
User Manual	

AT&T Research August, 2014

!
!

Tigon SQL Users Manual

January 2014
!
!
!
!
!

!

!
!
!
!
!
!
!

Page ! 1

User Manual	

AT&T Research August, 2014

!
!
!
!
!
Authored by: The Tigon SQL Team, AT&T Research

!

Page ! 2

User Manual	

AT&T Research August, 2014

!
Table of Contents
!
1. Introduction 1 ..

1.1.Background 1 ...

1.2.Theory of Operation 2 ..

1.2.1. Stored Table Databases 2 ...

1.2.2. Stream Databases 3 ..

1.2.3. Hybrid Processing 6 ...

1.3.Tigon SQL Operation 6 ..

2. Tigon SQL Installation Instructions 8 ...

2.1.Unpacking the Source 8 ..

2.2.Compiling the Source 8 ...

2.3.Define an Interface 8 ...

2.4.Define a Schema 9 ...

2.5.Completing the Installation 9 ...

3. Tigon SQL Quick Start Guide 11 ..

3.1.Compiling a Query Set 11 ..

3.2.Starting a Query Set 11 ...

3.3.Starting a Data Source 12 ...

3.4. Instantiating a Query 12 ..

3.5.Stopping a Query Set 13 ...

4. Referencing Data 15 ...

4.1. Interface Definition and Use 15 ...

4.1.1. Introduction 15

4.1.2. Interface Management 15 ...

4.1.3. File Stream Processing 17 ..

4.1.4. TcpPort Processing 18 ..

4.1.5. Interface Sets 18 ...

Page ! 3

User Manual	

AT&T Research August, 2014

4.1.6. Defining Interface Sets 19 ..

4.1.7. Using Interface Properties in Queries 20 ...

4.1.8. Library Queries 21 ...

5. Protocols and Interfaces 22 ...

5.1.Group Unpacking 24 ..

5.2.Built-in Field Access Functions 25 ..

5.3.Writing a Protocol 27 ...

5.4. Interfaces 27

6. GSQL 28 ...

6.1.Background 28 ...

6.2.Query Language 29 ...

6.2.1. Selection Queries 29 ...

6.2.2. FROM Clause: 29 ...

6.2.3. Scalar Expressions 30 ...

6.2.4. Selection List 36 ...

6.2.5. Predicate Expressions 38 ..

6.2.6. WHERE clause: 38 ...

6.2.7. Comments 38

6.2.8. Selection Summary: 39 ..

6.2.9. Join 39

6.2.10.Filter Join 42

6.2.11.GROUP-BY/Aggregation 43 ...

6.2.12.Running Aggregation 48 ..

6.2.13.Stream Sampling and Aggregation 50 ...

6.2.14.Stream Merge 52 ...

6.3.Query Specification 53 ...

6.3.1. Parameters 55

6.3.2. Options (DEFINE Block) 56 ..

6.3.3. Query Name 57 ...

Page ! 4

User Manual	

AT&T Research August, 2014

6.4.Defining a Query Set 57 ...

6.5. Invoking the GSQL Compiler 59 ...

6.5.1. Files Used by translate_fta 60 ..

6.5.2. Files Generated by translate_fta 60 ..

7. Optimizations 61 ..

7.1.Query splitting 61 ..

7.2.Prefilter 61

7.3.Group Unpacking 61 ..

7.4.Process Pinning 61 ...

7.5.Optimization Hints and Self-Optimization 62 ...

7.5.1. HFTA Parallelism 62 ..

7.5.2. LFTA Aggregation Buffer Sizes 62 ..

7.5.3. Self Optimization 63 ..

8. External Functions and Predicates 65 ...

8.1.User-defined Operators 67 ...

9. Example Queries 69 ..

9.1.A Filter Query 69 ...

9.1.1. Using User-Defined Functions 69 ..

9.1.2. Aggregation 70

9.1.3. Aggregation with Computed Groups 70 ..

9.1.4. Join 71

9.1.5. A Query Set 71

10.Tool References 73 ..

10.1.Automated Build Script 73 ...

10.1.1.Synopsis 73

10.1.2.Description 73

10.1.3.Example 73

10.2.Auto-generated Start and Stop Scripts 74 ...

10.2.1. Synopsis 74

Page ! 5

User Manual	

AT&T Research August, 2014

10.2.2. Description 74 ..

10.2.3. Example 74

11. FTA Compiler 75 ...

11.1.1. Synopsis 75

11.1.2. Description 75 ..

11.1.3. Example 76

11.4.Printing Streams to the Console 76 ..

11.4.1. Synopsis 76

11.4.2. Description 76 ..

11.4.3. Example 77

11.4.4. Known Bugs 77 ...

11.5.Saving streams to files 77 ...

11.5.1. Synopsis 77

11.5.2. Example 79

11.5.3. Known Bugs 79 ...

11.6.Concatenating Saved Stream Files 80 ..

11.6.1. Synopsis 80

11.6.2. Description 80 ..

11.6.3. Example 80

11.6.4. Known Bugs 80 ...

11.7.Converting Saved Stream Files to ASCII 80 ..

11.7.1. Synopsis 80

11.7.2. Description 80 ..

11.7.3. Example 81

11.7.4. Known Bugs 81 ...

12. External Functions and Predicates 83 ..

12.1.Conversion Functions 83 ..

12.2.Conversion Functions 84 ..

12.3.Prefix Functions 85 ...

Page ! 6

User Manual	

AT&T Research August, 2014

12.User-Defined Aggregate Functions 86 ..

12.1.Moving Sum Functions 86 ...

12.2.String Matching and Extraction 86 ...

12.2.1. Synopsis 86

12.2.2. Description 86 ..

12.2.3.Example 87

12.2.4.Known Bugs 89 ...

12.3.Longest Prefix Match 89 ..

12.3.1.Synopsis 89

12.3.2.Description 89

12.3.3.Example 89

12.3.4.Known Bugs 90 ...

12.4.Static Subset-Sum Sampling: 91 ..

12.4.1.Synopsis 91

12.4.2.Description 91

12.4.3.Example 92

12.4.4.Known Bugs 92 ...

13.MIN, MAX 93 ...

13.1.1.Synopsis 93

13.1.2.Description 93

13.1.3.Known Bugs 93 ...

13.6.Typecast 93

13.6.1.Synopsis 93

13.6.2.Description 94

13.6.3.Known Bugs 94 ...

13.7.Conditional assignment 94 ...

13.7.1.Synopsis 94

13.7.2.Description 94

13.7.3.Known Bugs 94 ...

Page ! 7

User Manual	

AT&T Research August, 2014

!
List of Appendixes
No table of figures entries found.
List of Tables
Table 1 Tigon SQL Team Points of Contact i	
 ...

Table 2 Referenced Documents i	
 ..

Table 3 Document Conventions i	
 ...

Table 4: Data Type Names 1	
 ...

Table 5: Field Attributes 1	
 ..

Table 6: Literals 1	
 ...

13.8.Local Triggers 95 ..

13.8.1. Synopsis 95

13.8.2. Description 95 ..

13.8.3. Known Bugs 96 ..

13.User Defined Aggregate Functions 98 ..

13.1.POSAVG 98

13.1.1.Synopsis 98

13.1.2.Description 98

13.1.3.Example 98

13.1.4.Known Bugs 98 ...

14.Sampling 100 ..

14.1.Dynamic Subset-Sum Sampling: 100 ...

14.1.1. Synopsis 100

14.1.2.Description 100

14.1.3.Known Bugs 107 ...

15.Flow Subset-Sum Sampling: 108 ..

15.1.Synopsis 108

15.1.1.Description 108

15.1.2. Examples 109

Page ! 8

User Manual	

AT&T Research August, 2014

Table 7: Operator Prototypes 1	
 ...

Table 8: Temporal Type Imputation 1	
 ...

Table 9: Built-in Aggregate Functions 1	
 ...

!
!

Page ! 9

User Manual	

AT&T Research August, 2014

!
!
!

Table 1 Tigon SQL Team Points of Contact
!
!

Table 2 Referenced Documents
!

Name Title Phone number
Oliver Spatscheck Lead Member of Technical Staff (908) 901-2076

Theodore Johnson Lead Member of Technical Staff (212) 341-1010

Vladislav Shakepnyuk Principle Member of Technical
Staff

(212) 341-1813

Divesh Srivastava Director (908) 901-2077

Document Title Authors Last Updated:
Gigascope™: Building a
Network Gigabit Sniffer

Charles D. Cranor, Yuan
Gao, Theodore Johnson,
Vladislav Shkapenyuk,
Oliver Spatscheck

AT&T Labs — Research

Streams, Security and
Scalability

Theodore Johnson , S.
Muthukrishnan , Oliver
Spatscheck, and Divesh
Srivastava

GSQL Users Manual Theodore Johnson August, 2014

Sampling Algorithms in a
Stream Operator

Theodore Johnson, S.
Muthukrishnan, Irina
Rosenbaum

16 June 2005

Page ! 10

User Manual	

AT&T Research August, 2014

!

Table 3 Document Conventions  

Font Indicates
Bold Device, Field, Host, File or directory

names.

Italicized Introducing a new concept or definition.

‘in single quotes’ Titles, executables, commands, predicates
and functions.

In Courier New Interface Set names, and definition
examples.

IN CAPS Clause titles

Page ! 11

User Manual	

AT&T Research August, 2014

1. Introduction
This manual describes Tigon SQL the SQL component of Tigon. Tigon SQL can be used
in conjunction with the Tigon system or in stand-alone mode.

1.1.Background	

The phenomenal growth of the Internet has had a tremendous effect on the way people
lead their lives. As the Internet becomes more and more ubiquitous it plays an
increasingly critical role in society. Indeed, in addition to leisure-time activities such as
gaming and Web browsing, the Internet also carries important financial transactions and
other types of business communications. Clearly, our dependency on the correct
operation and good performance of the Internet is increasing and will continue to do so.

For network operators, understanding the types and volumes of traffic carried on the
Internet is fundamental to maintaining its stability, reliability, security, and performance.
Having efficient and comprehensive network monitoring systems is the key to achieving
this understanding. The process of network monitoring varies in complexity from simple
long term collection of link utilization statistics to complicated ad-hoc upper-layer
protocol analysis for detecting network intrusions, tuning network performance, and
debugging protocols. Unfortunately, rapid Internet growth has not made monitoring the
network any easier. In fact three trends associated with this growth present a significant
challenge to network operators and the network monitoring tools they use.

This introductory excerpt was taken from the reference paper “Gigascope™: Building a
Gigabit Network Sniffer.” A review of the rest of this paper is strongly recommended, as
it covers extensively the ideas, concepts, and architecture behind the initial Tigon SQL
implementation as conceived in 2001.

As described within the context of this document, Tigon SQL is a high-speed stream
database, the purpose of which is network monitoring. To provide additional insight into
why Tigon SQL was built and what it is primarily used for, it is advisable to read
Streams, Security and Scalability. This document provides examples of Tigon SQL uses
in the security sense, and highlights some of the more advanced Tigon SQL features.

Note: Not all features described in this paper are available in the current public
Tigon SQL release. For more information on these features, contact the Tigon
SQL team (see Table 1 Tigon SQL Team Points of Contact on page i of this
document).

Page ! 1

User Manual	

AT&T Research August, 2014

1.2.Theory of Operation	

Tigon SQL is a stream database, and while its user interface is in many ways similar to
that of a conventional stored-table database management system (dbms), its operation is
very different. Let us briefly review how a dbms operates.

1.2.1. Stored Table Databases
A dbms typically stores several tables on persistent storage. Each of these tables consists
of a collection of records, and each record has a collection of named fields. For example,
a database might contain tables FOO and BAR, where FOO has fields (String a, Float b,
Int c). These tables might be stored as files in the database server’s file system and
named FOO.dat and BAR.dat, respectively.

A dbms generally makes use of indices to accelerate the performance of queries. For
example, table FOO might have an index on field c, named Index_FOO_c and stored as
Index_FOO_c.idx in the file system.

Users submit queries to access the data in a dbms. A popular language for expressing
queries is SQL. For example, the user might wish to fetch the a and b values of all
records in FOO where c=15. The SQL query for this query is

Select a, b
From FOO
Where c=15

The dbms translates this query into a sequence of steps for evaluating the query (the
query plan). There are many possible ways for evaluate even this simple query; one
possibility is

1. Open the index file Index_FOO_c and determine the record locations in FOO.dat
such that c=15.

2. Open FOO.data and, using the result of step 1, fetch the indicated records.

3. Using the result of step 2, format a new record comprised of the fields (a, b).

4. Using the result of step 3, output the records (e.g. to the user’s terminal).

Steps 1 through 4 are usually implemented using a pre-written program called an
operator, that has been parameterized to evaluate the particular processing that is needed.
For this simple example, the operators are linked (by the “using the result of”
relationship) into a list. The operator graphs of more complex queries will be Directed
Acyclic Graphs.

The database administrator (dba) is responsible for loading tables FOO, BAR, and others,
into the dbms. The dba defines the schema of FOO – its fields, indices, and other
properties. The dba then loads data into FOO. Data loading might occur once (for a

Page ! 2

User Manual	

AT&T Research August, 2014

static data set), or might occur e.g. daily (for a data warehouse). Data loading might
occur continually, as in a transaction processing system, but OLTP systems often limit the
scope of permitted data analysis queries to keep them from interfering with transaction
processing.

Because the data is loaded, the dbms has the opportunity for collect statistics about its
tables, which can be used for query plan optimization. For example, the statistics might
indicate that 15 is a very common value of FOO.c, occurring in 50% of the records. In
this case, a better query plan than the one above is to fetch all records from FOO and test
if c=15 (indexed access has a high overhead as compared to sequential access).

The query evaluation plan has the leisure to fetch records from permanent storage. If the
server is slow, the query evaluation program fetches records at a slower pace than usual.
If the dbms determines that it is low on resources (e.g., memory), it can delay the
evaluation of new queries until existing ones terminate.

1.2.2. Stream Databases
New applications, such as network packet monitoring, produce data on a continual basis.
The traditional approach to analyzing this kind of data is to gather it, load it onto
permanent storage, and then analyze it. However, this kind of processing has a lot of
inefficiencies and delays built into it. A more promising approach is to analyze data as it
flows past. The data is only touched once, useless data is not gathered, and the results are
produced rapidly.

For example, we might be monitoring packets flowing through a router. By using the
router’s SPAN port, we get a copy of each of these packets and direct them to our
streaming analysis server. The packets are read by a Network Interface Card, or NIC, and
then presented to a system such as Tigon SQL for analysis.

A stream database such as the Tigon SQL structures the raw data sources it receives for
the convenience of analysis. The dba defines the interfaces that provide data – in this
example, the NIC. The dba also defines a schema on the packets that arrive, parsing the
data contents for convenient analysis. For example, a network packet will typically have
a source IP address, a destination IP address, a time of arrival, and so on.

