
IST-2001-32133

GridLab - A Grid Application Toolkit and Testbed

D 3.8 T UM

Author(s): The Triana Team

Document Filename: GridLab-3-D3_8-0001-TRS

Work package: WP3 Work-Flow Application Toolkit (TGAT)

Partner(s): Cardiff University

Lead Partner: Cardiff University

Config ID: GridLab-3-D3_8-0001-1.0-Draft_A

Document classification: PUBLIC

Abstract: This is the user manual for the Triana Problem Solving Environment de-
veloped in Cardiff. It includes instructions on basic Triana usage through
to complex usages with web services and the GridLab GAT.

Last amendment date: 2005/03/15 & time: 17:50:03

D 3.8 T UM IST-2001-32133

Contents

1 Overview 1
1.1 Introduction . 1

2 Getting Started 3
2.1 Download, Installation and Configuration 3

3 The Triana User Interface 3
3.1 The Toolbox Window . 3

3.1.1 Searching . 5
3.1.2 Toolbox Contextual Menus . 7

3.2 Main Menus and Tool Bars . 8
3.2.1 The Main Menu . 8
3.2.2 The Tool Bars . 8

3.3 The Main Triana Window . 9
3.3.1 Main Triana Window Contextual Menus 9
3.3.2 Editing Workflows . 10

4 Your First Workflow 13

5 Grouping Tasks 16

6 Using Parameters Within Triana 18
6.1 The Node Editor . 19

6.1.1 Node Editor Shortcuts . 20
6.2 An Example with Parameters . 21

7 Configuring Triana Options 22
7.1 Options Configuration Window . 23

7.1.1 General Options . 23
7.1.2 External Tools . 23

8 Getting Help 26

9 Distributed Computing with Triana 27
9.1 Overview . 27

10 Web Services 28
10.1 Web Service Configuration . 29
10.2 Discovering Web Services . 30
10.3 Importing Web Services . 30
10.4 Conncecting Web Services . 31
10.5 Bible Translation Example . 32
10.6 Complex Data Types . 33

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC i/64

D 3.8 T UM IST-2001-32133

10.7 Deploying Web Services . 34

11 P2PS 36
11.1 P2PS Configuration . 36
11.2 Deploying P2PS Services . 36
11.3 Discovering P2PS Services . 37
11.4 Connecting P2PS Services . 38

12 GridLab GAT 38
12.1 Example GAT Worfklow . 38
12.2 GAT Configuration . 39
12.3 Job Submission . 40
12.4 File Transfer . 42

13 Extending Triana 44

14 CVS Access 44
14.1 Conventions . 44
14.2 CVSRoot and Passwords . 45
14.3 Tagged, Stable and Unstable Versions . 45
14.4 A Word About Directory Structure . 45
14.5 Easy Install . 46

14.5.1 Build and Run . 47
14.6 Developer Install . 48
14.7 Other Install . 49

15 Writing Your Own Tools 49
15.1 Toolbox Structure . 49
15.2 Creating a New Toolbox . 50
15.3 Using the Unit Wizard . 51

15.3.1 Unit Panel . 52
15.3.2 Data Type Panel . 53
15.3.3 Parameter Panel . 54
15.3.4 GUI Panel . 56
15.3.5 Final Panel . 56

15.4 Compiling Units/Generating Tool XML 57

16 Advanced Tool Techniques 58
16.1 Showing and Hiding a Unit’s Parameter Panel 58
16.2 Pausing Unit Execution . 58

17 Trouble Shooting 61
17.1 Triana Resource Directory . 61

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC ii/64

D 3.8 T UM IST-2001-32133

List of Figures

1 MainTriana User Interface . 4
2 Toolbox Window . 5
3 Tool Tree Icons . 5
4 Sorting by Sub-packages . 6
5 Filter Toolbox by Data Types . 7
6 Simple Taskgraph . 13
7 Instantiated Wave Tool . 14
8 Instantiated Wave and Graph Tool . 15
9 Grapher Interface . 15
10 Grapher Interface . 16
11 New Group Box . 17
12 New Group Box . 17
13 New Group Tool Parameter Window . 18
14 Node Editor . 19
15 Parameter List Interface . 20
16 Parameter Connection . 21
17 Parameter Node . 22
18 Options Window - general settings . 23
19 Options Window - external tools . 23
20 Selecting the Unit Classpath . 26
21 Distributed Component Middleware within Triana. 28
22 Web Service Configuration Dialog. 29
23 Web Service tools in the Tool Tree. 30
24 Using StringGen and StringViewer to provide input to and display the

output from a temperature conversion web service. 31
25 A simple bible translation workflow. 32
26 Generating/viewing complex data types using WSTypeGen and WSType-

Viewer. 33
27 Dialog for deploying a task/group task as a web service. 35
28 Using xsd tools to ensure standard input/output XML types are used

when deploying a web service. 35
29 Dialog for deploying a task/group task as a P2PS service. 37
30 Example GAT workflow. 39
31 Job Properties Dialog. 40
32 Inputs Panel in the Job Properties Dialog. 41
33 File Transfer Operations. 42
34 example build.properties file . 49
35 Edit Toolbox Paths . 50
36 Unit Panel in the Unit Wizard. 52
37 Data Type Panel in the Unit Wizard. 53
38 Parameter Panel in the Unit Wizard. 54

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC iii/64

D 3.8 T UM IST-2001-32133

39 GUI Panel in the Unit Wizard. 55
40 Final Panel in the Unit Wizard. 56
41 Compile Unit/Generate Tool XML Dialog. 57

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC iv/64

D 3.8 T UM IST-2001-32133

List of Tables

1 Common Contextual Tool Menu Items . 7
2 Contextual Tool Menu Items . 8
3 Menu Commands . 9
4 Tool Bar Commands . 10
5 Main Window Tool Menu . 11
6 Main Window Multiple Tool Menu . 11
7 Main Window Group Tool Menu . 12
8 Main Window Background Menu . 12
9 General Options . 24
10 Trouble Shooting Symptoms . 61

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC v/64

D 3.8 T UM IST-2001-32133

1 Overview

1.1 Introduction

Triana is a graphical environment that allows you to create powerful computer programs
and to use them, with a minimum of effort and no programming. Using Triana, you
simply assemble your program from a set of building-blocks that you drag into a
work-space window and connect up using your mouse. With a click of the mouse the
program will perform whatever operations you want. You can tell Triana to execute
your program just once or continuously, as long as data is available to it.

Since Triana is written in pure Java, it will run on almost any computer, and you can
share your work with colleagues who work on different kinds of computers. Triana is a
revolutionary new way to expand the number of things you can do on your computer. It
allows you to create serious and complex programs without dealing with programming
languages, compilers, debuggers, and error codes.

• Use Triana on a wide variety of data: numerical data, either taken from an exper-
iment or generated by Triana; audio data; images; even text files.

• Triana comes with a wide variety of built-in tools. There is an extensive signal-
analysis toolkit, an image-manipulation toolkit, a desk-top publishing toolkit, and
many more. Most Triana tools will show you a parameter window, so you can
adjust the way they work. Parameters can typically be changed dynamically,
without interrupting the flow of data.

• Triana will display your data, either in a text-editor window or in a versatile
graph-display window. The grapher will display several curves at once and will
allow you to zoom in on interesting features and mark them.

• Triana is particularly good at automating repetitive tasks, such as performing
a find-and-replace on all the text files in a particular directory, or continuously
monitoring the spectrum of data that comes from an experiment that runs for
days or even years. If you run an experiment, Triana can help you save the cost of
buying extra expensive oscilloscopes or spectrum analyzers: just let your laptop
or lab PC do the job. If you maintain a web site you will find you can automate
many of your tedious updating tasks. If you are a teacher, you can simplify
the maintenance of student records and the grading of papers. If you regularly
create reports, Triana will allow you to feed updated data directly into the finished
document, no matter how it is formatted.

• Triana is a wonderful assistant in the classroom or teaching laboratory. It can
help you to make demonstrations of analysis techniques, to generate simulated
experimental data, to display graphs of complicated functions.

• If the tools supplied with Triana do not do what you need, Triana contains a

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 1/64

D 3.8 T UM IST-2001-32133

wizard that helps you to create new ones, with parameter windows. Or you can
use tools that are available on another web site, directly over the Internet, without
having to copy them to your computer.

• Triana includes many features to ensure that your programs should work as you
want them to. It checks data types and tells you if you have connected up tools
that are not compatible. It gives you clear error messages if problems arise during
the run and offers advice on how to avoid the situation. You can easily insert
display units to monitor intermediate results and track down more subtle errors.
Triana traps serious errors so the program will not crash; at worst you need only
restart the calculation.

Triana is being developed by scientists at Cardiff University in the UK. They are work-
ing within the GEO600 gravitational wave experiment, a major physics collaboration
between scientists from Germany, Britain, and other countries. GEO600 will generate
many terabytes of numerical data each year, and Triana is designed to make it possible
for scientists in the project to examine this data in a simple and versatile way. Triana is in
use within GEO600 and in other major centers of research in the USA and Europe. The
release version of Triana will take the same principles of easy operation and versatility,
and extend them to a variety of types: image, sound, text, and numerical data.

But you don’t have to be a rocket scientist to use Triana. Like the internet, email, the
web, and web browsers, Triana is another tool initially created for scientists that has very
much wider use. Triana opens programming to people who don’t know a programming
language.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 2/64

D 3.8 T UM IST-2001-32133

2 Getting Started

2.1 Download, Installation and Configuration

Step 1 - Download
Download the latest Triana release from http://www.trianacode.org.

Step 2 - Set Environment Variable
Set an environment variable for your system, $TRIANA for Unix like systems or
%TRIANA% for Windows, to point the top level triana directory, the location that
you saved and unpacked the download to.

e.g. (from the command prompt)

set TRIANA=C:\triana Windows
setenv TRIANA=/home/user/triana unix - tcsh
export TRIANA=/home/user/triana unix - bash

Step 3 - Build Triana
Run the Triana build script (buildTriana), which is located in the
triana/bin directory.

e.g. (from the command prompt)

C:\triana\bin\buildTriana.bat Windows
/home/user/triana/bin/buildTriana unix

Step 4 - Run Triana
Run Triana using the triana script located in the
triana/bin directory.

e.g. (from the command prompt)

C:\triana\bin\triana.bat Windows
/home/user/triana/bin/triana unix

3 The Triana User Interface

The Triana User Interface, figure 1 consists of a number of main components.

3.1 The Toolbox Window

The Toolbox Window allows you to explore the Triana toolboxes and navigate through the
toolbox hierarchies. It is easy to view the toolbox contents simply by double clicking the
toolbox name or the corresponding pointers. Contextual menus are available by “right

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 3/64

D 3.8 T UM IST-2001-32133

Figure 1: MainTriana User Interface

clicking” on toolboxes or tools and a search entry allows for easy location of tools. The
Triana Toolbox Window figure 2 consists of a tree component with branches representing
toolboxes and sub-toolboxes, leaf nodes representing tools or components.

There are a number of different icons that represent different types of tools, these are
can be seen in figure 3

The icons represent different tools with toolboxes, the top “folder” icon represents a
toolbox.

