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1 Introduction

1.1 Overview

Lpp (Lisp Plus Plus), is a library of Lisp like functions and macros usable in C++ programs.
The philosophy behind Lpp is to provide as close as possible the semantics and style of
Lisp rather than try to force it to fit a static style of programming. Lpp tries to emulate
Common Lisp as much as possible in this regard. By doing things this way part of the true
power and flexibility of Lisp can coexist and mix with the static typing features of C++ even
within functions and objects. The hope is that Lpp will be useful for the following

e Porting Lisp programs to and from C++.

e Implementation of embedded AI sub-systems in C++ environments.

e An alternative for Lisp programmers who need to program in C++.

e When a C++ program needs dynamically typed objects.

e When a C++ program needs an efficient unified list implementation.

e When a C++ program needs rational numbers in the range of minus to plus infinity.

e When a C++ program needs to do symbolic processing such as manipulating
s-expressions, symbolic math, etc ...

One of Lisp’s advertised benefits is that of dynamically typed objects. Standard C++ does
not offer this capability. Instead, the programmer is expected to created virtual functions
whose objects dynamically dispatch through the use of indirect pointers to v-tables and then
a v-table has a pointer to the virtual function for that object. While the basic idea of virtual
functions is good, relying only on it for real world complex problems presents difficulties.
One such problem is that it is impossible to write true generic code using virtual functions
since all possible types must be accounted for. The default virtual function of a base
class can only serve the declared sub-classes that do not define their own virtual functions.
Contrast this with Lisp functions that usually do not have to account for the types of the
objects that it operates on. As a very simple example, Lisp can compute the length of a
list irrespective of the types of the objects in the list. Furthermore a provider could supply
an object dynamically to a consumer of such a list that is not required to be seen by the
compiler of the program operating on the list.

Lpp strives to provide the full power of Lisp in terms of dynamic typing. The way that
Lpp achieves this is that all Lpp objects contain a type header that is a pointer to a type
meta-object. In some sense this is similar to the v-table concept mentioned above for virtual
function tables in that type meta-objects can and do contain type dispatcher functions that
are similar to virtual functions. But the type meta-objects are automatic in Lpp as well as
much of their standard behavior. And type meta-objects are first class Lpp objects so that
they can be manipulated dynamically as ordinary objects can. For example a dispatcher
function can be dynamically added to a type meta-object and then operate on subsequent
ordinary objects of that type. Furthermore the type meta-objects maintain a run time type
lattice. For example at run time a program can query whether an object is a number or an
integer (integers being a subset of all numbers).

All Lpp objects as in Lisp have the same base type. In Lisp the base type is type t. In
Lpp the base type is intentionally left unknown and abstracted with a type definition called
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let. This was done so that the base type can be experimented with while preserving Lpp
syntax. Type let serves as the declaration type for all such Lpp objects when referring to
the Lpp object as a generic object. As in Lisp Lpp objects are passed around as pointers
with pointer abstraction in Lpp function arguments and Lpp slots. These objects can be
mixed freely with other C++ classes and class members and can be used with other C++
libraries that do not use the same class names that Lpp uses.

Lpp provides a the macro for descending into specific Lpp objects. This is similar to
the the special form in Common Lisp. Lpp automatically does a dynamic type check on
the object wrapped in a the macro which assures that specific object member references
will always be correct. In a debugged program compilation unit this type checking can be
turned off for maximum compilation efficiency.

Lpp also provides other useful Lisp objects such as Cons cells, lists, symbols, strings,
characters and numbers. As much as possible Lpp tries to use the Common Lisp function
names and semantics for the operations on Lisp like objects.

Lpp chose address 0 as nil. This is so that it is easy to check for the end of lists or nil
returned in predicate arguments in C++ functions, operators and statements like if, while,
for. So nil and non-nil is consistent with C++ predicate semantics on 0 and non-0. But
even though nil is 0, it is exactly equivalent to the symbol nil. It is as if the symbol object
nil was an object at address 0.

Symbols are introduced into C++ programs easily with the S() macro. For example,
S(foo), S(Foo), S(my:foo), S(foo-bar), S(+), S(I\@#3$%,"&*) are all legitimate symbols
in Lpp. Symbols after being interned are just as efficient but far more powerful than enums.
The default for symbols in Lpp is case sensitive, so that foo and Foo are two distinct
symbols.

Primitive C objects can easily be converted to their analog Lpp objects using the L
constructor. For example L("abc") will produce an Lpp String object and L(cdr) will
produce an Lpp first class function object.

Conversions back are also easy for example 22 == iL(L(22)) where iL conversion is back
to C++ integers. The programmer can use dynamic Lpp objects when needed and use simple
C++ objects when absolute efficiency is needed. Efficiency is an elusive property though.
For example Lpp strings seem less efficient on the surface, but since they have a length they
provide for faster string comparisons than ordinary 0 terminated C++ strings. The names
of such things as L (the conversion macro), True and S (the symbol macro) can be redefined
per compilation unit by the programmer without affecting the operation of Lpp.

Lpp provides the basic Common Lisp I/O functions like read, print, prini, princ,
pprint ... etc, but also provides that any Lpp object can appear in stream operators. So if
obj is the Lpp symbol object car then cout << "obj = " << obj would print as obj = car.
All Lpp objects have C++ stream print methods that inherit from the basic princ method
of an object. All new Lpp objects defined automatically get default dispatcher functions
defined for princ and prinil. New princ or prinl methods can be set dynamically by the
programmer for Lpp type meta-objects.

Lpp provides mathematically correct rational numbers, ie. ratios whose numerator and
denominator and integers are in the range minus to plus infinity. Lpp numbers automati-
cally expand or shrink to any size when operated on by Lpp math functions. Overflow or
underflow are impossible.
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Lpp provides two debugger functions pdb and pdc for examining Lpp objects in a de-
bugger. pdb uses prinl and pdc uses princ. So while in a debugger the user can type, for
example, p pdc(listl) where 1istl is some variable in a program that contains an Lpp
list, the list and all of it’s subcomponents will be printed exactly as you would expect in a
lisp interpreter. In addition the function ppdb is provided for pretty printing such objects
in a debugger.
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1.2 Installing Lpp

Lpp comes in a Gnu Tar Zipped file 1pp-VER. tgz where VER represents the version of Lpp.
See your system documentation on how to unpack it. If we represent the directory in which
you unpacked as UDIR then after unpacking there will be a directory UDIR/1pp. To make
the Lpp library and accompaniments first go to the UDIR/1pp directory and type

./configure
followed by
make

If both complete with no errors about missing components on your system then you are
ready to install Lpp. If you are installing in the default or a protected area you probably
need to log in as a super user. Then while in UDIR/1pp type

make install

If we refer to the default system installation directory as IDIR, on Linux for example
IDIR will default to /usr/local, then the following will get installed in Linux subdirectories
as follows

IDIR/doc/1lpp/lpp.html
IDIR/include/lpp/Lpp.hh
IDIR/include/lpp/LppPure.hh
IDIR/include/lpp/rpMenu.hh
IDIR/info/lpp.info
IDIR/1ib/1pp/libLpp.a
IDIR/1ib/1pp/librpMenu.a

The file UDIR/1pp/doc/INSTALL has a more general description of configure and make.
For example if you want to install in other than the default system installation directory
then you can specify to install under some other directory IDIR as follows

./configure --prefix IDIR
make

At this point while still in the UDIR directory you can install the additional “No Tyoe
Check” version of the Lpp library with the following

make nc
make installnc

and this, using our above example, will install
IDIR/1ib/1pp/1ibLppNC.a

The Lpp User’s Manual will explain when you might want to use 1ibLppNC, See Sec-
tion 3.6 [Type Checking], page 21. It doesn’t hurt to do this and you may as well at this
point.

This make will also create an Lpp regression test. If you want to see if it passes this test
on your system you can do the following: Change to the directory UDIR/1pp/lib/test and
type

check

It runs the regression test and then does a diff against the expected results. If you see
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—-——— Lpp test suite #1 - difference between now and expected is:
and no following differences then it has passed the test on your system.

After the make install, referring to the above install directory example, you can then
read the Lpp User’s Manual using Emacs Info with the file 1pp.info or as HTML using
the URL

file:IDIR/doc/lpp/lpp.html
or
file:IDIR/doc/lpp/lpp.html/index.html
In particular you can read how to use Lpp, See Section 1.3 [Using Lpp], page 6.

If you want a hard copy of the Lpp User’s Manual then change to the directory
UDIR/1pp/doc and type make ps which will make the PostScript version 1pp.ps.
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1.3 Using Lpp
Using the Lpp library is easy. First you need to include in your C++ file

#include <Lpp.hh>

In some fussy cases you may want to include LppPure.hh here instead of Lpp.h, but
Lpp.hh is always safe to use, See Section 1.5 [Pure Lisp Include File|, page 10.

Second, you need to link the library 1ibLpp.a with the compile of your C++ program.
libLpp.a gets installed on your system when Lpp is installed, See Section 1.2 [Installing
Lpp], page 4. For example on Linux if you had installed Lpp under /usr/local and then
wrote a C++ program that used Lpp called main. cc then the following would first compile
a program main.cc and then make an executable called pgm

ct++ -I/usr/local/include -c main.cc
ct+ -o pgm main.o /usr/local/lib/lpp/libLpp.a

Then after that, if you are familiar with Common Lisp, you will find that writing pro-
grams using Lpp is similar to writing programs in Common Lisp. A big advantage is that
you can mix quite freely the static style of C++ with the dynamic style of Lisp without hav-
ing to think about it too much. In the next section we give a simple example to illustrate
this.

1.4 A Simple Data Base Example

In this example we create a class that implements a simple data base. We then create an
instance of the data base and populate it with some entities, namely some people. And
finally we generate a report on the people of a family that we used to populate the data
base to show the relational aspect of the data base.

Lpp is useful here since we want entities to be any kind of object and hence dynamically
bound objects will index the data base. In the example we use Lpp symbols to designate
entities. We set relations in the data base with a typical entity attribute value tuple. So
the data base access member functions are as follows

e getSize() = Returns the total number of entities in the data base
e addEntity(entity) = Add entity (any Lpp object) to the data base
e setValue(entity, attribute, value) = Add a relation for entity

e getValue(entity, attribute) = Returns the attribute value for entity

Here is the implementation of the data base class
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// main.cc = Introduction Simple Data Base example.
#include <Lpp.hh>

// Data Base class.
class DataBase {
int size;
let contents;
public:
DataBase();
int getSize() {return size;}
void addEntity(let);
void setValue(let, let, let);
let getValue(let, let);};

// Data Base constructor.
DataBase: :DataBase() {size = 0; contents = makeHashTable();}

// Add an entity to the Data Base.
void DataBase::addEntity(let entity) {
if (!gethash(entity, contents)) {
puthash(entity, contents, 0);

size++;}}

// Set the value of an attribute for given entity.
void DataBase::setValue(let entity, let attribute, let value) {
let attributes = gethash(entity, contents);
let old = assoc(attribute, attributes);
if (old) rplacd(old, value);
else {
push(cons(attribute, value), attributes);
puthash(entity, contents, attributes);}}

// Return the value of an attribute for given entity.
let DataBase::getValue(let entity, let attribute) {
return cdr(assoc(attribute, gethash(entity, contents)));}

First notice the include command for Lpp.hh. To use Lpp a compilation unit needs to
include the header file Lpp.hh when using let declarations.

Notice in the class definition the let type declarations. This is how members containing
Lpp objects are always declared. Also notice that let type members can be easily combined
with other types, in this case int.

In the data base accessor functions and in the following code that uses them the occur-
rences of Common Lisp function names such as car, cdr, cons, assoc, push, puthash,
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dolist etc. do exactly what you would expect them to do if you are familiar with Common
Lisp.

Now we create a main program that populates the data base and prints a report on a
family.



Chapter 1: Introduction 9

171771777777 77777/77777/77/777777777777/777777/777777/777777777/777777
// Create and test a DataBase.

main() {
DataBase db = DataBase();

db.addEntity(S(smith-family));
db.setValue(S(smith-family), S(people),
list(S(joe), S(frank), S(mary)));

db.addEntity(S(joe));

db.setValue(S(joe), S(name), L("Joseph Clyde Smith"));
db.setValue(S(joe), S(age), L(42));

db.setValue(S(joe), S(siblings), list(S(frank), S(mary)));

db.addEntity(S(frank));

db.setValue(S(frank), S(name), L("Frank Bob Smith"));
db.setValue(S(frank), S(age), L(32));
db.setValue(S(frank), S(siblings), list(S(joe), S(mary)));

db.addEntity(S(mary));

db.setValue(S(mary), S(name), L("Mary Ann Smith"));
db.setValue(S(mary), S(age), L(28));

db.setValue(S(mary), S(brothers), list(S(joe), S(frank)));

cout << "--- Report on Smith family ---" << endl;
dolist(person, db.getValue(S(smith-family), S(people))) {
cout << "Person: " << db.getValue(person, S(name)) << endl

<< "is " << db.getValue(person, S(age))
<< " years old" << endl;
dolist(relation, list(S(siblings), S(brothers))) {
let relatives = db.getValue(person, relation);
if (relatives) {
cout << "With " << relation << ": ";
dolist(relative, relatives) cout << " " << relative;
cout << endl;}}
cout << endl;}}

Notice there are several occurrences of S() such as S(joe). This is the Lpp idiom for
introducing symbols. Symbols are useful since they are very efficient and have universal
identity. For example S(frank) refers to the same symbol frank every place that it is used
in any program

Also notice the occurrences of L(). This is the Lpp idiom for introducing C++ primitive
types into the Lpp world of objects. L stands for Lpp conversion because in essence we are
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converting a C++ primitive value into an Lpp one. For example L(42) generates an Lpp
Integer whose value is 42.

Finally notice that Lpp objects can be input and output to standard C++ streams. For
example

cout << " " << relative;

outputs the value of relative to the C++ standard output stream cout. The variable
relative is dynamically bound to an Lpp object in the dolist macro.

