identify all your histogram files
with a characteristic suffix, you may do it by defining the parameter

/gamos/setParam GmAnalysisMgr:FileNameSuffix SUFFIX

The name SUFFIX will be added at the end of all histogram names, before
the file type (.root or .csv).

9.1.2 Histograms in CSV format

The CSV (Comma Separated Value) format is a simple text file where the
values are separated by commas. The utility of this format is that it can be
easily read by any analysis package (Excel, Origin, Matlab, ..) and converted
to its own format.

The information written in GAMOS is the following:

• Histograms 1D: The first word is ”HISTO1D”, then the following
info is dumped: his name,number of bins,Xaxis minimum,

93

94 CHAPTER 9. ANALYSIS (EXTRACTING INFORMATION)

Xaxis maximum,bin contents,number of entries,mean,RMS. The
bin contents is the list of entries in each bin. It has indeed num-
ber of binsX+2 numbers, as the first one is the underflow (entries be-
low axis minimum) and the last one is the overflow (entries above axis
maximum).

• Histograms 2D: The first word is ”HISTO2D”, then the following
info is dumped: his name,number of binsX,Xaxis minimum,
Xaxis maximum,number of binsY,Yaxis minimum,Yaxis maximum,
bin contents,number of entries,mean,RMS. The bin contents is the bi-
dimensional list of entries in each bin. It has indeed (number of binsX+2)*(number of binsY+2)
numbers, as the first row/column is the underflow (entries below axis minimum)
and the last row/column is the overflow (entries above axis maximum).

You can see an example of 1D histogram here:

"1D","example",10,0,1000,0,3,3,1,3,5,6,12,15,16,2,66,0,460.2,353.81

9.1.3 Using a common histogram class

Several histogram classes inherit from a class named GmVHistoBuilder to fa-
cilitate the creation of histograms and to provide a common interface for its use.
These classes should invoke the method SetHistoNames passing to it a histogram
name and a file name. The histogram name will be the prefix that all histograms
will have on their name. The file name will be the prefix of the histogram file name.

As the histogramming files in GAMOS are user actions, they can be used to-
gether with filters and classifiers (see section on Filters and classifiers). The names
of the filtes used will be added to the histogram name prefix, separated by a ’:’,
and to the file name prefix, separated by a ’ ’. In a similar way the name of the
classifier will be added to the file name and the name of each classifier index will
be added to the histogram name prefix. For example, the class GmStepHisto-
sUA invokes the method SetHistoNames passing to it as arguments “step” and
“GmStepHistsoUA”, therefore the command

/gamos/userAction GmStepHistosUA GmSecondaryFilter GmClas-
sifierByParticle
will produce a file named step GmSecondaryFilter GmClassifierByParticle.root
and the histograms will have as prefix

GmStepHistosUA:GmSecondaryFilter:gamma
GmStepHistosUA:GmSecondaryFilter:e-
...
The GmVHistoBuilder class takes also care of building a base histogram

number, multiple of 1,000,000, guaranteeing that it is not repeated if several his-
togram classes are used. The histogram classes may define their histograms by
using the number as a base, provided that they add histogram numbers smaller
than 1,000,000.

Another utility of the GmVHistoBuilder class is that it provides a set of pa-
rameters to define the number of bins, the minimum and the maximum limits of dif-
ferent histogram types (position, angle, energy, ...). The default values of these pa-
rameters can be overriden in the command script by using the /gamos/setParam

9.2. USER ACTION UTILITIES 95

command with parameter names equal to the file name plus the type of parameter.
In the example above, the commands to change the histogram definitions would be

/gamos/setParam step GmSecondaryFilter GmClassifierByParticle:hENbins
NBINS

/gamos/setParam step GmSecondaryFilter GmClassifierByParticle:hEMin
MIN

/gamos/setParam step GmSecondaryFilter GmClassifierByParticle:hEMax
MAX

The following parameters are defined (in parenthesis their default value)

• Energy type histograms:

– hENbins (100)

– hEMin (0.)

– hEMax (10.*MeV)

• Position type histograms:

– hPosNbins (100)

– hPosMin (-200*mm)

– hPosMax (200*mm)

• Angle type histograms:

– hAngleNbins (100)

– hAngleMin (0.)

– hAngleMax (180.)

• Time type histograms:

– hTimeNbins (100)

– hTimeMin (0.)

– hTimeMax (1.*ms)

• Number of steps type histograms:

– hNStepNbins (100)

– hNStepMin (0)

– hNStepMax (100)

• Number of secondary particles type histograms:

– hNSecoNbins (100)

– hNSecoMin (0)

– hNSecoMax (100)

9.2 User action utilities

These are a set of utilities that can be instantiated through user commands. As for
any user action, filters can be assigned to them to select for which type of tracks
they will be activated.

96 CHAPTER 9. ANALYSIS (EXTRACTING INFORMATION)

9.2.1 Counting the number of tracks and events

This utility prints a line every N events with the event number, the number of
tracks in this event and the accumulated number of tracks in all events:

%%% EVENT 0 NTRACKS 4 TOTAL NTRACKS 4

%%% EVENT 1000 NTRACKS 6 TOTAL NTRACKS 4663

%%% EVENT 2000 NTRACKS 4 TOTAL NTRACKS 9440

Its main use is to inform the user of the progress of the job in interactive
running. To activate this utility use the command:

/gamos/userAction GmCountTracksUA
The user can control the interval of events as well as the first event to start

printing with the parameters:
/gamos/setParam GmCountTracksUA:EachNEvent NEV (10)
/gamos/setParam GmCountTracksUA:FirstEvent NEV (0)
This utility distinguishes for the ionisation and bremsstrahlung processes those

cases when a secondary particle is emitted and those when the step is limited to
assure a correct energy loss and multiple scattering but no secondary particle is
emitted (it adds NoSeco at the end of the process name).

9.2.2 Counting the processes

This utility prints four tables:

• At the beginning of run all the active processes for each particle type:

PROC_LIST e+ : Transportation

PROC_LIST e+ : annihil

PROC_LIST e+ : eBrem

PROC_LIST e+ : eIoni

PROC_LIST e+ : msc

PROC_LIST e- : LowEnBrem

PROC_LIST e- : LowEnergyIoni

PROC_LIST e- : Transportation

PROC_LIST e- : msc

...

• At the end of run how many times a process determined the step for each
particle type:

PROC_COUNT e+ : Transportation = 31

PROC_COUNT e+ : annihil = 999

PROC_COUNT e+ : eBrem = 19

PROC_COUNT e+ : eIoni = 1439

PROC_COUNT e+ : msc = 788

PROC_COUNT e- : LowEnBrem = 46

PROC_COUNT e- : LowEnergyIoni = 2362

PROC_COUNT e- : Transportation = 18

PROC_COUNT e- : msc = 1036

PROC_COUNT gamma : LowEnCompton = 684

9.2. USER ACTION UTILITIES 97

PROC_COUNT gamma : LowEnPhotoElec = 549

PROC_COUNT gamma : LowEnRayleigh = 60

PROC_COUNT gamma : Transportation = 5963

• At the end of run how many times a process was the creator of a particle for
each particle type:

PROC_CREATOR_COUNT e+ : Primary = 1000

PROC_CREATOR_COUNT e- : LowEnCompton = 541

PROC_CREATOR_COUNT e- : LowEnPhotoElec = 549

PROC_CREATOR_COUNT e- : LowEnergyIoni = 140

PROC_CREATOR_COUNT e- : eIoni = 255

PROC_CREATOR_COUNT gamma : LowEnBrem = 33

PROC_CREATOR_COUNT gamma : LowEnPhotoElec = 235

PROC_CREATOR_COUNT gamma : annihil = 1998

PROC_CREATOR_COUNT gamma : eBrem = 19

• At the end of run how many particles of each type were created:

PART_LIST: e+ = 1000

PART_LIST: e- = 1485

PART_LIST: gamma = 2285

To activate this utility use the command:
/gamos/userAction GmCountProcessesUA

9.2.3 Counting the number of tracks in a volume

This utility prints a table with the number of tracks and steps in each of the
geometry logical volumes.

COUNT_PARTICLES: arm #steps= 178 #tracks= 4

COUNT_PARTICLES: block #steps= 0 #tracks= 0

COUNT_PARTICLES: body #steps= 248 #tracks= 4

COUNT_PARTICLES: crystal #steps= 253 #tracks= 5

COUNT_PARTICLES: head #steps= 58 #tracks= 3

COUNT_PARTICLES: leg #steps= 289 #tracks= 2

COUNT_PARTICLES: mother #steps= 406 #tracks= 12

COUNT_PARTICLES: ring #steps= 38 #tracks= 1

Also a histogram file countTracks.root/csv is created with the plots of kinetic
energy of the tracks in each volume. The minimum and maximum of the histogram
X axis are defined by the parameters

/gamos/setParam GmCountTracksInVolumeUA:Emin ENER
/gamos/setParam GmCountTracksInVolumeUA:Emax ENER

the default value of Emin is 1.E-12*MeV and of Emax is 1.E2*MeV.
You ca also choose the number of steps with the parameter
/gamos/setParam GmCountTracksInVolumeUA:NSteps NSTEPS (100)

and also whether the axis of energies is logarithmic
/gamos/setParam GmCountTracksInVolumeUA:OptLogE LOG (1)
To activate this utility use the command:
/gamos/userAction GmCountTracksInVolumeUA

98 CHAPTER 9. ANALYSIS (EXTRACTING INFORMATION)

9.2.4 Killing all tracks

The action
/gamos/userAction GmKillAllUA
This action serves to kill all particles at the stacking action G4ClassificationOfNewTrack

method, i.e. before they start being tracked. You may use it in combination with
one or several filters to kill only the particles that are accepted by them. For
example,

/gamos/userAction GmKillAllUA GmPrimaryFilter
will only kill the primary particles.

9.2.5 Histograms of track information

This is a set of histograms produced for each track. They are created by writing
the command

/gamos/userAction GmTrackHistosUA
This class inherits from GmVHistoBuilder and invokes the SetHistoNames

method with parameters “track” and GmTrackHistosUA .
The following histograms are produced (in parenthesis their name without pre-

fix, and the parameter type)

• Energy of tracks at creation(” E initial”)(”E”)

• Total energy lost (” E lost”)(”E”)

• Total energy deposited (” E deposited”)(”E”)

• Number of steps (” N steps”)(”NStep”)

• Track length (” Track length”)(”Pos”)

• Deviation in position, i.e. distance from the track end point to the line formed
by the original position and the original momentum direction (” Deviation
position”)(”Pos”)

• Deviation in angle, i.e. angle between the original momentum direction and
the final momentum direction (” Deviation angle”)(”Angle”)

• Number of secondary tracks created (” N secondaries”)(”NSeco”)

9.2.6 Histograms of step information

This is a set of histograms produced for each track step. They are created by
writing the command

/gamos/userAction GmStepHistosUA
This class inherits from GmVHistoBuilder and invokes the SetHistoNames

method with parameters “step” and GmStepHistosUA .
The following histograms are produced (in parenthesis their name without pre-

fix, and the parameter type)

• Energy (” Energy”)(”E”)

• Energy lost (” E lost”)(”E”)

• Energy deposited (” E deposited”)(”E”)

9.2. USER ACTION UTILITIES 99

• Step length (” Step length”)(”Pos”)

• Number of secondary tracks created (” N secondaries”)(”NSeco”)

• Energy of secondary tracks created (” E secondaries”)(”E”)

• X coordinate of postion (” Position X”)(”Pos”)

• Y coordinate of position (” Position Y”)(”Pos”)

• Z coordinate of position (” Position Z”)(”Pos”)

• 2D radius coordinate of position (” Position R2”)(”Pos”)

• 3D radius coordinate of position (” Position R”)(”Pos”)

• phi coordinate of position (” Position phi”)(”Angle”)

• theta coordinate of position (” Position theta”)(”Angle”)

• Change in position (” Position difference”)(”Pos”)

• Change in angle (” Angle difference”)(”Angle”)

• Change in time (” Time difference”)(”Time”)

9.2.7 Histograms of secondary track information

This is a set of histograms produced for each secondary track created at each track
step. They are created by writing the command

/gamos/userAction GmTrackSecondaryHistosUA

This class inherits from GmVHistoBuilder and invokes the SetHistoNames
method with parameters “secondary” and GmTrackSecondaryHistosUA .

The following histograms are produced (in parenthesis their name without pre-
fix, and the parameter type)

• Energy of secondary tracks created (” E secondary”)(”E”)

• Energy of primary track at interaction (” E primary”)(”E”)

• Fraction of energy taken by secondary tracks created (” E secondary/E pri-
mary”)(”E”)

• Angle between primary track pre step direction and secondary track direction
(” Angle primary pre-secondary”)(”Angle”)

• Angle between primary track post step direction and secondary track direc-
tion (” Angle primary post-secondary”)(”Angle”)

• Change of angle of primary track when secondary track is created (” Angle
change of primary”)(”Angle”)

100 CHAPTER 9. ANALYSIS (EXTRACTING INFORMATION)

9.2.8 Event classification by interaction types

There is a utility in GAMOS that helps you in counting and classifying the tracks
by the type of interactions they have suffered. You just have to create at each step
a new GmTrajPoint and at the end of track pass this list to a GmVSimuEvent-
Classifier that will return the classification.

You can see an example at
GamosCore/GamosAnalysis/src/GmHistosGammaAtSD.cc, that we ex-
plain here in detail:

This class counts the type of interaction of the photons in the sensitive detectors
of your geometry.

