
University of Puerto Rico  
Mayagüez Campus 

Department of Electrical and Computer Engineering 
 
 
 

 
 
 
 
 

 
Project Final Report 

 
 
 

Prepared for  
 

Manuel A. Jimenez, Ph.D. – Associate Professor  
 
 
 

INEL 4217 
Section 070 

Professor: Manuel A. Jimenez 
 

By 
Group: Position Aware 

 
José A. Figueroa                                         

Omar A. Candelaria                                    
Pedro J. Nieves                                           

Yadiel Lamb                                               
 
 

GPS µTracker Final Report                                                                                   0         

November 21, 2005 



Abstract: 
 

 The GPS µTracker is an electronic device that uses the Global Positioning System 

technology to acquire position coordinates data and analyze it, providing the user with a 

range of data feedback including distance between two points and direction. The device 

has multiple applications, some as simple as finding a car in a parking lot, others as 

needful as an expeditions guide and some as important as surveying. The system is 

developed to be portable, low power and relatively low cost, while providing a high 

efficiency and precision feedback to the user through a simple interface. The GPS 

satellite data is collected through a single chip GPS receiver, the Sony GXB5210, and 

processed using the Atmel AT89C51RC2, a microcontroller which is based in the Intel 

8051 architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          1



Table Of Contents 
 
1. Introduction............................................................................................... 4 
2. Theory ........................................................................................................ 5 

2.1 GPS Introduction ...................................................................................................... 5 
2.2 Direction Calculation ................................................................................................ 5 

3. Discussion................................................................................................... 9 
3.1 Block Diagram.......................................................................................................... 9 
3.2 Power Consumption................................................................................................ 10 
3.3 Timing Analysis...................................................................................................... 13 

3.3.1 Serial Communication ..................................................................................... 14 
3.3.2 LCD Data ......................................................................................................... 15 
3.3.3 Track Button Pressed ....................................................................................... 16 
3.3.4 Set Button Pressed ........................................................................................... 17 

3.4 Memory Map .......................................................................................................... 18 
3.5 Hardware Schematic ............................................................................................... 20 
3.6 Hardware Termination Level.................................................................................. 24 
3.7 Software Plan .......................................................................................................... 25 

3.7.1 General Usage.................................................................................................. 25 
3.7.2 Complete Usage Description ........................................................................... 27 
3.7.3 System Flow Charts ......................................................................................... 34 
3.7.4 General Pseudo Code....................................................................................... 50 
3.7.5 Component Interfacing .................................................................................... 55 

3.8 Software Termination Level ................................................................................... 61 
3.9 Efficiency and Trustworthiness .............................................................................. 62 

4. Part List ................................................................................................... 66 
5. Cost Analysis ........................................................................................... 67 
6. Conclusion ............................................................................................... 68 
7. Future Work............................................................................................ 69 
8. References................................................................................................ 72 
9. User Manual ............................................................................................ 73 
Appendix A:  AT89C51RC2 Datasheet .................................................... 77 
Appendix B:  Sony GXB5210 Datasheet................................................... 77 
Appendix C:  DMC20434 LCD Display Datasheet ................................. 77 
Appendix D:  Dinsmore 1490 Digital Compass Datasheet...................... 77 
Appendix E:  Program Listing .................................................................. 77 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          2



 
List of Illustrations 
 
Figure 1: Cardinal Coordinate Mapping ............................................................................. 7 
Figure 2: Quadrant Calculation........................................................................................... 7 
Figure 3: Destination-Vector Range ................................................................................... 7 
Figure 4: µTracker Block Diagram..................................................................................... 9 
Figure 5: Timing interaction of multiple serial port commands in succession................. 14 
Figure 6: Data output and interaction with LCD display when a button is pressed ......... 15 
Figure 7: Timing interaction of the tracking command operation.................................... 16 
Figure 8: Timing interaction of the set command operation............................................. 17 
Figure 9: AT89C51RC2 Memory Mapping ..................................................................... 18 
Figure 10: µTracker Hardware Schematic........................................................................ 20 
Figure 11: Atmel ISP Circuit for AT89c51RC2 UART Programming ............................ 21 
Figure 12. Prototype.......................................................................................................... 24 
Figure 13: LCD Interface General Utilization .................................................................. 26 
Figure 14: Off Mode Display............................................................................................ 27 
Figure 15: Initializing Display .......................................................................................... 28 
Figure 16: Standby Display .............................................................................................. 29 
Figure 17: Scroll Down Display ....................................................................................... 30 
Figure 18: Scroll Up Display ............................................................................................ 31 
Figure 19: Track Mode Display........................................................................................ 32 
Figure 20: System Initialization Procedure....................................................................... 34 
Figure 21: Sony GXB5210 Initialization Sequence.......................................................... 36 
Figure 22: On State Operating Sequence.......................................................................... 37 
Figure 23: To Stand-By Operating Sequence ................................................................... 39 
Figure 24: Stand-By Operating Sequence......................................................................... 40 
Figure 25: GPS Low Power Mode Switching................................................................... 41 
Figure 26: GPS Power Up Mode Switching..................................................................... 42 
Figure 27: Track Mode Operating Sequence .................................................................... 43 
Figure 28: Destination Direction Calculation Sequence................................................... 45 
Figure 29: General Stage Changing Sequence.................................................................. 46 
Figure 30: GPS Data-Parsing Sequence ........................................................................... 47 
Figure 31: Detailed View of the GPS Data-Parsing Sequence ......................................... 48 
Figure 32: GPS Data-Number Parsing.............................................................................. 49 

 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          3



 
  

1. Introduction  
 
 
 The work was based on a simple idea, to help people find their cars in the 
concrete jungle that are today parking lots. It has become a common problem of our 
present society, and the purpose of the project was to create a device such that would help 
to solve it. Even though the problem was becoming more and more common, no one had 
thought of doing an electronic solution to this problem. However, we saw that it was time 
for such a device to be developed.  
 
 The device would have to be portable, low power, and capable of location 
detection through wireless methods. The system couldn’t also be too complicated since it 
is supposed to attract a general market of users of all types and social classes. In that way, 
the system can’t be too technologically oriented. In the same manner, it couldn’t be 
sensitive to signal interference, since it has to work on different types of environments 
and not in a single, specified and controlled location. The project was later proposed to 
Dr. Manuel Jimenez which understood the uses which the device will have in present day 
society, and approved it. He also suggested the implementation of the Global Positioning 
System (GPS) technology as the method to provide location awareness to the device.  
 
 The main idea for the development and functionality of the device was then 
conceived. The system will work by obtaining the current position coordinates by means 
of the standard latitude and longitude measurements through a GPS signal receiver chip. 
Then the device will provide the user a mean to store this coordinates into memory and 
later be able to compare the current position with the one in memory, providing the user 
with analysis feedback, including distance between the two points and direction. By 
implementing the system in this way, the device would have a wide range of different 
uses, some including expeditions and surveying applications. 
 
 The GPS chip selected was the Sony GXB5210, distributed and provided by 
Synergy, which was interfaced using an Atmel AT89C51RC2 which is based in the Intel 
8051 microcontroller architecture and technology. 
 

GPS µTracker Final Report                                                                          4



 

2. Theory 
 

2.1 GPS Introduction 
 
The Global Positioning System (GPS) is a satellite based navigation system 

offering precision navigation capability. Originally designed for military use, civilian 
access has been permitted to specific parts of the GPS. 

 
Users can expect a position accuracy of 25 m or better in three dimensions.  The 

GPS signal is available 24 hours per day throughout the world and in all weather 
conditions.  The equipment necessary to receive and process GPS signals is affordable 
and reliable and does not require atomic clocks or antenna arrays. 

 
In its most basic terms, GPS determines the position of the user by triangulation.  

By knowing the position of the satellite and the distance from the satellite; combinations 
of satellites can be used to determine the exact position of the receiver. The fundamental 
means for GPS to determine distance is the use of time.  By using accurate time standards 
and by measuring changes in time, distance is computed.  

 
GPS ranging signals are broadcast on two frequencies: L1 (1575.42 MHz) and L2 

(1227.6 MHz) of which the L1 frequency is available for civilian use.  The GPS signal 
consists of a repetitive binary signal that receivers use to determine the time at which the 
code was sent from the satellite, as shown.  The waveform from the satellite is matched 
with an internally generated waveform within the receiver.  The time difference between 
matching waveforms is used to compute the distance from a satellite. 

 
The GPS constellation is composed of 24 satellites (21 active satellites and three 

orbital spares). To calculate a two dimensional position at least three satellites are 
necessary. For a three dimensional position at least 4 satellites are necessary. As the 
number of satellites in view is increased, the location error decreases.  
 
 

2.2 Direction Calculation 
 
 Most of the work involved with GPS is handled internally by the Sony GPS chip. 
What remains to be done is to ask the chip for the destination coordinates and the current 
coordinates and use that information to arrive at the target location.  
 

Essentially what we must do to find the target, is to find the angle between the 
destination vector and the compass orientation. For example, if the destination direction 
is west and the compass orientation (we are looking at that direction) is east, the device 

GPS µTracker Final Report                                                                          5



should specify that we must move backwards to find the location (or turn 180 degrees 
and move forward).  

 
 Our biggest concern is to do this efficiently. The formula to calculate the angle 
between two vectors is given below: 
 








 •
= −

|2||1|
21cos 1

VV
VVangle  

 
 The above formula requires too many computing resources for our application. 
The operation requires a dot product, two magnitudes and a division, not to consider the 
inverse cosine that are very hard to perform with the microcontroller that was chosen for 
our application. The situation can be improved by taking into account that the compass 
direction is a unit vector. As such, the magnitude does not need to be computed.  
 

Instead of using the above formula, we simplified the calculation by taking into 
account that the compass only provides eight directions. To calculate the direction, we 
must map the destination direction to one of the cardinal directions (North, South, East, 
West, North-East, North-West, South-East and South-West). 

  
 Then we compare the compass and destination directions to identify in which 
direction to move. The following formula is used when we have the destination mapped 
to a cardinal direction: 
 

( )( ) 8  mod  8____ +−= dircompassdirdestmovetodir  
 

The above calculation should maintain the destination and compass directions 
between 0 and 7, as to maintain the direction to move within this range. Below is a table 
and diagram that illustrate the code assignment for each cardinal direction. 
 

Direction Code Direction Code 
North 0 North-West 1 
West 2 South-West 3 
South 4 South-East 5 
East 6 North-East 7 

 

GPS µTracker Final Report                                                                          6



 
Figure 1: Cardinal Coordinate Mapping 
 
 We now have to map the destination direction to a cardinal direction. The 
procedure is simple. Below are two diagrams used to better illustrate the procedure. 
 

 
Figure 2: Quadrant Calculation 
 

      
Figure 3: Destination-Vector Range 

 
 

 We can map the destination vector by finding in which quadrant it lies and what is 
the ratio between latitude and longitude. Let’s go over an example to clarify the previous 
statement.  

