
US006604156B1

(12) United States Patent
Slivkoff et al.

US 6,604,156 B1
*Aug. 5, 2003

(10) Patent N0.:
(45) Date of Patent:

(54) MESSAGE BUFFER FULL HANDLING IN A
CAN DEVICE THAT EMPLOYS
RECONFIGURABLE MESSAGE BUFFERS

(75) Inventors: William J. Slivko?', San Jose, CA
(US); Neil Edward Birns, Cupertino,
CA (US)

Koninklijke Philips Electronics N.V.,
Einhoven (NL)

(73) Assignee:

ot1ce: u ect to an 1sc a1mer, t e term 0 t 1s * N ' s bj yd' 1 ' h r h'

patent is extended or adjusted under 35
U.S.C. 154(b) by 376 days.

This patent is subject to a terminal dis
claimer.

(21)
(22)

Appl. No.: 09/630,289

Filed: Aug. 1, 2000

Related US. Application Data
Provisional application No. 60/154,022, ?led on Sep. 15,
1999.

Int. Cl.7 G06F 13/14

US. Cl. 710/57; 710/116; 710/240;

365/244; 365/230.8; 700/19; 700/55
Field of Search 710/57, 116, 240;

365/244, 230.8; 700/19, 55

(60)

(51)
(52)

(58)

References Cited

U.S. PATENT DOCUMENTS

8/1993
9/1994
2/1996
4/1996
1/1997
4/1997

* 12/1998

4/2001
3/2002

(56)

5,233,688
5,349,683
5,493,451
5,511,214
5,598,578
5,617,118
5,854,454 A
6,216,172 B1 *
6,363,083 B1 *

Too 395/161

Wu et al. 395/800

Cosey, Sr. 359/817

Yamada 395/800
Hatta 395/835
Thompson 345/200
Upender et al. .. 187/247
Kolblin et al. 709/253

Spielbauer et al. 370/470

* cited by examiner

I. _________________________ _ _

|

Primary Examiner—Abdelmoniem Elamin

(57) ABSTRACT

A CAN microcontroller that supports a plurality of message
objects, and that includes a processor core that runs CAN
applications, a plurality of message buffers associated With
respective ones of the message objects, a CAN/CAL module
that processes incoming messages that include a plurality of
frames, each frame having a maximum number n of data
bytes, and a plurality of message object registers associated
With each of the message objects, including at least one
buffer siZe register that contains a message buffer siZe value
that speci?es the siZe of the message buffer associated With
that message object, and at least one buffer location register
that contains an address pointer that points to an address of
the storage location in the message buffer associated With
that message object Where the next data byte of the current
incoming message is to be stored. The CAN/CAL module
includes a message handling function that transfers succes
sive frames of the current incoming message to the message
buffer associated With a selected one of the message objects
designated as a receive message object for the current
incoming message, a frame status detection function that
detects Whether or not the current frame of the current
incoming message is the ?nal frame of the current incoming
message, and a buffer-full detection function. The buffer-full
detection function, in response to a detection that the current
frame of the current incoming message is not the ?nal frame
of the current incoming message, determines the number of
available bytes of remaining storage capacity in the message
buffer associated With the designated receive message object
for the current incoming message, and declares a message
buffer-full condition if the determined number of available
bytes is less than the maximum number n of data bytes. The
CAN/CAL module further includes a message buffer-full
interrupt generator function that generates a message buffer
full interrupt to the processor core in response to a decla
ration of a message buffer-full condition.

21 Claims, 7 Drawing Sheets

1; ‘CORE DATA BUS XA CPU CORE I, 22
1

MEMORY
INTERFACE ‘

MMR BUS

.
1

11 l A
PROGRAM BUS :

32KBYTES
ROM/EPROM

DAT
1024BYTES BUS
DATARAM

"1 3B TIMERU j
I UMEHt I

SFR BUS

;
TIMER ;

1 ‘77 55 E
1 =
: 61 ' v I

U.S. Patent Aug. 5,2003 Sheet 3 0f 7 US 6,604,156 B1

MMRs
MMR name I R/W? J Reset lAecess lAddressOilsel IDeseription

Message Object Registers (n = O - 3i)
MnMlDH R/W x....xOOb Word only OOOn4n3n2n1ng0O00b(n0h] MessagenMaiohlD High
MnMlDL R/W xxxxh Word only 000il4ll3ll2ll1llg0010blli2h) MessagenMatchlDLow
MnMSKH R/W x....xOOOb Word only OOOn4n3n2n1ngOiOOb(n4h) MessagenMask High
MnMSKL R/W xxxxh Word only 000li4ll3ll2tl1lig0110b(h6h) MessagenMaskLow
MnCTL R/W OOOOOxxxb Byte/Word O0On4n3n2n1ngiOOObmBh) MessagenControl
MnBLR R/W xxxxh Word only OO0n4n3n2n1ngl0lOb(nAh) MessagenBulierLocalion
MnBSZ R/W OOOOOxxxb Byte/Word 0OOn4n3n2n1ngliOOb(nCh) MessagenBullerSize
MnFCR R/W OOxxxxxxb Byte/Word OOOn4n3n2n1ng1i1Ob(nEh) MessagenFragmenlationCounl

ClC Registers
MCPLL R/C OOOOh Byte/Word 224h Message Complete Low
MCPLH R/C OOOOh Byte/Word 226h Message Complete High
CANlNTFLG R/C OOOOh Byte/Word 228h CAN interrupt Flag Register
MClR RO OOOOh Byte/Word 229h Message Complete lnlo Reg.
MEIR R0 OOOOh Byte/Word 22Ah Message Error lnlo Register
FESTR R/C OOOOh Byte/Word 22Ch Frame Error Status Register
FEENR R/W OOOOh Byte/Word 22Eh Frame Error Enable Register

SCP/SPI Registers
SPlCFG R/W OOOOh Byte/Word 260h SCP/SPI Conliguration
SPlDATA R/W OOh Byte/Word 262h SCP/SPI Data
SPlCS R/W 00h Byte/Word 263h SCP/SPI Control and Status

OCR Registers
CANCMR R/W Olh Byte/Word 270h CAN Command Register
CANSTR R/O 00h Byte/Word 27th CAN Status Register
CANBTR R/W 00h Byte/Word 272h CAN Bus liming Reg. (low)
- R/W 00h Byte/Word 273h CAN Bus liming Reg. (high)
TXERC R/W* OOh Byte/Word 27Ah Tx Error Counter
RXERC Fl/W* OOh Byte/Word 275h Rx Error Counter
EWLR R/W 96h Byte/Word 276h Error Warning Limit Register
ECCR R0 OOOOh Byte/Word 278h Error Code Capture Register
ALCR R0 OOOOh Byte/Word 27Ah Arbitration Lost Capture Reg.
RTXDTM WO OOOOh Byte/Word 27Ch RTX Data Test Mode
BCTL R/W OOOOh Byte/Word 27Eh Global Control Byte

MlF Registers
XRAMB R/W FEh Byte/Word 290h XRAM Base Address
MBXSR R/W FFh Byte/Word 29th Msg. Butt/XRAM Seg. Reg.
MlFBTRL R/W EFh Byte/Word 292h MlF Bus Timing Reg. Low
MIFBTRH R/W FFh Byte/Word 293h MlF Bus Timing Reg. High

Legend: R/W = Read &Write, R0 = Read Only, WO = Write Only, R/C = Read & Clear, W* = Writable only during G 4
CAN Reset mode, x = undefined alter reset. -

U.S. Patent Aug. 5,2003 Sheet 4 0f 7 US 6,604,156 B1

Data Memory Segment 0
OOFFFFh r_J_L.l_|._|_l_l_l

Ott-Chip

4K Bytes Space

FFH'ITIT MMR Base Address

Off-Chip

512 BytesT XRAM
I'I‘I'FI'FIT XRAM Base Address

Ott-Chip
OOOSFFh .LLLLLLLJ

Off-Chip Data Memory
(Scratch Pad)

OOOOOOh

MMR Space
Ottset FFFh —>

Offset 1 FFh --—>
512 Bytes Object Registers

|——— <———— Ottset OOOh

U.S. Patent Aug. 5, 2003

Segment xy in Data
Memory Space

xyFFFFh —____|

Object nT
Buffer size

Object 0 Message Butter
|—____

512 Bytes

XRAM

l_______

xyFFFFh

Object 0T
XRAM Butter size

512 Bytes

Sheet 5 0f 7

e23

US 6,604,156 B1

at6 e15 a0
MBXSRUtO] MnBLR

e23 a0
00h

1—— xyOOOOh

Segment xy in Data
Memory Space
—|

Object n Message Butter
|—

XRAM
r_______ 4—

e23 at6 e15

MBXSRUIO] MnBLR

a23 a0
MBXSRIYIO]

xy0000h

U.S. Patent Aug. 5,2003 Sheet 6 6f 7 US 6,604,156 B1

Object 0 Match ID Field (MnMlDH and MnMIDL)
Mid28 — Mid18 Mid17- MidiO Mid9 — Mid2 Midi MidO MIDE

Object n Mask Field (MnMSKH and MnMSKL)
Msk28 — Msk18 Msk17 — Msk10 Msk9 — Msk2 Mskl MskO

Sereener ID Field (assembled from incoming bit-stream)
CAN iD.28 — CAN |D.18 Data Byte 1 [7:01 Data Byte 2 [7:0] x x IDE

FIG.9

Object n Match ID Field (MnMlDH and MnMlDL)
Mid28 — Mid18 Midi? — MidiO Mid9 — Mid2 Midi Midi) MIDE

Object n Mask Field (MnMSKH and MnMSKL)
Msk28 - Mski8 Mskt? — Msk10 Msk9 — Msk2 Mskt MskO

Screener ID Field (assembled from incoming bit-stream)
CAN iD.28 — CAN |D.0 IDE

FIG. 10

U.S. Patent Aug. 5,2003 Sheet 7 0f 7 US 6,604,156 B1

Byte negate
Data Byte 2 ADDRESS
Data Byte 3

Data Byte DLC

Data Byte 2 (next)
Data Byte 3 (next)

FIG. 11

DIRECTION OF
Framelnto INCREASING
Data Byte 1 ADDRESS
Data Byte 2

Data Byte DLC
Frametnto (next)
Data Byte 1 (next)
Data Byte 2 (next)

FIG. 12

US 6,604,156 B1
1

MESSAGE BUFFER FULL HANDLING IN A
CAN DEVICE THAT EMPLOYS

RECONFIGURABLE MESSAGE BUFFERS

This application claims the full bene?t and priority of
US. Provisional Application Ser. No. 60/154,022, ?led on
Sep. 15, 1999, the disclosure of Which is fully incorporated
herein for all purposes.