The first thing it does, at the PreUserTrackingAction is checking if the current
track is an ’original’ gamma. To do this it gets the help of the GmCheckOrigi-
nalGamma class, that classifies the gammas as

• 0: not an ’original’ gamma

• 1: it is a primary particle, created at the beginning of the event

• 2: is is created at the annihilation of the positron (it is assumed that the
positron is a primary particle)

At each step, the UserSteppingAction method checks that it is inside a volume
declared as sensitive detector. In this case, it adds a new GmTrajPoint for this
track, with all the information of the track at this moment (plus it adds at the
beginning another point with the vertex information).

At the end of track, if it is an original gamma, it asks the class GmClassi-
fierByInteraction to classify it based on the type and number of interactions.
The method Classify() of this class returns an integer with the meaning: 100*100*
Number of LowEnPhotoElec interactions + 100 * Number of LowEnCompton in-
teractions + Number of LowEnRayleigh interactions.

See PET section for more details on the concrete class GmHistosGammaAtSD

9.2.9 Table of tracks and steps

You may get a table of the number of tracks and steps by instantiating the user
action

/gamos/userAction GmCountTracksAndStepsUA
It will produce a table with the number of tracks and steps in the whole run.
You may get more details by using it with filters and classifiers. For example the
command

/gamos/userAction GmCountTracksAndStepsUA GmClassifierByPar-
ticle
will produce a table similar to this one

COUNT_TRACKS_AND_STEPS: GmClassifierByParticle

COUNT_TRACKS: gamma = 100

COUNT_TRACKS: e- = 8

COUNT_TRACKS: e+ = 1

COUNT_TRACKS: ALL = 109

COUNT_NSTEPS: gamma = 399

COUNT_NSTEPS: e- = 29

9.2. USER ACTION UTILITIES 101

COUNT_NSTEPS: e+ = 4

COUNT_STEPS: ALL = 432

9.2.10 Detailed report of where CPU time is spent

You may get a detailed report of where the CPU time is spent by instantiating the
user action

/gamos/userAction GmTimeStudyUA CLASSIFIER 1 CLASSIFIER 2
...

By selecting different classifiers you can get a report of the time spent by each
particle, in each logical volume, in each energy bin, etc. (see section on Classifiers).

The table will have a format similar to the following one:

%%%%% TIMING RESULTS for timer GmTimeStudyUA

_GmClassifierByParticle_GmClassifierByKineticEnergy

e+/0.0001-0.001: User=0 Real=0 Sys=0

e+/0.001-0.01: User=0 Real=0 Sys=0

e+/0.01-0.1: User=0 Real=0.02 Sys=0

e+/0.1-1: User=0.28 Real=0.26 Sys=0.01

e+/1-10: User=0.18 Real=0.18 Sys=0.02

e-/0.0001-0.001: User=0.94 Real=1.12 Sys=0.12

e-/0.001-0.01: User=17.13 Real=19.2 Sys=1.85

e-/0.01-0.1: User=31.67 Real=35.96 Sys=3.31

e-/0.1-1: User=54.81 Real=58.4 Sys=4.61

e-/1-10: User=209.36 Real=226.51 Sys=15.73

e-/1e-05-0.0001: User=0.06 Real=0.09 Sys=0

e-/1e-06-1e-05: User=0.03 Real=0.02 Sys=0

e-/1e-07-1e-06: User=0 Real=0 Sys=0

e-/1e-08-1e-07: User=0 Real=0 Sys=0

gamma/0.001-0.01: User=8.49 Real=9.29 Sys=0.79

gamma/0.01-0.1: User=14.55 Real=15.64 Sys=0.92

gamma/0.1-1: User=33 Real=35.47 Sys=2.15

gamma/1-10: User=8.99 Real=9.35 Sys=0.49

that can be obtained with the command
/gamos/userAction GmTimeStudyUA GmClassifierByParticle Gm-

ClassifierByKineticEnergy
The time in each category is the time counted at each step. Ex-

actly it is the counting from the beginning to the end of the method
G4SteppingManager::Stepping(). To do this without modifying the Geant4
class, the class GmTimeStudyMgr inherits from G4VSteppingVerbose
and it is set as the stepping verbose class, substituting the class G4SteppingVerbose
class, that is the one that controls the verbosity of the command /track-
ing/verbose . This means that this command will have no effect and if
you want to use it you should do with the parameter

/gamos/setParam GmTimeStudyUA:G4VerboseLevel VERB
You may observe that the time summmed over all the categories is

smaller than the run time given by the command /run/verbose 1. This is
because the time is only the time spent at the method mentioned above,

102 CHAPTER 9. ANALYSIS (EXTRACTING INFORMATION)

which does not take into account the initialisation and termination times
of each track, event and run.

9.3 Creating your own histograms

When you write your histogram you just have to take care of creating
and filling it. The class GmAnalysisMgr will take care of automatically
writing it in the file format you chose.

To use GmAnalysisMgr you have to instantiate it in your histogram
class, passing to it the name of your file (you may use the same name
for several of your histogram classes or different ones):

GmAnalysisMgr* myAnaMgr =
GmAnalysisMgr::GetInstance(“MY FILENAME”)

There are four types of histograms currently supported by GAMOS:
1-dimensional, 2-dimensional, profile 1-dimensional and profile 2-dimensional
1. To create your histogram and register it to GAMOS you have to create
it with a line like:

myAnaMgr->CreateHisto1D(HNAM,NBINS,MAXBIN,
MINBIN,HIS NUMBER);

myAnaMgr->CreateHisto2D(HNAM,NBINSX,MAXBINX,
MINBINX,NBINS,MAXBINY,MINBINY,HIS NUMBER);

myAnaMgr->CreateHistoProfile1D(HNAM,NBINS,MAXBIN
,MINBIN,HIS NUMBER);

myAnaMgr->CreateHistoProfile2D(HNAM,NBINSX,
MAXBINX,MINBINX,NBINS,MAXBINY,MINBINY,
HIS NUMBER);
The last argument is the histogram number, that can be later used to
retrieve this histogram from any method in any class. If you don’t set
it, GAMOS will assign it automatically starting from 1.

Once a histogram is registered you can get a pointer to it by asking
GmAnalysisMgr for a histogram by its number or its name:

myAnaMgr->GetHisto1(HIS NUMBER)->Fill(value)
myAnaMgr->GetHisto2(HIS NUMBER)->Fill(value)
myAnaMgr->GetHistoProfile1(HIS NUMBER)->Fill(value)
myAnaMgr->GetHistoProfile2(HIS NUMBER)->Fill(value)
or similarly if you want to retrieve by the histogram name.

1A profile histogram sets the value of a bin as the average of all entries in that bin,

and the error as the RMS of these entries

Chapter 10

Filters and classifiers

10.1 Filters

A filter is a class that receives an G4Step or a G4Track and accepts it
or not depending on some given criteria. A GAMOS filter has therefore
two main methods

• AcceptStep(const G4Step*): receives a G4Step pointer and de-
cides to return true or false

• AcceptTrack(const G4Track*): receives a G4Track pointer and
decides to return true or false

A filter may implement the two methods or only one of them. If
the AcceptStep method is not implemented by a filter, the Accept-
Step method from the base class is invoked and it calls the AcceptTrack
method passing to it the G4Track corresponding to the G4Step. If the
AcceptTrack method is not implemented by a filter, the method from
the base class returs true.

Filters can act on user actions or scorers. If one or several filters
are set to act on a user action, the PreUserTrackingAction, PostUser-
TrackingAction and ClassifyNewTrack methods will only be invoked if
the AccepTrack method of every filter returns true, and UserSteppin-
gAction method will only be invoked if the AccepStep method of every
filter returns true. For details on filters acting on scorers see the section
on Scorers. The use of user actions and scorers together with filters is
a powerful means to obtain very detailed information on the simulation
through simple user commands. See the tutorial on Histograms and scorers
for more details on this.

Several filters need some extra parameters (see list of filters below)
that control their behaviour. To use these filters they have to be declared
first with the following command

/gamos/filter FILTER NAME FILTER CLASS PARAMETER 1 PA-
RAMETER 2 ...
where FILTER NAME is the new name you want to give to a filter to
attach it to a user action of a scorer, FILTER CLASS is the name of the
filter class, and PARAMETER 1 PARAMETER 2 ... are the values of

103

104 CHAPTER 10. FILTERS AND CLASSIFIERS

the parameters that the filter needs. Those filters that do not need any
parameter, can be assigned directly to a user action or a scorer without
giving them a new name: the name will be the one of the filter class.

To attach one or more filters to a user action you put them after the
user action name in the command line that selects it

/gamos/userAction USER ACTION FILTER NAME/CLASS
or you can use filters to act on a scorer with the command

/gamos/scoring/addFilter2Scorer FILTER NAME/CLASS SCORER NAME
Filter are plug-in’s, so that a user an create her/his own filter and

select it with a user command. To learn how to do this, see the instruc-
tions in the section Creating your plug-in, using the GmFilterFactory, or
the Histograms and scorers tutorial.

10.1.1 Simple filters

The list of available filters can be obtained by typing SealPluginDump
on your terminal window and looking for the word Filter . The list of
simple filters in the current GAMOS version is the following:

• GmGammaFilter: accepts a track if the particle is a gamma

• GmElectronFilter: accepts a track if the particle is an electron

• GmPositronFilter: accepts a track if the particle is a positron

• GmElectronOrPositronFilter: accepts a track if the particle is an
electron or positron

• GmEMParticleFilter: accepts a track if the particle is of electro-
magnetic type (gamma, electron or positron)

• GmParticleFilter: accepts a track if the particle is in the list of
particles given as extra arguments (see the list of particle names
in the section Using particle names.

• GmChargedFilter: accepts a track if the particle is charged.

• GmNeutralFilter: accepts a track if the particle is neutral

• GmPrimaryFilter: accepts a track if it is a primary (it does not
come from another track)

• GmSecondaryFilter: accepts a track if it is a secondary (it comes
from another track)

• GmKineticEnergyFilter: accepts a track if its kinetic energy is
between the two values given as extra arguments. For steps it
considers the energy at the beginning, that is the G4PreStepPoint
energy

• GmPostKineticEnergyFilter: accepts a track if its kinetic energy
is between the two values given as extra arguments. For steps
it considers the energy at the end, that is the G4PostStepPoint
energy

10.1. FILTERS 105

• GmVertexKineticEnergyFilter: accepts a track if its vertex kinetic
energy (the energy at creation) is between the two values given as
extra arguments

• GmDepositedEnergyFilter: accepts a step if the deposited energy
is between the values given by the two extra parameters. It does
not implement the AcceptTrack method

• GmInitialRangeFilter: accepts a track if its range at creation is
between the two values given as extra arguments

• GmRangeFilter: accepts a track if the range is between the values
given by the two extra parameters

• GmStepNumberFilter: accepts a step if the step number is be-
tween the values given by the two extra parameters. It does not
implement the AcceptTrack method

• GmNumberOfSecondaries: accepts a step if the number of secon-
daries created is between the values given by the two extra param-
eters. It does not implement the AcceptTrack method

• GmProcessNameFilter: accepts a step if the process name that
defined it is in the list given as extra arguments. It does not
implement the AcceptTrack method

• GmParticleProcessFilter: accepts a step if the particle and the pro-
cess that defined the step are in the list given as extra arguments.
The arguments must be provided as a list of pairs particle name -
process name. It does not implement the AcceptTrack method

• GmCreatorProcessFilter: accepts a step if the process that defined
it is in the list given as extra arguments. It does not implement
the AcceptTrack method

• GmFilterFromClassifier: accepts a step if the classifier given as
first parameter returns a value equal to the second parameter. It
does not implement the AcceptTrack method

10.1.2 Filters of filters

There are another set of filters that receive as argument one or several
filters and act on them. The list of composed filters in the current
GAMOS version is the following:

• GmORFilter: returns true if one of the filters returns true

• GmXORFilter: returns true if one and only one of the filters re-
turns true

• GmANDFilter: returns true if every filter returns true

• GmHistoryFilter: returns true if all the filters in one of the previ-
ous step, or the beginning of track have returned true (i.e. it does
not check again the current step if it was accepted in a previous
one or begin of track)

106 CHAPTER 10. FILTERS AND CLASSIFIERS

• GmHistoryAllFilter: returns true if all the filters in all previous
steps, and the beginning of track have returned true (i.e. it does
not check again the current step if it was rejected in a previous one
or begin of track)

• GmHistoryAncestorsFilter: behaves similarly as the GmHistory-
Filter but also returns true if the condition is fulfilled by any step
or track of the ancestors of the current track

• GmHistoryAncestorsAllFilter: behaves similarly as the GmHisto-
ryAllFilter but also returns true if the condition is fulfilled by any
step or track of the ancestors of the current track

• GmOnSecondaryFilter: makes the list of filters act of the secondary
tracks created in the step; returns true if one of the secondary
tracks created accepts all the filters. It does not implement the
AcceptTrack method

• GmOnSecondaryAllFilter: makes the list of filters act of the sec-
ondary tracks created in the step; returns true if all secondary
tracks created accept all the filters. It does not implement the
AcceptTrack method

• GmInverseFilter: returns the opposite that the filter it receives as
only argument

10.1.3 Volume filters

These are a set of filters that accept tracks under one of the following
conditions

• In: particle is in a volume

• Enter: particle is entering a volume. AcceptTrack method returns
always false

• Exit: particle is exiting a volume. AcceptTrack method returns
always false, except in the case where one of the selected volumes
is the world and track is exiting it

• Traverse: particle traverses a volume, it does neither enter nor
exits it

• Start: particle is starting in a volume. AcceptTrack method may
only return true if it is the first step

• End: particle is ending in a volume. AcceptTrack method may
only return true if the track is ending

The volume names are given as extra arguments to the filter. The
types of volume are the following ones

• LogicalVolume: a G4LogicalVolume object

• PhysicalVolume: a G4VPhysicalVolume object. The volume name
and copy number are set separated with a ’:’ character, e.g. volA:1
(see section on Identifying touchables)

10.2. CLASSIFIERS 107

• Touchable: a G4VTouchable object. The volume name and copy
number are set separated with a ’:’ character, the ancestors are
separated by a ’/’ character, e.g. volB:3/volA:1 (see section on Iden-
tifying touchables)

• Region: a G4Region object

• LogicalVolumeChildren: a G4LogicalVolume object or any of the
G4LogicalVolume children of it

• PhysicalVolumeChildren: a G4VPhysicalVolume object or any of
the G4VPhysicalVolume children of it

• RegionChildren: a G4VTouchable object or any of the G4VTouchable
children of it

• TouchableChildren: a G4Region object or any of the G4Region
children of it

The name of these filters is constructed combining the geometry
condition and the volume type, e.g. GmInPhysicalVolumeFilter, Gm-
TraverseTouchableFilter, GmEndRegionFilter, GmTraverseLogicalVol-
umeChildrenFilter, GmExitRegionChildrenFilter.

