
Exploiting Partial Reconfiguration for Flexible
Software Debugging

Giovanni Busonera
University of Cagliari

Cagliari, Italy

giovanni.busonera@diee.unica.it

Alessandro Forin
Microsoft Research

Redmond, WA - USA

sandrof@microsoft.com

Richard Neil Pittman
Microsoft Research

Redmond, WA - USA

pittman@microsoft.com

Abstract- eBug is a debugging solution for software developed on
the eMIPS dynamically-extensible processor. The off-chip portion

of eBug is an application that performs tasks that would be too
expensive or too inflexible to perform in hardware, such as
implementing the communication protocols to interface to the

client debuggers. The on-chip hardware portion of eBug is
realized with a new approach: rather than being built into the
base pipelined data path, it is a loadable logic module that uses

the standard Extension interface of the processor. This
accomplishes the three goals of area minimization and reuse,
security in a general purpose, multi-user environment, and open-

ended extensibility. When not in use, eBug is simply not present
on the chip and its area is therefore reused. eBug solves the
security issues normally created by a hardware-level debug

module because only the process that owns the eBug Extension
can be affected by a debugging session. As an Extension, eBug is
not compiled into the basic processor design and this makes it

easy to add new features without affecting the core eMIPS design.
Leveraging the high-visibility extension interface of eMIPS, eBug
can realize arbitrarily complex features for high-level monitoring.

In this paper we describe how we transparently added hardware
watchpoints to the initial, simpler design. It is also possible to
interface eBug with other eMIPS extensions such as those

generated by the P2V checker to improve its capabilities. eBug
was written in Verilog and is usable both with the Giano system
simulator and on the Xilinx ML401 FPGA board.

I. INTRODUCTION

Debugging is an important but tedious part of the software
development process. To be profitable, it must be supported by
appropriate tools. For instance, it is desirable to present the user
with the status of the application as soon as the bug occurs,
even though the user does not yet have a precise idea of what
the error exactly is, let alone its cause. In embedded systems,
debugging is performed using a remote client debugger that
connects to the embedded processor using some communication
protocol. The remote debugger can access the processor‟s
resources with one of two approaches: software based and
hardware based. In the first case, a piece of software called the
“debug stub” runs on the target processor itself. The stub
interfaces to the remote debugger by implementing the
communication protocol and responding to the debugger‟s
requests. In case of a hardware or software exception the stub is
invoked and the event is reported to the debugger. No custom
hardware is needed in this case, but there is some software
overhead present. Moreover, the processor status is not
observed in the actual moment that a trap occurs. In the second
case, a custom hardware module (such as a JTAG interface) is
coupled to the processor to access its resources and

communicate with the debugger. This hardware module can be
more or less complex, depending on the features that it
implements. In general, this approach is not very flexible
because adding any new feature implies a reimplementation of
the whole hardware system. Furthermore, the hardware module
is designed to unconditionally access all the processor
resources, without any system software control. This causes
security issues and is therefore never used in a general purpose,
multi-user environment. In this environment, the common
approach is to provide in hardware some minimal support for
single-stepping and let the (system) software handle the rest.

In this paper we introduce eBug, a flexible, low overhead,
security aware and easily extensible software debugging
solution realized for the eMIPS processor [10]. eMIPS is
composed of a fixed basic processor module that can be
dynamically augmented with custom logic modules, using the
FPGA partial reconfiguration feature. These modules are
termed Extensions; they can access the internal processor
pipeline and resources and perform special purpose tasks,
therefore adding new capabilities to the running system. The
primary contribution of this paper is to show how flexible
hardware debugging support can be realized as an Extension to
eMIPS, without any changes to the fixed processor part. A
number of debugging Extensions have been implemented,
providing different levels of debugging support and therefore
demonstrating the flexibility of the approach from the hardware
standpoint. Software flexibility is provided by an intermediate
software application that interposes between the debugger client
and the eBug Extension.

 eBug creates little if any overhead. It is entirely optional, it
uses very little area resources in a single Extension slot, and
does not affect the performance of the processor in any way.
When an error occurs, eBug immediately halts the processor
before a trap is generated. In addition to hardware exceptions,
eBug can capture a variety of conditions at the hardware level,
by passively observing the processor‟s execution.

A second contribution of this work is to show how hardware
debugging support can safely be confined within the security
envelop of a (user mode) process, but without any loss in
performance, extensibility or functionality. eMIPS Extensions
load, unload and access the processor resources strictly under
the control of the operating system. When a process is
rescheduled its extensions are disabled and can no longer
observe the processor's execution and resources. When the
extension is enabled, its accesses to memory are filtered by the
processor‟s MMU.

978-1-4244-1985-2/08/$25.00 ©2008 IEEE
173

eBug itself can be easily extended. The basic design is
simple and modular and allowed us to add an advanced feature
such as data watchpoints with very little effort. eBug is small
enough that much more functionality can be packed even into
the relatively limited area available on the first eMIPS
prototype.

A third contribution of this work is a new linkage between
the semi-formal debugging activities of a programmer with the
more rigorous tools of temporal logic. eBug can work in concert
with the P2V [6] zero-overhead, online program verification
system. Temporal logic assertions are realized as program-
specific Extensions that can trigger eBug whenever an assertion
is violated. A programmer creates these assertions either before
or after the program is compiled, possibly while debugging it,
as a way to express the intended behavior of the program.
Execution stops immediately once the program deviates from
the expected behavior, without waiting for a hardware
exception to occur.

