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Abstract- eBug is a debugging solution for software developed on 
the eMIPS dynamically-extensible processor. The off-chip portion 

of eBug is an application that performs tasks that would be too 
expensive or too inflexible to perform in hardware, such as 
implementing the communication protocols to interface to the 

client debuggers. The on-chip hardware portion of eBug is 
realized with a new approach: rather than being built into the 
base pipelined data path, it is a loadable logic module that uses 

the standard Extension interface of the processor. This 
accomplishes the three goals of area minimization and reuse, 
security in a general purpose, multi-user environment, and open-

ended extensibility. When not in use, eBug is simply not present 
on the chip and its area is therefore reused.  eBug solves the 
security issues normally created by a hardware-level debug 

module because only the process that owns the eBug Extension 
can be affected by a debugging session. As an Extension, eBug is 
not compiled into the basic processor design and this makes it 

easy to add new features without affecting the core eMIPS design. 
Leveraging the high-visibility extension interface of eMIPS, eBug 
can realize arbitrarily complex features for high-level monitoring. 

In this paper we describe how we transparently added hardware 
watchpoints to the initial, simpler design. It is also possible to 
interface eBug with other eMIPS extensions such as those 

generated by the P2V checker to improve its capabilities. eBug 
was written in Verilog and is usable both with the Giano system 
simulator and on the Xilinx ML401 FPGA board.  

I. INTRODUCTION 

Debugging is an important but tedious part of the software 
development process. To be profitable, it must be supported by 
appropriate tools. For instance, it is desirable to present the user 
with the status of the application as soon as the bug occurs, 
even though the user does not yet have a precise idea of what 
the error exactly is, let alone its cause. In embedded systems, 
debugging is performed using a remote client debugger that 
connects to the embedded processor using some communication 
protocol. The remote debugger can access the processor‟s 
resources with one of two approaches: software based and 
hardware based. In the first case, a piece of software called the 
“debug stub” runs on the target processor itself. The stub 
interfaces to the remote debugger by implementing the 
communication protocol and responding to the debugger‟s 
requests. In case of a hardware or software exception the stub is 
invoked and the event is reported to the debugger. No custom 
hardware is needed in this case, but there is some software 
overhead present. Moreover, the processor status is not 
observed in the actual moment that a trap occurs. In the second 
case, a custom hardware module (such as a JTAG interface) is 
coupled to the processor to access its resources and 

communicate with the debugger. This hardware module can be 
more or less complex, depending on the features that it 
implements. In general, this approach is not very flexible 
because adding any new feature implies a reimplementation of 
the whole hardware system. Furthermore, the hardware module 
is designed to unconditionally access all the processor 
resources, without any system software control. This causes 
security issues and is therefore never used in a general purpose, 
multi-user environment. In this environment, the common 
approach is to provide in hardware some minimal support for 
single-stepping and let the (system) software handle the rest. 

In this paper we introduce eBug, a flexible, low overhead, 
security aware and easily extensible software debugging 
solution realized for the eMIPS processor [10]. eMIPS is 
composed of a fixed basic processor module that can be 
dynamically augmented with custom logic modules, using the 
FPGA partial reconfiguration feature. These modules are 
termed Extensions; they can access the internal processor 
pipeline and resources and perform special purpose tasks, 
therefore adding new capabilities to the running system. The 
primary contribution of this paper is to show how flexible 
hardware debugging support can be realized as an Extension to 
eMIPS, without any changes to the fixed processor part. A 
number of debugging Extensions have been implemented, 
providing different levels of debugging support and therefore 
demonstrating the flexibility of the approach from the hardware 
standpoint. Software flexibility is provided by an intermediate 
software application that interposes between the debugger client 
and the eBug Extension. 

 eBug creates little if any overhead. It is entirely optional, it 
uses very little area resources in a single Extension slot, and 
does not affect the performance of the processor in any way. 
When an error occurs, eBug immediately halts the processor 
before a trap is generated. In addition to hardware exceptions, 
eBug can capture a variety of conditions at the hardware level, 
by passively observing the processor‟s execution. 

A second contribution of this work is to show how hardware 
debugging support can safely be confined within the security 
envelop of a (user mode) process, but without any loss in 
performance, extensibility or functionality. eMIPS Extensions 
load, unload and access the processor resources strictly under 
the control of the operating system. When a process is 
rescheduled its extensions are disabled and can no longer 
observe the processor's execution and resources. When the 
extension is enabled, its accesses to memory are filtered by the 
processor‟s MMU. 
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eBug itself can be easily extended. The basic design is 
simple and modular and allowed us to add an advanced feature 
such as data watchpoints with very little effort. eBug is small 
enough that much more functionality can be packed even into 
the relatively limited area available on the first eMIPS 
prototype. 

A third contribution of this work is a new linkage between 
the semi-formal debugging activities of a programmer with the 
more rigorous tools of temporal logic. eBug can work in concert 
with the P2V [6] zero-overhead, online program verification 
system. Temporal logic assertions are realized as program-
specific Extensions that can trigger eBug whenever an assertion 
is violated. A programmer creates these assertions either before 
or after the program is compiled, possibly while debugging it, 
as a way to express the intended behavior of the program. 
Execution stops immediately once the program deviates from 
the expected behavior, without waiting for a hardware 
exception to occur.  