1. Standard tool.

2. Group tool, a number of other tools combined and saved as a new group.

3. Broken tool, a tool that cannot be instantiated on a main window. Typically
because it has not been compiled.

4. File, a special tool that represents a file object, either locally or remotely.

5. Job, a special tool for representing a job object for job submission purposes.

6. Script, a special type of group tool that can act on other tools.

7. List, a representation of a list of objects.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 4/64

D 3.8 T UM IST-2001-32133

Figure 2: Toolbox Window

8. Service, a proxy component to a remote service such as a web service.

3.1.1 Searching

The combined search control at the top of the toolbox window has multiple functions.
In text search mode, typing part or all of a component’s name and hitting enter will
search all of the toolbox paths for matches and display any matches in place of the
normal tool tree.

The search control is also a “drop down list” with six items which are all tool filters for
displaying a filtered view of the toolboxes:

• All Packages (default) returns the tool tree view to its default.

• Sub-Packages shows all the sub-packages of all the Triana toolboxes in alpha-
betical order as shown in figure 4(a). When clicked on a particular sub-package

Figure 3: Tool Tree Icons

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 5/64

D 3.8 T UM IST-2001-32133

it points to the corresponding toolboxes (main packages that contains this sub-
package). For example in the figure 4(b), we can see that the Input sub-package
points to all the toolboxes that contain Input sub-package, such as the Input sub-
package of the Audio toolbox/package.

(a) Sub-packages (b) Expanded

Figure 4: Sorting by Sub-packages

• All Tools expands all toolboxes and sub-toolboxes so that all the tools or compo-
nents are shown.

• Input Tools is a special form of Sub-Packages filter that shows all of the tools that
are contained in any sub-toolbox called Input. This is a fast way of finding all tools
that are capable of generating data for the start of a workflow.

• Output Tools is the corresponding filter that displays only tools from Output
toolboxes. These are the tools that are designed to display or output the results of
a workflow.

• Data Type Tools when selected gives you a popup menu as shown in figure 5
below. In this menu select the Triana Data Types by which to filter the toolbox view.
Select the required data types from the menu and press the “Ok” button. Triana
will filter the tools which contains those selected data types. Select All Tools to
view the tree.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 6/64

D 3.8 T UM IST-2001-32133

Figure 5: Filter Toolbox by Data Types

3.1.2 Toolbox Contextual Menus

The contextual menus for tools and toolboxes are accessed by “right clicking” (control
clicking on Mac OS X) on the tool or toolbox icon in the toolbox window. The menus
vary dependant upon the item chosen:

• All tools and toolboxes have a common set of editing functions in the menu, see
table 1, these are explained in more detail in the section on editing toolboxes on
page ??.

Menu Item Description
Cut Cut the selected tools to the clipboard.
Copy Copy the selected tools to the clipboard.
Paste Paste the tools in the clipboard to the current toolbox.
Delete Cut the selected tasks.
Rename Rename the selected task.

Table 1: Common Contextual Tool Menu Items

• The pop-up menu for a single tool has in addition to the common editing functions
the following menu items in table 2, see section 15 for a detailed description.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 7/64

D 3.8 T UM IST-2001-32133

Menu Item Description
Edit Tool Description Edit the tool tip shown when the mouse is over this tool.
Edit Source Edit the source code for this tool in the default text editor.
Edit HTML Help Edit the help file in the default editor.
Edit XML Definition Edit the XML tool definition file in the default editor.
Compile Bring up the compile wizard for this tool.
Help Show the help for this tool.

Table 2: Contextual Tool Menu Items

• Group tool menus are similar to a single tool menu except that the Edit Source
menu item is removed and instead there is a Open menu item that will open the
group in a new main Triana window.

• There are some specialist menus for File, Job and List tools that are discussed in
chapter 9

3.2 Main Menus and Tool Bars

You can use Menus and Toolbar to give Triana instructions about what you want to do.
The Tool Bar is a collection of frequently used commands or options that appear as two
rows of tools.

3.2.1 The Main Menu

The main menu system, outlined in table 3, displays a list of commands.

Some of the commands have images which indicate that they can be accessed from the
tool bar and short cut keys1 which can be accessed anywhere. Many of the commands
available from the menu can be also called with the help of popup menus directly from
the main Triana Window (see section 3.3.1).

3.2.2 The Tool Bars

The main toolbar contains buttons with images, hovering the mouse over a tool bar item
will display its function. The buttons are grouped by functionality and are outlined in
table 4 looking left to right and top to bottom:

1short cut keys are platform specific keyboard combinations that can be accessed without using the
menu system. Cut, Copy and Paste are good example that use the standard keys for the operating system
(control C for copy on Windows

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 8/64

D 3.8 T UM IST-2001-32133

3.3 The Main Triana Window

The Main Triana Window is a workspace for constructing programs by dragging and
dropping the tools from the toolboxes. Tasks are the components that can be graphically
connected to create a particular data flow algorithm. The connection between tasks is
made by dragging a cable from the output node (right-hand side) of the sending task to
the input node (left-hand side) of the receiving task. Once a network has been created
it can be executed.

3.3.1 Main Triana Window Contextual Menus

Like most user interface components in Triana the main window for constructing work-
flows has contextual pop-up menus. These are accessed by “right clicking” (control
clicking on Mac OS X) on the window. The menus vary dependant on where the mouse
is clicked:

• Clicking on a tool icon will display the contextual tool menu contents in table 5:

• Clicking on multiple selected tools, section 5, will show a similar menu but with
some additional items added and many of the previous ones removed, table 6.

Menu Group Description
File This is a standard menu group and most of the commands are

provided in the Toolbar.
Edit This menu group common commands like for selecting, grouping

and ungrouping tasks.
Run Contains start, stop and reset functions for constructed workflows.
Tools This menu group allows you to make you own tools and also allows

you to compile and generate XML file of you new tools.
Services If Triana is running in a distributed mode (see chapter 9) then this

menu provides the functions for discovering and creating remote
services.

Options Allows for configuration of Triana options (see section 7) such as
auto connect, if you select this, your tasks dragged on the main triana
window will be automatically connected by the cable.

Window This adjusts the view of the main Triana windows or workspaces.
Cascade or tile open Triana windows so that you can view them all.

Help Under this menu group you can find comprehensive guidance for
Triana. It includes reference to Triana’s class packages, you can also
search for usage and functions of all the Triana tools via find tools
command and other tutorials to get started with Triana.

Table 3: Menu Commands

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 9/64

D 3.8 T UM IST-2001-32133

Group Description
File group New, Open, Save, Save As: these buttons work with taskgraphs to

enable work to be saved to file and opened again.
Edit group Copy, Cut, Paste, Select All, Delete: these buttons enable editing of

tools in a taskgraph.
Help group Find, Print, Options, Help: these buttons enable help searching, screen

shot printing, options and help functions.
Run group Run, Run Recorded, Stop, Reset, Flush: these buttons enable the execu-

tion and halting of the front most Triana Main Window.
Task group Show Properties, Group, Ungroup: Show properties displays the pa-

rameter panel user interface for the tool in the main Triana window,
group and ungroup combine all selected tools into a compound tool
and back again.

Zoom group Zoom In, Zoom Out: these buttons change the size of the taskgraph
in the main Triana window making everything smaller or larger for
easier viewing.

Table 4: Tool Bar Commands

• Clicking on a group tool, section 5, will show a similar menu but with some
additional items added and some previous ones removed, table 7.

• Clicking on the window background will display the final menu, table 8

3.3.2 Editing Workflows

A workflow on a main Triana window is not fixed. Just as if it were a document in
a text editor the workflow, the connections and the components within it can all be
edited. Cut, Copy and Paste commands all work and connections can be deleted and
redrawn.

Selecting Tasks Clicking on the task once with the mouse in the main Triana window
will highlight the particular icon. This means that it is selected. Multiple tasks can be
selected by holding down the control key (command on OS X) and selecting the tasks or
by “rubber banding”2 the required tasks. You can do a number of things with selected
tasks, for example:

• they can be deleted

• they can be moved

2rubber banding is the term given to dragging the mouse on a screen area which creates a thin box line
around all of the items within the given area

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 10/64

D 3.8 T UM IST-2001-32133

Menu Item Description
Properties Display the parameter panel interface.
Node Editor Display the node editor. Page 19
Run Continuously Run this unit in continuous mode.
Auto Save History Automatically save the history for the selected unit.
Save History Save the history for the selected unit.
Create Service Create a service from the selected unit.
Run Script Run a script on the selected unit.
Cut Cut the selected tasks to the clipboard. Page 10
Copy Copy the selected tasks to the clipboard. Page 10
Delete Cut the selected tasks. Page 10
Paste Into Paste the tasks in the clipboard to the current window. Page

10
Rename Rename the selected unit.
Help Display the help file for the selected task. Page 26

Table 5: Main Window Tool Menu

Menu Item Description
Group Turn the selected tasks into a new group task. Page 16
Cut Cut the selected tasks to the clipboard. Page 10
Copy Copy the selected tasks to the clipboard. Page 10
Paste Into Paste the tasks into the tool tree. Page 10
Delete Cut the selected tasks. Page 10

Table 6: Main Window Multiple Tool Menu

• they can be copied and pasted into the workspace (for multiple repetition of
particular group of tasks)

• they can be copied and pasted into the tool tree (for creating stored copies of the
task and its current parameters)

• they can be grouped into a composite task (group task)

Copying Tasks You can copy tasks by selecting the tasks you wish to copy and then
choose the Copy option from either the main Triana window’s popup menu (right-click
on one of the tool icons) or the Copy option on the Edit menu.
TIP : if you select several tasks for copying from the Main Triana window then the
tasks will get copied but NOT the connections. If you wish to copy a selection of tasks
along with the connections then make a group out of the tasks first and then copy the
group.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 11/64

D 3.8 T UM IST-2001-32133

Menu Item Description
View Group Display the contents of this group in a new main Triana win-

dow. Page 16
Properties Display the parameter panel interface.
Control Properties Display the control properties dialog.
Ungroup Return this group to its constituent parts. Page 16
Create Service Create a service from the selected tasks.
Run Script Run a script on the selected tasks.
Cut Cut the selected tasks to the clipboard. Page 10
Copy Copy the selected tasks to the clipboard. Page 10
Delete Cut the selected tasks. Page 10
Paste Into Paste the selected tasks into the tool tree. Page 10
Rename Rename the selected unit.

Table 7: Main Window Group Tool Menu

Menu Item Description
Group Editor Display the group editor dialog. Page 16
Resolve Group Nodes Checks for unconnected nodes in a group.
Save Saves the current workflow.
Select All Selects all tasks in the window. Page 10
Paste Paste the tasks in the clipboard to the current window.

Page 10

Table 8: Main Window Background Menu

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 12/64

D 3.8 T UM IST-2001-32133

Pasting Tasks Once a copy operation has taken place selecting Paste will paste a copy
of the tasks to the current window. The Paste option can be found either in the window’s
popup menu (right-click on one of the tool icons) or by the Paste option on the Edit menu.
If the tools are pasted into the tool tree, a stored version of the tool with the current
parameters will be created. This new tool will appear in the tool tree and can be reused
at a later date.

Deleting Tasks You can delete tasks by selecting the tasks you wish to delete and then
choose the Delete option from either the window’s popup menu (right-click on one of
the tool icons) or the Delete option on the Edit menu. Alternatively, to delete any single
task use the Task’s popup window (right-click on the Task’s icon) and select the Delete
option.

