
RoarAudio Manual

Philipp ”ph3-der-loewe” Schafft et al.

August 13, 2010

Contents

Contens 6

I Introduction 7

1 What is RoarAudio? 8
1.1 What is a Sound Server? . 8
1.2 What are the key fatures of RoarAudio? 8

2 Basic concept 10

II Quickstart 11

3 Installation 12
3.1 archlinux . 12
3.2 OpenBSD . 13
3.3 Debian . 13
3.4 From Sources . 14

4 Configuring 15
4.1 archlinux . 15
4.2 OpenBSD . 15
4.3 Debian . 15

4.3.1 Options . 15

5 Setting up a player 17
5.1 XMMS . 17
5.2 libao based . 17
5.3 Other . 17

III User Manual 18

6 RoarAudio’s Architecture 19
6.1 Subsystems . 19
6.2 Clients . 19
6.3 Streams . 19

6.3.1 Stream Types . 20
6.3.2 Stream Flags . 22

1

CONTENTS 2

6.4 Driver . 24
6.5 Sources . 24
6.6 Codecfilter . 24
6.7 Bridges . 24

7 Playing music on command lion with RoarAudio 25
7.1 roarcatplay . 25
7.2 roarvorbis . 25
7.3 roarradio . 26
7.4 roarcat . 26

8 Controlling played music 27
8.1 List current streams . 27
8.2 Change volume . 27
8.3 Kick a stream . 28
8.4 Show and change meta data . 28
8.5 Change stream flags . 28

9 Dumping and Streaming 29
9.1 roarmon . 29
9.2 roarshout . 29

10 RoarAudio Daemon 30
10.1 General Audio Options . 30
10.2 Drivers and Outputs . 31
10.3 Sources . 32
10.4 Codecfilter . 33
10.5 Listen Connection . 33
10.6 Realtime . 34
10.7 Security . 34

10.7.1 User and group . 34
10.7.2 chroot . 34

11 Using RoarAudio’s MIDI Subsystem 35
11.1 Basics about MIDI and RoarAudio 35
11.2 MIDI Clock . 35
11.3 Connecting devices to RoarAudio 36

12 Using RoarAudio for Light Control 37
12.1 Basics about RoarAudio and Light Control 37
12.2 Connecting devices to RoarAudio 37

13 Compatibility Librarys 38
13.1 Using Compatibility Librarys . 38

13.1.1 roarify . 38
13.2 Enlightened Sound Daemon . 39
13.3 PulseAudio . 39
13.4 aRts - KDE Sound System . 39
13.5 YIFF Sound System . 39
13.6 OpenBSD sndio . 39

CONTENTS 3

14 End user Tools 40
14.1 roarcat . 40
14.2 roarcatplay . 40
14.3 roarctl . 40
14.4 roarradio . 40
14.5 roarvorbis . 40

15 Networking 41
15.1 Connection Types . 41
15.2 Proxy Server . 41

16 Files and Enviroment 42
16.1 General . 42

16.1.1 Files . 42
16.1.2 Enviroment . 42

16.2 roard . 42
16.2.1 Enviroment . 42

16.3 RoarAudio Clients . 43
16.3.1 Enviroment . 43

IV Developer Manual 44

17 Audio and format conventions 45
17.1 Channel Mapping . 45
17.2 Channel possitions . 45
17.3 Sample and Frame representation 46

18 Writing software using RoarAudio 47
18.1 Writing audio output plugins . 47

18.1.1 Writing basic very basic output 47
18.1.2 Adding support to set server 49
18.1.3 Prepering the plugin for meta data, mixer settings and so

on . 49
18.1.4 Adding support for meta data 52
18.1.5 Adding support for roard based mixing 53

18.2 Writing other output plugins . 53
18.3 Writing input plugins . 53
18.4 Writing mixer plugins/Mixer frondends 53
18.5 Accessing other (control) features 53

19 libroar 54
19.1 Low Level Protocol API . 54
19.2 Medium Level Protocol API . 54
19.3 High Level Protocol API . 54
19.4 Simple API . 54
19.5 Sockets . 54
19.6 Buffer . 54
19.7 Stack . 54
19.8 VIO - Virtual Input Output . 54

CONTENTS 4

19.8.1 Basic VIO API . 54
19.8.2 VIO Types . 57
19.8.3 VIO Operations . 64
19.8.4 VIO select . 64
19.8.5 DSTR - Descriptive String API 64

20 libroardsp 65

21 Project’s coding style and conventions 66
21.1 File encoding and New Lions . 66
21.2 File Header and Footer . 66

21.2.1 File header . 66
21.2.2 File footer . 66

21.3 Indenting and code blocks . 66
21.4 Use of spaces . 67
21.5 Use of NULL . 67
21.6 Use of pointers to struct or union members 68
21.7 Use of goto . 68
21.8 Comments . 68
21.9 Name of Objects, Vars, . 68
21.10Memory Management . 69
21.11Use of native data types . 69
21.12Order of arguments . 70

22 RoarAudio Protocol 71
22.1 RoarAudio Protocol and OSI Layer Model 71
22.2 Messages, Requests and Replys 71
22.3 Protocol Mappings . 71

22.3.1 Real Streams: TCP, DECnet (NSP) 71
22.3.2 RS232 . 72
22.3.3 I2C . 72
22.3.4 CAN . 72
22.3.5 MIDI . 72

22.4 Message Format . 72
22.4.1 Format version 0 . 72
22.4.2 Format version 1 . 73
22.4.3 Format version 2 . 75

22.5 Commands . 75
22.5.1 Base and connection commands 75
22.5.2 Possible repsonse commands 76
22.5.3 Server Status commands 77
22.5.4 Stream control and data commands 77
22.5.5 Other commands . 77

V Codecs, Container and Codec Mapping 79

23 Codecs 80
23.1 PCM . 80
23.2 A-Law . 80

CONTENTS 5

23.3 u-Law . 80
23.4 Vorbis . 80
23.5 Speex . 80
23.6 FLAC . 81
23.7 MIDI . 81
23.8 CELT . 81
23.9 DMX512 . 81
23.10RoarDMX . 81
23.11VCLT (Vorbis Comment Like Text) 81
23.12RALT (RoarAudio Like Text) . 82
23.13RALB (RoarAudio Like Binary) 82

24 Container 83
24.1 Ogg . 83
24.2 RAUM . 83
24.3 RIFF/Wave . 83

25 Mappings 84
25.1 Ogg Vorbis . 84
25.2 Ogg Speex . 84
25.3 Ogg FLAC . 84
25.4 Ogg CELT . 84
25.5 Ogg RoarDMX . 84
25.6 RAUM Mapped Ogg . 84
25.7 RAUM PCM, A-Law, u-Law . 87
25.8 RAUM RoarSpeex . 87
25.9 RAUM RoarCELT . 87
25.10RAUM DMX512 . 87
25.11RAUM RoarDMX . 87
25.12RIFF/Wave PCM . 87
25.13Native RoarSpeex . 87
25.14Native RoarCELT . 87
25.15Native DMX512 . 87
25.16Native RoarDMX . 87
25.17Native FLAC . 87
25.18Native MIDI . 87
25.19Native VCLT (Vorbis Comment Like Text) 87
25.20Native RALT (RoarAudio Like Text) 87
25.21Native RALB (RoarAudio Like Binary) 87

VI Maintainer Manual 88

26 Gernal Information 89

27 Packaging 90

28 Configuration Nodes 91

CONTENTS 6

VII Appendix 92

29 Autors and Copyright 93

30 Contact information template 94

Part I

Introduction

7

Chapter 1

What is RoarAudio?

RoarAudio is a very powerful cross-platform sound server. It is written for
all POSIX systems like GNU/Linux and all BSDs. There are also some parts
already ported to other architectures like cygwin and µ-Controllers.

It is designed to replace the very old sound server Enlightened Sound Daemon
(EsounD) and add modern features as well as features needed by Radio and
TV Stations. This includes support for Web Streaming via Icecast and simular
software.

1.1 What is a Sound Server?

A Sound Server or Sound Daemon is an application mixing audio in
realtime. It is normaly used to mix audio from diffrent applications befor sending
it to the soundcard as most soundcards can only handle one audio stream at a
time. Soundcards are called Output within RoarAudio. RoarAudio also knows
other types of Outputs, too, like file dumps or streaming servers like Icecast.

1.2 What are the key fatures of RoarAudio?

1. fully network transparent. Network support for UNIX Domain Sockets,
TCP/IP and DECnet

2. synchronized audio streams

3. multiple audio streams per client

4. Vorbis comments like meta data for each audio stream

5. support for EsounD clients via libroaresd

6. supported by many players: including all EsounD and libao players many
more!

7. mixing clients at individual levels like an analog mixer

8

CHAPTER 1. WHAT IS ROARAUDIO? 9

8. server and client side support for common codecs like Ogg Vorbis, Speex,
FLAC and many more

9. and many more. . .

Chapter 2

Basic concept

10

Part II

Quickstart

11

Chapter 3

Installation

3.1 archlinux

RoarAudio is available to users of the Archlinux GNU/Linux distribution,
through it’s user repository, the AUR. There are a few ways to obtain it from
there and installing it. First of all, it requiers you to have a set of development
tools, since it’s essentially building it from the sources, and makeing an Arch-
compatible package of the resulting files.

To start using the AUR, you will need to make sure that you have the package
”base-devel”. The ”base-devel” package, includes basic development tools, as
well as the packaging tools we are going to use to build, make a package of, and
install the RoarAudio software.

Additionally you will need packages for:

• libao - for supporting output via the ao-library

And, optionally you would like to have:

• vorbis-tools - for supporting the vorbis codec

• speex - for supporting the speex codec

• flac - for supporting the flac codec

The most common way is the use the makepkg-utility directly to perform
all of the steps needed to produce a working package. It goes through a couple
of steps, and does some basic tests, and then goes on to build. Below is a few
simple steps to follow when using this method.

1. Go get the PKGBUILD from the AUR at this link: http://aur.archlinux.
org/packages.php?ID=23109

2. Get the ”tarball”, and save it somewhere, for example in your /home or
in the /tmp directories, then unpack it.

12

http://aur.archlinux.org/packages.php?ID=23109
http://aur.archlinux.org/packages.php?ID=23109

CHAPTER 3. INSTALLATION 13

3. Change into the directory. There should be a PKGBUILD-file present.
Run ”makepkg” in the directory with the PKGBUILD-file. The build and
package-process will now start.

4. If everything went as it should, a package-file is generated, and you can
install it to your system by using the standard package-tools. To install a
package from a file instead of remotely, do ”pacman -U <package-name>”,
and to remove it use ”pacman -R <package-name>”.

Another popular method of installing software from the AUR is to use a
pacman-wrapper script, or pacman frontend. I will go through the steps needed
when using the ”yaourt” frontend.

1. Run ”yaourt -S roaraudio”. It should automaticlly look through both the
standard repositories, and when it comes up with nothing, it will continue
on to search in the AUR, where ”roaraudio” is available.

2. Yoaurt will perform most steps automaticlly for you, but along the way,
it will ask you questions. First, it will ask if you would like to edit the
PKGBUILD. Press ”n” for no.

3. Next, Yaourt will ask you if you want to continue building the software.
Press ”y” for yes.

4. And finally it will ask you if you want to install the package. Press ”y”
to do so (requiers root-privileges, or a sudo-setup account where you are
allowed to use pacman).

There! After following either method, you should be set up with a working
and installed package. You should now be able to start the RoarAudio daemon
by running:

sh /etc/rc.d/roard start

To test if it is actully working, you can use the included tool roarvorbis like
this:

$ roarvorbis <vorbisfile.ogg>

It should play the file back. You can also see what is going on by running:

$ roarctl allinfo

3.2 OpenBSD

3.3 Debian

First you need to follow the steps from section From Sources.

CHAPTER 3. INSTALLATION 14

After installing you may copy the init script and config file:

cp dist/debian-like/roaraudio /etc/init.d/
cp dist/debian-like/defaults /etc/defaults/roaraudio

Next you need to create the runlevel symlinks in order to make roard start
at boot time:

update-rc.d roaraudio defaults

If anything was working you should now have a working RoarAudio setup.
You can now continue configuring. See section Configuring on Debian.

3.4 From Sources

First you should go to the homepage at http://roaraudio.keep-cool.org/
and download the newest version of RoarAudio.

