
US006604156B1 

(12) United States Patent 
Slivkoff et al. 

US 6,604,156 B1 
*Aug. 5, 2003 

(10) Patent N0.: 
(45) Date of Patent: 

(54) MESSAGE BUFFER FULL HANDLING IN A 
CAN DEVICE THAT EMPLOYS 
RECONFIGURABLE MESSAGE BUFFERS 

(75) Inventors: William J. Slivko?', San Jose, CA 
(US); Neil Edward Birns, Cupertino, 
CA (US) 

Koninklijke Philips Electronics N.V., 
Einhoven (NL) 

(73) Assignee: 

ot1ce: u ect to an 1sc a1mer, t e term 0 t 1s * N ' s bj yd' 1 ' h r h' 

patent is extended or adjusted under 35 
U.S.C. 154(b) by 376 days. 

This patent is subject to a terminal dis 
claimer. 

(21) 
(22) 

Appl. No.: 09/630,289 

Filed: Aug. 1, 2000 

Related US. Application Data 
Provisional application No. 60/154,022, ?led on Sep. 15, 
1999. 

Int. Cl.7 .............................................. .. G06F 13/14 

US. Cl. ....................... .. 710/57; 710/116; 710/240; 

365/244; 365/230.8; 700/19; 700/55 
Field of Search ........................ .. 710/57, 116, 240; 

365/244, 230.8; 700/19, 55 

(60) 

(51) 
(52) 

(58) 

References Cited 

U.S. PATENT DOCUMENTS 

8/1993 
9/1994 
2/1996 
4/1996 
1/1997 
4/1997 

* 12/1998 

4/2001 
3/2002 

(56) 

5,233,688 
5,349,683 
5,493,451 
5,511,214 
5,598,578 
5,617,118 
5,854,454 A 
6,216,172 B1 * 
6,363,083 B1 * 

Too .......................... .. 395/161 

Wu et al. ................. .. 395/800 

Cosey, Sr. ................ .. 359/817 

Yamada 395/800 
Hatta 395/835 
Thompson 345/200 
Upender et al. .. 187/247 
Kolblin et al. ..... .. 709/253 

Spielbauer et al. ....... .. 370/470 

* cited by examiner 

I. _________________________ _ _ 

| 

Primary Examiner—Abdelmoniem Elamin 

(57) ABSTRACT 

A CAN microcontroller that supports a plurality of message 
objects, and that includes a processor core that runs CAN 
applications, a plurality of message buffers associated With 
respective ones of the message objects, a CAN/CAL module 
that processes incoming messages that include a plurality of 
frames, each frame having a maximum number n of data 
bytes, and a plurality of message object registers associated 
With each of the message objects, including at least one 
buffer siZe register that contains a message buffer siZe value 
that speci?es the siZe of the message buffer associated With 
that message object, and at least one buffer location register 
that contains an address pointer that points to an address of 
the storage location in the message buffer associated With 
that message object Where the next data byte of the current 
incoming message is to be stored. The CAN/CAL module 
includes a message handling function that transfers succes 
sive frames of the current incoming message to the message 
buffer associated With a selected one of the message objects 
designated as a receive message object for the current 
incoming message, a frame status detection function that 
detects Whether or not the current frame of the current 
incoming message is the ?nal frame of the current incoming 
message, and a buffer-full detection function. The buffer-full 
detection function, in response to a detection that the current 
frame of the current incoming message is not the ?nal frame 
of the current incoming message, determines the number of 
available bytes of remaining storage capacity in the message 
buffer associated With the designated receive message object 
for the current incoming message, and declares a message 
buffer-full condition if the determined number of available 
bytes is less than the maximum number n of data bytes. The 
CAN/CAL module further includes a message buffer-full 
interrupt generator function that generates a message buffer 
full interrupt to the processor core in response to a decla 
ration of a message buffer-full condition. 

21 Claims, 7 Drawing Sheets 
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MMRs 
MMR name I R/W? J Reset lAecess lAddressOilsel IDeseription 

Message Object Registers (n = O - 3i) 
MnMlDH R/W x....xOOb Word only OOOn4n3n2n1ng0O00b(n0h] MessagenMaiohlD High 
MnMlDL R/W xxxxh Word only 000il4ll3ll2ll1llg0010blli2h) MessagenMatchlDLow 
MnMSKH R/W x....xOOOb Word only OOOn4n3n2n1ngOiOOb(n4h) MessagenMask High 
MnMSKL R/W xxxxh Word only 000li4ll3ll2tl1lig0110b(h6h) MessagenMaskLow 
MnCTL R/W OOOOOxxxb Byte/Word O0On4n3n2n1ngiOOObmBh) MessagenControl 
MnBLR R/W xxxxh Word only OO0n4n3n2n1ngl0lOb(nAh) MessagenBulierLocalion 
MnBSZ R/W OOOOOxxxb Byte/Word 0OOn4n3n2n1ngliOOb(nCh) MessagenBullerSize 
MnFCR R/W OOxxxxxxb Byte/Word OOOn4n3n2n1ng1i1Ob(nEh) MessagenFragmenlationCounl 

ClC Registers 
MCPLL R/C OOOOh Byte/Word 224h Message Complete Low 
MCPLH R/C OOOOh Byte/Word 226h Message Complete High 
CANlNTFLG R/C OOOOh Byte/Word 228h CAN interrupt Flag Register 
MClR RO OOOOh Byte/Word 229h Message Complete lnlo Reg. 
MEIR R0 OOOOh Byte/Word 22Ah Message Error lnlo Register 
FESTR R/C OOOOh Byte/Word 22Ch Frame Error Status Register 
FEENR R/W OOOOh Byte/Word 22Eh Frame Error Enable Register 

SCP/SPI Registers 
SPlCFG R/W OOOOh Byte/Word 260h SCP/SPI Conliguration 
SPlDATA R/W OOh Byte/Word 262h SCP/SPI Data 
SPlCS R/W 00h Byte/Word 263h SCP/SPI Control and Status 

OCR Registers 
CANCMR R/W Olh Byte/Word 270h CAN Command Register 
CANSTR R/O 00h Byte/Word 27th CAN Status Register 
CANBTR R/W 00h Byte/Word 272h CAN Bus liming Reg. (low) 
- R/W 00h Byte/Word 273h CAN Bus liming Reg. (high) 
TXERC R/W* OOh Byte/Word 27Ah Tx Error Counter 
RXERC Fl/W* OOh Byte/Word 275h Rx Error Counter 
EWLR R/W 96h Byte/Word 276h Error Warning Limit Register 
ECCR R0 OOOOh Byte/Word 278h Error Code Capture Register 
ALCR R0 OOOOh Byte/Word 27Ah Arbitration Lost Capture Reg. 
RTXDTM WO OOOOh Byte/Word 27Ch RTX Data Test Mode 
BCTL R/W OOOOh Byte/Word 27Eh Global Control Byte 

MlF Registers 
XRAMB R/W FEh Byte/Word 290h XRAM Base Address 
MBXSR R/W FFh Byte/Word 29th Msg. Butt/XRAM Seg. Reg. 
MlFBTRL R/W EFh Byte/Word 292h MlF Bus Timing Reg. Low 
MIFBTRH R/W FFh Byte/Word 293h MlF Bus Timing Reg. High 

Legend: R/W = Read &Write, R0 = Read Only, WO = Write Only, R/C = Read & Clear, W* = Writable only during G 4 
CAN Reset mode, x = undefined alter reset. - 
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Data Memory Segment 0 
OOFFFFh r_J_L.l_|._|_l_l_l 

Ott-Chip 

4K Bytes Space 

FFH'ITIT MMR Base Address 

Off-Chip 

512 BytesT XRAM 
I'I‘I'FI'FIT XRAM Base Address 

Ott-Chip 
OOOSFFh .LLLLLLLJ 

Off-Chip Data Memory 
(Scratch Pad) 

OOOOOOh 

MMR Space 
Ottset FFFh —> 

Offset 1 FFh --—> 
512 Bytes Object Registers 

|——— <———— Ottset OOOh 
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Object 0 Match ID Field (MnMlDH and MnMIDL) 
Mid28 — Mid18 Mid17- MidiO Mid9 — Mid2 Midi MidO MIDE 

Object n Mask Field (MnMSKH and MnMSKL) 
Msk28 — Msk18 Msk17 — Msk10 Msk9 — Msk2 Mskl MskO 

Sereener ID Field (assembled from incoming bit-stream) 
CAN iD.28 — CAN |D.18 Data Byte 1 [7:01 Data Byte 2 [7:0] x x IDE 

FIG.9 

Object n Match ID Field (MnMlDH and MnMlDL) 
Mid28 — Mid18 Midi? — MidiO Mid9 — Mid2 Midi Midi) MIDE 

Object n Mask Field (MnMSKH and MnMSKL) 
Msk28 - Mski8 Mskt? — Msk10 Msk9 — Msk2 Mskt MskO 

Screener ID Field (assembled from incoming bit-stream) 
CAN iD.28 — CAN |D.0 IDE 

FIG. 10 
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Byte negate 
Data Byte 2 ADDRESS 
Data Byte 3 

Data Byte DLC 

Data Byte 2 (next) 
Data Byte 3 (next) 

FIG. 11 

DIRECTION OF 
Framelnto INCREASING 
Data Byte 1 ADDRESS 
Data Byte 2 

Data Byte DLC 
Frametnto (next) 
Data Byte 1 (next) 
Data Byte 2 (next) 

FIG. 12 
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MESSAGE BUFFER FULL HANDLING IN A 
CAN DEVICE THAT EMPLOYS 

RECONFIGURABLE MESSAGE BUFFERS 

This application claims the full bene?t and priority of 
US. Provisional Application Ser. No. 60/154,022, ?led on 
Sep. 15, 1999, the disclosure of Which is fully incorporated 
herein for all purposes. 

