
SL-Note 96-45 RF

The New RF Control System for the CERN SPS
Accelerator

A detailed presentation

P. Baudrenghien, E. Bracke, H. Marty, J. Molendijk

Y. Pilchen, F. Weierud, U. Wehrle

August 20, 2002

Abstract

The old SPS RF control system designed in 1972 has been replaced com-
pletely, hardware and software. The new system has to control both RF
equipment conceived during the last 23 years, and future equipment. Using
information analysis methods, we derived a model of an RF command and de-
signed a data base accordingly (ORACLE�). Information from this database
is used for command generation, processing, and also for archiving settings.
The advantage is purely generic software, i.e. the same computer code is used
for switching on an RF amplifier, or for setting a frequency synthesizer. New
equipment is added very simply by entering new records in the data base.
Additional features include a reservation scheme whereby a user can take pri-
vate control of any piece of equipment, a reporting facility notifying the user
of the simultaneous control activity by other users on RF equipment, and a
capability scheme assigning a level of expertise to each user restricting action
on the equipment.

1

1 Introduction

The SPS control system designed in 1972 consisted of a star network of NORD 100
computers: One central computer, located in the Main Control Room (MCR) and
satellite computers for each subsystem. The operators could control the machine
via a set of console computers located in the MCR (with some graphic facilities),
while the expert of a subsystem could interact via the console located next to the
corresponding satellite computer [1]. The programming language was NODAL [2].

In 1990, it was decided to replace the hardware and software based on these NORD
100 computers. This work was motivated by the technical obsolescence and the
excessive maintenance costs of this old technology [3]. Working groups were created
among the Controls Groups of the PS and SL divisions. It was expected that the
equipment groups (such as the RF) take an active part in the development of their
own software, while following the guidelines and using the architecture proposed
and developed by the Controls Groups [4]. This note presents the resulting control
system of the SPS RF.

2 The SPS RF equipment

The SPS is a 7 km long machine accelerating protons, electrons, positrons and heavy
ions. The RF equipment consists of the following systems:

200 MHz TWC. 4 cavities at 200 MHz, of the travelling wave type, used for
protons and ions acceleration.

200 MHz SWC. 21 cavities at 200 MHz, of the standing wave type, used for
leptons acceleration.

100 MHz SWC. 6 cavities at 100 MHz, of the standing wave type, used for leptons
acceleration.

352 MHz SUPRA. 4 supraconducting cavities at 352 MHz, used for leptons ac-
celeration.

400 MHz SUPRA. 1 supraconducting cavity at 400 MHz, prototype of the cavity
for the future accelerator LHC.

In addition to the above RF power equipment, the control system must also control
the following:

Beam Control. Settings and acquisitions: radial loop, phase loop, frequency pro-
gram. . .

2

RF Synchronization. Settings and acquisitions for synchronizing the bunch into
bucket transfers from CPS into SPS, and from SPS into LEP.

352 MHz SUPRA beam dump and veto field. Acquisition and display of the
faults causing a beam dump or a veto of the field in the cavity.

Measurements. Acquisition of data for diagnostics.

3 Architecture

Our control system follows the architecture proposed by the PS and SL Controls
Groups [4] [5]. It consists of three layers (see figure 1). The Control Room Layer with
its UNIX workstations and X-Terminals, is connected via a network (local Ethernet
segments bridged to large Token-Rings) to the Front End Computing Layer. The
Front End process computers are IBM type PCs with LynxOS operating system.
They are called Device Stub Controllers (DSC) [4]. Each DSC can drive a set of MIL-
1553 fieldbuses connecting it to the Equipment Control Assembly (ECA) layer. The
ECAs are G64 crates with 8 bit microprocessors and AMX based real time operating
system. The G64 crates are equipped with Input/Output cards connected to the
RF equipment.

Communication between the Control Room Layer and the Front End Computing
Layer is done via Remote Procedure Calls (RPC) on the network (Client-Server
model) [6]. The DSCs communicate with the ECAs via EQUIP calls in so-called
Command-Response mode: The DSC sends the command to the ECA and waits for
the response [7].