Moving Tasks You can move multiple tasks by selecting the tasks you wish to move
and then whilst holding down the control or command key drag the tasks to where you
want them to be on the window.

4 Your First Workflow

This section will demonstrate how to create and run the simple taskgraph shown in
figure 6.

Figure 6: Simple Taskgraph

Lets take a closer look on how we make this connection by creating this network step
by step.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 13/64

D 3.8 T UM IST-2001-32133

1. In the tool tree, navigate to the SignalProc toolbox, open that toolbox by “double
clicking” the toolbox or using the open branch control by the side of the toolbox,
you should see all the sub-toolboxes within it. Now navigate to the Input toolbox
and open that to reveal the tools.

2. Now select the Wave task and drag it from toolbox tree window and drop it on the
left hand side of the main Triana window. After dropping the wave task in the
Triana workspace it should look like figure 7

Figure 7: Instantiated Wave Tool

Note: you can move the tasks around the main Triana window in exactly the same
way i.e. by dragging them to the new location.

3. Similarly, put the SGTGrapher task, a graph displayer, on the main Triana win-
dow. This task can be found in the Output toolbox within the SignalProc toolbox.
Henceforwards written as SignalProc/Output. You should see the main window
look as figure 8.

4. Now, connect the Wave task and the SGTGrapher task by dragging the cable from
the output node of the Wave task and join it to the input node of the SGTGrapher.
Which will give you the complete workflow shown in the first figure, figure 6

5. Press the Run tool bar button or the menu item Run under the Run menu. You
should see small blue “execution indicators” flash on and then off each of the
tasks. If you have a very fast computer these may flash on and off almost too
quickly to see.

6. Display the SGTGrapher parameter panel user interface either by “double click-
ing” the tool in the main Triana window or using the contextual menu on the tool
and selecting the properties item. The contextual menu is a pop-up menu that is
accessed by “right clicking” on WindowsTM or Linux operating systems and “Com-

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 14/64

D 3.8 T UM IST-2001-32133

Figure 8: Instantiated Wave and Graph Tool

mand Clicking” on Apple OS XTM, see section 3.3.1. The interface for SGTGrapher
should look like figure 9.

Figure 9: Grapher Interface

7. The form of the graph can be changed by changing the input parameter in the
Wave task. Display the parameter panel interface by “double clicking” or using
the Properties contextual menu on the Wave icon in the main Triana window. You
should see the panel in figure 10.

8. Change the frequency to 800 hertz and click apply. Then, click on the run button
and view the wave type in the SGTGrapher display, by repeating steps 5 and 6.
You can view the graph display change as you change the frequency by moving
the scroller, clicking apply and thenrun again.

Note: It is important that the Apply button is pressed after parameter values have been
changed or the changes will not be set. An alternative is to select the Auto Commit
check box at the bottom of a parameter panel. Checking this option forces changes to
parameters to be set automatically and immediately this may have unexpected results
for some workflows. Clicking the OK button applies all parameter changes and closes

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 15/64

D 3.8 T UM IST-2001-32133

Figure 10: Grapher Interface

the parameter panel.

5 Grouping Tasks

In Triana, tasks can be grouped and then saved to toolbox files for later use. Grouped
tasks are flexible because they appear as any other Triana task and can be used in the
same way. Therefore, grouped tasks can be used to build new tasks from existing
components without needing to write any java code!

Let us group the tasks from the network that was created in section 4, page 13, “Your
First Workflow”. To demonstrate how we do this we shall convert the taskgraph in figure
6, page 13 into a group task called WaveView.

Lets take a closer look on how we do this step by step.

1. First Step is to select the tasks that are to be grouped. There are 3 ways different
ways to select:

(a) Groups of tasks can be selected by “rubber banding” the tasks. Click on the
back ground of the main Triana window above and left of the tasks and drag
a rubber banding area over the tasks. When the tasks are selected their colour
turns slightly darker.

(b) Bring up the popup menu of the main Triana window by clicking once on the
empty space of the main Triana window with the right mouse button. And
choose Select All option.

(c) Select Edit from the Menu bar and choose Select All option.

2. Group the selected tasks either by selecting:

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 16/64

D 3.8 T UM IST-2001-32133

(a) Edit option of the menu bar and choose the Group option.

(b) Press the Group tasks button in the tool bar.

(c) Use the contextual menu on one of the selected tools by “right clicking” or
“command clicking” on the tool icon and selecting the Group option.

A New Group box will appear where you can enter any name for the new group.
See figure 11

Figure 11: New Group Box

3. Enter the name WaveView and click OK. A new main Triana window will be
created containing our new group. See figure 12 The name of the New Group is

Figure 12: New Group Box

now changed to WaveView. Another window is showing the tasks which were
grouped to make the new task WaveView.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 17/64

D 3.8 T UM IST-2001-32133

Note: You can close the WaveView window showing the individual tasks, to reopen
it select the WaveView task and right click the mouse and choose View Group.

4. Run the new group task by making sure its main Triana window is the front
most and running in the normal manner. To see the result, double click or use
the contextual menu on WaveView to bring up the parameter panel. The panel
for group tasks presents each of the contained task’s panels in a tabbed interface.
Select each tab to see the user interface for each task. This can be seen in figure 13

Figure 13: New Group Tool Parameter Window

6 Using Parameters Within Triana

Note: This section assumes that you have read and understood, section 4 on creating
and running your first workflow.

Triana makes a distinction between parameters and data. Most components and work-
flows in Triana are data driven with producer components generating data objects that
fow through communication channels to the consumer component next along in the
workflow. A parameter is a special type of data message that is normally used for
communication between a task and its parameter panel. In a distributed computing
setting the user interface for a component may not be running on the same computer as
the task so the communication between them in Triana is decoupled and based around
messages.

Parameters can also be used by users to pass settings or information that are not strictly
a generated data results from one component to another. In chapter 13 we will look at
parameters in more detail and how they can be used by unit programmers. This section
will cover the use of parameters from a users perspective.

Parameters can be input or output from every task within Triana. Triana automatically
detects all the parameters which a task uses and makes them available to the user. For

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 18/64

D 3.8 T UM IST-2001-32133

example, let’s demonstrate this by creating a network in which one Wave task controls
another Wave task’s frequency.

Note: In Triana parameters are output after the process function has been run (i.e. output
after the data from the task) and parameters are input before the process function has
been run. This means that you can send a parameter from a calculation in your process
function of one task and the receiving task will receive this before it receives its data to
process. This is extremely useful, for example, for re-constructing data sets when you
need to know how beforehand how many you will want to concatenate.

6.1 The Node Editor

The Node editor in Triana is the mechanism by which the user can change the input
and outputs to and from a task, subject to constraints placed by the task designer (see
chapter 13). The editor is displayed by using the selecting the Node Editor option from
a task’s pop-up menu, page 9.

The user interface consists of three three tabbed windows, which can be see in figure
14. The first tab, figure 14(a), allows the user to change the number of input and output

(a) editing data nodes (b) editing output parameters

Figure 14: Node Editor

nodes for the task. In this case we can see that for the Wave: Node Editor changing the
number of input nodes has been disabled. This constraint has been set by the writer
of the Wave tool. The user can change the number of outputs by selecting the desired
value from the drop down list. Once Apply or OK has been pressed then the number of
outputs on the task will be changed to reflect the new number.

Note: In Triana if the number of output nodes from a task is increased this means that
when the task outputs its data, multiple copies of the data object are sent. One copy
from each output node.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 19/64

D 3.8 T UM IST-2001-32133

The second and third tabs, the third is shown in figure 14(b) allow the user to control a
task’s input and output parameters. By default no task parameters are output from or
used as input to another task. However all of the parameters that the task programmer
has used in the user interface, for instance, are available to use as parameters.

To add a parameter as an output to the task, select the Out Params tab, press the Add
button and choose one of the listed parameters. See figure 15. Here the user has selected

Figure 15: Parameter List Interface

the frequency output parameter for the Wave task. Adding an input parameter is exactly
the same process using the In Params tab.

Note: As in the case of changing the number of input and output nodes. Access to
parameters is constrained by the unit programmer. If a parameter does not appear in
the list then it has not been made externally accessible. See chapter 13.

6.1.1 Node Editor Shortcuts

There is a short cut for increasing and decreasing the number of input and output data
nodes for any task on a main Triana window. If you hover the mouse over the a task
icon and the Show Node Increase/Decrease Icons setting is set, see page 23, then you should
see + and − symbols flash on. Clicking on the left hand side symbols will increase or
decrease the number of input nodes, clicking on the right hand side will do the same
for output nodes.

Note: As with the Node Editor long hand method of changing the number of nodes this
is only enabled where the unit programmer has specified it. For many tasks it does not
make sense to allow multiple input nodes for instance.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 20/64

D 3.8 T UM IST-2001-32133

6.2 An Example with Parameters

In this tutorial we will create the following network (the Wave tasks can be found
in SignalProc/Input and the Grapher is in SignalProc/Output). The connection between
the two Wave tasks is a parameter connection (see figure 16). The first Wave task is
outputting a parameter and the second Wave1 task is receiving this parameter. In this
case the parameter is the frequency of the waveform.

Figure 16: Parameter Connection

Let’s take a closer look on how we make this connection by creating this network step
by step.

1. Instantiate two instances of the SignalProc/Input/Wave tool onto a new main win-
dow by either dragging the tool from the toolbox twice or dragging one and then
copy and pasting. See pages 13 and 10 for more information.

2. Select the first of the two Wave tasks and bring up the Node Editor by selecting the
option from the pop-up menu, see the previous section on page 19.

3. In the first tab, Nodes, set the output node count to 0. We don’t need to output any
data from this task for this example.

4. Change to the third tab, Out Params. Click on Add button, this will allow you to
choose the parameter which will be output from the first parameter output node
on the Wave task. Select the frequency parameter and click OK. This will added a
parameter node to the output of the Wave task. Parameter nodes are recognised
by a white circle in the centre of the node as can be seen in figure 17.

5. Now, do the same for the Wave1 task but in this case add an input parameter
node. Go to the second tab In Params of the Wave1 Node Editor, click on Add, select

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 21/64

D 3.8 T UM IST-2001-32133

Figure 17: Parameter Node

frequency and click ok).

Note: Choosingfrequency as an input node parameter in the Wave1 task means
that whatever we plug into this node will be controlling Wave1’s frequency. There
is no type checking mechanism on parameters.

6. Now, make a connection between the output node of Wave and the input node
of Wave1 by dragging a cable between the nodes. Add a SGTGrapher task (in
SignalProc/Output toolbox) and connect it to the output from Wave1. You should
now have the workflow we first looked at in figure 16.

7. Now, show both parameter windows for Wave and Wave1 (by double-clicking
the task’s icons) and then press the run the workflow. Move the scroller for
the frequency in Wave task thereby changing its frequency and when you click
on apply, you will notice the scroller for Wave1’s frequency also changes. Wave
is remotely controlling Wave1’s frequency! Now when you run the workflow
again you will notice that the frequency on the graph display will also change
accordingly.

7 Configuring Triana Options

Triana is highly configurable and remembers settings from session to session. Window
placement, window size and “zoom” level, see page 10, are saved when Triana quits
and are recalled when Triana is restarted.