In this paper we describe the first implementation of eBug,
and analyze its security capabilities and the extensibility
features. In particular, we show how to improve the basic eBug
functionality by adding hardware support for watchpoints and
breakpoints, without any modification to the existing eMIPS
design.

The software debugging approach supported by eBug on
eMIPS is usable with any other dynamically reconfigurable
architecture and soft-core processor, with modest changes.

The remainder of this paper is structured as follows. Section
II summarizes the related work. Section III introduces the
eMIPS processor. Section IV gives an overview of eBug, and
the eBug software and hardware components are then described
in detail in Section V and Section VI. Section VII describes
how we added hardware support for watchpoints and
breakpoints to the basic eBug extension. A quantitative
evaluation of the design is presented in Section VIII. Future
work and conclusions are presented in Section IX.

II. RELATED WORK

On-chip support for software debugging can be found in the
Leon Processor [8], an open source, Sparc V8 [13] compliant,
32-bit RISC CPU jointly designed by Gaisler Research and the
European Space Agency. A debugging support unit (DSU) was
introduced in the second revision (Leon2). The DSU provides a
processor debug interface to the GDB debugger [3]. The DSU is
available both on the real target hardware and on a simulator. In
Leon2 the DSU communicates with the PC using a serial port
whereas the Leon3 DSU is connected to the system bus as a
slave device usable with different interfaces such as UART,
JTAG, USB or Ethernet.

Xilinx provides optional hardware support for debugging
software on the Microblaze soft-core [19] and on the PPC
hardcore [12]. The XMD (Xilinx Microprocessor Debugger)
[17] is a software tool used to interface a GDB remote session
with a processor running on the real FPGA or with a cycle-
accurate PPC or Microblaze instruction set simulator. The PPC
hardcore includes (fixed) logic that links with XMD using a
JTAG link. The Microblaze can use both a software debug stub

and a hardware debug module called MDM [18]. In the latter
case MDM connects the Microblaze debug interface with XMD
using the JTAG interface.

Both the Leon and the Xilinx debugging support are
optional features, but neither takes advantage of the FPGA
reconfigurability features. Leon is an ASIC oriented design and,
while FPGA implementations do exist, they do not exploit the
FPGA partial reconfiguration feature to insert and remove the
DSU at runtime. This is only possible at synthesis time, and
only by reconfiguring the whole system. Once the DSU is
included in the design, its area is wasted if debugging is not
actually needed. Moreover, modifying the DSU design to
implement additional features impacts the whole processor,
which must therefore be re-validated.

The eBug hardware extension leverages the FPGA partial
reconfiguration feature to reuse that portion of the device area
when software debugging is not needed. This is a choice that is
made at runtime, during execution, and not at design time. To
this end, the eBug extension uses the same general purpose
interface to the eMIPS datapath that is used by all the other
eMIPS extensions. Using a standard interface provides
additional benefits for testing and validation; only the specific
extension must be re-tested and not the rest of the system or any
other extension. Therefore it is possible to add new hardware-
level features to eBug simply by re-implementing it, without
affecting the rest of the system.

Similar considerations apply to the Xilinx‟ debugging support.
MDM is designed for Microblaze on FPGAs but it is not
possible to remove it a run time. Moreover, MDM uses JTAG
and this creates security issues. JTAG is a bus that provides
low-level access to the entire system resources, not just the
software under debugging. For instance, if the target processor
is running a multitasking operating system there will be
context-switching during a debug session. If the MDM is not
properly used it can negatively affect the state of other
processes and/or other parts on the system board. This is
impossible with eBug because it is an extension owned
exclusively by the process being debugged. When the operating
system schedules another process all the extensions of the
previous one are disabled and therefore they cannot affect any
other software module. MDM is a proprietary system and it is
not clear if it uses JTAG only to communicate with the host PC
or also to access the processor resources like the register file.
Compared to the processor clock, JTAG is a slow link and this
can be a critical issue for remote debugging. For instance,
realizing additional features such as watch-points remotely over
the JTAG link would be problematic.

III. THE EMIPS PROCESSOR

eMIPS [10] is a dynamically extensible microprocessor
developed by the Microsoft Research Embedded Systems
group. eMIPS exploits the FPGA partial reconfiguration feature
to extend itself at runtime. Using this feature, a user can
dynamically add custom logic to the basic processor data path
at all stages of the pipeline. The additional logic, which is
termed an Extension, can be used to tailor the processor for
particular tasks and to improve the overall performance.
Extensions can be loaded on-chip dynamically during execution

174

http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Central_Processing_Unit
http://en.wikipedia.org/wiki/European_Space_Agency

by the processor itself, and only when the processor actually
needs them.

 Figure 1 presents a block diagram of the eMIPS
processor organization. The base datapath pipeline stages,
general purpose register file and memory interface match those
of a „classic‟ CPU [5] and are depicted in lighter color in the
diagram. These pipeline stages constitute the Trusted ISA or
TISA, the core portion of the architecture that is required for
initial operation and to provide a level of trust in the functioning
of the processor. These blocks cannot be removed or disabled
and must be present at startup of the system. These blocks
constitute the fixed portion of the architecture and include all
resources that are of a security sensitive nature, such as the
system coprocessor. The TISA also includes all the facilities
for self-extension, including instructions for loading, unloading,
disabling and controlling the unallocated blocks in the
microprocessor. At a functional level the pipeline blocks
operate similarly to a „classic‟ CPU design, except their
interconnections with respect to each other and other blocks
differ.