4 Distributing the tasks between layers

4.1 Control Room layer

We have developed a Man Machine Interface program (MMI) meant to run on any
workstation on the network. Less vulnerable X-Terminals have been installed next
to the RF power equipment; and RF experts run the MMI program from there
while working on their equipment. The program deals with command generation
and display of replies: It guides the user through the generation of a valid command
via graphics, menus and selections by the mouse. It displays the replies resulting
from that command while it executes, and reports on possible modifications to the
equipment triggered by other simultaneous users.

3

ECA ECA ECA ECAECA ECA ECA ECA

X Terminal

ETHERNET

ETHERNET

1553 link 1553 link 1553 link 1553 link

to/from RF equipment to/from RF equipment to/from RF equipment to/from RF equipment

ECA layer

FE Layer

bridge or gateway

DSC DSC

Control Room Layer
X Terminal

WorkstationWorkstation Workstation

Figure 1: Three layers architecture.

4.2 Front End Computing layer

Refering to figure 1 we see that a given piece of RF equipment (say an amplifier) is
connected via ECA’s to one DSC. Any command sent to that amplifier will thus go
through that DSC. This implies that the following tasks are best implemented at
this level:

Filtering. Upon reception of a command, check that the user is allowed to request
such an action on the equipment (this depends on the capability assigned to
that user).

If the equipment has to be reserved before sending a command to it, check that
the user is the current owner. (Capability and reservations will be discussed
in section 6.1).

Sequencing. An action on a piece of RF equipment typically implies the execution

4

of a sequence of steps, with the result of one step conditioning the execution
of the next one. (For example, switching on an amplifier implies first the
switching on of its cooling, then pre-heating of its filament, then the grid
voltage, . . .). This sequencing is done in the DSC, each step may involve one
or several calls to the ECA(s).

Transmitting replies. Replies can be either data requested by the user (read com-
mand) or messages notifying the user of the execution of the steps in a se-
quence. A reply to a user is always the response to a command sent by that
user.

Transmitting reports. Reports are messages notifying a user of the execution of
a sequence called by another user. It is thus a copy of the replies sent to the
user that issued the command. Using these reports, one can be notified of the
simultaneous control activity of a portion of the RF equipment. One can ask
reports on one or several systems as defined in section 2.

Notifying the Actif server. If a write command is successfull, i.e. it did modify
the value of a setting, the DSC sends a notification to a process called the
actif server. We have only one actif server (running on a workstation) for the
whole SPS RF control system. It keeps an image of the last settings loaded in
the equipment (see section 8).

4.3 Equipment Control Assembly layer

In our architecture an ECA cannot communicate directly with another ECA. It can
only respond to a DSC. This implies that a sequence involving equipment connected
to different ECAs must be implemented in the Front End Computing layer.

The following tasks are implemented in the Equipment Control Assembly layer:

Timing driven equipment control. The 14.4 seconds long SPS supercycle con-
sists of 1 proton cycle, followed by two lepton cycles used for filling LEP.
Synchronization of the various accelerator equipments during the supercycle
is done by the Master Timing.

The RF ECAs have dedicated hardware, responding to this timing, and thereby
sending cycle specific settings to the RF equipment. This solution was prefered
to a software one because it guarantees real time operation without overloading
the CPU.

Remote communication. The ECA first parses the command received from the
DSC, it then checks that this command is allowed considering the present state
of the equipment. Following that, it either executes a mini-sequence switching

5

the equipment or reads the hardware or the RAM (stored data). It finally
sends a reply back to the DSC.

Surveillance. During switching operations possible time-out situations are sur-
veyed. In such a case the ECA returns the equipment to a safe state. Equip-
ment error conditions are monitored by means of polled or equipment driven
surveillance.

Initialization. The application RAM data area and the connected equipment are
initialized into a safe state at start-up.

Logging. Fault logs are maintained and can be requested via the remote communi-
cation for analysis. Specific equipment settings are saved. The last state can
thereby be restored after a power supply failure.

The last three tasks listed above are only implemented in the ECAs controlling RF
power equipment, i.e. amplifiers, cavities, power supplies . . .

The application software in the different ECAs uses generic code and is driven by
tables that are generated during the development phase. The equipment specific
code is limited to initialization and surveillance tasks.

5 Command Representation

The control system is mainly concerned with the manipulation of commands: Com-
mand generation, filtering, routing to the server concerned, transformation into a
sequence of more elementary commands, etc . . . Choosing an adequate model for a
command is thus very important.