In addition to these automatic configurations some settings can be manually set. Under

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 22/64

D 3.8 T UM IST-2001-32133

the Options main menu item there are two items. The first Debug Window displays the
message logging window for Triana. For most users this can be ignored unless you are
curious, it displays logging and error messages and is used mainly by tool programmers
for debugging. See chapter 13. The second item Triana Options displays the options
configuration window.

7.1 Options Configuration Window

Figure 18: Options Window - general settings

The Triana Options window consists of three tabbed panes.

7.1.1 General Options

The general options settings which can be seen on the first tab of the Triana Options
window, figure 18, has a set of “On/Off” check box settings.

7.1.2 External Tools

Figure 19: Options Window - external tools

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 23/64

D 3.8 T UM IST-2001-32133

Option Description

Auto Connect
Automatically connects a new task dropped on a
main window to a task already on the window. There
is a smart algorithm behind this that attempts to
connect to the correct task according to placement
on the window.

Restore Previous At Startup
Automatically save and restore the working win-
dows. Any main Triana windows with workflows
will be saved at shutdown and restored the next time
Triana is started.

Show Tool Tips
Display a short tool tip when the mouse is over a tool
or task either in the toolbox window or on a main
window.

Show Extended Tool Tips
Show a more detailed tool tip, includes package in-
formation, directory and more.

Show Node Increase/Decrease
Icons

Show or hide the Node Editor short cuts.

Convert Output of All Units to
Doubles

Triana’s built in data types use float by default, this
option forces them to use double instead. See chapter
13

Table 9: General Options

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 24/64

D 3.8 T UM IST-2001-32133

The external tools options which can be seen in the second tab of the Triana Options
window, figure 19, has a series of text fields with browse buttons and some additional
controls. For most users the defaults set here should be suitable and there is no need to
change them. If you are using Triana to develop tasks then some of these settings may
be of interest.

HTML/Help View The tool used to display HTML and help files within Triana. The
default is the internal HTML renderer, this can be changed by typing the path to a
browser in the text field or pressing the browse button (...) and navigating to the
executable.

HTML Editor The tool used to edit HTML and help files. The default is the built in
text editor, this can be changed by typing or browsing to the path of another text editor.

Code Editor The tool used to edit unit source code. The default is the built in text
editor, this can be changed by typing or browsing to the path of another text editor.

Javac Compiler The Java compiler used to compile unit source code within Triana.
The default should be the system Javac compiler, this can be changed to a different
compiler by the standard method.

Validate External Tool Locations A check box that when selected will check that any
path in the external tool fields is a valid location. The path must point to a real program.
This should be left checked unless there is a specific reason why not, i.e. you have
deliberately added a non-existent compiler. If an invalid path is detected it must be
corrected before the settings can be saved unless the box is unchecked.

Classpath A button which brings up the Select Path window, see figure 20. This
window allows the user to configure the classpath used with the compiler inside Triana
to compile a unit. It is only used by users wanting to compile their own units, see
chapter 13. It provides the ability to add or remove and change the order of specific
items on the classpath. There are options to automatically add all tool box paths, which
will add every item on every classpath for every tool box to the list, and an item to retain
the classpath for future. This saves the classpath when Triana has finished.

Note: See the section on writing your own tools for more information on units and
classpaths, specifically this classpath is for compilation only. For the run time classpath
it is necessary to add any required libraries to the Triana classpath.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 25/64

D 3.8 T UM IST-2001-32133

Figure 20: Selecting the Unit Classpath

Restore Defaults A button that will restore all the Triana options to their factory
settings.

Selecting OK will save all settings and close the window, returning to the normal Triana
user interface.

8 Getting Help

Triana units are self documenting. You can access help on a particular Triana task by
selecting the task in either the tool box window or a main Triana window and selecting
Help by: pressing the F1 function key; selecting from the contextual pop-up menu;
selecting the tool bar button; or selecting Help from the Help main menu.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 26/64

D 3.8 T UM IST-2001-32133

9 Distributed Computing with Triana

In the previous chapters, the majority of discussion has concerned creating workflows
using local Triana units, units where the processing is done on the same machine as
the Triana application. However, unless the local machine happens to be a massive
super-computer, such an approach is very limiting in terms of the computing power
available to workflows. In an era of service orientated computing, such an approach also
prevents workflows from employing any of the distributed services that are increasingly
becoming available.

In this chapter we look at the facilities for utilizing distributed resources within Tri-
ana workflows. We give an overview of TrianaŠs architecture relating to distributed
computing in Section 9.1, in particular noting the differences between the grid-oriented
components and service-oriented components. In sections that follow sections we out-
line the current distributed computing bindings within Triana, namely Web Services
(Section 10), P2PS (Section 11) and the GridLab GAT (Section 12).

9.1 Overview

Distributed components within Triana can be split into two categories, which we refer
to as grid-oriented components and service-oriented components:

Service-Oriented - Service oriented components, such as web services and P2PS ser-
vices, are network accessible components that exist on remote computing re-
sources. These components can be discovered by Triana and then invoked from
within a Triana workflow

Grid-Oriented - Grid oriented components represent jobs launched by Triana on a re-
mote machine using a grid resource manager, e.g. GRAM3 or GRMS4. Unlike
service components, these jobs do not have network accessible interfaces so com-
munication is only available via input/output files.

Triana uses different interfaces to access these two categories of distributed component.
For service-oriented components the misnamed GAP Interface (Grid Application Pro-
totype Interface) is used, while for grid-oriented components the GridLab GAT (Grid
Application Toolkit) API is used. Both these interfaces have multiple bindings which
allow different service/grid middleware to be employed without amending the Triana
application code (as shown in Figure reffig:distarch). For service-oriented components,
web services and P2PS services can currently be invoked, while for grid-oriented com-
ponents, job submission can currently be done using GRMS, GRAM or the local adaptor.
Both the GAP Interface and the Gridlab GAT allow new bindings to be plugged in when

3see www.globus.org
4see www.gridlab.org

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 27/64

D 3.8 T UM IST-2001-32133

GAP Interface GridLab GAT

P2PS
GRAM

Adaptor

GRMS

Adaptor

Local

Adaptor

UDDI

Web

Service

GRMS

iGrid

GRAM

Triana

WSPeer

WServe

Mercury

Network

P2PS

Service

Service-Oriented Grid-Oriented

GAP Interface GridLab GAT

P2PS
GRAM

Adaptor

GRMS

Adaptor

Local

Adaptor

UDDI

Web

Service

GRMS

iGrid

GRAM

Triana

WSPeer

WServe

Mercury

Network

P2PS

Service

Service-Oriented Grid-Oriented

Figure 21: Distributed Component Middleware within Triana.

they become available. For example, when a Condor GAT adaptor becomes available
Triana will automatically be able to utilize Condor job submission.

We outline the process for invoking web services in Section 10 and for P2PS services in
Section 11, however, given that both invocations are done via the GAP Interface, there is
a lot of commonality between the processes. We outline job submission via the GridLab
GAT in Section 12; this covers using GRMS, GRAM and Local adaptors.

10 Web Services

An important current paradigm in distributed computing is web services. Web services
are remote software components accessible using standard network protocols and with
defined XML-based interfaces. Already a large number of web service components are
available via the Internet, and increasingly legacy applications are being wrapped in
web service interfaces.

In Triana terms, web services function exactly as locally available tools. A web service
receives input data, performs some operation on that data, and returns results. Due to
this similarity, Triana allows the user use web services within a workflow as if they are
standard tools. Once a web service has been discovered or imported (see Sections 10.2
and 10.3), it appears as a tool in the tool tree alongside the other tools and can be
connected into a Triana workflow in exactly the same manner of other tools.

As well as discovery and importing web services, Triana allows the user to deploy a
workflow subsection as a web service for other users (including other Triana users) to
access. We discuss this more in Section 10.7.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 28/64

D 3.8 T UM IST-2001-32133

Figure 22: Web Service Configuration Dialog.

10.1 Web Service Configuration

Web service configuration can be done using the Services→Configure menu option, and
the selecting Configure next to the web service option. It should be noted that Triana
automatically loads the last used web service configuration and therefore this configu-
ration step needs only be done if you are changing the web service options, e.g. using a
different UDDI repository. It should also be noted that once web services features (e.g.
discovery) have been utilized the configuration cannot be changed within the current
running Triana. This will be indicated by a disabled Configure option.

The web service configuration dialog (see Figure 22) is split into two panels, Basic and
Advanced. The Basic panel enables the web service HTTP port and the UDDI repository to
be set. The HTTP port is the port used by services created within Triana (see Section 10.7)
only. If using this feature then this port must be open on the local firewall otherwise
users will not be able to access the services. For simply invoking external web services
not port need to be opened.

The UDDI repository is used by Triana to discover services (see Section 10.2. By default
the XMethods (www.xmethods.net) is set, but additional repositories can be added. Note
that when adding a UDDI repository only the inquiry address is required, the publish
address is only required if deploying services within Triana, and a username/password
are only needed if required by the UDDI instance.

To publish in some UDDI repositories trust stores are required. If this is the case
then the location of the trust store file should be specified in the config.xml which is
located in the /.wspeer/admin directory. Dummy trust store files can be found in the

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 29/64

D 3.8 T UM IST-2001-32133

Figure 23: Web Service tools in the Tool Tree.

triana/system directory, these work for some UDDI instances.

The advanced panel allows additional properties to be configured, such as proxy ad-
dresses and security. Information on these properties may be found on the WSPeer
website (www.wspeer.org).

10.2 Discovering Web Services

Once that a UDDI repository has been configured, web services can be discovered very
simply using the Services→Discover Services menu option. This option displays a dialog
prompting for the name of the service to search for. This can either be the exact name
or can include % as a wildcard character. For example, ‘C%’ will search for all web
services beginning with the letter C.

When a web service is discovered, tools representing each of the operations on that web
service are inserted into the Web Services package in the tool tree, alongside the existing
locally available tools, as shown in Figure 23.

10.3 Importing Web Services

If a web service is not listed in a UDDI repository, then it can be imported directly into
Triana from its WSDL description. This is done through selecting the Services→Import
Service menu option, which causes a dialog requesting the service location to be dis-
played. This service location is the full http address of the WSDL document specifying

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 30/64

D 3.8 T UM IST-2001-32133

the web service to be imported5. The web service at the service location will be imported
into the the Web Services package in the tool tree.

10.4 Conncecting Web Services

Once a web service has been discovered/imported and appears in the user’s tool tree,
it can be instantiated by dragging the tool onto the main workspace (in the same
way locally available tools are instantiated). Web services tasks appear in red on the
workspace.

Each input node on an instantiated web service task represents an element of the input
message for that operation, and each output node represents an output message element.
Information on the required input/output types for a web service is displayed when the
mouse is hovered over the task.

Figure 24: Using StringGen and StringViewer to provide input to and display the output
from a temperature conversion web service.

Locally available tools can be used to provide the input to and display the output
from web services. Two useful local tools are Common.String.StringGen and Com-
mon.String.StringViewer, which are used to generate string input and display string
output respectively. These tools can also be used to input/output standard numerical
data types (int, double etc.) as Triana automatically converts to/from the required type.
In Figure 24 we show StringGen and StringViewer being used as input and output for a
temperature conversion service. Other local tools can also be used as long as their out-
put/input type is compatible with the type required by the web service, or alternatively
the output from one web service can be directly piped to another. We look at handling
complex data types in Section 10.6.