Figure 1: eMIPS Block Diagram

A simple Extension such as those depicted in darker colors

in Figure 1 includes an Instruction Decode (ID) stage and an
Execution stage that can span to the Memory Access stage of
the datapath. This allows the extension to perform dual cycle
operations without stalling the normal CPU pipeline. To
perform multi-cycle operations it is possible to modify the
processor control flow by stalling the TISA and maintaining
ownership of all the pipeline resources. Multi-cycle operations
are needed for instance to access memory. Memory accesses go
through the MMU and are therefore confined within the current
process‟ address space. Privileged-mode resources such as the
system coprocessor-0 registers are not usually accessible to an
Extension, unless it is owned by privileged-mode software. The
extension has otherwise access to all other non-privileged
resources of the executing process, such as registers and
memory. The extension sees each instruction as it enters the ID
phase, its program counter, the address of each memory access
and the value exchanged with memory. If system software
allows it, it can claim ownership of regular instructions in
addition to extended instructions. The Extension can provide a

non-sequential next-PC, i.e. one that differs from the following
instruction, and alter the program flow.

An Extension is often a mean to add computational
capabilities to the processor, but other uses are possible. For
instance, Extensions can be used to realize dynamically-loaded
on-chip peripherals [14]. In this work, we used the Extension
interface to exploit the FPGA partial reconfiguration feature.
With it we have created an Extension that adds remote, JTAG-
like debugging support to the processor. The approach is usable
with other dynamically extensible processors and soft-cores,
and possibly to debug more than just software. We could
imagine, for instance, using partial reconfiguration to
dynamically load a hardware monitor such as ChipScope [23] to
help debug hardware designs.

IV. EBUG OVERVIEW

The debugging support provided by eBug is actually
realized by two separate and communicating components; a
software component (emips2gdb) and a hardware component
(the eBug extension). The two components cooperate in
providing the necessary support for remote debugging of
applications running on the eMIPS system. We minimized the
size of the hardware component by moving functionality into
the software component, provided the performance was not
impacted. For instance, it is the software component that
implements the protocol required by the client debugger, such
as the remote protocol in the case of the GDB client. The
components are somewhat independent of each other. For
instance, it is possible to use another debugger client protocol
simply adding a class to the software component, without
changing the hardware one.

The software component is depicted as the block emips2gdb
in Figure 2 and Figure 3. It is implemented as a single
application program, running under the host PC‟s operating
system. As further explained in Section V, it acts as an interface
between a PC host running a debug client like GDB and a
remote eMIPS target. The same program is used, whether the
target is an actual hardware eMIPS FPGA implementation
(Figure 2) or an eMIPS simulation model (Figure 3) running
within the Giano simulator [9, 2].

The hardware component is implemented as a Verilog
module that can either be synthesized separately as an
Extension (block “eBug Extension” in Figure 2) or loaded
together with the rest of the eMIPS modules and peripherals
inside the Giano simulator (Figure 3). This component was
developed as an eMIPS extension in order to achieve:

1) Area reuse: The area used by eBug is used only when
an executing program is being debugged. eBug uses
only one of the available Extension slots. When a
debugging session is not needed the extension slot can
be used for other purposes.

2) Security: The eMIPS processor can dynamically
enable/disable individual extension slots, without
reloading the Extensions in them. This feature can be
used to activate the eBug extension only when the
process being debugged is scheduled by the operating
system. In this way, other processes running on the

175

system cannot be affected by the debugger. The debug
client commands affect only to the state (registers,
memory) of the process that owns the extension. eBug
accesses registers and memory using the extension
interface instead of a physical level channel like JTAG.
This gives full control to the target operating system
and prevents undesirable accesses to other resources by
the debug client.

3) Extensibility: The eBug hardware component is
intended as an extensible Extension. The design makes
it simple to add other debugging features to the base
modules. In this way, eMIPS is not limited to a fixed
debug hardware support but, based on the user needs, it
can evolve and provide more complex functionalities.
The only constraint is the maximum area that an
extension can take. Section VII shows some possible
enhancements to the base eBug hardware support.

Named
Pipe

emips2gdbGDB Serial
Line

eBug
Extension

Figure 2: Connection to Hardware

Named
Pipe

emips2gdbGDB
eMIPS

Giano-Modelsim
Simulation

PLI
Named

Pipe

Figure 3: Connection to Simulation

V. THE EMIPS2GDB SOFTWARE COMPONENT

The eBug software component is realized in the emips2gdb
application program. As shown in Figure 2 and Figure 3, it is
possible to connect the debugger to an actual eMIPS hardware
implementation as well as to a Giano simulation session, using
the same emips2gdb program. In the first case emips2gdb uses
an actual serial line, in the latter case it uses a PLI-based [15]
interface that simulates the transmit and receive pins of the
UART inside a C-model. A typical eMIPS debug session starts
by running emips2gdb to create a server for GDB on one side
and, according to the user request, a connection to a serial port
or to a named pipe on the other side. The GDB debugger is then
started and connected to emips2gdb, who acts as the remote
target. Once the debug session is set, emips2gdb translates the
GDB commands into the simpler protocol used by the eMIPS
eBug Extension and performs the requested operations.

Emips2gdb currently supports GDB as the client debugger
but other debuggers, like WinDbg [16], can be supported
simply by adding a class implementation that translates the new
debugger‟s remoting protocol into the protocol used by the
eBug extension.