5.1 The Graph

The RF Graph consists of two types of objects: nodes and leaves, related by filiations
(arrows). See figure 2. We impose the following restrictions on the graph

• there is a single root node,

• there is no recursive path,

• leaves have no child,

• each node has, at the most one child leaf.

6

TUBES

STATUS_LEAF

LEVEL2

CAVITYTX

LEVEL 1 RF_DRIVE

SWITCH_ON

TX1 TX2 TX3 .. TX8 CAV1 CAV2 CAV3 CAV4

READ

TWC_200_Power

STATUS_ACQ

SWITCH_OFF

Figure 2: A portion of the TWC 200 MHz Power graph

We have one such graph per RF system (as defined in section 2). The root is the
system’s name. Nodes are meant to represent functionalities, with children nodes
as sub-functionalities. Figure 2 shows a portion of the graph representing the four
Travelling Wave Cavities at 200 MHz. Each cavity is driven by two amplifiers tra-
ditionally called transmitters (TX). Nodes are represented by small ellipses. The
dashed rectangles represent a list of targets to which the functionality of the corre-
sponding node can be applied: CAVITY can be applied to the four cavities (CAV1
to CAV4); TX can be applied to the eight transmitters (TX1 to TX8). Wherever a
node has only one target, it is not drawn on the figure.

Leaves are meant to represent data. They are drawn as square box on the figure.
The STATUS LEAF describes the data returned by a status acquisition on either a
cavity or a transmitter. The leaf can eventually be applied to a set of transfer modes
drawn in a dashed rectangle. The STATUS LEAF has only one transfer mode: read.

7

5.2 A Command

A command is a path through the graph, starting at the root, with a list of selected
targets at each node, and, if the path ends in a leaf, a single selected transfer mode
plus possible parameters and data (write).

Refering to figure 2, we derive the command:

switching on the RF drive for transmitters 1,2 and 3.

• node TWC 200 Power and selected target default

• node TX, selected targets TX1, TX2 , TX3

• node RF DRIVE, selected target default

• node SWITCH ON, selected target default.

This graph representation presents the following advantages:

Generic code. The graph model, with the corresponding data base (section 9),
leads to generic applications: The same code can be used for all RF equipment.
We have more than 100 different commands ranging from the switching on of
a transmitter, to the modification of a setting and the acquisition of a large
amount of measurement data. The model fits them all.

Treatment. Tree-like structures are optimum because they are visited very effi-
ciently. We have a few hundred nodes. But, wherever needed, the search
through the graph (for example the filtering defined in section 4.2) will, at
each node, be limited to its child nodes only, leading to an exponential gain
in speed.

6 The Man Machine Interface

The Man Machine Interface program (MMI) guides the user through the generation
of a command via menus and selections. It is directly driven from the graph: Upon
selection of a node, the list of corresponding targets is proposed. Then the choice
of children nodes is displayed, etc . . . until one reaches a terminal node or a leaf.

The MMI consists of two companion UNIX processes. When an operator starts
the application, he starts bulles.exec, and this forks hprr (figure 3). These two
processes communicate via RPC with the DSC layer, bulles.exec talking to the
process kernel and hprr talking and listening to rptrply.

8

RPC

DSC

Signal SIGUSR1

RPC

RPCRPC

kernel rptrply

hprrbulles.exec

WORKSTATION

Figure 3: The Man Machine Interface program

6.1 Process bulles.exec

This process is the graphic interface between the user and the equipment. It has
been developed using the Uniform Man Machine Interface model proposed by the
Controls Group [8]. Fortyfour views (synoptics) have been created with the graphic
software DV-Draw. Each synoptic contains a set of graphic objects. Following the
model [8], an Application Interface File (AIF) describes all actions to be executed
when the user selects (click via the mouse) an active object in the synoptic. This
AIF is written in a meta language and is later translated into C-language using a
Code Generator [8]. The resulting C code is then compiled, resulting in the program
bulles.exec.

In each DSC connected to some RF equipment, a single UNIX server called kernel is
running. This server is the unique entry point to access the relevant RF equipment.

Communication between bulles.exec and kernel has the following functions:

User identification. While server kernel is always running in the DSC, a new
MMI program can be started at any time. Before sending any command, it
must first call the login() service to be identified. From this identification the
DSC will assign a capability to the recognized user, thereby restricting action
on the equipment.

