MEM800-007 Chapter 4a

Linear Matrix Inequality Approach

Reference: Linear matrix inequalities in system and control theory, Stephen
Boyd et al. SIAM 1994,

Linear Matrix Inequality (LMI) approach have become a powerful design tool

in almost all areas of control system engineering. The LMI approach has the

following advantages:

« Many control system design specifications and constraints can be
expressed as LMIs.

* TheLMI problems can be solved numerically very efficiently using
Interior-point methods.

» For those problems that analytical solutions are impossible, the LMI
approach often can provide solutions numerically.

LMI

A linear matrix inequality (LMI) has the form

F(X)=F+) xF >0 (4.1)
i=1

where xe R™ isthe variable the symmetric matrices F € R™, i=0,1...,m,

are given.

Positive definite matrix
F(x) >0 meansthat F(x) is positive definite, i.e., u' F(x)u>0 for all
nonzero ue R".

Affine function:
f (X%, X)) = X8 + X8, +....+ X a +b



Ex .0 Lyapunovinequality

A'P+PA<O (4.2)
where Ae R™ isgivenand P=P' isthevariable.
Eqg. (4.2) can be rewritten in the form of (4.1).

Let B,R,....,P, beabasisfor the symmetric nxn matrices (m=n(n+1)/2),
thentake F,=0 and F =—A"P — PA,
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Nonlinear convex inequalities can be converted to LMI form using Schur
complements.

Schur Complenment

Q S
(@ {ST R}>O

if and only if (4.33)
R>0 and Q-SR'S' >0.
Q S
(b) [ST R} >0
if and only if (4.3b)

Q>0 and R-S'Q'S>0.
Proof:



LMI Examples
Ex.1

Z(x)e R™ depends affinely on x, and ||Z(x)|=&[Z(x)].  Then
IZX)|<1 & zZMZT(x)<! ,ie,
| -Z(X)Z" (x)>0

{ TI Z(X)}>O
Z (x) |

Proof: Schur complement (a).



Ex.2
c(xX)e R", P(x)=P"(X)e R™ depends affinely on x. Then
c'(X)P*(X)e(x) <1, P(X)>0

P(x) c(x) -0
c'(x) 1

Proof: Schur complement (b).



Ex.3
P(x) =P (x)e R™ and S(x)e R™ depend affinely on x. Then
Tr (ST ()P (x)S(x)) <1, P(x)>0
& Tr(X)<1, { X ST(X)}>O
S(x)  P(x)

X =XTe RPP
Proof:



Ex.4 Convert the quadratic matrix inequality (Riccati inequality) into an
LMI

The Riccati inequality,

A'P+PA+PBR'B'P+Q<0

where A, B, Q=Q", R=R' >0 aregiven matricesand P =P" isthe

variable,
Is equivalent to the following LMI:

J— T J— —_—

AP-PA-Q PB -0

B'P R

Proof:



Linear Matrix Inequalities

o\°

IMI-LAB DEMO: EXAMPLE 8.1 IN THE 0Old LMT
USER'S MANUAL or IN Chapter 9 of
the new Robust Control Toolbox Manual

o\°

o\°

Author: P. Gahinet
Copyright 1995-2004 The MathWorks, Inc.
SRevision: 1.1.6.1 S

o\° o\°

o\°

load lmidem;

>> who

>> A,B,C

disp (" LMI CONTROL TOOLBOX ') ;

disp(' Khkkkkkkkhkkhhxkhxkhxkk 1) .

disp (" DEMO OF LMI-LAB ") ;

disp (" Specification and manipulation of LMI systems ');
disp (" Example 8.1 of the Tutorial Section');

%)

%{

Given G(S)=C(sl —A)"'B.

Minimize the H-infinity norm of DG(S)D™

Over a set of scaling matrices D with some given structure.

This problem arises in Mu theory (robust stability analysis)
The system of LMIs is:

A'X +XA+C'SC XB
B" X -S

where X is symmetric, S=D'D is symmetric block
diagonal with prescribed structure

Sit

<0, X>0, S>|

Si
2 Sy
S5 S




To specify this LMI system with LMIVAR and LMITERM,
(1) resets the internal varibales used for creating LMIs so

that a new system of LMIs can be created.