BACKGROUND OF THE INVENTION 

The present invention relates generally to the ?eld of data 
communications, and more particularly, to the ?eld of serial 
communications bus controllers and microcontrollers that 
incorporate the same. 

CAN (Control Area Network) is an industry-standard, 
tWo-Wire serial communications bus that is Widely used in 
automotive and industrial control applications, as Well as in 
medical devices, avionics, office automation equipment, 
consumer appliances, and many other products and appli 
cations. CAN controllers are currently available either as 
stand-alone devices adapted to interface With a microcon 
troller or as circuitry integrated into or modules embedded 
in a microcontroller chip. Since 1986, CAN users (softWare 
programmers) have developed numerous high-level CAN 
Application Layers (CALs) Which eXtend the capabilities of 
the CAN While employing the CAN physical layer and the 
CAN frame format, and adhering to the CAN speci?cation. 
CALs have heretofore been implemented primarily in 
softWare, With very little hardWare CAL support. 
Consequently, CALs have heretofore required a great deal of 
host CPU intervention, thereby increasing the processing 
overhead and diminishing the performance of the host CPU. 

Thus, there is a need in the art for a CAN hardWare 
implementation of CAL functions normally implemented in 
softWare in order to offload these tasks from the host CPU 
to the CAN hardWare, thereby enabling a great savings in 
host CPU processing resources and a commensurate 
improvement in host CPU performance. One of the most 
demanding and CPU resource-intensive CAL functions is 
message management, Which entails the handling, storage, 
and processing of incoming CAL/CAN messages received 
over the CAN serial communications bus and/or outgoing 
CAL/CAN messages transmitted over the CAN serial com 
munications bus. CAL protocols, such as DeviceNet, 
CANopen, and OSEK, deliver long messages distributed 
over many CAN frames, Which methodology is sometimes 
referred to as “fragmented” or “segmented” messaging. The 
process of assembling such fragmented, multi-frame mes 
sages has heretofore required a great deal of host CPU 
intervention. In particular, CAL softWare running on the host 
CPU actively monitors and manages the buffering and 
processing of the message data, in order to facilitate the 
assembly of the message fragments or segments into com 
plete messages. 

Based on the above and foregoing, it can be appreciated 
that there presently eXists a need in the art for a hardWare 
implementation of CAL functions normally implemented in 
softWare in order to offload these tasks from the host CPU, 
thereby enabling a great savings in host CPU processing 
resources and a commensurate improvement in host CPU 
performance. 

The assignee of the present invention has recently devel 
oped a neW microcontroller product, designated “XA-C3”, 
that ful?lls this need in the art. The XA-C3 is the neWest 
member of the Philips XA(eXtended Architecture) family of 
high performance 16-bit single-chip microcontrollers. It is 
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2 
believed that the XA-C3 is the ?rst chip that features 
hardWare CAL support. 
The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B micro 

controller that incorporates a number of different inventions, 
including the present invention. These inventions include 
novel techniques and hardWare for ?ltering, buffering, 
handling, and processing CAL/CAN messages, including 
the automatic assembly of multi-frame fragmented mes 
sages With minimal CPU intervention, as Well as for man 
aging the storage and retrieval of the message data, and the 
memory resources utiliZed therefor. In particular, the XA-C3 
CAN module has the unique ability to track and reassemble 
the packets constituting a fragmented message, completely 
in hardWare, only interrupting the CPU (processor core) 
once a complete, multi-frame message is received and 
assembled. This tremendously reduces the processor band 
Width required for message handling, thereby signi?cantly 
increasing available bandWidth for other tasks, so that sys 
tem performance is greatly enhanced. 
The present invention relates to a scheme employed by 

the XA-C3 microcontroller to handle a message buffer full 
condition in such a manner that ensures no loss of data, 
While minimiZing the required processor intervention. 

SUMMARY OF THE INVENTION 

The present invention encompasses a CAN microcontrol 
ler that supports a plurality of message objects, and that 
includes a processor core that runs CAN applications, a 
plurality of message buffers associated With respective ones 
of the message objects, a CAN/CAL module that processes 
incoming messages that include a plurality of frames, each 
frame having a maXimum number n of data bytes, and a 
plurality of message object registers associated With each of 
the message objects, including at least one buffer siZe 
register that contains a message buffer siZe value that 
speci?es the siZe of the message buffer associated With that 
message object, and at least one buffer location register that 
contains an address pointer that points to an address of the 
storage location in the message buffer associated With that 
message object Where the neXt data byte of the current 
incoming message is to be stored. 
The CAN/CAL module includes a message handling 

function that transfers successive frames of the current 
incoming message to the message buffer associated With a 
selected one of the message objects designated as a receive 
message object for the current incoming message, a frame 
status detection function that detects Whether or not the 
current frame of the current incoming message is the ?nal 
frame of the current incoming message, and a buffer-full 
detection function. The buffer-full detection function, in 
response to a detection that the current frame of the current 
incoming message is not the ?nal frame of the current 
incoming message, determines the number of available 
bytes of remaining storage capacity in the message buffer 
associated With the designated receive message object for 
the current incoming message, and declares a message 
buffer-full condition if the determined number of available 
bytes is less than the maXimum number n of data bytes. 

The CAN /CAL module further includes a message buffer 
full interrupt generator function that generates a message 
buffer-full interrupt to the processor core in response to a 
declaration of a message buffer-full condition. 

In a presently preferred embodiment, the buffer-full detec 
tion function determines the number of available bytes of 
remaining storage capacity in the message buffer associated 
With the designated receive message object for the current 
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incoming message by subtracting prescribed bits of the 
address pointer contained in the at least one buffer location 
register associated With the designated receive message 
object for the current incoming message, from the message 
buffer siZe value contained in the at least one buffer siZe 
register associated With the designated receive message 
object for the current incoming message. Additionally, in the 
presently preferred embodiment, the frame status detection 
function detects Whether the current frame of the current 
incoming message is the ?nal frame of the current incoming 
message by deriving that information from the header por 
tion of the current frame of the current incoming message. 

In the presently preferred embodiment, the CAN/CAL 
module further includes a message-complete interrupt gen 
erator function that generates a message-complete interrupt 
to the processor core in response to the frame status detec 
tion function detecting that the current frame of the current 
incoming message is the ?nal frame of the current incoming 
message. Additionally, in the presently preferred 
embodiment, the CAN/CAL module further includes an 
address pointer increment function that, in response to a 
transfer of the current data byte to the message buffer 
associated With the designated receive message object for 
the current incoming message, automatically increments the 
address pointer to the address of the storage location in that 
message buffer Where the next data byte of the current 
incoming message is to be stored. 

Preferably, the siZe of each message buffer can be selected 
by the user by programming a selected message buffer siZe 
value into the at least one message buffer siZe register 
associated With that message buffer, and the base address of 
each message buffer can be selected by the user by pro 
gramming the address pointer associated With that message 
buffer to point to a selected base address. 

In the presently preferred embodiment, the CAN/CAL 
module further includes a buffer-full handling function that, 
in response to a declaration of a message buffer-full 
condition, determines a current byte count that indicates the 
number of data bytes of the current incoming message that 
have already been stored in the message buffer associated 
With the designated receive message object at the time the 
message buffer-full condition is declared, resets the address 
pointer contained in the at least one buffer location register 
associated With the designated receive message object to the 
base address, Writes the current byte count into the message 
buffer associated With the designated receive message 
object, in the storage location corresponding to the base 
address, and generates a message buffer-full interrupt. 

Preferably the current CAN application running on the 
processor core is provided With tWo options as to hoW to 
respond to the message buffer-full interrupt. Under the ?rst 
option, in response to the message buffer-full interrupt, the 
current CAN application reads the entire contents of the 
designated receive message buffer, and then transfers the 
read-out entire contents to another storage location in the 
data memory space, thereby freeing up the designated 
receive message buffer to store the at least one remaining 
frame of the current incoming message. Under the second 
option, the current CAN application, in response to the 
message buffer-full interrupt, modi?es the base address of 
the designated receive message buffer by replacing the 
current base address With a neW base address, Whereby the 
designated receive message buffer consists of a ?rst buffer 
portion starting With the current base address, and a second 
buffer portion starting With the neW base address. 

Preferably, the current CAN application, in response to 
the message-complete interrupt, retrieves a ?rst number of 

10 

15 

25 

35 

45 

55 

65 

4 
the data bytes of the current incoming message from the ?rst 
buffer portion, and retrieves a second number of the data 
bytes of the current incoming message from the second 
buffer portion, Where the ?rst number is the current byte 
count. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and various other aspects, features, and advantages 
of the present invention Will be readily understood With 
reference to the folloWing detailed description of the inven 
tion read in conjunction With the accompanying draWings, in 
Which: 

FIG. 1 is a diagram illustrating the format of a Standard 
CAN Frame and the format of an Extended CAN Frame; 

FIG. 2 is a diagram illustrating the interleaving of CAN 
Data Frames of different, unrelated messages; 

FIG. 3 is a high-level, functional block diagram of the 
XA-C3 microcontroller; 

FIG. 4 is a table listing all of the Memory Mapped 
Registers (MMRs) provided by the XA-C3 microcontroller; 

FIG. 5 is a diagram illustrating the mapping of the overall 
data memory space of the XA-C3 microcontroller; 

FIG. 6 is a diagram illustrating the MMR space contained 
Within the overall data memory space of the XA-C3 micro 
controller; 

FIG. 7 is a diagram illustrating formation of the base 
address of the on-chip XRAM of the XA-C3 
microcontroller, With an object n message buffer mapped 
into off-chip data memory; 

FIG. 8 is a diagram illustrating formation of the base 
address of the on-chip XRAM of the XA-C3 
microcontroller, With an object n message buffer mapped 
into the on-chip XRAM; 

FIG. 9 is a diagram illustrating the Screener ID Field for 
a Standard CAN Frame; 

FIG. 10 is a diagram illustrating the Screener ID Field for 
an Extended CAN Frame; 

FIG. 11 is a diagram illustrating the message storage 
format for fragmented CAL messages; and, 

FIG. 12 is a diagram illustrating the message storage 
format for fragmented CAN messages. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The present invention is described beloW in the context of 
a particular implementation thereof, i.e., in the context of the 
XA-C3 microcontroller manufactured by Philips Semicon 
ductors. Of course, it should be clearly understood that the 
present invention is not limited to this particular 
implementation, as any one or more of the various aspects 
and features of the present invention disclosed herein can be 
utiliZed either individually or any combination thereof, and 
in any desired application, e.g., in a stand-alone CAN 
controller device or as part of any other microcontroller or 
system. 
The folloWing terms used herein in the context of describ 

ing the preferred embodiment of the present invention (i.e., 
the XA-C3 microcontroller) are de?ned as folloWs: 
Standard CAN Frame: The format of a Standard CAN Frame 

is depicted in FIG. 1. 
Extended CAN Frame: The format of an Extended CAN 
Frame is also depicted in FIG. 1. 