Reservation. Some equipment (a transmitter for example), can be controlled by
only one user at the time. Using the service take(), one becomes the owner of
a portion of the equipment. Service release() makes it available to other users
again.

Command. When the user sends a command to the DSC its capability is checked
and, if it is too low, his command is rejected.

9

Reload setting from archive. We allow a user to reload a setting from archive
even if he does not have the sufficient capability to manipulate that setting
via the service command(). To prevent an abusive usage of reload() in place of
command(), parameters of the reload call are protected by a cryptographically
secure hash function, MD5 (ref [9]).

A more detailed description of the graphic interface program can be found in ref
[10]. A user’s manual is also available (ref [11]).

6.2 Process hprr

Process hprr is the return channel receiving reports and replies back from the DSC.
In each DSC connected to some RF equipment, a single UNIX process called rptrply
is running (figure 3). This process is responsible for sending all reports and replies
back to the hprr process of the MMI programs.

The mechanism is the following: As explained in section 4.2, execution of a command
may result in a lengthy sequence of steps (lasting as long as 15 min. for some
commands on a transmitter). During this sequence, intermediate replies will be
returned, informing the user of the actions in progress. These replies are sent from
client rptrply to its server process hprr. Process hprr will then send a UNIX
signal (SIGUSR1) to bulles.exec informing him that a reply is available. As soon
as possible, bulles.exec will then make a call to its server hprr to read this reply.

This complex mechanism was necessary because the graphic interface bulles.exec
is only responding to signals (mainly clicks on the mouse) and cannot perform as
a server of rptrply. An additional process hprr was thus designed as a server of
both rptrply and bulles.exec.

The user can specify the level of detail for receiving intermediate replies: More
elementary steps in the sequence will then cause no reply to be sent. A similar
mechanism is available for the reports.

Communication between hprr and rptrply has the following two functions:

Asking reports. By asking for reports on a system, the user can be notified of the
control activity of other simultaneous users.

Transmitting reports and replies.

For a more detailed description of process hprr, please consult ref [12].

Figure 3 shows a MMI program communicating with a single DSC. When control-
ling the RF equipment through several DSCs, bulles.exec will be connected with
several kernel servers (one in each DSC), while hprr will also be connected with
several rptrply (again one in each DSC).

10

7 The Front End Computing layer

Figure 4 shows the processes running in a DSC. The process kernel, responsible
for filtering the command, and rptrply reponsible for transmitting the reports and
replies have already been presented in section 6.

 shared memory

RPC RPC RPC

kernel

quick Line 1 Line 2 Line 3 Line 4

EQUIP calls to the ECAs

WORKSTATION

bulles.exec hprr

rptrply

DSC

communication via

Figure 4: The processes in the DSC

The other processes (quick, Line 1 . . . Line 4) are called executers. They are all
constructed from the same C code modules, each being responsible for the control of
a portion of a RF system. They implement the sequencing mentioned in section 4.2.
When assigning the RF equipment to executers we want independent devices to
be controlled by different executers. Let us again take the Travelling Wave 200
MHz system as example: We have four independent cavities, each being driven by
two amplifiers. We shall map this equipment into four executers (Line 1 . . . Line

11

4), each controlling one cavity with its amplifiers and accessories (hybrid, power
supplies,. . .). Thanks to the parallel processing of LynxOS, we can then run simul-
taneous sequences on several cavities. Upon reception of a command, process kernel
routes it to the concerned executer(s). During sequencing, this(these) executer(s)
will send intermediate replies to process rptrply. Communication to and from the
executers is done via a shared memory structured buffer system. The reservation
mechanism (section 6.1) gives the user exclusive control of all the equipment under
a chosen executer. Status acquisition commands on all four cavities are routed to
an additional executer called quick (see figure 4).

When forwarding a command to an executer, the kernel labels it with a Run Time
Name. To this Run Time Name corresponds a table (in the private data base of the
executer) listing a series of steps (the relevant sequence). Each step can either be
a reference to another table (a more basic sequence), or a reference to a program
(such as a communication with an ECA). Customization of the control of a given
RF equipment is achieved by the construction of these tables.