Suppose that the user wishes to extract the source IP address and timestamp of IPV4
packets such that the destination address is 1.2.3.4. This query can be expressed in an
SQL-like language as

Select SourceIP, TimeStamp
From IPV4
Where DestIP=IPV4_VAL:’1.2.3.4’

The stream database translates this query into a plan for evaluating the query, for
example

Page ! 3

User Manual	

AT&T Research August, 2014

1. Receive a new record

2. Test if DestIP is 1.2.3.4

3. If so, format a record consisting of (SourceIP, TimeStamp)

4. Output the record

As is the case with the stored procedure database, each of these steps can be performed as
separate pipelined operators - meaning that one step does not need to run to completion
before the next step can start. Step 1 receives records and pipes them to step 2. Step 2
performs its test and pipes the qualifying records to step 3, and so on.

The output of a stream database such as the Tigon SQL is another data stream. A Tigon
SQL query set must specify what is to be done with the output: save it to a
collection of files, or pipe it to a consuming application.

Tigon SQL uses an SQL-like language, GSQL for specifying its queries – the sample
query is valid GSQL. A significant restriction of GSQL is that all queries must have a
pipelined evaluation plan. For example, the following query does not have a pipelined
plan:

Select SourceIP, count(*)
From IPV4
Where DestIP=IPV4_VAL:’1.2.3.4’
Group By SourceIP

The “Group By” clause means that the qualifying records should be organized by their
SourceIP value, and the query reports the number of records observed for each observed
SourceIP value. Since no part of the final answer is known before all of the data has been
processed, the query cannot produce piecemeal results.

However, if the input data is partially sorted by a field in the Group By clause, then we
can perform pipelined processing. Each packet has a TimeStamp, which is its time of
observation. Successive records are have nondecreasing values of the TimeStamp, so the
TimeStamp can serve as the sort order. Therefore this query

Select SourceIP, TimeStamp, count(*)
From IPV4
Where DestIP=IPV4_VAL:’1.2.3.4’
Group By SourceIP, TimeStamp

has a pipelined query plan. Whenever Timestamp increases from say 1:00 pm to 1:01
pm, we know the final value of all records with Timestamp 1:00 pm and earlier.
Therefore the query plan can remove all such records from its internal tables and produce
them as output. In general, all joins must have a predicate which matches the timestamps
of its sources, and every aggregation query must have a timestamp in its list of group-by
fields.

Page ! 4

User Manual	

AT&T Research August, 2014

Requiring pipelined query plans has three advantages. First, Tigon SQL can continually
produce output. Second, internal tables (for joins and aggregations) remain small as they
are continually cleaned of obsolete data. Third, queries can be connected together into
complex data processing systems because the output of every stream is another data
stream, suitable as the input to another query.

For an example, suppose we wish to count the number of distinct SourceIp addresses
observed for every tick of the timestamp. Tigon SQL queries are named; suppose the
example pipelined aggregation query is named SourceCount. We can use the output of
SourceCount as follows

Select TimeStamp, count(*)
From SourceCount
Group By TimeStamp

A Tigon SQL instantiation generally does not run a single query, it runs a collection of
queries, organized into a DAG of communicating processed. The parts of the queries
which access data directly from the interfaces are grouped into a single executable called
RTS (for run time system). This grouping is done so that data from the interface does not
need to be copied, instead each query is invoked on each successive packet. Complex
downstream processing is performed in downstream programs, named hfta_[0-9]+. Each
program (the RTS or the hfta) executes a large collection of operators, to avoid
unnecessary data copying.

A Tigon SQL installation can support a significant amount of parallelization. A typical
installation will process from multiple NICs simultaneously; each NIC is represented as
an interface, and there is an RTS for each interface. For example, a Tigon SQL
installation might process data from two Gigabit Ethernet ports bge0 and bge1. Tigon
SQL will contain an RTS for the bge0 interface and the bge1 interface, and will combine
the results in downstream processing (the hfta’s).

High volume interfaces (e.g. 10 gigabit Ethernet) might produce such large volumes of
data that we need to parallelize their RTSs. This parallelization is accomplished using
virtual interfaces: records from a NIC are hashed to virtual interfaces before entering
Tigon SQL. If bge0 and bge1 both have four virtual interfaces, then the Tigon SQL
installation will have eight RTS processed running, with the results combined properly in
the downstream hfta processing.

Some of the queries in the downstream hfta processing might require significant CPU
processing, and therefore it might be necessary to execute multiple copies of an hfta
process. Records from the input stream are hashed to copies of the hfta, with partial
results getting merged with further downstream processing.

Page ! 5

User Manual	

AT&T Research August, 2014

The processing graph for a large parallelized Tigon SQL instantiation might become very
large with complex record routing. However Tigon SQL transparently computes the
proper query plan.

1.2.3. Hybrid Processing
In many large stream processing installations, the stream of data arrives as periodic
chunks of records, generally in the form of data files. For example, a logging application
might monitor a web server and collect all URL requests that arrive. These URLs are
collected in the server’s main memory, and then dumped to a file once per minute. Igon
will by default produce a similar sequence of files. These sequences of files form a hybrid
stream of continual bulk arrivals.

When Tigon SQL operates in file processing mode, it uses one or more file sequences as
its data source. New files are pushed into Tigon SQL processing queue. A Tigon SQL
component accesses the files in their order of production, extracts data records, and
pushes them into the conventional Tigon SQL stream processing. Except for the bulk
arrivals, the processing is the same.

Data records can also be delivered to Tigon SQL though a TCP socket. This style of
processing delivers a continual one-at-a-time flow of records to a Tigon SQL query set,
but over an explicit TCP connection.

The manner in which data is delivered to a Tigon SQL query set is described by the
interface definitions for the installation. Tigon SQL will automatically determine how to
load data from an interface based on the interface definition.

1.3.Tigon SQL Operation	

The version of the Tigon SQL described in this manual is a data stream management
system that primarly uses hybrid processing. Data can be delivered to Tigon SQL either
through a stream of files, or through a TCP socket connection.

!

Page ! 6

User Manual	

AT&T Research August, 2014

!

Page ! 7

User Manual	

AT&T Research August, 2014

2. Tigon SQL Installation Instructions
The Tigon SQL installation instructions in this document will be sufficient for audiences
familiar with UNIX. Users should note, however, that due to contributions from many
sources since its initial release, the build process of Tigon SQL has grown considerably.

2.1.Unpacking the Source 	

The sources should arrive as a single tar ball. To unpack it, type the following:
tar -xzf STREAMING.tar.gz

This will generate sub directory tigon.

Alternatively, one can access github.

2.2.Compiling the Source 	

cd tigon/tigon-sql/src/main/c
make clean
make
make install

2.3.Define an Interface 	

At this point all required sources have been compiled and installed in the right place. The
next step is to define the interface(s) that will be used to connect to data sources. For a
more complete discussion of interfaces, please consult Section 4.

To get started, let us assume that you wish to read a file stream consisting of a sequence
of files named exampleCsv on machine dwarf9.research.att.com. To define this interface
on a machine you first have to add the interface to tigon/tigon-sql/cfg/ifres.xml as an
additional resource. One simple definition would be the following:
<Resources>
 <Host Name='localhost'>
 <Interface Name='CSV0'>
 <Class value=’Main’>
 <InterfaceType value='CSV'/>
 <CSVSeparator value='|'/>
 <Filename value='exampleCsv'/>
 <StartUpDelay value='10'/>
 <Verbose value='TRUE'/>
 </Interface>
 </Host>
</Resources>

Page ! 8

User Manual	

AT&T Research August, 2014

After defining the interface, map it to a Tigon SQL interface set for localhost. This is
done by placing default: Contains[InterfaceType,GDAT] and
Equals[Host,'localhost']; in the following file: tigon/tigon-sql/cfg/
localhost.ifq.

The Tigon SQL tarball should contain an ifres.xml file with sample interfaces defined for
localhost, and a localhost.ifq file with a couple of sample definitions. These sample
interfaces include the one illustrated above.

2.4.Define a Schema	

A Tigon SQL query needs to be able to parse the records it processes into fields with
names and data types. The file tigon/tigon-sql/cfg/packet_schema.txt contains these
record definitions. The Tigon SQL tarball will contain a tigon/tigon-sql/cfg/
packet_schema.txt file with some sample record definitions which are used by the
sample queries. For more information on defining a record schema, see Section 5.35.

2.5.Completing the Installation	

In directory tigon/tigon-sql/bin, run the following

perl parse_cpuinfo.pl > ../cfg/ cpu_info.csv

The tigon/tigon-sql/cfg/cpu_info.csv file now contains a map of the processing cores
available on the server. This information is used by the Tigon SQL performance
optimizer.

At this point the installation is complete. For instructions on making the first GSQL query
operable, please reference Section 4.1-Interface Definition and Use for more details.

!

!

Page ! 9

User Manual	

AT&T Research August, 2014

!

Page ! 10

User Manual	

AT&T Research August, 2014

3. Tigon SQL Quick Start Guide

3.1.Compiling a Query Set	

Query sets are collections of GSQL queries stored in files with the .gsql extensions.
These query sets should be stored in subdirectories of tigon/tigon-examples/tigon-sql. For
example, one query set included in the distribution is in tigon/tigon-examples/tigon-sql/
CSVEXAMPLE. It contains two query files (example.gsql and example2.gsql) which
contain one query each (see section 11-Example Queries). The first query reads records
defined by the CSV_EXAMPLE schema from the csv query set, and computes per-second
aggregates. The second query reads the library query csv_example/ex2_src and
computes other per-second aggregates. See Section 4.1.8 for more information about
defining and using library queries.

Tigon SQL allows the user to define complex chains of query nodes, perhaps accessing
library queries. For performance optimization, many of these query streams are
inaccessible, being wrapped up into larger operators or perhaps transformed to
accommodate better performance. The file output_spec.cfg lists all accessible query
outputs, with descriptions of how the output is generated. In the output_spec.cfg file in
tigon/tigon-examples/tigon-sql/CSVEXAMPLE, example and example2 are accessible
while library query csv_example/ex2_src is not. See Section 6.4 for more information
about the output_spec.cfg file.

To build the Tigon SQL binaries implementing these queries, type the following:
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
tigon/tigon-sql/bin/buildit.pl

For more information on the ‘buildit’ script, see section 9.1-Automated Build
Script.

You will notice multiple configurations, .c, .cc and script files being generated in addition
to the Tigon SQL binaries for this query set.

3.2.Starting a Query Set 	

To start the Tigon SQL implementing the tigon/tigon-examples/tigon-sql/demos/
CSVEXAMPLE query set, use the auto generated ‘runit’ script by typing the following:
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE

./runit

There will be some debugging output on the screen, and when the prompt returns, all
Tigon SQL processes will be up and running. If an error message is received during this
process, check for the following discrepancies:

Page ! 11

User Manual	

AT&T Research August, 2014

• The interface definition is incorrect.

3.3.Starting a Data Source	

The query set needs an input data source. The queries in tigon/tigon-examples/tigon-sql/
CSVEXAMPLE read from the CSV0 interface, which reads data from file exampleCsv. A
running Tigon SQL instance will scan for the exampleCsv file and if found, will unlink it
and then process each record in sequence. An external data mover process can now
create a new exampleCsv file with new data.

The directory tigon/tigon-examples/tigon-sql/CSVEXAMPLE contains a script gen_feed
which creates a new exampleCsv file once per second. Notice the sequence of actions –
first a new file is created from a template using cp, and then the file is renamed to
exampleCsv using mv. By renaming the file to the target name only when it is complete,
we avoid the problem of Tigon SQL trying to consume a partial file.

The directory tigon/tigon-examples/tigon-sql/CSVEXAMPLE contains a script, runall,
which starts Tigon SQL using runit, and then starts the data feed using gen_feed.

3.4.Instantiating a Query 	

The next step is to instantiate a query within the running Tigon SQL. In our example the
running Tigon SQL instance contains two possible queries we could instantiate (example
and example2). A query can either be instantiated by your own application using our API
(see section 8-Gigascope™ API) or by one of the two tools provided (gsprintconsole or
gsgdatprint). To use the ‘gsprintconsole’ tool, one must determine proper the correct
Tigon SQL instance (several can be running simultaneously). To do this, execute cat
gshub.log:
[dpi@dwarf14 CSVEXAMPLE]$ cat gshub.log
127.0.0.1:58398

Use the response as a parameter to gsprintconsole as follows:
tigon/tigon-sql/bin/gsprintconsole -v 127.0.0.1:58398 default example

Tigon-SQL needs a start signal to ensure that all data is read and synchronized. To start
processing, run the script

tigon/tigon-sql/bin/ bin/start_processing

If you have already started gen_feed, or you used runall, you will get an output record
once per second.

The output of the query example can be redirected to data files using the gsgdatprint
application. If you want to save the output of the query example, you must use a tool
such as gsgdatprint because in output_spec.cfg, its output is defined to be a stream.

Page ! 12

User Manual	

AT&T Research August, 2014

The example2 query has an output specification of file in output_spec.cfg, so its
output is automatically saved in a file, in this case in directory output_dir as specified in
output_spec.cfg. The query example2 still needs to be instantiated by a tool such as
gsprintconsole. There will be no output because output_spec.cfg has does not have
any line specifying a stream output for example2 – but one can be added if desired.

!
3.5.Stopping a Query Set 	

To stop all processes of a query set which were started using ‘./runit’, execute the
autogenerated ‘./stopit’ script by typing the following:
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
./stopit

The stopit script does not know about the applications which are accessing Tigon SQL
output, nor does it know about any feed-generating processes. It is often convenient to
write a script which stops these applications also, as the killexample script in the tigon/
tigon-examples/tigon-sql/CSVEXAMPLE directory does.

!

Page ! 13

User Manual	

AT&T Research August, 2014

!

Page ! 14

User Manual	

AT&T Research August, 2014

4. Referencing Data
A Tigon SQL query set runs off of one or more streaming data sources. The fundamental
data source in Tigon SQL is a file stream, defined as an Interface. A particular query
might reference data that is output from another query. In particular, a query might
reference the output of a library query. We describe these methods of accessing data in
this section.

4.1.Interface Definition and Use	

4.1.1. Introduction
The data sources for any Tigon SQL query set are one or more interfaces. These
correspond to data from the outside world – a stream of data files. As discussed in
Section 1, data from an interface is interpreted through a protocol specification. This still
leaves the question of how one specifies which interfaces are available on a host and
which interfaces a query reads from. Issues related to interface management and
specification are discussed extensively in this section.