There is a special case when parallel worlds are used: the scorers see
the parallel world volumes, but the user actions do not (please ask for
this new feature if you need it). This means that you cannot filter on a
parallel world volume if you are using the filter for a user action, while
you can if you use it for a scorer. And it also means that you cannot filter
on a mass world whose position coincides with the one of a parallel world
in the case of scorers, because the scorer filter will see the parallel world
volume instead of the mass one. If you need to filter on mass volumes
for a scorer a few volume filters are implemented, namely GmInMass-
LogicalVolumeFilter, GmInMassPhysicalVolumeFilter and GmInMass-
RegionFilter.

10.2 Classifiers

A classifier is a class that contains a method that receives a G4Step and
returns a different index (an integer) depending on some given criteria.
In other words it classifies the step and returns the index of its classifica-
tion. These classes are unique to GAMOS, as Geant4 does not provide
this functionality.

Classifiers can act on user actions or scorers. If one or several classi-
fiers are set to act on a user action, it is up to the concrete user action
to determine which use it makes of them, or to ignore them. The most
common use of classifiers by user actions is to produce a different his-
togram set or table for each classification index. For details on classifiers
acting on scorers see the section on Scorers.

The use of user actions and scorers together with classifiers is a
powerful means to obtain very detailed information on the simulation
through simple user commands. See the tutorial in section Histograms
and scorers for more details on this.

108 CHAPTER 10. FILTERS AND CLASSIFIERS

Several classifiers need some extra parameters (see list of classifiers
below) that control their behaviour. To use these classifiers they have
to be declared first with the following command

/gamos/classifier CLASSIFIER NAME CLASSIFIER CLASS PARAM-
ETER 1 PARAMETER 2 ...
where CLASSIFIER NAME is the new name you want to give to a
classifier to attach it to a user action or to a scorer, CLASSIFIER CLASS
is the name of the classifier class, and PARAMETER 1 PARAMETER 2
... are the values of the parameters that the classifier needs. Those
classifiers that do not need any parameter, can be assigned directly to a
user action or a scorer without giving them a new name: the name will
be the one of the classifier class.

To attach one classifier to a user action you put its name after the
user action name in the command line that selects it

/gamos/userAction USER ACTION CLASSIFIER NAME/CLASS
or you can use a classifier to act on a scorer with the command

/gamos/scoring/assignClassifier2Scorer CLASSIFIER NAME/CLASS
SCORER NAME

If you want to use more than one classifier for a user action or a
scorer, you have to use the classifer GmCompoundClassifier (see below).

Each classifier has a method, GetIndexName(G4int index), that re-
turns a different name for each index value. If a classifier does not im-
plement this method, the one in the base class returns the index number
converted to a string. This method is used by user actions and scorers
to add the index number to the name of the histograms, tables or scores.

Classifiers are plug-in’s, so that a user an create her/his own classi-
fier and select it with a user command. To learn how to do this, see the
instructions in the section Creating your plug-in, using the GmClassifier-
Factory, or the Histograms and scorers tutorial.

The following classifiers are currently implemented in GAMOS:

• GmPSClassifierBy1Ancestor: It assigns a different index to differ-
ent copy numbers of a volume. It has an extra argument that sets
the level of the ancestor; if it is N = 0, it will use the copy numbers
of the volume itself, if it is N > 0, it will look for the copy numbers
of the N-th ancestor

• GmPSClassifierByAncestors: It assigns a different index to differ-
ent copy numbers of the sensitive volume. It has two extra argu-
ments that set the number of ancestor levels (NAncestor) and the
maximum number of copies in a level (NShift). The index is built
as

NAncestor−1
∑

N=0

NShiftN ∗ copyNumber of Nancestor

• GmClassifierByLogicalVolume: It assigns a different index to dif-
ferent logical volumes

• GmClassifierByPhysicalVolume: It assigns a different index to dif-
ferent physical volumes

10.2. CLASSIFIERS 109

• GmClassifierByRegion: It assigns a different index to different re-
gions

• GmClassifierByKineticEnergy: The user must define a minimum,
a maximum and a width of the energy intervals. It creates kinetic
energy intervals with these values and assigns a different index to
different intervals

• GmClassifierByProcessNames: It assigns a different index to dif-
ferent process names that define the G4Step

• GmClassifierByParticleProcess: It assigns a different index to dif-
ferent particle-process name pairs that define the G4Step. This
means that the ionisation for electrons and positrons will produce
a different index, despite the process being called the same for both
particles

• GmClassifierByParticle: It assigns a different index to different
particle types

• GmClassifierByPrimaryParticle: It assigns a different index follow-
ing the particle type for the primary that originated the current
particle, or the primary particle itself

• GmCompoundClassifier: This classifier receives a list of classifiers
and builds an index as Classifier 1*NShift+Classifier 2*NShift*NShift+...
Where NShift is defined by the parameter /gamos/setParam Gm-
CompoundClassifier:NShift NSHIFT , that by default takes a value
of 100. Be aware that the classifier index is stored as a 32-bit in-
teger, so be careful that the index is not too big (bigger than 232).

Filters are plug-in’s, so that a user can create her/his own filter and
select it with a user command. To learn how to do this, see the instruc-
tions in the section Creating your plug-in, using the GmClassifierFactory.

10.2.1 Passing parameter values to a classifier

Some of the classifiers need a parameter, like the GmClassifierByKinet-
icEnergy, that needs the minimum, the maximum and the interval width
of energies. To pass parameter values to a classifier, so that it can later
be used in a scorer or a user action, you have to use the command

/gamos/classifier CLASSIFIER NAME CLASSIFIER CLASS
PARAMETER 1 PARAMETER 2 ...
where CLASSIFIER NAME is the new name you want to give to the
classifier with the list of parameters, so that you can use this name to
assign your classifier to a scorer or a user action. CLASSIFIER CLASS
is one of the above-mentioned classifier classes, or one that you create
your own.

110 CHAPTER 10. FILTERS AND CLASSIFIERS

Chapter 11

Managing the verbosity

11.1 GAMOS verbosity managers

While GAMOS is running you can control the amount of information you
get on the screen with the GAMOS verbosity management. There are
six levels of verbosity (each level includes the verbosity of the previous
levels):

• Silent (= -1): no output is printed (only when there is an exception
and the job stops, you will get the details of why it happened)

• Error (= 0): only error messages are printed

• Warning (= 1): only error and warning messages are printed

• Info (= 2): you get some detailed information of what is happening.
Mainly messages at each run and each event.

• Debug (= 3): you get a quite detailed information of what is hap-
pening. Mainly messages at each track and each step

• Test (= 4): this level is only meant for testing your code the first
time you write it

On top of this, the verbosity in GAMOS is classified in different
types, so that you can set different verbosity options for different parts
of the code

• Generation: controls the verbosity of the GAMOS generator.

• Physics: controls the verbosity of the physics classes.

• Sensitive detector: controls the verbosity of the sensitive detectors,
hits, digits and reconstructed hits.

• User action: controls the verbosity of the base classes for user
action management.

• Scoring: controls the verbosity of the scoring classes.

• Analysis: controls the verbosity of the analysis classes.

111

112 CHAPTER 11. MANAGING THE VERBOSITY

• PET: controls the verbosity of the classes in the PET package.

• RT: controls the verbosity of the classes in the RadioTherapy pack-
age.

You can set the verbosity of each of the GAMOS verbosity types
with a simple command on your command input file:

/gamos/verbosity GmGenerVerbosity VERB
/gamos/verbosity GmPhysicsVerbosity VERB
/gamos/verbosity GmSDVerbosity VERB
/gamos/verbosity GmUAVerbosity VERB
/gamos/verbosity GmAnaVerbosity VERB
/gamos/verbosity GmScoringVerbosity VERB
/gamos/verbosity PETVerbosity VERB
/gamos/verbosity RTVerbosity VERB

where VERB can be any of the six values described above (in non-capital
letters). Instead of the names, you may use the numbers that appear
besides them.

By default the values of all GAMOS verbosities are warning

11.2 Using a GAMOS verbosity manager in your
code

If you write some new code, for example a new generator distribution,
you may use one of the GAMOS verbosity managers following the in-
structions below.

Each of the GAMOS verbosity managers instantiates an object of
the type GmVerbosity. If you want that your code is only printed when
the corresponding verbosity level is set, you have to write this verbosity
with the value of the level in parenthesis. For example, if you write
one new generator position distribution and you want that a message
is printed when somebody chooses it in the input file, you can write a
message like the following one in the constructor of your class:

G4cout << GenerVerb(infoVerb)

<< ‘‘MyPositionGeneratorDistribution created’’ << G4endl;

This message will only be printed if the generator verbosity is set to
info or a level above (debug or test).

If you want for example that your distribution prints a message with
the calculated position at each event, you may do

G4cout << GenerVerb(debugVerb)

<< ‘‘MyPositionGeneratorDistribution position = ’’

<< position << G4endl;

This message will only be printed if the generator verbosity is set to
debug or a level above (test).

As you may have deduced the rules for using each of the GAMOS
verbosity managers are that the name of the verbosity is the same as

11.3. CREATING YOUR OWN VERBOSITY MANAGER 113

the name of the verbosity manager simplified: no Gm at the beginning
and Verb instead of Verbosity (e.g. from GmAnaVerbosity, you use
AnaVerb). And the name of the level in C++ code is the same as the
one in the input command file adding Verb (e.g. for warning, you use
warningVerb).

11.3 Creating your own verbosity manager

You can create your own verbosity manager for the code you use taking
as example one of the GAMOS verbosity managers (for example the class
GmGenerVerbostityMgr in the package GamosCore/GamosGenerator).

First create a class inheriting from GmVerbosityMgr and fill it as
follows:

• In the include file (i.e. the one with suffix .hh) of this class define
an object of type GmVerbosity as extern

extern GmVerbosity MyVerb;

• In the method void SetFilterLevel(int fl) call the same method of
your GmVerbosity object

MyVerb.SetFilterLevel(fl);

• In the method void GetFilterLevel(int fl) call the same method
of your GmVerbosity object

MyVerb.GetFilterLevel(fl);

Finally you have to transform your class into a plug-in:

DEFINE_GAMOS_VERBOSITY(MyVerbosityMgr);

11.4 Controlling the Geant4 verbosity by event
and track

If you want to print the detailed step information provided by Geant4
for a given interval of events or tracks, but you do not want that it is
printed for all, you can use the user action

/gamos/userAction GmTrackingVerboseUA
You have to define the minimum and maximum events for which you

want the verbosity on, and you can also set it ON only each N events:
/gamos/setParam GmTrackingVerboseUA:EventMin
/gamos/setParam GmTrackingVerboseUA:EventMax
/gamos/setParam GmTrackingVerboseUA:EventStep

If these parameters are not set, the verbosity will be ON for all events.
You can also define for which tracks interval in the selected events

the verbosity will be ON, and set it ON only each N tracks:
/gamos/setParam GmTrackingVerboseUA:TrackMin
/gamos/setParam GmTrackingVerboseUA:TrackMax

114 CHAPTER 11. MANAGING THE VERBOSITY

/gamos/setParam GmTrackingVerboseUA:TrackStep
If these parameters are not set, the verbosity will be ON for all tracks.

Finally you may select the Geant4 verbosity level (by default 1) with
the parameter

/gamos/setParam GmTrackingVerboseUA:VerboseLevel

Chapter 12

PET application

The PET example contains two directories. The first one, PetGeometry,
contains an utility to build a simple PET ring detector by just defining
a few parameters. The second one contains the PET event classifier and
a couple of histogram classes.

12.1 PET geometry

The directory PET/PETGeometry contains an utility to build a simple
PET ring detector by just defining the following parameters:

• c block Number of crystals per block

• Nblocks Number of blocks of crystals per ring

• Nrings Number of rings of blocks

• c transaxial Crystal size, trans-axial

• c axial Crystal size, axial

• c radial Crystal size, radial

• diameter Detector ring diameter

There are several examples of simplified commercial PET detectors
in the files with suffix .dat in that directory. To use this utility you just
have to choose as your geometry the PETGeometry one:

/gamos/geometry PETGeometry
By default it reads the filename PETGeometry.dat. If you want to

change it, you can do it with the parameter
/gamos/setParam PET:Geometry:FileName MY FILENAME
There are two types of sources available, NEMA1994 and DOLL. You

can select them with the parameter
/gamos/setParam PET:Geometry:Source MY SOURCE
NOTE: This module is just thought for simple PET geometries. If

you want to do more complicated geometries, we recommend you to
describe tehm with a text file (see section Building your geometry with
a text file).