Figure 4: Command byte formats

The GDB remote protocol is rather verbose and it is not

area-efficient to parse it directly in hardware. To tackle this

issue emips2gdb translates it into a more easy-to-decode
protocol. Using this protocol emips2gdb can:

 Suspend and Resume the processor when the process
that owns the debug extension is running,

 Read and write eMIPS registers,

 Fetch and Store values from and to memory.

Using these basic operations the debugger can perform more
complex ones, such as single stepping, inserting software
breakpoints and realizing software watchpoints. Note that, as
previously explained it is also possible to add hardware support
both for breakpoints and watchpoints, or other functionalities
using additional basic operations. Section VII expands on this
notion.

TABLE I:BASIC EBUG COMMANDS

opcode option Operation

Bytes

returned

x00 N/A Read from an eMIPS register 4

x01 N/A Write to an eMIPS register 1 (Ack)

010 0x0-
0x1F

Fetch byte from memory variable

011 0x0-

0x1F

Store byte to memory 1 (Ack)

110 00000 Suspend 1 (Ack)

110 00001 Continue 1 (Ack)

111 ----- Future Expansion -----

The emips2gdb protocol is a stream of bytes that always

begins with a command byte. As shown in Figure 4, the
command byte can have two possible formats. The first format
uses three fields and is used to access the eMIPS registers. The
second format uses two fields and is used for memory and
control operations. In both formats the opcode field alone
identifies the action to be performed. The current set of legal
opcode values is depicted in the first column of Table I. The
second column shows the range of values for the option field, if
applicable. The last column shows the number of bytes
expected in the eBug response.

A. Control Operations

To start debugging, the first step is to connect GDB to the
emips2gdb server. Once the connection is established,
emips2gdb sends a Suspend byte to the debug extension to force
eMIPS to idle. When eMIPS is stalled an acknowledge byte is
sent back to emips2gdb and the eMIPS resources can be
managed by GDB.

When a Continue command is issued, emips2gdb sends the
corresponding command byte for putting eMIPS in the running
state and waits for a session restart indication from eBug. This
can be required, for instance, by the execution of a break
instruction previously inserted by GDB.

B. Register Operations

A register operation is indicated by bit one of the command
byte being zero. In this case, bit zero indicates whether a read or
a write is desired. The remaining bits, i.e. the fSpecial bit and

176

the nReg field in Figure 4, are used to identify an accessible
eMIPS register.

Once a register Read is recognized, the eBug extension does
not wait for any other bytes from the serial line. It gets the value
of the desired eMIPS register from the TISA, according to the
fSpecial and nReg fields. Once the value is retrieved, the four
bytes are sent back to the emips2gdb component.

If the command byte specifies a register Write operation, the
eBug extension waits to receive the register value from
Emips2gdb. Once the value is received and stored to the
requested eMIPS register, an acknowledge is sent back to
emips2gdb to notify that the eMIPS state has changed.

C. Memory Operations

Emips2gdb sends a variable number of bytes to the eBug
extension when the debugger wants to access the eMIPS
memory subsystem. The first is the command byte. The
number of bytes that follows depends on the value of the
command byte. The command byte for Fetch and Store
operations has a three bit opcode. The remaining 5 bits, i.e. the
option filed, can have two sets of values:

 0: The two bytes that follow indicate the size of the
memory block that is to be read or written. A maximum
block size of 64KB can be processed in a single
transaction. In reality, the GDB remote protocol traces
show that GDB uses a maximum block size of less than
400 bytes.

 1-31: This is the size of the memory block. The four
subsequent bytes define the starting address of the
memory transaction.

In the case of a Read operation, emips2gdb does not send
any more bytes and waits for the response from the eBug
extension. After the last memory value is sent the transaction is
concluded. No additional Acknowledge byte is sent.

In the case of a Write operation, emips2gdb sends the bytes
to be written to memory, starting at the address already
specified. The eBug extension stores the data to memory and
then sends an acknowledge to conclude the transaction.

VI. THE EBUG HARDWARE COMPONENT

The eBug extension is not a typical eMIPS extension. It
does not execute any extended instruction and does not perform
any real computational task. It does take control of the
processor if one of the following two conditions occurs:

1) A break instruction is in the ID stage, or

2) The client debugger asks to Suspend the process that
owns the eBug hardware extension.

In these cases eBug stalls the TISA pipeline and takes
control of the processor. This list is the minimal one
implemented in the base eBug version. Other conditions are
possible if/when other features are added, for example with
hardware breakpoint/watchpoint support. Currently eBug only
stalls the TISA before any trap occurs; it prevents the processor
from ever trapping on a break instruction. If required, the

extension interface has provisions for causing traps as well.
eBug relinquishes control back to the TISA if one of the
following two conditions occurs:

1) The operating system schedules another process, or

2) The client debugger issues a Continue command.

In all other respects, the eBug design follows the structure
of any other eMIPS extension. As depicted in Figure 5, the
eBug extension is composed of two modules:
ext_debug_control that deals with the TISA pipeline interface
and Top_debug that manages communications with the registers
and the memory interfaces. These two modules are described in
the following subsections.