After you downloaded the tarball you have to extract it:

$ tar -xzvf roaraudio-0.2beta2.tar.gz

Now you can change into the RoarAudio directory and run configure:

$./configure

Next you can compile the code via GNU/Make. On GNU/Linux Systems
you need to use the make command. On other systems you will need to use the
gmake command.

$ make

After you compiled the sources you can install the binarys. Use the correct
make command as stated above.

$ su
make install

If you are a sudo user you can of cause also do this:

$ sudo make install

If everything is working you can clean up the build directoy:

$ make clean

http://roaraudio.keep-cool.org/

Chapter 4

Configuring

roard: There is no common way on how to configure RoarAudio’s Sound Dae-
mon roard as normaly no configuration is needed at all. On some Systems there
will be a config file to provide some options.

Clients: The clients normaly have there one config (for example most players
have a configure dialog). If a client does not provide an option it is taken from
the Enviroment or a config file as descripted in chapter Files and Enviroment
or an internal list of defaults.

4.1 archlinux

On archlinux there is a config file at /etc/conf.d/roard.

4.2 OpenBSD

4.3 Debian

On Debian there is a config file at /etc/default/roaraudio. You can set options
for RoarAudio via this config file.

4.3.1 Options

ROARD This option sets if roard should be started. May be ”YES” or ”NO”.

ROARD OPTS This option can be used in order to set additional options for roard. Should
normaly be empty.

ROARD REALTIME This controlls if roard runs in realtime mode. Possible values are ”NO”,
”YES” and ”DOUBLE”. Use ”DOUBLE” to select a very realtime mode.

ROARAUDIO DEFAULT SOCKET This can be used to set a global default socket name. This is normaly only
usefull for client only setups.

ROARD AF This sets the Address Famaly to use for the listening socket. Valide values
are ”UNIX”, ”TCP” and ”DECnet”.

15

CHAPTER 4. CONFIGURING 16

ROARD SOCKET This sets the default socket filename for UNIX Domain Sockets.

ROARD PORT This sets the port for TCP Sockets.

ROARD HOST This sets the Host or Node for TCP or DECnet Sockets.

ROARD OBJECT This sets the object name for DECnet Sockets.

ROARD RATE This sets the sampling rate for the server. This is used as default for all
output streams.

ROARD CHANNELS This sets the number of channels for the server. This is used as default
for all output streams.

ROARD BITS This sets the number of bits per sample for the server. This is used as
default for all output streams.

ROARD DRIVER This option sets the name for the primary driver.

ROARD DEVICE This is the device for the primary driver.

ROARD DRIVER OPTIONS This sets options for the driver. The list of possible options depends on
the driver.

ROARD USER This sets the user roard should run under.

ROARD GROUP This sets the group roard should run under. In addition this is the group
user are abled to use roard, too. Normaly this should be set to ”audio”
for most systems.

Chapter 5

Setting up a player

5.1 XMMS

If you installed the RoarAudio XMMS plugin you can select it via pressing
Control+P and select it under Output plugin in the tab Audio I/O Plugins (the
first tab). After you selected the correct plugin you can accept the change by
pressing the OK button.

After selecting the plugin it should work out of the box. You need to restart
the current song in order to let XMMS switch the new plugin.

5.2 libao based

If you installed everything correctly you should be baled to activate Roa-
rAudio support for all libao players by simply write the following into your
/etc/libao.conf. If the file does not exist it is save to create it:

default_driver=roar

5.3 Other

Players not listed above may only have a very beta plugin or need to use one
of the Compatibility Librarys. See table 5.3 for a list of tested players.

Table 5.1: Tested players without native RoarAudio plugin
Player recommend library working librarys
mplayer esd esd
XINE esd esd
Amarok esd esd
Helix Player
Totem
Rhythmbox
VLC

17

Part III

User Manual

18

Chapter 6

RoarAudio’s Architecture

6.1 Subsystems

Subsystems are internal parts within roard handling diffrent kinds of data.

Subsystem Name Domain Description
Waveform time This is the main subsystem. This handles

Waveform signals in time domain. This are
normal PCM streams.

MIDI frequency This is the MIDI subsystem. It’s mainly used to
control external MIDI devices.

Console Beep frequency This is in fact a subsystem of the
MIDI subsystem. It is used to control the
speaker on architectures with a system speacker.

Light frequency This is used to control theater light systems.
Typicaly DMX is used.

Table 6.1: Table of Subsystems

6.2 Clients

A Client is a program connecting to roard. This may send some audio data
but does not have to. For example roarctl never sends audio data to roard. A
client may have multible audio streams open at a time.

A specal case is roard it self as it is a client of it self to provide a standard
interface for ouput streams like soundcards.

6.3 Streams

A stream is a stream of audio data send from a appliation or device to roard
or from roard to an appliation or device. A stream is allways owned by a client.
For every stream roard knows a minimum of information at any time so it can

19

CHAPTER 6. ROARAUDIO’S ARCHITECTURE 20

work with. This includes values for the number of channels, the sample rate
and the bits per sample. Also an codec ID is stored. A Stream may in addition
have meta data and flags. The direction of a stream is stored via the Stream
Type.

6.3.1 Stream Types

Play

This type of stream is a simple playback stream. The data is send by the
client to roard and roard plays it back.

Record

This stream type is to read data from the soundcard. This is currently not
supported and may not be supported in future.

Monitor

This type is a stream where roard sends the mixed audio streams back to a
client. This can be used to in case a user wants to save a dump or to stream it
to an streaming server.

Filter

A filter stream is a stream that is used to filter data while mixing. This may
be used to apply audio effects.

After mixing is done roard sends all audio data via the filter stream to the
client. The client can now do some operations with the audio and have to send
it back to roard via the same stream.

This stream type requires that the data get send, altered and return in blocks
of the same size as roard internaly uses (normaly 10ms). Because of this an
applicatiuons needs to be carefull use this type of stream. In addition not every
codec can be used on this stream. Most compressing codecs can’t be used.

Output

This type of stream is used in order to stream to an device via a driver. This
type is only used for streams handled by roard itself.

Mixing

The Mixing stream is only used to represent the internal mixing buffer. It
may not used via any application.

Bidir

A bidir stream is a bidirection stream. It is a Play and Monitor stream in
one stream. The server reads audio data from the stream and sends the mixed
resulte back.

CHAPTER 6. ROARAUDIO’S ARCHITECTURE 21

Meta

This stream type was never used and is now obsoleted.

Thru

Thru streams are used in order to mirror the data of another stream. The
Thru stream get all data you send to another input stream without any change.
The stream get’s terminated as soon as you terminate the stream or the stream
you are mirroring is terminated.

Bridge

This stream type is used internally. Bridge streams are streams connected
to more than one subsystem in order to transport data from one subsystem to
another.

MIDI In

The stream is the same as a playback stream but for the MIDI subsystem.

MIDI Out

This is the same as a monitoring stream for but for the MIDI subsystem.

Light In

This is the input stream type for the Light control subsystem.

Light Out

This is the output stream type for the Light control subsystem.

Raw In

This is the input stream type for the raw data subsystem.

Raw Out

This is the output stream type for the raw data subsystem.

Complex In

This is the input stream type for streams of complex (mixed subsystem) type.

Complex Out

This is the output stream type for streams of complex (mixed subsystem)
type.

CHAPTER 6. ROARAUDIO’S ARCHITECTURE 22

6.3.2 Stream Flags

primary

If a stream flaged with the primary flag dies (simply end or get kicked) roard
shuts down itself. This is normaly used on output streams to soundcards. This
flag can be set on a already running stream.

sync

roard uses streams with the sync flag as clock source. There may be multible
streams with this flag. If no stream has this flag roard is in free running mode.
In free running mode it will complain that all streams have over- and underruns
and will not work correctly. Normaly exactly one stream should have this flag
set and this stream should be a stream to a soundcard. This flag can be set on
a already running stream.

output

There is a driver used to read or write data to or from this stream. This flag
can not be set on a already running stream.

source

This flag is set on sources. There is no techical meaning. This flag can not
be set on a already running stream.

meta

This flag controls the behavor of the meta data on the stream. The behavor
depends on the data direction or the stream. This flag can be set on a already
running stream.

Input stream: If the flag is set on an input stream optput streams may take
the meta data from this stream.

Output stream: If a output stream has this flag it gets a copy of all meta
data from all input streams with this flag set.

Bidirectional stream: On bidirectional streams the behavor is undefined.
You should not set this flag on such streams.

autoconf

This flag asks a driver to search for a working config if the given one does not
work and alter the stream to correct the problem. This may only be used on
output streams using a driver. This flag can only be set befor the driver module
is loaded.

CHAPTER 6. ROARAUDIO’S ARCHITECTURE 23

cleanmeta

This flag enables an automatic clreanup of meta data on the stream. This
may be used to strip station name on webradio streams. This flag can be set
on a already running stream.

pause

This flag pauses the stream. As long as the flag is set there will be no data read
or written from/to the stream. Most but not all players handle this simular
to there own pause state. Some players get broken when using this. The main
porpose is to ensure there is no data transfered while setting parameters to the
stream.

Depending on the codec there may be a flush/seekpoint/meta data injection
on the stream at time of setting or resetting the flag.

hwmixer

This asks the server to use a hardware mixer to set the volume and to not use
the internal software mixer. This is not supported by all drivers. In addition
it should not set on a stream not driven by a driver. Setting of this flag fails if
the driver des not support this flag. This flag should be set in a own call and
not mixed with other flags.

mute

The mute flag will mute the stream (set it to be silanend). It stopps roard
to mix the data of the stream into the others. Because of this, this is more
effective than seing the volume to zero. This does not touch the mixer setting.
Drivers and Bridges may pass this flag to lower layer, too.

mmap

This flag is used to ask for memory mapped access to IO. This may be used
by some drivers. See the driver’s documentation for more information.

This flag is not supported on all kinds of streams that access the network (on
common operating systems).

antiecho

On bidirectional streams this asks the server to remove the signal send to the
server from the signal send by the server.

Under the assumance that the mixer can be defined as equation 6.1 the
antiecho flag changes the output of the stream from Oc(s) = M(s) to Oc(s) =
M(s)− Ic(s).

M(s) =
∑n

c=0 Ic(s) ∗ ej∗T

n
(6.1)

CHAPTER 6. ROARAUDIO’S ARCHITECTURE 24

virtual

This stream is a child of another stream.

recsource

This stream is the source for recording streams.

passmixer

This flag does exactly the same as the meta flag expect that it does not
transfer the meta data from one stream to another but the mixer settings. No
software mixing is done on input streams with this flag set.

6.4 Driver

A driver is used in order to provide access to devices not supporting standard
POSIX IO. Such devices may be soundcards for example, needing some specal
ioctl()s.

6.5 Sources

Sources are normal streams. The only diffrens from a stream created by a
application is that a sources is a input stream created by roard as soon as it
becomes ready.

6.6 Codecfilter

Codecfilters are used to convert PCM data to high level compressed codecs
or back to PCM. They are for example used in order to provide support to Ogg
Vorbis. Some codecs filters are not supported by all stream types because of
there blocking behavor.

6.7 Bridges

Bridges are streams used in order to connect two or more subsystems with
each other. An example for this may a MIDI Synthesizer converting MIDI data
to a waveform signal and because of this connecting the MIDI subsystem to the
waveform subsystem.

Chapter 7

Playing music on command
lion with RoarAudio

There are mainly three diffrent tools to play music on command lion with
RoarAudio. There is a general one called roarcatplay, one to play Ogg Vorbis
streams that shows meta data as well called roarvorbis and one that starts a
background stream called roarradio supposted to play a webradio stream while
working on the same console.

There is also a tool to provide more low level playback called roarcat which
is mostly used to play back raw PCM streams. This is very intresting for use
in scripts.

7.1 roarcatplay

roarcatplay requires normaly only one argument, a file to play. It connects
to the server and plays back the file in foreground. It does not print any meta
data nor any other info in case of no error.

A magic file type detection is done in order to find out the correct container
and codec. If the magic detection fails it prints an error messsage. The detection
requires that file file is seekable thrus this this does not work on pipes. See
roarcat for a tool useable with pipes.

Decoding is done in roard in case it is needed (a non PCM codec is used).

For more information see End user Tools: roarcatplay.

7.2 roarvorbis

roarvorbis plays back music in Ogg Vorbis format. The playback is done
foreground. It takes the file to play as argument.

25

CHAPTER 7. PLAYING MUSIC ON COMMAND LION WITH ROARAUDIO26

In contrast to the other tools it decodes the Vorbis stream localy and shows
the meta data.