GPS µTracker Final Report                                                                          7



 Suppose the destination vector is (1.0, -0.1). If we look in the quadrant diagram, 
the quadrant that has positive latitude and a negative longitude is the third quadrant. Then 
we take the ratio between latitude and longitude (absolute values): 
 
 Ratio = 1.0 / 0.1 = 10 
 
 This ratio is greater than 2.41 which is the tangent value at the dividing line 
between the upper 22.5 degrees and the middle 45 degrees. We automatically know it 
must be in the upper 22.5 degrees. Taking the quadrant as 3, the direction must be north. 
Now suppose the user is looking to the south, the calculation would go like this: 
 
           ( )( ) 8  mod  8____ +−= dircompassdirdestmovetodir  
           8mod)8)((__ +−= southnorthmovetodir  
            8mod)8)40((__ +−=movetodir
           southmovetodir == 4__  
 
 This means that the user must turn 180 degrees to find the destination location. A 
better example would be the vector (-1.0, 0.1), which is located in quadrant 1. The ratio is 
again 10, which means that it is in the upper 22.5 degrees in the destination-vector range. 
The direction is south for this quadrant. Now suppose the user is facing the south-west 
direction.  
 
           ( )( ) 8  mod  8____ +−= dircompassdirdestmovetodir  
           8mod)8)_((__ +−= westsouthsouthmovetodir  
            8mod)8)34((__ +−=movetodir
            westnorthmovetodir _1__ ==
 
 If the user is looking south_west he/she must then move straight and to the right 
to find the south.  

 

 

 

 

 

 

 

 

 

 

 

GPS µTracker Final Report                                                                          8



3. Discussion  
  
3.1 Block Diagram 
 

The µtracker hand-held device can be viewed as a combination of 5 sub-system 
blocks. The hearth of the µtracker system is the 8052 microcontroller. The 8052 is in 
constant communication with the GPS and digital compass blocks. The above sub-
systems are used to provide the tracking information that is used for our application. The 
GPS chip is used for the constant transmission of global coordinates whereas the digital 
compass provides the current cardinal coordinate that the user is directed at.  
   

The interface block provides for the human interface with the device. Its main 
components are the LCD display and four push buttons. The 8052 controls the interface 
by providing the data transmission for the LCD and the interrupt handling of the 
pushbuttons.  The battery-pack sub-system provides for the 5V and 3.3V voltage levels 
that are required by the devices.  
 

LC
D

 C
on

tro
l P

or
t P

0.
5-

P
0.

7

Track

 DIR     µTracker       V2.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

Set Location
^

v

8051 Microprocessor GPS Module with Integrated 
Antenna

LC
D

 D
at

a 
P

or
t P

2.
0-

P
2.

7

Ke
yp

ad
 P

or
t

P1
.0

-P
1.

3

Power Line

Pow
er 

Lin
e

D
ig

ita
l C

om
pa

ss
 D

at
a 

Po
rt

P
1.

4-
.P

1.
7

Digital Compass

    
   

    
   

    
    

   
    

   
    

   
    

   
    

   
    

   
    

Po
we

r L
ine

   
    

   
    

 

GPS Control Port P0.0-.P0.2

Serial Communication Port

Battery Pack 

P
ow

er
 L

in
e

 
Figure 4: µTracker Block Diagram 

GPS µTracker Final Report                                                                          9



3.2 Power Consumption 
 

The power consumption of the tracking device is computed with the following 
devices.  The analysis takes into account the minimum and maximum power 
requirements for each of the components.  
 
 
Sony GXB5210 
Operating voltage – 3.1 V – 3.7 V (Selection of 3.3 V) 
Operating current – 50 – 70 mA (50 mA during tracking, 70mA during acquisition) 
Backup Power – 3.3V @ 10 uA 
Max Power – 259mW 
Min Power during tracking – 165 mW 
Min Power during acquisition – 231 mW 
Max Power during standby mode – 0.033 mW 
 
 
 Atmel 80C51 
Operating voltage – 2.7 – 5.5 V (Selection of 3.3 V) 
Operating Current – 9.42 mA @ 11.059 MHz 
Power Consumption normal mode  – 31.09 mW 
Power Consumption idle mode – 27.45 mW  
 
 
LCD 4 x 20  
Operating Voltage – 5 V 
Operating Current – 10mA 
Power Consumption – 50 mW 
 
 
Digital Compass 
Operating Voltage – 5 – 20 V (Selection of 5 V) 
Operating Current – 30 mA 
Power Consumption – 150 mW 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          10



The power consumption is calculated for each operating mode of the device. The 
system provides for four different operating modes: device off, standby, device on with 
track mode off, and device on with track mode on. The power consumption for each 
operating mode is calculated next.  

   
• Device OFF  
      All components are turned off. 

 
Total Power = P Sony GXB5210 + P Intel 8052 + P LCD 4x20 + P Digital Compass  
                     = 0 mW           + 0 mW     + 0 mW     + 0 mW   
 
Total Power = 0 mW 
 

• Standby 
After 15 seconds of inactivity the device is switched to standby mode. This mode 
is only reachable if the device is On with track mode Off. During this mode the 
GPS chip is in standby and the LCD Screen and Digital Compass are switched 
off. 
 
Total Power = P Sony GXB5210 + P Intel 8052   + P LCD 4x20 + P Digital Compass  
                     = 0.033 mW    + 31.09mW + 0 mW     + 0 mW   
 
Total Power = 31.123 mW 
 

• Device On with track mode Off  
The system is on but the position information is updated every minute. The GPS 
chip is in standby until the information is requested by the timer. The Digital 
Compass chip is turned off. 

 
Total Power = P Sony GXB5210 (signal acquisition) + P Intel 8052    + P LCD 4x20 + P Digital Compass  
                     = 231 mW                            + 31.09 mW  + 50 mW   + 0 mW   
 
Total Power = 211.09 mW 
 

• Device On with track mode On  
The system is on and updating the position information every 2 seconds. The GPS 
and Digital Compass chips are on during the operation.  
 
Total Power = P Sony GXB5210 (Tracking Mode) + P Intel 8052   + P LCD 4x20 + P Digital Compass  
                     = 165 mW                          + 31.09 mW + 50 mW   + 150 mW 
 
Total Power = 396.09 mW 

 
 
 
 

GPS µTracker Final Report                                                                          11



The maximum power consumption of the device occurs when the device is set to 
Tack Mode, in which case, every component is on for the tracking operation. Given the 
previous analysis, the maximum power consumption of the device is calculated as 
396.09mW. 

 
The calculation of the approximate running time with batteries is based on the 

maximum power consumption of the components and the battery’s mAh capacity. 
 
 
 Battery - 5 AA Duracell MN1500 (2850mAh) 
  
 Runtime in Track Mode On . 
 Power Comsumption =396.09 mW  
 Aproximate Amperage = 50 + 9.42 + 10 + 30mA = 99.42 mA 
 Time = 2850 mAh / 99.42 mA = 28.66 hours 
 
 Runtime in Track Mode Off. 
 Power Comsumption =211.09 mW  
 Aproximate Amperage  = 50 + 9.42 + 10 mA = 69.42 mA 
 Time = 2850 mAh / 69.42 mA = 41.05 hours 
 
 Runtime in Standby Mode. 
 Power Comsumption =31.123 mW  
 Aproximate Amperage  = 50 +9.42 mA = 59.42 mA  
 Time = 2850 mAh / 59.42mA = 47.96 hours 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          12



3.3 Timing Analysis 
 

The minimum working frequency of the system will be determined by analyzing 
the reaction time requirements for each peripheral. The system consist of: 8052 
microcontroller, Sony GXB5210 single chip GPS receiver, Dinsmore 1490 Digital 
Compass, LCD Display and four push buttons for general input. The LCD Display reacts 
to inputs only and doesn’t send any acknowledge of data received. It is assumed to react 
whiting the specified reaction times for each internal operation.   

 
The digital compass has the timing limitations of a regular water-based compass. 

It provides continuous data feedback, but doesn’t show any significant changes in the 
output in less than 2 seconds. We can conclude that even if the compass needs a 
continuous data request for direction information, it won’t be a limiting factor in the 
timing of the whole system.  

 
 The GXB5210 chip is the only chip that can be considered as a limiting factor in 
the timing analysis of the whole system. The GPS chip can be configured to have a baud 
rate of 4800, 9600, 19200 or 38400. It provides an output of 8 different NMEA standard 
messages with the fastest frequency working at 1Hz each. However, our system will only 
use one of these messages to get all the necessary data. With an output rate of 4800 baud, 
the chip can keep up to 6 of the 8 different output messages with its fastest frequency of 
1Hz. That being know, we’re using the 4800 baud rate as the transmission rate of the 
serial communication of our system, since it is the minimum necessary for it to work and 
it’s the less power consuming option. 
 
 An 11 MHz crystal can be used to generate the appropriate UART frequency of 
8052 microcontroller. Using mode 1 of the serial communication port, the timer TH1 
must be set to 244 for us to be able to set the baud rate of our system to 4800. 
 

The following are the timing diagrams for the serial communication interface, 
LCD data, track and set button operations. 

GPS µTracker Final Report                                                                          13



3.3.1 Serial Communication 
 

 

    Serial Input Port Echo Data Output End

Serial Output Port 
Command Command 

Figure 5: Timing interaction of multiple serial port commands in succession 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          14



3.3.2 LCD Data 
 

 

LCD Data Input  
(D0-D7) 

LCD Input Enable 

 LCD Read /Write 

 LCD Backlight 

LCD Buffer Enable 

Button Input 

Figure 6: Data output and interaction with LCD display when a button is pressed 
 
 
 
 
 

GPS µTracker Final Report                                                                          15



3.3.3 Track Button Pressed 
 
 
Track Button 
 
 
Micro Tx Port 
 
 
 
Micro Rx Port 
 
 
Compass Port 
 
 
LCD Port 
 
 
 
Figure 7: Timing interaction of the tracking command operation 
 
 
 
 
 

GPS µTracker Final Report                                                                          16



3.3.4 Set Button Pressed 
 
 
 
Set Button 
 
 
 
Micro Tx Port 
 
 
Micro Rx Port 
 
 
LCD Port 
 
 
Figure 8: Timing interaction of the set command operation 

GPS µTracker Final Report                                                                          17



3.4 Memory Map 
 
The internal memory of the AT89C51RC2 microcontroller is organized in the following 
manner.     
 
The AT89C51RC2 has the following memory areas: 

• User memory area 16 - 32 KB size 
• ROM bootloader memory 2 KB size 
• Hardware security byte for configuration information and security levels. 
• XAF area for ISP: 

– Boot Status Byte (BSB) 
– Software Boot Vector (SBV) 
– Software Security Byte (SSB) 

Notes:  
1. Refer to (A)T89C51RC2/RB2 or (A)T89C51IC2 datasheets and boot-loader datasheets 
for HSB and XAF description 
2. As boot-loader is in ROM memory, no erase or write action is possible on this area. 

 
Figure 9: AT89C51RC2 Memory Mapping 

GPS µTracker Final Report                                                                                   18         



  

 The code for our application covers both the internal (00h-0FFh) and external 
memory areas (00FFh-0FFFFh). 
 