BACKGROUND OF THE INVENTION

The present invention relates generally to the ?eld of data
communications, and more particularly, to the ?eld of serial
communications bus controllers and microcontrollers that
incorporate the same.

CAN (Control Area Network) is an industry-standard,
tWo-Wire serial communications bus that is Widely used in
automotive and industrial control applications, as Well as in
medical devices, avionics, office automation equipment,
consumer appliances, and many other products and appli
cations. CAN controllers are currently available either as
stand-alone devices adapted to interface With a microcon
troller or as circuitry integrated into or modules embedded
in a microcontroller chip. Since 1986, CAN users (softWare
programmers) have developed numerous high-level CAN
Application Layers (CALs) Which eXtend the capabilities of
the CAN While employing the CAN physical layer and the
CAN frame format, and adhering to the CAN speci?cation.
CALs have heretofore been implemented primarily in
softWare, With very little hardWare CAL support.
Consequently, CALs have heretofore required a great deal of
host CPU intervention, thereby increasing the processing
overhead and diminishing the performance of the host CPU.

Thus, there is a need in the art for a CAN hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU
to the CAN hardWare, thereby enabling a great savings in
host CPU processing resources and a commensurate
improvement in host CPU performance. One of the most
demanding and CPU resource-intensive CAL functions is
message management, Which entails the handling, storage,
and processing of incoming CAL/CAN messages received
over the CAN serial communications bus and/or outgoing
CAL/CAN messages transmitted over the CAN serial com
munications bus. CAL protocols, such as DeviceNet,
CANopen, and OSEK, deliver long messages distributed
over many CAN frames, Which methodology is sometimes
referred to as “fragmented” or “segmented” messaging. The
process of assembling such fragmented, multi-frame mes
sages has heretofore required a great deal of host CPU
intervention. In particular, CAL softWare running on the host
CPU actively monitors and manages the buffering and
processing of the message data, in order to facilitate the
assembly of the message fragments or segments into com
plete messages.

Based on the above and foregoing, it can be appreciated
that there presently eXists a need in the art for a hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU,
thereby enabling a great savings in host CPU processing
resources and a commensurate improvement in host CPU
performance.

The assignee of the present invention has recently devel
oped a neW microcontroller product, designated “XA-C3”,
that ful?lls this need in the art. The XA-C3 is the neWest
member of the Philips XA(eXtended Architecture) family of
high performance 16-bit single-chip microcontrollers. It is

10

15

20

25

30

35

40

45

55

60

65

2
believed that the XA-C3 is the ?rst chip that features
hardWare CAL support.
The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B micro

controller that incorporates a number of different inventions,
including the present invention. These inventions include
novel techniques and hardWare for ?ltering, buffering,
handling, and processing CAL/CAN messages, including
the automatic assembly of multi-frame fragmented mes
sages With minimal CPU intervention, as Well as for man
aging the storage and retrieval of the message data, and the
memory resources utiliZed therefor. In particular, the XA-C3
CAN module has the unique ability to track and reassemble
the packets constituting a fragmented message, completely
in hardWare, only interrupting the CPU (processor core)
once a complete, multi-frame message is received and
assembled. This tremendously reduces the processor band
Width required for message handling, thereby signi?cantly
increasing available bandWidth for other tasks, so that sys
tem performance is greatly enhanced.
The present invention relates to a scheme employed by

the XA-C3 microcontroller to handle a message buffer full
condition in such a manner that ensures no loss of data,
While minimiZing the required processor intervention.

SUMMARY OF THE INVENTION

The present invention encompasses a CAN microcontrol
ler that supports a plurality of message objects, and that
includes a processor core that runs CAN applications, a
plurality of message buffers associated With respective ones
of the message objects, a CAN/CAL module that processes
incoming messages that include a plurality of frames, each
frame having a maXimum number n of data bytes, and a
plurality of message object registers associated With each of
the message objects, including at least one buffer siZe
register that contains a message buffer siZe value that
speci?es the siZe of the message buffer associated With that
message object, and at least one buffer location register that
contains an address pointer that points to an address of the
storage location in the message buffer associated With that
message object Where the neXt data byte of the current
incoming message is to be stored.
The CAN/CAL module includes a message handling

function that transfers successive frames of the current
incoming message to the message buffer associated With a
selected one of the message objects designated as a receive
message object for the current incoming message, a frame
status detection function that detects Whether or not the
current frame of the current incoming message is the ?nal
frame of the current incoming message, and a buffer-full
detection function. The buffer-full detection function, in
response to a detection that the current frame of the current
incoming message is not the ?nal frame of the current
incoming message, determines the number of available
bytes of remaining storage capacity in the message buffer
associated With the designated receive message object for
the current incoming message, and declares a message
buffer-full condition if the determined number of available
bytes is less than the maXimum number n of data bytes.

The CAN /CAL module further includes a message buffer
full interrupt generator function that generates a message
buffer-full interrupt to the processor core in response to a
declaration of a message buffer-full condition.

In a presently preferred embodiment, the buffer-full detec
tion function determines the number of available bytes of
remaining storage capacity in the message buffer associated
With the designated receive message object for the current

US 6,604,156 B1
3

incoming message by subtracting prescribed bits of the
address pointer contained in the at least one buffer location
register associated With the designated receive message
object for the current incoming message, from the message
buffer siZe value contained in the at least one buffer siZe
register associated With the designated receive message
object for the current incoming message. Additionally, in the
presently preferred embodiment, the frame status detection
function detects Whether the current frame of the current
incoming message is the ?nal frame of the current incoming
message by deriving that information from the header por
tion of the current frame of the current incoming message.

In the presently preferred embodiment, the CAN/CAL
module further includes a message-complete interrupt gen
erator function that generates a message-complete interrupt
to the processor core in response to the frame status detec
tion function detecting that the current frame of the current
incoming message is the ?nal frame of the current incoming
message. Additionally, in the presently preferred
embodiment, the CAN/CAL module further includes an
address pointer increment function that, in response to a
transfer of the current data byte to the message buffer
associated With the designated receive message object for
the current incoming message, automatically increments the
address pointer to the address of the storage location in that
message buffer Where the next data byte of the current
incoming message is to be stored.

Preferably, the siZe of each message buffer can be selected
by the user by programming a selected message buffer siZe
value into the at least one message buffer siZe register
associated With that message buffer, and the base address of
each message buffer can be selected by the user by pro
gramming the address pointer associated With that message
buffer to point to a selected base address.

In the presently preferred embodiment, the CAN/CAL
module further includes a buffer-full handling function that,
in response to a declaration of a message buffer-full
condition, determines a current byte count that indicates the
number of data bytes of the current incoming message that
have already been stored in the message buffer associated
With the designated receive message object at the time the
message buffer-full condition is declared, resets the address
pointer contained in the at least one buffer location register
associated With the designated receive message object to the
base address, Writes the current byte count into the message
buffer associated With the designated receive message
object, in the storage location corresponding to the base
address, and generates a message buffer-full interrupt.

Preferably the current CAN application running on the
processor core is provided With tWo options as to hoW to
respond to the message buffer-full interrupt. Under the ?rst
option, in response to the message buffer-full interrupt, the
current CAN application reads the entire contents of the
designated receive message buffer, and then transfers the
read-out entire contents to another storage location in the
data memory space, thereby freeing up the designated
receive message buffer to store the at least one remaining
frame of the current incoming message. Under the second
option, the current CAN application, in response to the
message buffer-full interrupt, modi?es the base address of
the designated receive message buffer by replacing the
current base address With a neW base address, Whereby the
designated receive message buffer consists of a ?rst buffer
portion starting With the current base address, and a second
buffer portion starting With the neW base address.

Preferably, the current CAN application, in response to
the message-complete interrupt, retrieves a ?rst number of

10

15

25

35

45

55

65

4
the data bytes of the current incoming message from the ?rst
buffer portion, and retrieves a second number of the data
bytes of the current incoming message from the second
buffer portion, Where the ?rst number is the current byte
count.

