Alcohol Dehydrogenase Activity Colorimetric Assay Kit

(Catalog #K787-100; 100 reactions; Store kit at –20°C)

I. Introduction:

Alcohol dehydrogenase (Alcohol DH, ADH) (EC 1.1.1.1) is a group of seven dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD⁺ to NADH. In humans and many other animals, they serve to break down alcohols which could otherwise be toxic; in yeast and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation. BioVision's Alcohol Dehydrogenase Assay Kit provides a convenient tool for sensitive detection of the ADH in a variety of samples. In the assay ADH will utilize isopropanol as a substrate leading to a proportional color development. The activity of ADH can be easily quantified colorimetrically (λ = 450 nm). This assay detects ADH activity as low as 0.01 mU in samples.

II. Kit Contents:

Components	K787-100	Cap Code	Part No.
ADH Assay Buffer	25 ml	WM	K787-100-1
Substrate	1 ml	Blue	K787-100-2
Developer (Lyophilized)	1 vial	Red	K787-100-3
ADH Positive Control (Lyophilized)	1 vial	Green	K787-100-4
NADH Standard (0.5 µmol, Lyophilized)	1 vial	Yellow	K787-100-5

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow ADH Assay Buffer to warm to room temperature before use. Briefly centrifuge vials prior to opening. Read the entire protocol before performing the assay.

IV. Reagent Reconstitution and General Consideration:

- Reconstitute Developer with 0.9 ml of ddH₂O. Pipette up and down several times to completely dissolve the pellet into solution (**Do not vortex**).
- Reconstitute the ADH Positive Control with 220 μl Assay Buffer; Keep on ice during the preparation and protect from light. Aliquot and store -20°C.
- Reconstitute the NADH with 50 µl ddH₂O to generate a 10 mM NADH stock solution.
- The ADH Positive Control and the Developer are stable for up to 2 months at -20°C after reconstitution or freeze-thaw cycles (< 5 times). Substrate & reconstituted NADH (10 mM) are stable for up to 6 months at -20°C.

V. Alcohol Dehydrogenase Assay Protocol:

- 1. **NADH Standard Curve:** Dilute 10 μl of the 10 mM NADH stock solution with 90 μl of ADH Assay Buffer to generate 1 mM NADH standard. Add 0, 2, 4, 6, 8, 10 μl of the 1 mM NADH standard into a 96-well plate in duplicate to generate 0, 2, 4, 6, 8, 10 nmol/well standards. Adjust the final volume to 50 μl with Assay Buffer.
- 2. **Sample Preparations:** Tissues (50 mg) or cells (1 x 10⁶) can be homogenized in ~ 200µl ice-cold Assay Buffer then centrifuged (13,000 x g, 10 min) to remove insoluble material. Add 2 50 µl samples into 96-well plate. For the positive control (optional), dilute Positive Control 1:9 by adding 2 µl of Positive Control to 18 µl Assay Buffer. Add 2-10 µl of diluted positive control solution to desired well(s). For serum sample, 5 50 µl serum can be directly tested. Adjust the final volume of test samples to 50 µl/well with Assay Buffer in the 96-well plate.

Notes:

A) We suggest testing several doses of your sample to make sure the readings are within the linear range of the standard curve.

B) NAD(P)H or other enzymes in samples may give non-specific readings, set up the background control (see next step below) to subtract the non-specific background interference in samples.

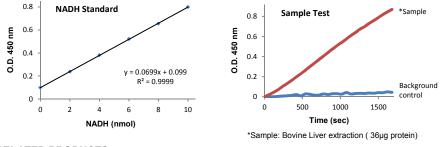
3. **Reaction Mix:** Mix enough reagents for the number of assays to be performed. For each well, prepare a Reaction Mix (100 µl) containing:

Reaction Mix		
82 µl ADH Assay Buffer		
8 µl Developer		
10 µl Substrate		

92 μl ADH Assay Buffer 8 μl Developer

Background Control Mix

Add 100 μ l of the Reaction Mix to each well containing the test samples, positive controls, and standards; add 100 μ l of the Background Control Mix to each well containing the background control samples. Mix well.


- 4. Measurement: Incubate the mix for 3 min at 37°C, then measure OD at 450 nm in a microplate reader (A₀), incubate for another 30 mins to 2 hrs at 37°C and measure OD at 450 nm again (A₁), (incubation times will depend on the ADH activity in the samples). We recommend measuring the OD in a kinetic method (preferably every 3 5 min.) and choose the period of linear range within the standard curve to calculate the ADH activity of the samples. The NADH Standard Curve can read in Endpoint Mode (i.e., at the end of the incubation time).
- 5. **Calculation:** Subtract the 0 Standard value from all readings (standards and test samples). Plot NADH standard Curve. Calculate the OD increase by the test samples: $\Delta OD = A_1 A_0$, apply the ΔOD to the NADH standard curve to get B nmol of NADH generated by ADH during the reaction time ($\Delta T = T_2 T_1$).

ADH Activity = $\frac{B}{\Delta T \times V}$ × Sample Dilution Factor = nmol/min/ml = mU/ml

Where:B is the NADH amount generated by ADH (in nmol).T is the time of reaction (in minute).

V is the sample volume added into the reaction well (in ml).

Unit Definition: One unit is the amount of enzyme that will generate 1.0 µmol of NADH per min at pH 8 at 37°C.

RELATED PRODUCTS:

NAD/NADH Quantification Kit Glucose Assay Kit Ethanol Assay Kit Lactate Assay Kit L-amino Acid Assay Kit NADP/NADPH Quantification Kit ADP/ATP Ratio Assay Kit Pyruvate Assay Kit Lactate Assay Kit II Glutamate Kit

FOR RESEARCH USE ONLY! Not to be used on humans.

BioVision

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution	
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature	
	Omission of a step in the protocol	Refer and follow the data sheet precisely	
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument	
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates	
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples	
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope	
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot if needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix	
	Pipetting errors in the standard	Avoid pipetting small volumes	
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible	
	Air bubbles formed in well	Pipette gently against the wall of the tubes	
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet	
	Calculation errors	Recheck calculations after referring the data sheet	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Samples contain interfering substances	Troubleshoot if it interferes with the kit	
	Use of incompatible sample type	• Refer data sheet to check if sample is compatible with the kit or optimization is needed	
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range	
Note: The most probable list of caus	es is under each problem section. Causes/ Solutions may overlap	with other problems.	