DolphiCamTM Research 1.3 User Manual

Fredrik Lingvall

April 20, 2015

dolphilison April 20, 2015

Contents

1	Introduction	4
2	Installation	4
3	New GUI Elements for the DolphiCam TM Research	6
4	Importing and Viewing DolphiCam Data in Matlab/Octave	7
	4.1 load_dc_data	7
	4.2 dc_data_viewer	7
A	File Header Description	9
	A.1 DataDimension	9
	A.2 TimeStamp	9
	A.3 CameraSerialNumber	9
	A.4 SoftwareVersion	9
	A.5 IsAssumedToBeInitialized	9
	A.6 CurrentSettingsFileName	10
	A.7 FpgaVersion	10
	A.8 FpgaSubVersion	10
	A.9 HardwareVersion	10
	A.10 HoldOffTime	10
	A.11 AmplitudeGatingStart	10
	A.12 AmplitudeGatingEnd	11
	A.13 TimeOfFlightGatingStart	11
	A.14 TimeOfFlightGatingEnd	11
	A.15 AmplitudeGatingStart2	11
	A.16 AmplitudeGatingEnd2	11
	A.17 TimeOfFlightGatingStart2	12
	A.18 TimeOfFlightGatingEnd2	12
	A.19 AmplitudeGatingStart3	12
	A.20 AmplitudeGatingEnd3	12
	A.21 TimeOfFlightGatingStart3	12
	A.22 TimeOfFlightGatingEnd3	13
	A.23 TxLine	13

dolphi

A.24 RxLine
A.25 CameraModeSwitch
A.26 CameraType
A.27 IsTimeCalibrationActive
A.28 IsScanButtonRegisterSet
A.29 IsScanButtonPushed
A.30 IsLowBattery
A.31 NumberOfTransmittingElements
A.32 AveragesPerTransducerElement
A.33 CaptureMethod
A.34 IsEnteringSleepMode
A.35 MatchFilterDivideFactor
A.36 TxPulseShapeAndMatchFilter
A.37 BScanXCoord
A.38 BScanYCoord
A.39 IsTimeCorrectedGainActive
A.40 IsTimeCorrectedGainSubpointsActive
A.41 TimeCorrectedGainValues
A.42 TimeCorrectedGainValuesSubPoints
A.43 DacValue
A.44 DacOffsetValue
A.45 RecordingWindowSamples
A.46 IsRawDataRecording
A.47 FilterEnable
A.48 EnablePulseSequence
A.49 TxPulseSeqA
A.50 TxPulseSeqB
A.51 EnableSleepMode
A.52 SleepModeWarningTime 19
A.53 CameraScanTime 19
A.54 DcCorrection

April 20, 2015

1 Introduction

This document describes DolphiCamTM Research version 1.3 of the DolphiCamTM acoustic camera. DolphiCamTM Research is a variant of the normal DolphiCamTM with additional support for saving ultrasound sensor data and use user defined transmit pulses. DolphiCamTM Research comes with a set of m-files for loading and analyzing data in Matlab or GNU Octave. DolphiCamTM Research also comes with the DolphiCamTM DataAnalyzer software which is stand-alone tool for analyzing and viewing DolphiCamTM data as well as to export data to powerful 3D viewers such as ParaView [1].

2 Installation

Before installing the DolphiCamTM Research Windows software one must first have installed the standard Windows software as described in the DolphiCamTM user manual. Then the DolphiCamTM Research can be installed by decompressing the zip-file (package) DolphiCam_Research_Beta.zip on a suitable location on the disk. The DolphiCamTM Research package contains the following files and folders:

```
DolphiCam_Research_Beta -|
```

```
README.txt
dc_research_userman_xxxx.pdf
DolphiCam Research Software -|
                              <Windows sw and camera fw>
m_files -|
         Contents.m
         dc_data_viewer.m
         load_dc_data.m
example_data -|
              data_air_filtered.hdf5
              data_air_filtered.rdf
              data_air_unfiltered.hdf5
              data_air_unfiltered.rdf
              data_plexiglass_filtered.hdf5
              data_plexiglass_filtered.rdf
              data_plexiglass_filtered.vti
              data_plexiglass_unfiltered.hdf5
              data_plexiglass_unfiltered.rdf
              data_plexiglass_unfiltered.vti
              plexi_flower_wiener.vti
```

The Windows software and firmware files for the camera are located the in DolphiCam Research Software folder. There is currently no Windows installer for the DolphiCamTM Research Windows software; the Windows application is simply started by running DolphiCam Research Software/DolphiCam.exe. After starting the DolphiCam.exe application one will be asked to install the Research firmware. When the firmware has been loaded into camera one should have the new Research features enabled (see Section 3).