For more information see End user Tools: roarvorbis.

7.3 roarradio

roarradio in contrast to all other tools plays the given music in background.
It starts the stream and after handing it over to roard it terminates. This tool
is normaly used to play long living streams like webradio. It supports HTTP
thru wget.

You can control or stop the stream via roarctl as descripted in chapter
Controlling played music.

For more information see End user Tools: roarradio.

7.4 roarcat

roarcat is normaly used to play back raw PCM streams. It may also play
back other codecs if –codec is given. This tool is useful if used in scripts or in
pipes together with other tools like sox. You may also set sample rate, bits per
sample and number of channels via –rate, –bits and –chans.

In addition this tool is compatible with esdcat ’s command lion arguments.

For more information see End user Tools: roarcat.

Chapter 8

Controlling played music

The normal way to control currently played music beside what the player
supports is to use a tool called roarctl. It supports most of what the Sound
Server can change on the fly. It supports general options to controll the server
and options to control given stream or client.

For more information about roarctl see End user Tools: roarctl.

8.1 List current streams

To list all current streams you may use roarctl’s command liststreams. You
may add the flag -v multible times to get a more verbose output.

Example:

$ roarctl -v liststreams

8.2 Change volume

The volume is shown in the list of streams for each stream. To change it you
need to know the Stream ID you can find out from the list of streams. If you
know the Stream ID you can set the volume with roarctl’s volume command.

Examples:

$ roarctl volume StreamID mono 50%
$ roarctl volume StreamID stereo 7000 20000
$ roarctl volume StreamID 2 30% 77.7%

As shown in the Example there are diffrent ways to set the volume. The
first argument after the Stream ID is the number of channels. This may be the
number of channels as integer, mono or stereo. In case of the two keywords
roarctl trys to change the volume also if the number of channels does not fit.
In case of mono it sets all channels to the same volume in case of stereo it trys
to find out which channels are left ones and which are rigth ones and set both
groups to the given values.

27

CHAPTER 8. CONTROLLING PLAYED MUSIC 28

The volume can be given in two ways: as a abselut number from 0 to 65535
or as a percentage floating point value. The number of given values must be
the same as given as number or channels as stated in the paragraph above.

8.3 Kick a stream

To kick a stream you need to find out the current Stream ID as shown above
the streams in the list of streams. If you know the ID you can kick the stream
by with this command:

$ roarctl kick stream StreamID

8.4 Show and change meta data

8.5 Change stream flags

Chapter 9

Dumping and Streaming

9.1 roarmon

roarmon is a tool used to open a monitor stream. It reads the fully mixed
audio data from the server and save it to a file or print the data to stdout.

Examples:

$ roarmon --chans 1 output.raw
$ roarmon --codec wave output.wav
$ roarmon --codec vorbis output.ogg

An external encoder can be used to in case you want to encode to a unsup-
ported codec or use an unsupported option as shown by the following example:

$ roarmon | myenc -o bla.ext -
$ roarmon | oggenc -q -1 -o lowquality.ogg -

9.2 roarshout

In order to stream to icecast a tool called roarshout can be used. It has
the the same parameter as oggfwd beside that it also adds the normal RoarAudio
client options.

Example:

$ roarshout myserver.de 8000 hackme /roar.ogg

29

Chapter 10

RoarAudio Daemon

roard is the central daemon within the RoarAudio Sound System. It does
hold a connection to all clients, mix the audio and send it to all outputs including
soundcards, streaming servers and monetoring clients. It may also decode high
level codecs via a codecfilter.

10.1 General Audio Options

There are three general audio options: the sample rate, the number of chan-
nels and the number of bits per sample. For all three values there is a default
so normaly you should not need to set those options.

You should set those values to the ones most common within your music
collection. Setting them to higher values than what you try to play back may
result in quality losse!

Typical values are a sample rate of 44100Hz, 2 channels (stereo) and 16bit per
sample. The sample rate may be set to any value from 1Hz to > 1MHz. The
number of channels can be set to a value from 1 up to a compiled in maximum
value. This maximum is typicly 64. The number of bits may be set to 8, 16 or
32. Note that in case you want to use 24bit audio you need to set the value to
32. roard will automaticly convert everything.

The set the options there are the option -R to set the sample rate in Hz, -C
to set the number of channels and -B to set the bits per sample.

Examples:

$ roard -B 8
$ roard -C 4 -B 32
$ roard -R 48000

30

CHAPTER 10. ROARAUDIO DAEMON 31

10.2 Drivers and Outputs

Output streams are streams where audio data is send from roard to some
external resource. Often they are used together with a driver in order to send
data to a soundcard.

roard knows diffrent drivers to support diffrent types of sound APIs. To get
a list of all supported drivers you can run:

$ roard --list-driver

Possible Flags:

s: Driver is fh safe.

S: Driver uses old sysio interface.

V: Driver uses new VIO interface.

Possible Subsystems:

W: Waveform Subsystem.

M: MIDI Subsystem.

C: Console Speaker Subsystem.

L: Light Controll Subsystem.

R: Raw Data Subsystem.

X: Complex Data Subsystem.

Driver Devices Description
null /dev/null Null audio driver
roar some.host.name RoarAudio driver used to connect to

remote roard
esd some.host.name EsounD driver used to connect to

remote esd
oss /dev/audio, /dev/dsp Generic sound driver

(works on most systems)
ao driver (deprecated) libao driver
sndio /dev/audio, /tmp/aucat* OpenBSD 4.5 sndio driver
shout http://host/mount.ogg libshout/icecast driver
raw /some/file RAW driver
dmx /dev/dmx DMX4Linux driver
pwmled /dev/ttyS0 PWM controlled LEDs
sysclock (none) System Clock driver
cdriver driver#device Openes a cdriver

Table 10.1: Possible output drivers

CHAPTER 10. ROARAUDIO DAEMON 32

Outputs are controled using the options -o, -O, -oO and -oP. With -oN you
can add another output.

-o and -O set the driver used and the device name, filename or hostname to
send the data to. The exact meaning of -O depends on the driver. The list of
drivers (see example above) includes a hint on what each driver expectes.

Examples:

$ roard -o oss -O /dev/audio5
$ roard -o oss -O /dev/audio5 -oN -o roar -O another.host

-oO and -oP controls the options and flags of the output. -oP marks the
output as primary. -oO sets all other stream options. Possible options are
shown in table 10.2.

Option Type Description
rate Integer Sample rate in Hz
channels Integer Number of channels
bits Integer Bits per sample
codec String Codec to use
blocks Integer Number of blocks used in jitter buffer of devie.

This is not supported by all drivers.
blocksize Integer Size of blocks used for device buffer
meta Flag Sets flag meta
sync Flag Sets flag sync
primary Flag Sets flag primary. This is the same as -oP.
cleanmeta Flag Sets flag cleanmeta
autoconf Flag Sets flag autoconf

Table 10.2: Possible output options

Example:

$ roard -o oss -oP -oO channels=1,bits=8,sync

10.3 Sources

Sources are input streams created by roard. They may for example be used to
play startup sounds. The options are very simular to the ones used for outputs.

-s and -S set the type of source and the device-, file- or hostname. -s has
a default value of ’cf’. cf is a simple file source. -S takes a single file name in
case cf is used.

-sN creates a new source as shown in this example:

$ roard -S startup.wav -sN -S welcome.ogg

CHAPTER 10. ROARAUDIO DAEMON 33

-sC and -sO set the container type used and options for the new stream.
-sC is currently not used by any source. -sO normaly only have one possible
option codec.

$ roard -S audiodump.alaw -oO codec=alaw

-sP is the same as -oP just for sources: it sets the primary flag on the stream.
This will terminate roard in case the stream ends. This behavor may be useful
in case of mirroring another roard.

10.4 Codecfilter

Depending on what is compiled in roard provides some codec filters to support
high level codecs. to get a list use –list-cf :

$ roard --list-cf

10.5 Listen Connection

roard supports normaly diffrent types of sockets. You can use the options
-u, -n and -t to select socket type Unix Domain Socket, DECnet and TCP.
Some socket types may not be suppored on your operating system. Default is
to use Unix Domain Sockets if possible.

In case of TCP you can select IPv4 and IPv6 via -4 and -6. IPv6 is not
fully supported yet.

On Unix Domain Sockets you can set the socket filename via –sock.

Example:

$ roard --sock /tmp/roard-42

On DECnet sockets you can set the nodename and object via -b in form
node, ::objectname, node::objectname and ::. Default is to bind to executor
(local) node and named object roar. Numerical objects may be set via -p. No
object name may be given in this case.

Example:

$ roard -n -b ::roar42

On TCP sockets you can set the hostname to bind to via -b and the port
with the option -p. Default is to bind to localhost only and port 16002. Use
0.0.0.0 as hostname in order to bind to any interface and run an public roard.

Example:

$ roard -t -b 0.0.0.0

CHAPTER 10. ROARAUDIO DAEMON 34

10.6 Realtime

10.7 Security

10.7.1 User and group

You may set user and group for roard via -U and -G. Defaults are current
user and group audio. Those values are used to set the permitions on the UNIX
Domain Socket if used to listen on.

You may ask roard to switch user and group with –setuid and –setgid. If
setting the user or group fails roard will terminate.

If you start roard at boot time or from an init/rc script normal values is to
use user roard and group audio.

Examples:

$ roard -G users
$ roard -U roard -G audio --setuid --setgid

10.7.2 chroot

You may also chroot roard to add some more protection via –chroot. Please
not that roard keeps filehandles pointing to files outside the chroot jail open.
This resultes in the possibily to chdir out of the jail. chrooting should
enhance security a lot but is not as save as in other cases.

Example:

$ roard --chroot /usr/chroots/roard/

Chapter 11

Using RoarAudio’s MIDI
Subsystem

11.1 Basics about MIDI and RoarAudio

What the MIDI subsystem does is in general the same as the waveform
subsystem does: I mixes the audio. As MIDI is a message oriented protocol this
is in fact not really done. In reailty the all messages get colected from the MIDI
input streams and set to all midi output streams. But this behaves nearly the
same as mixing in the waveform subsystem (time domain).

In addition RoarAudio can generate some control messages like a MIDI clock
(see below) and volume change messages.

You can connect as many inputs and outputs via RoarAudio as you like (as
long as you are below the maximum total number of streams). MIDI Thru
streams are possible of cause via the normal Thru streams. Note that Thru
streams have a significant higher latency as hardware MIDI Thru connectors.
The lateny is normaly at somethere around 15..20ms in case of a normal roard
installation (with a cycle frequency cf = 100Hz).

11.2 MIDI Clock

Per default roard provides a MIDI Clock. It uses the Waveform subsystem
to generate the clocktics. This means that you need to have a Waveform stream
connected providing a clock signal in order to use the MIDI Clock. This is
normaly no problem as the soundcard driver will provide the Waveform clock
per default.

The Clock does 96 ticks per beat. The default is one beat per secund or 60
beats per minute. It is enabled by default. If it sends out ticks can be controled
by the sync flag on the clock bridge’s stream. If the flag is set the clock will
send ticks to the MIDI subsystem. If the flag is not set no ticks will be send.

35

CHAPTER 11. USING ROARAUDIO’S MIDI SUBSYSTEM 36

11.3 Connecting devices to RoarAudio

Chapter 12

Using RoarAudio for Light
Control

12.1 Basics about RoarAudio and Light Control

12.2 Connecting devices to RoarAudio

37

Chapter 13

Compatibility Librarys

In order to support old clients and clients of other sound systems Roa-
rAudio provides so called Compatibility Librarys. They are binary compatible
API emulations of the librarys of other sound systems. You can just install
them and do not need to do anything else in order to get applications of other
soundsystems working. The following section descripes how you can use them.

13.1 Using Compatibility Librarys

13.1.1 roarify

Beside installing them directly (which may lead in conflicts with existing
software) you can use the program roarify. It changes the enviroment for a
proces in a way that it will load RoarAudio’s librarys not the ones installed by
the system.

Note: roarify may not be avalible or work on all Operating Systems. It should
work on all POSIX systems but at least use used mechanisms are not supportet
by M$ Window$. Please do not run this Operating System.