4.1.2. Interface Management
In Tigon SQL, a file stream (or other input stream) is represented by an interface. A list
of all known interfaces is assumed to be recorded in the ifres.xml file, normally located
in the tigon/tigon-sql/cfg directory. (See section 2.3, “Define an Interface,” for more
information on this configuration step). As the extension implies, this file is in XML,
with the following schema:
Resources
 Host+
 Interface+
 [Properties]*

For example,
<Resources>
 <Host Name='localhost'>
 <Interface Name='GDAT0'>
 <InterfaceType value='GDAT'/>
 <Filename value='exampleGdat'/>
 <StartUpDelay value='10'/>
 <Verbose value='TRUE'/>
 </Interface>
 <Interface Name='CSV0'>
 <InterfaceType value='CSV'/>
 <Class value=’Primary’/>
 <CSVSeparator value='|'/>

Page ! 15

User Manual	

AT&T Research August, 2014

 <Filename value='exampleCsv'/>
 <StartUpDelay value='10'/>
 <Verbose value='TRUE'/>
 <Source value=’ExampleData’/>
 </Interface>
 <Interface Name='CSV0TCP'>
 <InterfaceType value='CSVTCP'/>
 <CSVSeparator value='|'/>
 <TcpPort value='45678'/>
 <StartUpDelay value='10'/>
 <Verbose value='TRUE'/>
 </Interface>
 </Host>
</Resources>

For the host server, say dwarf14.research.att.com, there are one or more interfaces (e.g.,
GDAT0). The GDAT0 interface is of type GDAT and is sourced from the file
exampleGdat. There is a second interface, CSV0 of type CSV and is sourced from file
exampleCsv, and a third CSV0TCP which is of type CSV but is sourced from a TCP
connection at TCP port 45678. Some interface properties are required (as noted below),
while others are optional (e.g., Class). Note the format of the file. The Host and the
Interface take a single parameter Name, while the properties take the single parameter
value. The Host parameter becomes the property host, while the Interface parameter
becomes the property Name.

In some installations it is convenient to define the interfaces of multiple hosts in a single
ifres.xml file. In this case, the Host value property should be the host name. For
example <Host value=’dwarf14.research.att.com’>. Other installations make use of a
single server and do not need the complexity of specific host names. The single-server
case can use host name localhost, as is done in the example above, and in the samples
provided with Tigon SQL. The buildit scripts in tigon/tigon-sql/bin make use of host
name localhost.

The required interface properties are:
• InterfaceType : specifies the nature of the format. GDAT means that the data

source is a file stream in GDAT format and CSV means that the source is a file
stream in delimited-ascii format.

• Filename : is the name of the file that sources the data for the interface. This may
be a relative or an absolute path name.

Optional interface properties are:
• CSVSeparator : is the delimiter for CSV interfaces. The default value is ‘,’.

Page ! 16

User Manual	

AT&T Research August, 2014

• StartUpDelay : is a start up delay to ensure that all data consumers have started
before data streaming begins. The default value is 0.

• Verbose : if True, triggers informational tracing messages. The default value is
False.

• SingleFile : if True, a single file is processed and then the Tigon SQL instance
shits down, flushing all results. The processed file is not deleted.

• TcpPort : if a TcpPort property exists, the interface reads records from the tcp port
specified as the value. Any FileName property is ignored. The records must be in
CSV format. A TcpPort property overrides the Filename property.

• Gshub: If a Gshub property exists, then Tigon SQL will connect to the GShub
process to determine the tcp port over which to receive data. Tigon SQL will use
the value of the Filename property as the name of the interface when
communicating with GShub. Tigon SQL will expect to receive GDAT records
over the socket connection.

Additional interface properties can also be specified, and can be helpful for two reasons
• Interface properties can be used to define interface sets (see below)
• Interface properties can be referenced in queries, to help establish the provenance

of a record. See Section 4.1.7 for more details on referencing interface properties
in GSQL queries.

4.1.3. File Stream Processing
Tigon SQL processes data in a file stream as follows:

1. Tigon SQL waits until it can find and open the file specified by the Filename
property.

2. Tigon SQL unlinks the file (removing the directory entry but preserving the now-
anonymous file).

3. Tigon SQL processed each record in the file.

4. Tigon SQL closes the file – which deletes the file from the filesystem (assuming
no other process has the file open).

5. If SingleFile is false, go to step 1 and repeat.

The normal method of feeding a file stream to Tigon SQL is

1. Collect data in a new file.

2. Wait for the new file to be closed.

3. Wait until the file specified by the Filename property has been unlinked.

Page ! 17

User Manual	

AT&T Research August, 2014

4. mv the new file to the filename specified by the Filename

5. go to step 1.

4.1.4. TcpPort Processing
Tigon SQL processes data from a TcpPort stream as follows:

1. Tigon SQL opens the tcp port associated with the interface.

2. Tigon SQL receives CSV formatted records from the port and processes them.

An example of TcpPort processing is in tigon/tigon-examples/tigon-sql/
CSVTCPEXAMPLE. Ensure that the interface definition in ifres.xml that the query
example.gsql reads from (CSV0) has the following property:

 <TcpPort value='45678'/>

Build the example, and start the processing using the runalls script. The gendata.pl script
will open tcp port 45678 and feed data to it.

!
4.1.5. Interface Sets
GSQL queries must specify interfaces and protocols. Per Section Error! Reference
source not found., “Error! Reference source not found.,” there are two ways to specify
the interfaces:

• Specify the particular interface from which to read.
• Use an interface set.

Specifying the particular interface from which to read can be explained by the following
example: Suppose that we compile the following query on dwarf9:

SELECT systemTime, uintInPosition1
FROM CSV0.CSV_EXAMPLE
WHERE ullongInPosition2=6

GSQL will direct Tigon SQL to read from the CSV0 interface for this query. The GSQL
compiler will check the ifres.xml to ensure that the CSV0 interface actually exists on the
host machine. Attempting to run this query on host dwarf9 instead of dwarf14 will
likely result in an error since CSV0 interface might not be defined on that host.

Using an interface set can be explained by the following example: Suppose that the exl
interface set consists of all interfaces with a Source property of ‘ExampleData’. Then the
following query reads from these interfaces:

SELECT systemTime, uintInPosition1
FROM [exl].CSV_EXAMPLE

Page ! 18

User Manual	

AT&T Research August, 2014

WHERE ullongInPosition2=6

If this query is run on dwarf9, it would read from, e.g., CSV0. If it is run on dwarf14, it
would read from e.g., GDAT0. It is possible that an interface set might contain more than
one interface. For example, suppose that the ‘csv’ interface set consists of all interfaces
with an InterfaceType property of CSV. If we run the following query on dwarf9:

SELECT systemTime, uintInPosition1
FROM [csv].CSV_EXAMPLE
WHERE protocol=6

It will read from CSV interfaces – say CSV0 and CSV1. (Tigon SQL will handle the
details of merging the data from the interfaces into a single stream). If this query is run
on dwarf14, it will read only from interface CSV0.

If you read from a protocol but do not specify any interfaces, GSQL assumes that the
query reads from the interface set ‘default’. The following query,

SELECT systemTime, uintInPosition1
FROM CSV_EXAMPLE
WHERE protocol=6

is equivalent to
SELECT systemTime, uintInPosition1
FROM [default].CSV_EXAMPLE
WHERE protocol=6

4.1.6. Defining Interface Sets
The file <host>.ifq contains the specification of the interface sets for that host. If
running in a single-host mode (which is the default), the file is localhost.ifq. For multi-
server configurations, substitute the host name for <host>. For example, the file
dwarf9.research.att.com.ifq contains the interface set specifications for host
dwarf9.research.att.com. These files are normally kept in the tigon/tigon-sql/cfg
directory.

An ifq file contains interface set specifications in the format of the interface set name
followed by a colon, then the defining predicate, with a semicolon separating the
specifications, as in the example below:

[interface set name 1] : [predicate 1] ;
[interface set name n-1] : [predicate n-1] ;
[interface set name n] : [predicate n]

The interface specification uses a simple language for its predicates, consisting of the
Boolean connectives AND, OR, and NOT, parentheses to force evaluation order, and the
following three predicates:

Page ! 19

User Manual	

AT&T Research August, 2014

• Contains[<property> , <value>] : Evaluates true if one of the
values of <property> is <value>, else false.

• Equals[<property>, <value>] : true if there is only one value of
<property>, and it is <value>, else false.

• Exists[<property>] : true if the property is defined, with any value,
otherwise false.

Both the property and the value must be strings (with the single quote ‘delimiter’) or
names (alphanumeric, starting with a letter with no spaces or punctuation). As with other
GSQL files, both ‘--’ and ‘//’ are comment indicators.

Let’s consider an example. Suppose that localhost.ifq contains the following:
default : Equals[Host,'dwarf9'];
csv : Contains[InterfaceType,CSV] and Equals[Host,'dwarf9'];
gdat: Contains[InterfaceType,GDAT] and Equals[Host,'dwarf9'];
other: Contains[InterfaceType,FooBar] and Equals[Host,'dwarf9'];

The predicate ‘Equals[Host,'dwarf9']’ for the interface set default is redundant; it is
assumed for all interface sets in the dwarf9.ifq file. The ‘default’ interface set contains
(GDAT0, CSV0), the ‘csv’ interface set contains (CSV0), and the ‘gdat’ interface set
contains (GDAT0). The ‘other’ interface set is empty. Using it will result in an error.

4.1.7. Using Interface Properties in Queries
The values of the interface properties can be referenced in a query. This is useful for
determining a packet’s origin and its properties. We can reference an interface property
in a query by preceding it with a ‘@’ symbol. For example,

SELECT systemTime, uintInPosition1, @Name

FROM CSV_EXAMPLE

WHERE ullongInPosition2=6

This query will return the name of the interface (GDAT0 or CSV0) that the packet came
from, along with its timestamp and source IP.

Some issues with using interface properties in queries are as follows:
• ‘Name’ must be used to reference the interface name, and ‘Host’ to reference the

interface host.
• The data type of an interface property is always a string.
• A reference to an interface property must be bound (implicitly or explicitly) to a

protocol source.

Page ! 20

User Manual	

AT&T Research August, 2014

• For every interface in the interface set, the property must be defined, and defined
only once.

The code generation system replaces interface properties by their corresponding constants
in the low-level (LFTA) queries (which execute on data sent by specific interfaces).

4.1.8. Library Queries
As sample query example2.gsql in tigon/tigon-examples/tigon-sql/CSVEXAMPLE
demonstrates, a Tigon SQL query can use the output of another Tigon SQL query as its
data source. Furthermore, the source query can be a library query. In example2.gsql
DEFINE {
query_name 'example2';
}
select systemTime,uintInPosition1,sum(Cnt)
from csv_example/ex2_src
group by systemTime,uintInPosition1

the data source is csv_example/ex2_src. The GSQL compiler interprets a data source
with a slash character ‘/’ as a reference to a library query. Library queries are stored in
the directory tigon/tigon-sql/qlib. The GSQL compiler will search directory tigon/tigon-
sql/qlib/csv_example for a file named ex2_src.gsql, and will try to extract a query named
ex2_src (by default, the first query in a file is named by the file prefix). Library queries
can reference other library queries, but ultimately the data sources must resolve to
interfaces.

Page ! 21

User Manual	

AT&T Research August, 2014

5. Protocols and Interfaces
One of the basic functions of the Tigon SQL runtime is to intercept data records on
interfaces and present them to LFTAs. In some installations, these data records
correspond to network data packets (e.g. IPV6 packets), but in other installations they
correspond to formatted data records received from a data feed. The resource
specification and software component that defines these data records is called a protocol
(from Tigon SQL roots in processing network packets). One of the primary services of a
protocol is to provide a collection of functions for interpreting the contents of a packet.
For example, a protocol for IPV4 packets would have a function ‘get_ipv4_dest_ip’
returning an unsigned integer representing the destination IP address.

GSQL uses a protocol schema to allow named access to the values returned by these
functions. Let’s look at an example:

PROTOCOL base{
 uint systemTime get_system_time
 (required,increasing, snap_len 0);
} !
PROTOCOL CSV_EXAMPLE (base) {
 uint uintInPosition1 get_csv_uint_pos1;
 ullong ullongInPosition2 get_csv_ullong_pos2;
 IP ipInPosition3 get_csv_ip_pos3;
 IPV6 ipv6InPosition4 get_csv_ipv6_pos4;
 string stringInPosition5 get_csv_string_pos5;
 bool boolInPosition6 get_csv_bool_pos6;
 int intInPosition7 get_csv_int_pos7;
 llong llongInPosition8 get_csv_llong_pos8;
 float floatInPosition9 get_csv_float_pos9;
} !!
PROTOCOL CSV_TCPEXAMPLE (base) {
 uint ivalue get_csv_uint_pos1 (increasing);
 uint value get_csv_uint_pos2;
} !
PROTOCOL GDAT_EXAMPLE (base) {
 uint uintOldTime get_gdat_uint_pos1;
 uint uintInPosition1 get_gdat_uint_pos2;
 ullong ullongInPosition2 get_gdat_ullong_pos3;
 IP ipInPosition3 get_gdat_ip_pos4;
 IPV6 ipv6InPosition4 get_gdat_ipv6_pos5;
 string stringInPosition5 get_gdat_string_pos6;
 bool boolInPosition6 get_gdat_bool_pos7;
 int intInPosition7 get_gdat_int_pos8;
 llong llongInPosition8 get_gdat_llong_pos9;
 float floatInPosition9 get_gdat_float_pos10;
}

Page ! 22

User Manual	

AT&T Research August, 2014

The schema for CSV_EXAMPLE has nine explicit fields, uintInPosition1 through
floatInPosition9. The field named uintInPosition1 has a uint (unsigned 32-bit integer)
data type, and is extracted from a source record using the built-in extraction function
get_csv_uint_pos1.

Network protocols tend to be layered (e.g., an IPV4 packet is delivered via an Ethernet
link). As a convenience, the protocol schemas have a mechanism for field inheritance. In
this schema, CSV_EXAMPLE is layered on top of base, which has a single field
systemTime. In total, CSV_EXAMPLE has ten fields. A protocol schema can inherit
from any number of other protocol schemas, subject to the following two restrictions:

• There must be no cycles in the inheritance.
• No field name can appear twice in any protocol schema, whether

directly listed or through inheritance.

The systemTime field has several field attributes associated with it, in parentheses
(see Table 5 for a list of recognized attributes).

The following is a list of data types. Some of these data types might not be available at
the LFTA level (due to resource limitations in specialized hardware). The IP type stores
an IPv4 address in an unsigned integer, but its annotation as an IPv4 address allows
access to IPv4 functions and specialized printing routines.