BRIEF DESCRIPTION OF THE DRAWINGS

These and various other aspects, features, and advantages
of the present invention Will be readily understood With
reference to the folloWing detailed description of the inven
tion read in conjunction With the accompanying draWings, in
Which:

FIG. 1 is a diagram illustrating the format of a Standard
CAN Frame and the format of an Extended CAN Frame;

FIG. 2 is a diagram illustrating the interleaving of CAN
Data Frames of different, unrelated messages;

FIG. 3 is a high-level, functional block diagram of the
XA-C3 microcontroller;

FIG. 4 is a table listing all of the Memory Mapped
Registers (MMRs) provided by the XA-C3 microcontroller;

FIG. 5 is a diagram illustrating the mapping of the overall
data memory space of the XA-C3 microcontroller;

FIG. 6 is a diagram illustrating the MMR space contained
Within the overall data memory space of the XA-C3 micro
controller;

FIG. 7 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, With an object n message buffer mapped
into off-chip data memory;

FIG. 8 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, With an object n message buffer mapped
into the on-chip XRAM;

FIG. 9 is a diagram illustrating the Screener ID Field for
a Standard CAN Frame;

FIG. 10 is a diagram illustrating the Screener ID Field for
an Extended CAN Frame;

FIG. 11 is a diagram illustrating the message storage
format for fragmented CAL messages; and,

FIG. 12 is a diagram illustrating the message storage
format for fragmented CAN messages.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention is described beloW in the context of
a particular implementation thereof, i.e., in the context of the
XA-C3 microcontroller manufactured by Philips Semicon
ductors. Of course, it should be clearly understood that the
present invention is not limited to this particular
implementation, as any one or more of the various aspects
and features of the present invention disclosed herein can be
utiliZed either individually or any combination thereof, and
in any desired application, e.g., in a stand-alone CAN
controller device or as part of any other microcontroller or
system.
The folloWing terms used herein in the context of describ

ing the preferred embodiment of the present invention (i.e.,
the XA-C3 microcontroller) are de?ned as folloWs:
Standard CAN Frame: The format of a Standard CAN Frame

is depicted in FIG. 1.
Extended CAN Frame: The format of an Extended CAN
Frame is also depicted in FIG. 1.

Acceptance Filtering: The process a CAN device imple
ments in order to determine if a CAN frame should be

US 6,604,156 B1
5

accepted or ignored and, if accepted, to store that frame in
a pre-assigned Message Object.

Message Object: A Receive RAM buffer of pre-speci?ed
siZe (up to 256 bytes for CAL messages) and associated
With a particular Acceptance Filter or, a Transmit RAM
buffer Which the User preloads With all necessary data to
transmit a complete CAN Data Frame. AMessage Object
can be considered to be a communication channel over
Which a complete message, or a succession of messages,
can be transmitted.

CAN Arbitration ID: An 11-bit (Standard CAN 2.0 Frame)
or 29-bit (Extended CAN 2.0B Frame) identi?er ?eld
placed in the CAN Frame Header. This ID ?eld is used to
arbitrate Frame access to the CAN bus. Also used in
Acceptance Filtering for CAN Frame reception and
Transmit Pre-Arbitration.

Screener ID: A 30-bit ?eld extracted from the incoming
message Which is then used in Acceptance Filtering. The
Screener ID includes the CAN Arbitration ID and the IDE
bit, and can include up to 2 Data Bytes. These 30 extracted
bits are the information quali?ed by Acceptance Filtering.

Match ID: A 30-bit ?eld pre-speci?ed by the user to Which
the incoming Screener ID is compared. Individual Match
IDs for each of 32 Message Objects are programmed by
the user into designated Memory Mapped Registers
(MMRs).

Mask: A 29-bit ?eld pre-speci?ed by the user Which can
override (Mask) a Match ID comparison at any particular
bit (or, combination of bits) in an Acceptance Filter.
Individual Masks, one for each Message Object, are
programmed by the user in designated MMRs. Individual
Mask patterns assure that single Receive Objects can
Screen for multiple acknoWledged CAL/ CAN Frames and
thus minimiZe the number of Receive Objects that must
be dedicated to such loWer priority Frames. This ability to
Mask individual Message Objects is an important neW
CAL feature.

CAL: CAN Application Layer. A generic term for any
high-level protocol Which extends the capabilities of CAN
While employing the CAN physical layer and the CAN
frame format, and Which adheres to the CAN speci?ca
tion. Among other things, CALs permit transmission of
Messages Which exceed the 8 byte data limit inherent to
CAN Frames. This is accomplished by dividing each
message into multiple packets, With each packet being
transmitted as a single CAN Frame consisting of a maxi
mum of 8 data bytes. Such messages are commonly
referred to as “segmented” or “fragmented” messages.
The individual CAN Frames constituting a complete
fragmented message are not typically transmitted in a
contiguous fashion, but rather, the individual CAN
Frames of different, unrelated messages are interleaved on
the CAN bus, as is illustrated in FIG. 2

Fragmented Message: A lengthy message (in excess of 8
bytes) divided into data packets and transmitted using a
sequence of individual CAN Frames. The speci?c Ways
that sequences of CAN Frames construct these lengthy
messages is de?ned Within the context of a speci?c CAL.
The XA-C3 microcontroller automatically re-assembles
these packets into the original, lengthy message in hard
Ware and reports (via an interrupt) When the completed
(re-assembled) message is available as an associated
Receive Message Object.

Message Buffer: A block of locations in XA Data memory
Where incoming (received) messages are stored or Where
outgoing (transmit) messages are staged.

MMR: Memory Mapped Register. An on-chip command/
control/status register Whose address is mapped into XA

10

20

25

30

35

40

45

50

55

60

6
Data memory space and is accessed as Data memory by
the XA processor. With the XAC3 microcontroller, a set
of eight dedicated MMRs are associated With each Mes
sage Object. Additionally, there are several MMRs Whose
bits control global parameters that apply to all Message
Objects.
With reference noW to FIG. 3, there can be seen a

high-level block diagram of the XA-C3 microcontroller 20.
The XA-C3 microcontroller 20 includes the folloWing func
tional blocks that are fabricated on a single integrated circuit
(IC) chip packaged in a 44-pin PLCC or a 44-pin LQFP
package:

an XA CPU Core 22, that is currently implemented as a
16-bit fully static CPU With 24-bit program and data
address range, that is upWardly compatible With the
80C51 architecture, and that has an operating fre
quency of up to 30 MHZ;

program or code memory 24 that is currently imple
mented as a 32K ROM/EPROM, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal Program bus 25. A map of the code memory
space is depicted in FIG. 4;

a Data RAM 26 (internal or scratch pad data memory) that
is currently implemented as a 1024 Byte portion of the
overall XA-C3 data memory space, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal DATA bus 27;

an on-chip message buffer RAM or XRAM 28 that is
currently implemented as a 512 Byte portion of the
overall XA-C3 data memory space Which may contain
part or all of the CAN/CAL (Transmit & Receive
Object) message buffers;

a Memory Interface (MIF) unit 30 that provides interfaces
to generic memory devices such as SRAM, DRAM,
?ash, ROM, and EPROM memory devices via an
external address/data bus 32, via an internal Core Data
bus 34, and via an internal MMR bus 36;

a DMA engine 38 that provides 32 CAL DMA Channels;
a plurality of on-chip Memory Mapped Registers
(MMRs) 40 that are mapped to the overall XA-C3 data
memory space—a 4K Byte portion of the overall
XA-C3 data memory space is reserved for MMRs.
These MMRs include 32 (Message) Object or Address
Pointers and 32 ID Screeners or Match IDs, corre
sponding to the 32 CAL Message Objects. A complete
listing of all MMRs is provided in the Table depicted in
FIG. 5;

a 2.0B CAN/DLL Core 42 that is the CAN Controller
Core from the Philips SJA1000 CAN (2.0A/B) Data
Link Layer (CDLL) device (hereinafter referred to as
the “CAN Core Block” (CCB)); and,

an array of standard microcontroller peripherals that are
bi-directionally coupled to the XA CPU Core 22 via a
Special Function Register (SFR) bus 43. These stan
dard microcontroller peripherals include Universal
Asynchronous Receiver Transmitter (UART) 49, an
SPI serial interface (port) 51, three standard timers/
counters With toggle output capability, namely, Timer 0
& Timer 1 included in Timer block 53, and Timer 2
included in Timer block 54, a Watchdog Timer 55, and
four 8-bit I/O ports, namely, Ports 0—3 included in
block 61, each of Which has 4 programmable output
con?gurations.

The DMA engine 38, the MMRs 40, and the CCB 42 can
collectively be considered to constitute a CAN / CAL module
77, and Will be referred to as such at various times through

US 6,604,156 B1
7

out the following description. Further, the particular logic
elements Within the CAN/CAL module 77 that perform
“message management” and “message handling” functions
Will sometimes be referred to as the “message management
engine” and the “message handler”, respectively, at various
times throughout the folloWing description. Other nomen
clature Will be de?ned as it introduced throughout the
folloWing description.
As previously mentioned, the XA-C3 microcontroller 20

automatically implements, in hardWare, many message man
agement and other functions that Were previously only
implemented in softWare running on the host CPU (or not
implemented at all), including transparent, automatic
re-assembly of up to 32 concurrent, interleaved, multi
frame, fragmented CAL messages. For each application that
is installed to run on the host CPU (i.e., the XA CPU Core
22), the user (softWare programmer) must set-up the hard
Ware for performing these functions by programming certain
ones of the MMRs and SFRs in the manner set forth in the
XA-C3 Functional Speci?cation and XA-C3 CAN Transport
Layer Controller User Manual. The register programming
procedures that are most relevant to an understanding of the
present invention are described beloW, folloWed by a
description of the various message management and other
functions that are automatically performed by the CAL/
CAN module 77 during operation of the XA-C3 microcon
troller 20 after it has been properly set-up by the user.
FolloWing these sections, a more detailed description of the
particular invention to Which this application is directed is
provided.
Set-up/Programming Procedures
As an initial matter, the user must map the overall XA-C3

data memory space, as illustrated in FIG. 5. In particular,
subject to certain constraints, the user must specify the
starting or base address of the XRAM 28 and the starting or
base address of the MMRs 40. The base address of the
MMRs 40 can be speci?ed by appropriately programming
Special Function Registers (SFRs) MRBL and MRBH. The
base address of the XRAM 28 can be speci?ed by appro
priately programming the MMRs designated MBXSR and
XRAMB (see FIG. 4).