In this paper we describe the first implementation of eBug, 
and analyze its security capabilities and the extensibility 
features. In particular, we show how to improve the basic eBug 
functionality by adding hardware support for watchpoints and 
breakpoints, without any modification to the existing eMIPS 
design.  

The software debugging approach supported by eBug on 
eMIPS is usable with any other dynamically reconfigurable 
architecture and soft-core processor, with modest changes. 

The remainder of this paper is structured as follows. Section 
II summarizes the related work. Section III introduces the 
eMIPS processor. Section IV gives an overview of eBug, and 
the eBug software and hardware components are then described 
in detail in Section V and Section VI. Section VII describes 
how we added hardware support for watchpoints and 
breakpoints to the basic eBug extension. A quantitative 
evaluation of the design is presented in Section VIII. Future 
work and conclusions are presented in Section IX. 

II. RELATED WORK 

On-chip support for software debugging can be found in the 
Leon Processor [8], an open source,  Sparc V8 [13] compliant, 
32-bit RISC CPU jointly designed by Gaisler Research and the 
European Space Agency. A debugging support unit (DSU) was 
introduced in the second revision (Leon2). The DSU provides a 
processor debug interface to the GDB debugger [3]. The DSU is 
available both on the real target hardware and on a simulator. In 
Leon2 the DSU communicates with the PC using a serial port 
whereas the Leon3 DSU is connected to the system bus as a 
slave device usable with different interfaces such as UART, 
JTAG, USB or Ethernet.  

Xilinx provides optional hardware support for debugging 
software on the Microblaze soft-core [19] and on the PPC 
hardcore [12]. The XMD (Xilinx Microprocessor Debugger) 
[17] is a software tool used to interface a GDB remote session 
with a processor running on the real FPGA or with a cycle-
accurate PPC or Microblaze instruction set simulator. The PPC 
hardcore includes (fixed) logic that links with XMD using a 
JTAG link. The Microblaze can use both a software debug stub 

and a hardware debug module called MDM [18]. In the latter 
case MDM connects the Microblaze debug interface with XMD 
using the JTAG interface. 

Both the Leon and the Xilinx debugging support are 
optional features, but neither takes advantage of the FPGA 
reconfigurability features. Leon is an ASIC oriented design and, 
while FPGA implementations do exist, they do not exploit the 
FPGA partial reconfiguration feature to insert and remove the 
DSU at runtime. This is only possible at synthesis time, and 
only by reconfiguring the whole system. Once the DSU is 
included in the design, its area is wasted if debugging is not 
actually needed. Moreover, modifying the DSU design to 
implement additional features impacts the whole processor, 
which must therefore be re-validated.  

The eBug hardware extension leverages the FPGA partial 
reconfiguration feature to reuse that portion of the device area 
when software debugging is not needed. This is a choice that is 
made at runtime, during execution, and not at design time. To 
this end, the eBug extension uses the same general purpose 
interface to the eMIPS datapath that is used by all the other 
eMIPS extensions. Using a standard interface provides 
additional benefits for testing and validation; only the specific 
extension must be re-tested and not the rest of the system or any 
other extension. Therefore it is possible to add new hardware-
level features to eBug simply by re-implementing it, without 
affecting the rest of the system.  

Similar considerations apply to the Xilinx‟ debugging support. 
MDM is designed for Microblaze on FPGAs but it is not 
possible to remove it a run time. Moreover, MDM uses JTAG 
and this creates security issues. JTAG is a bus that provides 
low-level access to the entire system resources, not just the 
software under debugging. For instance, if the target processor 
is running a multitasking operating system there will be 
context-switching during a debug session. If the MDM is not 
properly used it can negatively affect the state of other 
processes and/or other parts on the system board. This is 
impossible with eBug because it is an extension owned 
exclusively by the process being debugged. When the operating 
system schedules another process all the extensions of the 
previous one are disabled and therefore they cannot affect any 
other software module. MDM is a proprietary system and it is 
not clear if it uses JTAG only to communicate with the host PC 
or also to access the processor resources like the register file. 
Compared to the processor clock, JTAG is a slow link and this 
can be a critical issue for remote debugging. For instance, 
realizing additional features such as watch-points remotely over 
the JTAG link would be problematic. 

III. THE EMIPS PROCESSOR 

eMIPS [10] is a dynamically extensible microprocessor 
developed by the Microsoft Research Embedded Systems 
group. eMIPS exploits the FPGA partial reconfiguration feature 
to extend itself at runtime. Using this feature, a user can 
dynamically add custom logic to the basic processor data path 
at all stages of the pipeline. The additional logic, which is 
termed an Extension, can be used to tailor the processor for 
particular tasks and to improve the overall performance. 
Extensions can be loaded on-chip dynamically during execution 
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by the processor itself, and only when the processor actually 
needs them. 