Table 4: Data Type Names

Type name Data type
bool Bool BOOL Boolean

ushort Ushort USHORT Unsigned short integer

uint Uint UINT Unsigned integer

IP Unsigned integer

IPV6 IPv6 IPV6

int Int INT Signed integer

ullong Ullong ULLONG Unsigned long long

llong Llong LLONG Signed long long

float Float FLOAT Floating point (double)

string String STRING v_str V_str
V_STR

String (variable length)

Page ! 23

User Manual	

AT&T Research August, 2014

The field attributes give hints to GSQL about the meaning of the field, typically used for
optimizations. The increasing and decreasing attributes tell GSQL about
ordering properties of the stream. This information is critical for the correct operation of
the queries. Fields which are marked increasing or decreasing are called
temporal fields. The following is a list of recognized field attributes:

Table 5: Field Attributes

5.1.Group Unpacking	

Tigon SQL operates at extremely high data rates; consequently, the cost of extracting
fields from packets is a serious optimization concern. Our experience in writing
optimized field unpacking code has led us to observe that often it is cheaper to unpack a
group of fields at the same time than it is to unpack each field individually. For example,
to extract a field, (e.g. the sequence number) in a TCP header, the unpacking function
must navigate several layers of network protocols, and only then can the sequence
number be extracted.

If several TCP fields are needed by queries in the query set, then field unpacking is more
efficient if all the TCP fields are extracted at once. If only the sequence number is
needed, then extracting it alone is more efficient.

To support the automatic optimization of field extraction, Tigon SQL supports extraction
functions in packet_schema.txt. Each unpacking function has a name, a function that is
called to perform the unpacking, and a cost. An example of an unpacking function
declaration is as follows:
UNPACK_FCNS{

Attribute name Meaning
Required Field is present in every data packet

increasing Increasing INCREASING Field value never decreases

Decreasing Decreasing DECREASING Field value never increases

snap_len The parameter of the attribute is the
maximum length of the packet that must
be searched to find the attribute (for
optimizations).

subtype An attribute that can be associated with the
type. The subtype is not used by GSQL,
but it is reported in the output schema.

Page ! 24

User Manual	

AT&T Research August, 2014

 unpack_TCP unpack_tcp_group 2;
 foo unpack_foo_group 1;
 bar unpack_bar_group 1
}

Here, in the example above, three unpacking functions are declared:
• unpack_tcp, with unpacking function unpack_tcp_group and cost 2
• bar, with unpacking function unpack_bar_group, and cost 1.
• foo, with unpacking function unpack_foo_group, and cost 1.

The fields that a group unpacking function unpacks are indicated by a comma-separated
list of the names of the unpacking functions which unpack a field, in square brackets and
at the end of the field declaration. As a convenience, a PROTOCOL can be marked in the
same manner with the names of the unpacking functions which unpack all fields in the
PROTOCOL. For example,
PROTOCOL TCP (DataProtocol) [unpack_TCP]{
 uint sequence_number get_tcp_sequence_number (snap_len 138) [foo];
 uint ack_number get_tcp_ack_number (snap_len 138) [foo, bar];
 bool urgent get_tcp_urgent_flag (snap_len 138);
 …

The field sequence_number can be unpacked by unpack_TCP and foo; ack_number can
be unpacked by unpack_TCP, foo, and bar; and urgent can be unpacked by unpack_TCP.

In the lfta code, the prototype for an unpack function is as follows:
void unpack_function(void *)

It is called with a pointer to the packet data. An example of the generated code is as
follows:

unpack_tcp_group(p);

If a field does not have an unpacking function, the field access function (e.g.,
get_tcp_sequence_number for sequence_number) must also act as its unpacking function.
If a field does have an unpacking function, the field access function is still used within
the query processing code.

5.2.Built-in Field Access Functions	

The purpose of a protocol specification is to define field names and data types in records,
and to specify the function used to extract a particular field from a record. In some
applications (e.g., network monitoring), these functions are highly specialized and need
to be carefully written to extract bit-packed data. However, many data sources provide

Page ! 25

User Manual	

AT&T Research August, 2014

data in a standard and regular format, so that field access functions can be pre-generated
and provided with the Tigon SQL run time.

Tigon SQL provides a large collection of field access functions to assist with developing
a custom Protocol. The name of one of these access functions is highly structured,
reflecting its action. The format of a built-in field access function name is

get_<record_format>_<data_type>_pos<field_position>

where
• record_format is either csv or gdat. A csv record is better described as delimited

ascii; the record is ascii text with a ‘\n’ record delimiter. Fields are separated by a
field delimiter character, which is by default a comma ‘,’, but can be overridden
by the CSVSeparator property in the Interface specification (see Section
4.1.24.1). A gdat record is a binary record encoded using Tigon SQL default
format (both gsgdatprint and a file output specification in output_spec.cfg
produce gdat files).

• data_type is one of (uint, ullong, ip, ipv6, string, bool, int, llong, float) and
corresponds to the data types listed in Table 4: Data Type NamesTable 4.

• field_position is the position of the field in the record, starting with position 1.
Postion 0 is always occupied by systemTime.

For example,

get_csv_string_pos3

extracts the 3rd field of a csv record and interprets the value as a string.

These functions can be found in tigon/tigon-sql/include/lfta/csv_macro.h and tigon/tigon-
sql/include/lfta/gdat_macro.h. For each record format and each data type, there is a field
access function for field positions 1 through 1000. If more access functions are needed,
the scripts gencsvinclude.pl and gengdatinclude.pl generate these functions (actually,
macros).

The gdat access functions access records which are packed using the internal Tigon SQL
record format, which by convention us the .gdat filename extension.

The csv access functions provide limited field parsing functionality. In particular:
• Bool: the string TRUE (all upper case) is interpreted as true, all other values are

interpreted as false.

• Short, Unsigned short : is not supported.

• Uint: read with sscanf using %u

• Int: %d

Page ! 26

User Manual	

AT&T Research August, 2014

• Ullong : %llu

• Llong: %lld

• Float : %lf

• Ipv4 : %u.%u.%u.%u

• Ipv6 : %x:%x:%x:%x:%x:%x:%x:%x

• String : the text between the delimiters is used as the string value.

!
An additional built-in field access function is get_system_time function, which does
not access any data in the record, but instead samples the current unix time by calling
time().

5.3.Writing a Protocol	

The example Protocols provided with Tigon SQL and listed in Section 5 are somewhat
artificial. Let’s examine a more realistic one. Suppose that we need to ingest a data feed
in csv format with fields (dest_ip, bytes_transferred, url) with data types (ipv6, ullong,
string) respectively.

PROTOCOL User_Downloads (base) {
 IPV6 dest_ip get_csv_ipv6_pos1;
 ullong bytes_transferred get_csv_ullong_pos2;
 string url get_csv_string_pos3;
}

Inheriting from base gives access to systemTime. The remaining entries are a straight-
forward translation of the record format specification into a Protocol specification.

5.4.Interfaces	

If a GSQL query reads data using a protocol, it must read the data from a particular
interface -- that is, from a particular source of data. For a full discussion, please see
Section 4.1-Interface Definition and Use. See also the discussion of the FROM clause in
Section 6.2.2 below.

Page ! 27

User Manual	

AT&T Research August, 2014

6. GSQL
One of the important features of Tigon SQL is the ability to specify packet monitoring
programs in a high-level, SQL-like language (GSQL). Tigon SQL transforms a GSQL
query into C-language and C++ language modules which are integrated into the Tigon
SQL run time. This manual documents the tools used to generate FTA modules and
supporting code.

This document discusses the GSQL language features. See Section 6-Example Queries
and Section 7.2-Writing your own UDAFS.

6.1.Background	

Tigon SQL is a stream query processing system. Data from an external source arrives in
the form of packets at one or more interfaces that Tigon SQL monitors. These records
are interpreted by a protocol and used as input for the queries which are running on the
interface. Each of these queries creates a stream of records as its output. The stream may
be read by an application, or by another query (which in turn creates its own output
stream).

A query that reads from a protocol is a Low-level query, or LFTA, while a query which
reads only from streams is a high-level query, or HFTA. One reason for distinguishing
between LFTA and HFTA queries is to ensure high performance. All LFTA queries are
compiled into the Tigon SQL run-time system, thus allowing external packets to be
presented to the LFTA queries with minimal overhead. In some cases, the LFTAs might
execute even in part or in whole on the Network Interface Card (NIC). Because the
LFTAs are compiled into the runtime system, the set of available LFTAs cannot be
changed without stopping and re-linking the runtime. HFTAs execute as independent
processes, and can be added on the fly. Another reason for the distinction between
LFTAs and HFTAs is that LFTAs read data from interfaces (see Section 4.1), and
therefore requires some special runtime support.

The distinction between HFTA and LFTA is almost transparent to the user. In some
cases, the GSQL optimizer will break a user’s query into an HFTA component and one or
more LFTA components. In other cases, the user’s query executes entirely as an LFTA.
In either case, the query output is accessed using the query name.

The output of a query is always a stream, which is a sequence of records (sometimes
called tuples) that are delivered to the application. This output is very different than what
a conventional DBMS produces. First, the records are pushed to the application rather
than the application pulling them (e.g., there is no cursor). There are some methods by
which the application can tickle the query system to obtain some records (for use in some
special cases). Second, the size of the output is roughly proportional to the length of time

Page ! 28

User Manual	

AT&T Research August, 2014

that the stream is monitored, rather than being a fixed size. The records in the stream are
usually in a sorted order on one or more of its fields.

6.2.Query Language 	

Queries are specified using a SQL-like language. Several different query types are
possible, but they reuse some common language components.

6.2.1. Selection Queries
A selection query filters out a subset of the tuples of its input stream, computes a
transformed version of these tuples, and outputs the transformed tuples in its output
stream (the Filtering and Transformation of an FTA). Consider the following example:

SELECT sourceIP, destIP
FROM IPV4
WHERE protocol=1

The data source is a stream derived from an IPV4 protocol. The ‘filter’ predicate is the
condition protocol=1 (i.e., the ICMP protocol). The transformation is to output only
the source and destination IP addresses.

The meaning of a very simple query such as this is pretty clear even to a novice user
(however, more than 150 lines of C code are generated from it). All three of the
components of a selection query can have a more complex structure, however.

6.2.2. FROM Clause:
The FROM clause specifies the data source(s) of the query. In general, its format is as
follows:

FROM table1 [tablevar1], …, tablen [tablevarn]

That is, the argument of the FROM clause is a comma separated list of table names and
the corresponding table variables. The table variable represents the item being queried,
as shown in the FROM clause below:

 FROM IPV4 I, PacketSum P

There are two table variables, I and P. Every field reference is to one of these two table
variables (e.g. I.protocol or P.bytecount). It is possible for two different table
variables to be drawn from the same source:

 FROM PacketSum P1, PacketSum P2

This construction allows us to compare tuples in PacketSum to other tuples in
PacketSum.

Page ! 29

User Manual	

AT&T Research August, 2014

At the risk of some confusion, GSQL allows you to drop references to the table variable
as long as it can deduce which table variable supplies each of the fields referenced in the
query. If table variables are not supplied, GSQL will impute them. For example, the
selection query at the start of this section is translated into the following:

SELECT _t0.sourceIP, _t0.destIP
FROM IPV4 _t0
WHERE _t0.protocol=1

If the table variable of a field reference is ambiguous, GSQL will reject the query with an
error message. If the query references more than one table source, it is best to use
explicit table variables to eliminate possible errors due to unexpected table variable
imputation. While all selection queries use only a single table variable, other query types
such as stream merge and stream join use multiple data sources.

6.2.3. Scalar Expressions
Every reference to a particular value is through a scalar expression. The query at the start
of this section references the following three scalar expressions:

• sourceIP

• destIP

• protocol

All three of these scalar expressions are simple field references. More complex scalar
expressions can be built using the following rules:

1. Literals: A literal is an expression which has a constant value known at
compile time. Examples include 3, 4.0, and FALSE. The data type of the
literal is determined by the form of the literal. A list of literals accepted by
GSQL is shown in Table 6: Literals

2. Defined Literals: A literal can take its value from the DEFINE block (see
section 5.5.2-Options). The value of a defined name can be referenced by a
hash mark (#) in front of the name. For example, if the define block
contains the line foo‘bar’;, then a reference to #foo is equivalent to
‘bar’ in the query. Defined literals always have the string data type. This
feature is useful if you need to reference the same literal several times in a
query.

3. Query parameters: A query parameter is a value which does not depend on
the contents of any data stream, but is supplied at the start of the query and
can be changed as the query executes. A query parameter is indicated by a
dollar sign ($) followed by a symbolic name, e.g. $MinCount. The data

Page ! 30

User Manual	

AT&T Research August, 2014

type of the query parameter is declared in the PARAM declaration of the
query. We discuss query parameters in greater detail in a later section.

4. Interface properties: An interface property is a literal which takes its value
at the LFTA level from the defined properties of the interface it reads from.
An interface property is indicated by an ‘at’ symbol (@) followed by a
symbolic name, e.g. @Dir. For a more detailed discussion of interface
properties, see Section 4.1-Interface Definition and Use.

5. Field references: A field reference takes its value from a tuple field in a
table variable. All field references must be associated with a table variable.
However, explicit table variable references can be dropped (for convenience
in simple queries) and GSQL will attempt to impute table variables. As is
noted in Section 6.2.2, “FROM Clause:,” it is best to use explicit table
variables if there is any possibility of confusion. The table variable
imputation mechanism allows three ways to specify a field reference:

a) TableVariable.FieldName : The table variable is explicit.
For example, _t0.destIP.

b) TableName.FieldName : The table variable is imputed to be the
one bound to a table of the same name. If there is more than one
table variable bound to this table, the imputation fails and the query
is rejected. An example of this kind of field reference is
IPV4.destIP or eth0.IPV4.destIP.

c) FieldName : The table variable is identified as the one bound to the
table which contains a field of the same name. If no such table is
listed in the FROM clause, or if more than one table variable can be
matched, the imputation fails and the query is rejected. An example
of this kind of field reference is destIP.

6. GROUP-BY variable reference: A GROUP-BY variable is a component
of the entity which defines a group. GROUP-BY variables are discussed in
greater detail in the section on GROUP-BY/aggregation queries. We note
here that GSQL tries to impute a field to be a GROUP-BY variable before it
tries to impute a table variable for the field.

7. Unary operators: A unary operator computes a value from the value of a
single sub expression. For example, ~destIP.

8. Binary operators: A binary operator computes a value from the value of
two sub expressions. For example, total_length-offset.

9. Functions: A function takes zero or more parameters and returns another
value. The file external_fcns.def, which normally resides in the tigon/

Page ! 31

User Manual	

AT&T Research August, 2014

tigon-sql/cfg directory, defines the set of available functions and their
prototypes. The data types of the function parameters must exactly match
the function prototype; no type escalation is performed. However, functions
can be overloaded. We also note that some of the function parameters must
be expressions involving only literals and query parameters (i.e., no field
references or GROUP-BY variable references). Functions are discussed in
greater length in Section 11 (External Functions). An example of a function
call is: ‘PACK(sourceIP,source_port)’.