5For example, an web service interface to Altavista’s BabelFish language is located at
http://www.xmethods.net/sd/2001/BabelFishService.wsdl

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 31/64

D 3.8 T UM IST-2001-32133

A workflow containing web services is executed as for a standard Triana workflow (i.e.
by pressing the run button).

10.5 Bible Translation Example

In this section we demonstrate the creation of a simple bible translation workflow using
third-party web services. This example uses the XMethods UDDI repository, so the
following UDDI inquiry and publish addresses should be specified in the configuration
(see Section 10.1):

Inquiry - http://uddi.xmethods.net/inquire
Publish - https://uddi.xmethods.net/publish

The two web services we wish to use are BabelFish6, an interface to AltaVista’s Babelfish
service, and BibleVerses, a web service for extracting verses from the bible. The easiest
way to import these web services is using the Services→Disover Services menu option,
and then specifying ‘B%’ in the Discover Service dialog (this queries the UDDI for all
tools beginning with B).

Figure 25: A simple bible translation workflow.

Once the BabelFish and BibleVerses web services have been discovered, they will appear
as tools in the Web Services toolbox on the tool tree. Each of these services should
be dragged onto the workspace, along with local StringGen and StringViewer tools,
to create the workflow shown in Figure 25. StringGen and StringViewer are in the
Common.Input and Common.Output packages respectively.

In this workflow StringGen provides the input for BibleVerses. If we double-click
on StringGen and enter ‘Genesis 1:1-7’ in the input dialog, then this input will cause

6Online documentation for BabelFish and BibleVerses can be found at www.xmethods.net.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 32/64

D 3.8 T UM IST-2001-32133

BibleVerses to extract the first seven verses from the bible (Genesis chapter 1, verses 1 to
7). The output from BibleVerses is used to provide the second input for BabelFish, which
is the text that is translated. The first input to BabelFish is provided by StringGen1.
This is the languages that the text should be translated from/to. Using StringGen1 to
specify ‘en_fr’ indicates we wish to translate from English to French. The output from
BabelFish is sent to StringViewer.

Pressing the play icon on the tool bar will run the bible translation workflow we have
created, and hopefully the ‘Genesis 1:1-7’ extract from the bible, translated into French,
will be displayed in StringViewer (double-click on StringView view the result).

10.6 Complex Data Types

In Triana there are two ways to handle web services that require complex data types:
use the dynamic web service type generator and viewer, or generate static type classes
and create custom tools.

Figure 26: Generating/viewing complex data types using WSTypeGen and WSType-
Viewer.

The input to a web service that requires a complex type can be automatically generated
using the WSTypeGen tool, which resides in the Common.WebServices toolbox. Simi-
larly, the complex output from a web service can be viewed using the WSTypeViewer
tool, which is also found in the Common.WebServices toolbox. To use these two tools
simply connect them to the web service task (as shown in Figure 26). The act of connect-
ing them to the web service will cause a form for inputting/viewing the complex type
to be dynamically generated. This form can be accessed by either double-clicking on
the WSTypeGen/WSTypeViewer task, or by right-clicking and selecting Properties from
the pop-up list.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 33/64

D 3.8 T UM IST-2001-32133

Although WSTypeGen and WSTypeViewer are useful for testing web services that use
complex types, for more long-term solutions it is generally required that static classes
are generated for the complex types. Static type classes can easily be generated using
a utility such as Apache’s WSDL2Java7. Utilities such as WSDL2Java parse the WSDL
description of the web service and generate a set of Java classes for the web service and
the types used within that service. It is easiest if these classes are created in the same
location as the tools that will access them (same Java base directory).

Once static classes have been created for the complex types, custom Triana tools for
populating the types with data or converting between types must be created. These
tools should be able to access the complex type classes in the same way as for any Java
class. We describe creating custom Triana tools in section 15.

10.7 Deploying Web Services

As well as using external web services, Triana provides the mechanism for deploying
user workflows as fully functions web services. These deployed web services can either
be used within a local Triana workflow, allowing some of the processing to be handled
by a remote resource, or by third-party users. It should be noted that third-party users
do not have to use Triana to access these web services.

In order to deploy web services Triana must first be configured with a UDDI to which
you have both publish and inquiry access (see Section 10.1). This includes configuring
the trust key store if required. Secondly, Triana launcher services must be run on the
machine(s) that will host the deployed services. To do this Triana should be installed on
those machines and the following command executed from the command-line:

TrianaService -ws

A web service can be created from either a single task or a group of tasks (see Section ??).
To deploy the task/group task as a web service right-click on the task and select Create
Service. This will cause a dialog to appear with a list of the locations where the web
service can be hosted (as shown in Figure 27). This list will include the available launcher
services (see above) along with a ’Local Service‘ option. Creating a local service means
that the web service is hosted within the local Triana as opposed to on a remote site.
Note that it can take a while for Triana to discover the available launcher services from
UDDI; they automatically appear in the list once discovered.

Once a host has been chosen, Triana will attempt to deploy a web service on that host.
While this process is taking place, the task in the workflow will appear with red stripes.
The task becoming completely red indicates that the deployment has been successful
and that the web service is ready to be used. As mentioned before, web services
deployed using Triana can be used either within Triana or by third-party users.

7See http://ws.apache.org/axis/java/user-guide.html

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 34/64

D 3.8 T UM IST-2001-32133

Figure 27: Dialog for deploying a task/group task as a web service.

Figure 28: Using xsd tools to ensure standard input/output XML types are used when
deploying a web service.

The input and output data types for deployed web services are automatically deter-
mined by Triana. If the input/output types from the task being distributed coincide
with a standard XML type (e.g. java.lang.String, java.lang.Integer etc.) then that stan-
dard XML type is assigned. For non-standard types Triana assigns a string as the
input/output type and assumes that the data received by the web service will have
been serialized to a string using JSX. Such web services can be seamlessly handled by
Triana but will be difficult for third-party users to use. It is recommended that standard
types are used whenever possible, and that the tools xsd_string, xsd_double etc. are
appended to the start of the workflow subsection being distributed to ensure the cor-
rect standard type is used, as illustrated in Figure 28. These tools can be found in the
Common.WebServices toolbox.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 35/64

D 3.8 T UM IST-2001-32133

11 P2PS

P2PS (Peer-to-Peer Simplified) is a lightweight peer-to-peer infrastructure for dynamic
service discovery and pipe-based communication. As, alongside web services, P2PS
is one of the bindings to the GAP Interface (see Section 9.1) it can be used within
Triana to discovery and communicate with remote services. It can also be used to
dynamically deploy Triana workflow subsections as standalone services running on
remote machines.

Unlike Web Services, where much of the benefit comes from utilizing existing remote
services, the lightweight and dynamic nature of P2PS means the ability to deploy
workflow subsections as remote services is particularly beneficial. For example, this
mechanism can be used to distribute processing units to nodes in a cluster in a high-
throughput task-farming application. We discuss deploying P2PS services further in
Section 11.2. We also outline discovering existing P2PS services and connecting them
into Triana workflows in Sections 11.3 and 11.4. However, first we describe configuring
P2PS peers (Section 11.1).

11.1 P2PS Configuration

To configure P2PS select the Services→Configure menu option, and then the Configure
option next to P2PS. Note that once P2PS has been used within the current running
Triana it cannot be reconfigured and this option will be disabled. For discovering and
communicating with services within your local subnet the default configuration should
be sufficient.

For bridging between multiple subnets a rendezvous connection is required. The sim-
plest way to do this is to enable Triana as a rendezvous peer and then have at least one
service in the other subnet(s) enabled as a rendezvous peer pointing to Triana’s local
rendezvous port (see the Discovery Panel in the P2PS Configuration Dialog).

There are multiple different options that can be configured within P2PS, such as the
transport protocols used and rendezvous policies, however discussion of these are be-
yond the scope of this manual. More information can be found atwww.p2psimplified.org.

11.2 Deploying P2PS Services

As with web services (see Section 10.7), individual/group tasks within a Triana workflow
can be deployed as P2PS services running on a remote machine. The mechanism to do
this is exactly the same a for web services. Before deployment, first Triana launcher
services must be started and configured on each remote machine that will host a P2PS
service. This is done by installing Triana and the running the command:

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 36/64

D 3.8 T UM IST-2001-32133

TrianaService Űp2ps

To deploy an individual/group task, right-click on the task and select Create Service.
This will cause a dialog to appear listing the locations where the remote service can be
hosted. This list will include the locations where Triana launcher services are available
plus a ’Local Service‘ option. The ’Local Service‘ option indicates that the remote service
will be hosted within the current running Triana. Note that it can take a while for Triana
to discover the available launcher services; they automatically appear in the list once
discovered.

Figure 29: Dialog for deploying a task/group task as a P2PS service.

Once a host has been chosen, Triana will attempt to deploy a P2PS service on that host
(as shown in Figure 29). While this process is taking place, the task in the workflow
will appear with purple stripes. The task becoming completely purple indicates that
the deployment has been successful and that the P2PS service is ready to be used.
P2PS services deployed using Triana can be used either within Triana or by third-party
users.

Unlike Web Services, there is not a standard set of data types defined for P2PS. All data
sent to and received from P2PS services deployed using Triana is serialized using JSX.
This serialization should be seamless to Triana users and is only a consideration for
third-party software using Triana deployed services.

11.3 Discovering P2PS Services

Existing P2PS services can be discovered very simply using the Services→Discover Ser-
vices menu option. This option displays a dialog prompting for the name of the service
to search for. With P2PS this search name has match exactly (ignoring case) the service
name required.

When a P2PS service is discovered, a tool representing the operation provided by that

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 37/64

D 3.8 T UM IST-2001-32133

service will appear in the tool tree alongside existing locally available tools. The P2PS
service tool will appear in the same package as the original task used to create the service,
however it will be displayed with a remote service icon (shown in Figure 3).

11.4 Connecting P2PS Services

Once a P2PS service has been discovered/imported and appears in the user’s tool tree,
it can be instantiated by dragging the tool onto the main workspace (in the same way
locally available tools are instantiated). P2PS services tasks appear as purple on the
workspace. P2PS service tasks can be connected to local tasks and other remote service
tasks in exactly the same way as standard Triana tasks.

A workflow containing P2PS services is executed as for a standard Triana workflow (i.e.
by pressing the run button).

12 GridLab GAT

The GridLab GAT8 is a generic and flexible API for accessing Grid services, such as
job submission and file movement. It has an adaptor based pluggable architecture (see
Figure 21 that allows different service bindings to be utilized. For example, a GRAM
adaptor allows job submission using Globus GRAM, while a GRMS adaptor allows
job submission using GridLab GRMS. New adaptors can be developed and plugged in
without changing application using the GAT (i.e. Triana).

Triana uses the GridLab GAT to allow job submission with a workflow, and also to
transfer input files to and output files from a remote job. We give an example GAT
workflow involving staging files and running a remote job in Section 12.1, and then
descriptions of job submission and file transfer in Sections 12.3 and 12.4 respectively.
We outline configuring the GridLab GAT in Section 12.2.

12.1 Example GAT Worfklow

In Figure reffig:gatexample, we show an simple example workflow for running a Grid
job and transferring files to/from that job. This example workflow involves the following
steps:

• Input generated by StringGen is written to the file InFile.