 Figure 1 presents a block diagram of the eMIPS 
processor organization.  The base datapath pipeline stages, 
general purpose register file and memory interface match those 
of a „classic‟ CPU [5] and are depicted in lighter color in the 
diagram.  These pipeline stages constitute the Trusted ISA or 
TISA, the core portion of the architecture that is required for 
initial operation and to provide a level of trust in the functioning 
of the processor.  These blocks cannot be removed or disabled 
and must be present at startup of the system.  These blocks 
constitute the fixed portion of the architecture and include all 
resources that are of a security sensitive nature, such as the 
system coprocessor.  The TISA also includes all the facilities 
for self-extension, including instructions for loading, unloading, 
disabling and controlling the unallocated blocks in the 
microprocessor.  At a functional level the pipeline blocks 
operate similarly to a „classic‟ CPU design, except their 
interconnections with respect to each other and other blocks 
differ.   

 

Figure 1: eMIPS Block Diagram 

 
A simple Extension such as those depicted in darker colors 

in Figure 1 includes an Instruction Decode (ID) stage and an 
Execution stage that can span to the Memory Access stage of 
the datapath. This allows the extension to perform dual cycle 
operations without stalling the normal CPU pipeline. To 
perform multi-cycle operations it is possible to modify the 
processor control flow by stalling the TISA and maintaining 
ownership of all the pipeline resources. Multi-cycle operations 
are needed for instance to access memory. Memory accesses go 
through the MMU and are therefore confined within the current 
process‟ address space. Privileged-mode resources such as the 
system coprocessor-0 registers are not usually accessible to an 
Extension, unless it is owned by privileged-mode software. The 
extension has otherwise access to all other non-privileged 
resources of the executing process, such as registers and 
memory. The extension sees each instruction as it enters the ID 
phase, its program counter, the address of each memory access 
and the value exchanged with memory.  If system software 
allows it, it can claim ownership of regular instructions in 
addition to extended instructions. The Extension can provide a 

non-sequential next-PC, i.e. one that differs from the following 
instruction, and alter the program flow. 

An Extension is often a mean to add computational 
capabilities to the processor, but other uses are possible. For 
instance, Extensions can be used to realize dynamically-loaded 
on-chip peripherals [14].  In this work, we used the Extension 
interface to exploit the FPGA partial reconfiguration feature. 
With it we have created an Extension that adds remote, JTAG-
like debugging support to the processor. The approach is usable 
with other dynamically extensible processors and soft-cores, 
and possibly to debug more than just software. We could 
imagine, for instance, using partial reconfiguration to 
dynamically load a hardware monitor such as ChipScope [23] to 
help debug hardware designs. 

IV. EBUG OVERVIEW 

The debugging support provided by eBug is actually 
realized by two separate and communicating components; a 
software component (emips2gdb) and a hardware component 
(the eBug extension).  The two components cooperate in 
providing the necessary support for remote debugging of 
applications running on the eMIPS system.  We minimized the 
size of the hardware component by moving functionality into 
the software component, provided the performance was not 
impacted. For instance, it is the software component that 
implements the protocol required by the client debugger, such 
as the remote protocol in the case of the GDB client. The 
components are somewhat independent of each other. For 
instance, it is possible to use another debugger client protocol 
simply adding a class to the software component, without 
changing the hardware one. 

The software component is depicted as the block emips2gdb 
in Figure 2 and Figure 3. It is implemented as a single 
application program, running under the host PC‟s operating 
system. As further explained in Section V, it acts as an interface 
between a PC host running a debug client like GDB and a 
remote eMIPS target. The same program is used, whether the 
target is an actual hardware eMIPS FPGA implementation 
(Figure 2) or an eMIPS simulation model (Figure 3) running 
within the Giano simulator [9, 2]. 

The hardware component is implemented as a Verilog 
module that can either be synthesized separately as an 
Extension (block “eBug Extension” in Figure 2) or loaded 
together with the rest of the eMIPS modules and peripherals 
inside the Giano simulator (Figure 3).  This component was 
developed as an eMIPS extension in order to achieve: 

1) Area reuse: The area used by eBug is used only when 
an executing program is being debugged. eBug uses 
only one of the available Extension slots. When a 
debugging session is not needed the extension slot can 
be used for other purposes. 

2) Security: The eMIPS processor can dynamically 
enable/disable individual extension slots, without 
reloading the Extensions in them. This feature can be 
used to activate the eBug extension only when the 
process being debugged is scheduled by the operating 
system. In this way, other processes running on the 
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system cannot be affected by the debugger. The debug 
client commands affect only to the state (registers, 
memory) of the process that owns the extension. eBug 
accesses registers and memory using the extension 
interface instead of a physical level channel like JTAG. 
This gives full control to the target operating system 
and prevents undesirable accesses to other resources by 
the debug client.  

3) Extensibility: The eBug hardware component is 
intended as an extensible Extension. The design makes 
it simple to add other debugging features to the base 
modules. In this way, eMIPS is not limited to a fixed 
debug hardware support but, based on the user needs, it 
can evolve and provide more complex functionalities. 
The only constraint is the maximum area that an 
extension can take. Section VII shows some possible 
enhancements to the base eBug hardware support. 

