

The Compact Muon Solenoid Experiment
TriDAS Trigger and Data Acquisition

RU Builder
User Manual

Version rubuilder_G_V01_12_00
August 21, 2008

Authors: R. Mommsen, S. Murray
CI identifier EVB_D_18306

Revision History
Date Version Description Author

July 11, 2003 0.1 Document creation S. Murray

July 31, 2003 1.0 Finalization of version 1.0 J. Gutleber

May 24, 2004 2.0 Updated for version 2.0 of the EVB,
now referred to as the RU builder

S. Murray

November 1, 2004 2.1 Updated for version 2.1 of the RU
builder

S. Murray

May 2, 2005 3.0 Updated for version 3.0 of the RU
builder

S. Murray

July 4, 2005 3.2 Updated for version 3.2 of the RU
builder

S. Murray

August 16, 2005 3.3 Updated for version 3.3 of the RU
builder

S. Murray

August 26, 2005 3.4 Updated for version 3.4 of the RU
builder

S. Murray

October 5, 2005 3.5 Updated for version 3.5 of the RU
builder

S. Murray

October 27, 2005 3.6 Updated for version 3.6 of the RU
builder

S. Murray

January 30, 2006 3.7.1 Updated for version 3.7.1 of the RU
builder

S. Murray

March 29, 2006 3.8 Updated for version 3.8 of the RU
builder

S. Murray

May 8, 2006 3.9 Updated for version 3.9 of the RU
builder

S. Murray

September 18, 2006 3.9.8 Updated for version 3.9.8 of the RU
builder

S. Murray

August 7, 2007 RUBUILDER_G_V1_3_0 Updated for the latest version of
the RU builder

S. Murray

October 11, 2007 rubuilder_G_V01_06_00 Updated for the latest version of
the RU builder. Added a
description of the two ways to send
triggers to the EVM. Added a
simple description of all the RU-
builder I2O messages. Added a
description of the two RU- builder
threading-models. Added more
information about the contents of
the RU builder application web-
pages.

S. Murray

August 21, 2008 rubuilder_G_V01_12_00 Updated naming of eventNumber*
monitoring parameters and
document the fault tolerant
behavior of the RU.

R. Mommsen

CI Record
Field Description

CI Identifier EVB_D_18306

Description Describes the RU builder for an integrator who will put the builder into a
full DAQ system, and for a DAQ operator who needs to understand how
the RU builder works in order to efficiently diagnose problems.

Point of Contact R. Mommsen (Remigius.Mommsen@cern.ch)
S. Murray (Steven.Murray@cern.ch)

Physical Location http://cms-ru-builder.web.cern.ch/cms-ru-builder/RUBUILDER_G_V1_6_0.doc

Table of Contents
1 Introduction 7

1.1 Document purpose and scope 7
1.2 Intended readership 7
1.3 References 8
1.4 Definitions, Acronyms and Abbreviations 8
1.5 RU-builder application class names 8

2 RU builder overview 9
2.1 How the RU builder connects to the components around it 9
2.2 What the EVB does 11
2.3 The RU-builder applications 11

3 RU-builder application FIFOs 12
3.1 BU FIFOs 12
3.2 EVM FIFOs 13

3.2.1 EVM FIFOs when triggers are sent via the RUI/EVM interface 13
3.2.2 EVM FIFOs when triggers are sent via the TA/EVM interface 14

3.3 RU FIFOs 15

4 RU-builder I2O interface 16
4.1 Overview of the RU-builder I2O interface 16
4.2 The external I2O interfaces of the RU builder 19

4.2.1 TA/EVM interface 20
4.2.2 RU/RUI interface 22
4.2.3 BU/FU interface 23

5 RU builder threading-models 27

6 Application state machines 28
6.1 Commonalities of the application finite state machines 28
6.2 BU, EVM and RU finite state machines 29

7 Starting the RU builder 31

8 Stopping the RU builder 32

9 Exported configuration parameters 33

10 RU builder application web-pages 36
10.1 BU web-pages 36
10.2 EVM web-pages 41
10.3 RU web-pages 46

11 How to install the RU builder 50

12 Example configuration file 50

13 RU builder self test 51

14 Configuration guidelines 54

List of Figures
Figure 1 RU-builder connected to the rest of the EVB..9
Figure 2 RU-builder connections within a local-DAQ or test-beam system...........................10
Figure 3 BU FIFOs ..12
Figure 4 EVM FIFOs when trigger sent via RUI/EVM interface ...13
Figure 5 EVM FIFOs...14
Figure 6 RU FIFOs ..15
Figure 7 RU-builder I2O-messages when connected to the rest of the EVB17
Figure 8 RU-builder I2O-messages when connected within a local-DAQ or test-beam system

..18
Figure 9 External I2O interfaces of the RU builder...19
Figure 10 TA/EVM interface sequence diagram...20
Figure 11 RU/RUI interface sequence diagram...22
Figure 12 BU/FU interface sequence diagram...23
Figure 13 FSTN of a RU builder application...28
Figure 14 BU, EVM and RU FSTNs...29
Figure 15 HyperDAQ web page for self test ...52
Figure 16 rubuilder::tester::Application web page ..52
Figure 17 rubuilder::tester::Application control web page..53
Figure 18 Running RU builder ..53

List of Tables
Table 1 RU builder application class names..8
Table 2 Exported configuration parameters...33
Table 3 BU – Default web-page “Data flow through node” parameters36
Table 4 BU – Default web-page “Standard configuration” parameters37
Table 5 BU – Default web-page “Standard monitoring” parameters39
Table 6 BU – Debug web-page “Debug configuration” parameters40
Table 7 BU – Debug web-page “Debug monitoring” parameters ...40
Table 8 EVM – Default web-page “Data flow through node” parameters..............................41
Table 9 EVM – Default web-page “Standard configuration” parameters41
Table 10 EVM – Default web-page “Standard monitoring” parameters.................................43
Table 11 EVM – Debug web-page “Debug configuration” parameters44
Table 12 EVM – Debug web-page “Debug monitoring” parameters......................................45
Table 13 RU – Default web-page “Data flow through node” parameters46
Table 14 RU – Default web-page “Standard configuration” parameters46
Table 15 RU – Default web-page “Standard monitoring” parameters47
Table 16 RU- Debug web-page “Debug configuration” parameters48
Table 17 RU – Debug web-page “Debug monitoring” parameters ...49

1 Introduction RU Builder
User Manual

 CERN PH/CMD - 2008 Page 7 of 54

1 Introduction 1

 2
The RU builder is a distributed XDAQ application that is part of a larger system called the event builder 3
(EVB). The CMS data acquisition group is presently developing the EVB as described in the TriDAS TDR 4
[1]. This document explains how to obtain, build and configure version rubuilder_G_V01_06_00 of the 5
RU builder. 6
 7

1.1 Document purpose and scope 8
 9
This document has two goals. The first is to enable the reader to integrate the RU builder into a “running 10
system”, and the second is to help the reader understand how the RU builder works so that they may be 11
able to diagnose any problems which may occur. A “running” system is composed of the RU builder 12
itself, a trigger source, one or more event data sources, one or more data sinks and a run-control system. 13
The RU builder cannot run without the components just listed. This document describes how to obtain, 14
build and configure the RU builder. This document does not describe the other components of a “running 15
system”, such as run control software or how to setup a trigger or event data source. Although this 16
document does describe some of the internal workings of the RU builder, the reader is referred to the 17
comments within the source code as the authoritative guide on the subject. The code has been structured 18
and commented so that it can be easily read and understood. It is recommended to use doxygen to 19
generate documentation from the code, as compatible comment tags have been used. If the reader is not 20
familiar with doxygen, then they are referred to its website: 21
 22

http://www.doxygen.org 23
 24

Doxygen documentation for this particular version of the RU builder can be browsed on-line at the official 25
RU builder web site: 26

http://cms-ru-builder.web.cern.ch/cms-ru-27
builder/rubuilder_G_V01_06_00_doxygen/html/index.htm 28
 29

It must be emphasized that the RU builder is still under development and subject to
change. No description of the RU builder given in this document can be relied upon to be
valid beyond this release.

 30
 31

1.2 Intended readership 32
 33
This document has been written with two audiences in mind, system integrators and DAQ operators. A 34
system integrator is someone that needs to integrate the RU builder into a data acquisition system (DAQ). 35
It is assumed that the DAQ system is based on the XDAQ framework. If the reader is not familiar with 36
this framework, then they are referred to the XDAQ website: http://xdaq.web.cern.ch/xdaq. A DAQ 37
operator should know how the RU builder works so that they can efficiently diagnose problems that may 38
occur during a DAQ shift. 39

40

1 Introduction RU Builder
User Manual

 CERN PH/CMD - 2008 Page 8 of 54

1.3 References 1
 2
[1] The CMS collaboration, The Trigger and Data Acquisition project, Volume II, Data Acquisition & 3

High-Level Trigger. CERN/LHCC 2002-26, ISBN 92-9083-111-4 4
 5
 6

1.4 Definitions, Acronyms and Abbreviations 7
 8
BU
CVS
DAQ
EVB
EVM
FED
FSTN
FU

Builder Unit
Concurrent Versioning System
Data Acquisition system
Event builder
Event Manager
Front End Driver
Finite State Transition Network
Filter Unit

I2O
RCMS
RU
RUI
TA
TDR
TriDAS
XDAQ

Intelligent Input/Output
CMS Run-control system
Readout Unit
Readout Unit Input
Trigger Adapter
Technical Design Report
Trigger and Data Acquisition
Cross platform data acquisition toolkit