Compiling the whole data base program above and running produces the following out-
put:

--- Report on Smith family ---
Person: Joseph Clyde Smith

is 42 years old

With siblings: frank mary

Person: Frank Bob Smith
is 32 years old
With siblings: joe mary

Person: Mary Ann Smith
is 28 years old
With brothers: joe frank

1.5 Pure Lisp Include File

If you do not plan to use any C++ stream I/0 operators or C++ stream type arguments in
any given C++ file then you can use

#include <LppPure.hh>
instead if Lpp.hh.

This will result in slightly faster compiles and slightly smaller binaries. LppPure.hh is
the Pure Lisp include file and Lpp.hh includes it. LppPure.hh does not include any files,
it is totally self contained. If in a given compilation unit you are using no I/O or are only
using Lisp style I/O such as read, print, prini, ... etc. then LppPure.hh is sufficient. The
Lpp library itself for example uses LppPure.hh in most of its compilation units.

In this document whenever we talk about setting up optional compilation parame-
ters before including the Lpp.hh file this also applies to wherever you are only including
LppPure.hh.

If none of this matters to you, you can just use Lpp.hh all the time, it is always perfectly
safe.
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2 Name Space Issues

2.1 Naming Conventions

The Lpp library tries to prevent name space clashes with other libraries so that it can be
included with such other libraries. All the identifiers reserved for Lpp fall into one of the
four following categories

1. The Lpp class and Lpp subtype class names

2. Lpp member function identifiers

3. Lpp macros

4. The rest of Lpp reserved identifiers that begin with Lpp_

In case 1 Lpp class and subtype class names are few and correspond directly with names
in the Common Lisp type hierarchy except that the Lpp class names begin with a capital
letter. For example: Number for the Lpp number object, Integer for the Lpp Integer object,
String for the Lpp string object, etc.

In case 2 the Lpp library creates its own name space of functions that dispatch on the
let type. For example 1list(x, y) where x and y are of type let. Generally this prevents
clashes with other library names.

Lpp strives to provide the Common Lisp specified semantics and wherever possible func-
tions are named for their Common Lisp counterparts and replacing dashes by capitalizing
the first character after the dash. For example the Common Lisp function make-string
becomes makeString. This was decided over replacing dashes with underscores since such
identifiers with capitals would more likely be unique and, except for the prefix Lpp_, allows
a whole set of user defined identifiers with underscores that can not possibly clash with
Lpp identifiers. Other characters not allowed in C++ identifiers are replaced by words, so
string= becomes stringEqual. In some cases this does not work in which case a reasonable
alternative is chosen. For example append is an identifier used in the C++ stream opera-
tions. So the identifier 1istConcat was used instead of the Common Lisp specified append.
Another example is the Common Lisp specified delete which is a reserved identifier in C++,
so nremove is used as in “destructive remove”.

In case 3 the Lpp macros reserve a small set of reserved identifiers. A mechanism is set
up to redefine these per compilation unit by the programmer if a name clash happens to
exist, See Section 2.3 [Redefining Predefined Names], page 12.

In case 4 all other reserved Lpp identifiers begin with Lpp_ so the user should never
define a name that begins with Lpp_.

2.2 Returning C++ type names

In some cases in Lpp where it might be useful and more efficient to return a primitive
C++ type, such as an int, the Common Lisp borrowed function name is used, since it
is expected in C++ programs that that name will be used more frequently. However a
counterpart function is still needed to return the corresponding Lpp object, such as an Lpp
Integer object. Such counterpart functions can also be coerced to a function object for use
in funcall and apply. In these cases if the Lpp function that returns the primitive C++
type is named
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function

the the counterpart that returns the corresponding Lpp type is named

functionL

The capital L is meant to connote that an Lpp object is the result. For example the
Common Lisp borrowed name length that returns the length of a sequence is used in Lpp
to return an int instead of an Lpp Integer object

int i = length(list);

and the counterpart function name is lengthL

let i = lengthL(list);
let i = funcall(L(lengthL), list);

The length function is more efficient and does not generate an Lpp Integer object.
Whereas the lengthL does generate an Lpp Integer object if needed and as seen above can
also be used as a function object whereas the primitive length can not, See Chapter 4
[Functions], page 23.

This is an unfortunate situation, since it would be better to have the function, such as
length, be overloaded on both the int returning function and the let returning function.
But some C++ compilers issue an ambiguous function name error in this case.

For efficiency concerns this is consistently done in all cases where the Common Lisp
borrowed name of a function returns an integer. In such cases where the Common Lisp
function would return either a integer or nil then a -1 is returned for the int returning
version. For example the Common Lisp function 1ist-length returns the length of a given
list as an interger but returns nil if the list is circular

int i = listLength(list); // 1 == -1 if list is circular
let i = listLengthL(list); // i == nil if list is circular

We mention the unfortunate situation above, but from another perspective the functionL
function name comments the fact that an Lpp object will be generated on the heap. To
illustrate this, following is bad

if (listLengthL(list)) // then do something

Although it would work, the listLengthL returned value is not referenced anywhere
and hence would cause a memory leak. It would be better done with

let len = listLengthL(list);
if (len) // then do something

or if the Lpp Integer object is not needed
if (listLength(list) > -1) // then do something

2.3 Redefining Predefined Names

Lpp defines a few identifiers that are only one or two letters for ease of typing since they
are so frequently used in Lpp programs. By using capital letters as the first or second letter
of these identifiers it is unlikely that there will be identifier clashes, but in the event that
there are clashes Lpp allows all of these to be easily redefined. It is not recommended to
redefine these if there are no clashes but nothing will hurt except non-consistency between
Lpp programs.

The following are reserved identifiers that can be redefined per compilation unit:
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True Nil 0 S L cL iL pL sL EM

Assuming that XX is the user’s preferred redefinition, each can be renamed by putting
one set of the following definitions in the compilation stream before Lpp.hh is included:

// Renames True
#define LPP_True_NODEFINE 1
#define XX Lpp_True

// Renames Nil
#tdefine LPP_Nil_NODEFINE 1
#define XX Lpp_Nil

// Renames 0
#define LPP_O_NODEFINE 1
#define XX Lpp_0

// Renames S
#define LPP_S_NODEFINE 1
#define XX Lpp_S

// Renames L
#define LPP_L_NODEFINE 1
#define XX Lpp_L

// Renames cL
#define LPP_cL_NODEFINE 1
#define XX Lpp_cL

// Renames iL
#define LPP_iL._NODEFINE 1
#define XX Lpp_il

// Renames pL
#define LPP_pL_NODEFINE 1
#define XX Lpp_pL

// Renames sL
#define LPP_sL_NODEFINE 1
#define XX Lpp_sL

// Renames EM
#define LPP_EM_NODEFINE 1
#define XX Lpp_EM
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3 Subtypes

Lpp achieves dynamic typing capability by having all Lpp objects be of type let. The type
let is actually an Let* where Let refers to the base class for all specific Lpp types like
Symbol, Cons, Integer etc. The actual base class of Lpp objects is abstracted away by the
let and Let type definitions.

Thus while working with Lpp objects all objects are considered to be one cell pointers.
However since the programmer never uses Lpp* or Lpp the concept of pointers is abstracted
away with the use of let. So it is also correct to refer to Lpp objects as let objects
(objects of type let). Furthermore all computational aspects of pointers is encapsulated in
the Lpp classes. This means that in essence the programmer never has to deal with pointers
while working specifically with let objects. This is consistent with the way Lisp works.
In addition to this the programmer can declare let members in conventional C++ classes
where non-abstracted pointer representations are needed.

The Lpp class defines a slot that contains a pointer to a type meta-object of type Type.
This pointer is a let type and so the type meta-object itself is also a an Lpp object. Type
objects themselves being of base type let, can be stored and operated on like any other
Lpp object. So for example

let x = S(foo0);
let y = list(x, typeOf(x));
cout << first(y) << second(y) << endl;

would print x followed by its type.

Type objects contain meta information about the specific objects it is a type of. Some
of the information it contains are a type name, a type lattice member, and type dispatching
functions. Type dispatching functions are very similar to virtual functions, but are more
powerful in that they themselves can be dynamically manipulated. An example of type
dispatching functions are the various printing functions for Lpp objects.

3.1 Predefined Subtypes
The predefined subtypes in Lpp are:

e Type Type meta-objects mentioned above.
e Function Analogous to Lisp first class function objects.
e Cons Analogous to Lisp cons cells.
e Symbol Analogous to Lisp symbols.
e Number Analogous to Lisp numbers.
e Integer Analogous to Lisp true integers.
e Character Analogous to Lisp characters.
e String Analogous to Lisp strings.
e HashTable Analogous to Lisp hash tables.
In addition to these Lpp subtypes the user can define his own Lpp subtypes which can

then be manipulated as let objects. This is done with the classL macro that hides away
the details of declaring such a class, See Section 3.3 [Defining New Subtypes], page 16.
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3.2 Conversions

Conversions from primitive C types to Lpp objects is done with the L constructor and back
to primitive C types is done with the xL converter, where z designates a primitive C type.

Implicit constructors were avoided in Lpp for good reasons. One major reason is that
it eliminated overloaded name conflicts with other C++ libraries. Another reason is that
0 as nil and O as integer is problematical. This may seem like a real inelegancy. For
example the programmer has to specify 1ist(L(55), L("string"), L(fun)) instead of
simply 1ist (55, "string", fun), but as it turns out this is not much of a problem in actual
programming practice. Also, provided functions like 1istSEM("one", "two", "three",
EM) for long homogeneous lists of like objects helps.

The name of the L constructor can be redefined per compilation unit, See Section 2.3
[Redefining Predefined Names|, page 12.

3.2.1 From C++ Primitive Types
In Lpp the L macro is used for converting any basic C type to an Lpp object.

L x [Macro]

This macro returns an Lpp object that is analogous to the type of the argument x. For
example if z is a int then an Lpp Integer object is returned. Note that no part of the
returned Lpp object shares the value of z. Some actual examples are:

// Converting a ...

let myInteger = L(5); // C integer to Lpp Integer
int x = 123;

let myInteger2 = L(x) // C integer to Lpp Integer
let myCharacter = L(’z’) // C char to Lpp Character
let myString = L("Some string"); // C string to Lpp string

let myFun = L(cFunction); // C function to Lpp function

The Lpp object types created by the L conversion macro when applied to C++ types is
as follows:

int => Lpp Integer

char => Lpp Character

char* => Lpp String

let fun(let, let ...) => Lpp Function

An Lpp Function object can be created from a function returning a type let taking 0
or more type let arguments.

3.2.2 To C++ Primitive Types

Converting an Lpp object back to primitive C types is done with the zL converter, where
z designates a primitive C type.

il x [Function]
cL x [Function]

sL x [Function]
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pL x [Macro]

The function iL converts an Lpp Integer x to and int and returns, cL converts an Lpp
Character x to a char and returns, sL converts an Lpp String z to a char* string and
returns, pL converts an Lpp predicate (nil or t) to a C predicate (0 or 1). Some examples
are:

// Converting a ...

let myInteger = L(5); // C integer to Lpp Integer
int i1 = iL(myInteger); // Then back to int

let c1 = L’z ); // C char to Lpp character
char ch = cL(cl ); // Then back to C char

let myString = L("Some string"); // C string to Lpp string
charx sl = sL(myString); // Then back to a charx

3.3 Defining New Subtypes

The user of Lpp can create new Lpp subtypes with the classL and classLS macros. Note
that all examples given in this section assume that a type meta-object is generated some-
where (see genT and genTS macros below). When a class is defined as an Lpp subtype
a new type meta-object named by that class name will exist in the Lpp type hierarchy.
Instances of that class then can be used anywhere an Lpp object of type let can be used.
For example, such an instance can then occur in an Lpp list.

classL name [Macro]

classLS name [Macro]

The classL macro is used for defining new Lpp subtypes of type let. The classLS
macro is used for defining new Lpp subtypes of Lpp supertypes. The name argument
specifies the name of the new class and subtype. The syntax of both is exactly the same
as the ordinary C++ class syntax except that instead of using the class identifier either
classL or classLS is used.

For example
classL(MyType) {...};
let m1 = makeInstance(MyType);
let listl = 1list(L(1), ml, L(2));
cout << second(listl);

We could do a similar thing with a subtype of MyType:
classLS (MySubType) : private MyType {...};
let msl = makeInstance(MySubType);
let listl = 1list(L(1), msl, L(2));
cout << second(listl);

// Should print "t" for both of these:
cout << typep(second(listl), type(MyType));
cout << typep(second(listl), type(MySubType));
To pass the specific type of any new Lpp object down through the Lpp type lattice any
constructor in a classL or classLS definition must pass in a constructor for the super type
with the subtype as an argument. For classL this would be the Let supertype and for
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classLS the user defined Lpp type. Recall that the Lpp type can be referenced using the
type macro. So for a new user defined Lpp type T the super constructor needed for classL
would be Let (type(T)). Or using our example above for MyType and MySubType the class
constructors might appear as follows

MyType() : Let(type(MyType)) {...}
MySubType() : MyType (type (MySubType)) {...}

makeInstance type [Macro]
Returns a new Lpp object of type type. The argument type can be a C++ constructor
form or just the type name. The constructor or type name must be of an Lpp type.

Since all Lpp object subtypes must have a type meta-object, See Section 3.4 [Accessing
Type Meta-Objects|, page 17, the Type object must be generated somewhere, usually in
the C++ file that defines the accessors for the subtype. This can be done easily with the
genT or genTS macros.

genT type [Macro]

genTS type supertype [Macro]
The genT macro generates a type meta-object of type type. The genTS macro generates
a type meta-object of type type whose supertype is supertype. For example

classL(MyType) {...};

// The type meta-object for a MyType is generated here
genT (MyType) ;

classLS(MySubType) : private MyType {...};

// The type meta-object for a MySubType is generated here
genTS (MySubType, MyType);

3.4 Accessing Type Meta-Objects

As mentioned previously all Lpp objects are of some type in the Lpp type hierarchy where
each type has a Type meta-object associated with it. We call these meta objects because
they contain the information about and type functionality of the ordinary Lpp objects they
are associated with. There is one type meta-object for all ordinary Lpp object instances of
that type.