Acceptance Filtering: The process a CAN device imple 
ments in order to determine if a CAN frame should be 
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accepted or ignored and, if accepted, to store that frame in 
a pre-assigned Message Object. 

Message Object: A Receive RAM buffer of pre-speci?ed 
siZe (up to 256 bytes for CAL messages) and associated 
With a particular Acceptance Filter or, a Transmit RAM 
buffer Which the User preloads With all necessary data to 
transmit a complete CAN Data Frame. AMessage Object 
can be considered to be a communication channel over 
Which a complete message, or a succession of messages, 
can be transmitted. 

CAN Arbitration ID: An 11-bit (Standard CAN 2.0 Frame) 
or 29-bit (Extended CAN 2.0B Frame) identi?er ?eld 
placed in the CAN Frame Header. This ID ?eld is used to 
arbitrate Frame access to the CAN bus. Also used in 
Acceptance Filtering for CAN Frame reception and 
Transmit Pre-Arbitration. 

Screener ID: A 30-bit ?eld extracted from the incoming 
message Which is then used in Acceptance Filtering. The 
Screener ID includes the CAN Arbitration ID and the IDE 
bit, and can include up to 2 Data Bytes. These 30 extracted 
bits are the information quali?ed by Acceptance Filtering. 

Match ID: A 30-bit ?eld pre-speci?ed by the user to Which 
the incoming Screener ID is compared. Individual Match 
IDs for each of 32 Message Objects are programmed by 
the user into designated Memory Mapped Registers 
(MMRs). 

Mask: A 29-bit ?eld pre-speci?ed by the user Which can 
override (Mask) a Match ID comparison at any particular 
bit (or, combination of bits) in an Acceptance Filter. 
Individual Masks, one for each Message Object, are 
programmed by the user in designated MMRs. Individual 
Mask patterns assure that single Receive Objects can 
Screen for multiple acknoWledged CAL/ CAN Frames and 
thus minimiZe the number of Receive Objects that must 
be dedicated to such loWer priority Frames. This ability to 
Mask individual Message Objects is an important neW 
CAL feature. 

CAL: CAN Application Layer. A generic term for any 
high-level protocol Which extends the capabilities of CAN 
While employing the CAN physical layer and the CAN 
frame format, and Which adheres to the CAN speci?ca 
tion. Among other things, CALs permit transmission of 
Messages Which exceed the 8 byte data limit inherent to 
CAN Frames. This is accomplished by dividing each 
message into multiple packets, With each packet being 
transmitted as a single CAN Frame consisting of a maxi 
mum of 8 data bytes. Such messages are commonly 
referred to as “segmented” or “fragmented” messages. 
The individual CAN Frames constituting a complete 
fragmented message are not typically transmitted in a 
contiguous fashion, but rather, the individual CAN 
Frames of different, unrelated messages are interleaved on 
the CAN bus, as is illustrated in FIG. 2 

Fragmented Message: A lengthy message (in excess of 8 
bytes) divided into data packets and transmitted using a 
sequence of individual CAN Frames. The speci?c Ways 
that sequences of CAN Frames construct these lengthy 
messages is de?ned Within the context of a speci?c CAL. 
The XA-C3 microcontroller automatically re-assembles 
these packets into the original, lengthy message in hard 
Ware and reports (via an interrupt) When the completed 
(re-assembled) message is available as an associated 
Receive Message Object. 

Message Buffer: A block of locations in XA Data memory 
Where incoming (received) messages are stored or Where 
outgoing (transmit) messages are staged. 

MMR: Memory Mapped Register. An on-chip command/ 
control/status register Whose address is mapped into XA 
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6 
Data memory space and is accessed as Data memory by 
the XA processor. With the XAC3 microcontroller, a set 
of eight dedicated MMRs are associated With each Mes 
sage Object. Additionally, there are several MMRs Whose 
bits control global parameters that apply to all Message 
Objects. 
With reference noW to FIG. 3, there can be seen a 

high-level block diagram of the XA-C3 microcontroller 20. 
The XA-C3 microcontroller 20 includes the folloWing func 
tional blocks that are fabricated on a single integrated circuit 
(IC) chip packaged in a 44-pin PLCC or a 44-pin LQFP 
package: 

an XA CPU Core 22, that is currently implemented as a 
16-bit fully static CPU With 24-bit program and data 
address range, that is upWardly compatible With the 
80C51 architecture, and that has an operating fre 
quency of up to 30 MHZ; 

program or code memory 24 that is currently imple 
mented as a 32K ROM/EPROM, and that is 
bi-directionally coupled to the XA CPU Core 22 via an 
internal Program bus 25. A map of the code memory 
space is depicted in FIG. 4; 

a Data RAM 26 (internal or scratch pad data memory) that 
is currently implemented as a 1024 Byte portion of the 
overall XA-C3 data memory space, and that is 
bi-directionally coupled to the XA CPU Core 22 via an 
internal DATA bus 27; 

an on-chip message buffer RAM or XRAM 28 that is 
currently implemented as a 512 Byte portion of the 
overall XA-C3 data memory space Which may contain 
part or all of the CAN/CAL (Transmit & Receive 
Object) message buffers; 

a Memory Interface (MIF) unit 30 that provides interfaces 
to generic memory devices such as SRAM, DRAM, 
?ash, ROM, and EPROM memory devices via an 
external address/data bus 32, via an internal Core Data 
bus 34, and via an internal MMR bus 36; 

a DMA engine 38 that provides 32 CAL DMA Channels; 
a plurality of on-chip Memory Mapped Registers 
(MMRs) 40 that are mapped to the overall XA-C3 data 
memory space—a 4K Byte portion of the overall 
XA-C3 data memory space is reserved for MMRs. 
These MMRs include 32 (Message) Object or Address 
Pointers and 32 ID Screeners or Match IDs, corre 
sponding to the 32 CAL Message Objects. A complete 
listing of all MMRs is provided in the Table depicted in 
FIG. 5; 

a 2.0B CAN/DLL Core 42 that is the CAN Controller 
Core from the Philips SJA1000 CAN (2.0A/B) Data 
Link Layer (CDLL) device (hereinafter referred to as 
the “CAN Core Block” (CCB)); and, 

an array of standard microcontroller peripherals that are 
bi-directionally coupled to the XA CPU Core 22 via a 
Special Function Register (SFR) bus 43. These stan 
dard microcontroller peripherals include Universal 
Asynchronous Receiver Transmitter (UART) 49, an 
SPI serial interface (port) 51, three standard timers/ 
counters With toggle output capability, namely, Timer 0 
& Timer 1 included in Timer block 53, and Timer 2 
included in Timer block 54, a Watchdog Timer 55, and 
four 8-bit I/O ports, namely, Ports 0—3 included in 
block 61, each of Which has 4 programmable output 
con?gurations. 

The DMA engine 38, the MMRs 40, and the CCB 42 can 
collectively be considered to constitute a CAN / CAL module 
77, and Will be referred to as such at various times through 
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out the following description. Further, the particular logic 
elements Within the CAN/CAL module 77 that perform 
“message management” and “message handling” functions 
Will sometimes be referred to as the “message management 
engine” and the “message handler”, respectively, at various 
times throughout the folloWing description. Other nomen 
clature Will be de?ned as it introduced throughout the 
folloWing description. 
As previously mentioned, the XA-C3 microcontroller 20 

automatically implements, in hardWare, many message man 
agement and other functions that Were previously only 
implemented in softWare running on the host CPU (or not 
implemented at all), including transparent, automatic 
re-assembly of up to 32 concurrent, interleaved, multi 
frame, fragmented CAL messages. For each application that 
is installed to run on the host CPU (i.e., the XA CPU Core 
22), the user (softWare programmer) must set-up the hard 
Ware for performing these functions by programming certain 
ones of the MMRs and SFRs in the manner set forth in the 
XA-C3 Functional Speci?cation and XA-C3 CAN Transport 
Layer Controller User Manual. The register programming 
procedures that are most relevant to an understanding of the 
present invention are described beloW, folloWed by a 
description of the various message management and other 
functions that are automatically performed by the CAL/ 
CAN module 77 during operation of the XA-C3 microcon 
troller 20 after it has been properly set-up by the user. 
FolloWing these sections, a more detailed description of the 
particular invention to Which this application is directed is 
provided. 
Set-up/Programming Procedures 
As an initial matter, the user must map the overall XA-C3 

data memory space, as illustrated in FIG. 5. In particular, 
subject to certain constraints, the user must specify the 
starting or base address of the XRAM 28 and the starting or 
base address of the MMRs 40. The base address of the 
MMRs 40 can be speci?ed by appropriately programming 
Special Function Registers (SFRs) MRBL and MRBH. The 
base address of the XRAM 28 can be speci?ed by appro 
priately programming the MMRs designated MBXSR and 
XRAMB (see FIG. 4). 