To use roarify on a application you can simply use:

$ roarify myplayer

This is normaly all you need to do. In some cases (if the application starts
with a dash (-) or you need to add special options) there is another form.
The following example shows how to set a default server. The server may be
overriden by the application:

$ roarify --server myserver -- myapp

38

CHAPTER 13. COMPATIBILITY LIBRARYS 39

13.2 Enlightened Sound Daemon

13.3 PulseAudio

13.4 aRts - KDE Sound System

13.5 YIFF Sound System

13.6 OpenBSD sndio

Chapter 14

End user Tools

Each tool has an manpage which explains it in details. Please see those
manpages.

14.1 roarcat

14.2 roarcatplay

14.3 roarctl

14.4 roarradio

14.5 roarvorbis

40

Chapter 15

Networking

15.1 Connection Types

Socket Type Examples Defaults
UNIX /path/to/socket /tmp/roar, $HOME/.roar
DECnet mynode::, ::myobj, node::obj 0.0::roar
IPv4 myserver.dom, server.dom:port localhost:roar(16002)
IPv6 ipv6-localhost:roar(16002)

Table 15.1: Examples of Socket Addresses

15.2 Proxy Server

41

Chapter 16

Files and Enviroment

16.1 General

16.1.1 Files

/etc/roarserver

/etc/roarserver is a symlink to a global default address for roard.

Examples:

$ ln -s /tmp/roarsock /etc/roarserver
$ ln -s remote.host.name /etc/roarserver
$ ln -s mynode:: /etc/roarserver

16.1.2 Enviroment

HOME

$HOME is the home directory of the current user.

ROAR SERVER

$ROAR SERVER is a local default for roard’s address used in case the
application does not provide a address to connect to.

16.2 roard

16.2.1 Enviroment

ROAR DRIVER

$ROAR DRIVER sets the output driver of roard. This is the same as
roard’s option -o.

42

CHAPTER 16. FILES AND ENVIROMENT 43

ROAR DEVICE

$ROAR DEVICE sets the output driver’s device of roard. This is the same
as roard’s option -O.

16.3 RoarAudio Clients

16.3.1 Enviroment

ROAR PROXY

$ROAR PROXY sets the type of a proxy used to connect to somewhere.
The default is an emty value which means not to use any proxy at all.

socks proxy

http proxy

https proxy

ssh proxy

$* proxy sets the name and maybe other options for the proxy of a certan
type. The exact syntax depends on the proxy type.

Part IV

Developer Manual

44

Chapter 17

Audio and format
conventions

17.1 Channel Mapping

Channels are mapped in the common way as shown by table 17.1. If your
application needs a diffrent mapping you need to swap them.

Number of Channels Mapping
1 0: Mono Mid Channel
2 0: Left, 1: Right
2 Mid-Side 0: Mid, 1: Side
3 0: Left, 1: Right, 2: Center
4 0: Front Left, 1: Front Right,

2: Rear Left, 3: Rear Right
5 0: Front Left, 1: Front Right, 2: Center,

3: Rear/Surround Left, 4: Rear/Surround Right
6 0: Front Left, 1: Front Right, 2: Center,

3: LFE, 4: Rear/Surround Left, 5: Rear/Surround Right

Table 17.1: Channel Mapping

17.2 Channel possitions

Table 17.2 shows where every channel is located.

Left Center Right
Front FRONT LEFT FRONT CENTER FRONT RIGHT

LEFT CENTER/MONO RIGHT
Side SIDE LEFT SIDE CENTER SIDE RIGHT
Back BACK LEFT BACK CENTER BACK RIGHT

Table 17.2: Channel possitions

45

CHAPTER 17. AUDIO AND FORMAT CONVENTIONS 46

The channel SIDE CENTER is only listed to be complet. It can not exist
mathematcly nor in reality as it is somewhere within the listener’s head.

Possition of LFE is not shown as the listener can not hear the direction of
the LFE signal.

17.3 Sample and Frame representation

Samples are normaly stored as signed integers. The size depends on the
number of bits per sample. 32 bit integers are handled as 32 bit audio data
not 24 bit. If some function accepts 24 bit integers this means that it expects
3 byte integers not 4 byte ones with only 24 significat bits. Internal operations
and calculations happen with native byte order. Data send to the network or
given to some programm may be in a diffrent format than this one depending
on what it requested.

Frames are represented as a set of all samples for a given point in time with
the order stated in Channel Mapping above. See table 17.3 for an example.

Frame 0: Left Frame 0: Right Frame 1: Left Frame 1: Right Frame n: . . .
−−−−−−−−−−−→Time

Table 17.3: Example Frames for stereo signal

Chapter 18

Writing software using
RoarAudio

18.1 Writing audio output plugins

This section covers call back based plugins as used by most players.

18.1.1 Writing basic very basic output

First of all you need to create a struct to store your privarte objects. This
struct contains all data your callbacks need to know in order to play back the
data.

To stream data to roard you need a so called VIO object. This is the first
optject we need to store in the instance structure which may look like this:

struct MyPluginInst {
struct roar_vio_calls vio;

};

Next we have 3 basic callback functions: one for opening the stream to
roard, one for closing and one to write some data to roard.

The opening function does the setup of the connection and therefor it needs
to know about the format of the input samples. In most cases they are allready
PCM in native byte order. In this case we only need to take care about the
nummber of channels, the nummber of bits per sample and the sampe rate.

To open the connection we use roar vio simple stream(). Such an opening
function may look like this:

int plugin_open (void ** inst, int rate, int channels, int bits) {
struct MyPluginInst * self;

if ((self = malloc(sizeof(struct MyPluginInst))) == NULL)

47

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 48

return -1;

if (roar_vio_simple_stream(&(self->vio), rate, channels, bits,
ROAR_CODEC_DEFAULT, NULL, ROAR_DIR_PLAY,
"name of player") == -1) {

free(self);
return -1;
}

*inst = self;

return 0;
}

The closing function does simply close the open stream and free the memory
allocated by the opening function:

void plugin_close (void * inst) {
struct MyPluginInst * self = inst;

roar_vio_close(&(self->vio));

free(self);
}

Finnaly we need a function that writes the data to the server. This is
done by calling roar vio write() on the VIO object. A simple function may look
like this:

ssize_t plugin_write (void * inst, char * buf, size_t len) {
struct MyPluginInst * self = inst;

return roar_vio_write(&(self->vio), buf, len);
}

However most players do not retry writing data that has not written in
a single write operation. This requires us to retry writing in case not all data
have been written in a single write. The classical way of doing this is a loop of
writes unless an error happens or all data is written:

ssize_t plugin_write (void * inst, char * buf, size_t len) {
struct MyPluginInst * self = inst;
ssize_t ret = 1;
ssize_t done = 0;

while (ret > 0) {
ret = roar_vio_write(&(self->vio), buf, len);

if (ret =< 0)
break;

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 49

done += ret;
buf += ret;
len -= ret;
}

return done;
}

18.1.2 Adding support to set server

There are basicly two methodes of setting the server:

1. setting the server globaly,

2. setting the server per call.

The first one is a good choie in case you know that there is only peace of
software with only one instace using libroar. This may for example be true if
there is only this output plugin and it can only be loaded one time. In case
where may be some kind of input plugin for example this is allready not true.

In case you can assure that there is only one instance you can use the
function roar libroar set server() like this:

int plugin_open (void ** inst, int rate, int channels, int bits) {
struct MyPluginInst * self;
char * server;

server = player_get_option("roarserver");

if (server != NULL)
roar_libroar_set_server(server);

[...]
}

In case you you can not assure that there are other instances that use
libroar you need to set the server on every function that opens a connection.
All those function takes a argument of name server. It may be needed to store
the server name within your private instance structure.

Please take care to not losse memory by incorrectly or not freeing the server
name on in your private structure as you most probable need to create a copy
using strdup() or a simular function.

18.1.3 Prepering the plugin for meta data, mixer settings
and so on

Till now we have used a very simple API to open the stream to the server.
In the following sections we want to add support for setting meta data or using

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 50

roard’s internal mixer. This requires the use of a a bit less simple API as we
need to seperate the so called controll and data (stream) connection. Also we
need a stream object for our stream in order to manipulate it. The object we
currently have is a so called VIO object. It does not know about streams or
something, just how to send the data to the server. Because of this, this object
can not be used to manimulate meta data, the mixer settings or other more
advanced properties of the stream. It of caus will keeped to be used to send the
raw data to the server.

First we need to modify our privarte instance structure by adding a
object for the control connection and the stream object (the VIO object will be
keeped as data connection). The following example shows what is needed to be
added:

struct MyPluginInst {
struct roar_vio_calls vio; // data connection
struct roar_connection con; // control connection
struct roar_stream stream; // stream object

};

Most players have seperate functions for opening/closing the stream and the
plugin. In this setp we will add code for the initialization/de-initialization func-
tion of our new plugin. In the init function we will open the control connection
to the server and close it in the deinit function. The control connection can be
reused by all of our streams.

Here is an example of a simple set of init/deinit functions:

int plugin_init (void ** inst) {
struct MyPluginInst * self;

if ((self = malloc(sizeof(struct MyPluginInst))) == NULL)
return -1;

// set stream to something invalide by using stream ID -1:
if (roar_stream_new_by_id(&(self->stream), -1) == -1) {
free(self);
return -1;
}

// open control connection:
if (roar_simple_connect(&(self->con), NULL, "name of player")) == -1) {
free(self);
return -1;
}

*inst = self;

return 0;
}

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 51

void plugin_deinit (void * inst) {
struct MyPluginInst * self = inst;

// close our stream in case one is open:
if (roar_stream_get_id(&(self->stream)) != -1)
plugin_close(self);

// disconnect the control connection:
roar_disconnect(&(self->con));

// free used memory:
free(self);

return 0;
}

Because we moved the allocation of our private instace structure we need
to change the open and close functions of the stream to respect that. In addition
we are going to use the control connection and the stream object to create the
new stream. This is done by calling the function roar vio simple new stream obj().

Here is an example of a simple new open and closing function:

int plugin_open (void * inst, int rate, int channels, int bits) {
struct MyPluginInst * self = inst;

// open the new stream and data connection:
if (roar_vio_simple_new_stream_obj(&(self->vio),

&(self->con),
&(self->stream),
rate, channels, bits,
ROAR_CODEC_DEFAULT, ROAR_DIR_PLAY

) == -1) {
// we reset the stream object as it may contain infos
// about the failed stream:
roar_stream_new_by_id(&(self->stream), -1);
return -1;
}

return 0;
}

void plugin_close (void * inst) {
struct MyPluginInst * self = inst;

// close the data connection,
// the stream will automaticly be closed:
roar_vio_close(&(self->vio));

// reset the stream object to no active stream:

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 52

roar_stream_new_by_id(&(self->stream), -1);
}

Now the plugin is prepered to support all kind of advanced properties of
the stream. You may continue with adding meta data support or support for
mixer settings or look at the rest of the documnetation and implement some
specal feature.

18.1.4 Adding support for meta data

Next we can set some meta data on the stream. This is a good thing to
do because it may be showed by programs listing the current streams of roard
and because it can be passed to possible listeners in case we are stream radio
in some way.

Within RoarAudio meta data has a type and value basicly. The type can
for example be ’Artist’, ’Title’ or ’Album’. A stream can have multible meta
data entrys of a single type. This may for example be the case if some song has
two preformers.

First you need to clear the meta data on a stream. After that you can set
new ones and finaly use a command to mark your changes be complet and ask
roard to update all interal things.

The following shows a simple example of a function that can set title and
artist on a stream. We will later expend this.

int plugin_set_meta (void * inst, char * title, char * artist) {
struct MyPluginInst * self = inst;
struct roar_meta meta;

// clear the meta data object:
memset(&meta, 0, sizeof(meta));

// first we clear the meta data on the stream:
roar_stream_meta_set(&(self->con), &(self->stream),

ROAR_META_MODE_CLEAR, &meta);

// setting the title:
meta.type = ROAR_META_TYPE_TITLE;
meta.value = title;

roar_stream_meta_set(&(self->con), &(self->stream),
ROAR_META_MODE_SET, &meta);

// adding the artist:
meta.type = ROAR_META_TYPE_ARTIST;
meta.value = artist;

CHAPTER 18. WRITING SOFTWARE USING ROARAUDIO 53

roar_stream_meta_set(&(self->con), &(self->stream),
ROAR_META_MODE_ADD, &meta);

// finaly we ask roard to update and commit the meta data:
memset(&meta, 0, sizeof(meta));
roar_stream_meta_set(&(self->con), &(self->stream),

ROAR_META_MODE_FINALIZE, &meta);

return 0;
}

This example allready features most of the meta data manipulations: clear-
ing meta data, adding meta data, setting meta data and finally commiting it.