The internal address space was divided as follows. The 8052 uses address space 
00h to 28h as register bank and bits space. The area from 30h to 7Fh is used to store all 
the programming variables for our application, except for the serial buffering and parsing 
variables that require more address space than available. Address space from 80h to 0FFh 
is reserved on the 8052 for the special function registers.  
 
     The external address space is not completely accessible for user programming. 
The boot-loader ROM area (0F800h-0FFFFh) is used by the FLIP programming tool as 
an In System Programming tool for the UART port programming of the AT89C51RC2 
that was used for the programming of the microcontroller. The serial interface variables 
for the UART data parsing and buffering cover the address space from 03FFFh to 7FFFh.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          19



  

3.5 Hardware Schematic 
 
The general schematic of the system is structured in the following manner.  
 

2.50mA

Voltage

Prof: Manuel Jiménez
Microprocessor Interfacing 30.0mA

50.0mA
5.0V
3.3V

Current

IC3

Part

IC1

IC2

IC3

IC2
IC1

+3.3V

LCD1

INEL 4217

Group: Position Aware

GPS uTracker V2.5

82k

.1uF

82k

.1uF

82k

.1uF

82k

.1uF

1K 1K 1K 1K

10uF

+3.3V

3.3V

4.7k 4.7k

10uF

11.0592MHz

SetTrackUpDown

Reset

Pull-Up Resistors

10uF

10.0mA5.0VLCD1
IC4 5.0V 6.60mA

IC4

IC4

IC4
IC4

IC4

10k

33pF

33pF

10uF

8.7K

+3.3V

IC4

5.0V 20.0mAIC5

+5V

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

RS
R/W
E
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

V
ss

V
cc

V
ee

4x20 LCD

4

6

2 3
1

5

7
8
9

10
11
12
13
14

DMC20481NY

P1.4
P1.5
P1.6
P1.7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
RxD/P3.0
TxD/P3.1
/Int0/P3.2
/Int1/P3.3
T0/P3.4
T1/P3.5
/WR/P3.6
/RD/P3.7
XTAL2
XTAL1
VSS

VCC
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

/EA/VPP
ALE

/PSEN
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

Intel 80C51

9

18
19
20

40

30
29

1
2
3
4
5
6
7
8

39
38
37
36
35
34
33
32

21
22
23
24
25
26
27
28

10

12
13
14
15

11
31

16
17

AT89C51RC2

P1.4
P1.5
P1.6
P1.7

P1.0
P1.1
P1.2
P1.3

P1.3
P1.2
P1.1
P1.0

+5V

P0.5
P0.7

C
4

R
12

+5V

C
3

R
11

+5V

C
2

R
10

+5V

C
1

R
9

+5V

C5

C6

Digital Compas s
C0
C1
C2
C3V

CC
G

N
D 3

4
5
6

1
21490 Digital Compass

+5V

C
7 R

13

R
14

R
15

R
16 R

20

R
21

P0.5
P0.7

C8

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

C9

9 8

5 6

11 10

13 12

R22

IC
5

1.5K

1.5K

GPS Module
TXD0

RXD0
BR1
BR0
/Reset

V
DD

BackUp

1PPSOut

P
wr

/S
ig

G
N

D
R

FG
N

D

1

2
4
5
6

8

9

3

7 10 Sony  GXB5210

0 10 1

R
4

C
10

1 2 3 4

74LS04

Figure 10: µTracker Hardware Schematic 
 

The µtracker schematic shows the final hardware implementation of the tracking 
system. The diagram shows the interface for each of the components that where used for 
our application. A voltage source of 5 volts is required for the LCD and Digital compass. 
Similarly a source of 3.3 volts is required for the GPS and 8052 chips. Port 0 of the 
AT89C51RC2 require external pull up resistors in order to output TTL level signals. All 
other interfacing design-parameters where selected in order to comply with the 
manufacturers datasheets.   

GPS µTracker Final Report                                                                          20



  

 
Figure 11: Atmel ISP Circuit for AT89c51RC2 UART Programming 
 

The programming of the AT89C51RC2 required the Atmel’s recommended ISP 
programming circuit. The programming circuit uses a straight serial cable to 
communicate with the microcontroller via Atmel’s FLIP programming tool. Required 
parts for the circuit were: one MAX232 driver, five 0.1µF capacitor, one 10 µF capacitor 
instead of the 1 µF capacitor that is recommended, four 10 kΩ resistor, one 1 kΩ resistor 
for the discharge of the10 µF capacitor, two 2N3904 NPN transistors for the automatic 
RESET and PSEN signal handling. The final implementation of the programmer added 
three Schmitt trigger inverters for the correction of the programming RESET and 
PSEN signal.      
 
 
 
Switch Button and Reset 
 
 The purpose of the switch button is to toggle the equipment between on and off.  
To realize its function, it only has to disconnect the circuit from the power supply. The 
circuit parameters where taken from Atmel’s ISP programming schematic with a 
capacitor parameter modification from 1µF to 10µF. The Parameter modification was 
made in order to better the reset signal of the microprocessor. The reset signal drives the 
reset of both the 8052 and GPS chips via Schmitt trigger inverters to improve signal 
quality.    

GPS µTracker Final Report                                                                          21



  

Push Buttons 
 
 The device has 4 push buttons among its components: SET, TRACK, UP and 
DOWN. The UP and DOWN buttons are used to move through the stored coordinates. 
The SET button is used to add new locations and the TRACK button is used to find a 
stored location. The push buttons where interfaced with a de-bouncing circuit.  
 






 −=

−
RC

t

finalth eVV 1  

 
Our calculations assume, t VVVVms finalth 5,5.2,68.5 === . Using an 82kΩ resistor we 
can use a capacitor of 0.1µF. The signal is interfaced via Schmitt trigger inverters to 
improve signal quality.    
 

 
Compass 
 

To calculate the direction the user must follow to find its target location, we need 
two types of information: the direction of the target and the direction the user is facing. 
To obtain the direction of the target location, the GSP chip is used. To obtain the 
direction the user is facing a digital compass is used. 
  

The digital compass interface follows the parameters and test schematic that was 
supplied with the datasheet. 
 
 
 
LCD Display 
 
 To interact with the user the device will use the push buttons (for input) and the 
LCD display (for output). The device contains a 4 x 20 LCD display which is appropriate 
for the amount of information we are going to display. 
 
 The given LCD is based the HD44780U standard, which specifies a set of rules 
and commands that most of the character based LCD support. We are only going to use 
some of the capabilities of the LCD component, the necessary to display the information 
to the user. 
 
 The hardware interface to the LCD display is straight forward. The interface for 
the RS and E signals requited the addition of two 4.7kΩ pull up resistors in order to drive 
TTL level signals to the LCD. 
 
 
 
 
 

GPS µTracker Final Report                                                                          22



  

GPS Chip 
 
 The most complex of the device components is the GPS chip. The chip selected 
for this project is the Sony GXB5210 single GPS chip. This chip is a complete 
implementation of a GPS receiver; no external components are needed to make it perform 
its intended function. The final hardware implementation added two LEDs and 1.5kΩ 
resistors two limit the current threw the LEDS. The LEDs provide the appropriate 
feedback in order to debug UART signal errors.    
 
 
11.0592 MHz Crystal 
 
 The crystal interface follows the standard parameters for the 8052 interfacing that 
are specified in the AT89C51RC2 datasheet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          23



  

3.6 Hardware Termination Level 
 

 
The prototype developed in this project has all of the necessary components for it 

to be a functional device. We still wanted more features to be added to the prototype. The 
unit needs to have a backup battery of 3V added to the GPS receiver in order to reduce 
the time for the receiver to triangulate the initial position. The receiver would then be 
able to have in memory all of the almanac data from the last position it received before it 
was turned off.  

 
Another important feature we wanted to add to this prototype is to have the ISP 

programming hardware integrated. By adding this we don’t have to take out the 
microprocessor to have it programmed, the programming is done with out any 
unnecessary handling of the microprocessor. This will reduce the opportunity of 
damaging any of the static sensitive components. 
 
 
 
 

 
Figure 12. Prototype 
 
 
 
 

GPS µTracker Final Report                                                                          24



  

3.7 Software Plan  

 

3.7.1 General Usage 
 

We proceed to describe a typical scenario of the tracking device’s usage. Images 
of the device’s display are provided at the end of this section. The images provide a 
visual description for each state of the process. Note that the format of the display is free 
to change in the near future, but the general functionality of the device will stay the same. 
The following scenario provides a general description of the device operation from the 
user’s point of view. A complete description of the device’s usage is presented in the next 
section.  

 
 We begin our scenario with the device in the off state. The first time the device is 
turned on, it will initialize and the first GPS coordinates would be received. At this stage, 
the device will be displaying a busy message to the user, indicating the device is 
preparing to provide its required functionality. This stage will take a considerable amount 
of time (around 15 seconds), but later queries will be considerably faster (2 seconds). The 
initialization time would be used to setup the UART communication parameters and to 
stabilize the internal signals   
 
 The first coordinates will be stored in memory so that the user does not need to 
press the set button the first time the device is turned on. If the user wants to set a new 
location, he/she will need to press the set button to obtain the new coordinates. Note that 
the device does not need to be turned off; this operation is- only done to increase battery 
life. In the case that device was active prior to the moment of adding a new location; the 
user will have to press the set button to add the current coordinates to the list of tracking 
locations. 
 
  At the time the user wants to find the stored location, she will press the track 
button. The device will present a list of the most recent stored locations (3 at this time) 
and the user will chose the appropriate coordinate using the scroll buttons (up and down) 
and press the track button again to begin the tracking process. The device will begin to 
give directions to the user until the user finds the target location. At this time the user will 
press the track button to deactivate the tracking mechanism. 
 

 

 

 

 

 

 

GPS µTracker Final Report                                                                          25



  

The following figure shows the LCD interface of the device as it switches from each 
stage.  
 

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

45 secs

General 
Utilization 

Display
OFF STATE

INIT STATE

ON STATE

  PS    µTracker  V 1.0

     Initializing ...

 DIR     µTracker       V2.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

Track Button Press

TRACKING STATE

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Any Button Press

 
Figure 13: LCD Interface General Utilization 
 

 

 

 

 

GPS µTracker Final Report                                                                          26



  

3.7.2 Complete Usage Description 
 
 In the previous section, we provided a general description of the device 
functionality. The purpose of this section is to provide a more detailed description, now 
from the point of view of the device itself. Many aspects of the device functionality were 
omitted from the previous section, because they are not really needed in a typical 
scenario. They are important features however and they will be explained here in more 
detail.  
 
 We now proceed to provide the complete description of the device’s functionality, 
with all its features and modes of operation. Once again images of the device’s display 
are provided at the end of this section. The images and written information complement 
to provide a complete description of the device. 
 
 We begin by giving a description of the device itself. The tracking device is 
composed of 6 items: a LCD display, 4 push buttons, 1 switch, an Atmel at89c51 
microcontroller, a SONY GPS chip and a digital compass. The purpose of each of these 
components will be explained when they come up in the device’s operation description.  
The tracking device can be in four states of operation: off, standby, on and track.  
 
