NCV7240 Octal Low-Side Relay Driver Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV7240 evaluation board provides a convenient method to evaluate the NCV7240 octal low-side driver in a customer defined application environment.

The setup involves the use of a PC installed with custom designed software, an interface board, and the NCV7240 evaluation board. The evaluation board is controlled using the ON Semiconductor FlexMOS GUI installed on a personal computer (PC). The USB to SPI interface adapter board provides master-slave communication between the target demonstration board and the PC.

The user can control each of the eight low-side outputs independently using this system setup.

The evaluation board's power management includes an adjustable LDO giving the option for a 3.3 V or 5 V digital supply voltage (VCC) selectable through the GUI. An external power supply can be used by removing a jumper on the board. Visual indicators dictate the board configuration through LEDs.

Features

- 8 Channels
- 600 mA Low-Side Drivers
- Programmable Logic Supply Voltage
- 16-bit SPI Control
- Over Load and Over Temperature Protection
- Selectable Open Load Detection for LED Loads
- Dedicated GUI Interface for Device Control and Diagnostic

Figure 1. Evaluation Board Solution

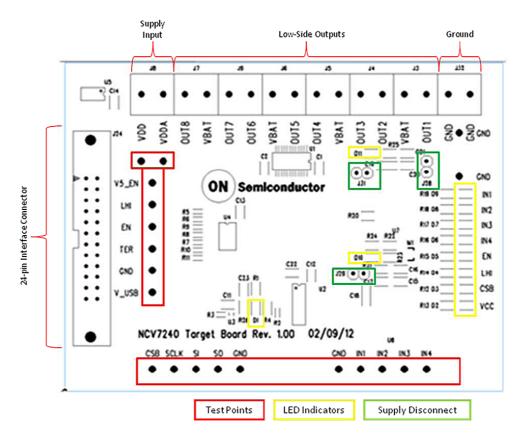


Figure 2. Evaluation Board

Table 1. ABSOLUTE MAXIMUM RATINGS

Rating	Value	Units
Main Supply Voltage to output pins (OUTx)	–0.3 to 36	V
Digital Supply Voltage (VCC)	-0.3 to 5.5	V
USB to SPI Interface Adapter Connector Pins	-0.5 to 5.5	V
Junction Temperature (NCV7240)	-40 to 150	°C
Ambient Temperature (Evaluation board)	-40 to 105	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 2. RECOMMENDED OPERATING CONDITIONS

Rating	Va	Units	
	Min	Мах	
External Digital Supply Voltage (VCC)	3.0	5.5	V
Main Supply Voltage (VBAT)	5.5	28	V
DC Output Current	-	0.6	А
Junction Temperature	-40	125	°C

www.BDhr://hsemi.com/ON/

Table 3. PIN FUNCTION DESCRIPTION

Connector	Pin Number	Terminal Name	Description			
24 Pin Interface	1	SCL	I2C Clock Line, 3.3 V Levels			
Connector	2	SDA	I2C Data Line, 3.3 V Levels			
	3	GND	Ground			
	4	GND	Ground			
	5	IN4	General-Purpose Output 7, used for parallel control of OUT4 and OUT8			
	6	PO6	General-Purpose Output 6			
	7	IN3	General-Purpose Output 5, used for parallel control of OUT3 and OUT7			
	8	V5_EN	General-Purpose Output 4, used for controlling the LDO reference			
	9	IN2	General-Purpose Output 3, used for parallel control of OUT2 and OUT6			
	10	IN1	General-Purpose Output 2, used for parallel control of OUT1 and OUT5			
	11	EN	General-Purpose Output 1, used for EN, Chip Enable			
	12	LHI	General-Purpose Output 0, used for Limp-Home Logic input			
	13	GND	Ground			
	14	GND	Ground			
	15	PI1	General-Purpose Input 1			
	16	PI0	General-Purpose Input 0			
	17	VIO	3.3 V or 5 V for level translators			
	18	PI2	General-Purpose Input 2			
	19	SO	SPI data from slave to master			
	20	SI	SPI data from master to slave			
	21	SCLK	SPI clock from master to slave			
	22	CSB	SPI slave chip select bar			
	23	VTRGT	5 V Supply from slave to J1			
	24	VCC_USB	5 V USB voltage from the USB to SPI adapter board to the evaluation board (100 mA max)			
Supply		VBAT	Main Supply Voltage. Powers the NCV7240 drivers and the onboard LDO.			
Requirement		GND	Ground			
Low_Side		OUT1	Low-Side Output 1			
Driver Outputs		OUT2	Low-Side Output 2			
		OUT3	Low-Side Output 3			
		OUT4	Low-Side Output 4			
		OUT5	Low-Side Output 5			
		OUT6	Low-Side Output 6			
		OUT7	Low-Side Output 7			
		OUT8	Low–Side Output 8			