The user can place the 4 KByte space reserved for MMRs
40 anyWhere Within the entire 16 Mbyte data memory space
supported by the XA architecture, other than at the very
bottom of the memory space (i.e., the ?rst 1 KByte portion,
starting address of 000000h), Where it Would con?ict With
the on-chip Data RAM 26 that serves as the internal or
scratch-pad memory. The 4 KBytes of MMR space Will
alWays start at a 4 K boundary. The reset values for MRBH
and MRBL are OFh and FOh, respectively. Therefore, after a
reset, the MMR space is mapped to the uppermost 4 K Bytes
of Data Segment OFh, but access to the MMRs 40 is
disabled. The ?rst 512 Bytes (offset 000h—1FFh) of MMR
space are the Message Object Registers (eight per Message
Object) for objects n=0—31, as is shoWn in FIG. 6.

The base address of the XRAM 28 is determined by the
contents of the MMRs designated MBXSR and XRAMB, as
is shoWn in FIGS. 7 and 8. As previously mentioned, the 512
Byte XRAM 28 is Where some (or all) of the 32 (RX/T X)
message buffers (corresponding to Message Objects n
=0—3 1) reside. The message buffers can be eXtended off-chip
to a maXimum of 8 KBytes. This off-chip expansion capa
bility can accommodate up to thirty-tWo, 256-Byte message
buffers. Since the uppermost 8 bits of all message buffer
addresses are formed by the contents of the MBXSR
register, the XRAM 28 and all 32 message buffers must
reside in the same 64 K Byte data memory segment. Since

10

15

25

35

45

55

65

8
the XA-C3 microcontroller 20 only provides address lines
A0—A19 for accessing eXternal memory, all eXternal
memory addresses must be Within the loWest 1 MByte of
address space. Therefore, if there is eXternal memory in the
system into Which any of the 32 message buffers Will be
mapped, then all 32 message buffers and the XRAM 28 must
also be mapped entirely into that same 64 K Byte segment,
Which must be beloW the 1 MByte address limit.

After the memory space has been mapped, the user can
set-up or de?ne up to 32 separate Message Objects, each of
Which can be either a Transmit (TX) or a Receive (RX)
Message Object. A RX Message Object can be associated
either With a unique CAN ID, or With a set of CAN IDs
Which share certain ID bit ?elds. As previously mentioned,
each Message Object has its oWn reserved block of data
memory space (up to 256 Bytes), Which is referred to as that
Message Object’s message buffer. As Will be seen, both the
siZe and the base address of each Message Object’s message
buffer is programmable.
As previously mentioned, each Message Object is asso

ciated With a set of eight MMRs 40 dedicated to that
Message Object. Some of these registers function differently
for TX Message Objects than they do for RX Message
Objects. These eight MMRs 40 are designated “Message
Object Registers” (see FIG. 4).
The names of these eight MMRs 40 are:

1. MnMIDH Message n Match ID High
. MnMIDL Message n Match ID LoW

. MnMSKH Message n Mask High

. MnMSKL Message n Mask LoW

. MnCTL Message n Control

. MNBLR Message n Buffer Location Register

. MnBSZ Message n Buffer SiZe

8. MNFCR Message n Fragment Count Register
Where n ranges from 0 to 31 (i.e., corresponding to 32
independent Message Objects).

In general, the user de?nes or sets up a Message Object
by con?guring (programming) some or all of the eight
MMRs dedicated to that Message Object, as Will be
described beloW. Additionally, as Will be described beloW,
the user must con?gure (program) the global GCTL register,
Whose bits control global parameters that apply to all
Message Objects.

In particular, the user can specify the Match ID value for
each Message Object to be compared against the Screener
IDs extracted from incoming CAN Frames for Acceptance
Filtering. The Match ID value for each Message Object n is
speci?ed in the MnMIDH and MnMIDL registers associated
With that Message Object n. The user can mask any Screener
ID bits Which are not intended to be used in Acceptance
Filtering, on an object-by-object basis, by Writing a logic ‘1’
in the desired (to-be-masked) bit position(s) in the appro
priate MnMSKH and/or MNMSKL registers associated With
each particular Message Object n. The user is responsible,
on set-up, for assigning a unique message buffer location for
each Message Object n. In particular, the user can specify the
least signi?cant 16 bits of the base address of the message
buffer for each particular Message Object n by programming
the MnBLR register associated With that Message Object n.
The upper 8 bits of the 24-bit address, for all Message
Objects, are speci?ed by the contents of the MBXSR
register, as previously discussed, so that the message buffers
for all Message Objects reside Within the same 64 KByte
memory segment. The user is also responsible, on set-up, for
specifying the siZe of the message buffer for each Message
Object n. In particular, the user can specify the siZe of the

US 6,604,156 B1

message buffer for each particular Message Object n by
programming the MNBSZ register associated With that
Message Object n. The top location of the message buffer for
each Message Object n is determined by the siZe of that
message buffer as speci?ed in the corresponding MNBSZ
register.

The user can con?gure (program) the MnCTL register
associated With each particular Message Object n in order to
enable or disable that Message Object n, in order to de?ne
or designate that Message Object n as a TX or RX Message
Object; in order to enable or disable automatic hardWare
assembly of fragmented RX messages (i.e., automatic frag
mented message handling) for that Message Object n; in
order to enable or disable automatic generation of a
Message-Complete Interrupt for that Message Object n; and,
in order to enable or not enable that Message Object n for
Remote Transmit Request (RTR) handling. In CAN open and
OSEK systems, the user must also initialiZe the MnFCR
register associated With each Message Object n.
As previously mentioned, on set-up, the user must con

?gure (program) the global GCTL register, Whose bits
control global parameters that apply to all Message Objects.
In particular, the user can con?gure (program) the GCTL
register in order to specify the high-level CAL protocol (if
any) being used (e.g., DeviceNet, CANopen, or OSEK); in
order to enable or disable automatic acknowledgment of
CANopen Frames (CANopen auto-acknoWledge); and, in
order to specify Which of tWo transmit (TX) pre-arbitration
schemes/policies is to be utiliZed (i.e., either TX pre
arbitration based on CAN ID, With the object number being
used as a secondary tiebreaker, or TX pre-arbitration based
on object number only).
Receive Message Objects and the Receive Process

During reception (i.e., When an incoming CAN Frame is
being received by the XA-C3 microcontroller 20), the CAN /
CAL module 77 Will store the incoming CAN Frame in a
temporary (13-Byte) buffer, and determine Whether a
complete, error-free CAN frame has been successfully
received. If it is determined that a complete, error-free CAN
Frame has been successfully received, then the CAN/CAL
module 77 Will initiate Acceptance Filtering in order to
determine Whether to accept and store that CAN Frame, or
to ignore/discard that CAN Frame.
Acceptance Filtering

In general, because the XA-C3 microcontroller 20 pro
vides the user With the ability to program separate Match ID
and Mask ?elds for each of the 32 independent Message
Objects, on an object-by-object basis, as described
previously, the Acceptance Filtering process performed by
the XA-C3 microcontroller 20 can be characteriZed as a
“match and mask” technique. The basic objective of this
Acceptance Filtering process is to determine Whether a
Screener ID ?eld of the received CAN Frame (eXcluding the
“don’t care” bits masked by the Mask ?eld for each Message
Object) matches the Match ID of any enabled one of the 32
Message Objects that has been designated a Receive Mes
sage Object. If there is a match betWeen the received CAN
Frame and more than one Message Object, then the received
CAN Frame Will be deemed to have matched the Message

Object With the loWest object number Message Storage:

Each incoming (received) CAN Frame that passes Accep
tance Filtering, Will be automatically stored, via the DMA
engine 38, into the message buffer for the Receive Message
Object that particular CAN Frame Was found to have
matched. In an eXemplary implementation, the message
buffers for all Message Objects are contained in the XRAM
28.

15

25

35

45

55

65

10
Message Assembly:

In general, the DMA engine 38 Will transfer each accepted
CAN Frame from the 13-byte pre-buffer to the appropriate
message buffer (e.g., in the XRAM 28), one Word at a time,
starting from the address pointed to by the contents of the
MBXSR and MnBLR registers. Every time the DMA engine
38 transfers a byte or a Word, it has to request the bus. In this
regard, the MIF unit 30 arbitrates betWeen accesses from the
XA CPU Core 22 and from the DMA engine 38. In general,
bus arbitration is done on an “alternate” policy. After a DMA
bus access, the XA CPU Core 22 Will be granted bus access,
if requested. After an XA CPU bus access, the DMA engine
38 Will be granted bus access, if requested. (HoWever, a
burst access by the XA CPU Core 22 cannot be interrupted
by a DMA bus access).