 9
 10

1.5 RU-builder application class names 11
 12
The following table shows the names of the RU builder applications and their corresponding 13
C++ class names. The C++ class names are used when making XDAQ configurations for the 14
RU builder. They are also used on the web-pages of the running RU-builder applications. 15
 16

Application name
Acronym Full name

C++ class name

BU Builder unit rubuilder::bu::Application
EVM Event manager rubuilder::evm::Application
FU Filter unit rubuilder::fu::Application
RU Readout unit rubuilder::ru::Application
RUI Readout-unit input rubuilder::rui::Application
TA Trigger adapter rubuilder::ta::Application
 17
Table 1 RU builder application class names 18

19

2 RU builder overview RU Builder
User Manual

 CERN PH/CMD - 2008 Page 9 of 54

Super-fragments

Discards

EVM RU 0 RU n

BU 0 BU p

FU 0

RUI 1 RUI n

Trigger

RU builder

FU q

FED builder

Permanent
storage

Allocates

Events

FED 0 FED m

Fragments

Trigger super-fragments

RUI 0

Trigger fragments

2 RU builder overview 1

2.1 How the RU builder connects to the components around it 2
 3
The RU builder is a component of a larger system called the event builder (EVB). The EVB is a distributed 4
application that reads out event fragments from one set of nodes and assembles them into entire events in 5
another set of nodes. Two scenarios dictate how the RU builder connects to the components around it. In 6
the first scenario, the RU builder is connected to the rest of the EVB. This is how the RU builder will be 7
connected during official CMS data taking runs. In the second scenario the RU builder is connected 8
within a local DAQ or test-beam system. The difference between the two scenarios is how the triggers 9
are sent to the EVM. Triggers are sent to the EVM via the RUI/EVM interface when the RU builder is 10
connected to the rest of the EVB. Triggers are sent to the EVM via the TA/EVM interface when the RU 11
builder is used in a local DAQ or test-beam system. Figure 1 depicts the first scenario and figure 2 the 12
second. 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
Figure 1 RU-builder connected to the rest of the EVB 42

 43

The external interfaces of the RU builder assume that triggers are given to the EVM in
the same order as their corresponding event data is given to the RUs.

 44
45

2 RU builder overview RU Builder
User Manual

 CERN PH/CMD - 2008 Page 10 of 54

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
Figure 2 RU-builder connections within a local-DAQ or test-beam system 24

 25
 26

The external interfaces of the RU builder assume that triggers are given to the EVM in
the same order as their corresponding event data is given to the RUs.

 27
28

Super-fragments

Discards

EVM RU 0 RU n

BU 0 BU p

FU 0

TA

RUI 0 RUI n

RU builder

FU q

Trigger credits

Trigger data

Permanent
storage

Allocates

Events

Trigger

2 RU builder overview RU Builder
User Manual

 CERN PH/CMD - 2008 Page 11 of 54

2.2 What the EVB does 1
 2
For each event the EVB: 3
� Reads out the trigger data. This trigger data will become the first super-fragment of the event. 4
� Reads out the fragments of the event from the detector front-end drivers (FEDs). 5
� Builds the fragments into RU super-fragments using the FED builder. 6
� Builds the whole event using the RU builder. The whole event is the trigger super-fragment plus the 7

set of RU super-fragments. 8
� Decides whether or not the event is interesting for physics using the filter units (FUs). 9
� Sends the event to permanent storage if it is interesting for physics, or discards it if it is not. 10
 11
 12

2.3 The RU-builder applications 13
 14
The RU builder consists of a single event manager (EVM), one or more readout units (RUs) and one or 15
more builder units (BUs). The EVM is responsible for controlling the flow of data through the RU builder. 16
The RUs are responsible for buffering super-fragments until they are requested by the BUs. The BUs are 17
responsible for building and buffering events until they are requested by the filter units (FUs). 18
 19
The trigger adapter (TA), readout unit inputs (RUIs) and filter units (FUs) are external to the RU builder. 20
The TA is used within local DAQ and test-beam systems to interface the DAQ trigger to the EVM. The 21
RUIs are responsible for pushing super-fragment data from the FED builder into the RUs. The FUs are 22
responsible for selecting interesting events for permanent storage. 23

24

3 RU-builder application FIFOs RU Builder
User Manual

 CERN PH/CMD - 2008 Page 12 of 54

3 RU-builder application FIFOs 1

 2
The RU-builder applications use FIFOs to keep track of requests, trigger data and event data. Knowledge 3
of these FIFOs is required in order to correctly configure the RU builder. This chapter is divided into three 4
sections, one for the BU, one for the EVM and one for the RU. Each section gives a brief description of the 5
application’s behavior and how its FIFOs are used. 6
 7
 8

3.1 BU FIFOs 9
 10
A BU is responsible for building events. An event is composed of one trigger super-fragment and N RU 11
super-fragments, where N is the number of RUs. To understand the internal FIFOs of a BU, it is necessary 12
to know its dynamic behavior. Figure 3 shows the internal FIFOs of a BU. With free capacity available, a 13
BU requests the EVM to allocate it an event (step 1). The EVM confirms the allocation by sending the BU 14
the event ID and trigger data of an event (step 2). This trigger data is the first super-fragment of the event. 15
The BU now requests the RUs to send it the rest of the event’s super-fragments (step 3). The BU builds the 16
super-fragments it receives from the RUs (step 4) into a whole event within its resource table (step 5). FUs 17
can ask a BU to allocate them events (step 6). A BU services a FU request by sending the FU a whole 18
event (step 7). When a FU has finished with an event, it tells the BU to discard it (step 8). 19
 20
The eventIdFIFO, blockFIFO, requestFIFOs and discardFIFO store incoming message until they 21
can be processed. The fullResourceFIFO stores which in memory events are built. 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
Figure 3 BU FIFOs 45

46

eventIdFIFO

discardFIFO

blockFIFO

fullResourceFIFO

Confirm

BU
Send

EVM

requestFIFOs

Resource

table

Cache RU

discard

Allocate new and/or

clear previous

take

Allocate

FU

FU Step 8

Step 1

Step 2

Step 3 Step 4

Step 5

Step 6

Step 7

3 RU-builder application FIFOs RU Builder
User Manual

 CERN PH/CMD - 2008 Page 13 of 54

3.2 EVM FIFOs 1
 2
The EVM is responsible for controlling the flow of event data through the RU builder. To understand the 3
internal FIFOs of the EVM, it is necessary to know its dynamic behavior. As explained in “Section 2.1 4
How the RU builder connects to the components around it”, triggers are sent to the EVM using the 5
RUI/EVM interface when the RU builder is connected to the rest of the EVB, and via the TA/EVM interface 6
when connected within a local DAQ or test-beam system. This section is divided into two sub-sections, 7
tone describing the EVM FIFOs when the triggers are sent via the RUI/EVM interface, and the other 8
describing the EVM FIFOs when triggers are sent via the TA/EVM interface. 9
 10
 11

3.2.1 EVM FIFOs when triggers are sent via the RUI/EVM interface 12
 13
Figure 4 shows the internal FIFOs of the EVM. The RUI sends the EVM the trigger data of an event (step 14
1). The EVM pairs the trigger data with a free event ID (step 2). The EVM also requests the RUs to readout 15
the event’s data (step 3). A BU with the ability to build an event will ask the EVM to allocate it an event 16
(step 4). Within such a request, a BU will normally give back the ID of an event to be cleared. For each 17
cleared event ID, the EVM makes the ID a free event ID (step 5). The EVM confirms the allocation of an 18
event by sending the requesting BU the event ID and trigger data of the allocated event (step 6). 19
 20
The triggerFIFO, clearedEventIdFIFO and requestFIFO store incoming messages until they can 21
be processed. The pairFIFO keeps track of the “event ID / trigger data” pairs that have yet to be sent to 22
requesting BUs. The freeEventIdFIFO stores the ids of free events. 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
Figure 4 EVM FIFOs when trigger sent via RUI/EVM interface 47

48

Readout
RU

triggerFIFO

freeEventIdFIFO clearedEventIdFIFO

pairFIFO

requestFIFO

Trigger

Confirm

Allocate and/or clear

EVM

BU

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

RUI

3 RU-builder application FIFOs RU Builder
User Manual

 CERN PH/CMD - 2008 Page 14 of 54

3.2.2 EVM FIFOs when triggers are sent via the TA/EVM interface 1
 2
Figure 5 shows the internal FIFOs of the EVM. The EVM tells the TA the capacity of the RU builder by 3
sending it trigger credits (step 1). One trigger credit represents the ability to build one event. Given a 4
credit, the TA sends the EVM the trigger data of an event (step 2). The EVM pairs the trigger data with a 5
free event ID (step 3). The EVM also requests the RUs to readout the event’s data (step 4). A BU with the 6
ability to build an event will ask the EVM to allocate it an event (step 5). Within such a request, a BU will 7
normally give back the ID of an event to be cleared. For each cleared event ID, the EVM sends a trigger 8
credit to the TA and makes the ID a free event ID (step 6). The EVM confirms the allocation of an event 9
by sending the requesting BU the event ID and trigger data of the allocated event (step 7). 10
 11
The triggerFIFO, clearedEventIdFIFO and requestFIFO store incoming messages until they can 12
be processed. The pairFIFO keeps track of the “event ID / trigger data” pairs that have yet to be sent to 13
requesting BUs. The freeEventIdFIFO stores the ids of free events for which trigger credits have been 14
sent to the TA. 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
Figure 5 EVM FIFOs 38

39

Readout
RU

triggerFIFO

freeEventIdFIFO clearedEventIdFIFO

pairFIFO

requestFIFO

Credit

Trigger

Confirm

Allocate and/or clear

EVM

TA

BU

Step 1

Step 2 Step 3

Step 4

Step 5

Step 6

Step 7

0 The RU can be set into a fault tolerant mode in which it continues to
operate if the RUI stops sending super-fragments. In that case, the
RU will go into the ‘TimedOutTolerating’ state and serve empty super-
fragments for each BU request and ignore the EVM.