 

Named
Pipe

emips2gdbGDB Serial 
Line

eBug
Extension

 

Figure 2: Connection to Hardware 
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Pipe
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eMIPS

Giano-Modelsim
Simulation
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Figure 3: Connection to Simulation 

V. THE EMIPS2GDB SOFTWARE COMPONENT 

The eBug software component is realized in the emips2gdb 
application program. As shown in Figure 2 and Figure 3, it is 
possible to connect the debugger to an actual eMIPS hardware 
implementation as well as to a Giano simulation session, using 
the same emips2gdb program. In the first case emips2gdb uses 
an actual serial line, in the latter case it uses a PLI-based [15] 
interface that simulates the transmit and receive pins of the 
UART inside a C-model. A typical eMIPS debug session starts 
by running emips2gdb to create a server for GDB on one side 
and, according to the user request, a connection to a serial port 
or to a named pipe on the other side. The GDB debugger is then 
started and connected to emips2gdb, who acts as the remote 
target. Once the debug session is set, emips2gdb translates the 
GDB commands into the simpler protocol used by the eMIPS 
eBug Extension and performs the requested operations. 

Emips2gdb currently supports GDB as the client debugger 
but other debuggers, like WinDbg [16], can be supported 
simply by adding a class implementation that translates the new 
debugger‟s remoting protocol into the protocol used by the 
eBug extension.  

 

Figure 4: Command byte formats 

 
The GDB remote protocol is rather verbose and it is not 

area-efficient to parse it directly in hardware. To tackle this 

issue emips2gdb translates it into a more easy-to-decode 
protocol. Using this protocol emips2gdb can: 

 Suspend and Resume the processor when the process 
that owns the debug extension is running, 

 Read and write eMIPS registers, 

 Fetch and Store values from and to memory.   

Using these basic operations the debugger can perform more 
complex ones, such as single stepping, inserting software 
breakpoints and realizing software watchpoints. Note that, as 
previously explained it is also possible to add hardware support 
both for breakpoints and watchpoints, or other functionalities 
using additional basic operations. Section VII expands on this 
notion. 

TABLE I:BASIC EBUG COMMANDS 

opcode option Operation 

Bytes 

returned 

 

x00 N/A Read from an eMIPS register 4 

x01 N/A Write to an eMIPS register 1 (Ack) 

010 0x0-
0x1F 

Fetch byte from memory variable 

011 0x0-

0x1F 

Store byte to memory 1 (Ack) 

110 00000 Suspend 1 (Ack) 

110 00001 Continue 1 (Ack) 

111 ----- Future Expansion ----- 

 
The emips2gdb protocol is a stream of bytes that always 

begins with a command byte. As shown in Figure 4, the 
command byte can have two possible formats. The first format 
uses three fields and is used to access the eMIPS registers. The 
second format uses two fields and is used for memory and 
control operations. In both formats the opcode field alone 
identifies the action to be performed. The current set of legal 
opcode values is depicted in the first column of Table I. The 
second column shows the range of values for the option field, if 
applicable. The last column shows the number of bytes 
expected in the eBug response. 

A. Control Operations 

To start debugging, the first step is to connect GDB to the 
emips2gdb server. Once the connection is established, 
emips2gdb sends a Suspend byte to the debug extension to force 
eMIPS to idle. When eMIPS is stalled an acknowledge byte is 
sent back to emips2gdb and the eMIPS resources can be 
managed by GDB. 

When a Continue command is issued, emips2gdb sends the 
corresponding command byte for putting eMIPS in the running 
state and waits for a session restart indication from eBug. This 
can be required, for instance, by the execution of a break 
instruction previously inserted by GDB. 

B. Register Operations 

A register operation is indicated by bit one of the command 
byte being zero. In this case, bit zero indicates whether a read or 
a write is desired. The remaining bits, i.e. the fSpecial bit and 
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the nReg field in Figure 4, are used to identify an accessible 
eMIPS register.  

Once a register Read is recognized, the eBug extension does 
not wait for any other bytes from the serial line. It gets the value 
of the desired eMIPS register from the TISA, according to the 
fSpecial and nReg fields. Once the value is retrieved, the four 
bytes are sent back to the emips2gdb component. 

If the command byte specifies a register Write operation, the 
eBug extension waits to receive the register value from 
Emips2gdb. Once the value is received and stored to the 
requested eMIPS register, an acknowledge is sent back to 
emips2gdb to notify that the eMIPS state has changed.  

C. Memory Operations 

Emips2gdb sends a variable number of bytes to the eBug 
extension when the debugger wants to access the eMIPS 
memory subsystem. The first is the command byte.  The 
number of bytes that follows depends on the value of the 
command byte.  The command byte for Fetch and Store 
operations has a three bit opcode. The remaining 5 bits, i.e. the 
option filed, can have two sets of values: 

 0: The two bytes that follow indicate the size of the 
memory block that is to be read or written. A maximum 
block size of 64KB can be processed in a single 
transaction. In reality, the GDB remote protocol traces 
show that GDB uses a maximum block size of less than 
400 bytes.  

 1-31: This is the size of the memory block. The four 
subsequent bytes define the starting address of the 
memory transaction.   

In the case of a Read operation, emips2gdb does not send 
any more bytes and waits for the response from the eBug 
extension. After the last memory value is sent the transaction is 
concluded. No additional Acknowledge byte is sent. 