The Matlab/Octave functions are located the in the m_files folder. To use these functions one needs set the Matlab or Octave path to the folder containing the m-files. The path can be set by, for example, adding

addpath(/home/my_user/dc_research_folder/m_files)

(replace the path above with the actual one where the m-files is located) to Matlab's startup.m file or Octave's .octaverc file.¹

DolphiCamTM Research also comes with a set of example files which are located in the example_data folder. The files with the file extension .rdf can be loaded by the load_dc_data function by Matlab/Octave as described in Section 4. The files with extension .hdf5 is generated by the stand-alone DolphiCamTM DataAnalyzer tool. These files can be loaded by Matlab and DolphiCamTM DataAnalyzer (or any other tool that can read HDF5 files). The DolphiCamTM DataAnalyzer is a post-procssing/analyzing tool which comes with DolphiCamTM Research that can be downloaded from

http://www.dolphitech.com

at $Support \rightarrow Software Download$. Furthermore, the DolphiCamTM DataAnalyzer can export data in the .vti VTK format. These files can then be opened in ParaView for advanced 3D visualization (see the DolphiCamTM DataAnalyzer user manual for more information). The included data files in the DolphiCamTM Research package is shown in Table 1.

File	Description
data_air_filtered.rdf	CF08, Pulse 1, transducer in air, filtered data
data_air_filtered.hdf5	
data_air_unfiltered.rdf	CF08, Pulse 1, transducer in air, unfiltered data
data_air_unfiltered.hdf5	
data_plexiglass_filtered.hdf5	CF08, Pulse 1, plexiglass flower, filtered data
data_plexiglass_filtered.hdf5	
data_plexiglass_filtered.vti	
data_plexiglass_unfiltered.hdf5	CF08, Pulse 1, plexiglass flower, unfiltered data
data_plexiglass_unfiltered.hdf5	
data_plexiglass_unfiltered.vti	
plexi_flower_wiener.vti	CF08, Pulse 1, processed with the Wiener filter

Table 1: Example data files included in DolphiCamTM Research.

¹For Matlab one can also use the corresponding menu to add the path.

3 New GUI Elements for the DolphiCamTM Research

The DolphiCamTM Research Windows application has a new window for acquiring data in its graphical user interface (GUI) which is shown in Figure 1.

DolphiCam Re	search						X
							-
Envelope		J					
Filter		V					
Custom pulse Pulse sequen	Ce (clock cycle	es of 1/64	ИНz);				
Hi Lo	Hi Le	6 5 н	4 Lo	10	10 l i	Lo	6
	Set			Clea	r		
			Start Scan				

Figure 1: DolphiCamTM Research GUI.

The Research window is activated from the *Tools* menu by selecting the *Research features* item and it has the following elements:

- **Envelope** The *Envelope* check box switches the envelop on/and off in the A-scan and the two B-scans.
- **Filter** The *Filter* check box switches filtering on and off when acquiring data. Note that the filters can only be one of the 8 (CF08) or 4 (CF16) pre-defined ones.
- Custom pulse The *Custom pulse* editor has 8 fields where one can specify the number of clock cycles a 15.625 ns (1/64 MHz) for each high and low of the pulse sequence. One can define a maximum of four pulses in the pulse sequence where the allowed range for high parts are 4–15 clock cycles and 6–15 clock cycles for the low parts, respectively. The *Set* button programs the camera with the new pulse sequence and the *Clear* button clears all the fields in the pulse editor (NB. only the editor fields are cleared, not the pulse sequence loaded in the camera).

Acquire Data The Acquire Data button switches off scanning and starts the data acquisition. A pop-up window will be shown during the data acquisition and when the data is acquired the new file is stored in the

C:\Programdata\DolphiTech\DolphiCam\RawData

folder.

Start Scan The Start Scan/Stop Scan button toggles live scanning.

Note: It takes ≈ 12 seconds to acquire a CF08 data set and ≈ 24 seconds to acquire a CF16 data set, respectively. During this time the camera should not be moved otherwise there will be distortions in the acquired data.

4 Importing and Viewing DolphiCam Data in Matlab/Octave

The DolphiCamTM Research comes with a set of m-files for reading and viewing ultrasound data in Matlab or Octave.

4.1 load_dc_data

The load_dc_data function reads ultrasound data in the .rdf (text) format. The function takes a string with the .rdf file name as input and returns the ultrasound data in a matrix

>> Y = load_dc_data('DolphiCam 13430025 2015-01-27 13-04-45.rdf');

The output matrix as an $L \times 124^2 + 1$ matrix where L is the A-scan length and 124^2 is the total number of transducer elements on the 2D array. The first column in the output matrix contains a sample index vector and remaining columns contain ultrasound data for the corresponding array elements.