Once bus access is granted by the MIF unit 30, the DMA
engine 38 Will Write data from the 13-byte pre-buffer to the
appropriate message buffer location. The DMA engine 38
Will keep requesting the bus, Writing message data sequen
tially to the appropriate message buffer location until the
Whole accepted CAN Frame is transferred. After the DMA
engine 38 has successfully transferred an accepted CAN
Frame to the appropriate message buffer location, the con
tents of the message buffer Will depend upon Whether the
message that the CAN Frame belongs to is a non-fragmented
(single frame) message or a fragmented message. Each case
is described beloW:
Non-Fragmented Message Assembly:

For Message Objects that have been set up With automatic
fragmented message handling disabled (not enabled—i.e.,
the FRAG bit in the MnCTL register for that Message
Object is set to ‘0’), the complete CAN ID of the accepted
CAN Frame (Which is either 11 or 29 bits, depending on
Whether the accepted CAN Frame is a Standard or EXtended
CAN Frame) is Written into the MnMIDH and MnMIDL
registers associated With the Message Object that has been
deemed to constitute a match, once the DMA engine 38 has
successfully transferred the accepted CAN Frame to the
message buffer associated With that Message Object. This
Will permit the user application to see the eXact CAN ID
Which resulted in the match, even if a portion of the CAN ID
Was masked for Acceptance Filtering. As a result of this
mechanism, the contents of the MnMIDH and MnMIDL
registers can change every time an incoming CAN Frame is
accepted. Since the incoming CAN Frame must pass
through the Acceptance Filter before it can be accepted, only
the bits that are masked out Will change. Therefore, the
criteria for match and mask Acceptance Filtering Will not
change as a result of the contents of the MnMIDH and
MnMIDL registers being changed in response to an accepted
incoming CAN Frame being transferred to the appropriate
message buffer.
Fragmented Message Assembly:

For Message Objects that have been set up With automatic
fragmented message handling enabled (i.e., With the FRAG
bit in the MnCTL register for that Message Object set to ‘1’),
masking of the 11/29 bit CAN ID ?eld is disalloWed. As
such, the CAN ID of the accepted CAN Frame is knoWn
unambiguously, and is contained in the MnMIDH and
MNMIDL registers associated With the Message Object that
has been deemed to constitute a match. Therefore, there is no
need to Write the CAN ID of the accepted CAN Frame into
the MnMIDH and MnMIDL registers associated With the
Message Object that has been deemed to constitute a match.
As subsequent CAN Frames of a fragmented message are

received, the neW data bytes are appended to the end of the
previously received and stored data bytes. This process

US 6,604,156 B1
11

continues until a complete multi-frame message has been
received and stored in the appropriate message buffer.

Under CAL protocols DeviceNet, CANopen, and OSEK,
if a Message Object is an enabled Receive Message Object,
and its associated MnCTL register has its FRAG bit set to ‘1’
(i.e., automatic fragmented message assembly is enabled for
that particular Receive Message Object), then the ?rst data
byte (Data Byte 1) of each received CAN Frame that
matches that particular Receive Message Object Will be used
to encode fragmentation information only, and thus, Will not
be stored in the message buffer for that particular Receive
Message Object. Thus, message storage for such “FRAG
enabled” Receive Message Objects Will start With the second
data byte (Data Byte 2) and proceed in the previously
described manner until a complete multi-frame message has
been received and stored in the appropriate message buffer.
This message storage format is illustrated in FIG. 11. The
message handler hardWare Will use the fragmentation infor
mation contained in Data Byte 1 of each CAN Frame to
facilitate this process.

Under the CAN protocol, if a Message Object is an
enabled Receive Message Object, and its associated MnCTL
register has its FRAG bit set to ‘1’ (i.e., automatic frag
mented message assembly is enabled for that particular
Receive Message Object), then the CAN Frames that match
that particular Receive Message Object Will be stored
sequentially in the message buffer for that particular Receive
Message Object using the format shoWn in FIG. 12.
When Writing message data into a message buffer asso

ciated With a Message Object n, the DMA engine 38 Will
generate addresses automatically starting from the base
address of that message buffer (as speci?ed in the MnBLR
register associated With that Message Object n). Since the
siZe of that message buffer is speci?ed in the MnBSZ
register associated With that Message Object n, the DMA
engine 38 can determine When it has reached the top location
of that message buffer. If the DMA engine 38 determines
that it has reached the top location of that message buffer,
and that the message being Written into that message buffer
has not been completely transferred yet, the DMA engine 38
Will Wrap around by generating addresses starting from the
base address of that message buffer again. Some time before
this happens, a Warning interrupt Will be generated so that
the user application can take the necessary action to prevent
data loss.

The message handler Will keep track of the current
address location of the message buffer being Written to by
the DMA engine 38, and the number of bytes of each CAL
message as it is being assembled in the designated message
buffer. After an “End of Message” for a CAL message is
decoded, the message handler Will ?nish moving the com
plete CAL message and the Byte Count into the designated
message buffer via the DMA engine 38, and then generate an
interrupt to the XA CPU Core 22 indicating that a complete
message has been received.

Since Data Byte 1 of each CAN Frame contains the
fragmentation information, it Will never be stored in the
designated message buffer for that CAN Frame. Thus, up to
seven data bytes of each CAN Frame Will be stored. After
the entire message has been stored, the designated message
buffer Will contain all of the actual informational data bytes
received (exclusive of fragmentation information bytes) plus
the Byte Count at location 00 Which Will contain the total
number of informational data bytes stored.

It is noted that there are several speci?c user set-up/
programming procedures that must be folloWed When invok
ing automatic hardWare assembly of fragmented OSEK and

10

15

20

25

30

35

40

45

55

60

65

12
CANopen messages. These and other particulars can be
found in the XA-C3 CAN Transport Layer Controller User
Manual that is part of the parent Provisional Application
Serial No. 60/154,022, the disclosure of Which has been
fully incorporated herein for all purposes.
Transmit Message Objects and the Transmit Process

In order to transmit a message, the XA application pro
gram must ?rst assemble the complete message and store it
in the designated message buffer for the appropriate Trans
mit Message Object n. The message header (CAN ID and
Frame Information) must be Written into the MnMIDH,
MnMIDL, and MnMSKH registers associated With that
Transmit Message Object n. After these steps are completed,
the XA application is ready to transmit the message. To
initiate a transmission, the object enable bit (OBJiEN bit)
of the MnCTL register associated With that Transmit Mes
sage Object n must be set, eXcept When transmitting an
Auto-Acknowledge Frame in CAN open. This Will alloW this
ready-to-transmit message to participate in the prearbitration
process. In this connection, if more than one message is
ready to be transmitted (i.e., if more than one Transmit
Message Object is enabled), a TX Pre-Arbitration process
Will be performed to determine Which enabled Transmit
Message Object Will be selected for transmission. There are
tWo TX Pre-Arbitration policies Which the user can choose
betWeen by setting or clearing the PreiArb bit in the GCTL
register.

After a TX Message Complete interrupt is generated in
response to a determination being made by the message
handler that a completed message has been successfully
transmitted, the TX Pre-Arbitration process is “reset”, and
begins again. Also, if the “Winning” Transmit Message
Object subsequently loses arbitration on the CAN bus, the
TX Pre-Arbitration process gets reset and begins again. If
there is only one Transmit Message Object Whose OBJiEN
bit is set, it Will be selected regardless of the TX Pre
Arbitration policy selected.

Once an enabled Transmit Message Object has been
selected for transmission, the DMA engine 38 Will begin
retrieving the transmit message data from the message buffer
associated With that Transmit Message Object, and Will
begin transferring the retrieved transmit message data to the
CCB 42 for transmission. The same DMA engine and
address pointer logic is used for message retrieval of trans
mit messages as is used for message storage of receive
messages, as described previously. Further, message buffer
location and siZe information is speci?ed in the same Way,
as described previously. In short, When a transmit message
is retrieved, it Will be Written by the DMA engine 38 to the
CCB 42 sequentially. During this process, the DMA engine
38 Will keep requesting the bus; When bus access is granted,
the DMA engine 38 Will sequentially read the transmit
message data from the location in the message buffer cur
rently pointed to by the address pointer logic; and, the DMA
engine 38 Will sequentially Write the retrieved transmit
message data to the CCB 42. It is noted that When preparing
a message for transmission, the user application must not
include the CAN ID and Frame Information ?elds in the
transmit message data Written into the designated message
buffer, since the Transmit (TX) logic Will retrieve this
information directly from the appropriate MnMIDH,
MnMIDL, and MnMSKH registers.
The XA-C3 microcontroller 20 does not handle the trans

mission of fragmented messages in hardWare. It is the user’s
responsibility to Write each CAN Frame of a fragmented
message to the appropriate message buffer, enable the asso
ciated Transmit Message Object for transmission, and Wait

US 6,604,156 B1
13

for a completion before Writing the next CAN Frame of that
fragmented message to the appropriate message buffer. The
user application must therefore transmit multiple CAN
Frames one at a time until the Whole multi-frame, frag
mented transmit message is successfully transmitted.
HoWever, by using multiple Transmit Message Objects
Whose object numbers increase sequentially, and Whose
CAN IDs have been con?gured identically, several CAN
Frames of a fragmented transmit message can be queued up
and enabled, and then transmitted in order.

To avoid data corruption When transmitting messages,
there are three possible approaches:
1. If the TX Message Complete interrupt is enabled for the

transmit message, the user application Would Write the
neXt transmit message to the designated transmit message
buffer upon receipt of the TX Message Complete interrupt.
Once the interrupt ?ag is set, it is knoWn for certain that
the pending transmit message has already been transmit
ted.

2. Wait until the OBJiEN bit of the MnCTL register of the
associated Transmit Message Object clears before Writing
to the associated transmit message buffer. This can be
accomplished by polling the OBJiEN bit of the MnCTL
register of the associated Transmit Message Object.