These Type objects are first class Lpp objects and can be manipulated and accessed
dynamically. For example the print methods of specific types can be accessed and set
dynamically. First we show two functions for getting the type meta-object itself.

type0f object [Function]
This function returns returns the type meta-object for the type of the Lpp object object.

type name [Macro]
This macro returns the type meta-object named name. Here are some examples:
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let typelist =

list(type(Integer), type(Symbol), type(MyType));
eq(type0f (L(23)), first(typelList)) => t
eq(type0f(S(23)), second(typeList)) => t

typeName object [Function]

typeNameLl object [Function]
typeName returns a char* representing the type print name of the object object. For
example:

let object = S(red);
typeName (object) => "Symbol"

The typeNameL function does the same but returns an Lpp String object.

A Type meta-object contains various functions that dispatch on the type of a given object
dynamically. These are similar to virtual functions but are more powerful in that they can
be manipulated dynamically. Lpp provides some built in type dispatching functions for
things such as printing and equality of objects.

All Lpp Type meta-objects when created have default dispatching functions generated.
The user however may access these dispatching functions or set them to new dispatching
functions dynamically. In general there are slots in the Type meta-object that can be
accessed by functions of the form

setTypeXXXX type data
getTypeXXXX type

where XXXX refers to the kind of data being accessed in the given type where type is an
Lpp Type meta-object. And setTypeXXXX sets the data and getTypeXXXX returns the data
data last set. When setting data is given as nil it usually gets interpreted as setting back
to the a default. This setting and getting can be done dynamically at run time. Here are
some examples

let original = getTypePrinc(type (MyType));
setTypePrinc (type (MyType), L(MyTypePrincFunction));
setTypePrinc (type (MyType), Nil);
setTypePrinc (type (MyType), original);

The first line sets original to the current princ printer function of MyType. The
second line sets the princ printer function of MyType to MyTypePrincFunction. The third
line would set the princ printer function to the Lpp default. And the last line sets the
princ printer function back to what it was originally.

setTypePrinc type function [Function]
getTypePrinc type [Function]
setTypePrinl type function [Function]
getTypePrinl type [Function]

All Lpp objects have princ and prinl methods used by the Lpp printing family of
functions and C++ stream IO of Lpp objects, See Chapter 14 [Input Output], page 57.
These functions allow the user to set or get the print method of a given type where type is a
Type meta-object. The functions setTypePrinc and setTypePrinl sets the Lpp function
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object for the princ and prinl methods respectively. The function argument is a function
taking two arguments, first an object of type let and second a stream of type ostream&.
The function should return the first argument object as both princ and prinl do. The
functions getTypePrinc and getTypePrinl returns the last function set.

For example suppose that we had defined an Lpp class called MyClass that has two slots
with accessors getSlotl and getSlot2. Then the following code would set up a princ type
printer for MyClass

let princMyClass(let obj, ostream& s) {
s << "MyClass object: slotl: "
<< getSlotl(obj) << " sglot2: " << getSlot2(obj);
return obj;}

let mcl = makelInstance(MyClass(76, "trombones"));
cout << mcl << endl; // Would produce
<Lpp Testclass>
setTypePrinc(type (MyClass), L(princMyClass)); // Then
cout << mcl << endl; // Would produce instead

MyClass object: slotl: 76 slot2: trombones

The default princ and prini type dispatching functions for any Lpp type will print an
object as

<Lpp xxxx>

where xxxx will be the type name of the object. The princ type dispatching function
is the one used by the princ function and also by the << operator as seen above.

setTypePrins type function [Function]
setTypePrins sets both the princ and prnl printing function to the same function.

When an Lpp equality predicate of either equal or equalp is called, an equality dis-
patcher function of the Type meta-object is called to compute the predicate. The two
arguments of the equality predicate are passed to the dispatcher function and the returned
result is the result of the equality predicate. The equality dispatcher functions can be
accessed with the following

setTypeEqual type function [Function]
getTypeEqual type [Function]
setTypeEqualp type function [Function]
getTypeEqualp type [Function]

The setTypeEqual function sets the equal dispatcher function of the Type meta-object
type to the given function function which is an Lpp function object of two arguments. When
equal is called given two objects where the first object is of this type then the function
function is automatically dispatched on the object. Given both objects the function should
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return t if the objects are considered to be “equal” and nil otherwise. As an example
suppose that we had defined an Lpp class called MyClass then

let myClassEqual(let ol, let 02) {
return equal(the(MyClass, ol).slotl, the(MyClass, 02).slotl);}

let mcl = makeInstance(Myclass("foo"));
let mc2 = makeInstance(Myclass("foo"));

equal(mcl, mc2) => nil
setTypeEqual (type (Myclass), L(myClassEqual));
equal(mcl, mc2) => t

setTypeEqualp does the same thing as setTypeEqual except that when equalp is called
given two objects where the first object is of the type type then the function function is
automatically dispatched on the object. Given both objects the function should return
t if the objects are considered to be “equalp” and nil otherwise. getTypeEqual and
getTypeEqualp will return the last equal, equalp dispatcher functions respectively set for
the given type.

If a type meta-object does not have a equality dispatcher function set this way then eq
will be used as the default.

setTypeExt type extension [Function]

getTypeExt type [Function]

The Lpp user can set up his own Type meta-object extension to any Lpp Type meta-
object. He first defines an Lpp class that will be the meta-object extension class and
then instantiates a object of that class which he then sets in the desired Type meta-object
by calling setTypeExt on the desired Type type and meta-object extension is that newly
instantiated object. getTypeExt would return the last extension set in the given type meta-
object.

As an example this is useful when over some number of classes the user wants to dispatch
on a common action, like the princ printing action above. Since the extension is a first
class Lpp object it can be exchanged dynamically. So, for example, the user can cause a
collection of classes to behave one way in one mode and then another way in a different
mode. Also all Lpp objects Type meta-objects are guaranteed to have an extension even if
only nil which would usually be a default case or no action.

3.5 Accessing Subtypes

In the majority of code written using Lpp, Lpp objects appear as type let. All operations
within Lpp objects are done with accessors. When defining new Lpp objects the user needs
to get at the internals of such objects for defining his own accessors. The Lpp the macro
makes it easy and safe to access the internals of an Lpp object.

the name exp [Macro]
the0rNil name exp [Macro]

asThe name exp [Macro]
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fromThe name exp [Macro]
The argument name names some subtype of the Lpp type hierarchy. Lpp takes the
liberty to adapt the Common Lisp the construct. Much like Common Lisp the Lpp the
macro evaluates the given expression exp and returns the value if it is of the type named by
the given name and triggers an exception if the type is not of the given name. In addition
the Lpp the macro returns a pointer to that object of type name name. This is a specific
pointer of that name type as opposed to the more general Lpp let type. For example:

classL(MyType) {

int slotil;

public: friend void setSlotl(let, int);};
setSlotl(makeInstance (MyType), 25);

void setSlotl(let x, int val) { // x is input as general let type
MyType* mt = the(MyType, x); // mt is now a specific pointer
mt->slotl = val;} // to a MyType object

The the macro enforces that the given object is of type type by doing a dynamic type
check. Dynamic type checking can be turned off per compilation unit, See Section 3.6 [Type
Checking], page 21.

The asThe macro is the same as the but never does any type checking. It is useful when
a function absolutely knows what the type of an Lpp object is. The fromThe macro is the
same as asThe but instead demands that the object is of the given type or derived from a
supertype of the given type. It is useful when a function absolutely knows what the type
or supertype of an Lpp object is. The theOrNil macro is the same as the but also allows
nil to pass as the type.

3.6 Type Checking

When dynamically typed objects are being processed in Lpp in a type safe mode, objects
are dynamically checked for the expected type. In Lpp this is enfored with the the macro,
See Section 3.5 [Accessing Subtypes|, page 20. This usually only occurs at one place in
object accessors. When it is not of the expected type control is transferred to a specified
handler, usually to an error code handler.

The default is to have this dynamic type checking turned on. It can be turned off per
compilation unit with the following define that must precede the include of Lpp.hh

#define LPP_NO_TYPE_CHECK 1

This automatically modifies the behavior of the the macro. With type checking turned
off the users code using Lpp is just as efficient as ordinary C++ code accessing statically
compiler type checked references. Rarely do you want to turn off type checking while
developing a program and usually doesn’t even hurt the efficienty too much on a delivered
package.

The above methods turns off type checking per your compilation units that see LPP_
NO_TYPE_CHECK as defined above. If you also want the Lpp library itself to not do type
checking then you need to recompile the Lpp library in the same way as above or better yet
link your program with the Lpp library where this has already been done as for example
linking with the Lpp supplied library
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libLppNC.a

instead of 1ibLpp.a. You can optionally make and install 1ibLppNC.a in the Lpp in-
stallation, See Section 1.2 [Installing Lpp], page 4.
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4 Functions

As with Common Lisp Lpp has first class function objects. That is to say that objects can
be created that represent C++ functions and manipulated like any other Lpp object. Such
function objects are easily created with the L conversion macro. For example

let someFun(let x, let y) {...}
let functionlList = list(L(car), L(someFun))

In this example functionList contains a list of two function objects: car an existing
Lpp function and some other function object called someFun. In general any function object
can be generated from any C++ function with an address (non-inline) of type let with 0 or
more let type arguments. Note that Lpp functions that return ints can not be used but
they have counterparts that can. For example length can not but lengthL can.

Such function objects can be called using either funcall or apply, See Chapter 5 [Con-
trol Structure], page 24. For example if in the previous example someFun given two argu-
ments returns some list then

let test(let a, let b, let functionList) {
return funcall(nth(0, functionList),
funcall(nth(1, functionList), a, b));}

would return the car of that list. Actually notice that test in this example could be used
to apply any Lpp function of one argument to any Lpp object returned by any function of
two arguments. Using first class function objects as variables adds an important dimension
to programming.

ARGSn [Macro]

Where n is the number of function arguments. For example: ARGS0, ARGS1, ARGS2

. etc. This macro makes it easy to cast function objects of functions that can have more
than one argument such as list. For example:

let fun = L(ARGS3 list);
print(fun) => <Lpp Function of 3 args>
funcall(fun, S(a), S(b), S(c)) => (a b c)

Lpp only supplies up to 10 arguments for such functions but a quick look at the Lpp in-
clude file LppPure.hh makes it apparent that any number of arguments can be added easily.
However, very rarely are more than 10 arguments needed and if you are habitually using
more than 10 arguments then you are probably doing something wrong or else you should
be using something like 11stEM or 1istSEM, See Section 11.2 [List operations|, page 50.
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5 Control Structure

Lpp tries as much as possible to capitalize on C++ control structure. C++ control struc-
ture is augmented however with the use of Lpp first class function objects and functions
funcall and apply. Lpp supplies control structure macros to make code easier to read and
implement. For example the dolist macro just expands into a harder to read C++ for
loop.

5.1 Function Invocation

As mentioned previously, See Chapter 4 [Functions], page 23, Lpp first class function objects
can be generated and manipulated as data and also applied to other data.

funcall fun args [Function]
This function calls the Lpp function object fun on the args which can be 0 or more
arguments of type let. A value of type let that fun returns is returned from the funcall.

apply fun args [Function]
This function is similar to funcall except that the arguments given to fun is taken from
only one argument args which is a list of 0 or more Lpp objects.

Here are some examples that contrast funcall with apply:

let listl = list(L("Lost"), L("World"));

let fun = L(listConcat);

funcall(fun, cadr(listl), car(listl)) => WorldLost
apply(fun, listl) => LostWorld

5.2 Iteration

5.2.1 Iteration Constructs

dolist el list [Macro]

This macro loops through the Lpp list list with a given variable name el bound to the
elements of the list. The variable name el will be bound to the last element of the list on
exit from the loop or else nil if the list list was empty. For example the following function
would print the given 1ist1 entries in a single column

void printListColumn(listl) {
dolist(e, listl) cout << e << endl;}

dolist2 ell listl el2 list2 [Macro]

This macro loops through the Lpp lists list! and list2 with variable names ell and el2
bound to the elements of the two lists. The variable names el! and el2 will be bound to
the last element processed from the list on exit from the loop or else nil if the list list was
empty. If the lists are not the same length the shorter of the two lists terminates the loop.

5.2.2 Mapping

The list mapping functions all take a function argument fun as the first argument then 1 or
2 list arguments lists. The function argument fun must have as many arguments as there
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are list arguments. The given list or lists are mapped over or into a new list using fun. The
function fun is successively applied to the list or lists and its return value, except for mapc
and mapl, is used to construct a new list in the same order as the given lists. For mapc
and mapl fun is successively applied for side effect only and the original first list is just
returned. For mapcar, maplist, mapcan and mapcon the newly mapped list is returned.

If more that one list is given then the shortest list terminates the mapping.

mapcar fun lists [Function]

maplist fun lists [Function]

The lists lists are mapped over by fun and the mapped list is returned. mapcar maps
over successive elements of the lists which are passed to fun. maplist maps over successive
cdrs of the lists which are passed to fun. For example:

let listl = list(L("one"), L("two"), L("three"));
mapcar (L(lengthl), listl) => (3, 3, 5)
let list2 =
list(L(" cat"), L(" dogs"), L(" bears"), L(" lions"));
mapcar (L(stringConcat), listl, list2)
=> ("one cat", "two dogs", "three bears")
maplist(L(lengthL), listl) => (3, 2, 1)
maplist(L(identity), listl)
=> (("one" "two" "three") ("two" "three") ("three"))

mapc fun lists [Function]

mapl fun lists [Function]

The lists lists are mapped over by fun and the first list, ie. the second argument, is
returned. mapc maps over successive elements of the lists which are passed to fun. mapl
maps over successive cdrs of the lists which are passed to fun. For example:

let listl = 1list(L("One"), L("Two"), L("Three"));
let (xprincOne)(let) = &princ;
mapc(L(princOne),listl); // Prints on cout: OneTwoThree

The mapping functions mapcan and mapcon are the same as mapcar and maplist re-
spectively except that it is as if nconc were applied to the resulting values returned by fun.
It is important to notice that because of this the values returned by fun are concatenated
together by destructively modifying them. Usually the function fun creates and returns
new lists each time being aware that they will be modified by being concatenated together.

mapcan fun lists [Function]

mapcon fun lists [Function]

The lists lists are mapped over by fun and the values returned by fun are concatenated
together, as if by using nconc, and the concatenation is returned. mapcan maps over
successive elements of the lists which are passed to fun. mapcon maps over successive cdrs
of the lists which are passed to fun.

mapcan and mapcon can be used for combining or filtering. For example:
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// Example of filtering:
let passNums(let x)
{if (numberp(x)) return list(x); return Nil;}

let listl = list(L(1), S(a), L(2), S(b), L(3), S(c));
mapcan(L(passNums), listl) => (1 2 3)

// Example of combining:

listl = readFromString("((1 2 3) (4 5 6) (
mapcan(L(copyList), listl) => (1 23 4 5

9 10))");

78
6789 10)

26
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6 Predicates

An Lpp predicate is a function that returns either nil or a non-nil value based on a test
of its given arguments. The return of a non-nil value implies true and the return of nil
implies false. Things are done this way since a check for nil or non-nil is always efficient
and uniform. Any other Lpp type let value other than nil is considered non-nil. This
allows useful values to be returned that at the same time imply true. Furthermore having
no specific object implying true makes multi value logics in programs easy and consistent
with reductions to two valued logics.