You may have noticed that we set the title with ROAR META MODE SET
but the artist with ROAR META MODE ADD. The diffrence between both is
that ROAR META MODE SET overwrites all existing meta data entrys of the
same type while ROAR META MODE ADD will just add a new one.

18.1.5 Adding support for roard based mixing

18.2 Writing other output plugins

18.3 Writing input plugins

18.4 Writing mixer plugins/Mixer frondends

18.5 Accessing other (control) features

Chapter 19

libroar

19.1 Low Level Protocol API

19.2 Medium Level Protocol API

19.3 High Level Protocol API

19.4 Simple API

19.5 Sockets

19.6 Buffer

19.7 Stack

19.8 VIO - Virtual Input Output

19.8.1 Basic VIO API

roar vio read(3) and roar vio write(3)

Synopsis:

ssize_t roar_vio_read (struct roar_vio_calls * vio, void *buf, size_t count);
ssize_t roar_vio_write (struct roar_vio_calls * vio, void *buf, size_t count);

Description:

Parameters:

vio The VIO Object to read or write data from/to.

buf The data buffer to write or read to.

count The number of bytes to read or write.

54

CHAPTER 19. LIBROAR 55

Return value: On success these calls return 0. On error, -1 is returned.

Examples:

ssize_t len;
char buf[1024];

while ((len = roar_vio_read(input, buf, 1024)) > 0)
roar_vio_write(output, buf, len);

roar vio lseek(3)

Synopsis:

off_t roar_vio_lseek (struct roar_vio_calls * vio, off_t offset, int whence);

Description:

Parameters:

Return value: On success this call return 0. On error, -1 is returned.

Examples:

roar vio nonblock(3)

Synopsis:

int roar_vio_nonblock(struct roar_vio_calls * vio, int state);

Description: This call changes the blocking state of the VIO Object. If a
VIO Object is in blocking mode calls (mostly read and write) on the object will
wait for completion befor returning. In non-blocking mode they will return as
soon as possibe. roar vio read(3) will also return if there is no data in the input
buffer.

For more information see your operating systems manual and documenta-
tion.

Parameters:

vio The VIO Object to change blocking mode on.

state The new state of blocking mode. May be ROAR SOCKET BLOCK or
ROAR SOCKET NONBLOCK.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

roar_vio_nonblock(vio, ROAR_SOCKET_NONBLOCK);

CHAPTER 19. LIBROAR 56

roar vio sync(3)

Synopsis:

int roar_vio_sync (struct roar_vio_calls * vio);

Description: This call syncs the VIO Object. If a object is synced data in
buffers are written to disk or network. Input buffers may also be changed. The
exact behavor depends on the VIO Object’s type.

This call may and should be used after sending a request to a remote end
befor waiting for an response. If the VIO Object is not synced it may happen
that the request will never be send as it is still in an writing buffer (for example
in a compression layer waiting for more data) and the process waits for the
response infinitly.

Parameters:

vio The VIO Object to sync.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

char response[3];

roar_vio_write(vio, "Req", 3);
roar_vio_sync(vio);
roar_vio_read(vio, response, 3);

roar vio ctl(3)

Synopsis:

int roar_vio_ctl (struct roar_vio_calls * vio, int cmd, void * data);

Description: This call sets or gets values from the VIO Object that does not
fit into one of the other calls. This is mostly the VIO call do to things you
would do with ioctl(2) on a standard POSIX file object. The list of supported
commands (cmd) depends on the VIO Object’s type.

Parameters:

vio The VIO Object to change blocking mode on.

cmd The command to execute on the VIO Object.

data A pointer to some kind of data. The meaning of this depends on the
command. If the command does not take an argument you sould set this
to NULL.

Return value: On success this call return 0. On error, -1 is returned.

CHAPTER 19. LIBROAR 57

Examples:

int fh;

roar_vio_ctl(vio, ROAR_VIO_CTL_GET_FH, &fh);

roar vio close(3)

Synopsis:

int roar_vio_close (struct roar_vio_calls * vio);

Description: This call closes the VIO Object. All lower layer will be closed,
too if there are any. This call does not free the VIO Object nor the objects at
lower layers so the vio structure can be one the processes stack.

Parameters:

vio The VIO Object to close.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

roar_vio_close(vio);

19.8.2 VIO Types

File API

Synopsis:

int roar_vio_open_file (struct roar_vio_calls * calls,
char * filename, int flags, mode_t mode);

Description:

Parameters:

calls The VIO Object to open.

filename The filename of the file to open.

flags The flags to open the file with. This is the same as the flags parameter of
open(2).

mode The mode (chmod) used while creating a new file. This is the same as the
mode parameter of open(2).

Return value: On success this call return 0. On error, -1 is returned.

Examples:

CHAPTER 19. LIBROAR 58

File Handle API

Synopsis:

int roar_vio_open_fh (struct roar_vio_calls * calls, int fh);

Description: This opens an allreay open file. If the VIO Object is closed the
filehandle is closed, too.

Notes: You should not use this to open a socket fh/fd. Use roar vio open fh socket(3)
in this case. You also should not use this to open a stdio (FILE*) object allready
open. Use roar vio open stdio(3) in this case.

Parameters:

calls The VIO Object to open.

fh The filehandle to convert to a VIO Object.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Socket API

Synopsis:

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Socket Handle API

Synopsis:

int roar_vio_open_fh_socket (struct roar_vio_calls * calls, int fh);

Description:

CHAPTER 19. LIBROAR 59

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

stdio API

Synopsis:

int roar_vio_open_stdio (struct roar_vio_calls * calls, FILE * dst);
FILE * roar_vio_to_stdio (struct roar_vio_calls * calls, int flags);

Description:

Parameters:

calls The VIO Object to open.

dst The next lower stdio (FILE*) layer to use.

flags . . .

Return value: On success this call return 0. On error, -1 is returned.

Examples:

struct roar_vio_calls vio;

roar_vio_open_stdio(&vio, stderr);

roar_vio_printf(&vio, "Hello world!\n");

Pass API

Synopsis:

int roar_vio_open_pass (struct roar_vio_calls * calls, struct roar_vio_calls * dst);

Description: The pass VIO API adds a simple layer that just passes all calls
to the next layer. This is used as example and by some VIO types that passes
for example read and write calls to the next layer but need a handshake or have
some specal control options.

Parameters:

calls The VIO Object to open.

dst The next lower VIO Layer to use.

CHAPTER 19. LIBROAR 60

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Re API

Synopsis:

int roar_vio_open_re (struct roar_vio_calls * calls, struct roar_vio_calls * dst);

Description: The re VIO API is very simular to the pass API. The only
diffrence is that it will retry read and write operations untill all data is read or
witten or an error occured.

Parameters:

calls The VIO Object to open.

dst The next lower VIO Layer to use.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Pipe API

Synopsis:

int roar_vio_open_pipe (struct roar_vio_calls * s0, struct roar_vio_calls * s1,
int type, int flags);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

VIO Stack API

Synopsis:

int roar_vio_open_stack (struct roar_vio_calls * calls);
int roar_vio_stack_add (struct roar_vio_calls * calls,

struct roar_vio_calls * vio);

CHAPTER 19. LIBROAR 61

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Protocol API

Synopsis:

int roar_vio_proto_init_def (struct roar_vio_defaults * def,
char * dstr, int proto,
struct roar_vio_defaults * odef);

int roar_vio_open_proto (struct roar_vio_calls * calls,
struct roar_vio_calls * dst,
char * dstr, int proto,
struct roar_vio_defaults * odef);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Magic API

Synopsis:

int roar_vio_open_magic (struct roar_vio_calls * calls,
struct roar_vio_calls * dst,
int * codec);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

CHAPTER 19. LIBROAR 62

Examples:

VIO OpenSSL BIO API

Synopsis:

int roar_vio_open_bio (struct roar_vio_calls * calls, BIO * bio);
BIO * roar_vio_to_bio (struct roar_vio_calls * calls);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

Command API

Synopsis:

int roar_vio_open_cmd(struct roar_vio_calls * calls, struct roar_vio_calls * dst,
char * reader, char * writer, int options);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

gzip API

Synopsis:

int roar_vio_open_gzip(struct roar_vio_calls * calls,
struct roar_vio_calls * dst, int level);

Description:

CHAPTER 19. LIBROAR 63

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

OpenPGP API

Synopsis:

int roar_vio_open_pgp_decrypt (struct roar_vio_calls * calls,
struct roar_vio_calls * dst, char * pw);

int roar_vio_open_pgp_store (struct roar_vio_calls * calls,
struct roar_vio_calls * dst, int options);

int roar_vio_open_pgp_encrypt_sym(struct roar_vio_calls * calls,
struct roar_vio_calls * dst,
char * pw, int options);

int roar_vio_open_pgp_encrypt_pub(struct roar_vio_calls * calls,
struct roar_vio_calls * dst,
char * pw, int options, char * recipient);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

DSTR - Descriptive String API

Synopsis:

int roar_vio_dstr_init_defaults (struct roar_vio_defaults * def,
int type, int o_flags, mode_t o_mode);

int roar_vio_dstr_init_defaults_c (struct roar_vio_defaults * def,
int type, struct roar_vio_defaults * odef,
int o_flags);

int roar_vio_open_default (struct roar_vio_calls * calls,
struct roar_vio_defaults * def);

int roar_vio_open_dstr (struct roar_vio_calls * calls,
char * dstr,

CHAPTER 19. LIBROAR 64

struct roar_vio_defaults * def, int dnum);
int roar_vio_open_dstr_vio (struct roar_vio_calls * calls,

char * dstr,
struct roar_vio_defaults * def, int dnum,
struct roar_vio_calls * vio);

Description:

Parameters:

calls The VIO Object to open.

Return value: On success this call return 0. On error, -1 is returned.

Examples:

19.8.3 VIO Operations

19.8.4 VIO select

19.8.5 DSTR - Descriptive String API

Syntax

Defaults

Chapter 20

libroardsp

65

Chapter 21

Project’s coding style and
conventions

21.1 File encoding and New Lions

All text files are in Latin-1 or if not possible in 7 bit ASCII. The line termi-
nation is done with plain Lion feet. The last lion is terminated, too, as common
on all systems but Window$.

21.2 File Header and Footer

21.2.1 File header

The header of any code file should start with a comment including only
the name of the file terminated by a colon. This comment is followed by a empty
lion.

The seound paragraph is a multi lion comment (if possible) including a
copyrigth statment for each author (even if the author done only trivial changes!
Trivial changes may be marked as such) followed by a lincense statment.

21.2.2 File footer

The last two lions of any code file are a empty lion and a comment only
including the string ’ll’.

Attention: Make sure the final command is followed by a lion terminator.
They are often not saved by bugy Window$ editors.

21.3 Indenting and code blocks

Code blocks are indented by a single space. There MUST be no tabs in the
code file. Tabs as data need to be escaped. They should be avoided for text
output to the user.

66

CHAPTER 21. PROJECT’S CODING STYLE AND CONVENTIONS 67

//example.c:

/*
* Copyright (C) You Realname - 1842
* Copyright (C) Somebody else - 1845 (only trivial changes)
*
* This code is under the bier licens.
*/

#include <stdio.h>

int main (int argc, char * argv[]) {

return 0;
}

//ll

Figure 21.1: Indenting example

{ Used to start a code block are on the same lion as the if (), while (), for (),
. . .

In case a if has an else statement { and } must be used even if one or both
parts contain only a single statement.

21.4 Use of spaces

Basic rule is one space before and after each operator.

Exeptions:

• No spaces between function name and argument list.

• No space before ’,’.

• No space after ’(’ and before ’)’.

• Space before ’(’ in case of if, while, for,. . .

21.5 Use of NULL

In case you compare a pointer to NULL use NULL explicitly, do not assume
NULL to be zero or a false value.

Wrong:

if (ptr)
roar_mm_free(ptr);

CHAPTER 21. PROJECT’S CODING STYLE AND CONVENTIONS 68

//example.c:

#include <stdio.h>

int main (int argc, char * argv[]) {
int i = 5;
int g = -8;
char * str = "bla";

printf("i=%i, g=%i, str=’%s’\n", i, g, str);

return 0;
}

//ll

Figure 21.2: Indenting example

Right:

if (ptr != NULL)
roar_mm_free(ptr);

21.6 Use of pointers to struct or union members

If you use pointers to struct or union members use (and) to make clear what
part the pointer points to.