3. Clear the OBJiEN bit of the MnCTL register of the
associated Transmit Message Object While that Transmit
Message Object is still in TX Pre-Arbitration.
In the ?rst tWo cases above, the pending transmit message

Will be transmitted completely before the neXt transmit
message gets transmitted. For the third case above, the
transmit message Will not be transmitted. Instead, a transmit
message With neW content Will enter TX PreArbitration.

There is an additional mechanism that prevents corruption
of a message that is being transmitted. In particular, if a
transmission is ongoing for a Transmit Message Object, the
user Will be prevented from clearing the OBJiEN bit in the
MnCTL register associated With that particular Transmit
Message Object.
CAN/CAL RELATED INTERRUPTS

The CAN/CAL module 77 of the XA-C3 microcontroller
20 is presently con?gured to generate the folloWing ?ve
different Event interrupts to the XA CPU Core 22:
1. RX Message Complete
2. TX Message Complete
3. RX Buffer Full
4. Message Error
5. Frame Error

For single-frame messages, the “Message Complete” con
dition occurs at the end of the single frame. For multi-frame
(fragmented) messages, the “Message Complete” condition
occurs after the last frame is received and stored. Since the
XA-C3 microcontroller 20 hardWare does not recogniZe or
handle fragmentation for transmit messages, the TX Message
Complete condition Will alWays be generated at the end of
each successfully transmitted frame.
As previously mentioned, there is a control bit associated

With each Message Object indicating Whether a Message
Complete condition should generate an interrupt, or just set
a “Message Complete Status Flag” (for polling) Without
generating an interrupt. This is the INTiEN bit in the
MnCTL register associated With each Message Object n.

There are tWo 16-bit MMRs 40, MCPLH and MCPLL,
Which contain the Message Complete Status Flags for all 32
Message Objects. When a Message Complete (TX or RX)
condition is detected for a particular Message Object, the
corresponding bit in the MCPLH or MCPLL register Will be
set. This Will occur regardless of Whether the INTiEN bit

10

15

20

25

30

35

40

45

55

60

65

14
is set for that particular Message Object (in its associated
MnCTL register), or Whether Message Complete Status
Flags have already been set for any other Message Objects.

In addition to these 32 Message Complete Status Flags,
there is a TX Message Complete Interrupt Flag and an RX
Message Complete Interrupt Flag, corresponding to bits [1]
and [0], respectively, of an MMR 40 designated
CANINTFLG, Which Will generate the actual Event inter
rupt requests to the XA CPU Core 22. When an End-of
Message condition occurs, at the same moment that the
Message Complete Status Flag is set, the appropriate TX or
RX Message Complete Interrupt ?ip-?op Will be set pro
vided that INTiEN=1 for the associated Message Object,
and provided that the interrupt is not already set and pend
1ng.

Further details regarding the generation of interrupts and
the associated registers can be found in the XA-C3 Func
tional Speci?cation and in the XA-C3 CAN Transport Layer
Controller User Manual, both of Which are part of the parent
Provisional Application Serial No. 60/154,022, the disclo
sure of Which has been fully incorporated herein for all
purposes.
MESSAGE BUFFERS
As Was previously described in detail hereinabove, the

XA-C3 microcontroller 20 supports up to 32 separate and
independent Message Objects, each of Which is set-up or
de?ned by virtue of the user (programmer) con?guring
(programming) some or all of the eight MMRs 40 dedicated
to that Message Object. In the XA-C3 microcontroller 20,
each of the 32 Message Objects is assigned its oWn block of
address space in data memory, Which serves as its message
buffer for data storage. The siZe and location of each
message buffer is programmable, and thus, recon?gurable
“on the ?y” by the user/programmer. The message buffers
can be positioned in any desired location Within the overall
data memory space addressable by the XA-C3 microcon
troller 20, Which is presently con?gured to be a 16 Mbyte
overall memory space. These message buffers can be located
in the XRAM 28 and/or in any off-chip portion of the overall
data memory space.
The location of the message buffer associated With each

Message Object n is established by programming the MMR
40 designated MnBLR associated With that Message Object,
i.e., by programming the Message n Buffer Location Reg
ister. The siZe of the message buffer associated With each
Message Object is established by programming the MMR 40
designated MnBSZ associated With that Message Object,
i.e., by programming the Message n Buffer SiZe Register. In
the XA-C3 microcontroller 20, alloWable buffer siZes are 2,
4, 8, 16, 32, 64, 128, or 256 bytes. Users can select the siZe
of each message buffer based on the anticipated length of the
incoming message, or they can conserve memory by delib
erately specifying smaller buffers at the eXpense of increased
processor intervention to handle more frequent buffer-full
conditions. In the XA-C3 microcontroller 20, Direct
Memory Access (DMA) (i.e., the DMA engine 38) is used
to enable the XA-C3 CAN/CAL module 77 to directly
access the 32 message buffers Without interrupting the
XA-C3 processor (CPU) core 22.
The XA-C3 CAN/CAL module 77 uses the values pro

grammed into the buffer siZe registers MnBSZ to reserve the
designated number of bytes of storage for each Message
Object n. For Receive Message Objects, this ?eld is also
used by logic in the XA-C3 CAN/CAL module 77 to
calculate the total number of bytes that have actually been
stored in the message buffers, and to identify When a
buffer-full condition is reached. Each time a byte of data is

US 6,604,156 B1
15

stored in a message buffer associated With a Message Object
n, the XA-C3 CAN/CAL module 77 concurrently accesses
the MnBSZ and MnBLR registers associated With that
Message Object. Logic incorporated Within the XA-C3
CAN/CAL module 77 decodes the buffer siZe for that
Message Object and compares the decoded buffer siZe to the
address pointer to determine current byte count and avail
able space left in that Message Object’s message buffer.

The present implementation of the XA-C3 microcontrol
ler 20 requires that all of the 32 message buffers reside
Within the same 64 Kbyte memory segment (or “page”). The
user may position the message buffers Within any of the 256
pages in the overall XA-C3 data memory space (i.e., 256x64
Kbytes=16 Mbytes). Programming the locations of the mes
sage buffers is accomplished in tWo steps.

The ?rst step is to program the page number in Which all
of the message buffers reside into the MMR 40 designated
as the MBXSR register, Which is one of the CCB Registers
depicted in FIG. 4. As Was previously described, the con
tents of this register are subsequently used as the eight MSBs
of address for all DMA accesses to any of the message
buffers. This register also establishes the memory page in
Which the XRAM 28 resides.

The second step is to program the base address (16 bits)
for each individual message buffer into the MnBLR asso
ciated With that message buffer. These 16-bit address values
initially speci?ed by the user/programmer constitute the
base addresses of the 32 respective message buffers Within
the 64 Kbyte memory page speci?ed in the MBXSR register
for all message buffers. It should be noted that the message
buffers can be placed apart from one another, as there is no
requirement that the message buffer space be continuous
(i.e., that the message buffers reside in physically contiguous
locations Within the data memory space). Further, it should
also be noted that some or all of the message buffers can be
placed in off-chip memory, and others in the on-chip XRAM
28. In the XA-C3 microcontroller 20, it is required that each
message buffer start at a binary boundary for its siZe (i.e., the
8 LSBs must be Zero for a 256-byte message buffer, the 7
LSBs must be Zero for a 128-byte message buffer, etc.).
DMA access to each of the message buffers is achieved by

using the 8 bits stored in the MBXSR register as the 8 MSBs
of the address of that message buffer, and the 16 bits stored
in the MnBLR register for that message buffer as the 16
LSBs of the address of that message buffer. The base address
initially programmed by the user into the MnBLR register
for that message buffer is the address of the ?rst (bottom)
location of that message buffer. When the ?rst frame of a
neW receive message arrives, the CAN/CAL module 77
hardWare Writes a semaphore code into this bottom location
before beginning to store actual data bytes, starting at the
neXt location in that message buffer. At the end of the neW
receive message (or When a buffer-full condition is
detected), the CAN/CAL module 77 hardWare computes the
total number of bytes actually stored in that message buffer,
and Writes this value into the bottom location of that
message buffer. The processor (i.e., the XA CPU Core 22)
can then read this value and determine precisely hoW many
additional bytes must be read and processed.

Each time a neW byte of data must be Written to (for
receive messages) or retrieve from (for transmit messages)
a message buffer, the DMA engine 38 reads the MnBLR
register for that message buffer in order to retrieve the
current address pointer for the associated Message Object.
The DMA engine 38 concatenates the 8 MSBs stored in the
global Message Buffer Segment Register (i.e., the MBXSR
register) and the 16 LSBs stored in the MnBLR register for

10

15

25

35

45

55

65

16
that message buffer to form a complete 24-bit message
buffer address. The DMA engine 38 then passes this address
to the Memory Interface (MIF) unit 30, along With a ?ag
indicating that the DMA engine 38 requires access to the
memory. As soon as the current set of XA-C3 processor
memory accesses are completed, the MIF unit 30 Will
initiate a memory read or Write to the address provided by
the DMA engine 38, and then permit the DMA engine 38 to
perform the required data transfer to/from the desired mes
sage buffer. DMA accesses are typically done tWo bytes at
a time (i.e., as a 16-bit operation). HoWever, 8-bit operations
are employed When there is only a single byte to be
transferred.
As soon as the requested DMA operation is completed,

the DMA engine 38 increments the 16-bit address value
stored in the MnBLR register associated With that message
buffer (by one or tWo, depending upon Whether a one byte
or tWo byte access Was performed), and Writes this value
back into the MnBLR register for that message buffer. Thus,
the MnBLR registers, along With the associated increment
logic Within the DMA engine 38, effectively function as a set
of 32 binary “counters”. Thus, at any given time, each
MnBLR register contains the address Which Will be used for
the neXt data access to the message buffer associated With
the Message Object n. In this manner, the MnBLR register
for each message buffer serves as an address-pointer. These
address-pointer ?elds are also readable at any time by the
processor under softWare control.