RU Builder
User Manual

 CERN PH/CMD - 2008 Page 15 of 54

3.3 RU FIFOs 1
 2
A RU is responsible for buffering super-fragments until they are request by the BUs. To understand the 3
internal FIFOs of a RU it is necessary to know its dynamic behavior. Figure 6 shows the internal FIFOs of 4
a RU. The EVM sends a RU an “event ID / trigger event number” pair when it asks the RU to readout the 5
corresponding event’s data (step 1). In parallel, the RUI informs the RU of event data that is ready to be 6
processed (step 2). A RU places each super-fragment for which it has received a pair into the fragment 7
lookup table (step 3). BUs ask RUs to send them the super-fragments of the events they are building (step 8
4). A RU services a BU request by retrieving the super-fragment from its fragment lookup table and asking 9
the BU to cache the super-fragment (step 5). 10
 11
All of the internal FIFOs of a RU, that is to say the pairFIFO, blockFIFO and requestFIFOs, store 12
incoming messages until they can be processed. 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
Figure 6 RU FIFOs 38

The RU can be set into a fault tolerant mode in which it continues to operate if the RUI stops sending 39
super-fragments. In that case, the RU will go into the ‘TimedOutTolerating’ state and serve empty super-40
fragments for each BU request and ignore the EVM. If data is again made available by the RUI, the RU 41
synchronizes the pairFIFO and blockFIFO by removing messages if earlier event numbers. Once the 42
FIFOs are aligned, the RU goes back to the normal processing (‘Enabled’ state). 43

44

pairFIFO

blockFIFO

requestFIFOs
Send

RU

Fragment

lookup

table

Cache

BU

BU

Readout

Data ready

RUI

EVM

Step 1

Step 2

Step 3

Step 4

Step 5

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 16 of 54

4 RU-builder I2O interface 1

 2
This chapter is divided into two sections. The first gives an overview of the RU builder I2O interface 3
which shows which I2O messages are sent between which applications. This overview will help the 4
reader understand the message counters displayed on the web-pages of the running applications. The 5
second section of this chapter goes into the details of the external I2O interfaces of RU builder. This will 6
help the reader integrate the RU builder with the DAQ components around it. 7
 8

4.1 Overview of the RU-builder I2O interface 9
 10
All the I2O messages of the EVB, including the internal and external messages of the RU builder, are 11
defined in the package: 12

TriDAS/daq/interface 13
The I2O function codes of all the RU builder I2O messages are given in the file: 14

TriDAS/daq/interface/shared/include/i2oXFunctionCodes.h 15
The C structures that define the I2O messages are in the file: 16

TriDAS/daq/interface/evb/include/i2oEVBMsgs.h 17
 18

The I2O interface of the RU builder is subject to change. The description of the
interface provided by this document cannot be relied upon to be valid beyond this
release.

 19
20

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 17 of 54

As explained in “Section 2.1 How the RU builder connects to the components around it”, triggers are sent 1
to the EVM using the RUI/EVM interface when the RU builder is connected to the rest of the EVB, and via 2
the TA/EVM interface when connected within a local DAQ or test-beam system. Figures 7 and 8 show the 3
RU builder I2O messages in these two scenarios. 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
Figure 7 RU-builder I2O-messages when connected to the rest of the EVB 34

 35
36

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 18 of 54

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
Figure 8 RU-builder I2O-messages when connected within a local-DAQ or test-beam system 28

29

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 19 of 54

4.2 The external I2O interfaces of the RU builder 1
 2
Figure 9 shows the external I2O interfaces of the RU builder: the TA/EVM interface, the RUI/RU interface 3
and the BU/FU interface. This chapter is divided into three sub-sections, one for each interface. 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
Figure 9 External I2O interfaces of the RU builder 25

26

EVM

RU 0 RU n

BU 0 BU p

FU 0

TA

RUI 0 RUI n

RU builder

FU q

RUI/RU interface

TA/EVM interface

BU/FU interface

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 20 of 54

4.2.1 TA/EVM interface 1
 2
The TA/EVM interface specifies how: 3

� The EVM gives the TA trigger credits 4
� The TA gives the EVM trigger data 5

 6
Figure 10 is a sequence diagram describing the protocol between the EVM and the TA. 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Figure 10 TA/EVM interface sequence diagram 17

 18
The EVM communicates with the TA using a credit-based mechanism. The EVM tells the TA the current 19
capacity of the RU builder by sending the TA a trigger credit count (step 1). One trigger credit represents 20
the RU builder’s ability to build one event. The TA should only send the EVM trigger data for as many 21
events as the EVM has given the TA credits (step 2). The TA is responsible for getting / receiving trigger 22
data from the trigger and for providing backpressure to the trigger as necessary. 23
 24
The I2O_TA_CREDIT_MESSAGE_FRAME C structure is as follows: 25
 26
typedef struct _I2O_TA_CREDIT_MESSAGE_FRAME 27
{ 28
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 29
U32 nbCredits; 30
} I2O_TA_CREDIT_MESSAGE_FRAME, *PI2O_TA_CREDIT_MESSAGE_FRAME; 31
 32
The EVM must fill nbCredits. 33

34

TA EVM

Step 1

Step 2

Function code: I2O_TA_CREDIT
C structure : I2O_TA_CREDIT_MESSAGE_FRAME

Function code: I2O_EVM_TRIGGER
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 21 of 54

The I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 1
 2
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 3
{ 4
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 5
U32 eventNumber; 6
U32 nbBlocksInSuperFragment; 7
U32 blockNb; 8
U32 eventId; 9
U32 buResourceId; 10
U32 fuTransactionId; 11
U32 nbSuperFragmentsInEvent; 12
U32 superFragmentNb; 13
U32 padding; 14
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 15
 16
The TA must fill: 17

eventNumber 18
nbBlocksInSuperFragment 19
blockNb 20

 21
 22

Thee RU builder only supports single block trigger data. Therefore the TA must always
set nbBlocksInSuperFragment to 1 and blockNb to 0

23

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 22 of 54

4.2.2 RU/RUI interface 1
The RU/RUI interface specifies how a RUI passes super-fragments to a RU. Figure 11 is a sequence 2
diagram describing the protocol between the RUI and the RU. 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
Figure 11 RU/RUI interface sequence diagram 13

A super-fragment is composed of one or more I2O_EVENT_DATA_BLOCK_MESSAGE_FRAMEs. The 14
I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 15
 16
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 17
{ 18
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 19
U32 eventNumber; 20
U32 nbBlocksInSuperFragment; 21
U32 blockNb; 22
U32 eventId; 23
U32 buResourceId; 24
U32 fuTransactionId; 25
U32 nbSuperFragmentsInEvent; 26
U32 superFragmentNb; 27
U32 padding; 28
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 29
 30
The RUI must fill: 31

eventNumber 32
nbBlocksInSuperFragment 33
blockNb 34

 35
The nbBlocksInSuperFragment field gives the number of blocks the super-fragment is composed of. 36
The blockNb field indicates the block’s position within the super-fragment. Blocks are numbered from 0 37
to nbBlocksInSuperFragment – 1. 38

39

RUI RU

Function code: I2O_EVMRU_DATA_READY
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 23 of 54

4.2.3 BU/FU interface 1
 2
The BU/FU interface specifies how: 3

� A FU requests events from a BU 4
� A BU sends an event to a FU 5
� A FU tells a BU to discard an event 6

 7
Figure 12 is a sequence diagram describing the protocol between a BU and a FU. 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
Figure 12 BU/FU interface sequence diagram 23

A FU requests a BU to allocate it one or more events (step 1). In response, the BU asks the FU to take the 24
requested event data as a set of event data blocks (step 2). When a FU has finished processing one or 25
more events, it tells the BU to discard them (step 3). 26
 27

The BU/FU interface of this version of the RU builder does not support partial events.
Partial events may be supported in a future version.