115

116 CHAPTER 12. PET APPLICATION

12.2 PET analysis

12.2.1 PET event classification

The class PETEventClassifierUA in the directory PET/PETAnalysis
classifies the events as PET by looking at the reconstructed hits. It
is a GAMOS user action, so you can activate it with the command

/gamos/userAction PETEventClassifierUA
First it counts how many reconstructed hits have 511 keV within a

precision given by the two parameters
/gamos/setParam PET:EvtClass:511EPrecMin ENERGY MIN
/gamos/setParam PET:EvtClass:511EPrecMax ENERGY MAX

where ENERGY MIN is the minimum energy, that by default takes a
value of 0.7*511 keV, and ENERGY MAX is the maximum energy, that
by default takes a value of 1.3*511 keV.

Only hits whose relative time difference is less than the value given
by the parameter

/gamos/setParam PET:EvtClass:CoincidenceTime COINCIDENCE TIME
will be taken into account to make a pair (it is assumed that one of the
two started the trigger and the other must be in the coincidence time
open at that moment).

To recover hits when one of several Compton interactions have oc-
curred you may switch the merging of hits that are close into one. You
may set the distance to merge hits with the parameter

/gamos/setParam PET:EvtClass:ComptonRecHitDist DIST
DIST takes by default a value of 0, that is no Compton hits merging will
be done. In this case you may select as position of the combined hits
the one of the biggest energy, or the second biggest, or the n-th biggest,
where the order is given by the parameter

/gamos/setParam PET:EvtClass:SelectPosOrder ORDER
ORDER takes by default a value of 1, that is, the position is that of the
hit with biggest energy.

If two 511-keV hits are finally found, the event is classified as a good
PET event. Then the sub-classification code enters in the game:

• a)More than 2 511-keV hits: If more than two hits are found, the
two that are closer to 511 keV will be taken and the event will
receive a subclassification type of 3− > 2.

• b)Random coincidence: It is checked that each of the two 511-keV
hits is built only from tracks from the same ’original’ gamma1, and
that the two hits come from the same event

• c)Scattered: The event is classified as scattered if any of the 511-
keV gammas has suffered a Compton interaction in the list of vol-
umes defined by the parameter

/gamos/setParam PETCountScatteringUA:VolumeNames VOLUME 1
VOLUME 2 ...

1’original’ gammas are gammas that are primary particles or that are directly created

by the annihilation of positron that is a primary particle

12.2. PET ANALYSIS 117

and this interaction is of one of the process types defined by the
parameter

/gamos/setParam PETCountScatteringUA:ProcessNames PROCESS 1
PROCESS 2 ...

and it has lost in the volumes more energy than the parameter

/gamos/setParam PETCountScatteringUA:EnergyMin ENER MIN

• d) Check PET line distance: a line joining the position of the two
reconstructed hits is built and the distance of closest approach
(DCA) to the origin of the positron is calculated; the events are
classified as ’near’ of ’far’ if the DCA is smaller or bigger than the
parameter

/gamos/setParam PET:EvtClass:LineDistToVtx DISTANCE

where DISTANCE has a default value of 4*mm.

The ClassifyPET method returns an integer with several digits con-
taining the event classification:

• 0 if it is not PET, 1 if it is PET and PET line is close to the event
vertex, 2 if it is PET and PET line is far from event vertex

• 10*1 if the search for 511-keV reconstructed hits found more than
2

• 100*1 if the event is a random coincidence event

• 1000*1 if the event is a scattered event

At the end of the run a table is printed with the number of events
in each of the combinations of the sub-classification types.

12.2.2 PET histograms: event classification

These histograms are related to the event classification explained above.
They are produced if the event classification user action is selected. The
name of all these histograms starts with ”PETEvtClass: ” and all are
written in the file pet.root/csv.

The following histograms are written:

• Classification index of event (”PET classification”). This index is
the one described in the precedent section.

• Number of 511-keV reconstructed hits before cleaning if there are
more than two and searching for Compton hits, i.e., hits produced
merging two crystals (see above) (”N 511 recHits initial”)

• The energy of the 511-keV reconstructed hits (“PETEvtClass: Ex-
tra PET RecHit energy (keV)”)

• The energy of the 511-keV reconstructed hits that are rejected be-
cause there are more than two (“PETEvtClass: Extra PET RecHit
energy (keV)”)

118 CHAPTER 12. PET APPLICATION

• Distance of closest approach between vertex and the line joining the
two 511-keV reconstructed hits (=DCA) (”PET dist line - vertex
(mm)”)

There are also a histogram of the DCA and the reconstructed hit
energies for each of the sixteen subclassification types (combinations of
the 4 subindices) and also for the all the events that are far from vertex,
all the events where there were more than two hits, all the events with
random coincidences and all the scttered events.

12.2.3 PET output for reconstruction

If the event is classified as a PET one, it is dumped in a binary file, given
by the name

/gamos/setParam Output:pet:FileNameOut MY FILENAME
that takes the name pet.out by default. The variables written are given
by the structure

struct PetOutput

{

char name[8];

float xVtx,yVtx,zVtx,x1,y1,z1,x2,y2,z2;

}

where name is PET, x/y/zVtx are the coordinates of the event vertex,
x/y/z1 are the coordinates of the first reconstructed hit, x/y/z2 are the
coordinates of the second vertex.

The same data that is written to the file can be written in the stan-
dard output if the parameter

/gamos/setParam Output:pet:DumpToCout
is set to true. The positions in the standard output (not in the file) will
be written in cylindrical coordinates by default. If you want them in
cartesian coordinates you should set to true the parameter

/gamos/setParam Output:pet:DumpCartesian

12.2.4 PET histograms: positrons

These histograms are related to the original positron and the two sec-
ondary gammas created at its annihilation. They are produced if the user
action PETHistosPositron is activated with the command /gamos/userAction
PETHistosPositron. The name of all these histograms starts with “PET-
Positron” and all are written in the file pet.root/csv.

The histograms are the following:

• Positron energy at creation (”e+ initial energy (keV)”)

• Positron range (”e+ range (mm)”)

• Positron energy at annihilation (”e+ energy at annihilation (keV)”)

• Positron energy at creation vs range (”e+ initial energy (keV) vs
range (mm)”)

12.2. PET ANALYSIS 119

• Positron energy at annihilation vs secondary gammas energy (”e+e-
gammas vs e+ energy (keV)”)

• Positron energy at annihilation vs sum of secondary gammas en-
ergy - 1.022 MeV - positron energy at annihilation (”total gamma
energy vs e+ energy (keV)”). This is the energy deposited locally
at annihilation.

12.2.5 PET histograms: distance between two gammas

These histograms are related to the distance between the line joining two
gammas originated at the positron annihilation and the vertex position,
at the moment of the gamma creation and when they hit the sensitive de-
tector. Also other histograms about these two gammas are provided for
further information. They are produced if the user action PETHistos-
GammaDist is activated with the command /gamos/userAction PETHis-
tosGammaDist. The name of all these histograms starts with ”PETGam-
maDist: ” and all are written in the file pet.root/csv.

The histograms are the following:

• Angle between the direction of the two gammas when they are
created (”angle between gammas at vertex (deg)”)

• Angle between the direction of the two gammas when they en-
ter the sensitive detector (”angle between gammas at entering SD
(deg)”)

• Distance of closest approach between vertex and the line joining
the vertices of the two gammas (”DCA orig from Gamma vertex
(mm)”)

• Distance of closest approach between vertex and the line joining
the points where the gammas enter the sensitive detectors (”DCA
orig from Gamma entering SD (mm)”)

• Z position of vertex of gamma if it reaches the sensitive detector
(”Orig Pos Z if Gamma reaches SD (mm)”)

• R position of vertex of gamma if it reaches the sensitive detector
(”Orig Pos R if Gamma reaches SD (mm)”)

12.2.6 Histograms of gammas at sensitive detectors

We describe here the GmHistosGammaAtSD, an utility that prints in-
formation about the interaction of ’original’ gammas in the sensitive
detector. It is a user action and therefore it can be activated with the
command

/gamos/userAction GmHistosGammaAtSD
At the end of run a table like the following one is printed:

$$$$$$$$$$ Classification of Gamma Interactions in SD $$$$$$$$

$$GC: nEvents : 1000000

$$GC: n gamma in SD : 516170 : 25.8085 %

120 CHAPTER 12. PET APPLICATION

$$GC: n PE : 321588 : 62.30273 %

$$GC: PE 0 COMP : 157614 : 49.011157 %

$$GC: PE 1 COMP : 111304 : 34.610744 %

$$GC: PE >1 COMP : 52670 : 16.378099 %

$$GC: n COMP : 222590 : 43.12339 %

$$GC: 1 COMP : 159193 : 71.518487 %

$$GC: >1 COMP : 63397 : 28.481513 %

$$GC: nGamma_COMP/event: 0.585931

• nEvents : total number of events.

• n gamma in SD : number of ’original’ gammas reaching one sensi-
tive detector.

• n PE : number of ’original’ gammas with photoelectric interaction
in SD

• PE 0 COMP : number of ’original’ gammas with photoelectric in-
teraction and no Compton interactions in SD (percentage relates
to “n PE”).

• PE 1 COMP : number of ’original’ gammas with photoelectric in-
teraction and one Compton interaction in SD (percentage relates
to “n PE”).

• PE > 1 COMP : number of ’original’ gammas with photoelectric
interaction and more than one Compton interaction in SD (per-
centage relates to “n PE”).

• n COMP : number of ’original’ gammas with Compton interactions
in SD.

• 1 COMP : number of ’original’ gammas with only one Compton
interaction in SD (percentage relates to “n COMP”).

• > 1 COMP : number of ’original’ gammas with more than one
Compton interactions in SD (percentage relates to “n COMP”).

• nCOMP/event : number of Compton interactions in SD per ’orig-
inal’ gamma.

This class also makes several histograms, all of them have the words
Gamma At SD: included in their names. And all are written to the file
gammaSD.root/csv. The following histograms are defined:

• Event Type / 100, i.e. no Rayleigh counting (”Event Type”)

• Number of photoelectric interactions per ’original’ gamma (”N
PhotoElec”)

• Number of Compton interactions per ’original’ gamma (”N Comp-
ton”)

• Number of Rayleigh interactions per ’original’ gamma (”N Rayleigh”)

• Number of photoelectric interactions vs Number of Compton+Rayleigh
interactions per ’original’ gamma (”N PhotoElec vs Compton+Rayleigh”)

12.2. PET ANALYSIS 121

• Energy of gamma upon entering SD(”Energy at entering SD (keV)”)

• Energy lost in the photoelectric interactions (”Energy lost Photo-
Elec (keV)”);

• Difference in position from the gamma entering SD to the point
where a photoelectric interaction happened (”Diff pos when Pho-
toElec (mm)”)

• Difference in direction from the gamma entering SD to the point
where a photoelectric interaction happened (”Diff dir when Pho-
toElec (mm)”)

• Difference in kinetic energy from the gamma entering SD to the
point where a photoelectric interaction happened (”Diff energy
when PhotoElec (mm)”)

• Energy lost in the Compton interactions (”Energy lost Compton
(keV)”);

• Angle variation in the Compton interactions (”Angle variation
Compton (mrad)”)

• Energy lost in the Rayleigh interactions (”Energy lost Rayleigh
(eV)”)

• Angle variation in the Rayleigh interactions (”Angle variation Rayleigh
(mrad)”)

All these histograms are repeated for the different types of events (a
prefix in the name marks the event type the histogram refers to):

• ”ALL: ”: every event

• ”No PE: ” events where no photoelectric interaction occurred

• ”Only PE: ” events where only photoelectric interaction occurred

• ”PE + 1 Compt: ” events where one photoelectric interaction plus
only one Compton interaction occurred

• ”PE + > 1 Compt: ” events where one photoelectric interaction
plus more than one Compton interaction occurred

122 CHAPTER 12. PET APPLICATION

Chapter 13

Radiotherapy application

The Radiotherapy example contains some utilities for the simulation of
a teletherapy linear accelerator and dose calculations in the patient.

13.1 Using phase spaces

A very common utility in teletherapy simulation is the writing of a phase
space, i.e. the set of particles that reach a certain plane in Z, and the
later starting of the next simulation from this set of particles.

13.1.1 Writing phase spaces

The writing of phase space can be done automatically in GAMOS by
selecting the user action

/gamos/userAction RTPhaseSpaceUA
When a particle crosses any of the planes defined by the parameter

/gamos/setParam RTPhaseSpaceUA:ZStops Z 1 Z 2 Z 3 ...
its information is stored in a file whose name is given by the parameter

/gamos/setParam RTPhaseSpaceUA:FileName MY FILENAME
plus a suffix .IAEAphsp. The default value of this parameter is test. If
there are several Z planes, the Z value of each plane will be added to the
name, with a “ ” in front, so that each phase space will go to a different
file. If there is only one Z defined, the Z value may be written in the file
name if the parameter

/gamos/setParam RTPhaseSpaceUA:ZStopInFileName
TRUE/FALSE
is set to TRUE.

If the plane crossed is the one with maximum Z, the particle may be
stopped, if the parameter

/gamos/setParam RTPhaseSpaceUA:KillAfterLastZStop
TRUE/FALSE
is set to TRUE.

The format of the phase space file is the one defined by the IAEA[17],
generated using the official C files from IAEA. First there is a header
file, that will have the same name, but with the suffix .IAEAheader. It

123

124 CHAPTER 13. RADIOTHERAPY APPLICATION

is generated by the IAEA code and you can find the description of it at
[17].

The variables stored for each particle are the following

• X coordinate (cm)

• Y coordinate (cm)

• X direction cosine

• Y direction cosine

• Kinetic energy (MeV)

• Particle statistical weight

• Type of the particle (1 = gamma, 2 = electron, 3 = positron, 4 =
neutron, 5 = proton)

• Z direction cosine * particle charge

• Is new history = 0

• Extra integer = 0

• Extra float = 0

The Z value may optionally be stored if the parameter
/gamos/setParam RTPhaseSpaceUA:StoreZ TRUE/FALSE

is set to TRUE.
The header file may be written each N events, so that if the job ends

abnormally the first N events may be recovered in the phase space. The
number of events is controlled with the parameter

/gamos/setParam RTPhaseSpaceUA:NEventsToSave
N EVENTS
By default this parameter takes a value of -1 and no header is saved until
the end of the run.