12

8 Actif - Archives

A single server actif is responsible for keeping an image (called the actif file) of the
current settings of the whole RF equipment. For that task, the process rptrply in
each DSC must notify it if a command modified a setting. This is done via the RPC
channel shown on figure 5. Server actif keeps a copy of these settings in shared
memory. Periodically, a copy is also saved on the disk.

actif file

Signal SIGUSR1

RPC

RPC

archive #1

archive #2

archive #3

write

(shared memory)

bulles.exec

WORKSTATION

WORKSTATION

DSC

rptrply

hprr

RPC

RPC RPCRPC

kernel

read

read and write

archive
actif

Figure 5: The servers archive and actif

The MMI program bulles.exec is a client of server archive. Using these services, it
can archive the present settings (i.e. copy the actif file onto an archive), or retrieve
old settings from an archive (in order to reload the hardware). For more details on
these processes, consult ref [12].

13

9 The graph data base

9.1 Content of the graph data base

The graph data base describes all RF commands. For each command, it provides:

A representation. Node and leaf names are sufficient since a command is merely
a path through the graph (section 5.2). In addition, nodes and targets have a
description to be used by the MMI program for proposing commands.

The needed capability. A minimal needed capability is defined:

• For each node-node and node-leaf filiation. A user can follow this arrow
only if his capability is at least equal to the specified one.

• For each target of each node. This restricts the set of targets available to
the user.

• For each transfer mode of each leaf.

The reservation. For each target of a node, the data base indicates whether the
user must reserve the executer or not.

The DSC. The address of the DSC serving that command.

The EXEC. The name of the executer responsible for the treatment (section 7).

The Run Time Name. The name of the command recognized by the executer
(section 7).

The 1553 fields for EQUIP. For an elementary command (i.e. a command mak-
ing a single EQUIP call), the 1553 fields FAMILY, MEMBER, ACTION,
MODE, USOPT can be defined (see ref [7]):

• For each target of each node.

• For each transfer mode of each leaf.

The leaf. If a command involves data (read or write), its path will terminate in
a leaf. The graph gives the possible transfer modes. For each transfer mode
(read or write), the data base indicates:

• The types of data. We allow a subset of the three following types: List
of longinteger, list of float, list of string. Whether the number of items
in each list is fixed or variable, possible maximal number of items in each
list, bounds, . . . are also defined in the data base. The MMI synoptic to
be used, and for each data item, a description to be used by the MMI
program for entering the data (write) or for displaying the data (read).

14

• The types of parameters. (At present parameters are used in the read
transfer mode only). Again we allow a subset of the three following types:
List of longinteger, list of float, list of string. Parameters can have fixed
values defined in the data base, or be editable. In that case, bounds may
be defined. The MMI synoptic to be used, and for each parameter, a
description to be used by the MMI program are also defined in the data
base.

A conversion algorithm may be defined (section 9.3).

In addition to the graph data base, a small users data base gives information on
some privileged recognized users. Most important is the capability level assigned to
each of these users.

Figure 6 shows the portion of the graph relevant to the command:

switching on the RF drive for transmitters 1,2 and 3.

TX
(Transmitter)

RF_DRIVE
(RF drive permitted)

target:

descr:

cap:

reserv:

exec:

family:

member:

action:

mode:

usopt:

0

default

32

RFDRIV

ALL;

TWC_200_Power

SWITCH_ON
(Switch ON)

target:

descr:

cap:

reserv:

exec:

family:

member:

action:

mode:

usopt:

0

default

32

ON

exec:

RB

4

32

32

4

yes

2

TX3 Siemens

SIETX3

target:

descr:

cap:

reserv:

family:

member:

action:

mode:

usopt:

0

4

TX1 Siemens

yes

SIETX1

4

yes

1

TX2 Siemens

SIETX2

Line 1 Line 1 Line 2

Figure 6: Content of the graph data base

15

In each node, we find the node description (between brackets) used by the MMI
program. The numbers on the node filiation arrows are the required capability
levels: 32 corresponds to the user Machine-Operation, and is the minimum required
to use sub-functionality RF DRIVE underneath TX. A user with a lower capability
could only move to sub-functionality STATUS ACQ shown on figure 2.

Each node has at least one target. (Only the first three targets of TX are listed).
One possible attribute of the target is the specification of the executer: The first
two targets of node TX are controlled by the executer Line 1, while the third is
controlled by Line 2.