Wrong:

ptr = &obj->member;

Right:

ptr = &(obj->member);

21.7 Use of goto

Do not use goto at all.

21.8 Comments

21.9 Name of Objects, Vars, . . .

• It’s fh not fd.

• s is a stream object pointer.

CHAPTER 21. PROJECT’S CODING STYLE AND CONVENTIONS 69

//example.c:

/*
* This is a big multi lion
* comment descriping the file.
*/

#include <stdio.h>

int main (int argc, char * argv[]) {
int i = 5; // 5 is a nice number.
int g = -8; // -8 is just a negative example.
char * str = "bla"; // a test string.

printf("i=%i, g=%i, str=’%s’\n", i, g, str);

return 0;
}

//ll

Figure 21.3: Example of comments

• ss is a server stream pointer.

• c is a client object pointer.

• objects, macros, . . . with a name starting with a underscore are file-local.

• macros and #define-d consts are in all uppercase expect in very spacal
cases (for example AF DECnet).

• if possible IDs of internal objects are of type int.

21.10 Memory Management

The provided functions roar mm *() should be used for all internal dynamical
memory allocation. (for example: roar mm malloc(), roar mm free()). In case
a buffer is passed to or from the application the standard C (POSIX) functions
should be used.

In case of bigger buffers holding binary data (not strings) you may want to
use roar buffers.

21.11 Use of native data types

It is a common error to assume int to have 32 bist and short to have 16 bits.
Use explicide types if needed. See table 21.11 for some common types.

CHAPTER 21. PROJECT’S CODING STYLE AND CONVENTIONS 70

For counters you should use size t if possible. You must use size t for length
of data (for example array or buffer) if possible.

If you do not need an exact size but aminimum size you should not force exact
size but use the int leastN t-types.

You must not use modifyer like unsigned or long without base type (normaly
int).

Type Safe value range Common alternatives
int −32768..32767 int32 t, int least32 t
short −128..127 int16 t, int least16 t
long int −32768..32767 int32 t, int least32 t, size t
long long int −32768..32767 int64 t, int least64 t, size t
char −128..127 -/-
void * NULL, any pointer -/-
size t 0..n -/-
ssize t −1..m -/-

Table 21.1: Safe value ranges of data types

21.12 Order of arguments

If a function has a input and output agrument like a converter using two
buffers the order is out then in.

Wrong:

int conv(void * in, void * out, long len);

Right:

int conv(void * out, void * in, size_t len);

Chapter 22

RoarAudio Protocol

22.1 RoarAudio Protocol and OSI Layer Model

Layer Name RoarAudio RoarAudio Examples
Object Type Module

7 Application Stream Mixer Your favorit song
6 Presentation Codec Codec Filter PCM , A− Law, V orbis, . . .
5 Session Client, Message Control Logic Commands: QUIT, NEW STREAM, . . .
4 Transport VIO, Socket IO TCP , NSP , . . .
3 Network VIO IO IP , DRP , . . .
2 Data link Controller Ethernet, RS232, I2C, CAN
1 Physical None Wire, Fiber, Wireless

Table 22.1: RoarAudio Protocol in OSI Layer Model

The RoarAudio protocol mainly lifes in ISO Layer 5. RoarAudio interprets
layer 6 as Codecs and 7 as raw data. See table 22.1 for a overview.

However RoarAudio may use some additional layer presentation and ses-
sion layers between OSI layer 4 and 5. This is for example used to support
proxy servers, compression and encryption.

22.2 Messages, Requests and Replys

22.3 Protocol Mappings

22.3.1 Real Streams: TCP, DECnet (NSP)

On real streams you are suppost to send regular messages one by one. You
are allowed to send multible messages at once and then wait for all replys.

71

CHAPTER 22. ROARAUDIO PROTOCOL 72

You MUST NOT use possible values for message/data length provided by
layers lower than RoarAudio’s messages at layer 5.

22.3.2 RS232

22.3.3 I2C

Messages are mapped the same way on I2C as on RS232. With two
diffrences:

1. Each message needs to be packed into a singel I2C message framed by
START and STOP.

2. Each I2C message containing a RoarAudio message starts with the source
address of the node sending the message directly after the destination
address as specifyed by I2C. If the size of the source address is not a
multible of 8 bit then it it will be transmited as ne next bigger multible of
8 bit with the most significant bits set low. Both peers (server and client)
need to be configured to know about this.

Virtual node addresses may be used to create multble independet connec-
tions from a singel I2C node. This means that a singel I2C node may act as if
it is multible nodes with multible node addresses. This is for example needed
in case of a bridge between I2C and another Bus.

22.3.4 CAN

If no data length is given then data length is calculated using formular
22.1. This Means that messages with a total length ≤ 8 byte may not need to
have a data length set. This saves a full byte and provides more space for a
command.

If the used message protocol supports error detection the error detec-
tion should not be used. It may be used on first and last frame in order to
check the data integrity and ensure all frames got received in the correct order
if the message is lager than 136 byte including headers.

Frame Length should not be used on CAN because the CAN Bus already
provide length information for the frames.

22.3.5 MIDI

22.4 Message Format

22.4.1 Format version 0

Version 0 messages consists of two parts: The header and a body part. The
header has a fixed size of 10 Byte. The body has a varibale size. The size is
given in the header. The length is 16 Bit encoded leading to a size of 0..65535
byte per message. The header format can be found in table 22.2. All header
fields a in network byte order.

CHAPTER 22. ROARAUDIO PROTOCOL 73

0 1 2 3 byte
Version (0x00) Command SID 0-3
Stream possition 3-7
Data length Data . . . 7-11

Table 22.2: Format of message version 0

22.4.2 Format version 1

DRAFT — DRAFT — DRAFT

The Protocol Version 1 is in draft currently. It is not suppost to replace
the protocol version but to extend it. It is designed for byte oriented seriel
comunication. It extends the version 0 format by adding a additional flags field.
Most of the other fields can be shorted or simply removed.

The current draft for version 1 headers can be found in table 22.3. Needed
fields are in bold, optional optional fields normal and optional long fields are
in italic.

0 1 2 3 byte
Version (0x01) Flags Command SID 0-
SID Stream possition Stream possition -
Stream possition Data length Data length Data. . . -
Data. . . Error Detection - end

Table 22.3: Format of message version 1

As you can see in table 22.3 the minimal message size is 3 byte. This saves
7 byte. However the maximum size of the header is 11 byte, so a full message
with all options is one byte longer than a version 0 message. But as the Stream
Possiton field (4 byte) is only used by a very small group of commands the
avarage message size is smaller.

The meaning if the message flags can be found in table 22.4.

If no data length is provided in the header it may be provided by the next
lower layer (normaly OSI layer 1 or 2). The data length is calculated by formular
22.1. If no lower layer provides a length a length of zero is used. If a lower layer
uses a fixed minimum packet size and pedding is used a Data length field in the
header must be provided.

PacketLength−HeaderLength = DataLength (22.1)

CHAPTER 22. ROARAUDIO PROTOCOL 74

Bit Flag Name Long flag name Flag Description
7 MF Meta Framing
6 ED Error Detection
6 ¯LDL Long Data Length
5 ¯LSPOS Long Stream Possition
4 ¯LSID Long Stream ID
2 D̄L Data Length
1 ¯SPOS Stream Possition
0 ¯SID Stream ID

Table 22.4: Message flags for format version 1 messages

If Meta Framing is set there are two possibilitys:

1. If Data Length is not set this message is a start of a meta frame.

2. If Data Length is set this message is a continued frame.

Note: If meta framing is used the message needs to have a Data Length field
in the header. This is needed anyway as the data length can not be zero or
privided by a lower layer.

In case of a continued frame the bits SID, SPOS, LSID and LSPOS
are used as Frame ID. The Frame ID is calculated as stated in formular 22.2.

SID + 2 ∗ SPOS + 4 ∗ LSID + 8 ∗ LSPOS = FrameID (22.2)

The Frame ID get’s incremented by one with each frame sent and start as
zero with the first continued frame. The receiver must use the Frame ID to
reorder frames in case they get out of order on the communication channel. As
there are only 16 Frame IDs is is save to send up to 17 frames. This is for
example a maximum of 100 byte on CAN. If the message is longer than the
maximum size the lower layer supports in 17 packets the sender continues to
send frames. If the Frame ID overflows (would become 16) it is set to zero. The
sender may make a small break (maximum the time of two frames) in order to
ensure the order of the messages on the lower layers.

If the ED flag is set an Error Detection Byte is added at the end of the
Frame. If the flag is set on the first and last frame of the message the last error
detection byte is calculated over all of the message and not only the last frame.

The LDL flag is used to tell the Meta Frame logic that the frame contains a
Frame Length byte. It contains the length of the current frame. This is needed
if the lower layer can not tell the length of the current frame.

A Frame should be mapped into a packet of the next lower layer protocol.
If this is not ensureable an implementation should try to ensure it in a resanable
way. Implementations receiving framed messages must not relay on this.

CHAPTER 22. ROARAUDIO PROTOCOL 75

0 1 2 3 byte
Version (0x01) Flags Data Length Data. . . 0-
Data. . . Error Detection - end

Table 22.5: Format of version 0 continued Meta Frames

22.4.3 Format version 2

DRAFT — DRAFT — DRAFT

0 1 2 3 byte
Version (0x02) Command SID 0-3
Flags 4-7
Stream possition 8-11
Stream possition (4 byte extention) (12-15)
Data length Dir Seq 12-15(16-19)
Data . . . ?
CRC . . . ?

Table 22.6: Format of message version 2

22.5 Commands

. . .

22.5.1 Base and connection commands

The following section explains basic commands controlling the connection.
The possible responses are discussed in the next section in details. Table 22.5.1
is a brief overview of all commands discussed in this section.

Command Size1 Headers2 Description
0 NOOP 0..Max/0..Max gpos No Operation.
1 IDENTIFY /0 gpos Identify a connection
2 AUTH 0/0 gpos Auth a connection
6 QUIT 0/- None/- Terminates the connection.
31 GETTIMEOFDAY None. Get a timestamp from the server
32 WHOAMI 0/1* gpos Asks server about information

about this connection

Table 22.7: Table of base and connection commands
Entrys marked with * are subject to change, entrys marked with . are drafed.

CHAPTER 22. ROARAUDIO PROTOCOL 76

NOOP

The No-Operation command does not do any operation on the server side
expect to send back a positive response.

The server response with a positive reply. A negative reply is invalid. The
response may be of size zero or of the same size as the request. In case the
response is of the same size as the request the orgiginal data should be send
back to the client. A diffrent size than zero or the site of the request is invalid
at this time.

The command may be used in order to ping the server or to do any kind
of keep-alive. The client is free to send this command at any time. Sending
this command before any kind of identification or authentification of the client
is valid.

The data of the request does not contain any information. The server MUST
NOT do anything with the data expect sending it back to the client in case it
does send any data back to the client.

IDENTIFY

AUTH

See commends in libroar/auth.c.

QUIT

This command terminates the connection. This is valid at any time. Shuting
down of the socket is done as soon as the request is processed by the server.
The server is free to send a positive response but does not need to do so. This
command can not fail. The client have to close the socket after a possible
response is read from the socket.

The data length is zero for this commands on both the request and reply
message.

GETTIMEOFDAY

WHOAMI

This command is used to get the ID of the client sending the request. The
server will response with a positive answer with a data length of one byte. The
byte contains the ID of the client sending the request.

22.5.2 Possible repsonse commands

This section descripes responses for requets of the client. The following
commands MUST NOT be send as request.

CHAPTER 22. ROARAUDIO PROTOCOL 77

Command Size3 Headers4 Description
252 EPERM -/- -/- Internal. obsolete. Permittion error.
253 OK STOP -/0..Max -/any Internal. Same as OK

but do not process another message
of this client before next main cycle

254 OK -/0..Max -/any Command succeeded with no error
255 ERROR -/0 -/None Some error occurred

Table 22.8: Table of response commands
Entrys marked with * are subject to change, entrys marked with . are drafed.

EPERM

This command was used internaly and is now obsolete. It should not be
used in any case.

OK STOP

This is the same as OK but used in order to signalize the server internaly
to stop continuing handling requests from this client in the current cycle. The
server MUST NOT send this command but a normal OK to the client.

OK

This is a positive response. The data, data length and header fields used
depends on the command this is the reply to.