As the Z plane is probably not a physical plane in the geometry,
particle steps will start before the plane and end after the plane. There-
fore, the position and energy are rescaled as if the particle would have
stopped at the Z plane (by a simple linear interpolation).

13.1.2 Phase space histograms

When a phase space is generated, a set of histograms is produced to
give you some information about the particles in the phase space. The
names of all these histograms start with PhaseSpace: and they are all
dumped into the file rt.root/csv. For each of the following particle types
a different set of histograms are produced, containing the particle type in
the histogram name: ”gamma”, ”e-”, ”e+”, plus a set of histograms for
all particles, named ”ALL”. Also histograms for ”neutron”, ”proton”,
will be produce if the parameter

/gamos/setParam RTPhaseSpaceHistos:Hadrons TRUE/FALSE
is set to TRUE.

A full set of histograms is produced for each Z plane, with the Z
value on their names.

The following histograms are produced:

13.1. USING PHASE SPACES 125

• Position X (cm) (”X at Zstop”)

• Position Y (cm) (”Y at Zstop”)

• Position X vs Y (cm) (”XY at Zstop”)

• Radial position in the XY plane (cm) (”R at Zstop”)

• Theta angle of direction (degrees) (”Direction Theta at Zstop”)

• Phi angle of direction (degrees) ”Direction Phi at Zstop”)

• Energy (MeV) (”Energy at Zstop”)

• X direction cosine (” Vx at Zstop”)

• Y direction cosine (” Vy at Zstop”)

• Z direction cosine (” Vz at Zstop”)

• Radial position in the XY plane (cm) vs theta angle of direction
(degrees) (”R vs Direction Theta at Zstop”);

• Radial position in the XY plane (cm) vs energy (MeV) (”R vs
Energy at Zstop”);

• Theta angle of direction (degrees) vs energy (MeV) (”Direction
Theta vs Energy at Zstop”);

The user can choose not to produce any of these histograms by setting
the parameter

/gamos/setParam RTPhaseSpaceUA:Histos TRUE/FALSE
The name of the histogram file can be controlled with the parameter
/gamos/setParam RTPhaseSpaceHistos:FileName MY FILENAME

that by default is ”phaseSpace”.
Several parameters serve to control the number of histogram bins:
/gamos/setParam RTPhaseSpaceHistos:Nbins NBINS

that takes by default a value of 100; and the maximum (absolute) value
for histograms of position

/gamos/setParam RTPhaseSpaceHistos:HisRMax MAX
that takes by default a value of 100., histograms of angle

/gamos/setParam RTPhaseSpaceHistos:HisAngMax MAX
that takes by default a value of 180., and histograms of energy

/gamos/setParam RTPhaseSpaceHistos:HisEMax MAX
that takes by default a value of 10.*MeV.

13.1.3 Reading phase spaces

To use the generated phase space you have to define as your primary
generator

/gamos/generator RTGeneratorPhaseSpace
You can change the filename (by default test) with the parameter

/gamos/setParam RTGeneratorPhaseSpace:FileName
MY FILENAME

The particles in the phase space can be translated or rotated by using
the parameters

126 CHAPTER 13. RADIOTHERAPY APPLICATION

/gamos/setParam RTGeneratorPhaseSpace:InitialDisplacement POS X
POS Y POS Z

/gamos/setParam RTGeneratorPhaseSpace:InitialRotAngles
ANG X ANG Y ANG Z

the position of the particles is first changed by the initial displacement,
then the momentum vector is rotated around the X axis by ANG X,
around the Y axis by ANG Y and around the Z axis by ANG Z; and
finally the position vector is rotated around the X axis by ANG X,
around the Y axis by ANG Y and around the Z axis by ANG Z.

If the number of phase space particles is not enough to calculate the
dose in the phantom with enough precision you may reuse the particles
several times (that is use the same particle in several consecutive events)
by setting the parameter

/gamos/setParam RTGeneratorPhaseSpace:MaxNReuse N

to a value bigger than 1. In fact if this parameter is not explicitly set to
1, GAMOS calculates it automatically by dividing the number of events
asked for by the number of events in the input phase space.

Alternatively you may recycle the full phase space several times (i.e.
when all particles in the phase space are read, the file is closed and
restarted again). The number of times a phase space is recycled is con-
trolled by the parameter

/gamos/setParam RTGeneratorPhaseSpace:MaxNRecycle N

which must take a value bigger than 1. If no reusing is explicitly set, the
number of reuses will be automatically calculated as mentioned above
and the number of recyclings will be set to 1, so that no recycling is
done.

Caution should be taken when recycling phase spaces, as the error
correlations due to the reusing of the same particles is not taken account.
Therefore you should first consider reusing instead of recycling.

If you think your phase space has X/Y symmetry you may reduce the
correlations due to reusing the same particle several times by mirroring
your particles each time they are reused, by setting the parameter

/gamos/setParam RTGeneratorPhaseSpace:MirrorWhenReuse OPT

where OPT can be X or Y or XY. If it is X it means that when a particle
is used for n-th time, with even n, the X original value of position and
momentum will be changed sign, while when it is for an n-th time, with n
odd, it will not be changed. If it is Y, the same but mirroring in Y. And
if it XY the second time a particle is used the X values will be changed
sign, the third time the Y values will be changed sign, the fourth time
both X and Y values will be changed sign, the fifth time there will be
no change, and the cycle restarts.

When reading a phase space file you may skip the first N events by
using the parameter

/gamos/setParam RTGeneratorPhaseSpace:NEventsSkip N

You can produce the same histograms that were produced when writ-
ing the phase space file by setting the parameter

/gamos/setParam RTGeneratorPhaseSpace:Histos
TRUE/FALSE

to TRUE.

13.1. USING PHASE SPACES 127

When you use a phase space as input you may use as number of
events the real number of events run in your job (which would equal
be to the number of particles in the phase space multiplied by the
number of times each particle is reused), or you may alternatively use
as number of events the original number of events that were used to
generate the phase space (see section on Scoring dose in phantom. To
use the first the first one you can invoke the standard Geant4 method
G4RunManager::GetRunManager()-¿GetNumberOfEvent(), to use the
second one, you may invoke the GAMOS method GmNumberOfEvent::GetNumberOfEvent().

13.1.4 Adding extra information to a phase space

The IAEA format allows the storing of two long integers and two floats
in the phase space file as extra information. In GAMOS we have ex-
tended this functionality by putting the 32+32 bits of the two inte-
gers in a continuous stream, that the user can divide in groups of
bits of the desired length to store several informations. The user can
even add more sets of 32 bits by changing the the following line at
source/RadioTherapy/include/iaeaRecord.hh :

#define NUM_EXTRA_LONG 2

and recompiling (cd MY GAMOS DIR/source/RadioTherapy; make).
To store some information in this format the user has to instantiate

one of the following user actions

• RTExtraInfoProviderCrossings: fills a bit if the track has crossed
the corresponding region before reaching the phase space

• RTExtraInfoProviderInteractions: fills a bit if the track has inter-
acted in the corresponding region before reaching the phase space

• RTExtraInfoProviderOrigin: fills a bit if the track has been created
in the corresponding region before reaching the phase space

The user may select how many bits each information must occupy by
using the GAMOS parameter :

/gamos/setParam EXTRA INFO NAME:NBits NBITS
where EXTRA INFO NAME is the name of the extra information class
(see above). GAMOS will check that the index to be filled by a class is
not bigger than the number of bits reserved for it. And it will also check
that the total number of bits is not bigger than the available quantity
(32*NUM EXTRA LONG).

The order of declaration of the extra information user actions sets
the order of bits occupancy. At the end of the job each of these extra
information user actions fills a file explainning the information contained
in each bit. By default this file is called RTExtraInfoProvider.summ, but
the user may change the name of it with the parameter /gamos/setParam
RTExtraInfoProviderLong:FileName FILE NAME

An example of a file is the following one:

128 CHAPTER 13. RADIOTHERAPY APPLICATION

RTExtraInfoProviderOrigin INDEX/REGION 0 DefaultRegionForTheWorld

RTExtraInfoProviderOrigin INDEX/REGION 1 targetReg

RTExtraInfoProviderOrigin INDEX/REGION 2 collimatorReg

RTExtraInfoProviderOrigin INDEX/REGION 3 filterReg

RTExtraInfoProviderOrigin INDEX/REGION 4 monitorReg

RTExtraInfoProviderOrigin INDEX/REGION 5 shieldingReg

RTExtraInfoProviderOrigin INDEX/REGION 6 jawsReg

The float extra information providers fill one of the two available
words in the order they have been defined.

The user can add more float words by changing the the following line
at source/RadioTherapy/include/iaeaRecord.hh :

#define NUM_EXTRA_FLOAT 2

To store some information as float the user has to instantiate one of
the following user actions

• RTExtraInfoProviderZOrigin: stores the Z position of the origin
of the track

• RTExtraInfoProviderZLast: stores the Z position of the last inter-
action before reaching the phase space

At the end of the job each of these extra information user actions
fills a file explaining the information contained in each bit. By default
this file is called RTExtraInfoProvider.summ, but the user may change
the name of it with the parameter

/gamos/setParam RTExtraInfoProviderFloat:FileName FILE NAME

13.1.5 Reusing a particle at a phase space without filling the
phase space file

It is common in radiotherapy treatment simulations that in a first job
a phase space file is created and in a second job the particles therein
are read and reused several times to calculate the dose in the patient.
GAMOS provides the possibility of reusing particles in a phase space
file without having to divide the jobs in two. To use this utility the user
has to instantiate the user action

/gamos/userAction RTReuseAtZPlaneUA
and then use the command

/gamos/RT/ReuseAtZPlane

and before that, define the z value of the plane where particles will be
replicated, with the parameter

/gamos/setParam RTReuseAtZPlane:ZReusePlane Z POS

and the number of times particles will be reused
/gamos/setParam RTReuseAtZPlane:NReuse NREUSE
The user may independently create the phase space file or not at the

same Z position or at others.

13.2. OPTIMISATION OF A LINAC SIMULATION 129

13.2 Optimisation of a linac simulation

To optimise your simulation in GEANT4 you may tune the physics pa-
rameters (production cuts, special cuts, multiple scattering options, ...)
as well as try some variance reduction techniques.

Please read the sections on automatic optimisation of production cuts
and user limits for accelerator and dose calculation simulations. See also
the web page http://fismed.ciemat.es/GAMOS/RToptim to get a list
of the best electromagnetic physics parameters that can optimise your
simulation. See also sections on bremsstrahlung splitting.

13.2.1 Bremsstrahlung splitting

Bremsstrahlung splitting is a non-biased variance reduction technique
that may reduce the CPU time of your accelerator simulation by a big
factor. It basically consists on splitting the secondary particles (in radio-
therapy mainly gammas generated by bremsstrahlung) N times, so that
each time a bremsstrahlung gamma is created, other N-1 gammas are
created at the same position, with weight 1/N, re-sampling the energy
and/or angle distribution. As most of the particles that reach a patient
in a radiotherapy accelerator are bremsstrahlung gammas, by using this
technique we can spare the time spent simulating the original electron
(usually even close to 50% of the total time can be saved) and we can
reduce the time spent tracking gammas that have small possibility of
reaching the patient.

There are three splitting techniques implemented in GAMOS.

Uniform bremsstrahlung splitting

This technique is the simplest one. When a gamma suffers a bremsstrahlung
interaction, the resulting gamma is split N times producing N equal par-
ticles, each of weight 1/N. To apply it the following command should be
used

/gamos/physics/varianceReduction/splitting uniform
and before that, the splitting number should be set with the parameter

/gamos/setParam GmBremsSplittingProcess:NSplit NSPLIT
that by default takes a value of 10. Another parameter controls how
many times a particle will be split

/gamos/setParam GmBremsSplittingProcess:SplitLevel SPLIT LEVEL
that by default takes a value of 1, i.e. particles already split will not be
split again.

Z-plane directional bremsstrahlung splitting

In this technique the user must define first a plane perpendicular to the
Z axis at a given Z position and limit its dimensions in X and Y. This
can be done with the parameters

/gamos/setParam GmBSZPlaneDirChecker:ZPos ZPOS
/gamos/setParam GmBSZPlaneDirChecker:XDim XDIM
/gamos/setParam GmBSZPlaneDirChecker:YDim YDIM

130 CHAPTER 13. RADIOTHERAPY APPLICATION

When a bremmstrahlung interaction occurs, it will be checked if the
direction of each of the split gamma points towards the user-defined
square. If it does, the gamma is kept, if it does not, Russian roulette is
played with a probability 1/N so that if the gamma survives its weight
will be set back to 1.

It is recommended that the square is placed close to the phantom’s
upper plane and has dimensions a few centimeteres wider than the phan-
tom.

To apply this technique the following command should be used

/gamos/physics/varianceReduction/splitting zPlaneDir
This bremsstrahlung splitting technique is more efficient than the

uniform bremsstrahlung splitting, because only a few gammas that are
not aimed to the region of interest are tracked, but it has the inconve-
nient that tracks with different weights (1/N and 1) reach the patient,
spoiling the efficiency gain. To take profit of the definition of a region
of interest while keeping the same weight for all the particles that reach
the phantom, a third splitting technique has been developed, that is
described below.