4.2 dc_data_viewer

The dc_data_viewer function can be used for quick viewing of the data. It takes a matrix in the format returned by the load_dc_data function,

```
>> dc_data_viewer(Y);
```


and presents two windows of the data. In *Window 1* one first selects the position in a C-scan with the mouse (clicks) and then *Window 2* shows a vertical and a horizontal B-scan as well as an A-scan according to the position that was selected in *Window 1*. Figure 2 shows an example (an impact damage in a 6mm CFRP plate) of using the dc_data_viewer function.

Figure 2: Illustration of the dc_data_viewer function.

A File Header Description

A.1 DataDimension

DataDimension is a 6 element vector which describes the dimension of the data. The first four numbers describe element layout of the 2D array the (it's a 124×124 element sensor) and the last two numbers describe the A-scan length of the data (*i.e.*, start and stop indexes of the A-scan).

Example:

0 0 123 123 0 359

A.2 TimeStamp

<code>TimeStamp</code> is a string with the time stamp when the file was created by the DolphiCamTM Windows application.

Example:

2015-01-21_15-12-09

A.3 CameraSerialNumber

is a string with the serial number of the camera.

```
CameraSerialNumber
```

Example:

13060013

A.4 SoftwareVersion

SoftwareVersion is a string with the software version used. Example:

1.3.3450

A.5 IsAssumedToBeInitialized

IsAssumedToBeInitialized is a Boolean for internal use only. Example:

False

A.6 CurrentSettingsFileName

CurrentSettingsFileName is a string with the name of the current settings file if any. Example:

Default

A.7 FpgaVersion

FpgaVersion is an integer with the major version of the FPGA firmware. Example:

135

A.8 FpgaSubVersion

FpgaSubVersion is an integer with the minor version of the FPGA firmware. Example:

13

${f A.9}$ HardwareVersion

HardwareVersion is an integer with model type of the camera. A HardwareVersion < 10 is a CF08 camera and a HardwareVersion >= 10 is a CF16 camera.

Example:

10

A.10 HoldOffTime

HoldOffTime is an integer with the number of samples from the start of the transmit pulse to the start of the data acquisition.

Example:

360

A.11 AmplitudeGatingStart

AmplitudeGatingStart is an integer with the start sample index of the 1st amplitude gate (for future use).

Example:

50

A.12 AmplitudeGatingEnd

is an integer with the end sample index of the 1st amplitude gate (for future use).

AmplitudeGatingEnd

Example:

350

A.13 TimeOfFlightGatingStart

TimeOfFlightGatingStart is an integer with the start sample index of the 1st time-of-flight gate (for future use).

Example:

50

A.14 TimeOfFlightGatingEnd

is an integer with the end sample index of the 1st time-of-flight gate (for future use).

TimeOfFlightGatingEnd

Example:

350

A.15 AmplitudeGatingStart2

AmplitudeGatingStart2 is an integer with the start sample index of the 2nd amplitude gate (for future use).

Example:

0

A.16 AmplitudeGatingEnd2

AmplitudeGatingEnd2 is an integer with the end sample index of the 2nd amplitude gate (for future use).

Example:

A.17 TimeOfFlightGatingStart2

TimeOfFlightGatingStart2 is an integer with the start sample index of the 2nd timeof-flight gate (for future use).

Example:

0

A.18 TimeOfFlightGatingEnd2

TimeOfFlightGatingEnd2 is an integer with the end sample index of the 2nd time-of-flight gate (for future use).

Example:

0

A.19 AmplitudeGatingStart3

AmplitudeGatingStart3 is an integer with the start sample index of the 3rd amplitude gate (for future use).

Example:

0

A.20 AmplitudeGatingEnd3

AmplitudeGatingEnd3 is an integer with the end sample index of the 3rd amplitude gate (for future use).

Example:

0

A.21 TimeOfFlightGatingStart3

TimeOfFlightGatingStart3 is an integer with the start sample index of the 3rd time-of-flight gate (for future use).

Example:

A.22 TimeOfFlightGatingEnd3

TimeOfFlightGatingEnd3 is an integer with the end sample index of the 3rd time-of-flight gate (for future use).

Example:

0

A.23 TxLine

TxLine is an integer describing the current horizontal cross hair position (for future use). Example:

31

A.24 RxLine

RxLine is an integer describing the current vertical cross hair position (for future use). Example:

31

A.25 CameraModeSwitch

CameraModeSwitch is a string with the position of the of the mode switch on the camera. Example:

Normal

A.26 CameraType

CameraType a string with the type of the DolphiCamTM. Example:

Expert

A.27 IsTimeCalibrationActive

IsTimeCalibrationActive is a Boolean indicating whether time calibration is used or not (for internal use only).

Example:

True

A.28 IsScanButtonRegisterSet

IsScanButtonRegisterSet is a Boolean indicating the status of an internal register (for internal use only).