• InFile is pre-staged at the location where MyJob is to be run.

• MyJob is run

8see www.gridlab.org

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 38/64

D 3.8 T UM IST-2001-32133

Figure 30: Example GAT workflow.

• OutFile is post-staged from the location where MyJob was run

• OutFile is read and the output is viewed in StringViewer

The job (MyJob) run in this example could be any command-line application, and the
input/output data (InFile/OutFile) can be any type of data. For example, MyJob could
be a heavyweight numerical solver, InFile the parameter file specifying the parameters
of the solver and OutFile the results from the solver.

Courtesy of using the GridLab GAT, this example workflow is the same regardless
of whether MyJob is executed on the local machine or a remote grid resource (such
as a super-computer). We discuss submitting jobs to grid resources further in Sec-
tion 12.3.

12.2 GAT Configuration

The architecture of the GridLab Gat allows different adaptors to be plugged in for job
submission/file transfer, and depending on the binding you intend to utilize different
configuration is required. Currently the available adaptors for job submission are
GRAM, GRMS and local, the configuration they require is as follows:

GRAM - Grid proxy initialized with valid Grid credential (e.g. using grid-proxy-init
in Globus COG Kit9). Contact your local Grid administrator concerning acquiring
a Grid certificate.

GRMS - Grid proxy initialized with valid Grid credential (same as GRAM).

Local - No configuration required.

9See www.globus.org

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 39/64

D 3.8 T UM IST-2001-32133

The currently available adaptors for file transfer are GridFTP, FTP, HTTP and local, the
configuration they require is as follows:

GridFTP - Grid proxy initialized with valid Grid credential (same as GRAM job sub-
mission).

FTP - Need to specify username and password in GAT configuration.

HTTP - No configuration required.

Local - No configuration required.

12.3 Job Submission

Job submission in a Triana workflow is represented by a special Job component, a
default version of which can be found in the Common toolbox. Dragging the default
Job component into a workflow creates an empty job submission task (which by default
is medium blue). Right-clicking on this task and the selecting Job Properties allows the
submission details to be set.

Figure 31: Job Properties Dialog.

The main panel of the Job Properties dialog (shown in Figure 31) allows the following
submission properties to be set:

Host Name - Host name of the machine the job will execute on. Leave blank if running
on the local machine or delegating to a Grid resource broker.

Executable - The job executable URI (e.g. /bin/date).

Arguments - The arguments for the job (if required).

To launch a basic job simply set the host name, executable and arguments in the Job
Properties dialog, and then run the Triana workflow as normal. The job will be submit-

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 40/64

D 3.8 T UM IST-2001-32133

ted to the appropriate resource manager (GRAM, GRMS, Local etc.) and executed on
the specified host.

As well as detailing the job to be executed, the Job Properties dialog also allows the
pre-staged (input) and post-staged (output) files for the job to be specified. This is done
using the Inputs Panel and the Outputs Panel in the Job Properties dialog.

Figure 32: Inputs Panel in the Job Properties Dialog.

The Inputs Panel in the Job Properties Dialog (see Figure 32) lists the files that are pre-
staged in the job execution directory before the job is run. This list also represents the
mapping between the input nodes on the job submission task and the pre-staged files,
e.g. if the first item on the list is param.txt then the file at node 1 is pre-staged in the run-
ning directory as param.txt. Instead of the actual pre-staged file name, the tag<STDIN>
indicates the file is piped to the standard input for the job. The tag <PRE_STAGED>
indicates that the input file is pre-staged under its original name.

The Outputs Panel in the Job Properties Dialog is exactly the same as the Inputs Panel
except that it specifies the files that are post staged-after job execution, and their mapping
to the job task output nodes. As with the Inputs Panel, the actual name of the file in the
job execution directory can be specified, or the tags <STDIN> and <STDERR> can be
used to specify the post-staging of the standard input and standard error respectively.
The tag <POST_STAGED> indicates the name of the file connected to the relevant
output node is post-staged under its original name.

The number of input/output nodes on a job submission task is automatically set equal
to the number of pre-staged and post-staged files. Connecting file components to these
input and output nodes specifies the source location of the pre/post-staged files. This can
be seen in the simple example shown in Figure 30. In this example, InFile is connected
to the input node of MyJob, indicating that InFile is pre-staged before job execution, and
OutFile is connected to the output node of MyJob, indicating that OutFile is post-staged
after job execution. We discuss file transfer using the GridLab GAT further in the next

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 41/64

D 3.8 T UM IST-2001-32133

section.

12.4 File Transfer

As with job submission, files in a Triana workflow are represented by a special File
component. A default version of the file component can be found in the Common
toolbox (by default instances of this component are green). The file transfer operation
associated with a file task instance depends on where it is connected into the workflow.
For example:

Figure 33: File Transfer Operations.

• Connection between two file tasks indicates a file transfer from the left file to the
right file.

• Connection from a file task to a local task indicates a file read operation, with the
input data being processed by the local task.

• Connection from a local task to a file task indicates a file write operation using the
output data from the local task.

• Connection from a file task to a job submission task indicates pre-staging the file
before job execution. The mapping between the file task and the file in the job
execution directory is specified in Inputs Panel of the Job Properties dialog (see
Section 12.3).

• Connection from a job submission task to a file task indicates post-staging the file
after job execution. The mapping between the file in the job execution directory
and the file task is specified in Outputs Panel of the Job Properties dialog (see
Section 12.3).

Illustrations for each of these file transfer operations are shown in figure 33.

File tasks can be instantiated by dragging a file component (either the default file
component in the Common toolbox or a custom file saved into the toolboxes) onto the
workspace. Once instantiated, the file represented by the file task can be set through

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 42/64

D 3.8 T UM IST-2001-32133

right-clicking on the task and selecting Set File. The URI of any file that can be handled
by available GAT Adaptors (see Section 12.2) can be set. For example:

temp/myfile.dat - Local file in temp directory (relative to running directory).

/temp/myfile.dat - Local file in temp directory (relative to root directory).

file:///temp/myfile.dat - Same as temp/myfile.dat.

file:////temp/myfile.dat - Same as /temp/myfile.dat.

file://bouscat.cs.cf.ac.uk/temp/myfile.dat - File on remote machine in temp directory
(relative to user home on remote machine).

file://bouscat.cs.cf.ac.uk/temp/myfile.dat - File on remote machine in temp directory
(relative to root directory on remote machine).

file://bouscat.cs.cf.ac.uk//temp/myfile.dat - File on remote machine in temp directory
(relative to root directory on remote machine).

ftp://bouscat.cs.cf.ac.uk/temp/myfile.dat - FTP accessible file on remote machine.

http://bouscat.cs.cf.ac.uk/temp/myfile.dat - HTTP accessible file on remote machine.

gsiftp://bouscat.cs.cf.ac.uk/temp/myfile.dat - GSI FTP accessible file on remote ma-
chine.

As can be seen from some of the examples above, it is valid to either express the protocol
used to access the file explicitly (e.g. HTTP, FTP) or to leave it to the GAT to determine
which protocol to use (e.g. when file scheme is specified).

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 43/64

D 3.8 T UM IST-2001-32133

13 Extending Triana

Triana has been developed with extensibility in mind. From relatively simple exten-
sions, such as writing your first unit, to major extensions, such as building alternative
workflow language readers and writers or new GAP bindings, Triana has been designed
to be extended.

This chapter deals with some of the possible extensions to Triana. The content here is
often more technical, from a programming perspective, than the rest of this manual. A
understanding of some technical matter such as the Java programming language is a
prerequisite. This chapter is not intended to be a Java programming guide, there are
many fine resources for that.

14 CVS Access

If you intend to do anything more than simple unit programming in Triana it is recom-
mended that you use a developers version of the system from our CVS repository.

This section describes the steps in correctly checking out the source code for the core
Triana and Triana toolboxes from the cvs repository and building from the source code.
If you don’t know how to use a CVS client or don’t have a CVS account, then it is
recommended that you follow the instructions in section 2.1.

14.1 Conventions

Note: These instructions assume you have the necessary user accounts and passwords.
It is aimed at command line cvs users. WinCVS or similar users should be able to follow
the instructions by using the repository and module names within their particular CVS
Client.

• Text written this font should be typed as command line input. Commands
should be entered without line breaks unless explicitly instructed. (This includes
line breaks due to book formatting)

• Text written in this font and surrounded by < ... > should be replaced by the users
appropriate details.

• Text in this font signifies the unix command line prompt, the text following it will
be the command to type.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 44/64

D 3.8 T UM IST-2001-32133

14.2 CVSRoot and Passwords

The “CVSROOT” you should you will depend on whether you have read only “pserver”
access or write “ext” access. This document assumes “pserver”, if you don’t know then
ask the person who gave you your user name and password.

For the Core Triana and default Toolbxes repositories there is anonymous “pserver”
access, use the username<anonymous>with no password, just hit return at the password
prompt.

14.3 Tagged, Stable and Unstable Versions

Please see the web site http://www.trianacode.org for the current branch tag names
in the repositories. If you don’t know what a tag is please see a good text book such as
the CVS Book.

14.4 A Word About Directory Structure

For administration reasons Triana is split into a number of different packages which are
stored in various CVS repositories. Some of these are project specific and not public so
don’t assume that because something is listed in this document that you will be able to
get the source code from the CVS server.

The public packages are:

1. Core Triana. The Triana Environment itself.

2. Toolboxes. The default toolboxes that come with Triana.

3. Toolboxes-dev. The unstable toolboxes that developers are currently working
with. Use at you own risk.

The project specific packages are:

1. GEO. The Gravitational Waves tools.

2. Gravity. Example tools from the book “Gravity From The Ground Up” by Bernard
Schutz.

3. GriPhyN. Tools from collaboration work with the GriPhyN project.

There are two standard ways to structure a Triana distribution from CVS, dependant
on: whether you expect to be making regular changes to the source code under your
control and/or you want to do frequent updates for the latest version from CVS; Or
you just want to check out the latest version and build it once. CVS allows checking
modules out inside other modules which will give the same structure as the packaged

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 45/64

D 3.8 T UM IST-2001-32133

version of Triana but it will complain if an update or commit is attempted in the source
tree where there is a foreign module lower down the tree.

14.5 Easy Install

These instructions will checkout and install Triana to the same structure as the packaged
release version. It is fine for most users however if you expect to use CVS for more than
updating small numbers of files it is suggested you use the other set of instructions.

This install will put all of the various toolboxes inside the Triana source tree and they
will need to be removed to perform a cvs update on the core Triana code and then
checked back out again.

From the command line:

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana login
(Logging in to username@trianacode.org)
CVS password: <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana checkout -P triana

prompt$ cd triana

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes

Note: The rest of the Triana modules from CVS are optional and depend on project
permissions to access.

prompt$ cd toolboxes

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes-dev

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 46/64

D 3.8 T UM IST-2001-32133

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools checkout -P GEO

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity checkout -P GravityFromTheGroundUp

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools checkout -P GriPhyN

After those CVS commands you should have a directory structure like this:

triana/
/bin/
/toolboxes/

/Audio
/... other standard toolboxes
/toolboxes-dev
/GEO
/GravityFromTheGroundUp/
/GriPhyN

The toolbox structure is the import thing, there will be extra directories under triana/
not mentioned here.