 

On Button Switch

             Any ScreenON STATE
Turn Off 
Device

OFF STATE

 
Figure 14: Off Mode Display 

 
When the device is in the off state, all the components are turned off (they are not 

in standby). When the device enters this state, all the stored information is lost. The 
stored coordinates are deleted, so later attempts to find the stored locations will fail. In 
this state the device consumes no power (everything is off), which is the reason of 
providing it, the battery life will be extended if the device is in this state when the user is 
not using it. The system is taken into and out of this state using the switch component. 

GPS µTracker Final Report                                                                          27



  

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

45 secs

OFF STATE

INIT STATE

ON STATE

PS    µTracker  V 1.0

     Initializing ...

Initializing 
Display

 
Figure 15: Initializing Display 
 
 The second mode of operation is standby. In this mode of operation, the 
microcontroller (Atmel at89c51) is in standby, the GPS chip is in low power mode and all 
the other components are off. This mode is entered when the device is on but it has been 
unutilized for 30 seconds or more. The stored coordinates are preserved, the GPS updates 
the coordinates every 10 seconds but the microcontroller does not process them. The 
coordinates are updated regularly to prevent the GPS chip to go into the warm state. 
When the GPS chip enters the warm state, later coordinates queries will last around 30 
seconds, instead of the 2 seconds when the device is in the hot state. 
 

GPS µTracker Final Report                                                                          28



  

30 seconds inactive

ON STATE

Standby
Display

TO-STANDBY 
STATE

STANDBY STATE

2 Seconds

        µTracker  V 1.0

       Standby ...

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

Any Button Press

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

 
Figure 16: Standby Display 

 
If any button is pressed the device will go into the On state. In this mode of 

operation, the microcontroller is on, the LCD display is on, the compass is off and the 
GPS chip is in active state, updating the coordinates every 2 seconds. 

 
The user will be able to interact with the device in the on state, which makes the 

LCD necessary. Note the compass is off in this state because it is not needed. When the 
user presses the track button, the device enters in the last state: the tracking state. In this 
mode of operation all the components are on, including the digital compass. The GPS 
chip will be receiving new coordinates every 2 seconds and the direction will be 
calculated according to direction of the user, which is why the compass is turned on. 

 
Now that we understand every mode of operation, we can go through all the 

functionality of the device and describe each feature in detail. The description provided 
here is general; we state what can be done and how the user will do it. We say which 
device will be used in every action but we don’t say how we are going to interface with 
it. That’s the purpose of a later section: Component Interfacing. 

 

GPS µTracker Final Report                                                                          29



  

 When any of the push buttons is pressed, the user interface is shown. At the press 
of the button, the chip will go into on state and the list of coordinates will be displayed. 
At this screen the scroll buttons will be used to navigate through the stored and the 
current coordinates. When the correct coordinate is selected, the user has the option of 
setting a new coordinate or tracking one of the stored ones.  
 

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Down

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Down

#2    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Down

#3    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Down

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll 
Down

 
Figure 17: Scroll Down Display 
 
 

GPS µTracker Final Report                                                                          30



  

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#3    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#2    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll 
Up

 
Figure 18: Scroll Up Display 
 

When the user presses the set button, the selected coordinate will be replaced by 
the current coordinates. If the user presses the track button, the system will enter tracking 
state and it will track the selected coordinate. Note that if the user is looking at the current 
coordinates or the GPS signal is not present, the Set and Track buttons are disabled. An 
animation is show when the user tries to set or track coordinates when the GPS signal is 
not present.  

 

GPS µTracker Final Report                                                                          31



  

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

 DIR     µTracker       V1.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

Track Button Press

TRACKING STATE

Up button Press

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

Down button Press

 DIR     µTracker       V1.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

TRACKING STATE

TRACKING STATE

Down button Press

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

TRACKING STATE

Up button Press

 DIR     µTracker       V1.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

TRACKING STATE

Track button Press

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Track State

 
Figure 19: Track Mode Display 

 

GPS µTracker Final Report                                                                          32



  

The device provides useful information while in track mode, which means that a 
different user interface is used. This interface shows the direction of the destination 
location, the distance and difference of altitude between the user and the target location.  

 
If the user presses the up button while in track mode, the current coordinates are 

presented. If the user presses the down button the destination coordinates are presented. 
To stop tracking mode, press the Track button and device will go into On state again. 
When the device remains inactive for more than 30 seconds, it will enter standby mode.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          33



  

3.7.3 System Flow Charts 
 

The following section explains the operating flow charts for the operation of the 
µTracker device.  
      

                                                    
Figure 20: System Initialization Procedure 
 
 

GPS µTracker Final Report                                                                          34



  

When the on/off switch is moved to the on position, power is applied to all the 
components. The microcontroller and GPS chip are reset by means of hardware. All the 
system variables are set to default values and the coordinates are set to an approximation 
of the current coordinate. 

  
The IO system is then initialized. The serial port is programmed to give the 

appropriate baud rate and to generate interrupts for transmission and reception of 
characters. The transmission and reception buffers are initialized; and the GPS message 
parser is started.  

 
Timer 0 is initialized to control all the timed events of the uTracker software, like 

animations and the standby count down timer. The ports are programmed for input or 
output (for input a one is written to the pin). The pins that receive the push button inputs 
are set to generate an interrupt when the button is pressed.  

 
The next step is to initialize the LCD display, which requires a predefined 

sequence of command. After the LCD is initialized, the screen is cleared and the 
initialization screen is presented. This screen will be animated until the end of the 
initialization phase. 

 
Finally the GPS chip is initialized. Below is a flowchart of the GPS chip 

initialization sequence, which requires the sending of two commands. The first command 
indicates to the GPS chip that we only need one of its messages, the GPGGA message, 
and that we want it every 2 seconds. Receiving the message every 2 seconds will allow us 
to parse the data before the next message is received. 

 
The second command is used to provide an approximate location. This will allow 

the GPS chip to acquire the GPS signal faster. This is currently set to the Puerto Rico 
coordinates to allow fast reception of the location information. Finally the device waits 
for the GPS chip to receive the commands and goes to the On state. 

 
 

GPS µTracker Final Report                                                                          35



  

 
Figure 21: Sony GXB5210 Initialization Sequence 

GPS µTracker Final Report                                                                          36



  

 
Figure 22: On State Operating Sequence 
 

GPS µTracker Final Report                                                                          37



  

 In the On State, the device provides the user a scrollable menu. In this menu 
he/she is able to check the current coordinates and three stored coordinates. The first time 
the On state is entered, the current coordinates will be displayed. The user can use the Up 
and Down buttons to move the menu up or down respectively.  
 

When the user is looking at the current coordinates, he/she can press the Down 
button to see the first stored coordinate. If he/she presses the Down button a second time, 
the second stored coordinate will be displayed and the same applies for the third 
coordinate, pressing the Down button when looking at the third coordinate, will switch 
the display to the current coordinates menu again.  

 
The functionality of the Up button is similar to the Down button, only that the 

menu scrolls up instead of down. If the Set button is pressed while selecting one of the 
stored coordinates, one of two things can happen.  

 
If the GPS signal is present, the selected coordinate will be set to the current 

coordinates. If the GPS signal is not present, an animation of the GPS signal indicator 
will be displayed. Note that when the user is looking at the current coordinates, the Set 
button does not have any effect. 

 
The Track button is used to go to the Track state, where the current selected 

coordinate will be tracked using the GPS chip and the compass. The functionality of the 
Track button is similar to the Set button. If the GPS signal is not present, the non signal 
animation will be shown and if the user is looking at the current coordinates, the Track 
button has no effect. 

 
We can note at the beginning of the state, the compass is disabled and the standby 

count down timer is started. In this state the compass is not used, it is disabled to reduce 
power consumption. The count down timer will expire in 30 seconds. When any of the 
buttons is pressed the counter is reset. If the interval ends, the GPS chip is put in the To-
Standby state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          38



  

 
Figure 23: To Stand-By Operating Sequence 

 
 
The To-Standby state is a very simple state. The device enters this state 

temporarily before going into the Standby state. If the user presses a button while this 
state is active, the device is switched to the On state. If at the end of a small interval of 
time, the user has not pressed any of the buttons, the system goes to the Standby state. 

 
The main idea behind this state is to allow the user to cancel the Standby state. 

This will prevent the microcontroller and the GPS from going into standby. The state 
translates to the system switching to a less power consuming mode that will take a 
considerably amount of time to start again. A screen is presented to the user, when the 
device is in this state, so she knows the device is going into standby. 

 
 
 
 
 
 
 
 

 

GPS µTracker Final Report                                                                          39



  

 
Figure 24: Stand-By Operating Sequence 

GPS µTracker Final Report                                                                          40



  

 The Standby state is different from the others in that it is not executed 
continuously while the device is in it. The Standby state is interrupted when the 
microcontroller is put in standby and it continues when the user presses any of the push 
buttons.  
 
 When going into Standby mode, a command is sent to the GPS chip to put it into 
low power mode. Below is a flowchart of the process of sending the command to the 
GPS chip. After the command is sent, serial communications are disabled. The parser is 
reset to eliminate any remaining parse data. The parser will start in a clean state when the 
microcontroller is awakened.  
 
 The LCD is disabled, to reduce power consumption. Finally, the microcontroller 
is put into low power mode. From this state it can only exit when a keyboard or external 
interrupt occurs. The device has nothing connected to the external interrupts, which 
means the microcontroller could only be awakened by a push button press. 
 
 When a push button is pressed, the microcontroller receives the keyboard 
interrupt (the keyboard interrupt will be explained in the microcontroller section). At this 
time the microcontroller is awakened and the interrupt is processed. Serial 
communications are again enabled and the GPS chip is awakened. The process to awaken 
the GPS chip is shown below.  
 

It essentially consists of sending a command to the GPS chip, which indicates to 
the GPS chip to calculate the location at every moment. When the GPS chip was put in 
low power mode, the chip calculated the location every 10 seconds, now it calculates it 
every second. 

 
The LCD is enabled and cleared to eliminate previous data. Then the chip is put 

into the On state again. 
 

 
Figure 25: GPS Low Power Mode Switching 

GPS µTracker Final Report                                                                          41



  

 

 
Figure 26: GPS Power Up Mode Switching 

 
 
 

GPS µTracker Final Report                                                                          42



  

 
Figure 27: Track Mode Operating Sequence 

GPS µTracker Final Report                                                                          43



  

 At the beginning of this state, the compass is enabled. This is the only state where 
the compass is enabled, because it is necessary to calculate the direction to move towards 
the destination.  
 
 The direction vector is calculated every time that a new coordinate is received. A 
later section of this document explains this process in greater detail. Essentially we only 
map the destination direction when a new data arrives, but once every cycle we need to 
calculate the direction. This improves performance, because the calculations are only 
done when they are needed. 
 
 If the up button is pressed in this state, the device presents the current coordinates. 
Additional up button presses have no effect when the device is already presenting the 
current coordinates. To return to the track screen the down button must be pressed. In this 
screen if the down button is pressed the destination coordinates are presented. Additional 
down button presses have no effect when the device is already presenting the destination 
coordinates. To return to the track screen the up button must be pressed. 
 