The user can place the 4 KByte space reserved for MMRs 
40 anyWhere Within the entire 16 Mbyte data memory space 
supported by the XA architecture, other than at the very 
bottom of the memory space (i.e., the ?rst 1 KByte portion, 
starting address of 000000h), Where it Would con?ict With 
the on-chip Data RAM 26 that serves as the internal or 
scratch-pad memory. The 4 KBytes of MMR space Will 
alWays start at a 4 K boundary. The reset values for MRBH 
and MRBL are OFh and FOh, respectively. Therefore, after a 
reset, the MMR space is mapped to the uppermost 4 K Bytes 
of Data Segment OFh, but access to the MMRs 40 is 
disabled. The ?rst 512 Bytes (offset 000h—1FFh) of MMR 
space are the Message Object Registers (eight per Message 
Object) for objects n=0—31, as is shoWn in FIG. 6. 

The base address of the XRAM 28 is determined by the 
contents of the MMRs designated MBXSR and XRAMB, as 
is shoWn in FIGS. 7 and 8. As previously mentioned, the 512 
Byte XRAM 28 is Where some (or all) of the 32 (RX/T X) 
message buffers (corresponding to Message Objects n 
=0—3 1) reside. The message buffers can be eXtended off-chip 
to a maXimum of 8 KBytes. This off-chip expansion capa 
bility can accommodate up to thirty-tWo, 256-Byte message 
buffers. Since the uppermost 8 bits of all message buffer 
addresses are formed by the contents of the MBXSR 
register, the XRAM 28 and all 32 message buffers must 
reside in the same 64 K Byte data memory segment. Since 
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8 
the XA-C3 microcontroller 20 only provides address lines 
A0—A19 for accessing eXternal memory, all eXternal 
memory addresses must be Within the loWest 1 MByte of 
address space. Therefore, if there is eXternal memory in the 
system into Which any of the 32 message buffers Will be 
mapped, then all 32 message buffers and the XRAM 28 must 
also be mapped entirely into that same 64 K Byte segment, 
Which must be beloW the 1 MByte address limit. 

After the memory space has been mapped, the user can 
set-up or de?ne up to 32 separate Message Objects, each of 
Which can be either a Transmit (TX) or a Receive (RX) 
Message Object. A RX Message Object can be associated 
either With a unique CAN ID, or With a set of CAN IDs 
Which share certain ID bit ?elds. As previously mentioned, 
each Message Object has its oWn reserved block of data 
memory space (up to 256 Bytes), Which is referred to as that 
Message Object’s message buffer. As Will be seen, both the 
siZe and the base address of each Message Object’s message 
buffer is programmable. 
As previously mentioned, each Message Object is asso 

ciated With a set of eight MMRs 40 dedicated to that 
Message Object. Some of these registers function differently 
for TX Message Objects than they do for RX Message 
Objects. These eight MMRs 40 are designated “Message 
Object Registers” (see FIG. 4). 
The names of these eight MMRs 40 are: 

1. MnMIDH Message n Match ID High 
. MnMIDL Message n Match ID LoW 

. MnMSKH Message n Mask High 

. MnMSKL Message n Mask LoW 

. MnCTL Message n Control 

. MNBLR Message n Buffer Location Register 

. MnBSZ Message n Buffer SiZe 

8. MNFCR Message n Fragment Count Register 
Where n ranges from 0 to 31 (i.e., corresponding to 32 
independent Message Objects). 

In general, the user de?nes or sets up a Message Object 
by con?guring (programming) some or all of the eight 
MMRs dedicated to that Message Object, as Will be 
described beloW. Additionally, as Will be described beloW, 
the user must con?gure (program) the global GCTL register, 
Whose bits control global parameters that apply to all 
Message Objects. 

In particular, the user can specify the Match ID value for 
each Message Object to be compared against the Screener 
IDs extracted from incoming CAN Frames for Acceptance 
Filtering. The Match ID value for each Message Object n is 
speci?ed in the MnMIDH and MnMIDL registers associated 
With that Message Object n. The user can mask any Screener 
ID bits Which are not intended to be used in Acceptance 
Filtering, on an object-by-object basis, by Writing a logic ‘1’ 
in the desired (to-be-masked) bit position(s) in the appro 
priate MnMSKH and/or MNMSKL registers associated With 
each particular Message Object n. The user is responsible, 
on set-up, for assigning a unique message buffer location for 
each Message Object n. In particular, the user can specify the 
least signi?cant 16 bits of the base address of the message 
buffer for each particular Message Object n by programming 
the MnBLR register associated With that Message Object n. 
The upper 8 bits of the 24-bit address, for all Message 
Objects, are speci?ed by the contents of the MBXSR 
register, as previously discussed, so that the message buffers 
for all Message Objects reside Within the same 64 KByte 
memory segment. The user is also responsible, on set-up, for 
specifying the siZe of the message buffer for each Message 
Object n. In particular, the user can specify the siZe of the 
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message buffer for each particular Message Object n by 
programming the MNBSZ register associated With that 
Message Object n. The top location of the message buffer for 
each Message Object n is determined by the siZe of that 
message buffer as speci?ed in the corresponding MNBSZ 
register. 

The user can con?gure (program) the MnCTL register 
associated With each particular Message Object n in order to 
enable or disable that Message Object n, in order to de?ne 
or designate that Message Object n as a TX or RX Message 
Object; in order to enable or disable automatic hardWare 
assembly of fragmented RX messages (i.e., automatic frag 
mented message handling) for that Message Object n; in 
order to enable or disable automatic generation of a 
Message-Complete Interrupt for that Message Object n; and, 
in order to enable or not enable that Message Object n for 
Remote Transmit Request (RTR) handling. In CAN open and 
OSEK systems, the user must also initialiZe the MnFCR 
register associated With each Message Object n. 
As previously mentioned, on set-up, the user must con 

?gure (program) the global GCTL register, Whose bits 
control global parameters that apply to all Message Objects. 
In particular, the user can con?gure (program) the GCTL 
register in order to specify the high-level CAL protocol (if 
any) being used (e.g., DeviceNet, CANopen, or OSEK); in 
order to enable or disable automatic acknowledgment of 
CANopen Frames (CANopen auto-acknoWledge); and, in 
order to specify Which of tWo transmit (TX) pre-arbitration 
schemes/policies is to be utiliZed (i.e., either TX pre 
arbitration based on CAN ID, With the object number being 
used as a secondary tiebreaker, or TX pre-arbitration based 
on object number only). 
Receive Message Objects and the Receive Process 

During reception (i.e., When an incoming CAN Frame is 
being received by the XA-C3 microcontroller 20), the CAN / 
CAL module 77 Will store the incoming CAN Frame in a 
temporary (13-Byte) buffer, and determine Whether a 
complete, error-free CAN frame has been successfully 
received. If it is determined that a complete, error-free CAN 
Frame has been successfully received, then the CAN/CAL 
module 77 Will initiate Acceptance Filtering in order to 
determine Whether to accept and store that CAN Frame, or 
to ignore/discard that CAN Frame. 
Acceptance Filtering 

In general, because the XA-C3 microcontroller 20 pro 
vides the user With the ability to program separate Match ID 
and Mask ?elds for each of the 32 independent Message 
Objects, on an object-by-object basis, as described 
previously, the Acceptance Filtering process performed by 
the XA-C3 microcontroller 20 can be characteriZed as a 
“match and mask” technique. The basic objective of this 
Acceptance Filtering process is to determine Whether a 
Screener ID ?eld of the received CAN Frame (eXcluding the 
“don’t care” bits masked by the Mask ?eld for each Message 
Object) matches the Match ID of any enabled one of the 32 
Message Objects that has been designated a Receive Mes 
sage Object. If there is a match betWeen the received CAN 
Frame and more than one Message Object, then the received 
CAN Frame Will be deemed to have matched the Message 

Object With the loWest object number Message Storage: 

Each incoming (received) CAN Frame that passes Accep 
tance Filtering, Will be automatically stored, via the DMA 
engine 38, into the message buffer for the Receive Message 
Object that particular CAN Frame Was found to have 
matched. In an eXemplary implementation, the message 
buffers for all Message Objects are contained in the XRAM 
28. 
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Message Assembly: 

In general, the DMA engine 38 Will transfer each accepted 
CAN Frame from the 13-byte pre-buffer to the appropriate 
message buffer (e.g., in the XRAM 28), one Word at a time, 
starting from the address pointed to by the contents of the 
MBXSR and MnBLR registers. Every time the DMA engine 
38 transfers a byte or a Word, it has to request the bus. In this 
regard, the MIF unit 30 arbitrates betWeen accesses from the 
XA CPU Core 22 and from the DMA engine 38. In general, 
bus arbitration is done on an “alternate” policy. After a DMA 
bus access, the XA CPU Core 22 Will be granted bus access, 
if requested. After an XA CPU bus access, the DMA engine 
38 Will be granted bus access, if requested. (HoWever, a 
burst access by the XA CPU Core 22 cannot be interrupted 
by a DMA bus access). 