[*)
6}

setlmis ([]1);

(2) define the 2 matrix variables X, S
=lmivar (1, [6 1]);

X is a 6x6 full symmetric matrix variable
S=lmivar(1l,[2 0;2 1]);
S is diag{2x2 diagonal block, 2x2 full
symmetric block}

o0 Bd o°

o\°® o\°

help lmivar

%{
(3) specify the terms appearing in each LMI. For
convenience, you can give a name to each LMI with NEWLMI

(optional)

o]
%)

help limterm

ATX + XA+C'SC XB 3

% 1st LMI 0
B X -S

BRL=newlmi;

lmiterm([BRL 1 1 X],1,A,'s"');

Imiterm([BRL 1 1 s],C',C);

Ilmiterm([BRL 1 2 X],1,B);

lmiterm([BRL 2 2 S],-1,1);

% 2nd LMI X>0
Xpos=newlmi ;
Imiterm([-Xpos 1 1 X],1,1);

% 3rd LMI S> 1
Slmi=newlmi;

Imiterm([-S1lmi 1 1 S1,1,1);
Imiterm([S1lmi 1 1 0],1);
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o°

{
(4) get the internal description of this LMI system with

GETLMIS

3}
lmisys=getlmis;

Done! A full description of this LMI system is now stored
in the MATLAB variable LMISYS

%{
You can retrieve various information about the LMI system

you just defined
%}

o

% number of LMIs:
lminbr (1lmisys)

o

% number of matrix wvariables:
matnbr (1lmisys)

o

% variables and terms in each LMI (type g to % exit 1lmiinfo):

Imiinfo (lmisys)
LMI  ORACLE

This is a system of 3 LMI(s) with 2 matrix variables

Do you want information on
(v) matrix variables (1) LMIs (g) quit
?> v
Which variable matrix (enter its index k between 1 and 2) ? 1

X1l is a 6x6 symmetric block diagonal matrix
its (1,1)-block is a full block of size 6

This is a system of 3 LMI with 2 variable matrices

Do you want information on
(v) matrix variables (1) LMIs (g) quit



?> g
It has been a pleasure serving you!
%{
We now call FEASP to solve our system of LMIs

(A'X + XA + C'SC XB )

( ) < 0
( B'X -S )
X > 0
S > I

o
6}

[tmin,xfeas] =feasp (1lmisys) ;

%{
tmin=-1.839011 < 0 : the problem is feasible!
-> there exists a scaling D such that

|[pG(s)D7?| <1

The output XFEAS is a feasible value of the vector of
decision variables (the free entries of X and S).

[«
%)

xfeas

Use DEC2MAT to get the corresponding values of the matrix
variables X and S:

3}
Xf=dec2mat (lmisys,xfeas, X)

Sf=dec2mat (lmisys,xfeas, S)

% the constraints X > 0 and S > I are
% satisfied!
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To verify that the first LMI is satisfied,
(1) evaluate the LMI system for the computed decision

vector XFEAS:

%)

evlmi = evallmi (lmisys,xfeas);

%{

(2) get the values of the left and right-hand sides of the

first LMI with SHOWLMI:
%)

[lhsl,rhsl] =showlmi (evlmi, 1) ;
eig(lhsl-rhsl)
% the first LMI is indeed satisfied.

%{
(3) get the values of the left and right-hand sides of the

second LMI with SHOWLMI:
%}

[lhs2,rhs2] =showlmi (evlmi, 2)

>> eig(rhs2)

%{

(4) get the values of the left and right-hand sides of the
third LMI with SHOWLMI :

%)

[lhs3,rhs3] =showlmi (evlmi, 3)

eig(rhs3(3:4,3:4))

o
6{

12
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Finally, let us check that the H-infinity norm of G(s)
was not less than one from the start. To do this, we can
remove the scaling D by setting S = 2*I and solve the
resulting feasibility problem:

Find X such that

(A'X + XA + C'C  XB )
(

) < 0
( B'X

This new LMI system is derived from the previous one by
setting S = 2*I with SETMVAR:

newsys=setmvar (lmisys, S, 2) ;
>> lmiinfo (newsys)

LMI ORACLE

This is a system of 3 LMI(s) with 1 matrix variables
Do you want information on
(v) matrix variables

(1) LMIs (q) quit
?> g

It has been a pleasure serving you!

o\°

Now call FEASP to solve the modified LMI
% problem:

[tmin,xfeas] =feasp (newsys) ;

These LMI constraints were found infeasible
o
(o]

[}
c)

Infeasible! The H-infinity norm of G(s)
was larger than one
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o\
—_

You can also specify this system with the LMI editor:
>> Ilmiedit

clear
who

load lmidem;
who

demolmi

Imiedit

o\°

{
Here you specify the variables in the upper half of the

window and type the LMIs as MATLAB expressions in the lower
half

To see how this should look 1like, c¢lick "LOAD" and load
the string called "demolmi".