Figure 5: eBug External Interfaces

A. Interface to the Pipeline Arbiter

The eMIPS processor can execute both standard MIPS
instructions [7] and extended instructions (see Section III). In
the former case the execution is usually delegated to the base
datapath, in the latter case the extensions are always responsible
for the instruction. When an instruction is in the ID stage, both
the TISA and the extensions can recognize it by lowering the
recognized instruction (RI) signal. The eMIPS pipeline arbiter
then decides to give the control to the TISA or to one of the
extensions that claim to recognize it. When collisions occur, a
priority scheme establishes the pipeline owner. Normally, the
TISA has priority over the extensions but individual slots can
be assigned higher priority and therefore override the TISA.

Using this mechanism it is possible for eBug to request a
stall of the processor when a break instruction is encountered.
Notice that this prevents the TISA from issuing a software trap,
which would change the state of the processor and the register
contents. The same mechanism is used if the debugger client
sends a Suspend command, i.e. when it first tries to connect to
eMIPS. In the latter case, the eBug extension unconditionally
recognizes the instruction in the subsequent pipeline cycle.
Notice that the instruction is therefore not executed, execution
will restart from the current PC. The suspension mechanism
must also deal with an issue specific to the MIPS architecture
[7]. The MIPS processor uses delay-slot instructions, an
instruction that immediately follows a branch but is executed as
part of the branch itself. To simplify the design of eBug we
implemented a mechanism that avoids stalling the processor
when a delay slot instruction is in the ID stage. In this way the
extension can always use the correct restart PC value.

eMIPS TISA

Top_debugext_debug_control

Pipeline Interface Registers Interface Memory Interface

Serial Port

Control signals

Extension Slot

177

Figure 6 depicts the handshaking signals between eBug and
the pipeline arbiter. After the extension lowers the RI signal, the
pipeline arbiter asserts the enable (EN) signal notifying the
extension that its instruction was allowed. At the following
positive edge of the pipeline synchronization clock (PCLK), the
extension must release RI, setting it high. EN is also deasserted.
The extension can now access the pipeline resources for
multiple clock cycles (as eBug does) by asserting the
acknowledge (ACK) signal. The pipeline arbiter grants control
to the extension raising the GR signal. The processor is now
stalled. To release the processor the extension must de-assert
ACK.

Figure 6: Taking Control of the Pipeline

All these tasks are performed by the ext_debug_control
module. This module interfaces to the pipeline arbiter and to the
Top_debug module. More specifically, it interfaces to
main_fsm (see Figure 7), a sub module of Top_debug. As
explained in more details in the next subsection, one of the tasks
of main_fsm is to support communication with emips2gdb.
Every time a break instruction is in the ID stage a signal (break
signal in Figure 7) is asserted and main_fsm in turn
communicates it to emips2gdb, to restore the debugging
session. Similarly, when emips2gdb sends a Suspend command
main_fsm sends a signal (suspend signal in Figure 7) to take
control of the eMIPS resources. Once the processor is stalled,
the ext_debug_control module finite state machine sends an
acknowledge (suspend_Ack in Figure 7) back to main_fsm.

ext_debug_control_fsm

1

2 3

main_fsm

1

2 3

suspend
suspend_Ack

break

Figure 7: Suspension Protocol

B. Datapath

As shown in Figure 5, the module Top_debug is responsible
for communication with the host PC over the Serial Port, for the
register and memory interfaces, and it links with the
ext_debug_control module. Internally, it is composed of two
modules: the uart and the debug_core. The uart module is an

implementation of the RS232 serial communication link, with a
compile-time configurable baud rate. It lacks runtime
configurability to simplify as much as possible the design. This
leads to a very small area footprint of about 50 slices. Should a
different baud rate or serial parameters be needed it is simpler
and more effective to create a new eBug instance. To limit the
serial line bottleneck effect, we use a default value of 115,200
baud.

The debug_core module is the main control center for the
whole extension. The datapath communicates with the uart
module and is interfaced with the TISA resources, namely the
registers and memory subsystems. The design of the datapath
strives to minimize the area utilization. Pipelined registers and
other critical path reduction techniques are not used. There are
only five registers in this implementation:

 InReg is used to store the command byte from the uart
module.

 fw_reg is used to pack four bytes into a 32 bit word.
This register is used for write operations to registers
and memory.

 PC_Break is used to store the address of the instruction
currently in the ID stage. Once a debug session starts
PC_Break can be only changed by the debugger. This
register is an image of the actual PC. When the program
is restarted this is the value used to restart execution.

 mem_addr is used to store the start address for memory
operations.

 num_byte stores the number of bytes requested for a
memory operation.

The datapath additionally includes seven multiplexers, two
decoders and a counter of the number of bytes read or written in
a memory operation.

C. Control

The control part of debug_core is implemented using three
finite state machines: main_fsm, registers_fsm and
memory_fsm. The finite state machine implemented by the
main_fsm module handles synchronization with the
ext_debug_control_fsm module and communication with
emips2gdb, as previously described. When in the idle state only
two possible events can take place: a break instruction is
executed, or an emips2gdb connection is requested. In the first
case the debugger must be notified of the break instruction.
With the processor already stalled, a notification is sent to
emips2gdb to signal that the processor is waiting for debugging.
In the second case, main_fsm assert the suspend signal to
request a processor stall. In either case, the finite state machine
then goes into a state waiting for an emips2gdb command. Once
a command is received and recognized, for example for a
“register access” operation, the state machine performs the
operation and eventually comes back to this state. If the
command is a Continue then main_fsm returns to the idle state,
after notifying ext_debug_control_fsm to releases the TISA
pipeline. If an incoming command is not recognized, main_fsm
responds with a zero value byte and then comes back to waiting
for another emips2gdb command. An interesting case is if

178

emips2gdb crashes while the processor is stalled and main_fsm
is waiting for a command. If emips2gdb subsequently
reconnects it sends a new Suspend command to eBug, who then
replies with an acknowledge byte. The debug session is then
correctly resumed.