28

Function code: I2O_BU_ALLOCATE
C structure : I2O_BU_ALLOCATE_MESSAGE_FRAME

Function code: I2O_FU_TAKE
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

Function code: I2O_BU_DISCARD
C structure : I2O_BU_DISCARD_MESSAGE_FRAME

FU BU

Step 1

Step 2

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 24 of 54

The I2O_BU_ALLOCATE_MESSAGE_FRAME C structure and its companion BU_ALLOCATE C structure 1
are as follows: 2
 3
typedef struct _BU_ALLOCATE 4
{ 5
U32 fuTransactionId; 6
U32 fset; 7
} BU_ALLOCATE, *PBU_ALLOCATE; 8
typedef struct _I2O_BU_ALLOCATE_MESSAGE_FRAME { 9
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 10
 U32 n; 11
 BU_ALLOCATE allocate[1]; 12
} I2O_BU_ALLOCATE_MESSAGE_FRAME, *PI2O_BU_ALLOCATE_MESSAGE_FRAME; 13
 14
The FU must fill: 15

n 16
allocate[] 17

 18
The n field specifies the number of events the FU is requesting. The allocate field is an array of FU 19
transaction ids and fragment sets. For each event a FU requests, the FU fills in the fuTransactionId 20
field and the fset field of a BU_ALLOCATE C structure and puts it in the allocate array. The 21
fuTransactionId field is a transaction ID that a FU can use to match its requests with the events it 22
receives. A BU treats the fuTransactionId field as being opaque, in other words it is not interpreted. 23
A BU will send back a copy of the fuTransactionId field in each of the 24
I2O_EVENT_DATA_BLOCK_MESSAGE_FRAMEs that make up the requested event. The fset field is a 25
fragment set identifier. Fragment sets are a way to describe partial events. The fset field is ignored by 26
the BU in this version of the RU builder, because this version does not support partial events. 27

28

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 25 of 54

The I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 1
 2
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 3
{ 4
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 5
U32 eventNumber; 6
U32 nbBlocksInSuperFragment; 7
U32 blockNb; 8
U32 eventId; 9
U32 buResourceId; 10
U32 fuTransactionId; 11
U32 nbSuperFragmentsInEvent; 12
U32 superFragmentNb; 13
U32 padding; 14
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 15
 16
The FU should only read: 17

nbSuperFragmentsInEvent 18
superFragmentNb 19
nbBlocksInSuperFragment 20
blockNb 21
buResourceId 22
fuTransactionId 23

 24
An event is composed of I2O_EVENT_DATA_BLOCK_FRAMEs. The nbSuperFragmentsInEvent, 25
superFragmentNb, nbBlocksInSuperFragment, blockNb fields are used to identify the position of 26
an event data block within an event. An event is composed of one trigger super-fragment plus N RU 27
super-fragments, where N is the number of RUs. Therefore the nbSuperFragmentsInEvent field is set 28
to the number of RUs plus 1. The superFragmentNb field is numbered from 0 to 29
nbSuperFragmentInEvent – 1. The blockNb field is numbered from 0 to 30
nbBlocksInSuperFragment – 1. 31
 32
The buResourceId field is an opaque handle that a FU should use to identify events/resources to be 33
discarded. The fuTransactionId field is the FU transaction ID of the FU request that caused the BU to 34
reply with the current event. 35

36

4 RU-builder I2O interface RU Builder
User Manual

 CERN PH/CMD - 2008 Page 26 of 54

The I2O_BU_DISCARD C structure is as follows: 1
 2
typedef struct _I2O_BU_DISCARD_MESSAGE_FRAME { 3
I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 4
 U32 n; 5
 U32 buResourceId[1]; 6
} I2O_BU_DISCARD_MESSAGE_FRAME, *PI2O_BU_DISCARD_MESSAGE_FRAME; 7
 8
The FU must fill: 9

n 10
buResourceId[] 11

 12
 13
The n field specifies the number of events/resources to be discarded. The buResourceId field is an 14
array of the ids of the BU resources to be discarded. 15

16

5 RU builder threading-models RU Builder
User Manual

 CERN PH/CMD - 2008 Page 27 of 54

5 RU builder threading-models 1

 2
The BU, EVM and RU applications have two threading models, event-driven and self-driven. Knowledge 3
of these threading-models is required in order to correctly configure the RU builder . Only one threading 4
model can be active during the lifetime of an application. The threading model used is chosen on the first 5
ever configure of an application. The following exported parameters allow the user of the RU builder 6
applications to choose which threading model is used: 7
 8

xsd:boolean rubuilder::bu::application::selfDriven 9
xsd:boolean rubuilder::evm::application::selfDriven 10
xsd:boolean rubuilder::ru::application::selfDriven 11

 12
A value of true indicates the self-driven threading-model whereas a value of false indicates event-driven. 13
The default threading model is event-driven. 14
 15
A RU builder application contains message FIFOs to store incoming messages until they can be processed. 16
In both the event-driven and thread-driven models the underlying peer transport thread(s) push incoming 17
messages onto these FIFOs. Which thread(s) pop messages off these FIFOs depends on the threading 18
model being used. 19
 20
In the case of the event-driven threading-model, the peer transport thread which pushed a message onto a 21
message FIFO is also the same thread which pops and processes messages of the message FIFOs. 22
 23
In the case of the self-driven threading-model, a separate worker thread pops and processes messages from 24
the message FIFOs. A counting semaphore is used to synchronize the worker thread with the peer 25
transport thread(s). 26
 27
To date, the event-driven threading-model has been tested the most and was successfully used in the 28
“CMS Magnet Test and Cosmic Challenge” (MTCC) of 2006 and in the global runs of 2007. The self-29
driven threading-model has been kept as a debugging aid, as the occupancy of the message FIFOs in this 30
threading-model give a clear indication of whether or not an application is keeping up with its workload. 31

32

6 Application state machines RU Builder
User Manual

 CERN PH/CMD - 2008 Page 28 of 54

6 Application state machines 1

6.1 Commonalities of the application finite state machines 2
 3
The finite state machines of the BUs, EVM and RUs have commonalities. Figure 13 shows the finite state 4
transition network (FSTN) which all three types of application follow. There are four common behaviors. 5
Firstly, all RU builder applications read and act upon configuration parameters when they receive a 6
Configure SOAP message. Secondly, all RU builder applications only participate in event building when 7
they are enabled. Thirdly, all RU builder applications throw away their internal data and any incoming 8
I2O message frames when they are halted. Fourthly all RU builder applications go to the Failed state 9
when they encounter a fatal error. A RU builder application cannot be recovered from the Failed state. 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
Figure 13 FSTN of a RU builder application 33

34

Halted Ready Enabled Configure Enable

Halt

The application releases all incoming I2O message
frames when it is in the Halted state

The contents of all internal data
structures are discarded when the
application is halted

The application can only participate in event
building when it is in the Enabled state

Configuration parameters are read and acted
upon when the application is configured

Failed

Fatal error

The application cannot be recovered
from the Failed state

6 Application state machines RU Builder
User Manual

 CERN PH/CMD - 2008 Page 29 of 54

6.2 BU, EVM and RU finite state machines 1
 2

Figure 14 BU, EVM and RU FSTNs 3

The FSTNs specific to each type of RU builder application are shown in figure 10. 4
 5
 6

Failed

 Halted

BU EVM

RU

Halt

Halted

Enabled

Halt

Enable /

Send initial

credits to TA

Halted

Ready

Enabled

Configure Halt

Enable

Ready

Enabled

Enable /

Send request to

EVM for initial

set of event

ids

MismatchDetected
BackPressuring

MismatchDetected
Tolerating

TimedOut
Tolerating

TimedOut
BackPressuring

Mismatch[tolerating=false]

TimedOut[tolerating=true

]

TimedOut[tolerating=false]

Failed

Failed

Configure Configure

Get

data

from RU

6 Application state machines RU Builder
User Manual

 CERN PH/CMD - 2008 Page 30 of 54

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

38

7 Starting the RU builder RU Builder
User Manual

 CERN PH/CMD - 2008 Page 31 of 54

7 Starting the RU builder 1

 2
The RU builder is part of a larger system called the event builder (EVB). Besides run-control, the RU 3
builder communicates with a TA, one or more RUIs and one of more FUs. The RU builder cannot be 4
started at any arbitrary moment in time; its start-up must be synchronized with that of the TA, RUIs and 5
FUs. The RU builder and the EVB components it interacts with are XDAQ applications, and as such 6
depend on one or more peer transports to communicate with each other. These peer transports must be 7
up and running before these applications try to communicate with each other. To start the RU builder and 8
the components it interacts with, run-control should do the following in order: 9

1. Start the necessary peer transports so that the RU builder and its surrounding applications can 10
communicate 11

2. Start the TA if it is present, so that is can service credits from the EVM 12
3. Start the RU builder so that it can receive super-fragments from the RUIs 13
4. Start the RUIs and FUs so they can start pushing in super-fragments and extracting events 14

respectively 15
 16
The RU builder is a distributed application whose nodes (BUs, EVM and RUs) need to be started up in a 17
specific order. To put the RU builder into the state where it will build events, run-control should do the 18
following in order: 19

1. Send Configure to all of the RU builder applications 20
2. Send Enable to all of the RUs 21
3. Send Enable to the EVM 22
4. Send Enable to the BUs 23

 24

State changes are synchronous. There is no need to poll the state of an application after a
request to change state.