In the case of a Write operation, emips2gdb sends the bytes 
to be written to memory, starting at the address already 
specified. The eBug extension stores the data to memory and 
then sends an acknowledge to conclude the transaction. 

VI. THE EBUG HARDWARE COMPONENT 

The eBug extension is not a typical eMIPS extension. It 
does not execute any extended instruction and does not perform 
any real computational task. It does take control of the 
processor if one of the following two conditions occurs: 

1) A break instruction is in the ID stage, or 

2) The client debugger asks to Suspend the process that 
owns the eBug hardware extension. 

In these cases eBug stalls the TISA pipeline and takes 
control of the processor. This list is the minimal one 
implemented in the base eBug version. Other conditions are 
possible if/when other features are added, for example with 
hardware breakpoint/watchpoint support.  Currently eBug only 
stalls the TISA before any trap occurs; it prevents the processor 
from ever trapping on a break instruction. If required, the 

extension interface has provisions for causing traps as well.  
eBug relinquishes control back to the TISA if one of the 
following two conditions occurs: 

1) The operating system schedules another process, or 

2) The client debugger issues a Continue command. 

In all other respects, the eBug design follows the structure 
of any other eMIPS extension. As depicted in Figure 5, the 
eBug extension is composed of two modules: 
ext_debug_control that deals with the TISA pipeline interface 
and Top_debug that manages communications with the registers 
and the memory interfaces. These two modules are described in 
the following subsections. 

Figure 5: eBug External Interfaces 

A. Interface to the Pipeline Arbiter  

The eMIPS processor can execute both standard MIPS 
instructions [7] and extended instructions (see Section III). In 
the former case the execution is usually delegated to the base 
datapath, in the latter case the extensions are always responsible 
for the instruction. When an instruction is in the ID stage, both 
the TISA and the extensions can recognize it by lowering the 
recognized instruction (RI) signal. The eMIPS pipeline arbiter 
then decides to give the control to the TISA or to one of the 
extensions that claim to recognize it. When collisions occur, a 
priority scheme establishes the pipeline owner. Normally, the 
TISA has priority over the extensions but individual slots can 
be assigned higher priority and therefore override the TISA. 

Using this mechanism it is possible for eBug to request a 
stall of the processor when a break instruction is encountered. 
Notice that this prevents the TISA from issuing a software trap, 
which would change the state of the processor and the register 
contents. The same mechanism is used if the debugger client 
sends a Suspend command, i.e. when it first tries to connect to 
eMIPS. In the latter case, the eBug extension unconditionally 
recognizes the instruction in the subsequent pipeline cycle. 
Notice that the instruction is therefore not executed, execution 
will restart from the current PC. The suspension mechanism 
must also deal with an issue specific to the MIPS architecture 
[7]. The MIPS processor uses delay-slot instructions, an 
instruction that immediately follows a branch but is executed as 
part of the branch itself. To simplify the design of eBug we 
implemented a mechanism that avoids stalling the processor 
when a delay slot instruction is in the ID stage.  In this way the 
extension can always use the correct restart PC value.  

eMIPS TISA

Top_debugext_debug_control

Pipeline  Interface Registers Interface Memory Interface

Serial Port

Control signals

Extension Slot
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Figure 6 depicts the handshaking signals between eBug and 
the pipeline arbiter. After the extension lowers the RI signal, the 
pipeline arbiter asserts the enable (EN) signal notifying the 
extension that its instruction was allowed. At the following 
positive edge of the pipeline synchronization clock (PCLK), the 
extension must release RI, setting it high. EN is also deasserted. 
The extension can now access the pipeline resources for 
multiple clock cycles (as eBug does) by asserting the 
acknowledge (ACK) signal. The pipeline arbiter grants control 
to the extension raising the GR signal. The processor is now 
stalled. To release the processor the extension must de-assert 
ACK.  

 

Figure 6: Taking Control of the Pipeline 

All these tasks are performed by the ext_debug_control 
module. This module interfaces to the pipeline arbiter and to the 
Top_debug module.  More specifically, it interfaces to 
main_fsm (see Figure 7), a sub module of Top_debug. As 
explained in more details in the next subsection, one of the tasks 
of main_fsm is to support communication with emips2gdb. 
Every time a break instruction is in the ID stage a signal (break 
signal in Figure 7) is asserted and main_fsm in turn 
communicates it to emips2gdb, to restore the debugging 
session. Similarly, when emips2gdb sends a Suspend command 
main_fsm sends a signal (suspend signal in Figure 7) to take 
control of the eMIPS resources. Once the processor is stalled, 
the ext_debug_control module finite state machine sends an 
acknowledge (suspend_Ack in Figure 7) back to main_fsm.  

 

ext_debug_control_fsm

1

2 3

main_fsm

1

2 3

suspend
suspend_Ack

break

 

Figure 7: Suspension Protocol 

B. Datapath 

As shown in Figure 5, the module Top_debug is responsible 
for communication with the host PC over the Serial Port, for the 
register and memory interfaces, and it links with the 
ext_debug_control module. Internally, it is composed of two 
modules: the uart and the debug_core. The uart module is an 

implementation of the RS232 serial communication link, with a 
compile-time configurable baud rate. It lacks runtime 
configurability to simplify as much as possible the design. This 
leads to a very small area footprint of about 50 slices. Should a 
different baud rate or serial parameters be needed it is simpler 
and more effective to create a new eBug instance. To limit the 
serial line bottleneck effect, we use a default value of 115,200 
baud.   