 The set button has no effect in this state; Set button presses are simply ignored. 
When the track button is pressed, the device goes to the On state again. Below is the 
flowchart for the calculate direction subroutine. 
 
 
 
 

GPS µTracker Final Report                                                                          44



  

 
Figure 28: Destination Direction Calculation Sequence 
 
 The first step is to calculate the different between the destination and current 
locations. This will give us the destination vector. The next step is to calculate in which 
quadrant the vector resides and which of the three possible directions (inside a given 
quadrant) it is pointing at. Finally the absolute direction is calculated using the relative 
direction and the quadrant. See the theory section for more details about the functionality 
of each of these subroutines. 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          45



  

 

 
Figure 29: General Stage Changing Sequence 
 
 The preceding procedure is executed each time a change of state occurs. It is 
necessary because it resets many parameters to a default state. Animations and timers are 
reset so they do not conflict with the next state procedure.   
 

The first step is to disable any pending animations, so they do not continue when 
going to the next state. The standby and transition timers are disabled, and are only 
enabled if the next state is the On or To-standby state respectively. The inputs are reset so 
no unhandled input is passed to the next state and the screen is updated to reflect the new 
state GUI. 
 
 

GPS µTracker Final Report                                                                          46



  

 
Figure 30: GPS Data-Parsing Sequence 

 
 For the On, Track, To-Standby and Initialization states, the above procedures are 
done in addition to the specific procedure of each of the states. They are presented here 
instead of presenting them in each of the states flow charts, to simplify the exposition of 
the information in those flow charts. 
 
 Basically the system is always checking the GPS signal and updating the screen. 
The screen is updated regularly but not too fast to prevent flashing of the screen. Any 
enabled animation is updated and presented to the user. Finally the system parses the part 
of the GPS message that has been received. 
 
 The GPS parsing is done incrementally. As each character is received, the parser 
is already parsing and checking the data for errors. This allows the parser to use the time 
between character receptions to process the information. Another approach would be to 
received the complete message and then parse it. But parsing incrementally is much more 
efficient, as it use the processor computing power to the maximum. Below is the 
flowchart of the parsing procedure: 

GPS µTracker Final Report                                                                          47



  

 
Figure 31: Detailed View of the GPS Data-Parsing Sequence 

GPS µTracker Final Report                                                                          48



  

 
The flowchart of the procedure for getting the number values follows: 
 

 
Figure 32: GPS Data-Number Parsing 
 
 
Finally this is the GPGGA message used for reference: 
 
$GPGGA,012041,1800.0000,N,06500.0000,W,2,07,01.2,00101.2,M,039.2,M,04, 
 0000*42 
 
 The parser starts looking for the ‘$’ character. When it is found, the parser knows 
the GPGGA message follows because it is the only enabled message. The GPGGA string 
is extracted and checked to see if this is the GPGGA message. The UTC time is then 
skipped.  
 

Then the latitude is extracted by means of the procedure outlined in the second 
flow chart for obtaining number values. Note the procedure adds all the characters to the 
buffer and then changes them to a number.  

 
 The north indicator is skipped. Now the latitude must be extracted by using the 
same method used for the latitude. The West indicator is skipped. Following is the GPS 
signal indicator. It is skipped because we are using the number of satellites to know if the 
signal is present or not. The number of satellites is then extracted and converted to a 
number. 
 
 Finally the altitude is obtained and the rest of the message is discarded. Note from 
the second flow chart, that the decimal point is read but not added to the buffer. This is 
done to build an integer number, not a floating point number. This means that 18.000000 
will be converted to: 
 
 18.000000 = 18000000 
 
 Using integer math will allow us to obtain better precision in the calculations and 
the calculations will be done faster.  
 

GPS µTracker Final Report                                                                          49



  

3.7.4 General Pseudo Code 
 
 The device operation is controlled by a driving subroutine. This subroutine will 
call the component handling subroutines to do its work. The next section describes the 
code for handling each component; in this section we only explain the general handling 
subroutines. 
 
Program uTracker 
 
    
   // Loop forever 
   While TRUE 
       
      // Check the GPS signal 
      isGPSSignalPresent?(); 
 
 
      // State machine 
      State Machine 
 
          State Init 
           
             ResetDeviceVariables 
             InitIOSubsystem 
             InitLCD 
             InitGPSChip 
 
             Go to the On State 
              
 
          State On 
 
              // Reset the time 
              if( any button_pressed ) 
                 ResetStandbyTimer(); 
              end if 
 
 
              // Move the menu up 
              if( button_up is pressed) 
                 curr_coord = wrapValue(curr_coord - 1); 
              end if 
 
 
              // Move the menu down 
              if( button_down is pressed) 
                 curr_coord = wrapValue(curr_coord + 1); 
              end if 
 
 
              // Set the current coordinates 
              if( button_set is pressed ) 
               
                 if( GPSSignalPresent ) 
                    selected_coord = curr_coord; 
                 else 

GPS µTracker Final Report                                                                          50



  

                    ShowNonSignalAnimation(); 
                 end if 
 
              end if 
 
 
              // Track the coordinates 
              if( button_track is pressed ) 
               
                 if( GPSSignalPresent ) 
                    Enable the compass 
                    Go To the Track State 
                 else 
                    ShowNonSignalAnimation(); 
                 end if 
 
              end if 
 
 
              // If the standby time elapsed 
              if( inactive for 30 seconds ) 
                 Go to To-Standby 
              end if 
 
 
          State Track 
              
             // Check if the destination direction should be calculated 
             if( new_data ) 
                calculate_dest_direction(); 
             end if 
 
 
             // Identify the direction the user must move to 
             find_direction_to_move(); 
 
 
             // Move the menu up 
             if( button_up is pressed and the screen != current coords) 
                move screen up 
             end if 
 
 
             // Move the menu down 
             if( button_down is pressed and screen != dest coords) 
                move screen down 
             end if 
 
 
             // Stop tracking 
             if( button_track is pressed ) 
                Disable the Compass 
                Go to the On state 
             end if 
              
 
          State To-Standby 

GPS µTracker Final Report                                                                          51



  

 
              // Check if a button is pressed 
             if( any button is pressed ) 
                Go to the On state 
             end if 
 
 
             // Transition time elapsed? 
             if( transition time is greather or equal to 2 seconds ) 
                Go to the Standby state 
             end if 
 
 
          State Standby 
 
 
             SetGPSLowPowerMode(); 
             DisableSerialCommunications(); 
             ResetParser(); 
             DisableLCD(); 
             StopMicro(); 
 
             ... Activated by interrupt 
 
             EnableSerialCommunication(); 
             SetGPSActiveMove(); 
             EnableLCD(); 
             Go to the On state 
 
 
          State All 
 
             Parse incomming GPS data 
             Update the screen 
 
      End State Machine 
 
   End While 
 
End Program 
 
 
 
// Maintains the index between (-1) - 3 
Subroutine WrapValue(index, numValues) 
   return ( (index + 1) + numValues) % numValues - 1; 
End Subroutine 
 
 
 
// Calcuate the destination direction 
Subroutine calculate_dest_direction() 
    
   find_quadrant(); 
   find_relative_direction(); 
   calculate_direction(quadrant, direction); 
End subroutine 

GPS µTracker Final Report                                                                          52



  

// Find the quadrant where the destination vector is located 
Subroutine find_quadrant() 
    
   if (latitude is positive and longitude is positive) 
      return quadrant 0; 
   else if(latitude is negative and longitude is positive) 
      return quadrant 1; 
   else if(latitude is negative and longitude is negative) 
      return quadrant 2; 
   else if(latitude is positive and longitude is negative) 
      return quadrant 3; 
   end if 
 
EndSubroutine 
 
 
 
// Find the relative direction 
Subroutine find_relative_direction() 
 
   if( ratio of latitude to longitude > 2.41 ) 
      return 0; 
   else if( ratio of latitude to longitude < 0.41 ) 
      return 2; 
   else  
      return 1; 
   end if 
 
End Subroutine 
 
 
 
Subroutine calculate_direction(quadrant, direction) 
 
   // Longitude > Latitude 
   if( direction = 2 ) 
 
      // West or East 
      if( quadrant = 0 or quadrant = 1) 
         return west; 
      else 
         return east; 
      end if 
 
 
   // Latitude > Longitude 
   else if( direction = 0 ) 
 
      // North or South 
      if( quadrant = 0 or quadrant = 3) 
         return north; 
      else 
         return south; 
      end if 
 
 
 

GPS µTracker Final Report                                                                          53



  

   // Middle 45 degrees 
   else 
      return 1 + quadrant*2; 
   end if 
 
End Subroutine 
 
 
 
// Identify the direction the user must move to 
Subroutine find_direction_to_move() 
 
   return ( (dest_direction - compass_direction) + 8 ) mod 8; 
 
end Subroutine 
 
 

GPS µTracker Final Report                                                                          54



  

3.7.5 Component Interfacing 
 
Switch Button 
 
 The purpose of the switch button is to toggle the equipment between on and off.  
To realize its function, it only has to disconnect the circuit from the power supply. No 
code is necessary to handle this component. 
 
 
Push Buttons 
 
 The device has 4 push buttons among its components: SET, TRACK, UP and 
DOWN. The UP and DOWN buttons are used to move through the stored coordinates. 
The SET button is used to add new locations and the TRACK button is used to find a 
stored location. 
  
 Each push button is connected to a given pin in the microcontroller. When one of 
this buttons is pressed, the microcontroller will raise a keyboard interrupt. The interrupt 
based approach provides many advantages. The first advantage is that all the button 
presses will be reported; polling the inputs does not guarantee that. The second is that our 
code will have better structure; we will handle the state of the device using an event 
driven architecture. Below is the pseudo code for the management of the push buttons.  
 
Subroutine handle_keyboard_interrupt ()  
 

   Read SET button pin and store it in internal memory 
   Read TRACK button pin and store it in internal memory 
   Read UP button pin and store it in internal memory 
   Read DOWN button pin and store it in internal memory 
 
End Subroutine 

 

GPS µTracker Final Report                                                                          55



  

Compass 
 
 To calculate the direction the user must follow to find its target location, we need 
two types of information: the direction of the target and the direction the user is facing. 
To obtain the direction of the target location, the GSP chip is used. To obtain the 
direction the user is facing a digital compass is used.  
 
 The compass used in this device is Dinsmore 1490 Digital Compass. This 
compass does not provide us with measurements at the single degree level. Instead it 
indicate us the direction we are facing: north, south, west, east, north-east, north-west, 
south-east and south-west. This is enough for our purposes, because we do not give 
directions at degree-level either.  
 
 The compass provides us the information in digital format, using 4 output pins. 
We connect it directly into the microcontroller and poll the pins for input each time we 
need them.  As stated in the description section, the compass will be on only when the 
device is in tracking mode. To control the compass we will use a transistor, which will 
connect the power supply to the compass and will be controlled by an output pin of the 
microprocessor. Below is the pseudo code to handle the compass. 
 