10. Aggregate functions: An aggregate function is syntactically similar to a
regular function, but it is evaluated over a set of input values rather than
over a single value. See section 5.4.10 GROUP-BY/Aggregation for more
discussion.

Every scalar expression (and each of its sub expressions) has a data type. As mentioned
above, the parameters of a function call must match its prototype. Because operators are
really overloaded functions expressed using infix notation, the parameters must match
some prototype of the operator. The rules for type imputation are shown below in Table
6: Literals

!

Page ! 32

User Manual	

AT&T Research August, 2014

!

Table 6: Literals
!

Data Type Regular Expression Example

Unsigned integer ([0-9]+)|([0-9]+UL) 35, 17UL

Unsigned integer
(hex)

HEX' [0-9A-Fa-f]+ ' HEX'7fff'

IP IP_VAL'[0-9]{1-3}.[0-9]
{1-3} . [0 -9]{1-3} . [0 -9]
{1-3}'

IP_VAL'135.207.26.120'

IPv6 IPV6_VAL' ([0-9abdcef]
{1-4}.){7}([0-9abdcef]
{1-4}'

IPV6_VAL'0000.2222.4444.6666.

8888.aaaa.cccc.eeee'

Unsigned long long [0-9]+ULL 1000000000000ULL

Unsigned long long
(hex)

LHEX' [0-9A-Fa-f]+ ' LHEX'7abcdef012'

Float (double
precision)

[0-9]+”.”[0-9]* 35.0

Boolean TRUE|FALSE TRUE FALSE

String '[^'\n]*' 'foobar'

Page ! 33

User Manual	

AT&T Research August, 2014

Operator Left Operand Right
Operand

Result

! (logical negation) int, uint, ushort,
ullong

llong, bool

 Same as operand.

~ (bitwise negation) int, uint, ushort,
ullong

llong

same as operand

- (unary minus) Int, uint, ushort,
ullong, llong, float

 Same as operand

+ (plus) Int, uint, ushort,
ullong, llong, float

Int, uint, ushort,
ullong, llong, float

Same as larger
operand

- (minus) Int, uint, ushort,
ullong, llong, float

Int, uint, ushort,
llong, float

Same as larger
operand.

- (minus) Int, uint, ushort,
ullong, llong, float

Ullong Llong

* (multiply) Int, uint, ushort,
float

Int, uint, ushort,
float

Same as larger
operand.

/ (divide) Int, uint, ushort,
float

Int, uint, ushort,
float

Same as larger
operand.

| (bitwise or) Int, uint, ushort,
ullong, llong, IP

Int, uint, ushort,
ullong, llong, IP

Same as larger
operator

| (bitwise or) IPV6 IPV6 IPV6

| (bitwise or) bool bool bool

& (bitwise and) Int, uint, ushort,
ullong, llong, IP

Int, uint, ushort,
ullong, llong, IP

Same as larger
operator

& (bitwise and) IPV6 IPV6 IPV6

& (bitwise and) bool bool bool

>> (shift right) int, uint, int, ullong,
llong

Int, uint, int Same as larger
operand

Page ! 34

User Manual	

AT&T Research August, 2014

Table 7: Operator Prototypes
In addition to a conventional data type, each value has a temporal type, which indicates
how the value changes in successive packets in its data stream. Possible values of the
temporal type are constant (never changes), increasing (never decreases), decreasing
(never increases) and varying (no information). Table 8, “Temporal Type Imputation,”
shows the rules for temporal type imputation (rules resulting in varying are not listed).

!

<< (shift left) int, uint, int, ullong,
llong

Int, uint, int Same as larger
operand

Page ! 35

User Manual	

AT&T Research August, 2014

!

Table 8: Temporal Type Imputation

6.2.4. Selection List
A selection list is a list of (optionally named) scalar expressions following the SELECT
clause. The output of the query is exactly this selection list, in the order listed. Each
entry in the selection list is a field in an output stream, and is named, either implicitly or
explicitly, using the AS clause. For example,

 Scalar_expression as name

If the field is not explicitly named, a name is pre-populated for it. For instance, if the
scalar expression is a field reference, then the output field name is the same as the input
field name. Aggregates of field references are formed by aggregate_field, e.g.,
SUM_len for SUM(len). In other cases, the field name is not so obvious. For example,
the following produces tuples with output fields Field0 and MaskedDestIP:

!

Operator Left Operand Right
Operand

Result

+, * Increasing Constant, increasing increasing

+, * Decreasing Constant,
decreasing

Decreasing

+, * Constant Constant,
increasing,
decreasing

Same as right
operand

- Constant Constant Constant

- Constant,
decreasing

Increasing decreasing

- Constant, increasing Decreasing increasing

/ Constant,
decreasing

Constant, increasing Decreasing

/ Constant, increasing Constant,
decreasing

Increasing

/ Constant Constant Constant

Page ! 36

User Manual	

AT&T Research August, 2014

Select sourceIP & IP_VAL'255.255.255.0', destIP &
IP_VAL'255.255.255.0' AS MaskedDestIP

!

Page ! 37

User Manual	

AT&T Research August, 2014

!
6.2.5. Predicate Expressions
A predicate represents a true or false value used for the purpose of filtering records (not
to be confused with the TRUE and FALSE values of a Boolean type). An atomic
predicate is a source of a true/false value, similar to a field reference in a scalar
expression. The three types of atomic predicates are as follows:

❑ Comparison: A comparison predicate has the form scalar_expression relop
scalar_expression, where relop is one of {=, <>, <, >, <=, >=}. The two
scalar expressions must have comparable types. Any pair of numeric types
is comparable, while Boolean, string, and timeval can only be compared to
each other. This type of predicate has the obvious meaning. An example is
‘protocol=1’.

❑ IN: An IN predicate is of the form scalar_expression IN [literal_list].
This predicate evaluates to true if the value of the scalar expression is one of
the values in the literal list. The type of the scalar expression must be the
same as the types of all of the literals. An example is

 ‘source_port IN [80, 8000, 8080] ’.

❑ Predicate Function: A predicate function has syntax similar to that of a
regular function, except that the parameters are enclosed in square braces
‘[]’ and its return value is used as a predicate. The prototype of the
predicate function is defined in external_fcns.def. An example is
‘http_port[source_port]’.

Atomic predicates can be combined into predicate expressions using the connectors AND,
OR, and NOT, which have the expected meaning. An example is ‘protocol=4 AND
http_port[source_port] ’.

6.2.6. WHERE clause:
The predicate of the WHERE clause is used to filter the tuples of the input stream. If the
tuple does not satisfy the predicate, it is discarded.

6.2.7. Comments
A comment can appear anywhere in a query, schema definition, or external function
definition. All text following two dash characters "--" or two slash characters "//" is
ignored until the end of line. For example,

// A simple query
SELECT sourceIP, destIP // just source and dest
FROM IPV4

Page ! 38

User Manual	

AT&T Research August, 2014

WHERE protocol=6 -- All TCP

6.2.8. Selection Summary:
The syntax of a selection query is as follows:

 SELECT list_of_select_expressions
 FROM table
 [WHERE predicate]

That is, the WHERE clause is optional. Recall the transformed version of the query:
SELECT _t0.sourceIP, _t0.destIP
FROM eth0.IPV4 _t0
WHERE _t0.protocol=1

The meaning of the selection query is this:

- Monitor the packets from eth0.

- Interpret the packets using the IPV4 protocol.

- If the value of the protocol field is 1, marshal the sourceIP and destIP fields into a
tuple and put the tuple into the output stream.

6.2.9. Join
A join query is similar to a selection query, except that in a join query there can be more
than one table in the FROM clause. A join query will emit a tuple for every pair of tuples
from its sources which satisfy the predicate. This can be a very large number of tuples,
but normally a correctly written join query will filter out almost all of the pairs. An
example of a join query is as follows:

SELECT R.sourceIP, R.destIP, R.tb, R.length_sum,S.length_sum
OUTER_JOIN from Inpackets R, Outpackets S
WHERE R.sourceIP = S.destIP and R.destIP = S.sourceIP and
R.tb = S.tb

This query associates aggregate measurements from an in-link and an out-link to create a
combined report.

Notice the keyword OUTER_JOIN in front of the FROM clause. There are two types of
join semantics:

• inner join, which generally conducts filtering
• outer join, which generally conducts report generation

Page ! 39

User Manual	

AT&T Research August, 2014

6.2.9.1. INNER_JOIN

An inner join will create a tuple only when it can match a pair of tuples from R and S.
Unmatched tuples are discarded (and hence inner join does filtering). An example query
which uses inner join is the following, which computes the delay between a syn and a
synack:

SELECT S.tb, S.sourceIP, S.destIP,S.source_port, S.dest_port
(R.timestamp-S.timestamp)
INNER_JOIN from tcp_syn_ack R, tcp_syn S
WHERE S.sourceIP=R.destIP and S.destIP=R.sourceIP and
 S.source_port=R.dest_port and S.dest_port=R.source_port
AND
 S.tb=R.tb and S.timestamp<=R.timestamp

6.2.9.2. OUTER_JOIN

An outer join will create an output tuple for every matched pair from R and S, and in
addition it will create an output tuple for each unmatched tuple from both R and S. The
reporting example above is a typical use of an outer join. If there are Inpackets but no
Outpackets (or vice versa) for a particular sourceIP, destIP pair, there still needs to be a
report about the Inpacket traffic (or Outpacket traffic). The query will generate a
meaningful output tuple in spite of the missing information, but there are some subtleties
to be aware of.

1. The SELECT clause will probably contain scalar expressions that reference both
R and S. When an output tuple is generated for an unmatched input tuple, there
will be missing information. If creating an output tuple for an unmatched R tuple,
use default values for fields from S (and vice versa). Integers become 0, floats
become 0.0, and strings become a empty ('').

2. There is an exception to the above rule. If there is a predicate in the WHERE
clause of the form R.fieldr=S.fields, the value R.fieldr is substituted for S.fields
when processing an unmatched tuple from R, and conversely for S. This is the
only condition under which GSQL will infer non-default values for the missing
field values. The motivation is that equality predicates on fields identify the join
key, and you are gathering a report about that key. The source, R or S, is
irrelevant, although you are forced to choose one when writing the SELECT
clause.

6.2.9.3. LEFT_OUTER_JOIN

The LEFT_OUTER_JOIN is like an outer join, except that only the matched pairs and
the unmatched tuples from R will generate an output tuple. Unmatched tuples from S are
discarded.

Page ! 40

User Manual	

AT&T Research August, 2014

6.2.9.4. RIGHT_OUTER_JOIN

The RIGHT_OUTER_JOIN is like an outer join, except that only the matched pairs and
the unmatched tuples from S will generate an output tuple. Unmatched tuples from R are
discarded.

6.2.9.5. Restrictions on Join Queries

The following are restrictions on join queries in the current implemetation of Tigon SQL:

1. No more that two tables can be in the FROM list (2-way join only)

2. Tigon SQL has to be able to figure out a window on the input streams over
which to evaluate the join. To do this, there must be a predicate in the query
which equates a temporal value (increasing or decreasing) from one table to
a temporal value from the other table. In the example on the previous page,
the predicate is R.tb = S.tb (assuming that R.tb and S.tb are both
increasing). The temporal predicate can involve scalar expressions, so that
R.tb+1=S.tb/60 will also work; however, the following predicates will not
work:

a. R.tb - S.tb = 2

b. R.tb < S.tb+1 and R.tb >= S.tb

3. Tigon SQL will deduce the temporalness of fields in the SELECT clause
only under the following conditions:

a. There are predicates R.tb=S.tb, which imply that R.tb and S.tb are
temporal. The temporalness of these fields can be used to impute
the temporalness of a scalar expression in the SELECT clause.

b. There is a predicate (temporal scalar expression in R) = (temporal
scalar expression in S). If a scalar expression in the SELECT clause
exactly matches one of the scalar expressions in the predicate, the
output field is temporal. For example, R.tb+1 = S.time/60 means
that R.tb+1 and S.time/60 are temporal.

4. The current implementation of the join operator uses a hash join : that is, it
puts potentially matching tuples into the same hash bucket, and then applies
any remaining predicates. Tigon SQL looks for predicates of the form
(scalar expression in S) = (scalar expression in R) to define the hash bucket.
In the example, Tigon SQL will use the predicates ‘R.SourceIP =
S.SourceIP’ and ‘R.DestIP = S.DestIP’ to define its hash buckets. The more
selective these predicates are, the more efficient the join will be. Since
s c a l a r e x p r e s s i o n s a r e a l l o w e d , t h e p r e d i c a t e
‘UMIN(R.SourceIP,R.destIP)=S.sourceIP&IP_VAL'255.255.0.0’ will also

Page ! 41

User Manual	

AT&T Research August, 2014

be used for hashing. However the following predicates will not be used for
hashing:

a. S.length_sum > R.length_sum

b. S.length_sum - R.length_sum = 500

c. R.length_sum = 55

6.2.10.Filter Join
A filter join is a special type of join that can be evaluated at the LFTA. A common use
scenario is to look for packet in protocol P whose payload contains a particular string. An
efficient way to perform this task is to first look for the start of a protocol P flow. Then
perform regular expression matching on subsequent packets of the same flow. That is,
we are joining a stream (the match stream) which identifies packets that start a protocol P
flow with all packets from the same interface (the result stream), for some period of time.

The syntax of a filter join is the same as that of regular join, with the following four
exceptions:

1. Field references in the Select list must be from the result stream, not the match
stream.

2. There must be at least one hashable join predicate, e.g. of the form (scalar
expression in R) = (scalar expression in S).

3. There must not be any join predicate on temporal scalar expressions.

4. The from clause is written as  
FILTER_JOIN(temporal_field, duration) From Protocol1 R, Protocol2 S  
where

a. R is the result stream and S is the match stream. Protocol1 and
Prototocol2 may be different.

b. temporal_field is an increasing temporal field, and duration is a positive
non-zero integer.

After identifying a packet from the match stream, the filter join will look for joining
packets from the result stream for duration ticks of the temporal field. The
FILTER_JOIN keyword is augmented with the temporal_field and duration as a
convenience, replacing the otherwise required expression, which is as follows:

R.temporal_field>=S.temporal_field and R.temporal_field<=S.temporal_field+duration

The filter join implementation uses an approximate set membership algorithm to perform
the join. There are two algorithm options:

• Bloom filter

Page ! 42

User Manual	

AT&T Research August, 2014

• (Limited-size) hash table

The Bloom filter algorithm has false positives (it accepts packets from the result stream
that don’t actually have a match in the match stream) but no false negatives. The hash
table algorithm has false negatives (it fails to accept result stream packets that match a
match stream packet). The default algorithm is the Bloom filter, but define algorithm
hash to use the hash algorithm.