The debug_core module is the main control center for the 
whole extension. The datapath communicates with the uart 
module and is interfaced with the TISA resources, namely the 
registers and memory subsystems.  The design of the datapath 
strives to minimize the area utilization. Pipelined registers and 
other critical path reduction techniques are not used. There are 
only five registers in this implementation:  

 InReg is used to store the command byte from the uart 
module. 

 fw_reg is used to pack four bytes into a 32 bit word. 
This register is used for write operations to registers 
and memory. 

 PC_Break is used to store the address of the instruction 
currently in the ID stage. Once a debug session starts 
PC_Break can be only changed by the debugger. This 
register is an image of the actual PC. When the program 
is restarted this is the value used to restart execution. 

 mem_addr is used to store the start address for memory 
operations. 

 num_byte stores the number of bytes requested for a 
memory operation. 

The datapath additionally includes seven multiplexers, two 
decoders and a counter of the number of bytes read or written in 
a memory operation. 

C. Control 

The control part of debug_core is implemented using three 
finite state machines: main_fsm, registers_fsm and 
memory_fsm.  The finite state machine implemented by the 
main_fsm module handles synchronization with the 
ext_debug_control_fsm module and communication with 
emips2gdb, as previously described. When in the idle state only 
two possible events can take place: a break instruction is 
executed, or an emips2gdb connection is requested. In the first 
case the debugger must be notified of the break instruction. 
With the processor already stalled, a notification is sent to 
emips2gdb to signal that the processor is waiting for debugging. 
In the second case, main_fsm assert the suspend signal to 
request a processor stall.  In either case, the finite state machine 
then goes into a state waiting for an emips2gdb command. Once 
a command is received and recognized, for example for a 
“register access” operation, the state machine performs the 
operation and eventually comes back to this state. If the 
command is a Continue then main_fsm returns to the idle state, 
after notifying ext_debug_control_fsm to releases the TISA 
pipeline. If an incoming command is not recognized, main_fsm 
responds with a zero value byte and then comes back to waiting 
for another emips2gdb command. An interesting case is if 
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emips2gdb crashes while the processor is stalled and main_fsm 
is waiting for a command. If emips2gdb subsequently 
reconnects it sends a new Suspend command to eBug, who then 
replies with an acknowledge byte. The debug session is then 
correctly resumed. 

The state machines registers_fsm and memory_fsm 
implement the eMIPS compliant protocol to access the TISA 
registers and the memory subsystem. Memory_fsm is much 
more complex than registers_fsm because the emips2gdb 
protocol for memory operations is a variable-length byte stream 
protocol. The state machine must control the flow of data 
through the datapath, correctly store the initial memory address 
and the number of bytes involved in the memory transaction, 
and eventually obey the memory subsystem protocol.  

VII. EBUG EXTENSIBILITY 

The eBug design is meant to be easily extended. Adding 
support for new features can potentially require modifying both 
the hardware side and the software side. It is desirable that only 
a well identified subset of modules requires modification to add 
new features, and that the design structure can be preserved.  

In this section we present two examples of extensions to 
eBug. The first is a set of changes made to realize breakpoints 
and watchpoints in hardware. Hardware support for watchpoints 
provides performance gains that strongly affect the user‟s 
experience. The second is a connection to the eMIPS extensions 
generated by P2V [6].  Using eBug in concert with P2V 
provides very sophisticated, high-lever debugging facilities 
which are especially useful in the case of embedded and real-
time applications. 

A. Hardware watchpoints 

The debug target can dynamically declare to the GDB 
debugger that hardware watchpoints and/or breakpoints are 
supported. In this case, GDB uses different commands in its 
remote protocol to notify the target of the insertion or deletion 
of a breakpoint or watchpoint. To support these operations, the 
emips2gdb protocol was extended using the opcode for 
Extended operations (111) and choosing an appropriate value 
for the option field. Additional information is sent to the eBug 
extension following this command byte. The next byte is called 
the ControlByte, and the encoding is shown in Table II. 

TABLE II: CONTROLBYTE 

Bits Meaning 

3-0 Slot number 

4 Watchpoint (1) or Breakpoint (0) 

5 Enable(1) or Disable (0) 

7-6 Access (00-write, 01-read, 11-all) 

 

The least significant four bits hold the hardware slot number 
to be used. When GDB inserts or deletes a breakpoint or a 
watchpoint, it identifies it only by its address. If this 
information is sent directly to the hardware a complex logic 
would be needed to identify the corresponding hardware slot. 
To avoid the extra costs in area we modified emips2gdb instead, 
adding a simple data structure to the class that implements the 

protocol.  This table keeps track of the address and all the other 
information related to the hardware slots, and it is used by 
software to translate an address in a slot number. When 
emips2gdb initially makes a new connection to eBug it 
synchronizes this data structure with the hardware slot 
information. 