ERROR

This is a negative response. The data length is zero. This is send by the
server in case of any error with the request of the client. This includeds the
following things:

1. Invalide parameter from client,

2. All kinds of IO errors on the server side,

3. Errors from the Operating system on the server,

4. Out-of-resource errors.

22.5.3 Server Status commands

22.5.4 Stream control and data commands

22.5.5 Other commands

CHAPTER 22. ROARAUDIO PROTOCOL 78

Command Size5 Headers6 Description
7 GET STANDBY 0/2* gpos Get information about

the current standby state
8 SET STANDBY 2*/0 gpos Set the current standby state
9 SERVER INFO 0./ None. Get information about the server
10 SERVER STATS 0./ None. Get stats from the server
11 SERVER OINFO 0/ None Get stream info for the mixing stream
13 EXIT 0,1/0 gpos Terminates the server.
25 GET ACL None.
26 SET ACL None.

Table 22.9: Table of server status and control commands
Entrys marked with * are subject to change, entrys marked with . are drafed.

Command Size7 Headers8 Description
3 NEW STREAM /0 None/SID Start a new Stream
4 SET META 3..?/0 SID/None Set meta data
5 EXEC STREAM 0 SID/None Mark a stream as execed

on the current connection
12 ADD DATA 0..Max/0 SID*/None Send some data to the server
14 LIST STREAMS None List all streams
17 GET STREAM 1* None*/SID Get stream info about a stream
19 SET VOL 6..6+2C/0 SID Set volume for a stream
20 GET VOL ?..Max SID Get volume of a stream
21 CON STREAM 4..?/0 SID/None Ask the server to connect a stream
22 GET META 2/2..Max SID/None Get meta data for a stream
23 LIST META 1/1..Max SID/None List meta data on a stream
27 GET STREAM PARA 4..?/4..Max SID/SPOS*
28 SET STREAM PARA 8/0 SID/None
29 ATTACH 6..?/0 SID/None Attach a stream to the server
30 PASSFH 0 SID/None Pass an open FH to the server

for passive mode

Table 22.10: Table of stream commands
Entrys marked with * are subject to change, entrys marked with . are drafed.

Command Size9 Headers10 Description
15 LIST CLIENTS None List all clients
16 GET CLIENT 1* None Get informations about a client
18 KICK 4/0 None Kick a object from the server
24 BEEP
-1 EOL -/- -/- Internal. End of List

Table 22.11: Table of other commands
Entrys marked with * are subject to change, entrys marked with . are drafed.

Part V

Codecs, Container and
Codec Mapping

79

Chapter 23

Codecs

23.1 PCM

PCM is a very common form of representing audio. There is may documen-
tation out there about it. As a start you can read the Wikipedia article at:
http://en.wikipedia.org/wiki/Pulse-code modulation.

23.2 A-Law

A-Law is a PCM like codec but uses a log-scale. It is mainly used within the
europe ISDN system. You can start reading aout it in details at Wikipedia at:
http://en.wikipedia.org/wiki/A-law algorithm.

RoarAudio’s A-Law support is mainly based on sox. See the code (libroardsp
and sox) for more details.

23.3 u-Law

Like A-Law µ-Law is a PCM like codec used mainly in North America’s and
Japan’s telecomunication systems. See Wikipedia’s article for more informaton:
http://en.wikipedia.org/wiki/%CE%9C-law algorithm.

RoarAudio’s µ-Law support is mainly based on sox. See the code (libroardsp
and sox) for more details.

23.4 Vorbis

For information on the Vorbis codec see the Vorbis specification at
http://www.xiph.org/vorbis/doc/Vorbis I spec.html.

23.5 Speex

See Speex documentation at: http://www.speex.org/docs/.

80

http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/wiki/A-law_algorithm
http://en.wikipedia.org/wiki/%CE%9C-law_algorithm
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html
http://www.speex.org/docs/

CHAPTER 23. CODECS 81

23.6 FLAC

You can find the FLAC Format Specification: http://flac.sourceforge.net/format.html.

23.7 MIDI

23.8 CELT

Please see the the CELT homepage for any information on CELT: http://www.celt-
codec.org/.

23.9 DMX512

The DMX512 codec is the most simple why to present DMX data and because
of this currently used default codec for the light subsystem.

The DMX data is send in so called frames including one value per DMX
channel of a DMX universe. Multible universe streams are not supported.

Each frame is a block with a length of 512 Byte. Each byte represents the
value of one DMX channel. Values for start or stop bytes are not supported.

RoarAudio writes one DMX512 frame per internal cycle on output streams.
As the default internal cycle frequenzy is cfreq = 100Hz the used data rate is
51.2kByte/s. See formular 23.1 for details.

DataRate[
Byte

s
] = cfreq ∗ 512Byte (23.1)

On input streams RoarAudio updates the data of all channels in the DMX
universe the stream belongs to as soon as a complete frame is recived.

Frames must allways be witten in one operation or within one frame/packet
of the container.

23.10 RoarDMX

23.11 VCLT (Vorbis Comment Like Text)

Vorbis Comment Like Text is a simple dummy codec for meta data. It
does not contain any timing data (without a container) nor does it support
binary data.

The format is simply one meta data per lion like shown in the following
example:

The lion endings are plain ’\n’ (0x0A), the strings are encoded as UTF-8.

http://flac.sourceforge.net/format.html
http://www.celt-codec.org/
http://www.celt-codec.org/

CHAPTER 23. CODECS 82

TITLE=Some Song
ARTIST=The singer
TRACKNUMBER=06

Figure 23.1: Example of VCLT Stream

23.12 RALT (RoarAudio Like Text)

23.13 RALB (RoarAudio Like Binary)

Chapter 24

Container

24.1 Ogg

For information about the Ogg Container Format see RFC 3533 (”The Ogg
Encapsulation Format Version 0”).

24.2 RAUM

RAUM is a container used and developed in order to support the RoarAudio
project with a container for realtime transmitsion of compressed audio needing
framing and for archiving.

For all information see the homepage at: http://raum.keep-cool.org/.

24.3 RIFF/Wave

83

http://raum.keep-cool.org/

Chapter 25

Mappings

25.1 Ogg Vorbis

For information on the Vorbis to Ogg mapping see the Vorbis specification at
http://www.xiph.org/vorbis/doc/Vorbis I spec.html.

25.2 Ogg Speex

See Speex documentation at: http://www.speex.org/docs/.

25.3 Ogg FLAC

The Ogg FLAC Mapping can be found at: http://flac.sourceforge.net/ogg mapping.html.

25.4 Ogg CELT

Please see the the CELT homepage for any information on CELT: http://www.celt-
codec.org/.

25.5 Ogg RoarDMX

25.6 RAUM Mapped Ogg

This mapping is used to be abled to store data of most of the codecs sup-
ported by RAUM in a Ogg container.

The BOS page consists of 3 packets: The identification header, the setup
header and the meta data header realized as a Vorbis Comments block (see
bellow). The identification and the setup header needs to be in the same Ogg
Page. The meta data header can be on the same page with the other headers.
The first data packet needs to start on a new page.

84

http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html
http://www.speex.org/docs/
http://flac.sourceforge.net/ogg_mapping.html
http://www.celt-codec.org/
http://www.celt-codec.org/

CHAPTER 25. MAPPINGS 85

All integers in the headers are in network byte order. Strings (expact in the
meta data block) are in ISO-8859-15 however they should be keeped high-bit
clean meaing 7 bit ASCII compatible.

The identification header consists of the mapping magic and a magic for
the used codec as shown in the following table 25.1:

0 1 2 3 byte
’R’ ’A’ ’U’ ’M’ 0-3
’M’ ’O’ Null byte (0x00) Version (0x00) 4-7
Flags (32 bit) 8-11
Codec ID 12-15
Null byte terminated codec name . . . 1-

Table 25.1: Identification header

The codec name is a string containing a MIME type in case it contains a
slash (’/’) or the RoarAudio codec name in case it does not. This string MUST
be null terminated.

A player is suppost to check the codec ID and decide on it if it supports
a codec. If the codec is not supported according to the ID the player MUST
NOT continue with this stream. If the codec is supportet but supports diffrent
flavors the player may use the codec name as hint for the flavor but MUST also
work with a wrong codec name. This may for example be done by testing for
the named flavor fist, then for other in case it does not match. The application
may safely ignore the codec name.

The setup header is an array of 32 bit intergers to store all the needed
parameters. In case a parameter is of no intrest for a codec the value is set to
zero. The list of parameters is the following:

1. Stream direction (may be ignored by players)

2. Stream relative possion ID (may be ignored by players)

3. Sample rate in 1/1024 of Hz.

4. Bits per Sample/pixel.

5. Nummber of channels. A Video may set this to the total number of pixels
(ch = x ∗ y ∗ z).

6. Width (x) in pixel.

7. Height (y) in pixel.

8. Deep (z) in pixel. A 2D Video has set this to one.

CHAPTER 25. MAPPINGS 86

9. The nummber of frames pluse one between each key frame. If every frame
is a keyframe this nummber is set to one (0 + 1 = 1). If the number of
frames between the key frames is not constant the value may be set the
the avergae but with fliped sign (negativ). In case of unknown keyframe
rate the value is set to zero.

All the tailing zeroed parameters can be skiped to save storage. The
length of the packet than indecates which parameters are include. For example
most audio files will only need the first 5 values be set so the size of the packet
is size = 5ints ∗ 4Byte/int = 20Byte. If the packet is longer than supported
an therefor some unknown parameters are set the player MUST refuse to play
the stream. It MAY have an option to disable this and play the file anyway
so the user can manually override. Enabiling this option per default is against
this specification.

The meta data header contains a set of Vorbis comments as specified in the
Vorbis documentaion at http://www.xiph.org/vorbis/doc/v-comment.html.

This header may be on a Ogg page of it’s own or on the same page as the
identification header and the setup header. It must not be on the same page as
the first data segment.

After all the headers the data of the codec follows starting with a fresh
page.

The granule position is set to the same value as the stream position on a
RAUM stream expect that the higher 32 bit are used to count the overflows
with the expection that the most significant bit needs to be cleared (zero) all
the time (negative values are reserved for future use).

http://www.xiph.org/vorbis/doc/v-comment.html

CHAPTER 25. MAPPINGS 87

25.7 RAUM PCM, A-Law, u-Law

25.8 RAUM RoarSpeex

25.9 RAUM RoarCELT

25.10 RAUM DMX512

25.11 RAUM RoarDMX

25.12 RIFF/Wave PCM

25.13 Native RoarSpeex

25.14 Native RoarCELT

25.15 Native DMX512

25.16 Native RoarDMX

25.17 Native FLAC

25.18 Native MIDI

25.19 Native VCLT (Vorbis Comment Like Text)

25.20 Native RALT (RoarAudio Like Text)

25.21 Native RALB (RoarAudio Like Binary)

Part VI

Maintainer Manual

88

Chapter 26

Gernal Information

89

Chapter 27

Packaging

90

Chapter 28

Configuration Nodes

91

Part VII

Appendix

92

Chapter 29

Autors and Copyright

The main Autor is Philipp ”ph3-der-loewe” Schafft <lion@lion.leolix.org>.

archlinux part is written by kalasmannen <kalasmannen@gmail.com>.

This document is licenced under Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported The licens text can be found at http://creativecommons.
org/licenses/by-nc-sa/3.0/.

93

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Chapter 30

Contact information
template

In case you help developing RoarAudio or be a Maintainer it is usefull to have
full contact information about you so the Development team can contact you.