By default, the Bloom algorithm uses 10 Bloom filters each covering 1/10 of the
temporal duration. Define num_bloom to use a different number of Bloom filters. By
default, each Bloom filter has 4096 bits and uses three probes per hash value. To use a
different size bloom filter, define bloom_size to the log2 of the desired number of bits.
For example, define bloom_size 16 to use 65536 bits per bloom filter. By default the
hash algorithm uses 4096 hash table entries. Define aggregate_slots to change the
hash table size. The following is an example of a filter join query:

DEFINE{
 algorithm hash;
}
 SELECT R.subinterface, R.time, R.timewarp, R.srcIP, R.srcPort,

R.destIP, R.destPort,
 R.sequence_number, R.ack_number
FILTER_JOIN(time, 15) from TCP R,TCP S
 WHERE R.srcIP = S.srcIP and //key
 R.destIP = S.destIP and //key
 R.srcPort = S.srcPort and //key
 R.destPort = S.destPort and //key
 R.protocol = 6 and
 S.protocol = 6 and
 R.offset = 0 and
 S.offset = 0 and
 R.data_length <> 0 and
 S.data_length <> 0 and
 str_match_offset[0,'HTTP',S.TCP_data] and
 str_regex_match[R.TCP_data,'.(mov|wav|mp3|mpg|mpeg|wma|

wmv']
 // expensive single relational predicate

6.2.11.GROUP-BY/Aggregation
A GROUP-BY/aggregation query divides its input stream into a set of groups, computes
aggregate functions over all tuples in the group, and then outputs a tuple based on the
group definition and the values of the aggregate function. The syntax of a GROUP-BY/
aggregation function is as follows:

!

Page ! 43

User Manual	

AT&T Research August, 2014

 SELECT list_of_scalar_expressions
 FROM table
 [WHERE predicate]
 GROUP BY list_of_groupby_variables
 [Having predicate]

An example query is as follows:
SELECT sourceIP, tb, count(*), max(offset)
FROM eth0.IPV4 T
WHERE T.protocol=1
GROUP BY T.sourceIP, T.time/60 as tb
HAVING count(*) > 5

6.2.11.1. GROUP-BY Variables

The collection of GROUP-BY variables defines the group. All tuples with the same
values of their GROUP-BY variables are in the same group. The syntax for defining a
group is as follows:

 Scalar_expression as name

When a tuple arrives, the scalar expression is computed and its value is assigned to the
GROUP-BY variable name. At the risk of some confusion, GSQL provides a shortcut
expression for defining a GROUP-BY variable. If the value of the input stream field is
the value of the GROUP-BY variable, then the syntax

 Fieldname

defines a GROUP-BY variable with the same name as the field name, and whose value is
computed to be the value of the field; therefore, the following three GROUP-BY clauses
are equivalent:

GROUP BY sourceIP

GROUP BY T.sourceIP

GROUP BY T.sourceIP as sourceIP

As previously noted, when GSQL imputes the meaning of a fieldname, it will prefer to
impute the name as referring to a GROUP-BY variable. Therefore use T.sourceIP to
refer to the field value, and sourceIP to refer to the GROUP-BY variable if there is
any possibility of confusion.

6.2.11.2. Extended Group-by Patterns

In some applications, the user wishes to compute aggregations at multiple granularities.
For example, the user might wish to compute, the number of packets flowing from each
source IP address to each destination IP address over a five minute period – and also the
number of packets flowing from each source IP address, and the number of packets

Page ! 44

User Manual	

AT&T Research August, 2014

flowing to each destination IP address. This task could be accomplished using three
queries, but for convenience, maintainability, and performance optimization, we can use a
single query:

 SELECT sourceIP, destIP, count(*)
FROM eth0.IPV4 T
GROUP BY T.time/60 as tb, Cube(sourceIP, destIP)

The CUBE keyword indicates that grouping should be performed using all subsets of the
group-by variables in its argument. For a two-parameter argument, four groups are
affected by each record that is processed: (sourceIP, destIP), (sourceIP,-), (-, destIP), and
(-,-). All output records must have the same schema, so the missing group-by variables
are assigned a default value (see Table 6: Literals). The default value for the IPv4 type is
0.0.0.0, so if a packet arrives with time=6,000,000, sourceIP=1.2.3.4 and destIP=4.3.2.1,
then the count is incremented for the following four groups: (6,000,000, 1.2.3.4, 4.3.2.1),
(6,000,000, 1.2.3.4, 0.0.0.0), (6,000,000, 0.0.0.0, 4.3.2.1), (6,000,000, 0.0.0.0, 0.0.0.0).

GSQL offers three types of extended group-by patterns: Cube, Rollup, and
Grouping_Sets.

Cube: is specified with a CUBE, Cube, or cube keyword, followed by a list of group-by
variables as defined in Section 6.2.11.1. When a record arrives, a collection of groups is
created, one for each element of the set of all subsets of the group-by variables in the
Cube’s argument. If there are n group-by variables in the Cube’s argument, then 2n
patterns of group-by variable assignment are created. Group-by variables not in a
generated pattern receive a default value.

Rollup: is specified with a ROLLUP, Rollup, or rollup keyword. The Rollup keyword
also takes a list of group-by variables as an argument, but creates a hierarchical pattern.
For example, Rollup(sourceIP, destIP) creates the patterns (sourceIP, destIP), (sourceIP,-),
(-,-). If there are n group-by variables in the Rollup’s argument, then n+1 patterns are
created.

Grouping_Sets: is specified with a GROUPING_SETS, Grouping_Sets, or
grouping_sets keyword. The Grouping_Set keyword takes a list of lists of grouping
variables as its argument. The patterns created are exactly those specified by the list of
lists. For example, Grouping_Sets((sourceIP, destIP), (sourceIP), (destIP)) creates the
patterns (sourceIP, destIP), (sourceIP,-), (-,destIP).

A Group By clause can contain a mixture of Cube, Rollup, and Grouping_Sets keywords
as well as individual grouping variables. The number of patterns that result is the product
of the number of patterns of each entry. For example, the following Group By clause has
16 patterns:

GROUP BY T.time/60 as tb, Cube(substr(customer_id,8) as cid,
product_id), rollup(state, city, zip)

Page ! 45

User Manual	

AT&T Research August, 2014

A group-by variable can be referenced in only one of the entries of the entries in the
Group-By clause. So for example, the following is illegal because state is referenced
twice in two different components:

GROUP BY T.time/60 as tb, state, rollup(state, city, zip)

!
6.2.11.3. Aggregate Functions

An aggregate function is one whose value is computed from all tuples in the group. The
syntax of an aggregate function is the same as that of a regular function, except for the
aggregate function ‘count(*)’. Table 9 below contains a list of aggregate functions
in GSQL. In addition, Section 12-User-Defined Aggregate Functions can be referenced,
as discussed below.

Aggregate
function

Meaning Operand Result

Count Number of tuples in
group.

* Int

Sum Sum of values of
operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, float

Same as operand

Min Minimum of values
of operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, str ing, IP,
IPV6, float

Same as operand

Max Maximum of values
of operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, str ing, IP,
IPV6, float

Same as operand

Page ! 46

User Manual	

AT&T Research August, 2014

Table 9: Built-in Aggregate Functions

6.2.11.4. HAVING clause

The HAVING clause has the syntax below:

 HAVING predicate

The HAVING clause defines an optional postfilter to apply after the group and its
aggregates are computed. An output tuple is created only if the group and its aggregates
satisfy the predicate.

6.2.11.5. Restrictions on Scalar Expressions

A GROUP-BY/aggregation query defines a two-stage process. First, gather the
groups and compute the aggregates. Second, apply the postfilter and generate output
tuples. The different components of a GROUP-BY/aggregation query have restrictions
on the entities that can be referenced, depending on which part of the process they affect:

• GROUP-BY variable definition: The scalar expression that defines the
value of a GROUP-BY variable may not reference any aggregate
function or any other GROUP-BY variable.

• Aggregate function operands: The operand of an aggregate function
may not reference the value of any other aggregate function.

• WHERE clause: No scalar expression in a WHERE clause may
reference the value of any aggregate function.

And_Aggr AND of values of
operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, bool

Same as operand

Or_Aggr OR of values of
operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, bool

Same as operand

Xor_Aggr Exclusive OR of
values of operand

Uns igned shor t ,
unsigned int, signed
int, unsigned long
long, signed long
long, bool

Same as operand

Page ! 47

User Manual	

AT&T Research August, 2014

• HAVING clause: No scalar expression in a HAVING clause may
reference any field of the input table (e.g., only GROUP-BY variables,
aggregate function values, literals, query parameters, and interface
properties).

• SELECT clause: No scalar expression in the SELECT clause may
reference any field of the input table – the same as for the HAVING
clause.

6.2.11.6. Temporal Aggregation

In the conventional definition of GROUP-BY/aggregation, no output can be produced
until all of the input has been processed. Because the stream input (in general) does not
end, we have incorporated optimizations into GSQL to unblock the GROUP-BY/
aggregation operator.

If one or more of the GROUP-BY variables can be imputed to be temporal (i.e., either
increasing or decreasing), then the group is closed (no further tuples will be a member of
the group) when an incoming tuple has a different value for one of the temporal GROUP-
BY variables. When the group is closed, its output tuple can be computed and put on the
output stream, and the group’s memory reclaimed.

6.2.11.7. GROUP-BY and Aggregation Summary

Let us recall the example query:
SELECT sourceIP, tb, count(*), max(offset)
FROM eth0.IPV4 T
WHERE T.protocol=1
GROUP BY T.sourceIP, T.time/60 as tb
HAVING count(*) > 5

This query will interpret data packets from the eth0 interface using the IPV4 protocol. If
the protocol field of the packet has the value 1, the query will compute the GROUP-BY
variables sourceIP and tb. If this group does not exist in memory, a new group will be
created. The query will count the number of tuples in this group, and also the maximum
value of the offset field. When the group is closed (a tuple with a larger value of tb
arrives), the query will check if the number of tuples in the group is larger than 5. If so,
the query will marshal a tuple as specified by the SELECT clause, and put it on the
output stream.

6.2.12.Running Aggregation
A limitation of regular aggregation is that it can summarize data from a single time
window only, and that time window is the reporting interval. However, in many cases we

Page ! 48

User Manual	

AT&T Research August, 2014

would like to report aggregates from data over multiple time windows. Here are two
examples:

1. One might want to compute a moving average of the number of bytes per
connection over the last five time windows.

2. One might want to compute the number of duplicate sequence numbers in a TCP/
IP connection. It is possible to write a user-defined aggregate function to compute
this aggregate, but its state should span the entire time during which the
connection is active.

GSQL provides running aggregates to enable aggregation across multiple time windows.
A running aggregate is a user-defined aggregate which is labeled as RUNNING in the
external_fcns.def file (normally located in the tigon/tigon-sql/cfg directory). For
example, the declaration of a moving average function could look like the following:

 float UDAF [RUNNING] moving_avg(uint, uint HANDLE);

(The second parameter is the window size. It is declared to be HANDLE to ensure that it
is a constant in the query.)

A running aggregate is an aggregation query that references a regular aggregate. The
processing is similar to that of a regular aggregation query. In particular, when the time
window changes, the groups that satisfy the HAVING clause are output. A running
aggregation differs from a regular aggregation in the following ways:

1. Groups are not automatically deleted when the time window changes. If a group
does not satisfy the Closing_When clause when the time window changes, it is
created in the new time window, with updated values of its temporal GROUP-BY
variables.

2. Groups which satisfy the Closing_When clause when the time window
changes are discarded.

3. If a group is carried over to the new time window,

a) Regular (non-running) aggregates are initialized to an empty value.

b) Running aggregates receive a notification that the time window
changed.

The syntax of a running aggregation query is as follows:

 SELECT list_of_scalar_expressions
 FROM table
 [WHERE predicate]
 GROUP BY list_of_groupby_variables
 [HAVING predicate]
 [CLOSING_WHEN predicate]

Page ! 49

User Manual	

AT&T Research August, 2014

For example,

 SELECT tb, srcIP, moving_avg(len,5)
 FROM TCP
 WHERE protocol = 6
 GROUP BY time/10 as tb, srcIP
 HAVING moving_avg(len,5)>0
 CLOSING_WHEN count(*)=0

This query computes the moving average of the lengths over the last 5 time periods of 10
seconds each, closing the group and discarding state whenever the source IP emits no
packets during a 10 second interval. This query will generate a report every 10 seconds;
acting like a continuous query.

6.2.13.Stream Sampling and Aggregation
Stream Sampling Operator is used to implement a wide variety of algorithms that
perform sampling and sampling based aggregation over data streams. The operator
collects and outputs sets of tuples which are representative of the input.

6.2.13.1.Query Definition

Most sampling algorithms follow a common pattern of execution:

1. A number of tuples are collected from the original data stream according to
certain criteria (perhaps with aggregation).

2. If a condition on the sample is triggered (e.g. the sample is too large), a cleaning
phase is initiated and the size of the sample is reduced according to another
criteria.

This sequence can be repeated several times until the border of the time window is
reached and the final sample is outputted.

Following this pattern of execution, a GSQL sampling query has the following format:

SELECT <select expression list>
FROM <stream>
WHERE <predicate>
GROUP BY <group-by variables definition list>

[: SUPERGROUP < group-by variables definition list>]
[HAVING <predicate>]
CLEANING WHEN <predicate>
CLEANING BY <predicate>

A predicate in the “CLEANING WHEN” clause defines the condition for invocation of
the cleaning phase. For example, a cleaning phase might be triggered when the size of the

Page ! 50

User Manual	

AT&T Research August, 2014

current sample is too big, i.e. exceeds a predefined threshold value for the desired size of
the sample.

A predicate in the “CLEANING BY” clause defines the criteria according to which the
current sample is reduced to the desired size and will be evaluated only when the
predicate from the “CLEANING WHEN” clause had been evaluated to true.

SELECT: may reference constants, query parameters, group-by variables, aggregate
values and stateful functions.

WHERE: may reference constants, query parameters, tuple attributes and stateful
functions.

CLEANING WHEN: may reference constants, query parameters, group-by variables and
stateful functions.

CLEANING BY: may reference constants, query parameters, group-by variables,
aggregate values and stateful functions.

HAVING: may reference constants, query parameters, group-by variables, aggregate
values and stateful functions.

In order to implement a sampling algorithm using this type of query, user must be
familiar with the definition of stateful functions and supergroups. Next section gives a
light overview of these two concepts. More detailed information is available in the next
segment (Stateful Functions).

6.2.13.2.Supergroups

As was mentioned earlier, a state structure stores various control variables of the
sampling algorithm. Since a user might wish to obtain a sample on a group-wise basis,
the sampling state is associated with supergroups, and samples are associated with the
groups in a supergroup.