Subroutine obtain_compass_direction () 
 
   Read least significant compass pin 
   Read second compass pin 
   Read third compass pin 
   Read most significant compass pin 
 
   Use look table to identify the direction 
   Store it in internal memory 
 
End Subroutine 
 

Subroutine turn_compass_on () 
 
   Write zero to compass control pin 
 
End Subroutine 
 
 
Subroutine turn_compass_off () 
 
   Write one to compass control pin 
 
End Subroutine 

GPS µTracker Final Report                                                                          56



  

LCD Display 
 
 To interact with the user the device will use the push buttons (for input) and the 
LCD display (for output). The device contains a 4 x 20 LCD display which is appropriate 
for the amount of information we are going to display. 
 
 The given LCD is based the HD44780U standard, which specifies a set of rules 
and commands that most of the character based LCD support. We are only going to use 
some of the capabilities of the LCD component, the necessary to display the information 
to the user. 
 
 To display the information to the user we need the following capabilities: 

• We must be able to initialize the LCD. 
• Clear the screen 
• Set the cursor position at a specific location 
• Write a character to the screen 

 
Below is the code necessary to provide the previous functionality. Explanations of 

each code snippet are provided as well.   
 
Subroutine init_LCD() 
 
   send_reset_command(0x30); 
   send_reset_command(0x30); 
   send_reset_command(0x30); 
    
   send_init_command(8 bit bus) 
   send_init_command(4 character display) 
   send_init_command(turn LCD on) 
   send_init_command(turn cursor on) 
   send_init_command(automatic cursor positioning) 
 
End Subroutine 
 
 
Subroutine send_init_command(command code) 
 
   Prepare to send command 
   Set command code 
   Send the command 
   wait_until_command_finishes() 
 
End Subroutine 
 
 
Subroutine wait_until_command_finishes() 
 
   while(not maximum number of iterations and not ready) 
      poll ready flag 
 
End Subroutine 
 

GPS µTracker Final Report                                                                          57



  

 
Subroutine clear_screen() 
 
   Prepare to send command 
   Set clear command code 
   Send the command 
   wait_until_command_finishes() 
 
End Subroutine 
 
 
Subroutine write_character(character) 
 
   Prepare to send command 
   Enable character writing 
   Set the character data 
   Send the command 
   wait_until_command_finishes() 
 
End Subroutine 
 
 
Subroutine set_cursor_position(row, col) 
 
   Prepare to send command 
   Set cursor position code 
   Prepare option flag based on row and column 
   Send the command 
   wait_until_command_finishes() 
 
End Subroutine 
 
 

The previous code snippets refer many times to prepare send command, set 
command code and send command. An example assembly program is shown below. 

 
CLR  EN 
CLR  RS 
MOV  DATA, #38h 
SETB EN 
CLR  EN 
LCALL WAIT_LCD  

 

 The above code clears the EN input, which is necessary to set the command code 
(clear, set cursor position, etc). Then the RS input is clear to indicate this is a command, 
if it were one, then the command code will be a character to print. The command code is 
moved into the input ports of the LCD display, which in this case is an initialization 
command. Then the EN bit is set to load the command into the LCD and finally it is 
again cleared to execute the command. The wait subroutine waits until the command has 
executed. 
  

 

GPS µTracker Final Report                                                                          58



  

GPS Chip 
 
 The most complex of the device components is the GPS chip. The chip selected 
for this project is the Sony GXB5210 single GPS chip. This chip is a complete 
implementation of a GPS receiver; no external components are needed to make it perform 
its intended function.  
 

One of the main aspects of the GXB5210 that influenced in this decision was the 
simplicity of the system, having everything, including antenna, integrated into one single 
low power unit. Our device is going to be hand-held, portable and battery powered. These 
characteristics made the GXB5210 the ideal choice, since it saved space in our system, 
while also having low power consumption.  
 
 The Sony GXB5210 is constructed upon the Sony CXD2951 chip which works 
using a simple ASCII protocol that is ideal for simple systems. This data is transmitted 
using serial communication which works well with the 8052 microprocessor UART serial 
data communication support. 
 
 This device communicates using the serial port. It is based on an ASCII command 
interface. The device receives ASCII messages using the serial port and then it responds 
with the requested information. To interface with this equipment we must be able to send 
characters by the serial port. If we can send individual characters, then the remaining 
functionality can be built based on the basic character sending functionality. 
 
 To send the data we must first configure the serial port. We’ll be configuring the 
serial port to be used in Mode 1, working at a baud rate of 4800 and with 8 data bits. The 
serial mode 1 uses the Timer 1 to set the baud rate, so it must also be configured to 
produce the necessary baud rate. The baud rate of the GPS Module is also configured 
using the second and third bit of Port 0, which must be set to 10b to set the 4800 baud 
rate on the GPS Module. Below is the pseudo code to provide this configuration. 
 
Subroutine configure_serial() 
 
   Set SCON to work in Mode 1 with input and output enable. 
   Set TH1 to generate 4800 baud rate. 
   Set gps_baud to 10. 
   Request port 0 update. 
 
End Subroutine 
 
 

Commands sent to the GPS module through the serial port are ASCII based with 
parameters. All the commands require the system to wait for an echo of the command as 
a confirmation that the command has indeed been received before allowing another 
command to be received. Main command input will be as follows: 

 
Subroutine serial_command(com, param) 
 
   Send command through serial port, one character at a time. 

GPS µTracker Final Report                                                                          59



  

   Wait for command echo before proceeding. 
   If echo is not received in some time, resend command. 
 
End Subroutine 
 
 After configuring the serial port, the next step is to configure the GPS Module 
itself to begin the message output procedure that occurs every second. The commands 
used for the module configuration will be: ‘@NC’ which is going to be used to configure 
the GGA sentence from the National Marine Electronics Association (NMEA) standard 
as the single message outputted from the 8 available, ‘@WLK’ to set the walk mode as 
on and ‘@CD’ which will be used to perform a cold start of the chip allowing the 
beginning of the message outputs. 
Subroutine configure_GPS_module() 
 
   Send command @NC with parameters to set GGA output at 1Hz. 
   Send command @WLK to turn walking mode on. 
   Send command @CD to perform a cold start of the system. 
 
End Subroutine 
 
 
  Other commands that will be used during the system operation will be ‘@PLM’, 
to put the GPS module in a low power mode in which it will generate less output 
messages, and thus making it less power consuming; ‘@SR’ to perform a hot start or a 
warm start after returning from the low power mode and resuming normal tracking, and 
‘@TM’ to get the current time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          60



  

3.8 Software Termination Level 

 
 The device software includes all the main system functionalities. They provide all 
the necessary functions for data acquisition from the GPS receiver chip and the analysis 
algorithms to provide the system with the distance between the two points. Also the 
system provides 3 memory slots to save the selected coordinates and a stand-by mode to 
help lower power consumption. 
 
 A part of the software that is still being implemented is to create a better 
algorithm to calculate the distance and direction between the two points. Because of the 
low accuracy of they GPS receiver chip, software have to be done to generate a better 
accuracy using average calculations and other methods.  
 
 Other software functions may be added to change the user interface and provide 
different functions depending on the application intended for the device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          61



  

 

3.9 Efficiency and Trustworthiness 
 
 In recent years, the aspects of efficiency and reliability in software have declined 
in importance. Many mayor software companies are accustomed to releasing bug fixes 
for their programs. The efficiency factor has declined in importance by the advent of very 
fast micro processors (3GHz >). However, for the embedded market, these aspects are as 
or more important than they were decades ago. 
 
 Embedded applications are used in hospitals, planes and military, for which 
reliability is not an option is a requirement. The failure of any of these systems can cost 
millions of dollars, and more important, they can cost people’s life.  
 

For efficiency, we have to take into account, that these systems contain slow 
microcontrollers. This is done to decrease the cost of the units and to reduce power 
consumption. The more efficient the software is, the slower the microcontroller that can 
be used. In embedded applications, faster software means less cost. 

 
Our project, not being the exception to the rule, was designed with reliability and 

efficiency in mind. Many factors in our application environment can cause the failure of 
the system, which range from simple graphical interface problems to serial 
communication failures. Incorrect handling of errors can cause the system to malfunction 
and incorrect data will be displayed to the user. 

 
As our application has to perform complex calculations (find the direction, 

calculate the distance), it has to be implemented efficiently. The system has to cope with 
many processes at the same time. The GPS data has to be received and parsed, the 
directions and distances have to be calculated, the GUI has to be updated; all of this at the 
same time.  

 
A list is presented below with all the optimizations and measurements taken to 

develop a reliable and efficient system. Each of these measurements is better explained in 
the following paragraphs. Note they are grouped for better comprehension of their 
usability and contribution to the system reliability and efficiency. 
  
 
Measurements 

• Interrupt Handling 
� Give more priority to the serial interrupt 
� Implement serial data buffering 
� Limit quantity of operations to execute inside interrupts 
� Use only one timer for all the timed events 
� Use the keyboard interrupt instead of the external interrupt 

• GPS Data Manipulation 
� Incremental parsing 
� Only process one of the 8 GPS messages 

GPS µTracker Final Report                                                                          62



  

� Set initial coordinates 
� Don’t turn off the GPS chip (put it into low power mode instead) 

• Direction & Distance Calculation 
� Calculate the direction only when new data arrives 
� Calculate the direction efficiently 
� Linear approximation of the distance 

• Data Manipulation 
� Use internal memory whenever possible 
� Use the smallest data types for a given situation 
� Use integers whenever possible 
� Limit the quantity of floating point operations 

• General Optimizations 
� Use macros instead of subroutines 
� Enable compiler optimization 
� Update screen only when necessary 
� Update only the parts of the screen that changed 

 
The microcontroller communicates with the GPS chip by means of a serial 

communication channel. Each time a new character is sent or received an interrupt is 
generated. Is of great importance that all this characters be received. The loss of one of 
these characters will cause the parser to stop processing the current GPS message to 
prevent the presentation of incorrect data to the user. 

 
The first step to prevent this problem is to give the serial interrupt the highest 

priority of all the interrupts. In case a serial interrupt is generated at the same time that a 
keyboard or timer interrupt is generated, the serial interrupt will be handled first. This 
will allow us to receive all the characters of the GPS message.  

 
Additionally, limitation of the amount of operations inside of the interrupt was 

necessary. The problem was the serial interrupt had precedence before any other interrupt 
type, but that does not include itself. In case a serial interrupt was generated before the 
previous was handled, the received character was lost.  

 
The solution was to include only the necessary code to add the character to the 

receive buffer. The processing of the character was delegated to the main process. At the 
beginning of the GPS message reception, the characters were added faster that they could 
be handled, but after the complete message was received, the main process was able to 
catch up with processing. 

 
For all the timed animations, a single hardware timer was used. We could have 

used another timer because the microcontroller had 3 timers. One of them is used for the 
serial communications and one is used for the timed events. Having only one timer 
improved the efficiency of the system, because the number of interrupts is kept to a 
minimum, giving more processor time to handling the general procedures. 