Bit 4 in the ControlByte is used to indicate to eBug if an 
insertion of a watchpoint or a breakpoint is requested. In the 
first case, bits 7-6 are used to indicate the watchpoint type, 
since eBug can selectively watch for read or write accesses (or 
both). Finally bit 5 is used to enable or disable a slot. When a 
slot is disabled only the slot field and bit 5 hold significant 
information, the other bits are not used. If a slot is enabled, 
emips2gdb follows the ControlByte with a 4 byte address. 

B. Adding features via other extensions 

eBug can also be extended by leveraging other, separately 
developed eMIPS extensions. One example is the extensions 
generated by the P2V compiler [6].  The PSL-to-Verilog (P2V) 
compiler can translate a set of assertions about a block-
structured software program, expressed in the simple subset of 
the Property Specification Language PSL, into an eMIPS 
extension that observes the program‟s execution and validates 
the assertions. PSL is based on the LTL temporal logic, and can 
therefore express the complex patterns that define the 
behavioral correctness of the software program in a natural and 
compact form.  

As a simple example, suppose we want to check if a 
program‟s variable is within a desired range, but without 
recompiling and without altering the program‟s temporal 
behavior in any way. Note that currently P2V is the only system 
that can do this. It does so by creating a specialized eMIPS 
extension that passively monitors the program execution. If the 
variable is assigned an illegal value, the P2V extension will 
signal the violation in some unspecified way. For instance, it 
could assert a trap and let the operating system manage it 
according to its own policies. There are two limitations, 
however, in this approach. In the first place, it is not possible to 
observe the state of the system at the exact moment when the 
assertion is violated, but only later, after the operating system‟s 
trap handler has captured it and only limited to what software 
can self-observe. In the second place, we lack an explanation 
for why the program attempted the illegal assignment.  

We can easily overcome these limitations with eBug. Rather 
than using the trap signal, P2V can insert a break instruction in 
the ID pipeline stage. This produces exactly the same trap 
behavior when eBug is not present. When eBug is present, it 
takes control of the processor in the actual moment the failure 
occurs, and without otherwise affecting the state of the system. 
The failure is reported to the debugger and the user can explore 
the system‟s state at length and discover the reason for the 
erroneous behavior. 

We can go further. P2V is implemented in Python, using an 
interpreter. We can connect the GDB command line interpreter 
to the Python interpreter, and generate the P2V extensions on-
the-fly, while debugging the program. The user types the PSL 
assertions about the running program while it is suspended, a 
new extension is created and loaded in a separate extension slot, 
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and execution is then resumed. An interesting side-effect of this 
approach is that the user can produce and test a new/additional 
set of formal declarations about the program‟s properties as a 
natural result of debugging it. This has the additional benefits of 
quantifying the extent of the testing actually performed, and of 
creating input data for even more sophisticated program 
analysis tools, such as theorem provers and symbolic execution. 
In the first release, eBug and P2V must be compiled together 
because the ML401 implementation of eMIPS only supports 
one extension slot. 

VIII. RESULTS 

In this section we show two separate measures that quantify 
the performance of eBug. In both cases, we analyze the effects 
of adding one single feature, namely hardware watchpoints. We 
first look at the area and frequency results in the synthesis of 
different implementation of the eBug extension. This quantifies 
the impact of the feature from a hardware point of view. We 
then measure the changes in response time, from the user‟s 
point of view, when adding the feature to eBug.  

A. Synthesis Results 

All designs were implemented using a Xilinx ML401 
prototyping board. The board is built around the Xilinx Virtex4 
device, model XC4VLX25. To synthesize, implement and build 
the configuration files we used the Xilinx ISE version 8.2.01i, 
with the partial reconfiguration overlay applied. The synthesis 
results are summarized in Table III and Table IV. The first row 
in the two tables corresponds to the basic design, where 
hardware support for watchpoints is missing and must be 
realized in software. Additional rows correspond to designs that 
support two, four and eight hardware watchpoints, respectively. 
Table III details the results in area and maximum frequency for 
the various designs. 

TABLE III: SYNTHESIS RESULTS 

 Area optimization Speed optimization 

 Area f(MHz) Area f(MHz) 

SW WP 273 112,96 316 175,04 

2 HW WP 359 88,51 381 175,00 

4 HW WP 422 89,70 451 174,93 

8 HW WP 568 61,13 603 174,61 

 

When optimizing for area, the maximum frequency of the 
design decreases dramatically against an increasing number of 
watchpoints, without providing an equally significant saving in 
area. Table IV stresses this point by comparing the percentages 
in area savings and frequency reduction of the first column in 
Table III against the second column. The best tradeoff is given 
by the speed optimization option, confirming that the design 
was already targeted towards a small area footprint. 

TABLE IV: AREA VERSUS SPEED TRADE-OFFS 

 % Area Savings % Freq. Reduction 

SW WP 13.6 35.47 

2 HW WP 5.77 49.42 

4 HW WP 6.43 48.72 

8 HW WP 5.80 64.99 

The extension slot in the first eMIPS implementation has an 
available area of about 1,300 slices. Extrapolating on the trend 
visible in Table III, we can estimate that eBug on eMIPS can 
provide a maximum number of about 27 hardware watchpoints. 
Most users typically set one or two watchpoints and then move 
them around as the debugging session evolves. For very large 
applications it can nonetheless be useful to be able to observe 
many more program variables at once. When hardware 
watchpoints are not desired eBug uses only 21% of the 
available extension slot, leaving about 80% of the area for other 
uses.  Simple P2V assertions can fit comfortably in this area. 