[6 1]
[2 32 1]

DB -S5]=0

vl
(et J [ sove J||Cremn J[_wite J|| [_ooome J | lcear J[ cose ]

o\°
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%{
You can
* save this description in a MATLAB string of your choice

("SAVE")
Click “SAVE” and type demolmi2 as the name of the string

who

demolmi?2

* generate the internal representation "lmisys" of this LMI
system by typing lmisys2 as the name of the LMI system
string and clicking on "CREATE"

>> who

Your wvariables are:

A S ans lmisys?2
B X demolmi C
2727 ehdl demolmi2

* visualize the LMIVAR and LMITERM commands that create
"lmisys" (click on "VIEW COMMANDS")



B Figure 1: LMI Editor

=0

|ﬂmﬁ the | bl Irmiznes |
[ 1 describe the matrix var ... (#] vieww caommands | heln
setimis([]); |
W=lmivari1 [6 110; B
S=lmivar(l [2 002 100 i |
w

(+) describe the LMz a2 MATLAE exp...

{0 wiewy commands | —heln )

Y
[A*d + xS + C*E*C WAE  B*M -5]=10 R |
¥=0
|
==
v
Rl ole o o nfeedki e — b oo ot Fe Bl cors ol lclear a"l I_I:IDSEJ
setlmis([]1);
X=1lmivar(1l,[6 11);
S=1lmivar(l,[2 0;2 1]1);

* write 1n a file this series of commands (click on

5}

Click on "CLOSE" to exit LMIEDIT

16

"WRITE")
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Example 8.2

% EXAMPLE 8.2 IN THE Old LMI USER'S MANUAL
% or IN Chapter 9 of the Robust Control

% Toolbox Manual

A=[-1 -2 1;3 2 1;1 -2 -1];
B=[1;0;1];
Q=[1 -1 0;-1 -3 -12;0 -12 -36];

Consider the optimization problem
Minimize Trace(X) subject to

A'X + XA + XBB'X + Q < O (9-9)

It can be shown that the minimizer X* is simply the
stabilizing solution of the algebraic Riccati equation

A'X + XA + XBB'X + Q =0

This solution can be computed directly with the Riccati
solver care and compared to the minimizer returned by mincx.

From an LMI optimization standpoint, problem (9-9) is
equivalent to the following linear objective minimization
problem:

Minimize Tr (X) subject to
[ A'X+XA+Q XB ] < 0
[ B'X -I 1]

Since Trace(X) is a linear function of the entries of X,
this problem falls within the scope of the mincx solver and
can be numerically solved as follows:

)
{

(1) Define the LMI constraint (9-9) by the
sequence of commands

o
%)

setlmis ([]);
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X = lmivar(l, [3 1])
% variable X, full symmetric

Imiterm([1 1 1 X],1,A,"'s");
lmiterm([1 1 1 0],Q);
lmiterm([1 2 2 0],-1);
Imiterm([1 2 1 X],B',1);

[ A'X+XA+Q XB ]

[ B'X -I ]

o° o°

LMIs = getlmis;

Imiinfo (LMIs)
LMI  ORACLE

This is a system of 1 LMI(s) with 1 matrix variables

Do you want information on
(v) matrix wvariables (1) LMIs (gq) quit

?> g

It has been a pleasure serving you!

% {

(2) Write the objective Trace (X) as c'x where x is the
vector of free entries of X. Since ¢ should select the
diagonal entries of X, it is obtained as the decision vector
corresponding to X = I, that is,

o
6}

c = mat2dec (LMIs,eye(3))

Note that the function defcx provides a more systematic way
of specifying such objectives (see “Specifying c'x
Objectives for mincx” on page 9-37 for details).

(e
%)

help defecx



19

(3) Call mincx to compute the minimizer xopt and the global
minimum copt = c'*xopt of the objective:

o
%)

options = [le-5,0,0,0,0]
[copt,xopt] = mincx(LMIs,c,options)

Here le-5 specifies the desired relative accuracy on copt.
The following trace of the iterative optimization performed

by mincx appears on the screen:

o
%)

c'*xopt

%

Upon termination, mincx reports that the global minimum for
the objective

Trace(X)=c'x is -18.716695 with relative accuracy of at
least 9.5-by-10"-6.

This is the value copt returned by mincx.

o
%)

(4) mincx also returns the optimizing vector of decision
variables xopt.

The corresponding optimal value of the matrix variable X is
given by

%)

Xopt = dec2mat (LMIs,xopt, X)

% {

This result can be compared with the stabilizing Riccati
solution computed

by care:

%)

Xst =
-6.3542e+000 -5.8895e+000 2.2046e+000



-5.8895e+000 -6.2855e+000
2.2046e+000 2.2201e+000

norm (Xopt-Xst)

o\°

help norm

2.2201e+000
-6.0771e+000
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