Lpp uses the same philosophy as Common Lisp for deciding when to return non-nil
or t. If no better non-nil value is available for indicating success, the symbol t will be
returned.

6.1 Logical Values

Lpp chose to use 0 as nil. This allows Lpp code to be symmetric with usual C code that
uses 0 and 1 as predicates. The alternative would be to have to use the null function for
every predicate occurrence. For example any Lpp function £ returning let or Lpp object x
can be used as a predicate

if (x) // do something
if (£()) // do something

Note that nil serves as three important things, a logical value, the end of a list and it
is also the symbol nil. The 0 as nil concept it is to be thought of as though the symbol
object nil resides at memory address 0. So that everything that can be done with a symbol
can be done with 0. For example

symbolName (0) => "nil"

When a let variable has the value 0 it prints as nil. Conversely when in any s-expression
is read from a stream nil is translated into O internally. Lpp provides a global variable
True that has as its value the Lpp Symbol t, See Chapter 7 [Symbols], page 31. And Nil
is defined simply as 0, so it is just as efficient to use Nil as 0 in your code except that the
compiler knows that Nil is an Lpp type.

Choosing 0 as nil creates an ambiguous situation when a type can be interpreted as
either int or let. For example overloaded Lpp functions that are disambiguated between
those that have the same function profile but differ in an int or let argument and so the
following is legitimate

let someFunction(int i, let obj); // i to be an int
let someFunction(let i, let obj); // i to be an Lpp Integer or nil

So to disambiguate you would use Nil where nil was intended

someFunction(0, something); // Means 0 as an int
someFunction(L(0), something); // Means O as an Lpp Integer
someFunction(Nil, something); // Menas 0 as Lpp nil
Nil [Constant]
True [Constant]

Nil is intended to be used in programs where the nil symbol is needed and True is
intended to be used where the t symbol is needed. These are both names of constants
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that can not be assigned other values. Since the Lpp Nil object prints as nil and the Lpp
True object prints as t, nil and t when used in this manual will refer to those objects
respectively.

The name of the constant True and Nil can be redefined per compilation unit, See
Section 2.3 [Redefining Predefined Names], page 12. So for example an Lpp programmer
could redefine these names to be nil and t to correspond to the Common Lisp constants
nil and t. After examining many C++ programs it was decided that the default should not
be the names nil and t since these frequently occurred as variable names. For example
t is frequently used as a variable in C++ programs to denote “time”. Also, using Nil and
True in Lpp programs emphasizes the fact that they are just C++ identifier names and not
in fact symbols as they are in Lisp programs.

null exp [Function]
null returns t if given expression exp evaluates to nil and returns nil otherwise.

6.2 V-tables and Type Predicates

Data type predicates determine the type of an Lpp object or compare type hierarchies. This
is important for complex programs where objects must be dynamically typed and there are
classes of algorithms that can not be easily implemented using v-tables ie. virtual function
tables. The Lpp user can still use v-tables and mix the use of v-tables with dynamic type
dispatching. Since these data type predicates are very efficient they should not be avoided
and used wherever it seems reasonable. Furthermore Lpp provides for type dispatching
functions in type meta-objects, See Section 3.4 [Accessing Type Meta-Objects|, page 17,
which are as efficient as v-tables but more flexible and dynamic.

6.3 General Type Predicates

typels exp name [Macro]

typels returns t if the expression exp evaluates to an object whose type is exactly of
the type name name and nil otherwise. Note that “exactly” implies that if name is a
supertype of the object’s type then false is returned. This macro is designed to be as fast
a type check as possible and thus returns a low level C predicate, 0 for false and 1 for
true. The returned result can easily be converted to the Lpp predicate with the pL macro
if needed.

typep object type [Function]

typep returns t if the object object type or any supertype is the Type meta-object type
and nil otherwise. Note that typep is different from typels in that any supertype of the
object satisfies the test. Here are some examples of both.

let n = L(56);

pL(typels(n, Integer)) => t
pL(typeIs(n, Number)) => nil
typep(n, type(Number)) => t
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6.4 Specific Data Type Predicates

symbolp object [Function]
symbolp returns t if object is of type Symbol and nil otherwise.

consp object [Function]
consp returns t if object is of type Cons and nil otherwise.

listp object [Function]
listp returns t if object is of type Cons or nil and nil otherwise.

numberp object [Function]
numberp returns t if object is of any type whose has a supertype of Number and nil
otherwise.

rationalp object [Function]
rationalp returns t if object is of any type whose has a supertype of Rational and nil
otherwise.

integerp object [Function]
integerp returns t if object is of type Integer and nil otherwise.

ratiop object [Function]
ratiop returns t if object is of type Ratio and nil otherwise.

stringp object [Function]
stringp returns t if object is of type String and nil otherwise.

characterp object [Function]
stringp returns t if object is of type Character and nil otherwise.

functionp object [Function]
functionp returns t if object is of type Function and nil otherwise.

hashTableP object [Function]
hashTableP returns t if object is of type Hashtable and nil otherwise.

6.5 Equality Predicates

Lisp has taught us that there are several kinds of equality of objects. In C++ the == operator
can only express one kind of equality. Also without void* casting it can not be applied to
any two objects dynamically.

The == operator in Lpp can be applied to any two Lpp objects dynamically and means
the same as the eq function of Common Lisp. However an eq function is still supplied so
that an eq function object can be passed to some functions that take an optional predicate
function argument. Also note that eq as opposed to == is a true Lpp predicate in that it
returns either t or nil.

eq xy [Function]
eq returns t if x is the same object as y and nil otherwise.



Chapter 6: Predicates 30

eql xy [Function]
eql is the same as eq except that if x and y are Characters or Numbers of the same
type their values are compared.

equal xy [Function]
equal returns t if z and y are structurally similar (isomorphic) objects and nil other-
wise. Roughly speaking, t means that « and y print the same way.

equalp xy [Function]

equalp returns t if x and y are are equal; if they are characters and are eql ignoring
alphabetic case; if they are numbers and have the same numerical value, even if they are of
different types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same type and corresponding
components are equalp. This test is implemented in a recursive manner and may fail to
terminate for circular structures. For conses, equalp is defined recursively as the two car’s
being equalp and the two cdr’s being equalp.

Here are some example of all these equality predicates

eq(L(23), L(23)) => nil
eql(L(23), L(23)) => ¢t
equal(L(23), L(23)) => t
eq(L(’a’), L(’a’)) => ¢t
eql(L(’a’), L(’a’)) =>t
equal(L(’a’), L(’A’)) => nil
equalp(L(’a’), L(°A%)) => ¢t
eq(S(foo), S(foo)) =>t
eql(S(foo), S(fo0)) => t
equal(S(foo), S(foo)) => t
equal(S(foo), S(Foo)) => nil
equalp(S(foo), S(Foo)) => nil
eql(L("foo"), L("foo0")) => nil
equal(L("foo"), L("foo")) =>t
equal(L("foo"), L("Foo")) => nil
equalp(L("foo"), L("Foo")) => ¢t
equalp(S(foo), L("foo")) => nil
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7 Symbols

Symbols are Lpp objects of type Symbol that have universal identity and usually stand for
what they connote. For example in a program the symbol red will be the same symbol as
red in another program and would most likely connote the color red. C++ enums do not
have this property of universal identity. Furthermore symbols are a lot more efficient than
strings for this purpose since there is only one symbol object in a system per symbol name
such as red. When a symbol is introduced into the system it is said to be interned.

7.1 The Print Name

A useful property of symbols is that they print the way they read. In most program code
the name of a symbol, called the print name, is rarely needed, usually only the let type
object is used as the identity of the Symbol object. When the name of the symbol is needed,
such as for printing purposes or text manipulation the following function is used.

symbolName symbol [Function]
symbolName is given an Lpp Symbol object symbol and the print name is returned as an
Lpp String, See Chapter 13 [Strings|, page 56. For example:
let sym = S(red);
length(symbolName (sym)) => 3
symbolName does not generate any new Lpp objects since the string object of a symbol
is only generated once and used over and over again. It is for this reason that even thought
the name string object of a symbol is accessible that string should not be modified from its
original since it would render that symbol unusable.

7.2 Creating Symbols

A symbol can be introduced into the system with the intern function.

intern name [Function]

intern returns the interned symbol with the name name. name can be either an Lpp
String or a char* string. The name argument can be composed of any characters unless it
is a char* in which case the character 0 is not allowed. If the symbol name has not been
interned yet then it is interned first.

Lpp symbol are are case sensitive. So, for example, Red and red are two different
symbols.
The S macro provides a short hand for entering symbols.

S name [Macro]
This macro returns an Lpp Symbol with print name name. The name argument is not
escaped with double quotes. Note that for some sequence of characters chars
S(chars) == intern("chars")
For example:
let syml = S(red);
let sym2 = intern("red");
syml == sym2 => 1
eq(syml, sym2) => t
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Note that creating a symbol with S in an Lpp program is not the same as quoting a
symbol in a Common Lisp program. In a Common Lisp program the quoted symbol causes
intern to be called only on reading the program, however in a C++ program intern will
be called when the code is running. So for example

let syml = S(red);
let listl = list(syml, syml);
is slightly more efficient than
let listl = list(S(red), S(red));

In both cases only one Symbol red is created, but in the second case intern is called
twice, the second time simply returning the already interned symbol red.

unintern symbol [Function]
unintern removes the symbol symbol from the system. It returns nil.
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8 Numbers

In Lpp all specific kinds of numbers, such as Integers, are subtypes of the Lpp type Number.
Operations in general are provided for general Numbers as well as specific number types
where necessary. If a function only makes sense for a number argument then an error will
be signaled if that argument is not a number.

8.1 Number Types
Lpp’s type hierarchy for numbers is depicted in the following diagram®

Number
I
I I I
Complex Float Rational
I
I I
Ratio Integer
I
I
BigInteger SmallInteger

MinusBigInteger  PlusBiglnteger

All of the number types fall into a more general type above them in the hierarchy. For
example a Rational is also a Number type and an Integer is also a Rational type and a
Number type, and so on and so forth. In Lpp this can be demonstrated by the code

let x = L(18);

typep(x, type(Number)) => t

typep(x, type(Integer)) => t

typep(x, type(Smalllnteger)) => t

typep(x, type(Biglnteger)) => nil

typep(x, type(Ratio)) => nil

The Integer type is by far the most important for doing symbolic mathematics where

overflow or underflow can not be tolerated, such as systems that manipulate polynomials
symbolically. Thus integers can fall into the range of minus infinity to plus infinity. Lpp
implements this with the BigInteger type. When an integer starts out in Lpp it can be a
Smalllnteger or Biglnteger

let x = L(21);

let y = readFromString("2222222222222222221111111111111111111);

1 As of this writing the Complex and Float types have not been implemented.
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In this example x starts off as a SmallInteger and y starts off as a BigInteger. More
specifically y is a PlusBigInteger

print (typeOf (x)) => <Lpp Type for SmallInteger>
print (typeOf (y)) => <Lpp Type for PlusBiglInteger>

As Lpp math functions are applied to an integer it can expand from a SmallInteger
into a BigInteger and vice verse. If the following code were allowed to loop

while(1) {
x = inc(x);
y = dec(y);?}

then x would eventually transform from a SmallInteger to a BigInteger and y from
a BigInteger back into a SmallInteger. BigInteger objects can grow unlimited toward
plus or minus infinity.

A Rational number can either be an Integer or a Ratio, where a Ratio is nothing
more than a pair of Integer objects. The first of the pair being the numerator of the ratio
and the second being the denominator. A Ratio number can start off being read from an
s-expression stream or as the result of a math function

let a = readFromString("12/3");
let w = readFromString("21/22222222221111111111");°
let z = divide(x, y);

As with Common Lisp in Lpp any computation or notation that produces a ratio such
that the numerator and denominator can be evenly divided by an integer then the numerator
and denominator are immediately converted to the divided results. Or in other words the
result is always immediately canonicalized. So given the variables a and w in the above
example

print(a) => 4
print(w) => 7/7407407407037037037

Note that the canonicalization takes place immediately on the readFromString or
divide above and not just on the print, so that there never exists a non-canonicalized
rational number in Lpp.

8.2 Predicates on Numbers

These are predicate functions that test a condition of a single number argument and returns
t if the condition tests true and returns nil otherwise.

Zerop x [Function]
Tests for the condition that the given number z is zero.

plusp x [Function]
Tests for the condition that the given number z is non-zero and positive.

minusp x [Function]
Tests for the condition that the given number z is non-zero and negative.

oddp x [Function]
Tests for the condition that the given number z is odd.
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evenp x [Function]
Tests for the condition that the given number x is even.

8.3 Comparison on Numbers

Numbers can be compared with the following functions.

lessThan x y [Function]
greaterThan xy [Function]
lessThanOrEqual xy [Function]
greaterThanOrEqual xy [Function]

These functions take Lpp Number objects for arguments x and y and return non-nil if
the comparison is true and nil otherwise. For each of these functions respectively non-nil
is returned if z is less than y, = is greater than y, x is less than or equal to y, z is greater
than or equal to .