Equal weight directional bremsstrahlumg splitting

The main ideas of this splitting technique are first that gammas are split
at each interaction and Russian roulette is played with those that are not
directed towards a square perpendicular to Z as in the technique above.
But this technique makes that all gammas that reach the user-defined
square have the same weight, 1/N. To achieve this, gammas are split at
each interaction, not only if it is bremsstrahlung, if their weight is 1,
and they are not split if the weight is 1/N. This technique is based on
the Directional Bremsstrahlung Splitting [18]

To apply this technique the following command should be used
/gamos/physics/varianceReduction/splitting equalWeight

Several paramters control the different options. The same parame-
ters as for the other techniques are used to set the splitting number and
the definition of the square of interest.

The implementation of this technique in this GAMOS version is a
preliminary one. Efficiency improvements of about 40 have been re-
ported, but it is currently being improved and we expect to at least
duplicate the efficiency gain.

13.2.2 Killing particles at big X/Y

This utility serves to kill the particles that would probably not reach your
detector because they have too big X and Y positions (it is assumed that
your detector is described along Z and that your initial particles move
in this direction in the positive sense).

It makes a list of the volumes that are placed directly inside the
world volume and computes the minimum and maximum extension in X
and Y (using the method G4VSolid::GetExtent()). This rectangular area
extends from the minimum Z value of this volume until the minimum Z

13.3. SCORING DOSE IN PHANTOM 131

value of the next volume, so that all tracks that are outside it will be
killed. This utility is activated by selecting the user action

/gamos/userAction RTZRLimitsAutoUA
You may argue that too many particles (or too few) are killed with

this automatic definition of limits. You may simply change the dimen-
sions of the volumes placed in the world (adding container volumes made
of air will not change your physics), or you can define the limits yourself
by selecting the user action

/gamos/userAction RTZRLimitsUA
Then you have to write a file named rtzrlimits.lis with the list of values
you want to use. The format of that file should be the following: a set
of lines with three numbers representing the Z value of the plane and
then the X and Y limits. The planes will be extended in Z until the
previously defined Z (for the minimum Z defined the world negative Z
limit will be used).

If you want to change the name of the limits file, you can do it with
the command (remember to define a parameter always before selecting
the user action)

/gamos/setParam RTZRLimitsUA:FileName MY FILENAME

13.3 Scoring dose in phantom

To use a phantom geometry you can use the GAMOS utilities to read
phantom geometries in EGS or GEANT4 formats or build simple phan-
toms with a few user commands. The scoring of the dose in the phantom
volumes can be done using the scorer GmG4PSDoseDeposit and select-
ing as detector the voxels, that are named patient. For example you can
use the following commands:

/gamos/scoring/createMFDetector DoseDet patient
/gamos/scoring/addScorer2MFD DoseScorer GmG4PSDoseDeposit

DoseDet
This is all you need to get on the standard output the dose by event

deposited in each voxel. As explained in the section on Reading phase
spaces, remember that if phase space are used the number of events is
the original number of events that were used to generate the phase space.

In fact, GAMOS gets the ratio of particles written in the phase space
per original event transported through the accelerator and multiplies
this ratio by the number of phase space particles used. This allows to
get the best approximation to the correct number of events when the
phase space is not used fully, or when particles are reused (it is indeed
not the exact number if for example you use only the 10 first particles in
the phase space: the number of events that generated those 10 particles
may be bigger or smaller than the number of events that generated the
following 10 particles, due to statistical fluctuations).

13.3.1 Saving scores in file

You can also store the dose in each voxel in a file, which allows you to
calculate the average dose from several jobs (see dose analysis section).

132 CHAPTER 13. RADIOTHERAPY APPLICATION

The first file is a text file where the dose and dose error in each
voxel are written. To obtain it you just have to add the scorer printer
GmPSPrinter3ddose to your scorer, for example

/gamos/scoring/addPrinter2Scorer PSPrinter3ddose GmPSPrinter3ddose
DoseScorer

The output file is named by default 3ddose.out. You may change it
with the parameter

/gamos/setParam Output:3ddose:FileNameOut MY FILENAME

The format is the same as the 3ddose format used in DOSXYZnrc,
except that the first line contains the number of events:

• Number of voxels in the X, Y and Z directions (e.g. n x, n y, n z)

• Array of voxel boundaries (cm) in the X direction (n x+1 values)

• Array of voxel boundaries (cm) in the Y direction (n y+1 values)

• Array of voxel boundaries (cm) in the Z direction (n z+1 values)

• Array of dose values (Gy/cm3) (n x n y n z values)

• Array of dose relative error values (n x n y n z values)

The second available file is a binary file where the dose and dose
squared in each voxel are written. The binary format allows for a faster
writing and reading and the fact of writing the dose squared instead of
the error serves to calculate in a proper way the error correlations when
the doses from several jobs are added. To obtain it you just have to add
the scorer printer GmPSPrinterSqdose to your scorer, for example

/gamos/scoring/addPrinter2Scorer PSPrinterSqdose GmPSPrinter-
Sqdose DoseScorer

The output file is named by default sqdose.out. You may change it
with the parameter

/gamos/setParam Output:sqdose:FileNameOut MY FILENAME

All variables are of type float and the format is the following:

• Number of events (original number of events used to generate a
phase space file if phase space file is used as primary generator)

• Number of voxels in the X, Y and Z directions (e.g. n x, n y, n z)

• Array of voxel boundaries (cm) in the X direction (n x+1 values)

• Array of voxel boundaries (cm) in the Y direction (n y+1 values)

• Array of voxel boundaries (cm) in the Z direction (n z+1 values)

• Array of dose values (Gy/cm3) (n x n y n z values)

• Array of dose squared values ((Gy/cm3)2) (n x n y n z values)

13.4. ANALYSIS UTILITIES 133

13.3.2 Saving scores in histograms

If you want to store the scores in the phantom in a histogram file, you
can use the scorer printer RTPSPDoseHistos

/gamos/scoring/addPrinter2Scorer PSPrinterHistos
RTPSPDoseHistos DoseScorer

By default the number of bins in the histograms will be equal to the
number of voxels in the phantom (nVoxel) and the histogram limits are -
nVoxel/2 +to nVoxel/2. The user can redefine the number of bins as well
as the minimum and maximum values of the histograms independently
for each of the three dimensions, with the following parameters:

/gamos/setParam RTPSPDoseHistos:Xmin
/gamos/setParam RTPSPDoseHistos:Xmax
/gamos/setParam RTPSPDoseHistos:XNbins

/gamos/setParam RTPSPDoseHistos:Ymin
/gamos/setParam RTPSPDoseHistos:Ymax
/gamos/setParam RTPSPDoseHistos:YNbins

/gamos/setParam RTPSPDoseHistos:Zmin
/gamos/setParam RTPSPDoseHistos:Zmax
/gamos/setParam RTPSPDoseHistos:ZNbins

The histograms limits also define the limits of the voxels that will be
used to fill the histograms: before filling the histograms with the dose
of a given voxel it is checked that the centre of the voxel is inside the
limits.

The names of all these histograms start with RTPSPDoseHistos:
and they are all dumped into the file dose.root/csv.

The following histograms are produced:

• Dose in X direction (”Dose in X”)

• Dose in Y direction (”Dose in Y”)

• Dose in Z direction (”Dose in Z”)

• Dose in XY direction (”Dose in XY”)

• Dose in XZ direction (”Dose in XZ”)

• Dose in YZ direction (”Dose in YZ”)

• Dose of each voxel (”Dose”)

• Integrated dose of each voxel, i.e. all the voxels that have dose
equal to or greater that a given bin fill that bin (”Dose-volume”)

13.4 Analysis utilities

This is a set of utilities that may serve in the analysis of phase space and
dose files, for example to sum phase space or dose files from different
jobs, to get basic information of the file contents, to fill histograms out
of the file or to compare files from two jobs.

All these utilities are under the directory MY GAMOS DIR/analysis.
They are compiled by default with the rest of GAMOS code and then

134 CHAPTER 13. RADIOTHERAPY APPLICATION

they are available as executables as mentioned in the following subsec-
tions.

13.4.1 Summing phase space files

This utility serves to sum phase space files corresponding to different
jobs with the same setup. To use it you have to write a file containing
the list of phase space header files, one file per line, for example

ps.iaea.20000.IAEAheader

ps.iaea.20001.IAEAheader

ps.iaea.20002.IAEAheader

Then you just have to run the executable
sumphsp INPUT FILE LIST NAME OUTPUT FILE NAME

where INPUT FILE LIST NAME is the name of the file containing the
list of files to add and OUTPUT FILE NAME is the name of the output
file that will contain the sum of all the files (two files indeed as usual
for IAEA phase space files: OUTPUT FILE NAME.IAEAheader and
OUTPUT FILE NAME.IAEAphsp).

When running you will see on the screen something similar to this:

Opening phase space contained in ps.iaea.20000.IAEAheader of type IAEA

PARTICLES 225437 NPART_TOT 225437 NPARTORIG_TOT 5000000 RATIO 0.0450874 +- 0.000101661 RATIO_TOT 0.0450874

Opening phase space contained in /scratch/arce/gamos/prod/ps.iaea.20001_25.IAEAheader of type IAEA

PARTICLES 224635 NPART_TOT 450072 NPARTORIG_TOT 10000000 RATIO 0.044927 +- 0.000101455 RATIO_TOT 0.0450072

Opening phase space contained in /scratch/arce/gamos/prod/ps.iaea.20002_25.IAEAheader of type IAEA

PARTICLES 224813 NPART_TOT 674885 NPARTORIG_TOT 15000000 RATIO 0.0449626 +- 0.000101501 RATIO_TOT 0.0449923

* * * * N Particles = 674885

* * * * N Photons = 673804

* * * * N Electrons = 1057

* * * * N Positrons = 24

* * * * N Original Histories = 1.5e+07

For each phase space file after the name of the file comes a line with the
file statistics: number of particles, accumulated number of particles of all
files, accumulated number of original histories, ratio of particles/original
histories +- ratio error, accumulated ratio if particles/original histories.
And at the end the statistics on the total number of particles, photons,
electrons and positrons, and the total number of original histories in all
summed files.

13.4.2 Comparing number of particles per event in two phase
space files

You can obtain information about the particle content of a phase space
file and compare if it is statistically equal to the one from another phase
space file.

If you type
analysePS PHASESPACE FILE NAME

you will get on the screen this information in an output similar to this

READING ps.iaea.20000.IAEAheader

ORIGINAL HISTORIES= 5000000

13.4. ANALYSIS UTILITIES 135

PARTICLES PER EVENT= 0.0450874 +- 9.70776e-05

GAMMAS PER EVENT= 0.0450136 +- 9.69947e-05

ELECTRONS PER EVENT 7.28e-05 +- 3.8159e-06

POSITRONS PER EVENT= 1e-06 +- 4.47214e-07

If you want to compare two files you just have to add a second file
name

analysePS PHASESPACE FILE NAME 1 PHASESPACE FILE NAME 2

and you will get the contents of the first file, the contents of the second
file and the ratio of particles per event of the first file divided by the
second one with the statistical errors included:

READING ps.iaea.20000.IAEAheader

ORIGINAL HISTORIES= 5000000

PARTICLES PER EVENT= 0.0450874 +- 9.70776e-05

GAMMAS PER EVENT= 0.0450136 +- 9.69947e-05

ELECTRONS PER EVENT 7.28e-05 +- 3.8159e-06

POSITRONS PER EVENT= 1e-06 +- 4.47214e-07

READING ps.iaea.20001.IAEAheader

EVENTS= 5000000

PARTICLES PER EVENT= 0.044927 +- 9.68973e-05

GAMMAS PER EVENT= 0.0448562 +- 9.68176e-05

ELECTRONS PER EVENT 6.92e-05 +- 3.72034e-06

POSITRONS PER EVENT= 1.6e-06 +- 5.65686e-07

RATIO PARTICLES PER EVENT= 1.00357 +- 0.00305842

RATIO GAMMAS PER EVENT= 1.00351 +- 0.00306059

RATIO ELECTRONS PER EVENT= 1.05202 +- 0.0789916

RATIO POSITRONS PER EVENT= 0.625 +- 0.356305

13.4.3 Making histograms out of a phase space file

You can make histograms out of the particles contained in a phase space
file by running gamos with the input script that you can find in Radio-
Therapy/analysis/phaseSpace/analysePS/rt.analysePS.in. If you edit it
and change the name of the input phase space file, at /gamos/setParam
RTGeneratorPhaseSpace:FileName , and run

gamos rt.analysePS.in

You will get a file named phaseSpace.root, that contains the same his-
tograms that you get when you run the job to write the phase space file
(see section on Phase space histograms).

13.4.4 Merging ’3ddose’ files

This utility serves to merge dose files in the 3ddose format corresponding
to different jobs with the same setup, and averages the dose in them.
To use it you have to write a file containing the list of 3ddose files, one
file per line, for example

136 CHAPTER 13. RADIOTHERAPY APPLICATION

3ddose.water.20000.out

3ddose.water.20001.out

3ddose.water.20002.out

Then you just have to run the executable
merge3ddose INPUT FILE LIST NAME OUTPUT FILE NAME

where INPUT FILE LIST NAME is the name of the file containing the
list of files to merge and OUTPUT FILE NAME is the name of the
output file that will contain the merging of all the files.

When merging files it will be checked that they correspond to the
same phantom by checking the number of voxels and voxel limits.

13.4.5 Merging ’sqdose’ files

This utility serves to merge dose files in the sqdose format corresponding
to different jobs with the same setup, and averages the in them. To use
it you have to write a file containing the list of sqdose files, one file per
line, for example

sqddose.water.20000.out

sqdose.water.20001.out

sqdose.water.20002.out

Then you just have to run the executable
mergeSqdose INPUT FILE LIST NAME OUTPUT FILE NAME

where INPUT FILE LIST NAME is the name of the file containing the
list of files to merge and OUTPUT FILE NAME is the name of the
output file that will contain the merging of all the files.

When merging files it will be checked that they correspond to the
same phantom by checking the number of voxels and voxel limits.