The above-described approach to message storage also
provides an extremely quick and ef?cient means of freeing
up a message buffer When a message completes or When a
message buffer is full. The softWare can respond to a
message-complete interrupt or a buffer-full interrupt by
simply repositioning the message-buffer space for that par
ticular Message Object to someWhere else in the message
buffer memory space. This is accomplished by performing a
single Write operation to modify the buffer base-address
speci?ed in the appropriate MnBLR register (i.e., “address
pointer”). This is essentially the eXtent of a very short
interrupt handling routine. These interrupts must be handled
quickly because the message buffer must be freed-up for
subsequent message reception. Interrupt response is particu
larly critical if many completed messages are stacked up and
need to be dealt With at once. Once this buffer repositioning
is accomplished, the hardWare is immediately ready to
receive a neW message over that Message Object “channel”
(or, the continuation of the current message, in the case of a
buffer-full interrupt). The memory space that Was previously
designated as the message buffer for that Message Object n
still contains the previously-received message data, but this
space noW becomes just part of the long-term data memory
space. The message information stored in this long-term data
memory space can then be processed by the softWare at its
leisure.

This same buffer repositioning technique can be
employed for Transmit Messages to facilitate fragmentation.
Unlike the receive case, the XA-C3 CAN/CAL Module 77
does not automatically assemble fragmented outgoing mes
sages. It is incumbent upon the softWare to “load” a neW
message frame each time the previous frame is transmitted.
Using the XA-C3microcontroller 20 message storage
scheme, hoWever, the softWare can construct an entire
fragmented message prior to enabling transmission. As each
frame is transmitted, the processor (XA CPU Core 22) only
needs to reposition the buffer (again, using a single Write
operation) to point to the location of the neXt frame. This is
much faster than competing devices, Which require the

US 6,604,156 B1
17

processor to move up to 13 bytes of data from memory to a
dedicated transmit buffer.

It Will be appreciated that With the above-described mes
sage buffer scheme of the present invention, each message
buffer can be regarded as a separate FIFO having an inde
pendently programmable buffer length, Which provides a
revolutionary approach to storing sequential messages of
varying lengths Without any CPU intervention.

THE PRESENT INVENTION

As described hereinabove, each incoming (received)
CAN Frame that passes Acceptance Filtering Will be auto
matically stored, via the DMA engine 38, into the message
buffer for the Receive Message Object that particular CAN
Frame Was found to have matched, Without interrupting the
XA CPU Core 22. Under the CAN protocol, if a Message
Object is an enabled Receive Message Object, and its
associated MnCTL register has its FRAG bit set to ‘1’ (i.e.,
automatic fragmented message assembly is enabled for that
particular Receive Message Object), then the CAN Frames
that match that particular Receive Message Object Will be
stored sequentially in the message buffer for that particular
Receive Message Object using the format shoWn in FIG. 12.
When Writing message data into a message buffer asso

ciated With a Message Object n, the DMA engine 38 Will
generate addresses automatically starting from the base
address of that message buffer (as speci?ed in the MNBLR
register associated With that Message Object n). Since the
siZe of that message buffer is speci?ed in the MnBSZ
register associated With that Message Object n, the DMA
engine 38 can determine When it has reached the top location
of that message buffer.

There is no guarantee that an incoming message Will not
contain more data bytes than can be held by the designated
message buffer, i.e., there is no guarantee that the pro
grammed buffer siZe speci?ed in the MnBLR register Will be
sufficient to hold all frames of the incoming message. This
Will alWays be the case for messages Which exceed the
maXimum buffer siZe, Which in the case of the current
version of the XA-C3 microcontroller 20 is 256 bytes. This
buffer-full condition can also occur in cases Where the length
of the eXpected message can not be predicted in advance of
its receipt. The user may also elect to conserve memory
resources by deliberately specifying smaller buffer siZes at
the eXpense of increased processor intervention to handle
more frequent buffer-full conditions.
As previously stated, the XA-C3 microcontroller 20 is

designed to handle a message buffer full condition in such a
manner that ensures no loss of data, While minimiZing the
required processor intervention, utiliZing the folloWing
scheme.

The ?rst requirement for message buffer full handling is
that there be no loss of message data. Waiting until the
designated message buffer actually ?lls up before interrupt
ing the processor core (i.e., the XA CPU Core 22) is too late
to ensure no loss of data. The DMA operation can not be
halted While the processor core 22 responds to a buffer-full
interrupt. All data bytes in the currently received frame must
be transferred quickly in order to alloW the XA-C3 CAN/
CAL module 77 to handle the folloWing incoming message.

In accordance With the present invention, as implemented
in the XA-C3 microcontroller 20, this problem is solved
(i.e., this ?rst requirement is met) by de?ning a message
buffer full condition as folloWs: if, after a complete frame is
received and stored, there are less than seven bytes remain
ing in the designated message buffer, and additional frames

10

15

25

55

65

18
are eXpected for that message, the designated message buffer
is considered to be full, and RX Buffer-Full Interrupt is
generated. If no additional frames are eXpected for that
message, an RX Message-Complete Interrupt is generated
instead.

The rationale for this approach is that since a message
frame can contain up to seven data bytes, there is the
potential for the neXt frame to over?oW the message buffer
if less than seven byte of storage remain available for
message data storage. The processor core 22 must intervene
at this point to ensure that a buffer over?oW does not actually
occur. The speci?c mechanism employed by the XA-C3
microcontroller 20 to accomplish this scheme Will noW be
described.

More particularly, When a message frame is received by
the XA-C3 CAN/CAL module 77 and passes one of the
input acceptance ?lters, it is passed onto the DMA engine
38. DMA access to each of the message buffers is achieved
by using the 8 bits stored in the MBXSR register as the 8
MSBs of the address of that message buffer, and the 16 bits
stored in the MnBLR register for that message buffer as the
16 LSBs of the address of that message buffer. The base
address initially programmed by the user into the MNBLR
register for that message buffer is the address of the ?rst
(bottom) location of that message buffer. When the ?rst
frame of a neW receive message arrives, the CAN/CAL
module 77 hardWare Writes a semaphore code into this
bottom location before beginning to store actual data bytes,
starting at the neXt location in that message buffer. At the end
of the neW receive message (or When a buffer-full condition
is detected), the CAN/CAL module 77 hardWare computes
the total number of bytes actually stored in that message
buffer, and Writes this value into the bottom location of that
message buffer. The processor (i.e., the XA CPU Core 22)
can then read this value and determine precisely hoW many
additional bytes must be read and processed.
As soon as the requested DMA operation is completed,

the DMA engine 38 increments the 16-bit address value
stored in the MnBLR register associated With that message
buffer (by one or tWo, depending upon Whether a one byte
or tWo byte access Was performed), and Writes this value
back into the MnBLR register for that message buffer. Thus,
the MnBLR registers, along With the associated increment
logic Within the DMA engine 38, effectively function as a set
of 32 binary “counters”. Thus, at any given time, each
MnBLR register contains the address Which Will be used for
the neXt data access to the message buffer associated With
the Message Object n. In this manner, the MnBLR register
for each message buffer serves as an address-pointer. These
address-pointer ?elds are also readable at any time by the
processor under softWare control.

Each time a byte of data is stored in a message buffer
associated With a Message Object n, the XA-C3 CAN/CAL
module 77 concurrently accesses the MNBSZ and MnBLR
registers associated With that Message Object. Logic incor
porated Within the XA-C3 CAN/CAL module 77 decodes
the buffer siZe for that Message Object and compares the
decoded buffer siZe (the value in the associated MnBSZ
register) to the address pointer (i.e., the current address value
in the associated MnBLR register) to determine current byte
count and available space left in that. Message Object’s
message buffer.

After the last byte of each frame of the incoming message
has been Written into the designated message buffer for that
message, logic Within the CAN/CAL module 77 checks to
determine Whether or not this is the ?nal frame of the

US 6,604,156 B1
19

incoming message. This information is derived from an
encoded ?eld contained in the header portion of the incom
ing message that is transmitted as part of the frame, and
stored in a ?ip-?op. If the received frame is not the ?nal
frame of the incoming message, then a check must be made
for a buffer-full condition (as de?ned above). This is accom
plished by logic Within the CAN/CAL module 77 determin
ing the number of bytes that remain available for message
data storage in the designated message buffer, by subtracting
the LSBs of the current address pointer (i.e., the current
address value in the MnBLR register) from the buffer-size
value (i.e., the value in the MnBSZ register), and comparing
the result to “7”. If seven bytes or more remain available for
message data storage in the designated message buffer, then
there is de?nitely suf?cient space to store at least one more
frame, so no buffer-full condition eXists. If less than seven
bytes remain available for message data storage in the
designated message buffer, then a buffer-full condition is
declared.