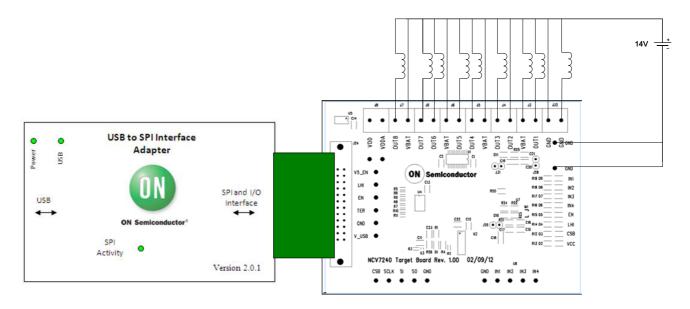
www.BDhtel/Instancom/ON/

Table 3. PIN FUNCTION DESCRIPTION

Connector	Name	Description					
Test Points &	V5_EN	When this signal is high the LDO is programmed for 5 V output.					
LED Indicator	EN	Enable signal for the integrated driver. EN LED is illuminated when the part is enabled.					
	TSD	Latched thermal information.					
	LHI	Limp-Home Logic Input.					
	IN1	Parallel input 1 used for parallel control of OUT1 and OUT5. An LED is illuminated when the pin is high.					
	IN2	Parallel input 2 used for parallel control of OUT2 and OUT6. An LED is illuminated when the pin is high					
	IN3	Parallel input 3 used for parallel control of OUT3 and OUT7. An LED is illuminated when the pin is high.					
	IN4	Parallel input 4 used for parallel control of OUT4 and OUT8. An LED is illuminated when the pin is high.					
	CSB	Chip Select Bar signal produced by the master. CSB LED is illuminated when CSB transition to a low state.					
	SCLK	Serial clock signal generated by the master.					
	SI	Serial input data from the master.					
	SO	Serial output data from the slave.					
	VCC	Digital Supply voltage. VCC LED is illuminated when the LDO is regulating.					
	GND	Chip Ground					
Supply Disconnect	J28	J28 disconnects the VBAT supply from the board. No power is delivered to the LDOs when the jumper is disconnected.					
	J29	J29 disconnects VDD supply from the LDO to the board. When the jumper is disconnected, the board can be powered from an external supply.					
	J31	J31 disconnects VDDA supply from the LDO to the board. When the jumper is disconnected, the board can be powered from an external supply.					

www.BDhtp://ensemil.com.com/ON/

OPERATIONAL GUIDELINES

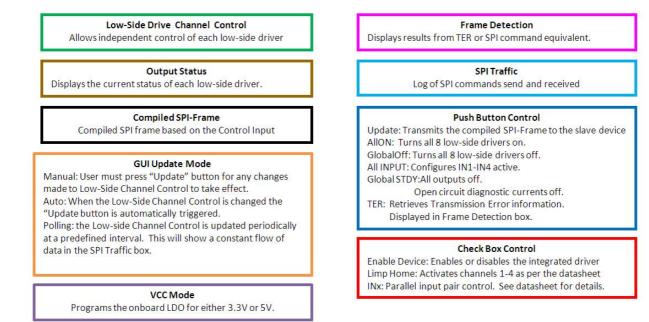

The material necessary to successfully use the evaluation boards is listed below:

- PC running the latest Onsemi FlexMOS GUI
- USB cable Type A to Type B
- USB to SPI Interface Adapter with Ribbon Cable
- NCV7240 Evaluation Board
- Power Supply
- Resistive, LED, Inductive or Motor Load

An application example of the NCV7240 driving relays is shown in Figure 3. Figure 3 shows J28, J29 and J31 jumpers inserted. This powers the on-board LDO regulators for VDD and VDDA. Both VDD and VDDA light their respective LED (D10 and D11) when powered. The multiple VBAT connectors on the terminal blocks help the user connect loads in the system by providing a connection which provides capability for two wires per terminal site.

When VBAT voltage is applied to the board, the onboard regulator regulates the VDD voltage. By default, VCC is regulated to 3.3 V, but this can be adjusted to 5 V via the GUI.