Once bus access is granted by the MIF unit 30, the DMA 
engine 38 Will Write data from the 13-byte pre-buffer to the 
appropriate message buffer location. The DMA engine 38 
Will keep requesting the bus, Writing message data sequen 
tially to the appropriate message buffer location until the 
Whole accepted CAN Frame is transferred. After the DMA 
engine 38 has successfully transferred an accepted CAN 
Frame to the appropriate message buffer location, the con 
tents of the message buffer Will depend upon Whether the 
message that the CAN Frame belongs to is a non-fragmented 
(single frame) message or a fragmented message. Each case 
is described beloW: 
Non-Fragmented Message Assembly: 

For Message Objects that have been set up With automatic 
fragmented message handling disabled (not enabled—i.e., 
the FRAG bit in the MnCTL register for that Message 
Object is set to ‘0’), the complete CAN ID of the accepted 
CAN Frame (Which is either 11 or 29 bits, depending on 
Whether the accepted CAN Frame is a Standard or EXtended 
CAN Frame) is Written into the MnMIDH and MnMIDL 
registers associated With the Message Object that has been 
deemed to constitute a match, once the DMA engine 38 has 
successfully transferred the accepted CAN Frame to the 
message buffer associated With that Message Object. This 
Will permit the user application to see the eXact CAN ID 
Which resulted in the match, even if a portion of the CAN ID 
Was masked for Acceptance Filtering. As a result of this 
mechanism, the contents of the MnMIDH and MnMIDL 
registers can change every time an incoming CAN Frame is 
accepted. Since the incoming CAN Frame must pass 
through the Acceptance Filter before it can be accepted, only 
the bits that are masked out Will change. Therefore, the 
criteria for match and mask Acceptance Filtering Will not 
change as a result of the contents of the MnMIDH and 
MnMIDL registers being changed in response to an accepted 
incoming CAN Frame being transferred to the appropriate 
message buffer. 
Fragmented Message Assembly: 

For Message Objects that have been set up With automatic 
fragmented message handling enabled (i.e., With the FRAG 
bit in the MnCTL register for that Message Object set to ‘1’), 
masking of the 11/29 bit CAN ID ?eld is disalloWed. As 
such, the CAN ID of the accepted CAN Frame is knoWn 
unambiguously, and is contained in the MnMIDH and 
MNMIDL registers associated With the Message Object that 
has been deemed to constitute a match. Therefore, there is no 
need to Write the CAN ID of the accepted CAN Frame into 
the MnMIDH and MnMIDL registers associated With the 
Message Object that has been deemed to constitute a match. 
As subsequent CAN Frames of a fragmented message are 

received, the neW data bytes are appended to the end of the 
previously received and stored data bytes. This process 
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continues until a complete multi-frame message has been 
received and stored in the appropriate message buffer. 

Under CAL protocols DeviceNet, CANopen, and OSEK, 
if a Message Object is an enabled Receive Message Object, 
and its associated MnCTL register has its FRAG bit set to ‘1’ 
(i.e., automatic fragmented message assembly is enabled for 
that particular Receive Message Object), then the ?rst data 
byte (Data Byte 1) of each received CAN Frame that 
matches that particular Receive Message Object Will be used 
to encode fragmentation information only, and thus, Will not 
be stored in the message buffer for that particular Receive 
Message Object. Thus, message storage for such “FRAG 
enabled” Receive Message Objects Will start With the second 
data byte (Data Byte 2) and proceed in the previously 
described manner until a complete multi-frame message has 
been received and stored in the appropriate message buffer. 
This message storage format is illustrated in FIG. 11. The 
message handler hardWare Will use the fragmentation infor 
mation contained in Data Byte 1 of each CAN Frame to 
facilitate this process. 

Under the CAN protocol, if a Message Object is an 
enabled Receive Message Object, and its associated MnCTL 
register has its FRAG bit set to ‘1’ (i.e., automatic frag 
mented message assembly is enabled for that particular 
Receive Message Object), then the CAN Frames that match 
that particular Receive Message Object Will be stored 
sequentially in the message buffer for that particular Receive 
Message Object using the format shoWn in FIG. 12. 
When Writing message data into a message buffer asso 

ciated With a Message Object n, the DMA engine 38 Will 
generate addresses automatically starting from the base 
address of that message buffer (as speci?ed in the MnBLR 
register associated With that Message Object n). Since the 
siZe of that message buffer is speci?ed in the MnBSZ 
register associated With that Message Object n, the DMA 
engine 38 can determine When it has reached the top location 
of that message buffer. If the DMA engine 38 determines 
that it has reached the top location of that message buffer, 
and that the message being Written into that message buffer 
has not been completely transferred yet, the DMA engine 38 
Will Wrap around by generating addresses starting from the 
base address of that message buffer again. Some time before 
this happens, a Warning interrupt Will be generated so that 
the user application can take the necessary action to prevent 
data loss. 

The message handler Will keep track of the current 
address location of the message buffer being Written to by 
the DMA engine 38, and the number of bytes of each CAL 
message as it is being assembled in the designated message 
buffer. After an “End of Message” for a CAL message is 
decoded, the message handler Will ?nish moving the com 
plete CAL message and the Byte Count into the designated 
message buffer via the DMA engine 38, and then generate an 
interrupt to the XA CPU Core 22 indicating that a complete 
message has been received. 

Since Data Byte 1 of each CAN Frame contains the 
fragmentation information, it Will never be stored in the 
designated message buffer for that CAN Frame. Thus, up to 
seven data bytes of each CAN Frame Will be stored. After 
the entire message has been stored, the designated message 
buffer Will contain all of the actual informational data bytes 
received (exclusive of fragmentation information bytes) plus 
the Byte Count at location 00 Which Will contain the total 
number of informational data bytes stored. 

It is noted that there are several speci?c user set-up/ 
programming procedures that must be folloWed When invok 
ing automatic hardWare assembly of fragmented OSEK and 
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CANopen messages. These and other particulars can be 
found in the XA-C3 CAN Transport Layer Controller User 
Manual that is part of the parent Provisional Application 
Serial No. 60/154,022, the disclosure of Which has been 
fully incorporated herein for all purposes. 
Transmit Message Objects and the Transmit Process 

In order to transmit a message, the XA application pro 
gram must ?rst assemble the complete message and store it 
in the designated message buffer for the appropriate Trans 
mit Message Object n. The message header (CAN ID and 
Frame Information) must be Written into the MnMIDH, 
MnMIDL, and MnMSKH registers associated With that 
Transmit Message Object n. After these steps are completed, 
the XA application is ready to transmit the message. To 
initiate a transmission, the object enable bit (OBJiEN bit) 
of the MnCTL register associated With that Transmit Mes 
sage Object n must be set, eXcept When transmitting an 
Auto-Acknowledge Frame in CAN open. This Will alloW this 
ready-to-transmit message to participate in the prearbitration 
process. In this connection, if more than one message is 
ready to be transmitted (i.e., if more than one Transmit 
Message Object is enabled), a TX Pre-Arbitration process 
Will be performed to determine Which enabled Transmit 
Message Object Will be selected for transmission. There are 
tWo TX Pre-Arbitration policies Which the user can choose 
betWeen by setting or clearing the PreiArb bit in the GCTL 
register. 

After a TX Message Complete interrupt is generated in 
response to a determination being made by the message 
handler that a completed message has been successfully 
transmitted, the TX Pre-Arbitration process is “reset”, and 
begins again. Also, if the “Winning” Transmit Message 
Object subsequently loses arbitration on the CAN bus, the 
TX Pre-Arbitration process gets reset and begins again. If 
there is only one Transmit Message Object Whose OBJiEN 
bit is set, it Will be selected regardless of the TX Pre 
Arbitration policy selected. 

Once an enabled Transmit Message Object has been 
selected for transmission, the DMA engine 38 Will begin 
retrieving the transmit message data from the message buffer 
associated With that Transmit Message Object, and Will 
begin transferring the retrieved transmit message data to the 
CCB 42 for transmission. The same DMA engine and 
address pointer logic is used for message retrieval of trans 
mit messages as is used for message storage of receive 
messages, as described previously. Further, message buffer 
location and siZe information is speci?ed in the same Way, 
as described previously. In short, When a transmit message 
is retrieved, it Will be Written by the DMA engine 38 to the 
CCB 42 sequentially. During this process, the DMA engine 
38 Will keep requesting the bus; When bus access is granted, 
the DMA engine 38 Will sequentially read the transmit 
message data from the location in the message buffer cur 
rently pointed to by the address pointer logic; and, the DMA 
engine 38 Will sequentially Write the retrieved transmit 
message data to the CCB 42. It is noted that When preparing 
a message for transmission, the user application must not 
include the CAN ID and Frame Information ?elds in the 
transmit message data Written into the designated message 
buffer, since the Transmit (TX) logic Will retrieve this 
information directly from the appropriate MnMIDH, 
MnMIDL, and MnMSKH registers. 
The XA-C3 microcontroller 20 does not handle the trans 

mission of fragmented messages in hardWare. It is the user’s 
responsibility to Write each CAN Frame of a fragmented 
message to the appropriate message buffer, enable the asso 
ciated Transmit Message Object for transmission, and Wait 
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for a completion before Writing the next CAN Frame of that 
fragmented message to the appropriate message buffer. The 
user application must therefore transmit multiple CAN 
Frames one at a time until the Whole multi-frame, frag 
mented transmit message is successfully transmitted. 
HoWever, by using multiple Transmit Message Objects 
Whose object numbers increase sequentially, and Whose 
CAN IDs have been con?gured identically, several CAN 
Frames of a fragmented transmit message can be queued up 
and enabled, and then transmitted in order. 

To avoid data corruption When transmitting messages, 
there are three possible approaches: 
1. If the TX Message Complete interrupt is enabled for the 

transmit message, the user application Would Write the 
neXt transmit message to the designated transmit message 
buffer upon receipt of the TX Message Complete interrupt. 
Once the interrupt ?ag is set, it is knoWn for certain that 
the pending transmit message has already been transmit 
ted. 

2. Wait until the OBJiEN bit of the MnCTL register of the 
associated Transmit Message Object clears before Writing 
to the associated transmit message buffer. This can be 
accomplished by polling the OBJiEN bit of the MnCTL 
register of the associated Transmit Message Object. 

3. Clear the OBJiEN bit of the MnCTL register of the 
associated Transmit Message Object While that Transmit 
Message Object is still in TX Pre-Arbitration. 
In the ?rst tWo cases above, the pending transmit message 

Will be transmitted completely before the neXt transmit 
message gets transmitted. For the third case above, the 
transmit message Will not be transmitted. Instead, a transmit 
message With neW content Will enter TX PreArbitration. 