B. Response Time 

We measured the response time of the debugger client in a 
simple interactive test, and compared the software and hardware 
watchpoint implementations. The goal was to quantify the 
impact of the added feature from the point of view of the user. 
The test was performed using a simple C program that loops 
incrementing a variable and printing a message on the console, 
as follows: 

 

 

We instructed GDB to insert a watchpoint for the variable i 
by issuing a “watch i” command while the program was 
suspended at some arbitrary loop iteration. We then took the 
time from a “continue” command to the subsequent suspension 
with the new variable value. Using this simple example allows 
software based watchpoints to work well because there are few 
machine instructions between two successive updates of the 
variable i. In this way we can evaluate the minimum speedup 
achievable using hardware watchpoints. Measurements were 
repeated five times and the average is reported in Table V. 
There was very little variance in the measured results. The test 
was repeated using two different machine configurations. The 
Machine1 setup is a single machine with a dual-core Intel 
Centrino Core2/6600 processor operating at 2.4GHz and 
running the Windows XP SP2 operating system. An ML401 
board is connected to the machine using a serial cable. The 
Machine2 setup includes two separate machines, one running 
the GDB debugger and the other the emips2gdb server, 
connected in turn to the ML401 board using a serial cable. The 
first machine uses a dual Intel Xeon processor operating at 
2.8GHz and running the Windows Server 2003 SP2 operating 
system. The second machine uses an old Intel Pentium3 
processor operating at 800MHz and running the Windows 2000 
SP4 operating system.  

TABLE V: USER-PERCEIVED PERFORMANCE GAIN 

 Software Hardware Speedup 

Machine 1 272 sec 1,1 sec 247 

Machine 2 44 sec 0,4 sec 110 

 

while(1){ 

i=i+20; 

Puts("Ciao!\n"); 

PutWord(i); 

} 
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The performance difference between the two machine 
setups is due to operating system scheduling issues (i.e. in the 
case of Machine1) rather than to eBug itself. In all cases, the 
CPU load of the GDB and emips2gdb processes is at most 1%.  

The 100-fold speedups provided by the hardware 
watchpoints are impressive, but of more practical importance 
are the absolute values. A user is unlikely to use a feature that 
costs almost a minute per loop iteration, whereas a cost of less 
than a second makes it quite feasible to use it extensively. Note 
that the use of software-based watchpoints becomes 
prohibitively expensive when used with an embedded RTOS 
that is compiled-in with the application, because the debugger 
in this case must single-step through potentially large sections 
of system code. In this case, the JTAG-like feature also proves 
very useful since the user can now single-step through 
previously undebuggable sections of code, such as interrupt 
service routines, trap handlers and other low-level operating 
system code. 

IX. CONCLUSIONS AND FUTURE WORK  

We have introduced eBug, a secure, extensible and efficient 
software debugging tool for dynamically reconfigurable 
architectures. A first release of eBug has been  implemented as 
a hardware Extension for the eMIPS processor and provides 
hardware-level, in-process debugging support to a software 
debugger such as GDB. The approach is usable with all 
processors and soft-cores that expose the registers and memory 
subsystems to a FPGA reconfigurable slot. The system is split 
into a hardware and software component, with much of the 
functionality realized in software to minimize area and 
maximize flexibility.  eBug can work in concert with the P2V 
zero-overhead assertion checker to realize a more advanced 
software debugging environment, especially for embedded and 
real time systems.  

eBug was conceived as an Extension rather than a fixed 
hardware module to achieve three main goals: area reuse, 
security and extensibility. eBug uses the area already devoted to 
an Extension slot on eMIPS, without changes to the base 
processor pipeline. When not in use eBug is not present on the 
chip and its area is therefore reused, e.g. in the final product. 
eBug is security-aware because it can only access and modify 
the status of the process that owns it, privileged or not that it 
might be. eBug is extensible because it makes it easy to add 
new features without changing the whole design or the interface 
to the processor. When a new feature is added only the eBug 
extension must be regenerated. We proved this point by adding 
hardware support for watchpoints and breakpoints to the basic 
design, and measuring the difference in terms of area 
occupation, speed performance and improved debugging 
capabilities.  

Because of the extensibility feature, adding new features to 
eBug is straightforward. For instance, it is easy to implement a 
value-based watchpoint that observes the actual data written to 
a program variable, rather than just the address. Adding 
hardware support for variable size watchpoints can be achieved 
by changing the watchpoint logic to use two watchpoint slots 
and look at an address range rather than a single address mask. 
This allows monitoring more complex data types like C arrays, 

structures and C++ classes. Multiple conditions could be 
matched in hardware; one match can be the enabler for 
subsequent ones. Possible additional features are not limited to 
the debugging aspects. Ethernet or USB interfaces could replace 
the simple but slow serial line currently used. Other 
communication protocols could be added to the software 
component of eBug. Additional functionalities, such as tracing 
and performance profiling, could be added by modifying both 
the hardware and the software components. 
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