Note that the equality of Numbers can be checked using equal and more efficiently using
eql See Section 6.5 [Equality Predicates|, page 29.

8.4 Arithmetic Operations

Basic arithmetic can be done on Lpp Numbers with the following.

plus xy [Function]
minus xy [Function]
times xy [Function]
divide xy [Function]

In these functions z and y must each be Lpp Numbers or int types and the returned
result is a new Lpp Number. Their names describe what they do. It it worth mentioning
however that divide does not truncate its value in any way, use the truncate function for
that See Section 8.5 [Component Extractions on Numbers]|, page 36. If divide is given two
number that do not divide evenly it will return an Lpp Ratio of the form x/y after it has
been rationally canonicalized See Section 8.1 [Number Types|, page 33. For example

divide(L(12), L(4)) => 3 // evenly divides

divide(L(13), L(4)) => 13/4 // doesn’t so returns ratio

divide(4, L(12)) => 1/3 // returns canonicalized ratio

truncate (L(13), L(4)) => 3 // Use truncate function to truncate
inc x [Function]
inc x delta [Function]
dec x [Function]
dec x delta [Function]

These functions take an Lpp Number z and increments it in the case of inc and decre-
ments it in the case of dec. The argument z is returned with the new value. Normally the
increment or decrement is by 1, however if an optional second argument delta is given it
must be an Lpp Number or int and the increment or decrement is by delta instead of 1.
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Both inc and dec modify the object x so that most of the time a new object is not
created. However there are cases where the a new object is created. This is when there
is an object transition, for example from a Smalllnteger to a Biglnteger See Section 8.1
[Number Types], page 33. So in the following

inc(x, 1024); // OK but
x = inc(x, 1024); // this hadles object transition cases

if there is no transition expected then the first is fine. If a transition is possible then the
second must be used and is the recommended form most of the time.

When there is an object transition Lpp automatically garbage collects the defunct object
and returns the new incremented or decremented object. So in this case if the second code
line above were not used then the new object would be lost and becomes a potential memory
leak and x would point to deallocated memory.

negate x [Function]

The negate function simply negates the Lpp number object that x points to. While this
is similar to inc and dec in that it modified the object x, the object x is never transitioned to
another type of object and hence does not have the transitioning concern. In the following

negate (num) ; // Always OK
num = negate(num); // Does the same thing, but unnecessary
other = negate(num);

the first is always safe to do and recommended, however the second works also but in
unnecessary. The third would both negate num and set other to the negated num.

gecd xy [Function]

The gecd function returns the greatest common divisor of x and y each of which must
be an Lpp Integer or int type. The result is always a positive Lpp Integer. Here are some
examples

gcd(108, L(117)) => 9
gcd(L(123), -48) => 3
gcd(ged(a, b), c); // Returns the gcd of a b and c

8.5 Component Extractions on Numbers

numerator x [Function]

denominator x [Function]

Given z, an Lpp Rational number or int, the numerator function returns the numerator
of x and denominator returns the denominator. Each function returns an Lpp Integer. If
an integer n is given as the argument then it is treated as if it was n/1 so that numerator
returns n and denominator returns 1. For example

let ratio = divide(23, -198);
numerator (ratio) => -23
denominator(ratio) => 198
numerator (numerator (ratio)) => -23
denominator (numerator (ratio)) => 1
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numerator0f x [Function]

denominatorOf x [Function]

Since Lpp maintains Ratio objects as pairs of Lpp Integer objects it allows the ac-
cess of the actual numerator and denominator objects. The functions numerator0f and
denominatorQ0f are exactly the same as numerator and denominator respectively except
for the fact that they do not make a copy but instead return the actual Integer object.
This is not necessary in Lisp but in C++ this allows operations on the parts of a Ratio
without having to worry about deallocating the copies. This is a useful efficiency; however
the programmer has the responsibility to not inadvertently change parts of a Ratio object
which could break the rational canonicalization rule and even break the code. For example

let ratio = readFromString("23/198");

times (numerator(ratio), denominator(ratio)); // QOops, memory leak
times (numerator0f (ratio), denominatorOf(ratio)); // No leak

dec (numerator(ratio)); // OK, doesn’t change ratio

dec (numerator0f (ratio)); // Qops, does change ratio ...

// and breaks canonicalization rule,
// should now be 1/9 instead of 22/198

truncate x [Function]
truncate xy [Function]
truncateCons x [Function]
truncateCons xy [Function]

The truncate function with a single argument z converts it to an integer by truncating
it toward zero. So if an integer n is given as the argument then it just returns a copy of
n. If given a ratio as the argument then it is truncated as described here. If given two
arguments x and y then truncate acts as if it is given a single ratio argument of x/y. The
truncateCons function returns a cons whose car is what truncate would have returned
and whose cdr is the remainder. The arguments to truncate and truncateCons can be
int values or Lpp Rational numbers. Here are some examples

truncate(L(5)) => 5

truncate(divide(L(13), L(4))) => 3
truncate(readFromString("13/4")) => 3

truncate(13, L(4)) => 3

truncateCons (readFromString("13/4")) => (3 . 1)

let a = readFromString("5/3"); let b = readFromString("-2/3");
truncate(a, b) => -2

truncateCons(a, b) => (-2 . 1/3)

floor x [Function]
floor xy [Function]
floorCons x [Function]
floorCons xy [Function]

The floor family of functions above are the same as the truncate family above except
that floor truncates toward negative infinity. For example



Chapter 8: Numbers 38

floor(L(5)) => 5

floor(divide(L(13), L(4))) => 3

floor(readFromString("13/4")) => 3

floor(13, L(4)) => 3

floor(-13, 4) => -4

floorCons(readFromString("13/4")) => (3 . 1)
floorCons(readFromString("-13/4")) => (-4 . 3)

let a = readFromString("5/3"); let b = readFromString("-2/3");
floor(a, b) => -3

floorCons(a, b) => (-3 . -1/3)

rem xy [Function]

mod xy [Function]

The rem function returns the same result that truncateCons of the same two arguments
returns in its cdr. The mod function returns the same result that floorCons of the same
two arguments returns in its cdr. For example comparing with the above examples of
truncateCons and floorCons

rem(13, 4) => 1
mod (13, 4) => 1
mod(-13, 4) => 3

8.6 Efficient Specific Number Functions

When performing operations on Lpp numbers there is a very small cost in efficiency to
dispatch on the types of numbers that are passed as argments to a number function. For
example, in the following

plus(x, y);

the x and y arguments could be two Smalllnteger objects, a Smalllnteger and a Bigln-
teger object, a Biglnteger and a Smalllnteger object, a Smalllnteger and a Ratio object, a
BigInteger and a Ratio object ... etc See Section 8.1 [Number Types|, page 33.

This cost, albeit small, can be completely eliminated by casting specific types on the
number arguments®. This can only work when the program knows absolutely what the
specific types of numbers are occurring. For example if in a program segment it is absolutely
known that only Biglnteger objects are occurring then the following

plus(asThe(BigInteger, x), asThe(BigInteger, y));
would eliminate any dispatching cost.
This situation is rare and it is recommended that the cost is so small in proportion to

the algorithms involved that this casting should routinely be avoided; it is simply not worth
it.

2 As of this writing, number functions only dispatch on the specific number types: Smalllnteger, BigInteger
and Ratio.
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9 Characters

There is only one set of Lpp Character objects where each corresponds to one C++ character
constant. So there is no overhead in generating Character objects and since there is only one
object per character constant they can reliably be compared with eq. The initial Character
objects are lazy generated, ie. only generated on demand since most characters are not even
used in most program applications.

The character functions that deal with character attributes such as alphaCharP,
charUpcase, etc. are only effective on the standard character set as defined by the
Common Lisp specification.
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9.1 Predicates on Characters

The function characterp can be used to determine if an object is a Character object, See
Section 6.4 [Specific Data Type Predicates], page 28. In the rest of these predicates the
given character argument must be a Character object; if it is not, an error is signaled.

standardCharP character [Function]
standardCharP returns t if character is a standard character and nil otherwise. See
the Common Lisp specification for the definition of standard characters. For example

standardCharP(L(’a’)) => t
standardCharP(L(’ ’)) => t
standardCharP(L(’\n’)) => t
standardCharP(L(’?’)) => t
standardCharP (codeChar(2)) => nil

alphaCharP character [Function]
digitCharP character [Function]
alphanumericp character [Function]

alphaCharP returns t if character is an alphabet letter of either case and nil otherwise.
digitCharP returns t if character is a 0-9 digit and nil otherwise. alphanumericp returns
t if character is either a letter or digit and nil otherwise.

upperCaseP character [Function]

lowerCaseP character [Function]
upperCaseP returns t if character is an upper case letter and nil otherwise. lowerCaseP
returns t if character is a lower case letter and nil otherwise.
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9.2 Character Construction

codeChar code [Function]
codeChar given an integer code returns the Character object encoded as code. code
can be an Lpp Integer, a C++ int or C++ character constant. For example in

let charl = codeChar(’a’);

charl would be set to the Character object representing the C++ character constant ’a’.
Note that the L operator can be used to do the same thing

let charl = L(’a’);

but it is not symmetric in the sense that the L operator applied to an int will return an
Lpp Integer instead of an Lpp Character as codeChar will.

charCode character [Function]

charCodeL character [Function]

charCode returns an int that encodes the given Lpp Character character. charCodeL
does the same but returns an Lpp Integer object. For example using the variable charil
above set to an Lpp Character object the following convert it to an Lpp Integer object, a
C++ int and then to a C++ char

let charlInteger = charCodeL(charl);
int charlInt = charCode(charl);

int charllInt cL(charl);

char chariChar = charCode(charl);
char chariChar = cL(charl);

Note that the results of the cL operator is exactly equivalent to the charCode function,
See Section 3.2.2 [To C++ Primitive Types], page 15.
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9.3 Character Conversions

character object [Function]

character returns the Character object that object can be coerced to or signals an error.
Only Character, Integer, Symbol or String objects can be coerced to a Character object.
For example

character(L(’h’)) => ’h’
character(L("h")) => ’h’
character(L(104)) => ’h’
character(S(h)) => ’h’

charUpcase character [Function]

charDowncase characterz [Function]

The given character must be a Character object. If character is a lower case letter
charUpcase returns the corresponding upper case letter Character object. If chacacter is
an upper case letter charDowncase returns the corresponding lower case letter Chacacter
object. Otherwise both just return character.
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10 Sequences

All Common Lisp functions that operate on sequences operate on either lists or vectors.
Strings are currently the only vectors in Lpp.

Many sequence functions take an optional test argument that is a predicate function of
two arguments that tests for the action of the function to take place, otherwise eql is used.
For example in

remove (obj, sequence)
remove (obj, sequence, test)

The first remove will remove the elements of sequence that are eql to the object obj.
But in the second remove where the function object test is given then that is used for the
comparison instead of eql. The rule here is that where the test function object is of the
form

test(obj, el)

The single object obj to compare is passed as the first argument and the second argument
el being an element of the sequence to compare to is passed as the second argument. This
ordering is important, for example if the test function was lessThan or a test function that
compares two different object types by analyzing their components.
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10.1 Simple Sequence Functions

length sequence [Function]

lengthL sequence [Function]
length returns the length of the sequence sequence as an int. lengthl is the same but
returns an Lpp Integer object as the length. For example

length(0) => 0

let listl = list(L("one"), L("two"), L("three"));
list(lengthL(listl1)) => (3)

length(listl) + 1 =>4

length(nth(2, 1listl)) => 5

elt sequence n [Function]
elt returns element at index n of sequence sequence. It is an error if integer index n is
outside the boundary of sequence. n can be either an int or Lpp Integer.

setElt sequence n value [Function]

setElt sequence n value gc [Function]

setElt sets the element at index m of sequence sequence to value value and value is
returned. It is an error if integer index n is outside the boundary of sequence. n can be
either an int or Lpp Integer. If an optional fourth argument gc is given and is a function
of one argument it is applied to the element replaced. If argument gc is t then it defaults
to the function gc. If gc is nil then nothing is applied. The optional fourth argument gc
is ignored if sequence is a String.

subseq sequence start [Function]

subseq sequence start end [Function]

subseq returns a copy of the given sequence sequence from given start position index to
the end of the sequence where 0 is the beginning of the sequence. If the optional argument
end is given then that is used instead of the end of the sequence. The end position is
not included in the returned sub-sequence. start and end can be either int or Lpp Integer
objects. If end is an Lpp object and is received by subseq as nil then that is also interpreted
as the end of the sequence. Some examples are

subseq(L("abcdefg"), 3) => "defg"
subseq(L("abcdefg"), 3, Nil) => "defg"
subseq(L("abcdefg"), 3, 5) => "de"
subseq(list(L(1), L(2), L(3)), 0, 1) => (1 2)

copySeq sequence [Function]
copySeq returns a copy of the sequence sequence. A fresh copy of the sequence is returned
and it is guaranteed to be equalp to sequence but not eq to it. For example

let stringl = L("Hello");

let string2 = copySeq(stringl);
equal(stringl, string2) => t
eq(stringl, string2) => nil
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reverse sequence [Function]

nreverse sequence [Function]

reverse returns a copy of the sequence sequence with all of its elements reversed.
nreverse does the same as reverse but a copy is not made and sequence is modified.
For example

let 1listl = 1list(L(1), L(2), L(3), L(4));
reverse(listl) => (4 3 2 1)

listl => (1 2 3 4)

nreverse(listl) => (4 3 2 1)

listl => (4 3 2 1)

let stringl = L("1234");

reverse(stringl) => "4321"

stringl => "1234"

nreverse(stringl) => "4321"

stringl => "4321"

10.2 Modifying Sequences

remove x sequence [Function]

remove x sequence test [Function]

remove returns a copy of sequence sequence with any element eql to x removed. If the
optional third argument test is given it must be an Lpp Function of two arguments and it
used in place of eql for the test. For example:

let listl = 1list(L(1), L(2), L(3));
let list2 = remove(L(2), listl);
listl => (1 2 3)

list2 => (1 3)

listl = list(L("1"), L("2"), L("3"));
list2 = remove(L("2"), listl);

listl => ("1" "2" "3n)

1ist2 => ("1" ngw n3m)

list2 = remove(L("2"), listl, L(stringEqual));
1iSt1 => (lllll "2“ ll3")

list2 => ("1" "3")

nremove x sequence [Function]
nremove x sequence test [Function]
nremove x sequence test gc [Function]

nremove returns the sequence sequence with any element eql to z removed. Unlike
remove, nremove is a destructive operation on sequence. If the optional third argument test
is given it must be an Lpp Function of two arguments and it used in place of eql for the
test. If test is given but nil then again eql is assumed.