The variables in the SUPERGROUP clause must be a subset of group-by variables
defined in the GROUP BY clause, not including temporal variables. By default, the
supergroup is ALL, which in most cases mean that a single supergroup is associated with
a time window specified by a query.

Along with sampling state variables, the supergroup can compute superaggregates
(aggregates of the supergroup rather than the group). We use the dollar sign ($) to denote
that an aggregate is associated with the supergroup rather than the group. Superaggregate
min$(len) for instance will return a tuple with the smallest length attribute for every
supergroup. One of the most useful superaggregates is count_distinct$(), which
returns the number of distinct groups in a supergroup. This is a built-in superaggregate
that is maintained regardless of whether it was explicitly used in a query.

Page ! 51

User Manual	

AT&T Research August, 2014

6.2.13.3.3. Query Evaluation Process

The Sampling query is designed to express stream sampling algorithms that follow a
common pattern of execution. First a number of items are collected from the original data
stream according to a certain criteria, and perhaps with aggregation in the case of
duplicates. If a condition on the sample is triggered (e.g., the sample is too large), a
cleaning phase is initiated and the size of the sample is reduced. This sequence can be
repeated several times until the border of the time window is reached and the sample is
outputted.

The semantics of a sampling query are as follows:

When a tuple is received, evaluate the WHERE clause. If the WHERE clause evaluates to
false, discard the tuple.

If the condition of the WHERE clause evaluates to TRUE, do the following:
• Create and initialize a new supergroup and a new superaggregate structure, if

needed; otherwise, update the existing superaggregates (if any).
• Create and initialize a new group and a new aggregate structure, if needed;

otherwise, update the existing aggregates (if any).
• Evaluate the CLEANING_WHEN clause.
• If the CLEANING_WHEN predicate is TRUE

o Apply CLEANING_BY clause to every group.

o If the condition of CLEANING_BY clause evaluates to FALSE

- Remove group from the group table, and update
superaggregates

When the sampling window is finished, do the following:
• Evaluate the HAVING clause on every group.
• If the condition in the HAVING clause is satisfied, then the group is sampled;

otherwise, discard the group.
• Evaluate SELECT clause on every sampled group. Create an output tuple.

6.2.14.Stream Merge
A stream merge query combines two streams in a way that preserves the temporal

properties of one of the attributes. The syntax of a stream merge query is as follows:

Merge field1 : field2: … : fieldn

 FROM table1, table2, …, tablen

Page ! 52

User Manual	

AT&T Research August, 2014

For example,
Merge P1.tb : P2.tb

FROM PacketSum1 P1, PacketSum2 P2

The merge query is restricted in the following ways:
• The two input tables must have the same layout, the same number of

fields, and fields in corresponding positions must have the same data
type. The field names, however can be different.

• The two merge fields must be temporal and in the same way (with both
either increasing or decreasing). They must be in the same position in
both input tables.

Please note that input streams are merged on fields of the input streams. Computed
values are not accepted. The output stream is temporal in the merge field.

6.3.Query Specification	

A GSQL query has the following syntax:

[Parameters definition]
[Options definition]
query_text

A query file has the following format:

 query1;
 …
 queryn

As is shown, the format is a list of queries (with optional parameters and options)
separated by semicolons. For example,

 SELECT tb, srcIP, count(*)
 FROM tcp_pkts
 GROUP BY tb, srcIP; !
 DEFINE{
 query_name tcp_pkts;
 }
 SELECT time/60 as tb, srcIP
 FROM TCP
 WHERE protocol = 6 and offset = 0

The first query reads from the second query, which is named tcp_pkts by the option in
the define block. By default, the name of the first query in a file is the file name up to the

Page ! 53

User Manual	

AT&T Research August, 2014

‘.gsql’ suffix. For example, if the file above were named count_tcp.gsql then the first
query would be named count_tcp.

Some queries produce externally-accessible output, while others perform internal
processing. The file output_spec.cfg specifies which queries produce output, and the
nature of the output. See Section 6.4 for more information about the output_spec.cfg file.

The previous section covered the query language. In this section we discuss how to set
the query options and parameters.

!

Page ! 54

User Manual	

AT&T Research August, 2014

!
6.3.1. Parameters
A query can be parameterized, as discussed in Section 6.2.3, “Scalar Expressions.” A
parameter has the format $name, and acts in most respects like a literal. All parameters
used in a query must be defined in the parameter block of the query. The parameter
block has the following format:

PARAM{

 Parameter_name parameter_type;

 …

 parameter_name parameter_type;

}

The parameter name has the following format: [A-Za-z_][A-Za-z0-9_]*, while the
parameter type is one of the data type names listed in Table 4: Data Type Names. The
parameter value then has the corresponding data type. All parameters for the query must
be supplied when the query is started. In addition, the parameters can be changed while
the query executes.

The Tigon SQL run time library provides a suite of functions that simplify the process of
creating a parameter block for a query. Given a query definition, the following two
library functions parse the query to enable functions which pack parameter blocks:

int ftaschema_parse_string(char *f);

int ftaschema_parse_file(FILE *f);

These functions return a handle, referred to as 'sh' in the following functions:

int ftaschema_parameter_len(int sh); // number of parameters

char * ftaschema_parameter_name(int sh, unsigned int index); // parameter
name

// set the parameter, pass in textual representation of the param value

int ftaschema_setparam_by_name(int sh, char *param_name,

 char *param_val, int len);

int ftaschema_setparam_by_index(int sh, int index,

 char *param_val, int len);

// Create a parameter block to be passed to the query

int ftaschema_create_param_block(int sh, void ** block, int * size);

Page ! 55

User Manual	

AT&T Research August, 2014

If one query reads from another, they must have identical sets of parameters. The top
level queries will instantiate the queries they read from and pass along the parameter
block.

6.3.2. Options (DEFINE Block)
A query can accept a set of options, which affect how the query is processed.

These options are defined in the define block, which has the following format:

DEFINE{

 Option_name option_value;

…

 option_name option_value;

}

The option name has the format [A-Za-z_][A-Za-z0-9_]*, while the option value has the
same format as a string literal, '[^'\n]*'. However the enclosing single quotes around the
option value can be dropped if the value has the same format as a name. The following
are the options currently accepted by GSQL:

• real_time: If the option real_time is set to any non-empty string, the
aggregation LFTAs will try to flush their aggregation buffers as soon as
possible. This entails computing the temporal GROUP-BY variables for
each tuple regardless of whether the tuple satisfies the Where predicate.

• aggregate_slots: The number of slots to allocate in the LFTA aggregation
table. The default value is 4096. This define will be overridden if there is
an entry in the lfta_htsize file, see Section 7.5.2.

• query_name: The name of the query (used to access the query output).
• slow_flush: The number of input packets processed per output tuple

flushed in LFTA aggregation processing (default 1).
• lfta_aggregation: Generate only the LFTA part of an aggregation query,

and give the LFTA the query name (instead of a mangled name)
• select_lfta: If an aggregation query can't be split in a way that creates an

LFTA-safe aggregation subquery, create a selection LFTA instead.
• algorithm : if set to hash, use a hash table to process the filter join instead

of the default Bloom filter.
• num_bloom : The number of Bloom filters to use when processing a filter

join using Bloom filters (i.e., the number of distinct temporal intervals
covered).

Page ! 56

User Manual	

AT&T Research August, 2014

• Bloom_size : The log2 of the number of bits in each Bloom filter used to
process a filter join. E.g., a value of 10 means that each Bloom filter has
1024 bits.

• comment: uninterpreted comment text.
• title : text interpreted as the title of the query for auto-documentation.
• namespace : interpreted as the namespace of the query for auto-

documentation.
• print_warnings : If present, causes the merge operator to print out-of-order

warnings.
• max_lfta_disorder : Tigon SQL uses “out-of-order” processing to

eliminate spikes in resource usage when aggregate epochs change (which
triggers a buffer flush). However, out-of-order processing increases the
delay before producing a report for aggregate queries. Set
max_lfta_disorder to 1 to reduce the reporting delay, at the cost of spikes in
rts processing.

The DEFINE block can also define the value of string literals. For example, if foo
‘bar’; is in the DEFINE block, then in the query text #foo is string literal with value
‘bar’. See Section 6.2.3.

6.3.3. Query Name
Each query in the system has a name, which the application specifies to access the output
stream. GSQL uses the following procedure to determine the name of a query:

1. Use the value of query_name option, if this value is non-empty.

2. If this is not the case, use the name of the file containing the query, between
the last ‘/’ character and the first ‘.’ character following it.

3. If the file name can’t be determined or if the name extraction results in an
empty string, use the name default_query.

6.4.Defining a Query Set	

A typical use of Tigon SQL generally executes multiple queries simultaneously. A
collection of queries can be specified by

- Putting multiple queries in a file, separated with semicolons (see Section 6.3).

- Providing multiple queries as input to the query compiler (see Section 6.5). The
buildit script (see Section 10.1) uses all files ending in .gsql

- Referencing library queries (see Section 4.1.8).

Page ! 57

User Manual	

AT&T Research August, 2014

Not every query query in the set will produce output – ofttimes a complex query is built
from a collection of simple subqueries. The collection of queries that can produce output
is specified by the output_spec.cfg file.

The format of the output_spec.cfg file is:
query_name,operator_type,operator_param,output_directory,bucketwidth,

partitioning_fields,n_partitions

Where

 query_name : is the name of the query.

 operator_type : how output is generated. Currently supported types are stream, file,
zfile.

 stream means, the hfta will stream its output (if there is not another hfta
consuming its output). Use this option if you want use gsgdatprint to generate files.

file : generate uncompressed files (but see the gzip option)

zfile: generate compressed files, using zlib.

operator_param : parameters for the output operator. Currently the only parameter that
is recognized is gzip, and only by the file output operator. If gzip is specified, the file
is gzipped after creation.

output_directory : where the files are written (operator type file or zfile). The path can
be a relative directory.

bucketwidth : the change in the temporal field required before creating a new file. The
default is 60. Set to 1 to use the natural bucket width.

partitioning_fields : if the file output operator is asked to produce multiple output
streams, use these fields to hash the output among the output streams. Only for
operator_type file and zfile.

n_partitions : number of (file or zfile) output streams to create.

If an hfta that creates output is parallelized (as specified in hfta_parallelism.cfg), then
each file output stream is mangled with __copyX. If the hfta parallelism is larger than
n_partitions, then the hfta is still parallelized as specified, and the number of file streams
is equal to the hfta parallelism. If the hfta_parallelism is equal to n_partitions, then each
parallel hfta produces a single output file stream. If n_partitions is larger than the hfta
parallelism, then the parallelism must divide n_partitions. Each hfta copy produces its
share of the file output streams, mangled by fileoutputX.

The specification of which queries can produce output is a critical optimization for Tigon
SQL, as helper subqueries can be combined into processes (minimizing communications
costs) and optimized by query rewriting.

Page ! 58

User Manual	

AT&T Research August, 2014

While the gsgdatprint tool (Section 10.5) can be used to write streaming data to files,
using a file output operator is significantly more efficient. A query can produce multiple
types of output, e.g. both stream and file output, by specifying both types of output in the
output_spec.cfg file.

If a query has file or zfile output, it must still be instantiated before it can execute. The
gsprintconsole tool (Section 10.4) can be used to instantiate a query. No output will be
sent to the gsprintconsole process (unless the query also has stream output), instead the
query will write its data to files.

6.5.Invoking the GSQL Compiler	

Normally, a user will use one of the provided buildit scripts to create the Tigon SQL
executables. However, an advanced user might wish to adjust how translate_fta operates.

Usage: translate_fta [-B] [-D] [-p] [-L] [-l <library_directory>] [-N] [-H] [-Q] [-M] [-C
<config_directory>] [-Q] [-S] [-h hostname] [-c] [-f] [-R path] [schema_file] input_file
[input file ...]

[-B] : debug only (don't create output files)

[-D] : distributed mode.

[-p] : partitioned mode.

[-L] : use the live_hosts.txt file to restrict queries to a set of live hosts.

[-C] : use <config_directory> for definition files

[-l] : use <library_directory> for the query library.

[-N] : output query names in query_names.txt

[-H] : create HFTA only (no schema_file)

[-Q] : use query name for hfta suffix

[-M] : generate Makefile and runit and stopit scripts.

[-S] : enable LFTA statistics (alters the generated Makefile).

[-f] : Output schema summary to schema_summary.txt

[-h] : override host name (used to name the rts).

[-c] : clean out any existing Makefile and hfta_*.cc files before doing doce
generation.

[-R] : path to the root STREAMING directory (default is ../..)

The output is an lfta.c file and some number of hfta_*.cc files. The –N option will output
the names of all generated queries in the file query_names.txt. The root (output) query is

Page ! 59

User Manual	

AT&T Research August, 2014

marked by an ‘H’ following the name. Child queries follow the root query and are
marked by an ‘L’ following the name.

See also Section 10.3.

6.5.1. Files Used by translate_fta
Translate_fta depends on the following definition files. external_fcns.def, ifres.xml,
<hsot_name>,ifq, and the packet schema file are all assumed to be in the directory
specified by the –C switch. The other files are assumed to be in the current directory.

• external_fcns.def : prototypes of predicates, functions, UDAFS, etc.
• ifres.xml : descriptions of all interfaces available to Tigon SQL.
• <host_name>.ifq : query set predicates over the interfaces available at <host

name>.
• output_spec.cfg : defines the collection of queries which generate output.
• Optimization hint files as described in Section 7.5.

6.5.2. Files Generated by translate_fta
A successful invocation of translate_fta will create the following files

• Source code: <hostname>_lfta.c and hfta_[0-9]+.c. <hostname> is the value
returned by the shell tool hostname. Use –h to override the hostname.

• preopt_hfta_into.txt, postopt_hfta_info.txt : information about system
configuration before and after distributed optimizations are performed.

• qtree.xml : detailed query operator configuration in xml format.
• gswatch.pl : a tool for monitoring the processes in the Tigon SQL processing

system.
• set_vinterface_hash.bat : a command for setting virtual interface settings in DAG

cards.
• Makefile, runit, stopit : are generated if translate_fta is invoked with the –M

parameter. Makefile is the makefile used for compiling the system. runit starts all
Tigon SQL processes – it DOES NOT start any subscribing applications. stopit
kills all Tigon SQL processes and any of the common subscribing applications.

Page ! 60

User Manual	

AT&T Research August, 2014

7. Optimizations
GSQL uses a number of optimizations to improve performance. Here we list the
optimizations to keep in mind when using Tigon SQL.