A full contact information include:

1. Your Nickname,

2. Your full Real Name,

3. Your E-Mail address,

4. Your OpenPGP Key’s fringerprint.

94

Index

µ-Law, 49

A-Law, 49
Add, 49
AMP, 49
API, 37
archlinux, 7, 10
aRts, 30
AUR, 7

BIO, 45
Bits, 14, 24, 49
Bits per sample, 14, 24, 49
Bridge, 18
BSD, 3
Buffer, 37

CAN, 55, 56
Channel Mapping, 35
Channels, 14, 24, 49
chroot, 28
Client, 14, 55
Clip, 49
Codec, 18, 26, 55
Codecfilter, 18, 26
Codecs, 49
coding style, 52
Command, 45, 55
Command API, 45
Commands, 59
Compatibility Librarys, 30
compression, 46
Config, 10
Console Beep, 14
conventions, 35, 52
cryptography, 45, 46
cygwin, 3

Data Length, 57
DCBlock, 49
Debian, 8, 10
DECnet, 31

Descriptive String, 47, 48
DL, 58
DMX, 14
downmix, 49
Driver, 18, 25
DRP, 55
DSTR, 47, 48
DSTR - Descriptive String API, 47, 48
Dumping, 23

ED, 58
encryption, 45, 46
Enlightened Sound Daemon, 3, 30
Enviroment, 32, 33
ESD, 3, 30
esdcat, 20
EsounD, 3, 30
Ethernet, 55

fd, 41, 42
fh, 41, 42
Fiber, 55
File API, 40
File Handle API, 41
Files, 32
Filter, 49
Filterchains, 49
Frame, 35
Frame ID, 58

GID, 27
GNU/Linux, 3
GnuPG, 46
Gopher, 44, 48
gpg, 46
Group, 27
gzip, 46
gzip API, 46

High Level, 37
High Level Protocol API, 37
Highpass, 49

95

INDEX 96

HTTP, 37, 44, 48
HTTP CONNECT, 37

I2C, 55, 56
Icecast, 3, 23
IP, 31, 55
IPv4, 31
IPv6, 31

KDE Sound System, 30

LDL, 58
libao, 12
libao based, 12
libroar, 37
libroardsp, 49
Light, 14
Listeing Socket, 26
Low Level, 37
Low Level Protocol API, 37
Lowpass, 49
LSID, 58
LSPOS, 58

Magic, 45
Magic API, 45
Mapping, 35, 55
Medium Level, 37
Medium Level Protocol API, 37
Message, 55, 56
Meta Data, 19, 22
Meta Frame, 58, 59
MF, 58
MIDI, 14, 49, 56
Mixer, 55

Network, 26, 31, 55
Networking, 31
NSP, 55

Ogg Vorbis, 19
OpenBSD, 8, 10, 30

sndio, 30
OpenPGP, 46
OpenPGP API, 46
OpenSSL, 45
OSI Layer Model, 55
Output, 3, 25, 32, 33

pacman, 7
Pass, 43

Pass API, 43
Password API, 48
PCM, 14, 18, 20, 49
pinentry, 48
Pipe, 43
Pipe API, 43
Player, 12
POSIX, 3
Protocol, 44, 48, 55
Protocol API, 44, 48
Protocol Mapping, 55
Proxy Server, 31, 33, 37
PulseAudio, 30

Quantifier, 49

Rate, 14, 24, 49
Re, 43
Re API, 43
Real Streams, 55
Realtime, 27
Reply, 55
Request, 55
roar-config, 50
ROAR SOCKET BLOCK, 39
ROAR SOCKET NONBLOCK, 39
roar vio close(3), 40
roar vio ctl(3), 39
ROAR VIO CTL GET FH, 40
roar vio dstr init defaults(3), 47
roar vio dstr init defaults c(3), 47
roar vio lseek(3), 38
roar vio nonblock(3), 38
roar vio open bio(3), 45
roar vio open cmd(3), 45
roar vio open default(3), 47
roar vio open dstr(3), 47
roar vio open dstr vio(3), 47
roar vio open fh(3), 41
roar vio open fh socket(3), 42
roar vio open file(3), 40
roar vio open gzip(3), 46
roar vio open magic(3), 45
roar vio open pass(3), 43
roar vio open pgp decrypt(3), 46
roar vio open pgp encrypt pub(3), 46
roar vio open pgp encrypt sym(3), 46
roar vio open pgp store(3), 46
roar vio open pipe(3), 43
roar vio open proto(3), 44

INDEX 97

roar vio open re(3), 43
roar vio open stack(3), 44
roar vio open stdio(3), 42
roar vio proto init def(3), 44
roar vio read(3), 37
roar vio stack add(3), 44
roar vio sync(3), 39
roar vio to bio(3), 45
roar vio to stdio(3), 42
roar vio write(3), 37
RoarAudio Client

roar-config, 50
roarbidir, 29
roarcat, 29
roarcat2sock, 29
roarcatad, 51
roarcatpassfh, 51
roarcatplay, 29
roarcatsendfile, 51
roarcatvio, 29
roarctl, 29
roarfctest, 51
roarfilt, 29
roarfish, 29
roarmon, 29
roarmonhttp, 29
roarradio, 29
roarshout, 29
roarsin, 29
roarsockconnect, 51
roarsocktypes, 50
roartypes, 50
roarvorbis, 29
roarvumeter, 29

RoarAudio Daemon, 24
RoarAudio Protocol, 55
roarbidir, 29
roarcat, 20, 29
roarcat2sock, 29
roarcatad, 51
roarcatpassfh, 51
roarcatplay, 19, 29
roarcatsendfile, 51
roarcatvio, 29
roarctl, 21, 22, 29

flag, 22
kick, 22
liststreams, 21
metaload, 22
metasave, 22

unflag, 22
volume, 21

roard, 24
roarfctest, 51
roarfilt, 29
roarfish, 29
roarify, 30
roarmon, 23, 29
roarmonhttp, 29
roarradio, 20, 29
roarserver, 32
roarshout, 23, 29
roarsin, 29
roarsockconnect, 51
roarsocktypes, 50
roartypes, 50
roarvorbis, 19, 29
roarvumeter, 29
RS232, 55, 56

Sample, 35
Security, 27
select(), 48
Shell, 45
Shout, 23
SID, 58
Simple API, 37
sndio, 30
Socket, 26, 31, 37, 41, 42, 55
Socket API, 41
Socket Handle API, 42
SOCKS, 37
SOCKS4, 37
SOCKS4a, 37
SOCKS4d, 37
Sound Daemon, 3
Sound Server, 3
Source, 18, 25
Sources, 9
sox, 20
SPOS, 58
SSH, 37
ssh-askpass, 48
Stack, 37, 44
stderr, 42
stdin, 42
stdio, 42
stdio API, 42
stdout, 42
Stream, 14, 21, 22, 55

INDEX 98

Flags, 16
autoconf, 17
cleanmeta, 17
hwmixer, 18
meta, 17
mute, 18
output, 17
pause, 17
primary, 16
source, 17
sync, 16

Types, 15
Bidir, 15
Bridge, 16
Filter, 15
Light In, 16
Light Out, 16
Meta, 16
MIDI In, 16
MIDI Out, 16
Mixing, 15
Monitor, 15
Output, 15
Play, 15
Record, 15
Thru, 16

Streaming, 23
style, 52
Subsystem, 18
subsystem, 14
symlink, 32
System Speaker, 14

TCP, 55

UID, 27
UNIX, 27, 31
UNIX Domain Sockets, 27, 31
User, 27

VIO, 37, 55
VIO API, 37
VIO OpenSSL BIO API, 45
VIO Operations, 48
VIO select, 48
VIO Stack, 44
VIO Stack API, 44
Virtual Input Output, 37
Volume, 21
Vorbis, 19

Waveform, 14
Wire, 55
Wireless, 55

XMMS, 12

yaourt, 8
YIFF, 30
YIFF Sound System, 30

List of Figures

21.1 Indenting example . 67
21.2 Indenting example . 68
21.3 Example of comments . 69

23.1 Example of VCLT Stream . 82

99

List of Tables

5.1 Tested players without native RoarAudio plugin 17

6.1 Table of Subsystems . 19

10.1 Possible output drivers . 31
10.2 Possible output options . 32

15.1 Examples of Socket Addresses . 41

17.1 Channel Mapping . 45
17.2 Channel possitions . 45
17.3 Example Frames for stereo signal 46

21.1 Safe value ranges of data types 70

22.1 RoarAudio Protocol in OSI Layer Model 71
22.2 Format of message version 0 . 73
22.3 Format of message version 1 . 73
22.4 Message flags for format version 1 messages 74
22.5 Format of version 0 continued Meta Frames 75
22.6 Format of message version 2 . 75
22.7 Table of base and connection commands 75
22.8 Table of response commands . 77
22.9 Table of server status and control commands 78
22.10Table of stream commands . 78
22.11Table of other commands . 78

25.1 Identification header . 85

100

	Contens
	I Introduction
	What is RoarAudio?
	What is a Sound Server?
	What are the key fatures of RoarAudio?

	Basic concept

	II Quickstart
	Installation
	archlinux
	OpenBSD
	Debian
	From Sources

	Configuring
	archlinux
	OpenBSD
	Debian
	Options

	Setting up a player
	XMMS
	libao based
	Other

	III User Manual
	RoarAudio's Architecture
	Subsystems
	Clients
	Streams
	Stream Types
	Stream Flags

	Driver
	Sources
	Codecfilter
	Bridges

	Playing music on command lion with RoarAudio
	roarcatplay
	roarvorbis
	roarradio
	roarcat

	Controlling played music
	List current streams
	Change volume
	Kick a stream
	Show and change meta data
	Change stream flags

	Dumping and Streaming
	roarmon
	roarshout

	RoarAudio Daemon
	General Audio Options
	Drivers and Outputs
	Sources
	Codecfilter
	Listen Connection
	Realtime
	Security
	User and group
	chroot

	Using RoarAudio's MIDI Subsystem
	Basics about MIDI and RoarAudio
	MIDI Clock
	Connecting devices to RoarAudio

	Using RoarAudio for Light Control
	Basics about RoarAudio and Light Control
	Connecting devices to RoarAudio

	Compatibility Librarys
	Using Compatibility Librarys
	roarify

	Enlightened Sound Daemon
	PulseAudio
	aRts - KDE Sound System
	YIFF Sound System
	OpenBSD sndio

	End user Tools
	roarcat
	roarcatplay
	roarctl
	roarradio
	roarvorbis

	Networking
	Connection Types
	Proxy Server

	Files and Enviroment
	General
	Files
	Enviroment

	roard
	Enviroment

	RoarAudio Clients
	Enviroment

	IV Developer Manual
	Audio and format conventions
	Channel Mapping
	Channel possitions
	Sample and Frame representation

	Writing software using RoarAudio
	Writing audio output plugins
	Writing basic very basic output
	Adding support to set server
	Prepering the plugin for meta data, mixer settings and so on
	Adding support for meta data
	Adding support for roard based mixing

	Writing other output plugins
	Writing input plugins
	Writing mixer plugins/Mixer frondends
	Accessing other (control) features

	libroar
	Low Level Protocol API
	Medium Level Protocol API
	High Level Protocol API
	Simple API
	Sockets
	Buffer
	Stack
	VIO - Virtual Input Output
	Basic VIO API
	VIO Types
	VIO Operations
	VIO select
	DSTR - Descriptive String API

	libroardsp
	Project's coding style and conventions
	File encoding and New Lions
	File Header and Footer
	File header
	File footer

	Indenting and code blocks
	Use of spaces
	Use of NULL
	Use of pointers to struct or union members
	Use of goto
	Comments
	Name of Objects, Vars, …
	Memory Management
	Use of native data types
	Order of arguments

	RoarAudio Protocol
	RoarAudio Protocol and OSI Layer Model
	Messages, Requests and Replys
	Protocol Mappings
	Real Streams: TCP, DECnet (NSP)
	RS232
	I2C
	CAN
	MIDI

	Message Format
	Format version 0
	Format version 1
	Format version 2

	Commands
	Base and connection commands
	Possible repsonse commands
	Server Status commands
	Stream control and data commands
	Other commands

	V Codecs, Container and Codec Mapping
	Codecs
	PCM
	A-Law
	u-Law
	Vorbis
	Speex
	FLAC
	MIDI
	CELT
	DMX512
	RoarDMX
	VCLT (Vorbis Comment Like Text)
	RALT (RoarAudio Like Text)
	RALB (RoarAudio Like Binary)

	Container
	Ogg
	RAUM
	RIFF/Wave

	Mappings
	Ogg Vorbis
	Ogg Speex
	Ogg FLAC
	Ogg CELT
	Ogg RoarDMX
	RAUM Mapped Ogg
	RAUM PCM, A-Law, u-Law
	RAUM RoarSpeex
	RAUM RoarCELT
	RAUM DMX512
	RAUM RoarDMX
	RIFF/Wave PCM
	Native RoarSpeex
	Native RoarCELT
	Native DMX512
	Native RoarDMX
	Native FLAC
	Native MIDI
	Native VCLT (Vorbis Comment Like Text)
	Native RALT (RoarAudio Like Text)
	Native RALB (RoarAudio Like Binary)

	VI Maintainer Manual
	Gernal Information
	Packaging
	Configuration Nodes

	VII Appendix
	Autors and Copyright
	Contact information template