13.4.6 Making histograms out of a ’sqdose’ file

You can make histograms out of dose information contained in a sqdose
file by running

analyseSqdose SQDOSE FILE NAME
You will get a file named dose analyseSqdose.root, that contains the
same histograms that you get when you run the job to write the dose
file using the scorer printer RTPSPDoseHistos.

Chapter 14

Appendix

14.1 Converting a Geant4 example into a GAMOS
example

Converting a Geant4 example into a GAMOS examples usually requires
only adding a few lines to transform the different simulation components
into plug-in’s. In examples/N02 you can see the official Geant4 example
novice/N02 transformed into a GAMOS example. We will use it to
illustrate the procedure to follow.

The first thing to do is substituting the Geant4 GNUmakefile with
a GAMOS GNUmakefile. You can use the file in this example for any
other example you want to transform, just substitute the line

name := exampleN02

with the name of your example (indeed you can use any name you want,
it will be automatically detected by GAMOS).

Then you have to add a file, that we called src/module.cc where all
the plug-in’s are created. The first line of this file (after the correspond-
ing ’includes’), must be

DEFINE SEAL MODULE

For the detector construction it is only needed to add a line

DEFINE GAMOS GEOMETRY(ExN02DetectorConstruction);

For the physics, in a similar way, we add

DEFINE GAMOS PHYSICS(ExN02PhysicsList);

The primary generator requires some more changes. As you can see,
ExN02PrimaryGeneratorAction constructor receives as argument the
detector construction class, so that it can then ask it for the dimen-
sions of the world. This is not needed in GAMOS because all volumes
are available in any class through the singleton class GmGeometryUtils.
Therefore we have deleted the detector construction argument in the
constructor, and then we have substituted the line

G4double position = -0.5*(myDetector->GetWorldFullLength());

with these

137

138 CHAPTER 14. APPENDIX

G4Box* worldBox = (G4Box*)(GmGeometryUtils::GetInstance()->

GetLogicalVolumes("World")[0]->GetSolid());

G4double position = -0.5*worldBox->GetXHalfLength();

After this in the src/module.cc a line has to be included

DEFINE GAMOS GENERATOR(ExN02PrimaryGeneratorAction);

For the user actions, we have first to transform them into GAMOS
user actions, which requires simply to edit the .hh classes and make them
inherit from GmUserXXXAction, instead of G4UserXXXAction. Then
we have to add the following lines in module.cc

DEFINE GAMOS USER ACTION(ExN02RunAction);

DEFINE GAMOS USER ACTION(ExN02EventAction);

DEFINE GAMOS USER ACTION(ExN02SteppingAction);

It is not needed to convert the sensitive detector into a plug-in, that
could be called in the user command file, because it is explicitly called in
the detector construction class. Indeed, if you want to do it, you should
delete the lines that instantiate it there and then you can write

DEFINE GAMOS SENS DET(ExN02TrackerSD);

The main class, exampleN02.cc, is not needed anymore. We use
the GAMOS main and a macro file, that we may call exampleN02.mac,
with the user commands that select the example components, like the
following one:

/gamos/geometry ExN02DetectorConstruction

/gamos/physicsList ExN02PhysicsList

/gamos/generator ExN02PrimaryGeneratorAction

/gamos/userAction ExN02RunAction

/gamos/userAction ExN02EventAction

/gamos/userAction ExN02SteppingAction

/run/initialize

/run/beamOn 10

You can then run gamos exampleN02.mac and you will get the same results
as if you run the original Geant4 example.

14.2 Creating your plug-in

There are several “factories” in GAMOS that take care of the different
plug-in types. To transform your class into a plug-in you have to follow
the instructions in this section, using the relevant “factory” and class as
indicated in the relevant section of this guide (e.g. GmPhysicsFactory
and G4VUserPhysicsList for a geometry plug-in, GmVerbosityFactory
and GmVerbosityMgr for a verbosity plug-in).

To write a new plug-in of any type follow these steps

14.2. CREATING YOUR PLUG-IN 139

1. Create your class or use one of the existing Geant4 classes. This
class should inherit from the corresponding Geant4 or GAMOS
class:

• G4VUserDetectorConstruction: geometry

• G4VUserPhysicsList: physics list

• G4VUserPrimaryGeneratorAction: primary generator

• GmVGenerDistPosition: primary particles position distribu-
tion

• GmVGenerDistDirection: primary particles direction distri-
bution

• GmVGenerDistEnergy: primary particles energy distribution

• GmVGenerDistTime: primary particles time distribution

• GmVUserAction: user action

• G4VSensitiveDetector: sensitive detector

• GmVDigitizer: hits digitizer

• GmVRecHitBuilder: reconstructed hits builder

• GmVPrimitiveScorer: scorer

• GmVPSPrinter: scorer printer

• GmVFilter: filter

• GmVClassifier: classifier

• GmVVerbosityMgr: verbosity

If you are creating a new class you can use as example one of
the classes in the directory examples/PlugInTemplates, that are
nearly-empty classes that contain the necessary methods that you
have to implement for each plug-in type.

2. Include the SEAL module definition:

#include "PluginManager/ModuleDef.h"

DEFINE_SEAL_MODULE ();

Then you have to include the relevant “factory”, and define your
plug-in

#include "GmCore/GmFactories/include/GmXxxFactory.hh"

DEFINE_SEAL_PLUGIN(GmXxxFactory,MY_CLASS,"MY_PLUGIN_NAME");

Alternatively, if you do not mind that the plug-in name has the
same name as your class, you can use a short notation, instead of
DEFINE SEAL PLUGIN

140 CHAPTER 14. APPENDIX

DEFINE_XXX(MY_CLASS);

where XXX is the type of object you are defining (the name of the
factory, without “Factory”, e.g. from GmGenerDistEnergyFactory,
the “Gm” substituted by “GAMOS”, and the separation of words
with “ ”). For example GAMOS GEOMETRY, GAMOS USER ACTION,
GAMOS GENER DIST POSITION, ... (beware the capitals).

You can add these lines in your class or create a new file with these
lines only (see as example the files called module.cc in almost all
the GAMOS code directories). Remember in any case that you
cannot have two definitions of “DEFINE SEAL MODULE ()” in
the same directory.

3. Once this is done, you can select your geometry with the command:

/gamos/xxx MY PLUGIN NAME

For example, if you have written

DEFINE SEAL PLUGIN (GmGeometryFactory,
MyGeometry, ”MyGeom”);

you can then use

/gamos/geometry MyGeom

to select your geometry

Or if you have written

DEFINE GAMOS GEOMETRY(MyGeometry);

you can tell your job to select your geometry with the command:

/gamos/geometry MyGeometry

NOTE: If you are creating a plug-in in a new directory that you
have created, you have to be sure to have the “plugin” option in the
GNUmakefile, as explained in the section Compiling your new code.

14.3 Managing the input data files

To run an example you will probably need some input data, like for
example the file describing the geometry, the list of isotopes, etc.

You can set the name of your file in your script, but you do not need
to tell the path where to look for it. An environmental variable, called
GAMOS SEARCH PATH contains the list of directories where GAMOS
will look for your file. The directories are separated by a colon, and their
order in this variable reflects the order in which they will be searched.
This variable is set up when you configure GAMOS, and takes a default
value of

.:MY GAMOS DIR/data

You may change this value at your will, but remember not to reset the
GAMOS configuration after that.

14.4. CHECKING THE USAGE OF PARAMETERS 141

14.4 Checking the usage of parameters

Many of the GAMOS classes or your own classes have a different be-
haviour depending on the value of some parameters. You can see many
examples of this throughout this guide.

You have to remember always to set a parameter before you invoke
any code that may use it (we recommend you to set all the parameters at
the beginning of your command file). The parameters are read usually
in the class constructors; therefore, if you set a parameter after the class
has been constructed, it will take no effect and the default value will be
used.

To guarantee that you have done it this way, you will get at the
end of a GAMOS job the information on the usage of parameters. You
will always get a list of the parameters that have not been used in the
code. This is probably an indication that you have mistyped a parameter
name. This list appears at the end of your output and looks similar to
this one:

%%%%% PARAMETERS NOT USED (DEFINED IN SCRIPT BUT NOT USED BY C++ CODE)

%%% MAYBE YOU HAVE MISSPELLED THEM?

PARAMETER: GmGeometryText:FileNam

Other lists are available at user request to get a more detailed infor-
mation. You may get them anywhere in your simulation by using the
command

/gamos/printParametersUsage LEVEL
If LEVEL takes a value >= 0 you will get the same list as above. If
LEVEL takes a value >= 1 you will get a list of parameters that are
using the default value (you may then check if this list contains one of
the parameters whose values you thought you have changed). This list
looks similar to this one:

%%%%% PARAMETERS USING DEFAULT VALUE (DEFINED IN C++ CODE BUT VALUE NOT DEFINED IN SCRIPT)

PARAMETER: Generator:Isotope:FileName

PARAMETER: GmCountTracksUA:FirstEvent

If LEVEL takes a value >= 2 you will get a list of how many times
each parameter has been used. This list looks similar to this one:

%%%%% NUMBER OF TIMES EACH PARAMETER IS USED IN C++ CODE

PARAMETER GmCountTracksUA:EachNEvent TIMES USED TIMES= 1

PARAMETER GmGeometryFromText:FileName TIMES USED TIMES= 1

14.5 Using a parameter in your C++ code

We describe in this section how to create and use a new parameter if
you are creating a new C++ class.

GAMOS provides an utility that allows you to change the value of a
parameter in the input file, together with the line commands, and use

142 CHAPTER 14. APPENDIX

it in any of your classes (even in several of them). There are four types
of parameters: numbers, string, list of numbers, list of strings.

To change the value of a parameter (of any of the four types) in your
input file, you have to use the command

/gamos/setParam MY PARAM NAME MY PARAM VALUE(s)
Then you can use this parameter in your class with a line like this:

G4double value = GmParameterMgr::GetInstance()->

GetNumericValue("MY_PARAM_NAME",DEFAULT_VALUE);

if it is a number, or

G4String value = GmParameterMgr::GetInstance()->

GetStringValue("MY_PARAM_NAME",DEFAULT_VALUE);

if it is a string, or

std::vector<G4double> vdefault;

std::vector<G4double> values = GmParameterMgr::GetInstance()->

GetVNumericValue("MY_PARAM_NAME",vdefault);

if it is a list of numbers, or

std::vector<G4String> vdefault;

std::vector<G4String> values = GmParameterMgr::GetInstance()->

GetVStringValue("MY_PARAM_NAME",vdefault);

if it is a list of strings.

14.5.1 Log files

While running GAMOS the output that appear on your screen as stan-
dard output is also written to a log file, called gamos.log, while the stan-
dard error messages are written to another log filegamos error.log. You
may select another name for the standard output log file by using the
Geant4 command:

/gamos/log/setCoutFile FILE NAME
and you can also change the name of the standard error log file by using
the Geant4 command

/gamos/log/setCerrFile FILE NAME
You may choose to give the tow log files the same name if you want

them to appear together in the same order they appear on your screen.
It is also possible to suppress the writing of any log file by using the

Geant4 file:
/gamos/log/writeFiles 0
Take into account that the above commands start to take effect when

they are read, this means that you may have part of the output written
in a file (the one that appeared before the command) and the rest in
another file (the one that appeared after the command), or, in a similar
way, write part of the output only using the third command in the middle
of your input file.

14.6. IDENTIFYING TOUCHABLES 143

14.6 Identifying touchables

As explained in several points through this guide, you can use the con-
cept of touchable available in GAMOS. We will explain first in a few
lines the concept of touchable in Geant4 and GAMOS:

In Geant4 there are several geometrical objects [7]:

• G4VSolid A solid is a geometrical object that has a shape and
specific values for each of that shape dimension.

• G4LogicalVolume A logical volume contains the volume’s full prop-
erties. It includes the geometrical properties of the solid, and adds
physical characteristics: the material of the volume, whether it
contains any sensitive detector elements, the magnetic field, etc.

• G4VPhysicalVolume A physical volume is a volume placed already
in another volume.

• G4VTouchable A touchable is each copy of a volume. To under-
stand the difference with a physical volume, we put an example:
If you place a volume A in 5 places inside volume B, and place
volume B in 12 places, you will have 5 + 12 physical volumes, each
one with a distinct position and rotation matrix. But you will have
5X12 = 60 individual copies, that is 60 touchables.

To save memory usage the G4VTouchable are instantiated in Geant4
when a track traverses the corresponding volume in space, and they
are immediately deleted when the track leaves. In GAMOS you have
the possibility of accessing any individual touchable whenever you like.
When you need it you can ask GAMOS to create a GmTouchable, which
will have the same characteristics as the corresponding G4VTouchable
that would be created when a track reaches it.

To identify the touchable you want to use, you have to use the fol-
lowing notation:

For example the name CRYSTAL identifies all individual crystals of
your detector that have name “CRYSTAL”, while BLOCK#2/CRYSTAL#1
refers only to the crystal(s) with copy number 1 in block(s) with copy
number 2. RING#3/BLOCK/CRYSTAL#1 refers to all the crystal(s)
with copy number 1 in all the block(s) whatever copy number they have
in the ring(s) that have copy number 3.

If you are writing a new plug-in you can have easy access to the list
of touchables with a given name with the line

GmGeometryUtils::GetInstance()->GetTouchables(touch_name, itExists)

If the touchables do not exist in your geometry you will get a warning
in case itExists is false and an exception if itExists is true.

There is a limitation on the use of touchables: they cannot be used
for assembly volumes, as Geant4 creates internally the physical volumes.