The fourth argument gc tells nremove how the removed elements should be garbage
collected. If sequence is a string then gc is ignored. If gc is nil then they are not collected.
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If gc is t then they are fully collected. If gc is an Lpp Function of one argument then it is
called on the removed element.

If sequence is a list then gc is applied to the removed cons and a t value is equivalent
to passing in the gcConsElement function. If you wanted to collect just the cons element
but not its contents you would pass in the gc function as the gc argument. Here are some
examples for lists

let listl = list(L(1), L(2), L(3));
let 1list2 = nremove(L(2), listl);
listl => (1 3)

list2 => (1 3)

let listKeep = list(L(1), L(2), L(3));
let listl = list(L(1), listKeep, L(3));

listl => (1 (1 2 3) 3)

let 1ist2 = nremove(listKeep, listl, 0);

listl => (1 3)

list2 => (1 3)

listKeep => (1 2 3)

listl = list(L("1"), L("2"), L("3"));

1list2 = nremove(L("2"), listl, Nil, True); // Strings are not eql!
1ist1 => (||1ll "2" ||3")

list2 => ("1" "2m n3")

list2 = nremove(L("2"), listl, L(stringEqual), True);
listl => ("1" "3")

1iSt2 => (lllll "3")

Here are some examples of remove and nremove for strings

let stringl = L("Hello World");

remove (codeChar(’0’), stringl) => "Hell Wrld"
stringl => "Hello World"

nremove (codeChar(’0’), stringl) = "Hell Wrld"
stringl => "Hell Wrld"
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10.3 Searching Sequences

position obj seq [Function]
position obj seq start [Function]
position obj seq start end [Function]
positionL obj seq [Function]
positionL obj seq start [Function]
positionL obj seq start end [Function]

position returns the position of the first object found in the sequence seq that is eql to
the given object obj. If the object is not found in the sequence then a -1 is returned. The
positionL functions are the same but an Lpp Integer object is returned for the position
and nil is returned if the object is not found. The optional start argument is a positive
integer as either an int or Lpp Integer object and indicates at what position to start the
search. The optional end argument is also a similar positive integer and it indicates at what
position to end the search. In this case the search is from start to one element before end.
The end argument can also be nil defaulting end to be the length of the sequence, which
would cause a search to the end of the sequence.

positionTest obj seq test [Function]
positionTest obj seq test start [Function]
positionTest obj seq test start end [Function]
positionTestL obj seq test [Function]
positionTestL obj seq test start [Function]
positionTestL obj seq test start end [Function]

The positionTest and positionTestL functions are exactly the same as the position
and positionL functions except that instead of testing for the object obj in the sequence
using eql the function test is used. test must be a function of two arguments the first being
the object 0bj and the second an element of the sequence seq and must return non-nil for
when an object satisfies the test.

Here are some examples

let stringl = L("abcabc");
position(L(’a’), stringl)
position(L(’c’), stringl)
position(L(’a’), stringl, 1)
positionL(L(’a’), stringl, 1,

I
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3) => nil

let listl = list(L(1), L(2), L("three"), L(4));
position(L(4), listl) => 3

position(L("three"), listl) => -1
positionL(L("three"), listl) => nil
positionTest (L("three"), listl, L(equal)) => 2



Chapter 10: Sequences 48

10.4 Efficient Sequence Functions

All sequence functions must dispatch dynamically on the specific type of sequence passed
into the sequence function call. This is a very small overhead especially in Lpp. However
for absolute efficiency any sequence function can be typed for a specific sequence type and
this dispatching overhead will not be incurred. For example in

length(sequence)
if we only expect sequence to be an Lpp String then
length(the(String, sequence))

would cause no sequence dispatching to take place. Or the user could define something
like
inline let length_string(let sequence) {
return length(the(String, sequence);}
inline let length_list(let sequence) {
return length(theOrNil(Cons, sequence);}

and then use length_string when it is expected that sequence will be a string and
length_list when expecting a list.

Since the whole idea of these specific type calls is absolute efficiency, when calling a
sequence function using this method and the function overloads arguments as C++ types
or Lpp types then only the C++ types are allowed. For example if the normal sequence
function can take an int or an Lpp Integer then in the specific type function arguments
only the int will work

subseq(asThe(String, sequence), 3) // Works
subseq(asThe(String, sequence), iL(L(3))) // Works
subseq(asThe(String, sequence), L(3)) // Will not even compile

notice that the last is not allowed by this rule and will not work or even compile.

Frankly, unless absolute efficiency is desired, the overhead on sequence dispatching is so
small that this specific dispatching method is rarely worth doing.
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11 Lists

In Lpp, as with Lisp, lists are built up using cons cells and a list is defined as either a cons
or nil. In Lpp a cons cell is an Lpp object with just two members. The car is thought of as
the left member and the cdr as the right member. Ordinary lists are built up with conses,
where for each cons its car contains the contents of the list element and its cdr contains a
pointer to another cons cell. Such a list is usually terminated with nil in the cdr of the
last cons cell of the list. Lists are printed with the Lpp printing functions exactly as they
are in Common Lisp. For example the list of the three symbols a b ¢ is printed as

(a b c)

A list with a non-nil in the last cdr is called a dotted list. A one element list with a
non-nil in the cdr is called a dotted pair. Note that a one element list is a single cons cell.
Dotted pairs are useful in association lists or anywhere an efficient container for associated
dynamic typed variables is needed. They are called dotted pairs because they are printed
in Lisp and by the Lpp printing functions as

x .y
where x is the car and y is the cdr. A dotted list would be printed like
(abc . d
A list can also be circular. For example in the dotted list above if instead of d in the
cdr of the last cons it contained the list itself then it would be circular. A list that is not
circular or dotted is called a proper list.
As can be seen from the flexibility of cons cells as dotted pairs and lists, cons cells are
also useful for building trees. For the purpose of this manual a tree is any Lpp object that

may be an atom (a non-cons object) or a cons whose car and/or cdr may contain another
cons nested to any level. Lists can also be used as sets with various set operations.

11.1 Conses

As mentioned in the preceding section conses can serve as fundamental building blocks of
lists, association lists, dotted lists, trees and sets. A single cons is created with the cons
function.

cons xy [Function]
The cons function returns a new cons whose car is z and cdr is y. For example:

cons(S(a), S(b)) => (a . b)
cons(S(a), list(8(b), S(c), S(d))) => (a b c d)

The accessors of a cons are the car and cdr functions. The car and cdr of a cons can
be set with the rplaca (replace car) and rplacd (replace cdr) functions.

car list [Function]
This returns the car of list which must be either a cons or nil. The car of nil returns
nil. For example:

car(cons(S(a), S(b))) => a
car(list(L(1), L(2), L(3))) => 1
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cdr list [Function]
This returns the cdr of list which must be either a cons or nil. The cdr of nil returns
nil. For example:

cdr(cons(S(a), S(®))) => Db
cdr(list(L(1), L(2), L(3))) => (2 3)

caar cons [Function]
cadr cons [Function]
cdar cons [Function]
cddr cons [Function]

These functions are a convenience but also are important as commonly passed function
objects. They perform successive car and or cdr operations of the cons argument cons and
are defined by the following equivalents

caar (x) == car(car(x))
cadr(x) == car(cdr(x))
cdar(x) == cdr(car(x))

cddr(x) == cdr(cdr(x))

rplaca xy [Function]
The argument z must be a cons and y can be any Lpp object. This changes the car of
z to y and returns the cons z after it has been modified. For example:

let ¢ = cons(L(1), L(2));

rplaca(c, S(a)) => (a . 2)
c = list(8(a), S(b), S(c));
rplaca(c, L(1)) => (1 b ¢)

rplacd xy [Function]
The argument z must be a cons and y can be any Lpp object. This changes the cdr of
z to y and returns the cons z after it has been modified. For example:

let ¢ = cons(L(1), L(2));
rplacd(c, S(a)) => (1 . a)
rplacd(c, list(L(2), L(3))) => (1 2 3)

11.2 List operations

The following are operations on lists.

nth n list [Function]

This returns the nth element indicated by n of the list list where the car of list is the
Oth element. n may be an Lpp Integer or an int and must be positive. If the length of the
list is not greater than n then nil is returned. For example:

let listl = 1list(S(zero), S(one), S(two));
nth(0, listl) => zero

nth(L(2), listl) => two

nth(10, listl) => nil
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nthedr n list [Function]
This returns the result of applying the cdr function n times on list. n may be an Lpp
Integer or an int and must be positive. If the length of the list is not greater than n then
nil is returned. For example:
let 1listl = 1list(S(zero), S(one), S(two));
nthedr (1, listl) => (one two)
nthedr (10, listl) => nil

first list [Function]
second list [Function]
third Ilist [Function]
fourth Iist [Function]
fifth list [Function]
sixth Iist [Function]
seventh Iist [Function]
eighth list [Function]
ninth Ilist [Function]
tenth list [Function]

These functions are provided for convenient accessing of predetermined list element po-
sitions instead of nth and are more efficient. first returns the same as nth with a first
argument of 0, second with a first argument of 1, etc.

list args [Function]
list constructs and returns a list of args which can be 1 or more arguments of type
let. Up to 10 arguments may be given. For example:
list(L("zero"), S(one), L(2)) => ("zero" one 2)
list(S(zero), S(ome), list(L(2), L(3)))
=> (zero one (2 3))

If more than 10 is needed 1istEM should be used.

EM [Constant]

1listEM args [Function]
1listEM is like 1ist except that args can be any number of type let arguments. A global
constant EM, abbreviation for “End Marker”, terminates the arguments. For example:
listEM(L("zero"), S(one), L(2), EM) => ("zero" one 2)
let n = L(1);
listEM(n, n, n, n, n, n, n, n, n, n, n, EM)
= (11111111111

1istSEM args [Function]
1istSEM is like 1istEM except that args can be any number of type char* arguments.
For example:

listSEM("zero", "one", "two", EM) => ("zero" "one" "two")



Chapter 11: Lists 52

last list [Function]

last list n [Function]

last returns the last cons of the list list. With the optional integer argument n it returns
the tail of the list consisting of the last n conses of list. The n argument may be either an
Lpp Integer or an int.

endp object [Function]
endp is false if object is a cons, true if nil, and signals an error for all other values. It
is useful for checking for the end of a proper list.

listLength Ilist [Function]

listLengthL Iist [Function]

listLength is the same as length applied to a list but is guaranteed to return -1 if the
list list is a circular list. 1istLengthL is the same as lengthL but returns nil if list is a
circular list. 1istLengthL can also be used as a function object.

copylist list [Function]
copyList returns a list that is equal to list but not eq. Only the top level of the list is
copied, that is it copies in the cdr direction and not the car direction.

copyAlist list [Function]

copyAlist is meant for copying association lists, See Section 11.4 [Association Lists],
page 53. It is just like copyList except that for each element a cons is replaced in the copy
by a new cons with the same car and cdr.

copyTree object [Function]

copyTree is for copying trees of conses. If object is not a cons it is just returned. If
object is a cons the whole tree of conses in its car and cdr is copied recursively and returned.
In this process conses are copied but non-conses are placed in the new cons as is.

nconc listl list2 [Function]
nconc concatenates list! to list2 and return the concatenated list. Its arguments must
be lists or nil. The arguments are changed rather than copied.

listConcat listl list2 [Function]
listConcat is just like nconc except that its arguments 1istl and list2 are copied
and the copies are concatenated and returned.

For the next two macros push and pop the argument place is any variable that contains
a list. Note that by the definition of a list nil is also considered a list.

push item place [Macro]
item is any object of type let. After the push macro executes place will be a list with
item as the car of the list and the list that was in place as the cdr.

pop var place [Macro]
var is any variable of type let. After the pop macro executes var will contain the car
of place and place will contain the cdr.
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11.3 Using Lists as Sets

member item list [Function]

member item list test [Function]
member searches the list list for an object eql to the Lpp object item. If none is found

nil is returned otherwise the tail of list beginning with the element eql to item is returned.

list is searched at the top level only. Note that member can also be used as a predicate.

If the optional argument test is given it must be an Lpp Function object of two argu-
ments that performs the test in place of eql.

For example:

member (L(2), list(L(1), L(2), L(3))) => (2 3)
member (L(2), 1list(S(one), S(two), L(three))) => nil
let snums = 1listSEM("1", "2", "3" 6 EM);

member (L("2"), snums) => nil

member (L("2"), snums, L(stringEqual)) => ("2", "3")

11.4 Association Lists

An association list is a list of pairs where each pair is an association of a key to a datum.
The pair is represented as a cons where the car is the key of the pair and the cdr is the
datum.

assoc key list [Function]

assoc key list test [Function]

assoc searches for a cons in list whose car is eql to key. If found, the cons is returned
otherwise nil is returned. If the optional third argument test is given it must be an Lpp
Function of two arguments and assoc will use it to do the test in place of eql. For example:

let listl = list(cons(L(1), L(2)),

cons(L(2), L(4)), cons(L(3), L(6)));
assoc(L(2), listl) => (2 . 4)
assoc(L(4), listl) => nil
let listl = 1list(1list(L("1"), L(2)),

list(L("2"), L(4)), 1list(L("3"), L(6)));
assoc(L("2"), 1listl) => nil
assoc(L("2"), listl, L(stringEqual)) => ("2" 4)
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12 Hash Tables

A hash table is an Lpp object that can efficiently map any Lpp object to any other Lpp
object. Each hash table has a set of entries each which associates a particular key with a
value. Entries can be created, removed, modified and found given the key. Since an optimal
hash function and algorithm is used, finding the value is very fast even if there are many
entries.