There is an additional mechanism that prevents corruption 
of a message that is being transmitted. In particular, if a 
transmission is ongoing for a Transmit Message Object, the 
user Will be prevented from clearing the OBJiEN bit in the 
MnCTL register associated With that particular Transmit 
Message Object. 
CAN/CAL RELATED INTERRUPTS 

The CAN/CAL module 77 of the XA-C3 microcontroller 
20 is presently con?gured to generate the folloWing ?ve 
different Event interrupts to the XA CPU Core 22: 
1. RX Message Complete 
2. TX Message Complete 
3. RX Buffer Full 
4. Message Error 
5. Frame Error 

For single-frame messages, the “Message Complete” con 
dition occurs at the end of the single frame. For multi-frame 
(fragmented) messages, the “Message Complete” condition 
occurs after the last frame is received and stored. Since the 
XA-C3 microcontroller 20 hardWare does not recogniZe or 
handle fragmentation for transmit messages, the TX Message 
Complete condition Will alWays be generated at the end of 
each successfully transmitted frame. 
As previously mentioned, there is a control bit associated 

With each Message Object indicating Whether a Message 
Complete condition should generate an interrupt, or just set 
a “Message Complete Status Flag” (for polling) Without 
generating an interrupt. This is the INTiEN bit in the 
MnCTL register associated With each Message Object n. 

There are tWo 16-bit MMRs 40, MCPLH and MCPLL, 
Which contain the Message Complete Status Flags for all 32 
Message Objects. When a Message Complete (TX or RX) 
condition is detected for a particular Message Object, the 
corresponding bit in the MCPLH or MCPLL register Will be 
set. This Will occur regardless of Whether the INTiEN bit 
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is set for that particular Message Object (in its associated 
MnCTL register), or Whether Message Complete Status 
Flags have already been set for any other Message Objects. 

In addition to these 32 Message Complete Status Flags, 
there is a TX Message Complete Interrupt Flag and an RX 
Message Complete Interrupt Flag, corresponding to bits [1] 
and [0], respectively, of an MMR 40 designated 
CANINTFLG, Which Will generate the actual Event inter 
rupt requests to the XA CPU Core 22. When an End-of 
Message condition occurs, at the same moment that the 
Message Complete Status Flag is set, the appropriate TX or 
RX Message Complete Interrupt ?ip-?op Will be set pro 
vided that INTiEN=1 for the associated Message Object, 
and provided that the interrupt is not already set and pend 
1ng. 

Further details regarding the generation of interrupts and 
the associated registers can be found in the XA-C3 Func 
tional Speci?cation and in the XA-C3 CAN Transport Layer 
Controller User Manual, both of Which are part of the parent 
Provisional Application Serial No. 60/154,022, the disclo 
sure of Which has been fully incorporated herein for all 
purposes. 
MESSAGE BUFFERS 
As Was previously described in detail hereinabove, the 

XA-C3 microcontroller 20 supports up to 32 separate and 
independent Message Objects, each of Which is set-up or 
de?ned by virtue of the user (programmer) con?guring 
(programming) some or all of the eight MMRs 40 dedicated 
to that Message Object. In the XA-C3 microcontroller 20, 
each of the 32 Message Objects is assigned its oWn block of 
address space in data memory, Which serves as its message 
buffer for data storage. The siZe and location of each 
message buffer is programmable, and thus, recon?gurable 
“on the ?y” by the user/programmer. The message buffers 
can be positioned in any desired location Within the overall 
data memory space addressable by the XA-C3 microcon 
troller 20, Which is presently con?gured to be a 16 Mbyte 
overall memory space. These message buffers can be located 
in the XRAM 28 and/or in any off-chip portion of the overall 
data memory space. 
The location of the message buffer associated With each 

Message Object n is established by programming the MMR 
40 designated MnBLR associated With that Message Object, 
i.e., by programming the Message n Buffer Location Reg 
ister. The siZe of the message buffer associated With each 
Message Object is established by programming the MMR 40 
designated MnBSZ associated With that Message Object, 
i.e., by programming the Message n Buffer SiZe Register. In 
the XA-C3 microcontroller 20, alloWable buffer siZes are 2, 
4, 8, 16, 32, 64, 128, or 256 bytes. Users can select the siZe 
of each message buffer based on the anticipated length of the 
incoming message, or they can conserve memory by delib 
erately specifying smaller buffers at the eXpense of increased 
processor intervention to handle more frequent buffer-full 
conditions. In the XA-C3 microcontroller 20, Direct 
Memory Access (DMA) (i.e., the DMA engine 38) is used 
to enable the XA-C3 CAN/CAL module 77 to directly 
access the 32 message buffers Without interrupting the 
XA-C3 processor (CPU) core 22. 
The XA-C3 CAN/CAL module 77 uses the values pro 

grammed into the buffer siZe registers MnBSZ to reserve the 
designated number of bytes of storage for each Message 
Object n. For Receive Message Objects, this ?eld is also 
used by logic in the XA-C3 CAN/CAL module 77 to 
calculate the total number of bytes that have actually been 
stored in the message buffers, and to identify When a 
buffer-full condition is reached. Each time a byte of data is 
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stored in a message buffer associated With a Message Object 
n, the XA-C3 CAN/CAL module 77 concurrently accesses 
the MnBSZ and MnBLR registers associated With that 
Message Object. Logic incorporated Within the XA-C3 
CAN/CAL module 77 decodes the buffer siZe for that 
Message Object and compares the decoded buffer siZe to the 
address pointer to determine current byte count and avail 
able space left in that Message Object’s message buffer. 

The present implementation of the XA-C3 microcontrol 
ler 20 requires that all of the 32 message buffers reside 
Within the same 64 Kbyte memory segment (or “page”). The 
user may position the message buffers Within any of the 256 
pages in the overall XA-C3 data memory space (i.e., 256x64 
Kbytes=16 Mbytes). Programming the locations of the mes 
sage buffers is accomplished in tWo steps. 

The ?rst step is to program the page number in Which all 
of the message buffers reside into the MMR 40 designated 
as the MBXSR register, Which is one of the CCB Registers 
depicted in FIG. 4. As Was previously described, the con 
tents of this register are subsequently used as the eight MSBs 
of address for all DMA accesses to any of the message 
buffers. This register also establishes the memory page in 
Which the XRAM 28 resides. 

The second step is to program the base address (16 bits) 
for each individual message buffer into the MnBLR asso 
ciated With that message buffer. These 16-bit address values 
initially speci?ed by the user/programmer constitute the 
base addresses of the 32 respective message buffers Within 
the 64 Kbyte memory page speci?ed in the MBXSR register 
for all message buffers. It should be noted that the message 
buffers can be placed apart from one another, as there is no 
requirement that the message buffer space be continuous 
(i.e., that the message buffers reside in physically contiguous 
locations Within the data memory space). Further, it should 
also be noted that some or all of the message buffers can be 
placed in off-chip memory, and others in the on-chip XRAM 
28. In the XA-C3 microcontroller 20, it is required that each 
message buffer start at a binary boundary for its siZe (i.e., the 
8 LSBs must be Zero for a 256-byte message buffer, the 7 
LSBs must be Zero for a 128-byte message buffer, etc.). 
DMA access to each of the message buffers is achieved by 

using the 8 bits stored in the MBXSR register as the 8 MSBs 
of the address of that message buffer, and the 16 bits stored 
in the MnBLR register for that message buffer as the 16 
LSBs of the address of that message buffer. The base address 
initially programmed by the user into the MnBLR register 
for that message buffer is the address of the ?rst (bottom) 
location of that message buffer. When the ?rst frame of a 
neW receive message arrives, the CAN/CAL module 77 
hardWare Writes a semaphore code into this bottom location 
before beginning to store actual data bytes, starting at the 
neXt location in that message buffer. At the end of the neW 
receive message (or When a buffer-full condition is 
detected), the CAN/CAL module 77 hardWare computes the 
total number of bytes actually stored in that message buffer, 
and Writes this value into the bottom location of that 
message buffer. The processor (i.e., the XA CPU Core 22) 
can then read this value and determine precisely hoW many 
additional bytes must be read and processed. 

Each time a neW byte of data must be Written to (for 
receive messages) or retrieve from (for transmit messages) 
a message buffer, the DMA engine 38 reads the MnBLR 
register for that message buffer in order to retrieve the 
current address pointer for the associated Message Object. 
The DMA engine 38 concatenates the 8 MSBs stored in the 
global Message Buffer Segment Register (i.e., the MBXSR 
register) and the 16 LSBs stored in the MnBLR register for 
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that message buffer to form a complete 24-bit message 
buffer address. The DMA engine 38 then passes this address 
to the Memory Interface (MIF) unit 30, along With a ?ag 
indicating that the DMA engine 38 requires access to the 
memory. As soon as the current set of XA-C3 processor 
memory accesses are completed, the MIF unit 30 Will 
initiate a memory read or Write to the address provided by 
the DMA engine 38, and then permit the DMA engine 38 to 
perform the required data transfer to/from the desired mes 
sage buffer. DMA accesses are typically done tWo bytes at 
a time (i.e., as a 16-bit operation). HoWever, 8-bit operations 
are employed When there is only a single byte to be 
transferred. 
As soon as the requested DMA operation is completed, 

the DMA engine 38 increments the 16-bit address value 
stored in the MnBLR register associated With that message 
buffer (by one or tWo, depending upon Whether a one byte 
or tWo byte access Was performed), and Writes this value 
back into the MnBLR register for that message buffer. Thus, 
the MnBLR registers, along With the associated increment 
logic Within the DMA engine 38, effectively function as a set 
of 32 binary “counters”. Thus, at any given time, each 
MnBLR register contains the address Which Will be used for 
the neXt data access to the message buffer associated With 
the Message Object n. In this manner, the MnBLR register 
for each message buffer serves as an address-pointer. These 
address-pointer ?elds are also readable at any time by the 
processor under softWare control. 