14.5.1 Build and Run

To build set an environment variable for your system, $TRIANA for Unix like systems or
%TRIANA% for Windows, to point the top level triana directory. Run the build script,
buildTriana for Unix or buildTriana.bat for Windows:

prompt$ $TRIANA/bin/buildTriana

Run the start script, triana or triana.bat:

prompt$ $TRIANA/bin/triana

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 47/64

D 3.8 T UM IST-2001-32133

14.6 Developer Install

If you are intending to write or modify any code within the various CVS modules or
you just want to regularly update the modules from CVS. Then we suggest that you
keep all the CVS modules in their own separate directory stuctures. The Ant10 build file
is written to be able to build from default either the previous structure or a directory
structure where all the cvs modules are at the same level in the file system.

For instance my directory structure looks like this:

project/triana/
project/toolboxes/
project/toolboxes-dev/
project/toolboxes_other
project/toolboxes_other/GEO
project/toolboxes_other/GravityFromTheGroundUp
project/toolboxes_other/GriPhyN

So from a sensible starting directory run the CVS commands from section 14.5 with the
cd commands so that the Triana core and default toolboxes modules from cvs reside in
your current directory.

Note: The GEO, Gravity and Griphyn toolboxes should really reside in a separate sub-
directory. Here I’ve created a directory called “toolboxes_other”, this is because Triana
assumes that a toolbox contains packages, so GEO for instance is the top level package
for the GEO tools. When Triana attempts to locate tools it uses the following path :-

[toolbox][tool package]*[toolname]

e.g. [/project/toolboxes/][SignalProc/][Input/][Wave]
or [/project/toolboxes_other/][GEO/][Algorithms/][SaturationMon]

The build and run instructions are almost the same as for the easy install.

• Set the TRIANA environment variable to point to the triana directory.

• Either edit the build file (build.xml in the main Triana home directory) and set
the appropriate toolbox location variables in the “User Editable” section, or the
preferred method add a new file called “build.properties” to the Triana home di-
rectory with the properties and their values. The contents of my “build.properties”
file can be seen in figure 34

• Run the buildTriana script.

10http://ant.apache.org/

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 48/64

D 3.8 T UM IST-2001-32133

javac.flag.debug=on
javac.flag.deprecation=on
triana.geo.tools=../toolboxes_other/GEO
triana.gravity.tools=../toolboxes_other/ \

GravityFromTheGroundUp
triana.griphyn.tools=../toolboxes_other/GriPhyN}

Figure 34: example build.properties file

Note: Unlike the standard installation, Triana will not automatically pick up the tool-
boxes when it is started so you will have to add those within Triana from the menu
Tools, Edit Tool Box Paths. In my case, I select the directories - /project/toolboxes/,
/project/toolboxes-dev/, /project/toolboxes_other/.

14.7 Other Install

You can actually have your toolbox modules anywhere you like in your file system and
still have the build process pick them up and compile them. In the file build.xml there
is a commented section titled “USER EDITABLE PROPERTIES” within this section
there are a number of commented out properties for the various toolbox modules.
Uncomment any of these and set them to the appropriate location to override the default
locations. Alternatively add a file called “build.properties” with the appropriate lines
containing - propertyname=value.

15 Writing Your Own Tools

Writing tools in Triana can be started very easily. The only prerequisite is a little
understanding of the Java programming language, working with files and directories in
the operating system of your choice and the desire to experiment.

15.1 Toolbox Structure

Toolboxes in Triana are, as you might expect, just a series of directories and files within
a set structure. However the relationship between the underlying file structure and the
tree representation in the toolbox window is not necessarily that simple. The logical
(tree view) and the physical (file view) of the toolbox structure does not have to be the
same although it often is.

Toolbox structure starts with a toolbox root directory. The toolbox root is the directory
that Triana looks in recursively for toolboxes. Triana can, and in fact does, have more
than one toolbox root they are a useful way of compartmentalising different groups of

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 49/64

D 3.8 T UM IST-2001-32133

tools. If you are using the default Triana download then your default toolbox root will
be $TRIANA/toolboxes (for unix) or %TRIANA%\toolboxes\ (for windows). See the next
section, 15.2, for more information about adding or changing toolbox roots.

Underneath the toolbox root are packages, represented by directories containing other
directories, and toolboxes, represented by directories containing tools. The whole
process is recursive so package hierarchies can be to any depth and a toolbox can
contain sub-packages as well as tools. Triana searches the directory structure looking
for tool files and then builds up the tree from leaf node (tool) back to toolbox root.

A tool box directory contains an XML component definition file for each tool, a src
directory that contains any source code files for the tool, a help directory that contains
any help files and an optional lib directory that typically holds shared library objects for
specific platforms.

All of the directory structure and files can be created by Triana and for most users that is
how they should be created. In section 15.2 we will discuss how to create a new toolbox
and in section 15.3 we will populate that toolbox with a new tool.

15.2 Creating a New Toolbox

There are a number of ways to create a new toolbox but first so that we don’t disturb
the existing tools and toolboxes within Triana we will create a new toolbox root. The new
toolbox root will be used to hold all of our new toolboxes and tools, that way they can
be kept separate from the existing stable tools if we need to update the Triana version
at a later date.

To change or add toolbox roots to Triana select the Tools main menu item and then the
Edit Tool Box Paths item. You should see the window in figure 35.

Figure 35: Edit Toolbox Paths

The paths will obviously look slightly different to this depending on you set up and

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 50/64

D 3.8 T UM IST-2001-32133

operating system, the one shown is a unix system. In the default setting shown here
there are already four toolbox roots set and each of these has a different purpose. The
list of toolbox roots is presented in the top panel on the dialog with Add and Remove
buttons which add or remove toolbox roots from that list.

Note: There is no way to edit an existing toolbox root, it should be removed and a new
one added.

The four fields below the list, labelled Default, Data, Remote and User and the four default
toolboxes.

Default is the standard toolbox root where Triana stores all of the normal included
tools.

Data is a specific toolbox root for data tools such as files.

Remote is the toolbox root where Triana stores the component definition files for any
remote tools such as P2PS services or web services.

User is the toolbox root that Triana uses to store user specific tools such as new group
tools by default.

Note: Apart from the default toolbox root which will normally reside inside the Triana
home directory, all of the other three toolbox roots are stored in a special hidden directory
in the users home directory called .TrianaV3Resources. This directory is explained in
more detail in the “trouble shooting” section on page 61.

Now to add a new toolbox root all we need to do is to select the Add button and use the
file browser to navigate to a suitable empty directory or create a new directory. Select
OK and the new path has been added to the list of tool box roots. We are now ready to
create a new tool and toolbox structure within that root path. To do that we will use the
Tool Wizard explained in the next section, section 15.3.

15.3 Using the Unit Wizard

The Unit Wizard provides a simple GUI for generating skeleton Triana unit code. Once
generated only the process() method requires implementation in order to produce a
Triana unit. Note that this unit must then be compiled and the tool XML file generated
before it can be used within Triana. We discuss compiling tools and generating tool
XML is Section 15.4.

The Unit Wizard is located in Tools→New Unit menu. When selected this brings up the
unit wizard window, which has a number of panels that need be completed before the
skeleton code can be generated. In the next sections we look at the options on each of
these panels.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 51/64

D 3.8 T UM IST-2001-32133

Figure 36: Unit Panel in the Unit Wizard.

15.3.1 Unit Panel

The first panel in the Unit Wizard (shown in Figure 36) has a number of fields allowing
basic information about the unit to be specified. This information is as follows:

Unit Name - The name of the Java class that is generated and also the default name for
the tool/tasks representing this unit. When a tool/task is renamed this does not
change the name of the underlying Java unit.

Unit Package - The package of the Java class that is generated and also the default
package for the tool representing this unit. When a tool is moved to a different
package this does not change the package of the underlying Java unit.

Tool Box Path - The base toolbox directory where the unit code will be generated (see
Section 15.1).

Author - The name(s) of the unit author(s).

PopUp Description - A brief pop-up description of the units function. This description
is displayed when the mouse of hovered over the unit.

Date - The date of creation.

Help File - The html file which is displayed when the user requests help on this unit.
A skeleton help file is generated at the same time as the unit code.

Include Copyright - Whether the default Triana copyright is included in the generated
skeletion.

Input Nodes - Allows the default number of input nodes to be specified. If resize is
selected then the range of acceptable input nodes can be specified, otherwise the

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 52/64

D 3.8 T UM IST-2001-32133

Figure 37: Data Type Panel in the Unit Wizard.

number is fixed at the default.

Output Nodes - Allows the default number of output nodes to be specified. If resize
is selected then the range of acceptable output nodes can be specified, otherwise
the number is fixed at the default.

Select Next to accept the values specified in the Unit Panel. Note that these values can
be changed later, either in the wizard or in the generated code.

15.3.2 Data Type Panel

The second panel the Unit Wizard (shown in Figure 37) allows the data types which
are input/output by the unit to be specified. This information allows type-checking
between units to be done at connection time. When an input/output type is added, two
pieces of information are required:

Node - The index of the node the type is input/output on (where 0 is the first node, 1 is
the second and so on). The value All Nodes indicates that the data type applies
to any node. The value Other Nodes indicates that the data type applies to nodes
after those that have data types explicitly set.

Data Type - The data type input/output. This can be any standard java type (e.g.
java.lang.String), Triana type (e.g. triana.types.SampleSet), or any other type that
is on the Triana classpath.

In addition to the data types, the data type panel also allows the data output policy to
be set. This is the policy that is used when the general output()method is called by the
unit (as opposed to the specific outputAtNode() method. The available output policy
options are:

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 53/64

D 3.8 T UM IST-2001-32133

Figure 38: Parameter Panel in the Unit Wizard.

Copy output (pass by reference) - A reference to the data is output on each node, no
cloning is performed. Any changes later tasks make to the data will affect all other
tasks that received the reference. This policy should only be used if the effect is
desired.

Clone output on additional nodes - A reference to the data is output on the first node,
but clones of the data are output on all other nodes (if possible). This is the default
policy as changes later tasks make to the data will not affect other tasks as they
received a different version of the data.

Clone output on additional nodes - Clones of the data are output on all nodes (if pos-
sible). This policy is required if the task outputting the data holds on to the data
for future update. With this policy these updates will not affect other tasks as
every task received a clone of the data.

Select Next to accept the values specified in the data type panel. Note that these values
can be changed later, either in the wizard or in the generated code.

15.3.3 Parameter Panel

The third panel the Unit Wizard (shown in Figure 38) allows the parameters used by
the unit to be specified. Parameters are used to represent, steer and store the internal
state of the unit. As the state of parameters is automatically shared between the unit
and its graphical interface by Triana, they are the method of choice for communications
between the unit and its graphical interface (also referred to as its parameter panel).
When adding a parameter, the following information is required:

Parameter Name - The name of the parameter, also used as the variable name for the
parameter in the Java code. This should not include spaces or other punctuation
characters (except underscore).

Default Value - The default value assigned to the parameter.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 54/64

D 3.8 T UM IST-2001-32133

Figure 39: GUI Panel in the Unit Wizard.

Data Type - The data type of the parameter in the Java code. Note that all parameters
specified in the Unit Wizard are stored internally as strings and automatically
converted into the required data type within the Java code.