 25
The RUs have to be enabled first because they have to be ready to receive “event number” / “event ID” 26
pairs from the EVM. The EVM can start sending these pairs immediately after it has been enable. 27
 28
The EVM has to be enabled before the BUs so that it is ready to service their requests for event ids. BUs 29
can start requesting event ids as soon as they are enabled. Enabling the EVM causes it to send an initial 30
trigger credit count to the TA if it is present. The number of initial credits is equal to the total number of 31
event ids in the RU builder. As soon as trigger data arrives at the EVM, the EVM sends “event number” / 32
“event ID” pairs to the RUs. As explained in the previous paragraph, this is why the RUs have to be 33
enabled before the EVM. 34
 35
Enabling a BU causes it to send its initial request for event ids to the EVM. The number of initial event ids 36
requested is equal to the maximum number of event ids the BU is allowed to acquire at any single 37
moment in time. 38

39

8 Stopping the RU builder RU Builder
User Manual

 CERN PH/CMD - 2008 Page 32 of 54

8 Stopping the RU builder 1

 2
The current version of RU builder foresees two ways of stopping: 3

� Stop the trigger and event data entering the RU builder 4
� Halt all of the RU builder applications 5

 6
When stopping the trigger and event data entering the RU builder, it is useful to know when the RU 7
builder is flushed. This can be found out by reading the following tri-state exported parameter of the EVM: 8
 9

xsd:unsignedInt rubuilder::evm::Application::ruBuilderIsFlushed 10
 11
The possible values of this parameter are: 12
 13

0 : FALSE 14
1 : TRUE 15
2 :UNDEFINED, e.g. The EVM is in the Halted state. 16

 17
The RU builder is said to be flushed when it is empty and the data rate is 0. The sample period of the rate 18
calculation is defined by the value of the following exported parameter: 19
 20

rubuilder::evm::Application::monitoringSleepSec 21
 22
Halting a RU builder application causes it to discard (destroy) all the data in its internal data structures and 23
to release all incoming I2O messages. 24

25

9 Exported configuration parameters RU Builder
User Manual

 CERN PH/CMD - 2008 Page 33 of 54

9 Exported configuration parameters 1

 2
Configuration parameters need to be set before an application is sent a Configure SOAP message. Table 2 3
lists the exported control parameters of each type of RU builder application. The type and default value of 4
each parameter is given. 5
 6
Application Parameter name XData type Value
BU, EVM & RU nbEvtIdsInBuilder UnsignedInteger32 4096
BU, EVM & RU ageMessages Boolean true
BU, EVM & RU msgAgeLimitDtMSec UnsignedInteger32 1000
BU, EVM & RU exitOnFail Boolean false

BU blockFIFOCapacity UnsignedInteger32 16384
BU discardFIFOCapacity UnsignedInteger32 65536
BU I2O_EVM_ALLOCATE_CLEAR_Packing UnsignedInteger32 8
BU maxEvtsUnderConstruction UnsignedInteger32 64
BU requestFIFOCapacity UnsignedInteger32 1024
BU I2O_RU_SEND_Packing UnsignedInteger32 8

EVM sendCreditsWithDispatchFrame Boolean false
EVM triggerFIFOCapacity UnsignedInteger32 4096
EVM I2O_RU_READOUT_Packing UnsignedInteger32 8
EVM I2O_TA_CREDIT_Packing UnsignedInteger32 8

RU blockFIFOCapacity UnsignedInteger32 16384
Legend
BU = rubuilder::bu::Application
EVM = rubuiilder::evm::Application
RU = rubuilder::ru::Application

Table 2 Exported configuration parameters 7

 8
The default values are set when the RU builder application is instantiated. The default values have been 9
chosen with the goal of covering the majority of use-cases for the RU builder. A user should rarely need 10
to diverge from these default values. 11

12

9 Exported configuration parameters RU Builder
User Manual

 CERN PH/CMD - 2008 Page 34 of 54

The following assumptions were made when calculating the default values of the RU builder’s 1
configuration parameters: 2

� A RU builder is composed of 64 BUs and 64 RUs. 3
� A RU has 64MB of physical memory for caching super-fragments 4
� An event is 1MB 5
� An event is made up of 64 super-fragments (1 per RU) of equal size; therefore the size of a super-6

fragment is 16KB. 7
� The block size (size of an I2O message frame used to transport event data) is 4KB 8
� The RUIs only give as many events to the RUs as the TA gives triggers to the EVM 9
� The maximum number of FUs per BU is 64 10
� A FU will never have more than 1024 outstanding requests for events 11
� Fast control messages are sent if they are older than 1 second 12
� The packing factor of fast control messages is 8 13

 14
The need to know the total number of event ids in the RU builder is common to all three types of RU 15
builder applications. 16

� The total number of event ids in the RU builder is a function of RU memory. Assuming each RU 17
has 64MB of memory for buffering super-fragments and that the size of an event is 1 MB: 18

 19
rubuilder::bu::Application::nbEvtIdsInBuilder, 20
rubuilder::evm::Application::nbEvtIdsInBuilder, 21
rubuilder::ru::Application::nbEvtIdsInBuilder 22

= sum of the memory of all RUs / size of an event 23
= (64 × 64MB) / 1MB 24
= 4096 25
 26
The BUs, and EVM send fast control messages. 27

� Fast control messages are sent if they are older than 1 second 28
 29

rubuilder::bu::Application::ageMessages, 30
rubuilder::evm::ApplicationageMessages 31
= true 32
rubuilder::bu::Application::msgAgeLimitDtMSec 33
rubuilder::evm::Application::msgAgeLimitDtMSec 34
= 1000 35
 36

It has been assumed that all events have the fixed size of 1MB. If the RU builder is to
build events of varying sizes then the appropriate safety factor needs to be taken into
account when calculating the number of event ids in the RU builder.

37

9 Exported configuration parameters RU Builder
User Manual

 CERN PH/CMD - 2008 Page 35 of 54

The default values of the BU control parameters were calculated as follows: 1
� To prevent a BU from monopolizing event ids, each BU has a maximum number of event ids it 2

can acquire at any moment in time. Assuming all BUs are equal, each BU is allowed to acquire: 3
 4

rubuilder::bu::Application::maxEvtsUnderConstruction 5
= nbEvtIdsInBuilder / number of BUs 6
= 4096 / 64 7
= 64 8
 9

� The blockFIFO of a BU (see figure 2 in section 3.2) is responsible for buffering incoming event 10
data. In the worst case this FIFO would have to buffer the blocks of all outstanding requests for 11
event data: 12

 13
rubuilder::bu::Application::blockFIFOCapacity 14
= maxEvtIdsUnderConstruction × size of an event / block size 15

= 64 × 1 MB / 4 KB 16
= 64 ×256 17
= 16384 18
 19

� A BU has a single FIFO called discardFIFO for FU discard messages, and one FIFO per FU called 20
requestFIFO for FU request messages. Knowing that a BU can service a maximum of 64 FUs and 21
assuming that a single FU will never have more than 1024 outstanding requests for events: 22

 23
rubuilder::bu::Application::discardFIFOCapacity 24
= 1024 × maximum number of FUs 25
= 1024 × 64 26
= 65536 27
 28
rubuilder::bu::Application::requestFIFOCapacity 29
= 1024 30

The default values of the RU exported parameters were calculated as follows: 31
� The blockFIFO of the RU is responsible for buffering incoming super-fragment data. Assuming a 32

RUI only gives as many super-fragments to a RU as the TA gives triggers to the EVM, then in the 33
worst case the blockFIFO must hold the blocks of as many super-fragments as there are event ids 34
in the RU builder: 35

 36
rubuilder::ru::Application::blockFIFOCapacity 37
= nbEvtIdsInBuilder × (size of a super-fragment / block size) 38
= 4096 × (16K / 4KB) 39
= 16384 40

 41
The parameters of the form _Packing should not normally be modified as they have only been tested 42
with the default value of 8. However the user may modify them if they are experiencing performance 43
problems with the RU builder. 44

45

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 36 of 54

10 RU builder application web-pages 1

 2
The BU, EVM and RU applications each have default and debug web-pages. This chapter describes the 3
parameters displayed on these pages. This chapter has been written to be used as a reference by DAQ 4
operators. 5
 6
This chapter is divided into three sections, one for each type of application. Each section contains a set of 7
tables which describe the parameters displayed on the default and debug web-pages of the corresponding 8
application type. 9
 10

10.1 BU web-pages 11
 12

Parameter Description
throughput (bytes sec-1) The event throughput in bytes per second.
average (bytes) The average size of an event.
rate (events sec-1) The number of events per second.
rms (bytes) The RMS of the event size.

Table 3 BU – Default web-page “Data f low through node” parameters 13

 14
 15

Parameter Description
fragmentSetsUrl

If useFragmentSet is set to true then this parameter must be set to the URL
of the fragment sets file. The BU will use this file to determine which RUs
are participating in event building.

useFragmentSet Indicates whether the BU is using a fragments sets file or the value of
ruInstances to determine which RUs are participating in event building. If
set to true, the BU will use the fragments sets file specified by
fragmentSetsUrl, else the BU will use the contents of ruInstances.

fragmentSetId The BU can use a fragment sets file to determine which RUs are
participating in event building. If useFragmentSet is set to true and
fragmentSetsUrl specifies a valid location of a valid fragment sets file,
then this parameter specifies which fragment set within the file is to be
used.

Index BU indices are internal to the RU builder application. They are used to
facilitate efficient lookups in the EVM and RUs. A negative value is
interpreted as meaning this parameter has not been set. If this parameter
is not set when the BU is configured, then the BU will use its instance
number.

evmInstance The BU uses this parameter to determine the instance number of the EVM
which manages it. If this parameter is not set, then the BU will use the
first EVM it finds in the configuration given to its XDAQ executive. A
negative value is interpreted as meaning this parameter has not been set.

nbEvtIdsInBuilder The total number of event IDs in the RU builder.
maxEvtsUnderConstruction The maximum number of events the BU can build concurrently.

blockFIFOCapacity The capacity of the event data block FIFO.