Example:

False

A.29 IsScanButtonPushed

IsScanButtonPushed is a Boolean indicating if the scan button has been pressed on the camera (for internal use only).

Example:

False

A.30 IsLowBattery

IsLowBattery is a Boolean which indicates if the battery was low when the data was acquired.

Example:

False

A.31 NumberOfTransmittingElements

NumberOfTransmittingElements is an integer with the number of transmit elements used when acquiring the data.

Example:

4

A.32 AveragesPerTransducerElement

AveragesPerTransducerElement is an integer with the number of averages used when acquiring the data.

Example:

A.33 CaptureMethod

CaptureMethod is one of the following strings

```
CaptureGreatestAbsoluteValue
CaptureHighestValue
CaptureLowestValue
```

which indicates the method used to create the C-scan.

A.34 IsEnteringSleepMode

IsEnteringSleepMode is a Boolean which indicates that the camera will sleep in the number seconds defined by SleepModeWarningTime which normally is 15 seconds (see also Section A.52).

Example:

False

A.35 MatchFilterDivideFactor

MatchFilterDivideFactor is an integer used internally when filtering the data. Example:

512

A.36 TxPulseShapeAndMatchFilter

TxPulseShapeAndMatchFilter is an integer defining the pulse (and the corresponding filter) used when acquiring the data (1–8 for a CF08 camera and 1–4 for a CF16 camera). Example:

1

A.37 BScanXCoord

BScanXCoord is an integer describing the current horizontal cross hair position (for future use).

Example:

dolphilteen April 20, 2015

A.38 BScanYCoord

BScanYCoord is an integer describing the current horizontal cross hair position (for future use).

Example:

61

A.39 IsTimeCorrectedGainActive

IsTimeCorrectedGainActive is a Boolean which indicates if time-corrected gain is active. Example:

False

A.40 IsTimeCorrectedGainSubpointsActive

IsTimeCorrectedGainSubpointsActive is a Boolean which indicates if sub points of time-corrected gain is active.

Example:

False

A.41 TimeCorrectedGainValues

TimeCorrectedGainValues is an integer vector with the values of the internal digital-toanalog converter (DAC) used for time-corrected gain. Example:

30 31 32 33 34 35 36 37 38 39 40 41 42 43

A.42 TimeCorrectedGainValuesSubPoints

TimeCorrectedGainValuesSubPoints is an integer vector with the values of the DAC used for time-corrected gain sub-points.

Example:

30 31 32 33 34 35 36 37 38 39 40 41 42

dolphiltech April 20, 2015

A.43 DacValue

DacValue is an integer used when setting the internal DAC for adjusting the sensor gain. The gain is set using two integers DacValue and DacOffsetValue (see Section A.44). The DAC value = DacValue + DacOffsetValue.

Example:

30

A.44 DacOffsetValue

DacOffsetValue is an integer used when setting the internal DAC for adjusting the sensor gain (see also Section A.43).

Example:

6

A.45 RecordingWindowSamples

RecordingWindowSamples is an integer describing the A-scan length in samples. Example:

360

A.46 IsRawDataRecording

IsRawDataRecording a Boolean that indicates whether we record data or not (it should always be true).

Example:

True

A.47 FilterEnable

FilterEnable a Boolean that indicates whether the data is filtered or not. Example:

True

A.48 EnablePulseSequence

EnablePulseSequence a Boolean that indicates whether a custom pulse is enabled or not.

Example:

False

A.49 TxPulseSeqA

TxPulseSeqA is the 2 byte integer which defines the first two pulses in of the pulse sequence definition.

Example:

17990

which is

0x4646

in hexadecimal form. The first nibble (from left) is the number of clock cycles the pulse is high and the second nibble is the number of cycles the pulse is low. The format of the nibbles are (H - high, L - low):

OxHLHL

The valid range of H is 0x00,0x04-0x0F(0,4-15) and the valid range of a range of L is 0x00,0x06-0x0F(0,6-15). If all H are > 0, also in TxPulseSeqB (see Section A.50), then four pulses are used.

A.50 TxPulseSeqB

TxPulseSeqB is the 2 byte integer which defines the last two pulses in of the pulse sequence definition. (see Section A.49 for a description of the format).

A.51 EnableSleepMode

EnableSleepMode a Boolean that shows if the sleep mode feature is enabled. Example:

True

A.52 SleepModeWarningTime

SleepModeWarningTime is the number of seconds that the sleep mode warning is shown before the camera enters sleep mode.

Example:

15

A.53 CameraScanTime

CameraScanTime is the number of minutes before the camera enters sleep mode. Example:

15

A.54 DcCorrection

DcCorrection is a Boolean that indicates whether DC correction (bias correction) is on or not. It should always be enabled.

Example:

True

References

[1] Paraview. http://www.paraview.org.