Parameter Type - The type of the parameter: User Accessible indicates it can be
viewed/steered by the user, for example via the parameter panel or parameter
input/output nodes; Internal indicates the parameter is not visible to the user;
and Transient indicates the parameter is not visible to the user and is not stored
when the tool is saved.

In addition to the parameters, the parameter panel also allows the parameter update
policy to be specified. The parameter update policy states when parameters updated
by the user are informed to the Java unit. The available options are:

Update at start of process - The updates are informed to the Java unit before the process
method is called (but no while it is executing). This is the default policy as it
prevents unexpected parameter changes during processing.

Update immediately - The updates are informed to the Java unit immediately the pa-
rameter is changed, even if in the middle of processing. This option is required
by steerable units.

Do not update - The updates are never informed to the Java unit. Any update mecha-
nism has to be implemented explicitly using TaskListeners.

Select Next to accept the values specified in the parameter panel. Note that these values
can be changed later, either in the wizard or in the generated code.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 55/64

D 3.8 T UM IST-2001-32133

Figure 40: Final Panel in the Unit Wizard.

15.3.4 GUI Panel

The fourth panel the Unit Wizard (shown in Figure 39) allows the graphical user interface
for a unit to be specified. The three main categories available are:

No Interface - No user interface.

GUI Builder Interface - Uses the Triana GUI Builder to define an interface for updating
the unit’s parameters. We discuss this further below.

Custom Interface - Specifies a Java class to act as the parameter panel for the unit. This
class must extend ParmaterPanel in triana.gui.panels. If required template
Java code for the panel class can also be generated when the unit code is generated.

If GUI Builder interface is selected an additional panel appears allowing GUI compo-
nents to be associated with each of the unit parameters (as specified in Section 15.3.3). A
number of standard components are available, including TextField, CheckBox, Choice,
ScrollBar and File Chooser (a TextField with Browse button). The Preview GUI button
at the bottom of this panel allows the defined interface to be previewed.

Select Next to accept the values specified in the GUI panel. Note that these values can
be changed later, either in the wizard or in the generated code.

15.3.5 Final Panel

The final panel the Unit Wizard (shown in Figure 40) shows information on the unit and
which files and directories will be created when the unit code is generated. The Generate
Tool Placeholder option indicates whether a dummy tool in the tool tree representing the
unit will be created. Once the process()method has been implemented, right-clicking
on this dummy tool and selecting Compile will compile the actual tool.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 56/64

D 3.8 T UM IST-2001-32133

Figure 41: Compile Unit/Generate Tool XML Dialog.

Select Finish to generate the tool specified in the Unit Wizard. The Java source files for
the unit, html help and parameter panel (if specified) will be created in the specified
toolbox.

15.4 Compiling Units/Generating Tool XML

Once a Java unit has been created (see Section 15.3) it needs to be compiled before it can
be used within Triana. Also, in order for the unit to appear in the Triana tool tree, an
XML tool representing the unit must also be generated. Both compilation and tool XML
generation can be done using the Tools→Compile Unit/Generate Tool XML menu option.
Alternatively, to recompile an existing tool, right-click on that tool in the tool tree and
select Compile.

In Figure 41 we show the dialog for compiling Triana tools. The available options in
this dialog include:

Unit Name - The name of the unit, as specified in the Unit Wizard.

Unit Package - The package of the unit, as specified in the Unit Wizard. Using the
browse button next the unit package field allows the Java source for a unit to be
selected; the unit name and unit package will automatically be set.

Toolbox - The base toolbox for the unit (see Section 15.1)

Compile Source - Selects whether the source code for the unit is compiled. The Javac
compiler, classpath and arguments can be set.

Generate Tool XML - Selects whether a XML tool definition of the unit is generated.
The name, package and file for the generated tool can be set.

Compile Graphical Interface - Selects whether the parameter panel source for the unit
is compiled. This only applies to custom parameter panels (see Section 15.3.4.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 57/64

D 3.8 T UM IST-2001-32133

Select OK to compile the unit. This process can take a while as the javac compiler must
be invoked (unless only generating tool XML). A debug window appears showing the
output from the compiler. Note that if the graphical interface is also being compiled the
two debug windows will appear.

16 Advanced Tool Techniques

In this section we look at some more advanced techniques that a tool developer may
wish to use. Where source code is listed only the important code or code modified
from template code is listed. For full listings look at the tool source code listings in the
UserGuide toolbox in Triana.

16.1 Showing and Hiding a Unit’s Parameter Panel

Problem

You want to simulate the user double clicking on a task to display the unit parameter
panel.

Solution

Call the method public void showParameterPanel() to display the unit’s parameter
panel and public void showParameterPanel() to hide the panel again. These meth-
ods are inherited from the Unit superclass.

Discussion

Inside the process() method for your unit call the showParameterPanel()
method.

/*
* Called whenever there is data for the unit to process
*/
public void process() throws Exception {

// display the units parameter panel interface
showParameterPanel();

}

16.2 Pausing Unit Execution

Problem

You want to pause the execution of your unit programmatically until some event hap-
pens.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 58/64

D 3.8 T UM IST-2001-32133

Solution

Pause the thread that is running your unit and interrupt on your desired event to resume
processing.

Discussion

Say for instance that you wish to pause the execution of your unit, between the point
in the main process() method where the unit gets input from its input node, and the
point where it outputs the result. The execution should halt until a particular parameter
has been updated.

The preferred mechanism for doing this is to cause the current thread to sleep, inter-
rupting the thread on the parameter being updated.

Note: An important thing to remember is that the parameter update policy must be set
in the unit set up to be update immediately as opposed to the default behaviour of
updating on the execution of the process method. Without this change to the default
behaviour the execution will hang.

package UserGuide;

import triana.unit.Unit;

/**
* This unit pops up its user interface and pauses execution until something
* has been selected
*
* @author Matthew Shields
* @created 23 Feb 2005
*/
public class PopUpAndPause extends Unit {

// parameter data type definitions
private String selectedString;

// Flag set when a user selects string
boolean stringSelected;

// Flag used by a user initiated stop
boolean stopped;

/*
* Called whenever there is data for the unit to process
*/
public void process() throws Exception {

// set the flags to false
stringSelected = false;
stopped = false;

// display the units parameter panel interface
showParameterPanel();

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 59/64

D 3.8 T UM IST-2001-32133

while (!(stopped || stringSelected)) {
synchronized{this} {

try {
this.wait();

} catch (InterruptedException e) {
}

}
}

output(selectedString);
}

/**
* Called when the unit is created. Initialises the unit’s properties
* and parameters.
*/
public void init() {

super.init();

// Initialise node properties
setDefaultInputNodes(0);
setMinimumInputNodes(0);
setMaximumInputNodes(0);

setDefaultOutputNodes(1);
setMinimumOutputNodes(1);
setMaximumOutputNodes(Integer.MAX_VALUE);

// Initialise parameter update policy and output policy
// IMPORTANT - this must be changed for the unit to restart it’s thread
setParameterUpdatePolicy(IMMEDIATE_UPDATE);

setOutputPolicy(CLONE_MULTIPLE_OUTPUT);

// Initialise pop-up description and help file location
setPopUpDescription("This unit pops up its user interface and pauses");
setHelpFileLocation("PopUpAndPause.html");

// Define initial value and type of parameters
defineParameter("selectedString", "", USER_ACCESSIBLE);

// Initialise GUI builder interface
String guilines = "";
guilines += "Select a string $title selectedString Choice";
guilines += "[Mary] [Had] [A] [Little] [Lamb]\n";
setGUIBuilderV2Info(guilines);

}

/**
* This is called when the network is forcably stopped by the user.
* This should be over-ridden with the desired tasks.
* <p/>

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 60/64

D 3.8 T UM IST-2001-32133

* We need to override this method to quit our paused thread
*/
public void stopping() {

super.stopping();
stopped = true;
synchronized(this) {

unitThread.notifyAll();
}

}

/**
* Called a parameters is updated (e.g. by the GUI)
*/
public void parameterUpdate(String paramname, Object value) {

// Code to update local variables
if (paramname.equals("selectedString")) {

selectedString = (String) value;
System.out.println("selectedString = " + selectedString);

// We need to check that the value is not an empty string as
// Triana updates parameters at
// intialisation time and we don’t want that to trigger here
if (!(selectedString.equals(""))) {

stringSelected = true;

synchronized(this) {
unitThread.notifyAll();

}
}

}
}

}

17 Trouble Shooting

Symptom Solution
No tools in the toolbox tree remove the Triana resource files and restart. See

page 61

Table 10: Trouble Shooting Symptoms

17.1 Triana Resource Directory

Triana stores its settings in a special directory which can be found in the user home
directory, the location of user home is specific to your operating system and system
user name but typically on linux or unix based systems it will be designated by the

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 61/64

D 3.8 T UM IST-2001-32133

∼ symbol, so typing cd ∼ at the command line should take you to your home direc-
tory. On windows the user home directory is typically found under C:\Documents &
Settings\<username>\.

Under the user home directory there is a special hidden directory created by Triana called
.TrianaV3Resources. This contains all of the settings that Triana stores in various files.
If you have upgraded Triana or it is not behaving as expected, for instance no tools or
toolboxes are showing up in the toolbox tree, delete the whole directory. Next time
Triana is started it will recreate the directory with the default settings.

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 62/64

Index

.TrianaV3Resources, 61

auto commit, 15
auto connect, 24

build, 3

classpath, 25
compiler, 25
compiling, 3
compound components, 16
Copy, 8
creating a toolbox, 50
Cut, 8
CVS, 44

data types, 6
Delete, 8

edit
nodes, 19
toolbox root, 51

editing, 10
extended tool tips, 24
external tools, 23

filtering
tools, 5

Find, 8
Flush, 8

general options, 23
Group, 8
grouping, 16

Help, 8
html browser, 25

menu
main window tool menu, 7, 9

menus, 8

New, 8

Node Editor, 19
node editor

short cuts, 20

Open, 8
Options, 8
options & settings, 23
output node

increase number, 19

parameter, 18
auto commit, 15
update policy, 59

parameter panel, 58
Paste, 8
pausing

units programatically, 58
Print, 8

Reset, 8
restore defaults, 26
restore previous, 24
root dir, 49
rubber banding, 10
Run, 8
run, 3, 14
Run Recorded, 8

save
group tools, 16

Save, Save As, 8
searching

toolboxes, 5
Select All, 8
selecting tasks, 10
short keys, 8
Show Properties, 8
Stop, 8

taskgraph
run, 14

text editor, 25

63

D 3.8 T UM IST-2001-32133

tool
directories, 49
filters, 5
main window context menu, 7,

9
programming, 49
searching for, 5
wizard, 51

tool bars, 8
tool tips, 24
toolbox

new, 50
new root, 50
root, 49
searching, 5
structure, 49

Triana
$TRIANA, %TRIANA%, 3
compiling, 3
download, 3
environment variable, 3
run, 3

Triana Data Types, 6
Triana resource directory, 61
trouble shooting, 61

Ungroup, 8
unit

grouping, 16
parameter, 18
pausing, 58
selecting, 10

workflow
editing, 10

Zoom In, 8
Zoom Out, 8

GridLab-3-D3_8-0001-1.0-Draft_A PUBLIC 64/64