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 37 of 54

discardFIFOCapacity The capacity of the discard FIFO

Table 4 BU – Default web-page “Standard configuration” parameters 1

2

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 38 of 54

 1
Parameter Description

runNumber The current run number

nbEventsInBU The occupancy of the BU as the number of events currently
in the BU. This number is calculated by subtracting the
number of events sent to the FU or dropped from the total
number of events built.

deltaT The duration of the last delta t in seconds with respect to
monitoring events that pass through the BU.

deltaN The umber of events that passed through the BU in the last
deltaT.

deltaSumOfSquares The sum of the squares with respect to the sizes of the
events (in bytes) that passed through the BU in the last
deltaT.

deltaSumOfSizes The sum of the event sizes (in bytes) that passed through the
BU in the last deltaT.

stateName The current state of the application
lastEventNumberFromEVM The last event number received from the EVM

lastEventNumberFromRUs The last event number received from the RUs

lastEventNumberToFUs The last event number sent to the FUs.

nbEvtsBuilt The number of events built since the BU was last enabled.

nbEventsDropped The number of events dropped by the BU.
I2O_BU_ALLOCATE_Payload The payload in bytes transferred by I2O_BU_ALLOCATE

messages. See I2O_BU_ALLOCATE_LogicalCount.
I2O_BU_ALLOCATE_LogicalCount The number of events requested by the FUs. FUs request

events from the BUs using I2O_BU_ALLOCATE messages.
I2O_BU_ALLOCATE_I2oCount The I2O message frame count for I2O_BU_ALLOCATE

messages. . See I2O_BU_ALLOCATE_LogicalCount.
I2O_BU_DISCARD_Payload The payload in bytes transferred by I2O_BU_DISCARD

messages. . See I2O_BU_DISCARD_LogicalCount.
I2O_BU_DISCARD_LogicalCount The number of events discarded by the FUs. FUs tells the

BUs to using I2O_BU_DISCARD messages.
I2O_BU_DISCARD_I2oCount The I2O message frame count for I2O_BU_DISCARD

messages. See I2O_BU_DISCARD_LogicalCount.
I2O_FU_TAKE_Payload The payload in bytes transferred by I2O_FU_TAKE

messages. See I2O_FU_TAKE_LogicalCount.
I2O_FU_TAKE_LogicalCount The number of events sent to the FUs. BUs send event data

to the FUs using I2O_FU_TAKE messages.
I2O_FU_TAKE_I2oCount The I2O message frame count for I2O_FU_TAKE messages.

See I2O_FU_TAKE_LogicalCount.
I2O_EVM_ALLOCATE_CLEAR_Payload The payload in bytes transferred by

I2O_EVM_ALLOCATE_CLEAR messages. See
I2O_EVM_ALLOCATE_CLEAR_LogicalCount.

I2O_EVM_ALLOCATE_CLEAR_LogicalCount The number of event IDs that have been requested plus the
number of event IDs that have been recycled/cleared. BUs
request new event IDs from the EVM and recycle/clear old
event IDs using I2O_EVM_ALLOCATE_CLEAR messages.

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 39 of 54

I2O_EVM_ALLOCATE_CLEAR_I2oCount The I2O message frame count for
I2O_EVM_ALLOCATE_CLEAR messages. See
I2O_EVM_ALLOCATE_CLEAR_LogicalCount.

I2O_BU_CONFIRM_Payload The payload in bytes transferred by I2O_BU_CONFIRM
messages. See I2O_BU_CONFIRM_LogicalCount.

I2O_BU_CONFIRM_LogicalCount The number of event IDs received from the EVM. The EVM
sends event IDs to the BU using
I2O_BU_CONFIRM_LogicalCount messages

I2O_BU_CONFIRM_I2oCount The I2O message frame count for I2O_BU_CONFIRM
messages. See I2O_BU_CONFIRM_LogicalCount.

I2O_RU_SEND_Payload The payload in bytes transferred by I2O_RU_SEND
messages. See I2O_RU_SEND_LogicalCount.

I2O_RU_SEND_LogicalCount The number of super-fragments requested from the RUs.
BUs request super-fragments from the BUs using
I2O_RU_SEND messages.

I2O_RU_SEND_I2oCount The I2O message frame count for I2O_RU_SEND messages.
See I2O_RU_SEND_LogicalCount .

I2O_BU_CACHE_Payload The payload in bytes transferred by I2O_BU_CACHE
messages. See I2O_BU_CACHE_LogicalCount.

I2O_BU_CACHE_LogicalCount The number of super-fragments received from the RUs.
RUs send BUs super-fragment data using I2O_BU_CACHE
messages.

I2O_BU_CACHE_I2oCount The I2O message frame count for I2O_BU_CACHE
messages. See I2O_BU_CACHE_LogicalCount.

Table 5 BU – Default web-page “Standard monitoring” parameters 1

2

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 40 of 54

 1
Parameter Description

rcmsStateListener The class name and instance number of the RCMS state listener.

selfDriven The threading-model used by the application. A value of true
indicates self-driven, whereas a value of false indicates event-
driven. See chapter 6 “RU builder threading-models” for more
information.

workLoopName The name of the worker thread when the application is using the
self-driven threading-model. See chapter 6 “RU builder
threading-models” for more information.

ageMessages Specifies whether or not control messages should be aged, i.e.
whether or not a control message should be sent if it is too old,
as opposed to only when it is full.

msgAgeLimitDtMSec How old a message can be in milliseconds before it will be sent
if ageMessages is set to true.

monitoringSleepSec Number of seconds the monitoring thread should sleep between
monitoring information updates.

dropEventData If the value is set to true then the BU will drop an event when it
has finished building it.

I2O_RU_SEND_Packing The packing factor of I2O_RU_SEND messages.
I2O_EVM_ALLOCATE_CLEAR_Packing The packing factor of I2O_EVM_ALLOCATE_CLEAR messages.
monitoringFilename The name of the file to which monitoring information should be

written.
ruInstances The instance numbers of the RUs that will participate in event

building. If this parameter is not set, then it assumed that all RUs
will participate in event building. This parameter is ignored if
useFragment sets is set to true.

oldMessageSenderSleepUSec The number of micro seconds between checks for old messages.
dumpTriggersToLogger Specifies whether or not triggers should be dumped to the logger.

This is a debugging aid. Dumping triggers to the logger can have
a serious impact on the performance of the BU.

Table 6 BU – Debug web-page “Debug configuration” parameters 2

 3
 4

Parameter Description
foundRcmsStateListener Specifies whether or not the application has found the RCMS state listener.
eventIdFIFOElements The number of elements in event ID FIFO.
blockFIFOElements The number of elements in the block FIFO.
fullResourceFIFOElements The number of elements in the “full resource” FIFO.
discardFIFOElements The number of elements in the discard FIFO.
requestFIFOsElements The number of elements in the request FIFO.

Table 7 BU – Debug web-page “Debug monitoring” parameters 5

6

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 41 of 54

10.2 EVM web-pages 1
 2
 3

Parameter Description
throughput (bytes sec-
1)

The trigger data throughput in bytes per second.

average (bytes) The average size of a trigger’s data.
rate (events sec-1) The number of triggers per second.
rms (bytes) The RMS of the trigger data size.

Table 8 EVM – Default web-page “Data f low through node” parameters 4

 5
 6

Parameter Description
fragmentSetsUrl If useFragmentSet is set to true then this parameter must be set to the URL of the

fragment sets file. The EVM will use this file to determine which RUs are participating
in event building.

useFragmentSet Indicates whether the EVM is using a fragments sets file or the value of ruInstances to
determine which RUs are participating in event building. If set to true, the EVM will
use the fragments sets file specified by fragmentSetsUrl, else the EVM will use the
contents of ruInstances.

fragmentSetId The EVM can use a fragment sets file to determine which RUs are participating in
event building. If useFragmentSet is set to true and fragmentSetsUrl specifies a valid
location of a valid fragment sets file, then this parameter specifies which fragment set
within the file is to be used.

nbEvtIdsInBuilder The total number of event IDs in the RU builder.

triggerFIFOCapacity The capacity of the trigger FIFO.

taClass The class name of the TA.

taInstance The instance number of the TA.

Table 9 EVM – Default web-page “Standard configuration” parameters 7

 8
9

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 42 of 54

 1
Parameter Description

runNumber the current run number.
nbTriggersInEVM The occupancy of the EVM as the number of triggers

currently in the EVM.
deltaT The duration of the last delta t in seconds with respect to

monitoring triggers that pass through the EVM.
deltaN The number of triggers that passed through the EVM in the

last deltaT.
deltaSumOfSquares The sum of the squares with respect to the sizes of the

triggers that passed through the EVM in the last deltaT.
deltaSumOfSizes The sum of the trigger sizes that passed through the EVM in

the last deltaT.
stateName The current state of the application.
foundTA Specifies whether or not the EVM has found the TA. The

EVM will look for a TA when it is configured.
ruBuilderIsFlushed Tri-state variable, specifying whether or not the RU builder

is flushed:
0 : FALSE 1 : TRUE 2 : UNDEFINED, e.g. The EVM is in the
Halted state.
The RU builder is said to be flushed when it is empty and
the data rate is 0. The sample period of the rate calculation
is defined by the value of monitoringSleepSec.

nbTriggers The number of triggers that have entered the EVM
nbEvtsBuilt The number of events built by the RU builder.
lastEventNumberFromTrigger The last event number that the EVM received from the

trigger.
lastEventNumberToRUs The last event number sent to the RUs.
lastEventNumberToBUs The last event number sent to the BUs.
I2O_TA_CREDIT_Payload The payload in bytes transferred by I2O_TA_CREDIT

messages. See I2O_TA_CREDIT_LogicalCount.
I2O_TA_CREDIT_LogicalCount The number of trigger credits sent to the TA. The EVM

sends the TA trigger credits using I2O_TA_CREDIT
messages.

I2O_TA_CREDIT_I2oCount The I2O message frame count for I2O_TA_CREDIT
messages. See I2O_TA_CREDIT_LogicalCount.

I2O_EVM_TRIGGER_Payload The payload in bytes transferred by I2O_EVM_TRIGGER
messages. See I2O_EVM_TRIGGER_LogicalCount.