12.1 Hash Table Functions

makeHashTable [Function]
makeHashTable test [Function]
makeHashTable test size [Function]

makeHashTable returns a new Lpp hash table object. If the optional argument test is
given it should be a predicate function object of two arguments that returns nil unless the
two arguments representing hash table keys are considered equal by the definition of the
function. Or test may be one of the symbols: eq, eql or equal which would correspond to
the function of that symbol name. If test is not given or nil it is assumed to be the eql
function.

The optional argument size if given should be an positive integer argument specifying
the size of the hash table. size may be of type int or Lpp Integer. If size is not given or
nil then a default size of approximately 500 is used. The user is encouraged here to either
use the default size or study how to compute the optimal size of hash tables (See Knuth
“Art of Computer Programming”). Although all sizes will work under Lpp some sizes will
result in better distributions.

puthash key table value [Function]
puthash creates an entry for key with value value in the hash table table. If the key
entry already exists in table then its value is replaced with value. value is returned.

gethash key table [Function]

gethash key table default [Function]

gethash finds the entry for key in the hash table table and returns the entry value. If
not found it returns nil. If the optional third argument default is specified and the key
is not found default is returned instead of nil.

Here is an example:

let table = makeHashTable();

let max = L(100); let min = L(0);
puthash(S(red), table, list(max, min, min));
puthash(S(green), table, list(min, max, min));
gethash(S(blue), table) => nil

gethash(S(red), table) => (100 0 0)

remhash key table [Function]
remhash removes the entry for key in hash table table. This is also a predicate that
returns t if there was an entry and nil if not.
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clrhash table [Function]
clrhash removes all entry from the hash table table and returns table.

hashTableCount table [Function]

hashTableCountL table [Function]

hashTableCount returns the number of entries in hash table table as an int.
hashTableCountL does the same but returns an Lpp Integer. A hash table starts out with
zero entries.

maphash function table [Function]
For each entry in hash table table maphash calls function function on two arguments:
the key of the entry and the value of the entry. For example the following maphash would
display the key and value for all entries in hash table ht
let printKeyValue(let key, let value) {

princ(" key = "); prinl(key);

princ(" value = "); prinl(value); terpriQ);

return Nil;}

maphash (L (printKeyValue), ht);

12.2 Primitive Hash Function

The primitive hash function sxhash is used internally by the Lpp hash functions but is
made public so that the user can create other hashing structures.

sxhash object [Function]

sxhashL object [Function]
sxhash returns a hash code positive integer for the Lpp object object as an int. The
returned integer is such that for given objects obj1 and obj2
equal(objl, obj2) => sxhash(objl) == sxhash(obj2)
So for example two different strings “abc” will return the same sxhash integer. The
function sxhashL is exactly the same except that it returns an Lpp Integer object and it is
guaranteed that for a given object obj

sxhash(obj) == iL(sxhashL(obj))
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13 Strings

Lpp Strings are considerably more efficient than ordinary C++ strings in algorithms that
require the length of the string since the length is held as a slot in the String object. Ordinary
C++ strings must be searched for the 0 end character. Also, null characters (0 character
code) are allowed inside Lpp Strings and not inside ordinary C++ strings. When converting
from Lpp Strings to C++ strings the programmer must be aware of this. If there is a 0 in
an Lpp String then the converted ordinary C++ string will look like it’s been truncated.
Rarely is this a problem since either the programmer knows that in an application 0’s may
be stored in Strings in which case he only uses Lpp Strings (in such a case something like
Lpp Strings must be used anyway) or the programmer’s application only needs to convert
ordinary C++ strings to Lpp Strings but not vice verse.

13.1 String Comparison

stringEqual sI s2 [Function]
stringEqual compares Lpp String s! to Lpp String s2 and returns t if they are the same
length and all characters of s1 are the same characters of s2. Otherwise nil is returned.
For example:
stringEqual(L("foo"), L("Foo")) => nil
stringEqual(L("foo"), L("foo")) => t

stringEQUAL sI s2 [Function]
stringEQUAL is the same as stringEqual except that character case is ignored. For
example

stringEQUAL(L("foo"), L("Foo")) => t

13.2 String Construction and Manipulation

makeString size [Function]

makeString size char [Function]

makeString returns a new string of given size which can be an int or Lpp Integer. The
string characters are not initialized unless the optional argument char is given in which
case the whole string is initialized to characters of char which must be an Lpp Character
object.

stringConcat sl s2 [Function]
stringConcat returns a new Lpp String which is a concatenation of Lpp Strings s! and
s2. For example:

stringConcat(L("one "), L("two")) => "one two"
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14 Input Output

Lpp provides typical Common Lisp functions for doing input/output of Lpp objects such
as print, read etc. In addition to these Lpp objects can also be output to C++ streams
automatically with no extra work.

14.1 Printed Representation of Lpp Objects

All predefined Lpp objects have prinl and princ methods that print the object as you
would expect in Common Lisp. For example the following code for printing some Lpp
objects

prinl(L("Hello world"); terpri();

princ(L("Hello world");

print(cons(S(a), S(b)));

would produce on cout

"Hello world"

Hello world

(a . b)

As described in this manual, See Section 3.4 [Accessing Type Meta-Objects], page 17,
the programmer can dynamically set the prinl and princ methods of his objects. All Lpp
objects whose prinl and princ methods have not been set have default print methods
which prints the object as

<description address>

where description describes the type of the object and address is the address in memory
where the object is allocated.

defaultPrinlAddress [Variable]
The defaultPrinlAddress global variable when non-nil will cause the default printing
of objects to print as
<description>
that is leaving out the address part. This is useful for things like regression tests on
program output where the same output is expected from one run to another.

The value of defaultPriniAddress defaults to t.

14.2 Reading

Lpp objects can be read and constructed from C++ input streams.

read [Function]

read stream [Function]

read reads one Lpp object from the C++ input stream stream and returns that object.
The syntax of such objects on stream is the same as Common Lisp except with no special
dispatching characters such as “#” or quote. Lpp read does ignore semicolon comments
to the end of line however. If the stream argument is not provided cin is assumed. For
example suppose that we type (to cin) the following:
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red
"Hello world"
(1 two 3)
Then calling read three times will produce:
let symboll = read();
let stringl = read();
let listl = read();

symbolp(symboll) => t

stringp(stringl) => t

listp(listl) => t

numberp (first(listl)) => t

list(symboll, stringl, listl)

=> (red "Hello world" (1 two 3))

readFromString string
The argument string is either a char* string or an Lpp String object. readFromString
is the same as read but uses the string string instead of a C++ stream. For example:

let symboll =
let stringl =
let listl = readFromString("(1 two 3")
symbolp(symboll) => t

stringp(stringl) => t

listp(listl) => t

numberp(first(listl)) => t

list(symboll, stringl, listl)

=> (red "Hello world" (1 two 3))

14.3 Printing

The Lpp printing functions emulate Common Lisp printing functions in that there are two
ways to print Lpp objects to C++ streams, with or without escape characters. All Lpp
objects automatically get two type dispatching printing functions for doing this. The user
can redefine these dispatching functions if need be, See Section 3.4 [Accessing Type Meta-
Objects|, page 17.

prini
prini
princ
princ
print

print

object
object stream
object
object stream
object

object stream

readFromString("red") ;
readFromString("\"Hello world\"");

58

[Function]

Function]
Function

[
[
[Function
[
[

]
]
Function]
Function]

]

[Function

All of these functions print the Lpp object object to the C++ output stream stream. If
stream is omitted cout is assumed. All of these functions return object as its value.

With prinl escape characters are used as appropriate while princ prints object with
no escape characters. Roughly speaking the output of prini is suitable for read and the
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output of princ is intended to look good to people. print is just like prini except that the
printed representation of object is preceded with a newline and followed by a space. Some
examples will make this clear, the following code
let obj = L("one two three");
prini(obj);
print (object);
princ(obj);
would produce on cout
"one two three"
"one two three" one two three
Note that the last output produced by princ when read back using read would produce
the Symbol one instead of the String "one two three".
C++ output stream operators for Lpp objects default to using princ so that the following
code
let obj = L("one two three");
cout << "Object = " << obj << endl;
would produce on cout
Object = one two three

0 object [Macro]
The 0 macro allows the Lpp object argument object when using C++ output stream
operators to print using prinl. Contrast the following code and results using the 0 macro
with the previous example
let obj = L("one two three");
cout << "QObject = " << 0(obj) << endl;
would produce on cout
Object = "one two three"
Note that it only makes sense to use the 0 macro with C++ stream operators. The results
of using the 0 macro elsewhere is undefined.

terpri [Function]

terpri stream [Function]
terpri outputs a newline to the C++ output stream stream. If the stream argument is
omitted cout is assumed. terpri returns nil.

finishOutput [Function]

finishOutput stream [Function]

finishOutput attempts to ensure that all output sent to the C++ output stream stream
has reached its destination and only then finally returns nil. If the stream argument is
omitted cout is assumed.

pprint object [Function]
pprint object stream [Function]
pprint object stream start end [Function]

pprint is just like print except that the space is omitted after object is printed to the
C++ output stream stream and the output is pretty. If the stream argument is omitted cout
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is assumed. If the start and end arguments are included the output will be pretty printed
between columns start and end. start and end must be ints. All of these functions return
object as its value.

Pretty means that the object is printed using extra white space to make it easily human
readable. For example nested lists are indented to make the tree structure apparent.

prinlToString object [Function]

princToString object [Function]

Both of these functions return an Lpp String with the printed representation of ob-
ject. priniToString returns the prinl printed representation. princToString returns the
princ printed representation. For example:

let obj = priniToString(list(L(1), L(2), L(3)));
prini(obj) => "(1 2 3)"

Typically priniToString and princToString are used to print relatively short expres-
sions or values to strings. The maximum length of such a string allowed by default is
4096 characters which is determined by the define variable LPP_PRINTOSTRING_MAX.
If more characters are desired for some reason redefine LPP_PRINTOSTRING_MAX to a
value bigger than 4096 before the include file Lpp.hh in the Lpp library compile stream.

priniLength object [Function]
prinlLengthLl object [Function]
princLength object [Function]
princLengthL object [Function]

priniLength returns as an int the prini printed representation length of the Lpp object
object. priniLengthL does the same but returns the length as an Lpp Integer. princLength
and princLengthL are the counterparts for princ. Here are some examples:

prinilength(S(hello)) => 5
prinilength(L("hello")) => 7
princLength(L("hello")) => 5
prinilength(L(-1234)) => 5
prinilength(list(L(1), L(2))) => 5
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15 File System Interface

Lpp provides a small collection of file system interface functions that are somewhat similar to
corresponding Common Lisp functions. Since C++ provides a library of file stream functions
these Lpp file system interface functions are not absolutely necessary. They do however
make it easy to bring the file system into Lisp semantics. For example the fileDirectory
function returns a Lisp list of file names.

currentDirectory [Function]

currentDirectory returns an Lpp String that represents the environment’s notion of
the current directory that the Lpp program is executing in. For example in Unix this is the
current directory when main was executed. The returned String has a terminating directory
identifier (if such exists) such that if the String were concatenated with a plain file name
the result would be a complete file specification. For example suppose on a Unix system
the current directory is /home/me/lpp/lib then

stringConcat (currentDirectory(), L("filex"))
=> "/home/me/lpp/lib/filex"

fileDirectory file [Function]

Given a file specification file fileDirectory will return a list of names of the files in the
directory if the given specification names a directory in the file system or a file specification
relative to the current directory. An error is signaled if the the given file can not be
opened as a directory. The file argument can be an Lpp String or a charx string. The
returned list of names are Lpp Strings. Here are some examples

let dirList = fileDirectory(currentDirectory());
int dirLength = length(fileDirectory("/home/me/lpp/lib/test"));
let filtered = mapcan(L(filterFunction), fileDirectory("test"));

Note that fileDirectory is similar to the directory function in Common Lisp. But
while the argument to directory is a file pattern string in Common Lisp the argument to
fileDirectory is an exact directory name.

probeFile file pred [Function]

Given a file specification file and a predicate symbol pred returns t if what pred indicates
is true of the given file and nil otherwise. The argument file is a file specification in the
file system or a specification relative to the current directory. It can be a char* string or an
Lpp String. The pred argument can be one of the symbols: exist, readable, writable,
executable, directory, regular, symbolicLink.

If given the symbol exist probeFile returns t if the given file specification exists. If
give readable, writable or executable it will return t if the file is readable, writable
or executable respectively. If given directory it returns true if the file specification is a
directory. If given regular it will return t if the file is a regular file. Note that a regular
file can be other than a non-directory in some file systems, such as a Unix file system. For
file systems that have symbolic links, if given the symbol symbolicLink it returns t if the
file is a symbolic link.

For example the directory symbol can be used to recursively descend directories
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void recursiveDescend(let directory) {
dolist(file, fileDirectory(directory)) {
// Do something with this file.
if (probeFile(file, S(directory))) recursiveDescend(file);}}

Note that calling probeFile with the symbol exist is similar to the probe-file of
Common Lisp, that is, it is a predicate for the existence of the file. But where probe-file
in Common Lisp returns the true name of the file probeFile just returns t if the file exists.
This was done on purpose in Lpp to avoid generating a String object that would just need
to be garbage collected if all that we wanted to use probeFile for was as a predicate.
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16 Errors

error string args [Function]

error takes a string argument string and 0 or more optional arguments args and reports
an Lpp error message using string and enters an error handler. The string argument can
be either an Lpp String or a char* string and it may contain printf style substitution
specifiers that correspond to the optional args just as in printf. For example:
if (typeOf (object) != type(MyType)) {

char* objectID = sL(priniToString(object));

char* expectType = typeName (type (MyTupe)) ;

error("Object %s is not of type: %s", objectID, expectType);}
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17 Miscellaneous Features

17.1 Identity Function

identity object [Function]

This function simply returns the object object. This function is useful for debugging
or when a Function object is needed by some other function and no operation more than
identity is needed. See the maplist example using identity, See Section 5.2.2 [Mapping],
page 24.