 
The keyboard interrupt extension of the microcontroller was used to handle the 

push buttons. This interrupt is not present in the basic 8051 microcontroller; it is an 

GPS µTracker Final Report                                                                          63



  

extension of the Atmel at89c51. This interrupt is generated when one of the push buttons 
is pressed, which allows us to handle all the button presses. Previously, the external 
interrupt was going to be used for this purpose, but that approach had the problem of not 
reporting a button press when one of the other buttons was already pressed.  

 
When handling the buffered data, we have many options to make the process 

simpler and faster. The first was the GPS chip provided us with very detailed 
information, much for which we does not need to concern about. The approach was to 
only interpret what we needed and discard all the unnecessary information.  

 
The GPS have the capability to output 8 messages, each of which gave the 

information in different formats. Our implementation only uses the GPGGA message, 
which provides the latitude, longitude, altitude and number of satellites. At the beginning 
of the program, the chip is told to output only that message, to simplify the parsing 
process.  

 
When new data arrived, it was put in the buffer, to be later processed. We have 

two approaches here: one was to receive the complete message and then parse it; the 
second was to be parsing the message as it was received. We chose the second; we parse 
the data as it is coming. This allows us to use the time between characters receptions to 
process the data. 

 
To obtain the GPS signal faster, approximate coordinates are given to the chip. 

This allows the GPS system to obtain the signal faster. Additionally, the GPS is never 
turned off when the device is on to prevent the long wait time needed for the first location 
output. The chip is put into standby state, in which it computes the location slowly, but 
does not loose the necessary information for performing fast reception later. 

 
When new data arrives, the destination direction is calculated. This calculation is 

not performed every time because it is a time consuming process (floating point 
operations, etc). The issue of calculating the direction efficiently is better explained in the 
theory section, here we only give a brief summary. 

 
Using traditional methods, to find the angle between the destination direction and 

the user orientation, a considerably amount of floating operations would be needed. The 
microcontroller we are using is based on an 8-bit architecture. The handling of data types 
with greater sizes is emulated by software. 

 
The emulation of a floating point number required first the emulation of a 4 byte 

integer data type and above that, the emulation of a floating point data type. Using 
floating point math incurs a performance penalty, but is necessary for our application. 
The method that we used reduced the number of these operations.  

 
The previous discussion only talks about the direction calculation, but the distance 

also has to be calculated. Again, the traditional methods are too time consuming. The 
distance calculation between a pair of latitude and longitude required the use of the 

GPS µTracker Final Report                                                                          64



  

spherical coordinate system. The distance is calculated by using the cosine and sine 
functions which are too expensive to make in the microcontroller. 

A solution could be to use a lookup table that contains the values of these 
functions, but that would need 360 floating point entries for each of the tables, giving a 
total of 2880 bytes, too much for a microcontroller. What we did was to perform a linear 
approximation of the distance. When using this linear approximation for distances of 
around 10,000(the maximum for our system), the error ranged between 0.1% - 5%. 

 
As the microcontroller is based on an 8-bit architecture, we tried to maintain the 

size of the device variables to the minimum possible. Most variables are in the 1 byte - 2 
byte range, which are efficiently handled. 4 bytes data types were only necessary for 
storing coordinates.  

 
With the exception of the buffers, all the variables are in the 128 bytes of internal 

memory, which the microcontroller handles faster than the additional 1024 of external 
memory. The last data type optimization was to change most of the floating point 
operations to integer operations, which gave us performance gains and better precision.  

 
Finally a number of general optimizations were applied to the code. We used 

macros for single statements functions. The macros provided us with a way to better 
organize the code without incurring in a performance penalty. Compiler general 
optimizations were turned, so the overhead of expression calculation was keep to a 
minimum. 

 
The screen was only updated when necessary. This prevented the flashing that 

occurs when the screen is changing to fast and provided a performance gain. 
Additionally, only parts of the screen that changed were updated. This is done to provide 
a smoother display and again to obtain better performance. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          65



  

 
 

4. Part List 
 
Part List Quantity 
AT89C51RC2-3CSIM Intel 8052 Microprocessor 1 
GPS Single Chip Module With Integrated Antenna  
(Sony GXB5210) 1 

Push Button 5 
4 x 20 LCD Display DMC20434 1 
Dinsmore 1490 Digital Compass 1 
3.3 V Voltage Regulator 1 
5.0 V Voltage Regulator 1 
Quad Inverting Three State Gate 1 
74LS14 Inverting Schmitt Trigger 1 
82 kΩ Resistor 4 
4.7 kΩ Resistor 2 
1 kΩ Resistor 4 
8.7 kΩ Resistor 1 
1.5 kΩ Resistor 2 
82 kΩ Resistor 4 
10k Ω Resistor 4 
10 µF Capacitor 3 
0.1 µF Capacitor 4 
33 pF Capacitor 2 
11.05982 Mhz Clock 1 
LED  7 
Connector FFC/FPC 1MM 10POS VERT ZIF 1 
Flat Flex Cable 4” 4” 
Battery Holder 1 
AA Duracell MN1500  (2850 mAh)   5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          66



  

 
 
 

5. Cost Analysis 
 
Part  Unit price Bulk price Minimum quantity 
AT89C51RC2-3CSIM 8052 microprocessor  $8.46 $3.67 1000 
Dinsmore 1490 Digital Compass $15.95 $9.85 1000 
Sony GXB5210 Single Chip GPS $49.72 $47.60 100 
DMC20434 LCD Display $35.52 $20.21 500 
Push Buttons (100g Operating Force) $0.21 $0.19 100 
Resistors $1.00 $0.25 1000 
Capacitors $0.15 $0.05 100 
Battery Holder $0.93 $0.42 100 
LM317T Adjustable Voltage Regulator (x2) $0.83 $0.52 500 
LM7805 5.0V Voltage Regulator $0.25 $0.17 500 
CD74HC125E Three State Gate $0.72 $0.2394 1000 
74LS14DR Inverting Schmitt Trigger $0.55 $0.154 1000 
Connector FFC/FPC 1MM 10POS VERT ZIF $1.84 $0.64421 5000 
Flat Flex Cable 4” $3.35 $3.35  
Totals: $119.48 $87.32  
 
  
Note: Bulk prices are expected to be lower at final version production because of custom 
developed ICs and industry special prices. 
 
 
 The analysis shows that the product has a marketable production price. The most 
expensive parts of the system are the GPS single chip module and the LCD display. We 
believe that these parts can get lower prices when bought for mass production and that 
they can be easy acquired from distributors, maybe with the possibility of supply 
contracts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          67



  

6. Conclusion 
  
 
 

After all the analysis was done and the system requirements were all considered, 
the final result is a design that has succeeded in satisfying all the expected needs that the 
device was required to reach our proposed goals. The system uses the Global Positioning 
System effectively to analyze current position, and the software programming stores 
these values in memory which are later compared and present valuable information to the 
user, using simple but direct algorithms that manage to provide the constant feedback that 
the user will expect in using a system like this, while using a low power microcontroller, 
like the AT89C51RC2. 

 
 Specific hardware design choices were done to allow the system have a 

configurable power management options that are switched through the working cycle of 
the device. Also, because of the GPS technology properties, the system is free of 
interference while working outdoors, and since the position information is calculated 
using the GPS satellites, the system can be considered to be independent of location. 
Finally, the user interface of the system was done to be as simple as possible, and thus, 
making the device easy to understand and use, which allows it to have diverse market 
options for a wide range of different customers. 

 
 The design issues that still need some consideration are only a few. The most 
important issue is the accuracy of the GPS chip while getting the current location. The 
chip does a good job getting the current location with a margin of 20 meters. However, 
for some applications this is not enough, but can be corrected using mean value 
algorithms and approximations. Also a more precise calibration of the digital compass 
can be done to allow the system to have a higher and more exact direction calculation. 
 
 We understand that this device has a wide range of uses in different areas of work 
and that it also can be integrated to be part of a larger system to perform a more specific 
task. This may be only the first prototype of a device that will ultimately have a wide 
range of applications in society. 
 
 
 

GPS µTracker Final Report                                                                          68



  

 

7. Future Work 
 

The GPS system allows us to implement a great variety of applications. For this 
project, the original view was a little constrained. The idea was to use the device to help 
people find their car in the parking lot. After some thought, we realized that our system 
had many more applications. These applications ranged from helping people lost in the 
forest, to helping you to find your friends location. 
 
 At the end of the semester we finished the development of a device that performs 
its original functionality; it will help you to find your car, not at the precision we wanted, 
but enough to be usable. In the process we have many complications that prevented us to 
add features to the system that were not in the original specification. But the ideas are 
exposed here, so later groups can implement them for their projects. 
 
 
Ideas 
 

• Hardware 
� Use an analog compass. 
� Use an inclination sensor. 
� Provide the microcontroller programming circuit in the device. 

• Power Management 
� Control the speed of the microcontroller 
� Control the contrast of the LCD 
� Provide a backup battery for the GPS chip 

• Additional Functionality 
� Provide a better user interface 
� Provide more detail about the GPS signal 
� Provide an atomic clock 
� Use the counter extension for timed events management  

• Flash Memory 
� Store more coordinates 
� Store the name of the coordinate’s location 
� Caching the last coordinate to sent to the chip at startup 

• Bluetooth & USB 
� Interchange locations with other devices 
� Upload new locations taken from other devices and lookup them in the  

map 
� Download new locations 

 
 
 
 

GPS µTracker Final Report                                                                          69



  

When we found the digital compass, the idea of having the direction given in digital 
format was simple. When we were making the device we found this was not completely 
true. The problem was the compass is not very precise and assigns more range to some 
cardinal directions (North occupies 65% of the top two quadrants).  

 
 A better approach will be to use an analog compass, which will give use better 
precision and will allow us to select the direction appropriately.  Additionally, as the 
compass becomes imprecise when the inclination is greater than 25 degrees, we could use 
an inclination sensor to detect when we need to modify the input data to decrease the 
error in the direction information. 
 
 We also wanted to include the programming circuit inside the device, so the 
programming and testing of the system became easier. What is currently done is to 
program the chip then take it out of the programming circuit and put it in the device’s 
circuit, which delays the testing procedure. Later generations could make the circuit in 
place. 
 
 Another area that could be improved is power management. The system is 
portable, which means it should run on batteries and has to consume the minimum 
amount of power. We have many ideas in this respect, of which the first one is to make a 
backup circuit for the GPS chip.  
 

The chip has the ability of preserving memory when a little amount of voltage is 
applied to one of its pins. If it preserves the memory when power is not applied to it, we 
could turn it off in the standby mode. Remember, we don’t do this right now because the 
chip is slow acquiring the signal the first time. But if it has the data already in memory, it 
will be faster acquiring the signal after coming out of standby. 

 
The second idea is to provide the user a mechanism that she could use to control 

the contrast of the LCD, which is one of the devices that consume more power. The third 
would be to control the speed of the microprocessor. The Atmel at89c51 has the 
capability of reducing its frequency of operation without interfering with the serial 
communication speed. We could use the 11.059MHZ crystal to provide the necessary 
baud rate and internally put the micro to run at a slower frequency. 