The state machines registers_fsm and memory_fsm
implement the eMIPS compliant protocol to access the TISA
registers and the memory subsystem. Memory_fsm is much
more complex than registers_fsm because the emips2gdb
protocol for memory operations is a variable-length byte stream
protocol. The state machine must control the flow of data
through the datapath, correctly store the initial memory address
and the number of bytes involved in the memory transaction,
and eventually obey the memory subsystem protocol.

VII. EBUG EXTENSIBILITY

The eBug design is meant to be easily extended. Adding
support for new features can potentially require modifying both
the hardware side and the software side. It is desirable that only
a well identified subset of modules requires modification to add
new features, and that the design structure can be preserved.

In this section we present two examples of extensions to
eBug. The first is a set of changes made to realize breakpoints
and watchpoints in hardware. Hardware support for watchpoints
provides performance gains that strongly affect the user‟s
experience. The second is a connection to the eMIPS extensions
generated by P2V [6]. Using eBug in concert with P2V
provides very sophisticated, high-lever debugging facilities
which are especially useful in the case of embedded and real-
time applications.

A. Hardware watchpoints

The debug target can dynamically declare to the GDB
debugger that hardware watchpoints and/or breakpoints are
supported. In this case, GDB uses different commands in its
remote protocol to notify the target of the insertion or deletion
of a breakpoint or watchpoint. To support these operations, the
emips2gdb protocol was extended using the opcode for
Extended operations (111) and choosing an appropriate value
for the option field. Additional information is sent to the eBug
extension following this command byte. The next byte is called
the ControlByte, and the encoding is shown in Table II.

TABLE II: CONTROLBYTE

Bits Meaning

3-0 Slot number

4 Watchpoint (1) or Breakpoint (0)

5 Enable(1) or Disable (0)

7-6 Access (00-write, 01-read, 11-all)

The least significant four bits hold the hardware slot number
to be used. When GDB inserts or deletes a breakpoint or a
watchpoint, it identifies it only by its address. If this
information is sent directly to the hardware a complex logic
would be needed to identify the corresponding hardware slot.
To avoid the extra costs in area we modified emips2gdb instead,
adding a simple data structure to the class that implements the

protocol. This table keeps track of the address and all the other
information related to the hardware slots, and it is used by
software to translate an address in a slot number. When
emips2gdb initially makes a new connection to eBug it
synchronizes this data structure with the hardware slot
information.

Bit 4 in the ControlByte is used to indicate to eBug if an
insertion of a watchpoint or a breakpoint is requested. In the
first case, bits 7-6 are used to indicate the watchpoint type,
since eBug can selectively watch for read or write accesses (or
both). Finally bit 5 is used to enable or disable a slot. When a
slot is disabled only the slot field and bit 5 hold significant
information, the other bits are not used. If a slot is enabled,
emips2gdb follows the ControlByte with a 4 byte address.

B. Adding features via other extensions

eBug can also be extended by leveraging other, separately
developed eMIPS extensions. One example is the extensions
generated by the P2V compiler [6]. The PSL-to-Verilog (P2V)
compiler can translate a set of assertions about a block-
structured software program, expressed in the simple subset of
the Property Specification Language PSL, into an eMIPS
extension that observes the program‟s execution and validates
the assertions. PSL is based on the LTL temporal logic, and can
therefore express the complex patterns that define the
behavioral correctness of the software program in a natural and
compact form.

As a simple example, suppose we want to check if a
program‟s variable is within a desired range, but without
recompiling and without altering the program‟s temporal
behavior in any way. Note that currently P2V is the only system
that can do this. It does so by creating a specialized eMIPS
extension that passively monitors the program execution. If the
variable is assigned an illegal value, the P2V extension will
signal the violation in some unspecified way. For instance, it
could assert a trap and let the operating system manage it
according to its own policies. There are two limitations,
however, in this approach. In the first place, it is not possible to
observe the state of the system at the exact moment when the
assertion is violated, but only later, after the operating system‟s
trap handler has captured it and only limited to what software
can self-observe. In the second place, we lack an explanation
for why the program attempted the illegal assignment.

We can easily overcome these limitations with eBug. Rather
than using the trap signal, P2V can insert a break instruction in
the ID pipeline stage. This produces exactly the same trap
behavior when eBug is not present. When eBug is present, it
takes control of the processor in the actual moment the failure
occurs, and without otherwise affecting the state of the system.
The failure is reported to the debugger and the user can explore
the system‟s state at length and discover the reason for the
erroneous behavior.

We can go further. P2V is implemented in Python, using an
interpreter. We can connect the GDB command line interpreter
to the Python interpreter, and generate the P2V extensions on-
the-fly, while debugging the program. The user types the PSL
assertions about the running program while it is suspended, a
new extension is created and loaded in a separate extension slot,

179

and execution is then resumed. An interesting side-effect of this
approach is that the user can produce and test a new/additional
set of formal declarations about the program‟s properties as a
natural result of debugging it. This has the additional benefits of
quantifying the extent of the testing actually performed, and of
creating input data for even more sophisticated program
analysis tools, such as theorem provers and symbolic execution.
In the first release, eBug and P2V must be compiled together
because the ML401 implementation of eMIPS only supports
one extension slot.