Finally, the 1553 fields are easily derived from the attributes of the targets in each
node of the command path. (Wherever an attribute of a target is not defined, the
corresponding field is left empty in figure 2).

Not represented on figure 6 are the specification of the DSC, (actually dependent
on the system only, i.e. defined at the root), and the Run Time Name, dependent
on the path in the command (and thus defined by the sequence of nodes).

9.2 Implementation of the graph data base

9.2.1 Data base design

The information analysis was first done using the NIAM method (Natural Informa-
tion Analysis Method) [13]. This method consists in the representation of knowl-
edge as facts between objects. Derivation of the proper facts and objects from the
graph is straightforward: Most important objects will be node, target, leaf, system,
node name, node leaf connection . . . And facts will read like:

• A node belongs to a system

• A node is the father in a node leaf connection

Using this method, one also defines constraints between these objects. For example:

• In the same system two nodes cannot have the same node name

• A node is the father of only one node leaf connection

The product RIDL* [14] from IntelliBase is a CASE (Computer Aided Software
Engineering) tool integrating a graphic interface for entering the NIAM diagram,
an analysis package checking that the diagram entered does not violate the rules of
NIAM, and finally a mapping package generating a SQL text file with statements
creating the tables and defining the constraints for the chosen DBMS (Data Base
Management System). We have entered the NIAM diagram of our graph data base

16

into RIDL*, and have obtained the SQL text file for creation of our data base onto
the Oracle DBMS (version 7). (For an explanation of the Oracle terminology, please
refer to Oracle v7.1 user manuals).

The graph data base is mapped into 52 Oracle tables (a total of 235 columns) and
366 constraints. Of particular interest in the use of version 7.1 is the enforcing of
foreign key constraints at the table level, thereby preserving the integrity of the data
base. (For example one cannot delete a node if it has some targets).

9.2.2 Entering data into the data base

Seven Forms have been created, using SQL*Forms (version 3.0), to enter, query, up-
date and delete information in the data base. By designing the forms with version
3.0, the integrity constraints have been automatically transformed into the appro-
priate triggers. This implements a first filtering of the modifications, at the forms
level.

9.2.3 Extracting data from the data base

Information from the data base is needed by

• The MMI program: Process bulles.exec needs all the information from the
graph except for the Run Time Names and 1553 fields. Process hprr needs to
know which DSC is serving each system.

• Server actif needs information on all commands involving settings (i.e. ending
in a leaf with a possible write transfer mode).

• Server kernel in each DSC needs information on all systems (served by that
DSC) to filter the commands received, and to forward them to the relevant
exec process.

• Process rptrply in each DSC only needs to know what systems are served by
that DSC.

• Each executer needs a list of all the Run Time Names that it implements,
plus the corresponding 1553 fields.

We do not use SQL*Net (real-time SQL calls) because this is incompatible with the
desired speed of the control system. Beside, the RF control must be able to continue
running without the data base server. Instead, we have used a philosophy similar
to the one used in LEP [15]. We have developed a set of data extraction programs,
written in SQL*Plus with PL/SQL blocks. These programs generate, for each of
the process mentioned above, a dedicated set of flat tables, i.e. ASCII files with one

17

record per line, and items separated by at least one blank character. These files
are read by the process during initialization. The flat tables have the exact format
desired by each process: Each line in a table contains the fields to be stored in a
corresponding C-structure using the C function fscanf(). References between these
C-structures (i.e. references between lines in different tables) are computed off-line
by these SQL programs, so that initialization of the process is very fast.

Per system, 22 flat tables are created for bulles.exec, 7 flat tables for server actif,
and 11 flat tables for server kernel. Process rptrply and hprr need a single flat
table each (with information on all systems). Each executer needs 2 files.

The extraction programs also perform the consistency checks that cannot be easily
described as Oracle7 constraints on the data base. These are typically checks in-
volving a path through the graph, thus implying procedural capability (loop on the
nodes, branches and exception handling) that are available in the PL/SQL language.
For example, we check that for each path, the executer is defined once (only in one
node); we also check that each 1553 field is not defined twice (in different nodes).
The flat tables will be generated only if all these checks are positive.