 
For production of the device we think a better user interface is needed. Not 

something at the level of cell phones but something better than we have now. We see a 
user interface with more animations, a better menu and more options. We also want to 
display more information about the GPS signal. This information could include the 
quality of the signal, the speed at which the user is moving and the current time. 

 
The topic of time is very important, because with GPS we have an atomic clock at 

our disposition. The idea is to update the clock based on the GPS data. When the signal is 
not present we could use the internal timer to update the clock. When the GPs signal is 
acquired again, the system will then update the clock to conform to the new GPS data. 

 

GPS µTracker Final Report                                                                          70



  

The microcontroller we use, have for extension an array of counters that can be 
used to count the number of overflows of the timer 0. This allows us to use these counters 
instead of the software timers that are currently used to control timed events. With this 
measure we can provide the system with a greater degree of precision than it has right 
now. 

 
The microcontroller also allows us to write to flash memory. This as being a 

persistent are of storage provides us with a way to store coordinates for later use. The 
idea is to store hundreds of coordinates and then select the ones we want and put them in 
internal memory. In addition the names of the locations could be stored with the 
coordinates. For example, we could give the UPRM name to the UPRM coordinates.   

 
The uTracker does not provide a mechanism to add a keyboard to it. So a PC will 

be used to download the information to the device by means of a USB port. The user 
could go to a database of coordinates in the internet and download the ones she wants, 
and then use the device to track them. The process can also be reversed. If the system 
becomes Bluetooth enabled, coordinates can be shared among the devices. Later, the user 
could upload the new coordinates and use the PC to look them in a map. 

 
Finally the chip will regularly write the current coordinates to flash memory. 

When the device is turned on it could check the stored coordinates and use them for the 
first approximation instead of using the predefined ones. 
 
 
 
 
 
 
 
 
 
 
 
 

GPS µTracker Final Report                                                                          71



  

8. References 
 
1490 Digital Compass. Images SI, Inc. 2005. <http://www.imagesco.com/articles/1490/ 

01.html>. 
 

Atmel Corporation. “AT89C51RC2 Datasheet.” Atmel Corporation AT89C51RC2  
Product Card. Atmel Corporation. 2005. <http://www.atmel.com/dyn/ 
products/product_card.asp?family_id=604&family_name=8051+Architecture&pa
rt_id=2854>. 

 
Atmel Corporation. “C51 API Program Examples.” Atmel Corporation AT89C51RC2  

Product Card. Atmel Corporation. 2005. <http://www.atmel.com/dyn/ 
products/product_card.asp?family_id=604&family_name=8051+Architecture&pa
rt_id=2854>. 

 
Atmel Corporation. “FLIP 2.4.4 for Windows.” Flip. 2005. <http://www.atmel.com/ 

dyn/products/product_card.asp?family_id=604&family_name=8051+Architecture
&part_id=2854>. 

 
Atmel Corporation. “Hardware Interface Connection Examples for C51 MCU.” Atmel 

Corporation AT89C51RC2 Product Card. Atmel Corporation. 2005. 
<http://www.atmel.com/dyn/products/product_card.asp?family_id=604&family_n
ame=8051+Architecture&part_id=2854>. 

 
EdSim51, The 8051 Simulator for Lecturers and Students. NyCelt LLC. 2005. 

<http://www.edsim51.com/>. 
 

How to control a HD44780-based Character-LCD. Peter Ouwenhand. 22 Jan. 2005. 
 < http://home.iae.nl/users/pouweha/lcd/lcd.shtml>. 
 
Synergy Systems LLC. “SONY GXB5210 GPS RECEIVER DATA.” Board Level GPS 

Products. 2005. < http://www.synergy-ps.com/SONY%20GXB5210%20GPS%20 
Receiver%20Data.pdf>. 

 
The 8052 Online Reference. Vault Information Services LLC. 14 Sept. 2005. 
 <http://www.8052.com/>. 
 
Vahid, Givargis. Embedded Systems Design: A Unified Hardware/Software Introduction. 

John Wiley & Sons, 2002. 
 

GPS µTracker Final Report                                                                          72

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3445
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3445
http://www.8052.com/
http://www.cs.ucr.edu/~vahid


  

9. User Manual 
 
A. Device Components: 

 

Power Switch 

Display Screen 

Up / Down Buttons 

Set Button 

Track Button 

Battery Socket 

These are the main components of the µTracker with their functions: 
 

1. coordinate screens. The device supports a total of 3 different coordinates that 
Display screen: Is the only output display of the system. Presents the On State 
and Track State screens as well as other information. 

 
2. Push Buttons: 

a) Up / Down Buttons: Scroll through the different screens in the On State 
and Track State. 

b) Set Button: Used only in On State. Stores current position coordinates in 
selected memory location. 

c) Track Button: Toggles between On State and Track State. Selects stored 
position coordinates to track. 

 
3. Power Switch: Turns device on or off. 
 

GPS µTracker Final Report                                                                          73



  

4. Battery Socket: Stores batteries. The device requires 5 AA batteries to work. 
Batteries not included. 

 
B. Getting Started: 
 
 To turn on the GPS µTracker, place 5 AA batteries in the battery socket and use 
the power switch. After the device is turned on, the start up screen will be shown on the 
display. Please allow at least 5 seconds while the device initializes.  
 

INIT STATE

  PS    µTracker  V 1.0

     Initializing ...

 
 
  
 After the initializing is done, the device will enter to the On State and will display 
the initial approximation coordinates. These coordinates are latitude 18ºN, longitude 
67ºW and altitude 10 meters. These values are an initial approximation of the current 
coordinates and are set according to the coordinates of Puerto Rico and its surrounding 
areas.  
 

   

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

 
 
  

The device will now automatically start to connect with the Global Positioning 
System satellites and try to obtain its current location coordinates. We suggest that the 
device is used outside to allow a better communication with the GPS satellites. While the 
device is still looking for connection an ‘X’ character will appear at the bottom right 
location of the screen. After the device has acquired connection, the character will change 
from an ‘X’ into a number and the current coordinates will be displayed. This number 
informs the number of satellites to which the system is currently connected. The device 
takes an average time of one to three minutes to connect. 
 
C. On State: 
 
 After the device is connected, it’s ready to save and track coordinates. To save 
coordinates, the device must be in On State. From the current coordinates screen, the Up 
and Down buttons are used to scroll through memory can be stored into different 
locations to later be tracked.  
 

GPS µTracker Final Report                                                                          74



  

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#3    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#2    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

#1    µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll Up

CURR  µTracker  V 1.0
LATITUDE : 18.000000
LONGITUDE : 67.000000
ALTITUDE : 10.000  x

ON STATE

Scroll 
Up

 
 To save the current coordinates into a memory location, press the Up or Down 
buttons to scroll screens to the screen of the desired memory location. The number of the 
memory location is shown in the upper left corner of the screen. The number ranges from 
1 to 3, and a special case where the letters “CURR” are displayed, showing that it’s the 
current coordinates screen.  
 After the desired location is selected, press the Set button to save the current 
coordinates into that location. The screen will be automatically refresh and show the 
coordinates stored. The Up and Down buttons can now be used to select another screen 
and store the coordinates into another location or to return to the current coordinates 
screen. 
 To track a stored coordinate, scroll through the memory locations screen until the 
display screen shows the location and values of the desired coordinates to be tracked. 
Press the Track button to select the stored coordinate and set the system to Track State. 
 
D. Track State: 
 
 When the device enters into Track State, the track screen is shown in the display 
screen. The track screen displays the information obtained from the analysis and 
comparison of the current coordinate of the device, obtained from the GPS satellites, and 
the coordinate stored in memory. In the bottom right part of the screen, below the letters 
“ALT”, the difference in altitude is shown in meters. In the center of the screen, below 
the letters “DIST”, the linear distance between the two coordinates is displayed in meters. 
In the bottom left part of the screen, below letters “DIR”, one of eight arrows is 
displayed. This arrow points to the direction where the tracking coordinate is located with 

GPS µTracker Final Report                                                                          75



  

respect of top of the device. The arrow displayed will change as the device is rotated 
horizontally. 
 

                     

 DIR     µTracker       V1.0
     ^       DIST         ALT
  <       >     #### m            ####m 
       v

TRACKING STATE

 
 
 From the tracking screen, the Up and Down button can be used to scroll between 
screens accessible in the Track State. These screens are the track screen, the current 
coordinate screen and the tracked coordinate screen. The tracked coordinate screen 
corresponds to the screen of the selected memory location to be tracked in On State. 
 If the Up button is pressed while in the track screen, the display screen will 
change to show the current coordinate screen. To return to the track screen while in the 
current coordinate screen, the Down button must be pressed.  
 If the Down button is pressed while in the track screen, the display screen will 
change to show the tracked coordinate screen. To return to the track screen while in the 
tracked coordinate screen, the Up button must be pressed.  
 If the Track button is pressed, the system will toggle back to On State, where it 
will be possible to store new coordinates in memory locations or track another coordinate 
from a different memory location. 
 While in Track State, the Set button is disabled. 
 
E. Stand-by Mode: 
 
 The µTracker features a power saving stand-by mode to prevent unnecessary 
battery power consume while the system is left with the power on and unattended. This 
mode is only accessible when the system is in On State and it is toggled automatically by 
the system.  
 If the device is left in the On State for more than 30 seconds without receiving 
any input from the user, the system will display the stand-by screen to announce that it is 
about to enter to the stand-by mode. This screen is displayed for 2 seconds and then the 
display screen is turned off, and internal system activity is reduced. The device returns to 
the On State when it detects that a button has been pressed. 
 

 
 
 

GPS µTracker Final Report                                                                          76



 

GPS µTracker Final Report                                                                          

 

77

 
 

Appendix A:  AT89C51RC2 Datasheet 
 

Note: Files found inside project CD.  

 

Appendix B:  Sony GXB5210 Datasheet 
 

Note: Files found inside project CD.  

 

Appendix C:  DMC20434 LCD Display Datasheet 
 

Note: Files found inside project CD.  

 
 

Appendix D:  Dinsmore 1490 Digital Compass Datasheet 
 

Note: Files found inside project CD.  

 
 

Appendix E:  Program Listing 
 

Note: Files found inside project CD.  

 


	1. Introduction
	2. Theory
	2.1 GPS Introduction
	2.2 Direction Calculation

	3. Discussion
	3.2 Power Consumption
	3.3 Timing Analysis
	3.3.1 Serial Communication
	3.3.2 LCD Data
	3.3.3 Track Button Pressed
	3.3.4 Set Button Pressed

	3.4 Memory Map
	3.7 Software Plan
	3.7.1 General Usage
	3.7.2 Complete Usage Description
	3.7.3 System Flow Charts
	3.7.4 General Pseudo Code

	3.9 Efficiency and Trustworthiness

	4. Part List
	5. Cost Analysis
	6. Conclusion
	7. Future Work
	8. References
	9. User Manual
	Appendix A:  AT89C51RC2 Datasheet
	Appendix B:  Sony GXB5210 Datasheet
	Appendix C:  DMC20434 LCD Display Datasheet
	Appendix D:  Dinsmore 1490 Digital Compass Datasheet
	Appendix E:  Program Listing