VIII. RESULTS

In this section we show two separate measures that quantify
the performance of eBug. In both cases, we analyze the effects
of adding one single feature, namely hardware watchpoints. We
first look at the area and frequency results in the synthesis of
different implementation of the eBug extension. This quantifies
the impact of the feature from a hardware point of view. We
then measure the changes in response time, from the user‟s
point of view, when adding the feature to eBug.

A. Synthesis Results

All designs were implemented using a Xilinx ML401
prototyping board. The board is built around the Xilinx Virtex4
device, model XC4VLX25. To synthesize, implement and build
the configuration files we used the Xilinx ISE version 8.2.01i,
with the partial reconfiguration overlay applied. The synthesis
results are summarized in Table III and Table IV. The first row
in the two tables corresponds to the basic design, where
hardware support for watchpoints is missing and must be
realized in software. Additional rows correspond to designs that
support two, four and eight hardware watchpoints, respectively.
Table III details the results in area and maximum frequency for
the various designs.

TABLE III: SYNTHESIS RESULTS

 Area optimization Speed optimization

 Area f(MHz) Area f(MHz)

SW WP 273 112,96 316 175,04

2 HW WP 359 88,51 381 175,00

4 HW WP 422 89,70 451 174,93

8 HW WP 568 61,13 603 174,61

When optimizing for area, the maximum frequency of the
design decreases dramatically against an increasing number of
watchpoints, without providing an equally significant saving in
area. Table IV stresses this point by comparing the percentages
in area savings and frequency reduction of the first column in
Table III against the second column. The best tradeoff is given
by the speed optimization option, confirming that the design
was already targeted towards a small area footprint.

TABLE IV: AREA VERSUS SPEED TRADE-OFFS

 % Area Savings % Freq. Reduction

SW WP 13.6 35.47

2 HW WP 5.77 49.42

4 HW WP 6.43 48.72

8 HW WP 5.80 64.99

The extension slot in the first eMIPS implementation has an
available area of about 1,300 slices. Extrapolating on the trend
visible in Table III, we can estimate that eBug on eMIPS can
provide a maximum number of about 27 hardware watchpoints.
Most users typically set one or two watchpoints and then move
them around as the debugging session evolves. For very large
applications it can nonetheless be useful to be able to observe
many more program variables at once. When hardware
watchpoints are not desired eBug uses only 21% of the
available extension slot, leaving about 80% of the area for other
uses. Simple P2V assertions can fit comfortably in this area.

B. Response Time

We measured the response time of the debugger client in a
simple interactive test, and compared the software and hardware
watchpoint implementations. The goal was to quantify the
impact of the added feature from the point of view of the user.
The test was performed using a simple C program that loops
incrementing a variable and printing a message on the console,
as follows:

We instructed GDB to insert a watchpoint for the variable i
by issuing a “watch i” command while the program was
suspended at some arbitrary loop iteration. We then took the
time from a “continue” command to the subsequent suspension
with the new variable value. Using this simple example allows
software based watchpoints to work well because there are few
machine instructions between two successive updates of the
variable i. In this way we can evaluate the minimum speedup
achievable using hardware watchpoints. Measurements were
repeated five times and the average is reported in Table V.
There was very little variance in the measured results. The test
was repeated using two different machine configurations. The
Machine1 setup is a single machine with a dual-core Intel
Centrino Core2/6600 processor operating at 2.4GHz and
running the Windows XP SP2 operating system. An ML401
board is connected to the machine using a serial cable. The
Machine2 setup includes two separate machines, one running
the GDB debugger and the other the emips2gdb server,
connected in turn to the ML401 board using a serial cable. The
first machine uses a dual Intel Xeon processor operating at
2.8GHz and running the Windows Server 2003 SP2 operating
system. The second machine uses an old Intel Pentium3
processor operating at 800MHz and running the Windows 2000
SP4 operating system.

TABLE V: USER-PERCEIVED PERFORMANCE GAIN

 Software Hardware Speedup

Machine 1 272 sec 1,1 sec 247

Machine 2 44 sec 0,4 sec 110

while(1){

i=i+20;

Puts("Ciao!\n");

PutWord(i);

}

180

The performance difference between the two machine
setups is due to operating system scheduling issues (i.e. in the
case of Machine1) rather than to eBug itself. In all cases, the
CPU load of the GDB and emips2gdb processes is at most 1%.

The 100-fold speedups provided by the hardware
watchpoints are impressive, but of more practical importance
are the absolute values. A user is unlikely to use a feature that
costs almost a minute per loop iteration, whereas a cost of less
than a second makes it quite feasible to use it extensively. Note
that the use of software-based watchpoints becomes
prohibitively expensive when used with an embedded RTOS
that is compiled-in with the application, because the debugger
in this case must single-step through potentially large sections
of system code. In this case, the JTAG-like feature also proves
very useful since the user can now single-step through
previously undebuggable sections of code, such as interrupt
service routines, trap handlers and other low-level operating
system code.