I2O_EVM_TRIGGER_LogicalCount The number of triggers received from the TA. The TA sends
the EVM triggers using I2O_EVM_TRIGGER messages.

I2O_EVM_TRIGGER_I2oCount The I2O message frame count for I2O_EVM_TRIGGER
messages. See I2O_EVM_TRIGGER_LogicalCount.

I2O_EVMRU_DATA_READY_Payload The payload in bytes transferred by
I2O_EVMRU_DATA_READY messages. See
I2O_EVMRU_DATA_READY_LogicalCount.

I2O_EVMRU_DATA_READY_LogicalCount The number of triggers received from the RUI. The RUI
sends the EVM trigger data using
I2O_EVMRU_DATA_READY messages.

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 43 of 54

I2O_EVMRU_DATA_READY_I2oCount The I2O message frame count for
I2O_EVMRU_DATA_READY messages. See
I2O_EVMRU_DATA_READY_LogicalCount.

I2O_RU_READOUT_Payload The payload in bytes transferred by I2O_RU_READOUT
messages. See I2O_RU_READOUT_LogicalCount.

I2O_RU_READOUT_LogicalCount The number of “event number” / “event ID” pairs received
from the EVM. The EVM sends the RUs “event number” /
“Event ID” pairs using I2O_RU_READOUT messages.

I2O_RU_READOUT_I2oCount The I2O message frame count for messages
I2O_RU_READOUT. See
I2O_RU_READOUT_LogicalCount.

I2O_EVM_ALLOCATE_CLEAR_Payload The payload in bytes transferred by
I2O_EVM_ALLOCATE_CLEAR messages. See
I2O_EVM_ALLOCATE_CLEAR_LogicalCount.

I2O_EVM_ALLOCATE_CLEAR_LogicalCount The number of requests for new event IDs plus the number
of old event IDs to be recycled/cleared received from the
BUs. The BUs request new event IDs from the EVM and ask
the EVM to recycle/clear old ones using
I2O_EVM_ALLOCATE messages.

I2O_EVM_ALLOCATE_CLEAR_I2oCount The I2O message frame count for
I2O_EVM_ALLOCATE_CLEAR messages. See
I2O_EVM_ALLOCATE_CLEAR_LogicialCount.

I2O_BU_CONFIRM_Payload The payload in bytes transferred by I2O_BU_CONFIRM
messages. See I2O_BU_CONFIRM_LogicalCount.

I2O_BU_CONFIRM_LogicalCount The number of event IDs sent to the BUs. The EVM sends
event IDs to the BU using I2O_BU_CONFIRM messages.

I2O_BU_CONFIRM_I2oCount The I2O message frame count for I2O_BU_CONFIRM
messages. See I2O_BU_CONFIRM_LogicalCount.

Table 10 EVM – Default web-page “Standard monitoring” parameters 1

 2
3

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 44 of 54

 1
Parameter Description

rcmsStateListener The class name and instance number of the RCMS state listener.
selfDriven The threading-model used by the application. A value of true indicates self-

driven, whereas a value of false indicates event-driven. See chapter 6 “RU
builder threading-models” for more information.

workLoopName The name of the worker thread when the application is using the self-driven
threading-model. See chapter 6 “RU builder threading-models” for more
information.

ageMessages Specifies whether or not control messages should be aged, i.e. whether or
not a control message should be sent if it is too old, as opposed to only
when it is full.

msgAgeLimitDtMSec How old a message can be in milliseconds before it will be sent if
ageMessages is set to true.

monitoringSleepSec The number of seconds the monitoring thread should sleep between
monitoring information updates.

generateDummyTriggers Specifies whether or not the EVM should generate dummy triggers.
fedPayloadSize When generateDummyTriggers is set to true, this parameter specifies the size

of the FED payload of dummy triggers in bytes. The FED payload must be a
multiple of 8 bytes.

dummyTriggerSourceId When generateDummyTriggers is set to true, this parameter specifies the
trigger source ID that is to be put into each dummy trigger.

I2O_TA_CREDIT_Packing The packing factor of I2O_TA_CREDIT messages.
I2O_RU_READOUT_Packing The packing factor of I2O_RU_READOUT messages.
ruInstances The instance numbers of the RUs that will participate in event building. If

this parameter is not set, then it assumed that all RUs will participate in
event building. This parameter is ignored if useFragment sets is set to true.

oldMessageSenderSleepUSec The number of micro seconds between checks for old messages.
dumpTriggersToLogger Specifies whether or not triggers should be dumped to the logger. This is a

debugging aid. Dumping triggers to the logger can have a serious impact on
the performance of the EVM.

Table 11 EVM – Debug web-page “Debug configuration” parameters 2

 3
Parameter Description

foundRcmsStateListener Specifies whether or not the application has found the RCMS state listener.
eventIdGaugeName The name of the gauge responsible for measuring the number of event ids

(resources) in use.
eventIdGaugeValue The current value of the gauge responsible for measuring the number of event

ids (resources) in use.
dummyEventNumber When generateDummyTriggers is set to true, this parameter specifies the

event number of the next dummy trigger.
nbCreditsToBeSent The number of outstanding trigger credits to be sent to the TA.
clearedEventIdFIFOElements The number of elements in the “cleared event-ID” FIFO.
freeEventIdFIFOElements The number of elements in the “free event-ID” FIFO.

triggerFIFOElements The number of elements in the trigger FIFO.
pairFIFOElements The number of elements in the pair FIFO.
requestFIFOElements The number of elements in the request FIFO.

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 45 of 54

Table 12 EVM – Debug web-page “Debug monitoring” parameters 1

2

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 46 of 54

10.3 RU web-pages 1
 2
 3

Parameter Description
throughput (bytes sec-1) The super-fragment throughput in bytes per second.
average (bytes) The average size of a super-fragment.
rate (events sec-1) The number of super-fragments per second.
rms (bytes) The RMS of super-fragment size.

Table 13 RU – Default web-page “Data f low through node” parameters 4

 5
Parameter Description

nbEvtIdsInBuilder The total number of event IDs in the RU builder.
blockFIFOCapacity The capacity of the block FIFO.

Table 14 RU – Default web-page “Standard configuration” parameters 6

 7
Parameter Description

runNumber The current run number.
deltaT The duration of the last delta t in seconds with respect to

monitoring super-fragments that pass through the RU.
deltaN Number of super-fragments that passed through the RU in the

last deltaT.
deltaSumOfSquares The sum of the squares with respect to the sizes of the super-

fragments (in bytes) that passed through the RU in the last
deltaT.

deltaSumOfSizes The sum of the super-fragment sizes (in bytes) that passed
through the RU in the last deltaT.

stateName The current state of the application.
nbSuperFragmentsInRU The occupancy of the RU as the number of super-fragments

currently in the RU.
lastEventNumberFromEVM The last event number received from the EVM.
lastEventNumberFromRUI The last event number received from the RUI.
lastEventNumberToBUs The last event number sent to the BUs.
nbSuperFragments The number of super-fragments that have passed through the

RU.
nbEmptySuperFragments The number of empty super-fragments generated by the RU

and sent to the BU.
I2O_EVMRU_DATA_READY_Payload The payload in bytes transferred by

I2O_EVMRU_DATA_READY messages. See
I2O_EVMRU_DATA_READY_LogicalCount.

I2O_EVMRU_DATA_READY_LogicalCount The number of super-fragments received from the RUI. RUIs
send RUs super-fragment data using
I2O_EVMRU_DATA_READY messages.

I2O_EVMRU_DATA_READY_I2oCount The I2O message frame count for
I2O_EVMRU_DATA_READY messages. See
I2O_EVMRU_DATA_READY_LogicalCount.

I2O_RU_READOUT_Payload The payload in bytes transferred by I2O_RU_READOUT

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 47 of 54

messages. See I2O_RU_READOUT_LogicalCount.
I2O_RU_READOUT_LogicalCount The number of “event number” / “event ID” pairs the RU has

received from the EVM. The EVM sends “event number” /
“event ID” pairs to the RUs using I2O_RU_READOUT
messages.

I2O_RU_READOUT_I2oCount The I2O message frame count for I2O_RU_READOUT
messages. See I2O_RU_READOUT_LogicalCount.

I2O_RU_SEND_Payload_BUn The payload in bytes transferred by I2O_RU_SEND messages.
See I2O_RU_SEND_LogicalCount_BUn.

I2O_RU_SEND_LogicalCount_BUn The number of requests for super-fragments received from a
specific BU. BUs request super-fragments from RUs using
I2O_RU_SEND messages.

I2O_RU_SEND_I2oCount_BUn The I2O message frame count for I2O_RU_SEND messages.
See I2O_RU_SEND_LogicalCount_BUn.

I2O_BU_CACHE_Payload The payload in bytes transferred by I2O_BU_CACHE
messages. See I2O_BU_CACHE_LogicalCount.

I2O_BU_CACHE_LogicalCount The number of super-fragments sent to the BUs. RUs send
super-fragment data to the BUs using I2O_BU_CACHE
messages.

I2O_BU_CACHE_I2oCount The I2O message frame count for I2O_BU_CACHE messages.
See I2O_BU_CACHE_LogicalCount.