VCC power to the board is provided via VDDA through R20 and is shown active with diode D2.



Once the hardware is configured with the desired load and is interfaced with the USB to SPI adapter, the user can launch the FlexMOS software. Once the software is running, the GUI should automatically identify the connected demonstration board and load the appropriate GUI interface for the low-side drivers. If the software doesn't recognize the connected demonstration board, manually select the device from the drop down box. If the device name doesn't appear in the drop down box, the latest version of the GUI needs to be installed on the PC.

A detailed description of the GUI functionality for the NCV7240 is shown in Figure 4. The FlexMOS GUI is used to enable or disable the device and to control the low-side driver outputs.

www.BDhtp://insemi.comcom/ON/

lexM05 Eval										_0
ow evaluating:	NCV7240 · Oct	tal Low Side Rel	ay Driver							
PI Clock Freq.:	125 💌	kHz (Note: not a	all frequencies a	re exactly possib	ole - nearest will	be used)		SPI Device No	ot Available	
NCV7240								SPI Traffic Sent	Received	
— Channel 1 —	Channel 2 -	Channel 3	Channel 4 -	Channel 5	Channel 6	Channel 7 -	Channel 8			4
C ON	C ON	C ON	C ON	C ON	C ON	C ON	C ON			
C OFF	C OFF	C OFF	C OFF	C OFF	C OFF	C OFF	C OFF			
C INPUT	C INPUT	C INPUT	C INPUT	C INPUT	C INPUT	C INPUT	C INPUT			
STDBY	STDBY	STDBY	STDBY	STDBY	STDBY	STDBY	STDBY			
			<u> </u>							
					(m)					
Compiled SPI-Fi	rame: \$0000	(0000 0000 000	0 0000)	IN1	IN2	IN3	🗖 IN4			
Update mode	,		Vcc M	ode		Frame Detec	tion			
Manual	C Auto C	Polling	•	3.3V O 5V	r i i					
		-								
-										
Limp Home	Enable	Device								-
Update	Update All ON Global OFF All INPUT Global STDBY TER						Show auto	J o-generated ever	nts	
								About this S	offware	Exit
								MDOULTIN'S		LAR

www.BDfT://isemicorcom/ON/

TYPICAL CHARACTERISTICS

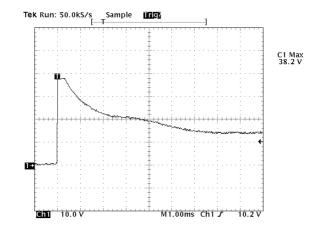


Figure 5. Typical Output Clamping Action

Typical Operation

Figure 5 above highlights the clamping action (clamped to 38.2 V) of the NCV7240 as the device turns off when driving an inductive load. In this case, a relay has turned off. The slight hump in the decaying waveform is caused from the mechanical relay action of the system.

Transmission Error (TER)

The NCV7240 device includes a transmission error detection feature whereby a transmission error (bit count not

a multiple of 8 [16 bit minimum]) is reported on the SO pin after CSB goes low until the first rising edge of SCLK. Detection can be performed by clicking on the TER button in the GUI.

Since SI is OR'd with the TER fault, it is important to understand that if the LSB bit (B0) is set high on the previous frame, the TER should be ignored. This is because SI holds the value of B0 until the first SCLK rising edge and TER is latched in before the first rising edge of SCLK.