The above-described approach to message storage also 
provides an extremely quick and ef?cient means of freeing 
up a message buffer When a message completes or When a 
message buffer is full. The softWare can respond to a 
message-complete interrupt or a buffer-full interrupt by 
simply repositioning the message-buffer space for that par 
ticular Message Object to someWhere else in the message 
buffer memory space. This is accomplished by performing a 
single Write operation to modify the buffer base-address 
speci?ed in the appropriate MnBLR register (i.e., “address 
pointer”). This is essentially the eXtent of a very short 
interrupt handling routine. These interrupts must be handled 
quickly because the message buffer must be freed-up for 
subsequent message reception. Interrupt response is particu 
larly critical if many completed messages are stacked up and 
need to be dealt With at once. Once this buffer repositioning 
is accomplished, the hardWare is immediately ready to 
receive a neW message over that Message Object “channel” 
(or, the continuation of the current message, in the case of a 
buffer-full interrupt). The memory space that Was previously 
designated as the message buffer for that Message Object n 
still contains the previously-received message data, but this 
space noW becomes just part of the long-term data memory 
space. The message information stored in this long-term data 
memory space can then be processed by the softWare at its 
leisure. 

This same buffer repositioning technique can be 
employed for Transmit Messages to facilitate fragmentation. 
Unlike the receive case, the XA-C3 CAN/CAL Module 77 
does not automatically assemble fragmented outgoing mes 
sages. It is incumbent upon the softWare to “load” a neW 
message frame each time the previous frame is transmitted. 
Using the XA-C3microcontroller 20 message storage 
scheme, hoWever, the softWare can construct an entire 
fragmented message prior to enabling transmission. As each 
frame is transmitted, the processor (XA CPU Core 22) only 
needs to reposition the buffer (again, using a single Write 
operation) to point to the location of the neXt frame. This is 
much faster than competing devices, Which require the 
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processor to move up to 13 bytes of data from memory to a 
dedicated transmit buffer. 

It Will be appreciated that With the above-described mes 
sage buffer scheme of the present invention, each message 
buffer can be regarded as a separate FIFO having an inde 
pendently programmable buffer length, Which provides a 
revolutionary approach to storing sequential messages of 
varying lengths Without any CPU intervention. 

THE PRESENT INVENTION 

As described hereinabove, each incoming (received) 
CAN Frame that passes Acceptance Filtering Will be auto 
matically stored, via the DMA engine 38, into the message 
buffer for the Receive Message Object that particular CAN 
Frame Was found to have matched, Without interrupting the 
XA CPU Core 22. Under the CAN protocol, if a Message 
Object is an enabled Receive Message Object, and its 
associated MnCTL register has its FRAG bit set to ‘1’ (i.e., 
automatic fragmented message assembly is enabled for that 
particular Receive Message Object), then the CAN Frames 
that match that particular Receive Message Object Will be 
stored sequentially in the message buffer for that particular 
Receive Message Object using the format shoWn in FIG. 12. 
When Writing message data into a message buffer asso 

ciated With a Message Object n, the DMA engine 38 Will 
generate addresses automatically starting from the base 
address of that message buffer (as speci?ed in the MNBLR 
register associated With that Message Object n). Since the 
siZe of that message buffer is speci?ed in the MnBSZ 
register associated With that Message Object n, the DMA 
engine 38 can determine When it has reached the top location 
of that message buffer. 

There is no guarantee that an incoming message Will not 
contain more data bytes than can be held by the designated 
message buffer, i.e., there is no guarantee that the pro 
grammed buffer siZe speci?ed in the MnBLR register Will be 
sufficient to hold all frames of the incoming message. This 
Will alWays be the case for messages Which exceed the 
maXimum buffer siZe, Which in the case of the current 
version of the XA-C3 microcontroller 20 is 256 bytes. This 
buffer-full condition can also occur in cases Where the length 
of the eXpected message can not be predicted in advance of 
its receipt. The user may also elect to conserve memory 
resources by deliberately specifying smaller buffer siZes at 
the eXpense of increased processor intervention to handle 
more frequent buffer-full conditions. 
As previously stated, the XA-C3 microcontroller 20 is 

designed to handle a message buffer full condition in such a 
manner that ensures no loss of data, While minimiZing the 
required processor intervention, utiliZing the folloWing 
scheme. 

The ?rst requirement for message buffer full handling is 
that there be no loss of message data. Waiting until the 
designated message buffer actually ?lls up before interrupt 
ing the processor core (i.e., the XA CPU Core 22) is too late 
to ensure no loss of data. The DMA operation can not be 
halted While the processor core 22 responds to a buffer-full 
interrupt. All data bytes in the currently received frame must 
be transferred quickly in order to alloW the XA-C3 CAN/ 
CAL module 77 to handle the folloWing incoming message. 

In accordance With the present invention, as implemented 
in the XA-C3 microcontroller 20, this problem is solved 
(i.e., this ?rst requirement is met) by de?ning a message 
buffer full condition as folloWs: if, after a complete frame is 
received and stored, there are less than seven bytes remain 
ing in the designated message buffer, and additional frames 
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are eXpected for that message, the designated message buffer 
is considered to be full, and RX Buffer-Full Interrupt is 
generated. If no additional frames are eXpected for that 
message, an RX Message-Complete Interrupt is generated 
instead. 

The rationale for this approach is that since a message 
frame can contain up to seven data bytes, there is the 
potential for the neXt frame to over?oW the message buffer 
if less than seven byte of storage remain available for 
message data storage. The processor core 22 must intervene 
at this point to ensure that a buffer over?oW does not actually 
occur. The speci?c mechanism employed by the XA-C3 
microcontroller 20 to accomplish this scheme Will noW be 
described. 

More particularly, When a message frame is received by 
the XA-C3 CAN/CAL module 77 and passes one of the 
input acceptance ?lters, it is passed onto the DMA engine 
38. DMA access to each of the message buffers is achieved 
by using the 8 bits stored in the MBXSR register as the 8 
MSBs of the address of that message buffer, and the 16 bits 
stored in the MnBLR register for that message buffer as the 
16 LSBs of the address of that message buffer. The base 
address initially programmed by the user into the MNBLR 
register for that message buffer is the address of the ?rst 
(bottom) location of that message buffer. When the ?rst 
frame of a neW receive message arrives, the CAN/CAL 
module 77 hardWare Writes a semaphore code into this 
bottom location before beginning to store actual data bytes, 
starting at the neXt location in that message buffer. At the end 
of the neW receive message (or When a buffer-full condition 
is detected), the CAN/CAL module 77 hardWare computes 
the total number of bytes actually stored in that message 
buffer, and Writes this value into the bottom location of that 
message buffer. The processor (i.e., the XA CPU Core 22) 
can then read this value and determine precisely hoW many 
additional bytes must be read and processed. 
As soon as the requested DMA operation is completed, 

the DMA engine 38 increments the 16-bit address value 
stored in the MnBLR register associated With that message 
buffer (by one or tWo, depending upon Whether a one byte 
or tWo byte access Was performed), and Writes this value 
back into the MnBLR register for that message buffer. Thus, 
the MnBLR registers, along With the associated increment 
logic Within the DMA engine 38, effectively function as a set 
of 32 binary “counters”. Thus, at any given time, each 
MnBLR register contains the address Which Will be used for 
the neXt data access to the message buffer associated With 
the Message Object n. In this manner, the MnBLR register 
for each message buffer serves as an address-pointer. These 
address-pointer ?elds are also readable at any time by the 
processor under softWare control. 

Each time a byte of data is stored in a message buffer 
associated With a Message Object n, the XA-C3 CAN/CAL 
module 77 concurrently accesses the MNBSZ and MnBLR 
registers associated With that Message Object. Logic incor 
porated Within the XA-C3 CAN/CAL module 77 decodes 
the buffer siZe for that Message Object and compares the 
decoded buffer siZe (the value in the associated MnBSZ 
register) to the address pointer (i.e., the current address value 
in the associated MnBLR register) to determine current byte 
count and available space left in that. Message Object’s 
message buffer. 

After the last byte of each frame of the incoming message 
has been Written into the designated message buffer for that 
message, logic Within the CAN/CAL module 77 checks to 
determine Whether or not this is the ?nal frame of the 
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incoming message. This information is derived from an 
encoded ?eld contained in the header portion of the incom 
ing message that is transmitted as part of the frame, and 
stored in a ?ip-?op. If the received frame is not the ?nal 
frame of the incoming message, then a check must be made 
for a buffer-full condition (as de?ned above). This is accom 
plished by logic Within the CAN/CAL module 77 determin 
ing the number of bytes that remain available for message 
data storage in the designated message buffer, by subtracting 
the LSBs of the current address pointer (i.e., the current 
address value in the MnBLR register) from the buffer-size 
value (i.e., the value in the MnBSZ register), and comparing 
the result to “7”. If seven bytes or more remain available for 
message data storage in the designated message buffer, then 
there is de?nitely suf?cient space to store at least one more 
frame, so no buffer-full condition eXists. If less than seven 
bytes remain available for message data storage in the 
designated message buffer, then a buffer-full condition is 
declared. 

In response to a buffer-full condition, logic in the XA-C3 
CAN/CAL module 77 performs the folloWing steps: 

1. The current byte count is derived from the contents of 
the MnBLR and MnBSZ registers; 

2. The address pointer for the associated Message Object 
n is reset to the bottom (“0”) location of the designated 
message buffer, i.e., the current value of the MnBLR 
register associated With that message buffer is replaced 
With the base address initially programmed by the user 
into the MnBLR register associated With that message 
buffer; 

3. The current byte count is Written into the “0” location 
(i.e., base address) of the designated message buffer, 
and then the address pointer (the value in the MnBLR 
register) is incremented to the neXt buffer address. The 
data bytes of the neXt frame of the incoming message 
Will be Written into the designated message buffer 
starting at this location; and, 

4. An RX Buffer-Full Interrupt is generated. 
The XA CPU Core 22 noW has a sufficient period of time 

(i.e., at least the time required for another complete frame to 
be transmitted across the CAN bus) to take action to free up 
the message buffer. With the XA-C3 microcontroller 20, the 
softWare is provided With tWo options as to hoW to respond 
to this RX Buffer-Full Interrupt, namely: 

1. Read the entire contents of the message buffer and 
move them to elseWhere in the data memory, thereby 
freeing up memory space for the remaining frames of 
the incoming message; or, 

2. Reposition the message buffer for the associated Mes 
sage Object by modifying its base address in the 
associated MnBLR register. 