9.2.4 Platform

The Oracle data base is installed on a DEC 3000 machine. SQL*Forms and the
SQL*Plus data extraction programs run on this machine. The flat tables are then
copied onto the workstations and the file servers of the DSCs via FTP (File Transfer
Protocole).

9.3 The procedural data base

The graph is a declarative data base. At the very end of the treatment of a command,
in the executer, one may need to apply a conversion algorithm to the data in order
to match the format required by the specific RF equipment. This hardware has
been developed over the last 23 years, thereby presenting a broad variety of digital
access. (An example of conversion algorithm is a Binary to BCD - Binary Coded
Decimal - conversion for a frequency synthesizer). Fortunately the same conversion
algorithms can be used in many places in the RF. So, we have developed a small
procedural data base consisting in a library of 23 conversion algorithms (C functions)
to be linked with the executers. These algorithms are described in ref [16].

10 Acknowledgements

Many thanks to Krzysztof Kostro for his help on RPC calls. Marc Vanden Eynden
provided guidance in the development of the MMI program. We were convinced

18

to use the Oracle data base by the recommendations of Josi Schinzel, Paul Hey-
mans and John Poole. Genny Ferran gave the support for the use of the CASE tool
RIDL*. David Nathan (DaNathan Advanced Standard) wrote all the conversion al-
gorithms under a specific contract. The shared memory buffer system was developed
by Ann-Kari Amundsen and Hans Petter Christiansen. And finally, many thanks
to our colleagues of the SPS RF for their enthusiastic encouragements during the
commissioning of this new control system.

19

References

[1] The 300 GeV Programme, CERN/1050, 14 Jan. 72.

[2] M.C. Crowley-Milling, G.C. Shering, The NODAL system for the SPS, CERN
78-07, Sept. 78.

[3] PS and SL Controls Groups, Controls Users Meeting at Chamonix,
CERN/SL/90-93(CO), July 90.

[4] PS and SL Controls Groups, PS/SL Controls Consolidation Project,
CERN/SL/91-12(CO), April 91.

[5] P. Anderssen, P. Charrue, R. Lauckner, P. Liénard, R. Rausch, M. Tyrrell, M.
Vanden Eynden, Interfacing Industrial Equipment to CERN’s Accelerators and
Services Control System, CERN-SL-95-42 CO, April 95.

[6] P.S. Anderssen, V. Frammery, G. Morpurgo, User Guide to the Network Com-
piler Remote Procedure Call (NC/RPC), LEP Controls Note 97, May 89.

[7] The LEP/SPS Controls Group, The LEP/SPS Access to Equipment, LEP Con-
trols Note 54, Version 1.03, Feb. 86.

[8] P. Ninin, J.Ph. Regin, P. Sollander, M. Vanden Eynden, Uniform Man Machine
Interface model for the control of industrial equipment, CERN SL/90-94(OP),
Version 1.3, 23 Jan. 92.

[9] B. Preneel, Cryptographic Hash Functions, European Transactions on Telecom-
munications, Vol.5, No.4, Jul-Aug 94, pp. 431-448.

[10] P. Baudrenghien, H. Marty, The SPS RF Control System, Interface Homme-
Machine, available from http://nicewww.cern.ch/SL/RFSPS/spsrfdoc.htm.

[11] P. Baudrenghien, E. Bracke, H. Marty, J. Molendijk, Y. Pilchen, F.
Weierud, The SPS RF Control Application, User’s guide, available from
http://nicewww.cern.ch/SL/RFSPS/spsrfdoc.htm.

[12] Y. Pilchen, The SPS RF Control System, Report & Reply, Archives, available
from http://nicewww.cern.ch/SL/RFSPS/spsrfdoc.htm.

[13] J.J.V.R. Wintraecken, the NIAM Information Analysis Method, Theory and
Practice, Kluwer Academic Publishers, 1985.

[14] RIDL* (V1.2) manual set, IntelliBase nv/sa, Plantin en Moretuslei 220 bus 3,
2018 Antwerpen, Belgium, 1991.

[15] J. Poole, The Database Systems for LEP Control, CERN SL/90-65(MR), June
1990.

20

[16] P. Baudrenghien, E. Bracke, U. Wehrle, The SPS RF Control System, Conver-
sion Algorithms, available from http://nicewww.cern.ch/SL/RFSPS/spsrfdoc
.htm.

21