In response to a buffer-full condition, logic in the XA-C3
CAN/CAL module 77 performs the folloWing steps:

1. The current byte count is derived from the contents of
the MnBLR and MnBSZ registers;

2. The address pointer for the associated Message Object
n is reset to the bottom (“0”) location of the designated
message buffer, i.e., the current value of the MnBLR
register associated With that message buffer is replaced
With the base address initially programmed by the user
into the MnBLR register associated With that message
buffer;

3. The current byte count is Written into the “0” location
(i.e., base address) of the designated message buffer,
and then the address pointer (the value in the MnBLR
register) is incremented to the neXt buffer address. The
data bytes of the neXt frame of the incoming message
Will be Written into the designated message buffer
starting at this location; and,

4. An RX Buffer-Full Interrupt is generated.
The XA CPU Core 22 noW has a sufficient period of time

(i.e., at least the time required for another complete frame to
be transmitted across the CAN bus) to take action to free up
the message buffer. With the XA-C3 microcontroller 20, the
softWare is provided With tWo options as to hoW to respond
to this RX Buffer-Full Interrupt, namely:

1. Read the entire contents of the message buffer and
move them to elseWhere in the data memory, thereby
freeing up memory space for the remaining frames of
the incoming message; or,

2. Reposition the message buffer for the associated Mes
sage Object by modifying its base address in the
associated MnBLR register.

If option 1 is selected, the softWare Will read and retrieve
the current byte count from the bottom location of the
designated message buffer. Subsequent data bytes of the
incoming message Will be Written into the designated mes
sage buffer at buffer location “1”. Once an End-of-Message
condition (or another buffer-full condition) occurs, the neW
byte count (re?ecting any additional bytes received and
stored) Will be Written into buffer location “0” and a neW
interrupt to the processor core 22 Will be generated. At that
point, the softWare can read those remaining data bytes.

If option 2 is selected, the data bytes already received Will
remain Where they are, i.e., in the ?rst portion of memory
previously designated for that message buffer (hereinafter
referred to as the “?rst buffer portion”). Subsequent data
bytes of the incoming message Will be Written into the new

10

15

25

35

55

20
message buffer memory space pointed to by the neW base
address in the associated MnBLR register (hereinafter
referred to as the “second buffer portion”). The processor
core 22 can Wait until the entire message is completed (i.e.,
until after the ?nal frame is received and stored), and then
retrieve and process the entire message at once. In this case,
the bottom location of the ?rst buffer portion Will identify
the number of data bytes stored therein, and the bottom
location of the second buffer portion Will identify the num
ber of data bytes stored therein. This mechanism makes it
extremely easy for the processor to assemble the entire
message. It Will be appreciated by those skilled in the
pertinent art that option 2 can be implemented using very
feW instructions, thereby resulting in a much more ef?cient
interrupt service routine.

Although the present invention has been described in
detail hereinabove in the conteXt of a speci?c preferred
embodiment/implementation, it should be clearly under
stood that many variations, modi?cations, and/or alternative
embodiments/implementations of the basic inventive con
cepts taught herein Which may appear to those skilled in the
pertinent art Will still fall Within the spirit and scope of the
present invention, as de?ned in the appended claims.
What is claimed is:
1. A CAN microcontroller that supports a plurality of

message objects, comprising:
a processor core that runs CAN applications;

a plurality of message buffers associated With respective
ones of the message objects;

a CAN/CAL module that processes incoming messages
that include a plurality of frames, each frame having a
maXimum number n of data bytes;

a plurality of message object registers associated With
each of the message objects, including:
at least one buffer siZe register that contains a message

buffer siZe value that speci?es the siZe of the mes
sage buffer associated With that message object; and,

at least one buffer location register that contains an
address pointer that points to an address of the
storage location in the message buffer associated
With that message object Where the neXt data byte of
the current incoming message is to be stored;

Wherein the CAN/CAL module includes:
a message handling function that transfers successive

frames of the current incoming message to the mes
sage buffer associated With a selected one of the
message objects designated as a receive message
object for the current incoming message;

a frame status detection function that detects Whether or
not the current frame of the current incoming mes
sage is the ?nal frame of the current incoming
message; and,

a buffer-full detection function that, in response to a
detection that the current frame of the current incom
ing message is not the ?nal frame of the current
incoming message:
determines the number of available bytes of remain

ing storage capacity in the message buffer asso
ciated With the designated receive message object
for the current incoming message; and,

declares a message buffer-full condition if the deter
mined number of available bytes is less than the
maXimum number n of data bytes.

2. The CAN microcontroller as set forth in claim 1,
Wherein the CAN/CAL module further includes a message
buffer-full interrupt generator function that generates a mes

US 6,604,156 B1
21

sage buffer-full interrupt to the processor core in response to
a declaration of a message buffer-full condition.

3. The CAN microcontroller as set forth in claim 1,
Wherein the buffer-full detection function determines the
number of available bytes of remaining storage capacity in
the message buffer associated With the designated receive
message object for the current incoming message by sub
tracting prescribed bits of the address pointer contained in
the at least one buffer location register associated With the
designated receive message object for the current incoming
message, from the message buffer siZe value contained in the
at least one buffer siZe register associated With the desig
nated receive message object for the current incoming
message.

4. The CAN microcontroller as set forth in claim 1,
Wherein each frame of each incoming, multi-frame message
includes a header portion that indicates Whether that frame
is the last frame in its message.

5. The CAN microcontroller as set forth in claim 4,
Wherein the frame status detection function detects Whether
the current frame of the current incoming message is the
?nal frame of the current incoming message by deriving that
information from the header portion of the current frame of
the current incoming message.

6. The CAN microcontroller as set forth in claim 1,
Wherein the CAN/CAL module further includes a message
complete interrupt generator function that generates a
message-complete interrupt to the processor core in
response to the frame status detection function detecting that
the current frame of the current incoming message is the
?nal frame of the current incoming message.

7. The CAN microcontroller as set forth in claim 1,
Wherein the CAN/CAL module further includes an address
pointer increment function that, in response to a transfer of
the current data byte to the message buffer associated With
the designated receive message object for the current incom
ing message, automatically increments the address pointer to
the address of the storage location in that message buffer
Where the neXt data byte of the current incoming message is
to be stored.

8. The CAN microcontroller as set forth in claim 1,
Wherein the siZe of each message buffer is programmable by
means of programming a selected message buffer siZe value
into the at least one message buffer siZe register associated
With that message buffer.

9. The CAN microcontroller as set forth in claim 1,
Wherein a base address of each message buffer is program
mable by means of programming the address pointer asso
ciated With that message buffer to point to a selected base
address.

10. The CAN microcontroller as set forth in claim 1,
further comprising a DMA engine that implements the
message handling function Without interrupting the proces
sor core.

11. The CAN microcontroller as set forth in claim 1,
further comprising means for selectively enabling each
message object as a transmit or receive message object.

12. The CAN microcontroller as set forth in claim 11,
Wherein:

the CAN/CAL module further includes an acceptance
?ltering function that performs acceptance ?ltering on
each incoming message by comparing a screener ?eld
of the incoming message With an acceptance ?lter ?eld
associated With each receive-enabled message object;

the current incoming message is accepted if its screener
?eld matches the acceptance ?eld of a receive-enabled
message object; and,

5

25

35

45

55

65

22
the matching receive-enabled message object comprises

the designated receive message object.
13. The CAN microcontroller as set forth in claim 9,

Wherein the CAN /CAL module further includes a buffer-full
handling function that, in response to a declaration of a
message buffer-full condition:

determines a current byte count that indicates the number
of data bytes of the current incoming message that have
already been stored in the message buffer associated
With the designated receive message object at the time
the message buffer-full condition is declared;

resets the address pointer contained in the at least one
buffer location register associated With the designated
receive message object to the base address;

Writes the current byte count into the message buffer
associated With the designated receive message object,
in the storage location corresponding to the base
address; and,

generates a message buffer-full interrupt.
14. The CAN microcontroller as set forth in claim 13,

further comprising a data memory space, Wherein the mes
sage buffers are located in the data memory space.

15. The CAN microcontroller as set forth in claim 14,
Wherein a current CAN application running on the processor
core, in response to the message buffer-full interrupt, reads
the entire contents of the designated receive message buffer,
and then transfers the read-out entire contents to another
storage location in the data memory space, thereby freeing
up the designated receive message buffer to store the at least
one remaining frame of the current incoming message.

16. The CAN microcontroller as set forth in claim 14,
Wherein a current CAN application running on the processor
core, in response to the message buffer-full interrupt,
removes the currently-stored data bytes of the current
incoming message from the designated receive message
buffer, thereby freeing up the designated receive message
buffer to store the at least one remaining frame of the current
incoming message.

17. The CAN microcontroller as set forth in claim 14,
Wherein a current CAN application running on the processor
core, in response to the message buffer-full interrupt:

removes the currently-stored data bytes of the current
incoming message from the designated receive mes
sage buffer, thereby freeing up the designated receive
message buffer to store the at least one remaining frame
of the current incoming message; and,

relocates the removed data bytes to a different portion of
the data memory space.

18. The CAN microcontroller as set forth in claim 13,
Wherein a current CAN application running on the processor
core, in response to the message buffer-full interrupt, modi
?es the base address of the designated receive message
buffer by replacing the current base address With a neW base
address, Wherein the designated receive message buffer is
comprised of a ?rst buffer portion starting With the current
base address, and a second buffer portion starting With the
neW base address.

19. The CAN microcontroller as set forth in claim 18,
Wherein the CAN/CAL module further includes a message
complete interrupt generator function that generates a
message-complete interrupt to the processor core in
response to the frame status detection function detecting that
the current frame of the current incoming message is the
?nal frame of the current incoming message.

20. The CAN microcontroller as set forth in claim 19,
Wherein the current CAN application running on the pro
cessor core, in response to the message-complete interrupt:

US 6,604,156 B1
23 24

retrieves a ?rst number of the data bytes of the current 21. The CAN microcontroller as set forth in claim 20,
incoming message from the ?rst buffer portion; and, Wherein the ?rst number comprises the current byte count.

retrieves a second number of the data bytes of the current
incoming message from the second buffer portion. * * * * *