17.2 Debugging Tools

Lpp provides debugging tools, primarily to make it easier to debug programs using Lpp in
run time debuggers like gdb (Gnu Debugger).

pdb object [Function]
pdc object [Function]
ppdb object [Function]

These functions can be used in a debugger to print and inspect Lpp objects. Each takes
one argument object which is any Lpp object or 0 (note that 0 prints as nil). The names of
these functions have been kept short for easy typing in a debugger. In some debuggers such
as gdb they can be evoked from a user defined macro which gives even more brevity. pdb
uses prinl, pdc uses princ and ppdb uses pprint. For example assume we are debugging
the following code in gdb

let listl = 1list(L("One"), L(2), S(Three));
findJunk (first(list1)); // <--- Assume breakpoint here

and assume that we had placed a breakpoint at the findJunk call. Then after running
and catching the breakpoint in gdb

(gdb) p pdb(listl)
("One" 2 Three)

(gdb) p pdb(car(listil))
lanell

(gdb) p pdc(car(listl))
One

Note the difference between the pdb and pdc printing of the String "One", the pdb version
is quoted and the pdc version is not. This reflects the standard Common Lisp difference
between the way that Lisp objects such as strings print using princ versus print1l. However
the Lpp user is free to capitalize on this for his own objects for example by having one print
method for standard C++ stream output (princ) and another for debugging inspection
purposes. And since print methods can be set dynamically in the object’s type meta-object
the user can have any number of ways to print an object depending on the setting, See
Section 3.4 [Accessing Type Meta-Objects], page 17.
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17.3 Garbage Collection

Lisp implementations have the advantage that all objects are accessible through some path
originating in the symbol tables and the whole accessible structure is an intrinsic part of
Lisp. Thus, much of the extra data structure for doing garbage collection in Lisp exists for
free and is more cogent than C++ as a starting point for garbage collection algorithms. Since
Lpp does not have this structure available under C++ and since there are many reasonably
good C++ garbage collection algorithms available, Lpp does not commit to any of these in
principle nor provides any kind of automatic garbage collection.

Lpp does provide a facility for doing manual garbage collection much the same way
delete works in standard C++. But it makes the garbage collection of complex Lpp data
structures easier. All Lpp garbage collection functions only serve to deallocate the storage
of some data and then just return nil.

gc object [Function]
gc garbage collects the Lpp object object.

Here is a trivial example:

let a = L(1);

let b = L(2);

let ¢ = plus(a, b); // assume c is needed from here on
gc(a); ge(b); // and a and b are not

In general, for predefined Lpp object types the object and all of its components are
collected except for some exceptions listed in the next paragraph. For user defined Lpp
objects gc calls delete of the specific subtype class for object.

Since Lpp symbols have global import gc will do nothing if object is a Symbol. Usually
you do not want to remove symbols. However in cases where you absolutely must the
proper way to remove symbols and have them collected is to use unintern which removes
the symbol from the system and garbage collects all of the associated parts, See Section 7.2
[Creating Symbols], page 31. If gc is called on a cons it collects the cons object only and
not its car or cdr.

For garbage collecting cons structures gcList should be used for garbage collecting top
level lists and gcTree for collecting tree structures. In these functions a leaf argument says
what to do with the leaf nodes of a list or a tree. Leaf nodes are a car or cdr of a cons
that is something other than a list (nil or another cons). However the main difference
between gcList and gcTree is that with gcList the car of every cons in the top level list
is also treated as a leaf node for the listed meanings below of the leaf argument. Note that
because of this using gcList with a special user collection function as the leaf argument
the user can effectively create his own special version of gcTree. This also implies that if
the programmer wants to use gcTree on a top level list that has a cons in some of its cars
he should use gcTree instead or else supply his own leaf function argument to collect such
cars or otherwise take care of them.

The leaf argument can be one of three things with the following implied meanings:

nil => Do not garbage collect leaf nodes
t => Apply gc() to leaf nodes
Function f => Apply Function f to leaf nodes
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gcList will handle all lists including circular and dotted lists. gcTree will handle all
trees except trees that have circular or multiple references. However it will break with an
explanation error message if it detects either circular or multiple references for most trees.
The only cases where it doesn’t detect is where there are circular or multiple reference paths
where there are no leaves in the path. For example

let self = list(True);
rplaca(self, self);

Clearly this simple tree has a circularity with no leaf nodes in the circular path. This
would fail with gcTree. But this is not usual and is probably not even useful. In such
unusual trees the programmer must either create his own collection function or else store a
non-cons in such a problematical cons slot and then call gcTree.

gclist list leaf [Function]

gcList will garbage collect the list list and leaf nodes depending on the leaf argument
as described above. For this purpose the cars of each cons in the list will always be treated
as leaf nodes even if they contain other cons objects.

Here are some examples.

let listl list(L("one"), L("two"), L("three"));
let list2 = copyList(listl);

// leaf argument is nil, so listl is grabage collected
// but Strings "one", "two", "three" are left alone.
gcList(listl, Nil);

// leaf argument is t, so list2 is grabage collected
// and so are Strings "one", "two", "three"
gclist(list2, True);

listl = list(myObjectl, myObject2);

// leaf argument is the Function myCollector

// so listl is garbage collected while the function myCollector
// is applied to the leaf node objects myObjectl, myObject2
gcLlist (listl, L(myCollector));

gcTree tree leaf [Function]

gcTree will garbage collect the tree tree and leaf nodes depending on the leaf argument
as described above. The tree argument can be a cons or a non-cons Lpp object. If it is a
non-cons object then the leaf argument is applied to the object.

If there are circular or multiple references in the tree in paths that have one of more
leaves then gcTree will break with an error message stating such. For any trees with circular
or multiple references the programmer can either store a non-cons in the offending cons slots
and then call gcTree or write a gc function specialized for such a data structure and call
gclist passing the specialized function as the leaf argument.

Here are some examples using association lists which are in effect small trees:
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let alistl = list(cons(L("one"), L(1)),
cons (L("two"), L(2)),
cons (L("three"), L(3)));

copyAlist(listl);

let alist2

// leaf argument is nil, so alistl is grabage collected
// but Strings "one", "two", "three" are left alone

// and numbers 1, 2 and 3 are left alone.
gcTree(alistl, Nil);

// leaf argument is t, so alist2 is grabage collected
// and so are Strings "one", "two", "three"

// and numbers 1, 2 and 3.

gcTree(alist2, True);

alistl = list(cons(L(1), myObjectl),
cons(L(2), myObject2));

// leaf argument is the Function myCollector

// so alistl is garbage collected while the function myCollector
// is applied to the leaf node objects 1, 2, myObjectl, myObject2
gcTree(alistl, L(myCollector));

It is easy to garbage collect raw cons objects and their parts.
For example assume the variable var contains a cons,
then

gcTree(cdr(var)); // Collects just the whole cdr tree of var
gc(var); // Collects just the cons var and not the car or cdr

There are many combinations of ways to collect cons structures
and their parts. But the following function fulfills a common case

gcConsElement cons [Function]

Given a cons in the cons argument gcConsElement will

garbage collect the whole car tree of cons using

gcTree and then garbage collect the comns itself. It is

useful for completely collecting ordinary list elements that are

represented by cons structures and is used by some Lpp functions that
optionally perform a garbage collection on destructive list

operations, such as nremove, See Section 10.2 [Modifying Sequences], page 45.|]
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18 Programming Cautions

This chapter is more for programmers that are used to Lisp implementations and need to
be aware of some idiosyncrasies of C++ as it relates to Lpp.

18.1 Memory Leaks

Infamous to C and C++ are those annoying memory leaks. In Lisp a programmer does not
have to worry about memory allocation but it is a different story in C++. When a program
allocates memory and neglects to deallocate the memory when it is no longer needed then a
potential memory leak exists. If a program has a memory leak in some code and then loops
on that code then eventually the program will use up available memory and break with a
memory allocation error.

In C++ one must either link with one of the many automatic garbage collector libraries
or else each function must make sure which data it owns and manually deallocate the data’s
memory when it is no longer referenced. Lpp provides some manual garbage collection
functions which help See Section 17.3 [Garbage Collection], page 65. But the programmer
must still be aware of how potential memory leaks can occur.

All Lpp data is allocated from the heap and not the stack. So no Lpp data is automat-
ically deallocated by virtue of exiting a function. Symbols and character objects though
are not problematical. There is only one set of character objects that are shared by all
programs. And symbols once interned are also shared by all programs. So for example in
the following code

listl = 1list(S(syml1), S(syml), S(syml))

the symbol sym1 will only get allocated on its first internment. Or in other words, in the
case of 1ist1 the first S(sym1) will intern the symbol sym1 and allocate it (assuming it has
not been interned previously) and then return the symbol. The second and third S(sym1)
then will only return the already interned symbol sym1.

Usually the programmer will never have a need to deallocate symbols since the nature
of their semantics is to be persistent within the full extent of the program. Symbols can be
deallocated with unintern if it is absolutely necessary See Section 7.2 [Creating Symbols],
page 31.

To be safe then, all other Lpp objects should be garbage collected when known to be no
longer referenced or else simulate the Symbol semantics. For example if in a function, we
reference a commonly used string like the following

let b = stringConcat(a, L("-something-common"));

and that function can be called repeated times, then the string should either be made
static

static let common_string = L("-something-common");
let b = stringConcat(a, common_string);

or alternatively it can be manually garbage collected

let common_string = L("-something-common") ;
let b = stringConcat(a, common_string);
gc (common_string) ;
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otherwise there will be no reference to such strings allocated and when the function exits
the string objects would exist in memory until the program exits.

The manual garbage collection in this last case is a bad choice since we know that the
same string will be used over and over again. The static variable containing the common
string would be a better choice. But in a case where there is an intermediate value whose
value we can not predict then a manual garbage collection would be more appropriate. The
following for example would be a such a memory leak

let a = minus(d, times(b, c));

where b, ¢ and d are input variables. The memory leak would be where the times
returns a value. That value is not referenced anywhere after the minus is executed. So to
prevent a memory leak here this should be coded instead as

let temp = times(b, c);
let a = minus(d, temp);
gc(temp) ;

The kinds of potential memory leaks mentioned above are relatively simple to find and
fix. But in the real world where large complex data structures are passed around, memory
leak bugs can be quite difficult to pin down. It is a classical problem of which function owns
what data when. Lpp provides some assist to this by making it easier to sweep up large
branches of data that are no longer referenced with functions like gcList and gcTree but
the programmer must carefully design the growth and collapse of such complex structures
so as to avoid memory leaks.

18.2 Order of Evaluation

In Lisp the order of evaluation of function arguments is strictly left to right. Sometimes
this is important since successive argument evaluation may depend on earlier arguments.
Unfortunately in C++ the order of evaluation is undefended. Therefore the programmer
must not depend on this. For example in the following code

let a = L(5);
list(inc(a, a), dec(a));
the 1ist function could return (10 9) or (8 4) depending on the C++ implementation.
There is no standard guideline here other than to watch out for such order of evaluation
problems and if necessary re-code in a different way.
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Appendix A Appendix - read/print User Interface
(rpUI)

Lpp comes bundled with rpUI, a read/print User Interface, that is implemented using the
Lpp library. By providing a selection of simple menus rpUI makes it easy to create complete
applications using Lpp. Read/print interfaces are also good for creating debugging interfaces
to applications and regression testing procedures.

Two kinds of menus are available: First, Static Numerical menus present the same fix
list of choices for the user with sequential integers prefixing each choice. The user types in
an integer to make a selection. Second, Dynamic Symbolic menus just prompts for a symbol
and a choice is made based on the symbol that the user enters.

rpSnMenu spec [Function]

This function returns an Lpp object representing a Static Numerical menu based on the
specification spec provided. The menu object returned can be used in subsequent calls to
chooseRpMenu where the user needs to make a menu selection. spec is a list of Lpp Strings.
The first entry in the list will be the menu header. The rest of the list will specify sequential
menu selections. When chooseRpMenu is called the user will be presented with the header
followed by the choices prefixed with integers and then a prompt for an integer. If the user
enters anything other than one of the integers corresponding to a choice the user is notified
of a bad entry and the menu is presented again. If the user enters an integer corresponding
to a choice that integer is returned from chooseRpMenu as in int.

rpDsMenu spec [Function]

This function returns an Lpp object representing a Dynamic Symbolic menu based on
the specification spec provided. The menu object returned can be used in subsequent calls to
chooseRpMenu where the user needs to make a menu selection. spec is a list of Lpp Strings.
The first entry in the list will be the menu prompt. The rest of the list is alternating symbol
description Strings where symbol will be the expected symbol that the user is expected to
enter for that choice and description is a String describing the choice. When chooseRpMenu
is called the user will be presented with the prompt. If the user enters anything other than
one of the symbols corresponding to a choice the user is notified of a bad entry and then
menu of choices with symbol description pairs is presented. If the user enters a symbol
corresponding to a choice then an integer is returned from chooseRpMenu as an int. The
integer corresponds to the position in the spec list of choices, where the first choice will
return 0, the second 1 etc.

chooseRpMenu menu [Function]

This function is given the argument menu which is either an rpSnMenu or an rpDsMenu.
The menu or prompt is presented as indicated above and when the user makes an entry an
int of 0 to n is returned where there are n - 1 choices in the menu.

The following simple program illustrates the use of both kinds of menus:
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#include <rpMenu.hh>
#include <Lpp.hh>

main() {
let menul = rpDsMenu
(L("Enter command (or 7 for help): "),
listSEM("exit", "Exit program",
"fix", "Fix me",
"list", "List Sn menu", EM));
let menu2 = rpSnMenu(L("Choose one of"),
1istSEM("choice 0", "choice 1", EM));
int choice; int doing = 1;
while (doing) {
switch (chooseRpMenu(menul)) {
case 0: doing = 0; cout << "Goodbye\n"; break;
case 1: cout << "Thank you!\n"; break;

case 2:
choice = chooseRpMenu(menu2) ;
cout << "\nChoice = " << choice << endl;}}}

When the above program is run it will produce the following dialog:

Enter command (or 7 for help): 7

Choose one of:
exit = Exit program
fix = Fix me
list = List Sn menu
Enter command (or 7 for help): 1list

Choose one of
0 = choice 0
1 choice 1

Enter 0-1: 1

Choice = 1

Enter command (or 7 for help): exit
Goodbye
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