If option 1 is selected, the softWare Will read and retrieve 
the current byte count from the bottom location of the 
designated message buffer. Subsequent data bytes of the 
incoming message Will be Written into the designated mes 
sage buffer at buffer location “1”. Once an End-of-Message 
condition (or another buffer-full condition) occurs, the neW 
byte count (re?ecting any additional bytes received and 
stored) Will be Written into buffer location “0” and a neW 
interrupt to the processor core 22 Will be generated. At that 
point, the softWare can read those remaining data bytes. 

If option 2 is selected, the data bytes already received Will 
remain Where they are, i.e., in the ?rst portion of memory 
previously designated for that message buffer (hereinafter 
referred to as the “?rst buffer portion”). Subsequent data 
bytes of the incoming message Will be Written into the new 
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message buffer memory space pointed to by the neW base 
address in the associated MnBLR register (hereinafter 
referred to as the “second buffer portion”). The processor 
core 22 can Wait until the entire message is completed (i.e., 
until after the ?nal frame is received and stored), and then 
retrieve and process the entire message at once. In this case, 
the bottom location of the ?rst buffer portion Will identify 
the number of data bytes stored therein, and the bottom 
location of the second buffer portion Will identify the num 
ber of data bytes stored therein. This mechanism makes it 
extremely easy for the processor to assemble the entire 
message. It Will be appreciated by those skilled in the 
pertinent art that option 2 can be implemented using very 
feW instructions, thereby resulting in a much more ef?cient 
interrupt service routine. 

Although the present invention has been described in 
detail hereinabove in the conteXt of a speci?c preferred 
embodiment/implementation, it should be clearly under 
stood that many variations, modi?cations, and/or alternative 
embodiments/implementations of the basic inventive con 
cepts taught herein Which may appear to those skilled in the 
pertinent art Will still fall Within the spirit and scope of the 
present invention, as de?ned in the appended claims. 
What is claimed is: 
1. A CAN microcontroller that supports a plurality of 

message objects, comprising: 
a processor core that runs CAN applications; 

a plurality of message buffers associated With respective 
ones of the message objects; 

a CAN/CAL module that processes incoming messages 
that include a plurality of frames, each frame having a 
maXimum number n of data bytes; 

a plurality of message object registers associated With 
each of the message objects, including: 
at least one buffer siZe register that contains a message 

buffer siZe value that speci?es the siZe of the mes 
sage buffer associated With that message object; and, 

at least one buffer location register that contains an 
address pointer that points to an address of the 
storage location in the message buffer associated 
With that message object Where the neXt data byte of 
the current incoming message is to be stored; 

Wherein the CAN/CAL module includes: 
a message handling function that transfers successive 

frames of the current incoming message to the mes 
sage buffer associated With a selected one of the 
message objects designated as a receive message 
object for the current incoming message; 

a frame status detection function that detects Whether or 
not the current frame of the current incoming mes 
sage is the ?nal frame of the current incoming 
message; and, 

a buffer-full detection function that, in response to a 
detection that the current frame of the current incom 
ing message is not the ?nal frame of the current 
incoming message: 
determines the number of available bytes of remain 

ing storage capacity in the message buffer asso 
ciated With the designated receive message object 
for the current incoming message; and, 

declares a message buffer-full condition if the deter 
mined number of available bytes is less than the 
maXimum number n of data bytes. 

2. The CAN microcontroller as set forth in claim 1, 
Wherein the CAN/CAL module further includes a message 
buffer-full interrupt generator function that generates a mes 
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sage buffer-full interrupt to the processor core in response to 
a declaration of a message buffer-full condition. 

3. The CAN microcontroller as set forth in claim 1, 
Wherein the buffer-full detection function determines the 
number of available bytes of remaining storage capacity in 
the message buffer associated With the designated receive 
message object for the current incoming message by sub 
tracting prescribed bits of the address pointer contained in 
the at least one buffer location register associated With the 
designated receive message object for the current incoming 
message, from the message buffer siZe value contained in the 
at least one buffer siZe register associated With the desig 
nated receive message object for the current incoming 
message. 

4. The CAN microcontroller as set forth in claim 1, 
Wherein each frame of each incoming, multi-frame message 
includes a header portion that indicates Whether that frame 
is the last frame in its message. 

5. The CAN microcontroller as set forth in claim 4, 
Wherein the frame status detection function detects Whether 
the current frame of the current incoming message is the 
?nal frame of the current incoming message by deriving that 
information from the header portion of the current frame of 
the current incoming message. 

6. The CAN microcontroller as set forth in claim 1, 
Wherein the CAN/CAL module further includes a message 
complete interrupt generator function that generates a 
message-complete interrupt to the processor core in 
response to the frame status detection function detecting that 
the current frame of the current incoming message is the 
?nal frame of the current incoming message. 

7. The CAN microcontroller as set forth in claim 1, 
Wherein the CAN/CAL module further includes an address 
pointer increment function that, in response to a transfer of 
the current data byte to the message buffer associated With 
the designated receive message object for the current incom 
ing message, automatically increments the address pointer to 
the address of the storage location in that message buffer 
Where the neXt data byte of the current incoming message is 
to be stored. 

8. The CAN microcontroller as set forth in claim 1, 
Wherein the siZe of each message buffer is programmable by 
means of programming a selected message buffer siZe value 
into the at least one message buffer siZe register associated 
With that message buffer. 

9. The CAN microcontroller as set forth in claim 1, 
Wherein a base address of each message buffer is program 
mable by means of programming the address pointer asso 
ciated With that message buffer to point to a selected base 
address. 

10. The CAN microcontroller as set forth in claim 1, 
further comprising a DMA engine that implements the 
message handling function Without interrupting the proces 
sor core. 

11. The CAN microcontroller as set forth in claim 1, 
further comprising means for selectively enabling each 
message object as a transmit or receive message object. 

12. The CAN microcontroller as set forth in claim 11, 
Wherein: 

the CAN/CAL module further includes an acceptance 
?ltering function that performs acceptance ?ltering on 
each incoming message by comparing a screener ?eld 
of the incoming message With an acceptance ?lter ?eld 
associated With each receive-enabled message object; 

the current incoming message is accepted if its screener 
?eld matches the acceptance ?eld of a receive-enabled 
message object; and, 
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the matching receive-enabled message object comprises 

the designated receive message object. 
13. The CAN microcontroller as set forth in claim 9, 

Wherein the CAN /CAL module further includes a buffer-full 
handling function that, in response to a declaration of a 
message buffer-full condition: 

determines a current byte count that indicates the number 
of data bytes of the current incoming message that have 
already been stored in the message buffer associated 
With the designated receive message object at the time 
the message buffer-full condition is declared; 

resets the address pointer contained in the at least one 
buffer location register associated With the designated 
receive message object to the base address; 

Writes the current byte count into the message buffer 
associated With the designated receive message object, 
in the storage location corresponding to the base 
address; and, 

generates a message buffer-full interrupt. 
14. The CAN microcontroller as set forth in claim 13, 

further comprising a data memory space, Wherein the mes 
sage buffers are located in the data memory space. 

15. The CAN microcontroller as set forth in claim 14, 
Wherein a current CAN application running on the processor 
core, in response to the message buffer-full interrupt, reads 
the entire contents of the designated receive message buffer, 
and then transfers the read-out entire contents to another 
storage location in the data memory space, thereby freeing 
up the designated receive message buffer to store the at least 
one remaining frame of the current incoming message. 

16. The CAN microcontroller as set forth in claim 14, 
Wherein a current CAN application running on the processor 
core, in response to the message buffer-full interrupt, 
removes the currently-stored data bytes of the current 
incoming message from the designated receive message 
buffer, thereby freeing up the designated receive message 
buffer to store the at least one remaining frame of the current 
incoming message. 

17. The CAN microcontroller as set forth in claim 14, 
Wherein a current CAN application running on the processor 
core, in response to the message buffer-full interrupt: 

removes the currently-stored data bytes of the current 
incoming message from the designated receive mes 
sage buffer, thereby freeing up the designated receive 
message buffer to store the at least one remaining frame 
of the current incoming message; and, 

relocates the removed data bytes to a different portion of 
the data memory space. 

18. The CAN microcontroller as set forth in claim 13, 
Wherein a current CAN application running on the processor 
core, in response to the message buffer-full interrupt, modi 
?es the base address of the designated receive message 
buffer by replacing the current base address With a neW base 
address, Wherein the designated receive message buffer is 
comprised of a ?rst buffer portion starting With the current 
base address, and a second buffer portion starting With the 
neW base address. 

19. The CAN microcontroller as set forth in claim 18, 
Wherein the CAN/CAL module further includes a message 
complete interrupt generator function that generates a 
message-complete interrupt to the processor core in 
response to the frame status detection function detecting that 
the current frame of the current incoming message is the 
?nal frame of the current incoming message. 

20. The CAN microcontroller as set forth in claim 19, 
Wherein the current CAN application running on the pro 
cessor core, in response to the message-complete interrupt: 
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retrieves a ?rst number of the data bytes of the current 21. The CAN microcontroller as set forth in claim 20, 
incoming message from the ?rst buffer portion; and, Wherein the ?rst number comprises the current byte count. 

retrieves a second number of the data bytes of the current 
incoming message from the second buffer portion. * * * * * 