IX. CONCLUSIONS AND FUTURE WORK

We have introduced eBug, a secure, extensible and efficient
software debugging tool for dynamically reconfigurable
architectures. A first release of eBug has been implemented as
a hardware Extension for the eMIPS processor and provides
hardware-level, in-process debugging support to a software
debugger such as GDB. The approach is usable with all
processors and soft-cores that expose the registers and memory
subsystems to a FPGA reconfigurable slot. The system is split
into a hardware and software component, with much of the
functionality realized in software to minimize area and
maximize flexibility. eBug can work in concert with the P2V
zero-overhead assertion checker to realize a more advanced
software debugging environment, especially for embedded and
real time systems.

eBug was conceived as an Extension rather than a fixed
hardware module to achieve three main goals: area reuse,
security and extensibility. eBug uses the area already devoted to
an Extension slot on eMIPS, without changes to the base
processor pipeline. When not in use eBug is not present on the
chip and its area is therefore reused, e.g. in the final product.
eBug is security-aware because it can only access and modify
the status of the process that owns it, privileged or not that it
might be. eBug is extensible because it makes it easy to add
new features without changing the whole design or the interface
to the processor. When a new feature is added only the eBug
extension must be regenerated. We proved this point by adding
hardware support for watchpoints and breakpoints to the basic
design, and measuring the difference in terms of area
occupation, speed performance and improved debugging
capabilities.

Because of the extensibility feature, adding new features to
eBug is straightforward. For instance, it is easy to implement a
value-based watchpoint that observes the actual data written to
a program variable, rather than just the address. Adding
hardware support for variable size watchpoints can be achieved
by changing the watchpoint logic to use two watchpoint slots
and look at an address range rather than a single address mask.
This allows monitoring more complex data types like C arrays,

structures and C++ classes. Multiple conditions could be
matched in hardware; one match can be the enabler for
subsequent ones. Possible additional features are not limited to
the debugging aspects. Ethernet or USB interfaces could replace
the simple but slow serial line currently used. Other
communication protocols could be added to the software
component of eBug. Additional functionalities, such as tracing
and performance profiling, could be added by modifying both
the hardware and the software components.

REFERENCES

[1] Dean, J., et al. ProfileMe: Hardware Support for Instruction-Level
Profiling on Out-of-Order Processors. MICRO, 1997.

[2] Forin, A., Neekzad, B., Lynch, N., L. Giano: The Two-Headed Simulator.
Microsoft Research Technical Report MSR-TR-2006-130, September
2006.

[3] GDB: The GNU Project Debugger.
 Available at http://www.gnu.org/software/gdb/
[4] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a Call Graph

Execution Profiler. SIGPLAN Symp. on Compiler Construction, pp. 120-
126, 1982.

[5] Hennessy, J. L., Patterson, D.A. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann Publishers, San
Francisco, CA. 1998.

[6] Hong Lu, Alessandro Forin, P2V: An Architecture for Zero-Overhead
Online Verification of Software Programs, Workshop on Application
Specific Processors, WASP 2007

[7] Kane, G., Heinrich, J. MIPS RISC Architecture. Prentice Hall, Upper
Saddle River, NJ. 1992.

[8] Leon Processor user manual. Available at http://www.gaisler.com/cms/
[9] Microsoft Giano at http://research.microsoft.com/downloads/ and

http://www.ece.umd.edu/~behnam/giano.html
[10] Pittman, R., N., Lynch, N., L, Forin, A. eMIPS, A Dynamically

Extensible Processor Microsoft Research Technical Report MSR-TR-
2006-143, October 2006.

[11] Pittman, R., N., Forin, A. Microsoft eMIPS Release v1.0 Microsoft
Research, Fall 2007.

[12] PowerPC processor in Xilinx FPGAs.
Available at http://www.xilinx.com/

[13] Sparc processor architecture. Available at http://www.sparc.org/
[14] Sukhwani, B., Forin, A., Pittman, R. N. Extensible On-Chip Peripherals

Microsoft Research Technical Report MSR-TR-2007-120, September
2007.

[15] Sutherland, S. The Verilog PLI Handbook, 2nd ed. Kluwer Academic
Publishers, Norwell, MA. 2002.

[16] WinDbg multipurpose debugger. Available at
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

[17] Xilinx Embedded System Tools reference. Available at
 http://www.xilinx.com/ise/embedded/edk91i_docs/est_rm.pdf
[18] Xilinx Microblaze Debug Module MDM. Available at
 http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_mdm.pdf
[19] Xilinx Microblaze soft processor core. Available at

http://www.xilinx.com/products/ipcenter/micro_blaze.htm
[20] Zagha, M., B. Larson, S. Turner, and M. Itzkowitz. Performance

Analysis Using the MIPS R10000 Performance Counters.
Supercomputing, Nov. 1996.

[21] Zhang, X., et al. System Support for automatic Profiling and
Optimization. Proceedings of the 16th Symposium on Operating Systems
Principles, 1997.

[22] Zilles, C.B. and G.S. Sohi. A Programmable Co-processor for Profiling.
International Symposium on High-Performance Computer Architectures,
2001.

[23] Xilinx: ChipScope Pro Software and Cores User Guide. Xilinx Inc.,
October 2005, Available at
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_8_2i_ug
029.pdf

181

http://www.gnu.org/software/gdb/
http://www.gaisler.com/cms/
http://research.microsoft.com/downloads/
http://www.ece.umd.edu/~behnam/giano.html
http://www.sparc.org/
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-120.pdf
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.xilinx.com/ise/embedded/edk91i_docs/est_rm.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_mdm.pdf
http://www.xilinx.com/products/ipcenter/micro_blaze.htm