Table 15 RU – Default web-page “Standard monitoring” parameters 1

 2
 3

Parameter Description
rcmsStateListener The class name and instance number of the RCMS state listener.
selfDriven The threading-model used by the application. A value of true indicates

self-driven, whereas a value of false indicates event-driven. See chapter
6 “RU builder threading-models” for more information.

workLoopName The name of the worker thread when the application is using the self-
driven threading-model. See chapter 6 “RU builder threading-models”
for more information.

monitoringSleepSec The number of seconds the monitoring thread should sleep between
monitoring information updates.

tolerateCSCFaults Specifies whether or not the RU should tolerate CSC local DAQ faults.
dummyBlockSize When generateDummySuperFragments is set to true, this parameter

specifies the size in bytes of a dummy super-fragment data block.
generateDummySuperFragments Specifies whether or not the RU should generate dummy super-fragments.
dummyFedPayloadSize When generateDummySuperFragments is set to true, this parameter

specifies the payload size in bytes of a FED fragment within a dummy
super-fragment.

fedSourceIds When generateDummySuperFragments is set to true, this parameter
specifies the source ID of each fragment within a dummy super-fragment.

maxPairAgeMSec The maximum age of an "event number" / “event ID” pair in milliseconds.
A negative value means forever.

expiredPairDetectionSleepUSec The number of microseconds the thread checking for an expired pair
sleeps between checks.

tolerateFaults Specifies whether or not the RU should service BUs with empty super-

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 48 of 54

fragments when in the TimedOut state. Only relevant if maxPairAgeMSec
is not negative.

Table 16 RU- Debug web-page “Debug configuration” parameters 1

 2
3

10 RU builder application web-pages RU Builder
User Manual

 CERN PH/CMD - 2008 Page 49 of 54

 1
Parameter Description

measuredTimeOutSec The seconds component of the time period that passed and triggered the finite
state machine of the application to move to the TimedOutTolerating or
TimedOutBackPressuring state.

measuredTimeOutUSec The microseconds component of the time period that passed and triggered the
finite state machine of the application to move to the TimedOutTolerating or
TimedOutBackPressuring state.

foundRcmsStateListener Specifies whether or not the application has found the RCMS state listener.
blockFIFOElements The number of elements in the block FIFO.
pairFIFOElements The number of elements in the pair FIFO.
requestFIFOsElements The number of elements in the request FIFO.
nbSuperFragmentsReady The number of super-fragments that are ready to be consumed by the BUs.

lowestBuInstance The lowest BU instance number found in the XDAQ configuration.
highestBuInstance The highest BU instance number found in the XDAQ configuration.
buInstances The instance numbers of all the BUs found in the configuration.

Table 17 RU – Debug web-page “Debug monitoring” parameters 2

3

11 How to install the RU builder RU Builder
User Manual

 CERN PH/CMD - 2008 Page 50 of 54

11 How to install the RU builder 1

 2
Install the XDAQ coretools, powerpack and regular worksuite packages using the instructions at the 3
following URL: 4
 5

http://xdaqwiki.cern.ch/index.php/Main_Page 6
 7

12 Example configuration file 8

 9
The following example configuration file shows how to configure a 1x1 RU builder to run on a 10
single XDAQ executive and service HTTP requests on port HOST:PORT : 11
 12
<xc:Partition xmlns:soapenc= »http://schemas.xmlsoap.org/soap/encoding/ » 13
xmlns:xc= »http://xdaq.web.cern.ch/xdaq/xsd/2004/XMLConfiguration-30 » 14
xmlns:xsi= »http://www.w3.org/2001/XMLSchema-instance »> 15
 16
<i2o:protocol xmlns:i2o=”http://xdaq.web.cern.ch/xdaq/xsd/2004/I2OConfiguration-30”> 17
<i2o:target class=”rubuilder::evm::Application” instance=”0” tid=”23”/> 18
<i2o:target class=”rubuilder::ru::Application” instance=”0” tid=”24”/> 19
<i2o:target class=”rubuilder::bu::Application” instance=”0” tid=”25”/> 20
</i2o:protocol> 21
 22
<xc:Context url=”http://HOST:PORT”> 23
<xc:Module>${XDAQ_ROOT}/lib/librubuilderutils.so</xc:Module> 24
<xc:Module>${XDAQ_ROOT}/lib/libxdaq2rc.so</xc:Module> 25
<xc:Application class=”rubuilder::tester::Application” id=”12” instance=”0” network=”local”/> 26
<xc:Module>${XDAQ_ROOT}/lib/librubuildertester.so</xc:Module> 27
<xc:Application class=”rubuilder::evm::Application” id=”13” instance=”0” network=”local”/> 28
<xc:Module>${XDAQ_ROOT}/lib/librubuilderevm.so</xc:Module> 29
<xc:Application class=”rubuilder::ru::Application” id=”14” instance=”0” network=”local”/> 30
<xc:Module>${XDAQ_ROOT}/lib/librubuilderru.so</xc:Module> 31
<xc:Application class=”rubuilder::bu::Application” id=”15” instance=”0” network=”local”/> 32
<xc:Module>${XDAQ_ROOT}/lib/librubuilderbu.so</xc:Module> 33
</xc:Context> 34
 35
</xc:Partition> 36
 37

Two import rules for the module tag

1. The module tags for librubuilderutils.so and libxdaq2rc.so must appear once within
each context tag where there is a module tag for librubuilderbu.so, librubuilderevm.so
and/or librubuilderru.so.

2. The module tags for librubuilderutils.so and libxdaq2rc.so must appear within the
context tag before any of the module tags librubuilderbu.so, librubuilderevm.so or
librubuilderru.so

38

13 RU builder self test RU Builder
User Manual

 CERN PH/CMD - 2008 Page 51 of 54

13 RU builder self test 1

 2
This section explains how to perform the self test of the RU builder. This test helps determine whether or 3
not the RU builder has been successfully installed. 4
 5
The self test consists of the rubuilder::tester::Application plus one EVM, one RU and one BU all running 6
on the same XDAQ executive. The EVM is told to generate dummy triggers, the RU is told to generate 7
dummy super-fragments and the BU is told to drop the events it builds The step-by-step instructions to run 8
the self test are: 9
 10
Step 1 11
Install the RU builder as described in chapter 11. 12
 13
Step 2 14
Modify the configuration file of chapter 12 so that HOST:PORT refers to the port on which the XDAQ 15
executive shall service HTTP requests. 16
 17
Step 3 18
Setup the following shell environment variables: 19
export XDAQ_ROOT=/opt/xdaq 20
export XDAQ_DOCUMENT_ROOT=${XDAQ_ROOT}/htdocs 21
export PATH=${PATH}:${XDAQ_ROOT}/bin 22
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${XDAQ_ROOT}/lib 23
 24
Step 4 25
Run the XDAQ executive: 26
xdaq.exe -h HOST -p PORT –e $XDAQ_ROOT/etc/default.profile -c CONFIGURATION_FILE.XML 27
 28
Where HOST and PORT are the same as those given in step 2 and CONFIGURATION_FILE.XML is the file 29
modified from chapter 12. 30

31

13 RU builder self test RU Builder
User Manual

 CERN PH/CMD - 2008 Page 52 of 54

Step 4 1
Open a web browser and enter the following URL: 2
http://HOST:PORT 3
 4
Where HOST and PORT are the same as those of steps 2 and 3. 5
 6
You should now see the HyperDAQ page of the XDAQ executive you started in step 3. It should look 7
similar to the following screenshot. 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
Figure 15 HyperDAQ web page for self test 28

 29
Step 5 30
Go to the default web page of rubuilder::tester::Application by clicking on the “rubuilder tester” link. 31
Your web browser should now display something similar to: 32
 33
 34
 35
 36
 37
 38
 39
 40
Figure 16 rubuilder::tester::Application web page 41

42

13 RU builder self test RU Builder
User Manual

 CERN PH/CMD - 2008 Page 53 of 54

Step 6 1
Go to the control web page by clicking on the “Ctrl” icon. You should now see something like: 2
 3
 4
 5

 6

 7
 8
Figure 17 rubuilder::tester::Application control web page 9

 10
Step 7 11
Start the self test by clicking the “start” button. The button should now be labeled “stop”. 12
 13
Step 8 14
Return to the main web page of the RU builder tester by clicking on the “RUB Test” icon. Clicking the 15
refresh button of your browser should now show events being built. For example the “eventNb” variable 16
of the EVM0 should increment. 17
 18
 19
 20
 21
 22
 23
 24
Figure 18 Running RU builder 25

26

14 Configuration guidelines RU Builder
User Manual

 CERN PH/CMD - 2008 Page 54 of 54

14 Configuration guidelines 1

 2
This chapter summarizes and highlights the most important points with regards to configuring the RU 3
builder. 4
The default values of the RU builder control parameters have been chosen for the majority of use-cases. 5
The user should rarely need to diverge from these values. 6
 7
The RU builder is dependent on the instance numbers of the BUs, EVM, FUs, RUs, and TA: 8

� RUs must be assigned instance numbers from 0 to the number of RUs – 1 9
� BUs must be assigned instance number from 0 to the number of BUs – 1 10
� The EVM must be assigned instance number 0 11
� The TA must be assigned instance number 0 12

 13
The RU builder has the following configuration restrictions: 14

� A single BU can service a maximum of 64 FUs. 15
� The sum of the maximum number of event ids each BU can have at any moment in time: 16

rubuilder::bu::Application::maxEvtsUnderConstruction 17
must not exceed the total number of event ids in the RU builder: 18

rubuilder::bu::Application::nbEvtIdsInBuilder 19
rubuilder::evm::Application::nbEvtIdsInBuilder 20
rubuilder::ru::Application::nbEvtIdsInBuilder 21

If the total number of event ids is exceeded, then there is no guarantee that the EVM will be able 22
to buffer BU requests for event ids, or that the RUs will be able to buffer BU requests for event 23
data. 24

� The configuration parameters of a RU builder application must be set before it is configured. 25