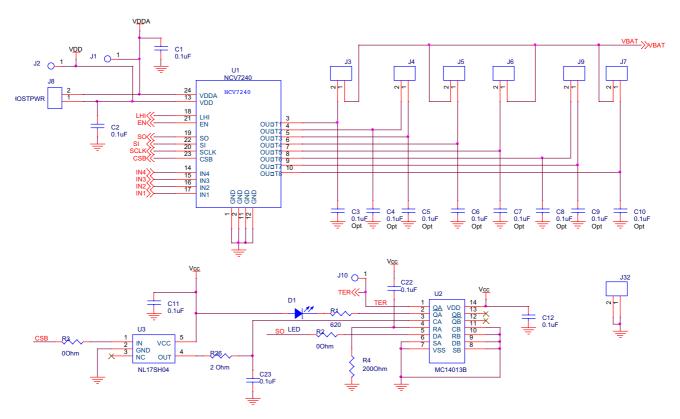
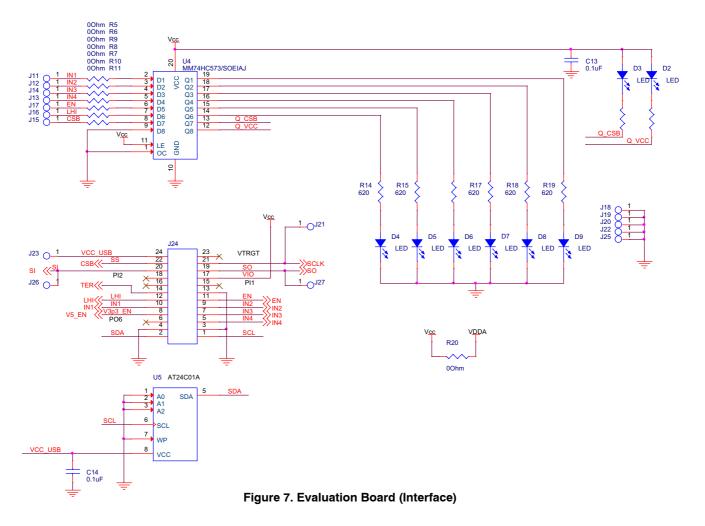



Figure 6. Evaluation Board (DUT)

www.BDhtp://dnsemil.comcom/ON/

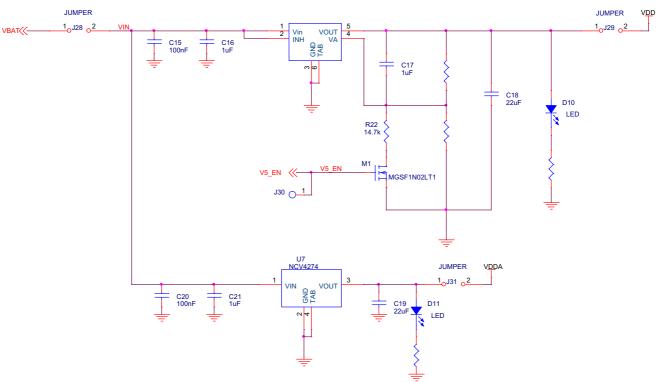


Figure 8. Evaluation Board (Power)

www.BDhtp://nemil.comcom/ON/

Bill of Materials (NCV7240 Evaluation Board)

Reference Designator(s)	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer's Part Number	Substitution Allowed	RoHS Compliant
C1 thru C15, C20, C22, C23	18	CAP CER .1UF 50V 10% X7R 0805	0.1uF	10%	805	Murata Electronics North America	GRM21BR71H104KA01L	Yes	Yes
C18, C19	2	CAP CER 22UF 16V X5R 1206	22uF	20%	1205	Murata Electronics North America	GRM31CR61C226ME15L	Yes	Yes
D1 thru D11	11	LED GREEN CLEAR THIN 0805 SMD	N/A	N/A	805	Lite-On Inc	LTST-C171GKT	Yes	Yes
J1, J2, J10 thru J23, J25, J26, J27, J30	20	TEST POINT PC MULTI PURPOSE RED	N/A	N/A	TP	Keystone Electronics	5010	Yes	Yes
J3 thru J9, J32	8	CONN TERM BLOCK 2POS 5.08MM PCB	N/A	N/A	MKDSN2	Phoenix Contact	1729128	No	Yes
J24	1	CONN HEADER VERT 24POS .100 GOLD	N/A	N/A	FRC24_VE RT	TE Connectivity	5499910-5	No	Yes
J28, J29, J31	3	CONN HEADER 2POS .100 VERT GOLD	N/A	N/A	JMP	Molex Connector Corporation	22-28-4024	Yes	Yes
M1	1	MOSFET N-CH 20V 750MA SOT23	20V / 0.75A	N/A	SOT23	ON Semiconductor	MGSF1N02LT1G	No	Yes
R1, R12 thru R19, R24, R25	11	RES 620 OHM 1/8W 1% 0805 SMD	620	1%	805	Vishay/Dale	CRCW0805620RFKEA	Yes	Yes
R2, R3, R5 thru R11	9	RES 0.0 OHM 1/10W 0503 SMD	0	Jumper	603	Panasonic- ECG	ERJ-3GEY0R00V	Yes	Yes
R4	1	RES 200 OHM 1/8W 1% 0805 SMD	200	1%	805	Vishay/Dale	CRCW0805200RFKEA	Yes	Yes
R20	1	RES 0.0 OHM 1/8W 0805 SMD	0	Jumper	805	Vishay/Dale	CRCW08050000Z0EA	Yes	Yes
R21	1	RES 10.0K OHM 1/8W 1% 0805 SMD	10.0K	1%	805	Vishay/Dale	CRCW080510K0FKEA	Yes	Yes
R22	1	RES 14.7K OHM 1/8W 1% 0805 SMD	14.7K	1%	805	Vishay/Dale	CRCW080514K7FKEA	Yes	Yes
R23	1	RES 30.9K OHM 1/8W 1% 0805 SMD	30.9K	1%	805	Vishay/Dale	CRCW080530K9FKEA	Yes	Yes
R26	1	RES 2.00 OHM 1/8W 1% 0805 SMD	2	1%	805	Vishay/Dale	CRCW08052R00FKEA	Yes	Yes
U1	1	Octal Low-Side Relay Driver	N/A	N/A	SSOF24	ON Semiconductor	NCV7240DPR2G	No	Yes
U2	1	IC FLIP-FLOP DUAL CMOS 14SOIC	N/A	N/A	SOIC14_N	ON Semiconductor	MC14013BDR2G	No	Yes
U3	1	Single Inverter	N/A	N/A	SOT-953	ON Semiconductor	NL17SH04P5T5G	No	Yes
U4	1	IC LATCH OCTAL D 3STATE 20-TSSOP	N/A	N/A	TSOP-20- 2	ON Semiconductor	MC74HC573ADTG	No	Yes
U5	1	IC EEPROM 1KBIT 1MHZ 8SOIC	N/A	N/A	SOIC8_N	ON Semiconductor	CAT93C56VI-GT3	No	Yes
U6	1	IC REG LDO 400MA ADJ D- PAK	N/A	N/A	DPAK5	ON Semiconductor	NCV4276BDTADJRKG	No	Yes
U7	1	IC REG LDO 400MA 5.0V DPAK	N/A	N/A	DPAK3	ON Semiconductor	NCV4274ADT50RKG	No	Yes