144 CHAPTER 14. APPENDIX

14.7 Using wildcards to get volume names

In many commands described in this guide, you give the name of a log-
ical volume, physical volume or touchable so that GAMOS finds the
corresponding Geant4 object. In case you want to apply your command
to several volumes with similar names, you can use an asterisk that
would mean ’any character’. For example if you have the volumes named
CRYSTAL BGO 1, CRYSTAL BGO 2, CRYSTAL LUYAP 1 and CRYS-
TAL LUYAP 2

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL*
will associate a sensitive detector to the four volumes, while

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL BGO *

will associate a sensitive detector to the two volumes CRYSTAL BGO 1
and CRYSTAL BGO 2, and

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL *1
will associate a sensitive detector to the two volumes CRYSTAL BGO 1
and CRYSTAL LUYAP 1.

14.8 Using particle names

Each particle type in Geant4 is identified by a unique name. No particle
is created by Geant4 unless the user does it explicitly. At any time in
your command file you can ask for a list of created particles with the
command /run/particle/dumpList. If you do this after instantiating the
GAMOS electromagnetic physics list, you will get the following list:

anti_nu_e, chargedgeantino, e+, e-

gamma, geantino, nu_e, opticalphoton

If you use the GAMOS hadronic physics list, you will get the following
list:

B+, B-, B0, Bs0

D+, D-, D0, Ds+

Ds-, GenericIon, He3, J/psi

N(1440)+, N(1440)0, N(1520)+, N(1520)0

N(1535)+, N(1535)0, N(1650)+, N(1650)0

N(1675)+, N(1675)0, N(1680)+, N(1680)0

N(1700)+, N(1700)0, N(1710)+, N(1710)0

N(1720)+, N(1720)0, N(1900)+, N(1900)0

N(1990)+, N(1990)0, N(2090)+, N(2090)0

N(2190)+, N(2190)0, N(2220)+, N(2220)0

N(2250)+, N(2250)0, a0(1450)+, a0(1450)-

a0(1450)0, a0(980)+, a0(980)-, a0(980)0

a1(1260)+, a1(1260)-, a1(1260)0, a2(1320)+

a2(1320)-, a2(1320)0, alpha, anti_B0

anti_Bs0, anti_D0, anti_N(1440)+, anti_N(1440)0

anti_N(1520)+, anti_N(1520)0, anti_N(1535)+, anti_N(1535)0

14.8. USING PARTICLE NAMES 145

anti_N(1650)+, anti_N(1650)0, anti_N(1675)+, anti_N(1675)0

anti_N(1680)+, anti_N(1680)0, anti_N(1700)+, anti_N(1700)0

anti_N(1710)+, anti_N(1710)0, anti_N(1720)+, anti_N(1720)0

anti_N(1900)+, anti_N(1900)0, anti_N(1990)+, anti_N(1990)0

anti_N(2090)+, anti_N(2090)0, anti_N(2190)+, anti_N(2190)0

anti_N(2220)+, anti_N(2220)0, anti_N(2250)+, anti_N(2250)0

anti_b_quark, anti_c_quark, anti_d_quark, anti_dd1_diquark

anti_delta(1600)+, anti_delta(1600)++, anti_delta(1600)-, anti_delta(1600)0

anti_delta(1620)+, anti_delta(1620)++, anti_delta(1620)-, anti_delta(1620)0

anti_delta(1700)+, anti_delta(1700)++, anti_delta(1700)-, anti_delta(1700)0

anti_delta(1900)+, anti_delta(1900)++, anti_delta(1900)-, anti_delta(1900)0

anti_delta(1905)+, anti_delta(1905)++, anti_delta(1905)-, anti_delta(1905)0

anti_delta(1910)+, anti_delta(1910)++, anti_delta(1910)-, anti_delta(1910)0

anti_delta(1920)+, anti_delta(1920)++, anti_delta(1920)-, anti_delta(1920)0

anti_delta(1930)+, anti_delta(1930)++, anti_delta(1930)-, anti_delta(1930)0

anti_delta(1950)+, anti_delta(1950)++, anti_delta(1950)-, anti_delta(1950)0

anti_delta+, anti_delta++, anti_delta-, anti_delta0

anti_k(1460)0, anti_k0_star(1430)0, anti_k1(1270)0, anti_k1(1400)0

anti_k2(1770)0, anti_k2_star(1430)0, anti_k2_star(1980)0, anti_k3_star(1780)0

anti_k_star(1410)0, anti_k_star(1680)0, anti_k_star0, anti_kaon0

anti_lambda, anti_lambda(1405), anti_lambda(1520), anti_lambda(1600)

anti_lambda(1670), anti_lambda(1690), anti_lambda(1800), anti_lambda(1810)

anti_lambda(1820), anti_lambda(1830), anti_lambda(1890), anti_lambda(2100)

anti_lambda(2110), anti_lambda_c+, anti_neutron, anti_nu_e

anti_nu_mu, anti_nu_tau, anti_omega-, anti_omega_c0

anti_proton, anti_s_quark, anti_sd0_diquark, anti_sd1_diquark

anti_sigma(1385)+, anti_sigma(1385)-, anti_sigma(1385)0, anti_sigma(1660)+

anti_sigma(1660)-, anti_sigma(1660)0, anti_sigma(1670)+, anti_sigma(1670)-

anti_sigma(1670)0, anti_sigma(1750)+, anti_sigma(1750)-, anti_sigma(1750)0

anti_sigma(1775)+, anti_sigma(1775)-, anti_sigma(1775)0, anti_sigma(1915)+

anti_sigma(1915)-, anti_sigma(1915)0, anti_sigma(1940)+, anti_sigma(1940)-

anti_sigma(1940)0, anti_sigma(2030)+, anti_sigma(2030)-, anti_sigma(2030)0

anti_sigma+, anti_sigma-, anti_sigma0, anti_sigma_c+

anti_sigma_c++, anti_sigma_c0, anti_ss1_diquark, anti_su0_diquark

anti_su1_diquark, anti_t_quark, anti_u_quark, anti_ud0_diquark

anti_ud1_diquark, anti_uu1_diquark, anti_xi(1530)-, anti_xi(1530)0

anti_xi(1690)-, anti_xi(1690)0, anti_xi(1820)-, anti_xi(1820)0

anti_xi(1950)-, anti_xi(1950)0, anti_xi(2030)-, anti_xi(2030)0

anti_xi-, anti_xi0, anti_xi_c+, anti_xi_c0

b1(1235)+, b1(1235)-, b1(1235)0, b_quark

c_quark, chargedgeantino, d_quark, dd1_diquark

delta(1600)+, delta(1600)++, delta(1600)-, delta(1600)0

delta(1620)+, delta(1620)++, delta(1620)-, delta(1620)0

delta(1700)+, delta(1700)++, delta(1700)-, delta(1700)0

delta(1900)+, delta(1900)++, delta(1900)-, delta(1900)0

delta(1905)+, delta(1905)++, delta(1905)-, delta(1905)0

delta(1910)+, delta(1910)++, delta(1910)-, delta(1910)0

delta(1920)+, delta(1920)++, delta(1920)-, delta(1920)0

delta(1930)+, delta(1930)++, delta(1930)-, delta(1930)0

146 CHAPTER 14. APPENDIX

delta(1950)+, delta(1950)++, delta(1950)-, delta(1950)0

delta+, delta++, delta-, delta0

deuteron, e+, e-, eta

eta(1295), eta(1405), eta(1475), eta2(1645)

eta2(1870), eta_prime, f0(1370), f0(1500)

f0(1710), f0(600), f0(980), f1(1285)

f1(1420), f2(1270), f2(1810), f2(2010)

f2_prime(1525), gamma, geantino, gluon

h1(1170), h1(1380), k(1460)+, k(1460)-

k(1460)0, k0_star(1430)+, k0_star(1430)-, k0_star(1430)0

k1(1270)+, k1(1270)-, k1(1270)0, k1(1400)+

k1(1400)-, k1(1400)0, k2(1770)+, k2(1770)-

k2(1770)0, k2_star(1430)+, k2_star(1430)-, k2_star(1430)0

k2_star(1980)+, k2_star(1980)-, k2_star(1980)0, k3_star(1780)+

k3_star(1780)-, k3_star(1780)0, k_star(1410)+, k_star(1410)-

k_star(1410)0, k_star(1680)+, k_star(1680)-, k_star(1680)0

k_star+, k_star-, k_star0, kaon+

kaon-, kaon0, kaon0L, kaon0S

lambda, lambda(1405), lambda(1520), lambda(1600)

lambda(1670), lambda(1690), lambda(1800), lambda(1810)

lambda(1820), lambda(1830), lambda(1890), lambda(2100)

lambda(2110), lambda_c+, mu+, mu-

neutron, nu_e, nu_mu, nu_tau

omega, omega(1420), omega(1650), omega-

omega3(1670), omega_c0, opticalphoton, phi

phi(1680), phi3(1850), pi(1300)+, pi(1300)-

pi(1300)0, pi+, pi-, pi0

pi2(1670)+, pi2(1670)-, pi2(1670)0, proton

rho(1450)+, rho(1450)-, rho(1450)0, rho(1700)+

rho(1700)-, rho(1700)0, rho+, rho-

rho0, rho3(1690)+, rho3(1690)-, rho3(1690)0

s_quark, sd0_diquark, sd1_diquark, sigma(1385)+

sigma(1385)-, sigma(1385)0, sigma(1660)+, sigma(1660)-

sigma(1660)0, sigma(1670)+, sigma(1670)-, sigma(1670)0

sigma(1750)+, sigma(1750)-, sigma(1750)0, sigma(1775)+

sigma(1775)-, sigma(1775)0, sigma(1915)+, sigma(1915)-

sigma(1915)0, sigma(1940)+, sigma(1940)-, sigma(1940)0

sigma(2030)+, sigma(2030)-, sigma(2030)0, sigma+

sigma-, sigma0, sigma_c+, sigma_c++

sigma_c0, ss1_diquark, su0_diquark, su1_diquark

t_quark, tau+, tau-, triton

u_quark, ud0_diquark, ud1_diquark, uu1_diquark

xi(1530)-, xi(1530)0, xi(1690)-, xi(1690)0

xi(1820)-, xi(1820)0, xi(1950)-, xi(1950)0

xi(2030)-, xi(2030)0, xi-, xi0

xi_c+, xi_c0,

These are the names that should be used in the commands that need
a particle name. If you want to use hadrons, GAMOS also provides the
possibility of grouping them, so that with a single name you can identify

14.8. USING PARTICLE NAMES 147

the whole group. The groups defined are the following:

• lightMeson: Mesons that only contain up and down quarks

pi+, pi-, pi0, eta, eta_prime, kaon+, kaon-, kaon0, kaon0L,

kaon0S, a0(*), a1(*), a2(*), k(*), k1(*), k2(*), k_star(*),

k0_star(*), k2_star(*), k3_star(*), anti_k(*), anti_k0(*),

anti_k1(*), anti_k2(*), anti_k_star(*), anti_k2_star(*),

anti_k3_star(*), b1(*), f0(*), f1(*), f2(*), f2_prime(*),

h1(*), eta(*), eta2(*), phi(*), phi3(*), pi(*), pi2(*),

rho(*), rho3(*)

• charmMeson: Mesons that contain a charm quark

D+, D-, D0, anit_D0, Ds+, Ds-, J/psi

• bottomMeson: Mesons that contain a bottom quark

B+, B-, B0, anti_B0, Bs0, anti_Bs0

• meson All mesons

• lightBaryon: Baryons that only contain up and down quarks

proton, anti_proton, neutron, anti_neutron, N(*), anti_N(*),

delta(*), anti_delta(*)

• strangeBaryon: Baryons that contain a strange quark

lambda, anti_lambda, sigma0, anti_sigma0, sigma+,

anti_sigma+, sigma-, anti_sigma-, xi0, anto_xi0, xi-,

anti_xi-, omega-, anti_omega-, lambda(*), anti_lambda(*),

sigma(*), anti_sigma(*), xi(*), anti_xi(*), omega(*),

omega3(*)

• charmBaryon: Baryons that contain a charm quark

lambda_c+, anti_lambda_c+, sigma_c0, anti_sigma_c0,

sigma_c+, anti_sigma_c+ sigma_c++, anti_sigma_c++, xi_c+,

anti_xi_c+, xi_c0, anti_xi_c0, omeca_c0, anti_omega_c0

• baryon: All baryons

• ion: ions

GenericIon, alpha, He3, deuteron, triton

• ALL: All particles

148 CHAPTER 14. APPENDIX

Bibliography

[1] http://www.cern.ch/geant4

[2] http://geant4.web.cern.ch/geant4/support/userdocuments.shtml

[3] http://seal.cern.ch

[4] http://proj-clhep.web.cern.ch/proj-clhep

[5] http://root.cern.ch/

[6] Penelope - A Code System for Monte Carlo Simulation of Electron
and Photon Transport, Workshop Proceedings Issy-les-Moulineaux,
France, 5−7 November 2001, AEN-NEA

[7] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch02s02.html

[8] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch04.html#sect.Geom.Navig

[9] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch02s06.html

[10] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
PhysicsReferenceManual/html/ch02s05.html

[11] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
PhysicsReferenceManual/html/PhysicsReferenceManual.html

[12] http://www.slac.stanford.edu/comp/physics/geant4/slac physics lists/
G4 Physics Lists.html , http://geant4.web.cern.ch/geant4/physics lists

[13] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/apas08.html#sect.G4MatrDb.NISTCmp

[14] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/Detector/geomSolids.html

[15] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch04s04.html#sect.Hits.G4Multi

[16] http://www.irs.inms.nrc.ca/BEAM/beamhome.html

[17] http://www-nds.iaea.org/phsp/phsp.htmlx

[18] Kawrakow I., Rogers D. W. O., Walters B. R. B. Large efficiency
improvements in BEAMnrc using directional bremsstrahlung split-
ting. Medical physics 2004;31(10):2883-98.

149