www.BDhtp://nemi.com.com/ON/

EVALUATION BOARD LAYOUT

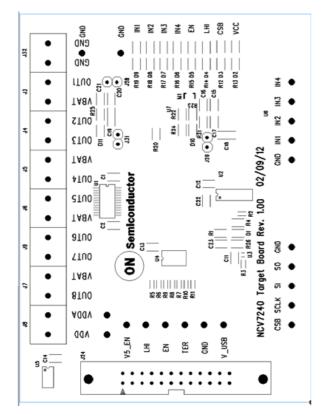


Figure 9. Silk Screen & Drill Holes

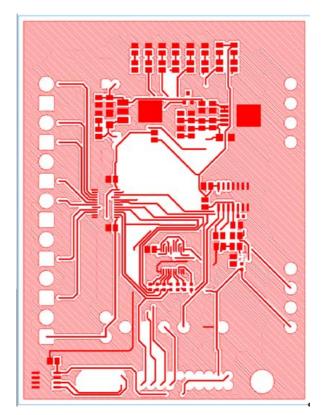


Figure 10. Top Copper

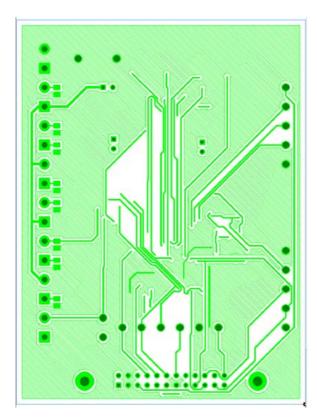


Figure 11. Bottom Copper

WWW.

B

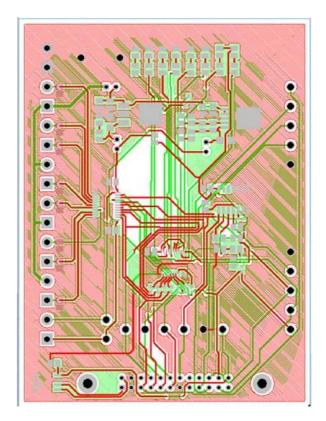


Figure 12. Board Composite

ntip://cnsiemi.com-

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent solut. Can an egging out of, directly or indirectly, any claim of personal injury or death aglocatic descrete the solut. Still claims and all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death aglocated with such unintended or unauthorized use opyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

WWW.BDTIC.com/ON/ EVBUM2052/D

Phone: 421 33 790 2910

Phone: 81-3-5817-1050

Japan Customer Focus Center