7.1.Query splitting 	

GSQL will try to execute as much of the query as possible as an LFTA; however, some
queries cannot execute as LFTAs even if they reference only protocols as data sources.
These queries are split into an HFTA and an LFTA component. The HFTA inherits the
query name, while the LFTA is given a name which is created by prepending ‘_fta_’ to
the query name. For example, if the query name is ‘Foo’, then the HFTA will be named
‘Foo’ while the LFTA will be named ‘_fta_Foo’.

A query will be split for a variety of reasons, one example being access to a function
which is not available at the LFTA level. In addition, all aggregation queries are split.
The LFTA will perform partial aggregation, while the HFTA computed the exact result
from the partially summarized output of the LFTA. The LFTA performs partial
aggregation to achieve the data reduction benefits of aggregation, but using limited space.
The number of GROUP-BY slots is set by the aggregate_slots option, which has a
default value of 10. The LFTA uses a set-associative hash table, so collisions are possible
even if the number of groups is less than the number of GROUP-BY slots.

7.2.Prefilter	

After computing the collection of LFTAs to execute, GSQL finds a prefilter for the query.
If a packet satisfies the WHERE clause of some LFTA, it will satisfy the prefilter. A
packet is presented to the LFTAs only if it satisfies the prefilter. The prefilter provides a
shortcut that allows the Tigon SQL RTS process to avoid invoking a query on a packet
that it will reject.

7.3.Group Unpacking	

See Section 5.1.

7.4.Process Pinning	

Query processing in a streaming system forms a Directed Acyclic graph of data records
flowing from one process to another. By careful placement of Tigon SQL processes, we
can minimize the costs of data transfers, e.g. by making use of 2nd level and 3rd level
cache. Processes can be pinned to particular cores using the taskset command. Tigon
SQL provides a self-optimization facility (Section 7.5.3), which will create a file
pinning_info.csv with recommendations for process placement. The script tigon/

Page ! 61

User Manual	

AT&T Research August, 2014

tigon-sql/bin/pin_processes.pl will perform the process pinning recommended by
pinning_info.csv. The Tigon SQL instance must be executing when pin_processes.pl is
run.

7.5.Optimization Hints and Self-Optimization	

The translate_fta query compiler (Section 6.5) uses several configuration files to set
parameters for performance optimization. In this section we discuss these files, and a
mechanism by which these files can be automatically generated and tuned.

7.5.1. HFTA Parallelism
The query compiler translate_fta consults the file hfta_parallelism.cfg to determine
the number of copies of an HFTA to create. The format of hfta_parallelism.cfg is

Query_name, level_of_parallelism

For example,

 example, 2

 example2, 1

The level of parallelism must divide the level of parallelism of the hfta’s sources – and
ultimately must divide the number of “virtual interfaces” which scan an interface. The
default level of parallelism is 1. Since virtual interfaces are not yet implemented for file
input, the hfta parallelism must always be 1.

7.5.2. LFTA Aggregation Buffer Sizes
Tigon SQL has a two-level query processing architecture. As described in Section 1,
records from a streaming source are processed by all subscribing queries in the run-time
system. This processing is simple and fast, performing only selection, projection, and
partial aggregation.

In the run-time system, an aggregation query is preprocessed using a small fixed-size
hash table. If the number of groups is larger than the number of hash-table entries, one of
the groups is evicted and sent to an HFTA, where all partial aggregates are summed up in
a hash table that can expand to the size that is needed.

Tuning the LFTA aggregation buffer size is a balance between two costs. To improve
cache locality, the buffer size should be as small, but to minimize the eviction costs, the
buffer should be large.

The default buffere size is 4096 entries. This value can be overridden by the
aggregate_slots define (see Section 6.3.2). Both of these values are overridden by
entries in the file lfta_htsize.cfg, which has the format

Page ! 62

User Manual	

AT&T Research August, 2014

lfta_query_name,hash_table_size

The lfta query names in the file lfta_htsize.cfg are (usually) mangled names of query
fragments executing in the run-time system. The names of all lfta queries are listed in the
file qtree.xml, which is generated by translate_fta (see Section 6.5.2). However,
lfta_htsize is intended to be part of the automatic optimization process.

7.5.3. Self Optimization
Tigon SQL Tigon SQL provides a self-optimization facility which generates files that
help to optimize Tigon SQL performance: lfta_htsize.cfg,
hfta_parallelism.cfg, and pinning_info.csv. In this section, we document how
to use the self-optimization facility.

 Optimization requires statistics, which in the case of a streaming system is available by
running the system on the actual data streams. In general, self-optimization is an iterative
process: run an unoptimized version of Tigon SQL, collect statistics, determine an
improved configuration, and repeat.

1. The translate_fta query compiler accepts –S as a flag, indicating that it should
collect statistics (see Section 6.5). The buildit script buildit_with-stats (see
Section 10.1) uses the –S flag.

a. By default, statistics are logged to file /var/log/gstrace. The script tigon/
tigon-sql/bin/get_last_trace.pl will extract the trace of the last run.

2. When running a query set generated with the –S flag, Tigon SQL generates
internal statistics, but not performance statistics. The script tigon/tigon-sql/bin/
monitor_gs.pl will collect performance statistics about the running Tigon SQL
instance, putting them in the file resource_log.csv

3. For process placement, the optimizer needs a map of the server’s cores. This
information is normally kept in the file tigon/tigon-sql/cfg/cpu_info.csv. Use
the script tigon/tigon-sql/bin/parse_cpu_info.pl to generate this file, as described
in Section 2.5.

4. The program tigon/tigon-sql/bin/process_logs will process qtree.xml
(generated by translate_fta, see Section 6.5.2), cpu_info.csv, resource_log.csv, and
a selected portion of the gslog (e.g. selected by get_last_trace.pl) to make a
variety of analyses and performance recommendations.

5. The script tigon/tigon-sql/bin/accept_recommendations.bat accepts the
configuration recommendations made by process_logs.

The process_logs program produce the following.

Page ! 63

User Manual	

AT&T Research August, 2014

1. Performance_report.csv : a report on data traffic, record loss, and resource
utilizations of various components of the Tigon SQL instance. This file is in csv
format and is readily loaded into tools such as Excel.

2. hfta_parallelism.cfg.recommended : a recommended level of parallelization for
query operators executed at the hfta level. The script accept_recommendations.pl
will copy this file to hfta_parallelism.cfg (see Section 7.5.1).

3. lfta_htsize.cfg.recommended : a recommended lfta hash table size for lfta query
fragments which perform aggregation. The script accept_recommendations.pl
will copy this file to lfta_htsize.cfg (see Section 7.5.2).

4. rts_load.trace.txt : a record of previously attempted lfta hash table size allocations.
This file is used to speed convergence in hash table size allocation.

5. pinning_info.csv : a recommended placement of run time systems nad hfta
processes to cores (see Section 7.4)

The recommended procedure for self-tuning is

1. Compile the query set using buildit_with-stats

2. Start up the query set (runit) and all clients.

3. tigon/tigon-sql/bin/pin_processes.pl (if a pinning_info.csv file has been
previously produced).

4. Run tigon/tigon-sql/bin/monitor_gs.pl

5. Let the system run for a while.

6. Stop the system (stopit)

7. tigon/tigon-sql/bin/get_last_trace.pl

8. tigon/tigon-sql/bin/process_logs last_tracefile.txt

9. tigon/tigon-sql/bin/accept_recommendations.bat

This procedure will iteratively optimize a Tigon SQL query set. Running the
accept_recommendations.bat script will cause the next run to use the generated
recommendations.

Page ! 64

User Manual	

AT&T Research August, 2014

8. External Functions and Predicates
GSQL can be extended with externally defined functions and predicates. The prototypes
for these functions and predicates must be registered in the file external_fcns.def,
normally kept in tigon/tigon-sql/cfg. Each entry in this file is one of the following
declarations:

• Function: return_type FUN [optional list of modifiers] function_name(list
of parameter data types); This declaration indicates that the function
accepts parameters with the specified data types and returns the specified
data type.

• Predicate: PRED [optional list of modifiers] predicate_name[list of
parameter data types]; This declaration indicates that the predicate accepts
parameters with the indicated data types. Predicates evaluate to true or false
in a predicate expression.

• User-defined Aggregate: return_type UDAF[optional list of modifiers]
udaf_name storage_type (list of parameter types); This declaration indicates
that ‘udaf_name’ is an aggregate function returning the specified data type,
using a block of type ‘storage_type’ for its scratchpad space, and taking the
specified list of parameters.

• Aggregate Extraction Function: return_type EXTR function_name
aggregate_name extraction_function (list of parameter types); This
declaration indicates that when ‘function_name’ is referenced in a query, it
is replaced by the call ‘extraction_fcn(aggregate_name(…),…)’.

• State: storage_type STATE state_name; This declaration indicates that the
storage block ‘state_name’ has the specified storage type. All stateful
functions which declare this state name as their state share the storage
block.

• Stateful Function : return_type SFUN function_name state_name (list of
parameter types) ; This declaration indicates that the stateful function
‘function_name’ returns the indicated type, takes the specified list of
parameters, and uses the indicated state as its storage block.

• Comment : a comment starts with two dash “—“ or two slash “//”
characters.

The optional list of modifiers of a function or predicate set the properties of that function
or predicate. The modifiers are as follows:

• COST : Indicate the cost of evaluating the function or predicate to the
optimizer. Legal values are FREE, LOW, HIGH, EXPENSIVE, and TOP
(in increasing order of cost). The default value is LOW. FREE functions

Page ! 65

User Manual	

AT&T Research August, 2014

and predicates can be pushed to the prefilter. Tigon SQL uses the function
cost to determine the order in which to evaluate predicate clauses. If the
COST of a function is HIGH or larger, then Tigon SQL will perform
function caching if possible.

• LFTA_LEGAL : the function or predicate is available in an LFTA (by
default, functions and predicates are not available in an LFTA).

• LFTA_ONLY : the function or predicate is available in an LFTA, but not in
an HFTA (by default functions and predicates are available in an HFTA).

• PARTIAL : the function does not always return a value. In this case the
function has a special call sequence.

• SUBAGGR : indicates that the user-defined aggregate can be split; use the
SUBAGGR in the lfta.

• SUPERAGGR : indicates that the user-defined aggregate can be split; use
the SUPERAGGR in the hfta.

• HFTA_SUBAGGR : Used to support aggregation in distributed mode.
• HFTA_SUPERAGGR : to support aggregation in distributed mode.
• RUNNING : indicates that the aggregate is a running aggregate.
• MULT_RETURNS : indicates that the aggregate doesn’t destroy its state

when asked to produce output, and therefore can produce output multiple
times. Aggregates used in Cleaning_When and Cleaning_By clauses must
have this property.

• LFTA_BAILOUT : indicates that the aggregate accepts the
_LFTA_AGGR_BAILOUT_ callback.

• COMBINABLE : Indicates that the predicate is combinable at the prefilter
(the predicate value is the same).

• SAMPLING : Used for load shedding.

The list of parameter data types completes the prototype. Function, stateful function,
user-defined aggregate, and predicate names can be overloaded by changing the list of
parameter data types. The properties of a parameter can be modified by following the
data type name with one or more of the following modifiers:

• HANDLE : the parameter is a handle parameter (see below).
• CONST : the parameter must be a constant expression (a scalar expression

involving unary or binary operators, literals, query parameters, and interface
properties only).

Page ! 66

User Manual	

AT&T Research August, 2014

• CLASS : the parameter is used for classifying COMBINABLE predicates at the
prefilter. Predicates with identical scalar expressions for their CLASS parameters
can be combined. All other other parameters (i.e., non-CLASS parameters) must
be CONST or HANDLE.

A parameter can be designated a handle parameter by following the data type with the
keyword HANDLE. Handle parameters are not passed directly; instead, they are
registered with the function to obtain a parameter handle. Instead of passing the
parameter value, the generated code will pass the parameter handle. This mechanism is
provided to accommodate functions which require expensive preprocessing of some of
their attributes, e.g. regular expression pre-compilation.

Some examples of function and predicate prototypes are as follows:
bool FUN [LFTA_LEGAL] str_exists_substr(string, string HANDLE);
string FUN [PARTIAL] str_between_substrings(string , string ,

string);
PRED [LFTA_LEGAL] is_http_port[uint];
float EXTR extr_avg avg_udaf extr_avg_fcn (uint);
float FUN extr_avg_fcn (string);
string UDAF[SUBAGGR avg_udaf_lfta, SUPERAGGR avg_udaf_hfta]

avg_udaf fstring12 (uint);
string UDAF avg_udaf_hfta fstring12 (string);
string UDAF avg_udaf_lfta fstring12 (uint);
fstring100 STATE smart_sampling_state;
BOOL SFUN ssample smart_sampling_state (INT, UINT);

BOOL SFUN ssample smart_sampling_state (UINT, UINT);

For more information about user defined functions, predicates, and aggregates, see
Section 7-Writing Functions and Aggregates.

8.1.User-defined Operators	

Each HFTA is an independent process; therefore, it is possible to write a “user defined
operator” which makes use of the HFTA API (see section 8- Gigascope™ API). A GSQL
query can reference the user-defined operator as long as the interface of the operator is
defined in the schema file. For example,

OPERATOR_VIEW simple_sum{
 OPERATOR(file 'simple_sum')
 FIELDS{
 uint time time (increasing);
 uint sum_len sum_len;
 }
 SUBQUERIES{
 lenq (UINT (increasing), UINT)
 }

Page ! 67

User Manual	

AT&T Research August, 2014

 SELECTION_PUSHDOWN
}

The name of the view is simple_sum (which is the name to use in the FROM clause).
The OPERATOR keyword indicates the nature and location of the operator. Currently,
the only option is ‘file’, and the parameter of this option is the path to the operator’s
executable file. The FIELDS keyword indicates the schema which the operator exports.
The SUBQUERIES keyword indicates the source queries for the operator. In the
example, there must be a query in the query set named lenq whose schema matches that
indicated by the schema in parentheses. An operator can read from more than one
subquery. In this case, separate them by a semicolon (;). SELECTION_PUSHDOWN
will be used for optimization, but currently nothing is done. An example of a query which
references simple_sum is

SELECT time, sum_len
FROM simple_sum

Page ! 68

User Manual	

AT&T Research August, 2014

9. Example Queries

9.1.A Filter Query	

This query extracts a set of fields for detailed analysis from all TCP and UDP packets.
The timestamp field has nanosecond granularity, so it can be used for detailed timing
analysis. Note the following:

• The query is reading data from the default set of interfaces.
• When reading data from a protocol source, such as TCP, the schema only says

how to interpret the data packet. The system does not perform any explicit
tests to verify that the packet is in fact from the TCP protocol. There is an
implicit test, however. All fields referenced in the query must be part of the
packet. Since all the referenced fields are part of both the TCP and UDP
schemas, this query can extract information about both types of packets.
Using DataProtocol would be better, since it contains all the referenced fields.

SELECT time, timestamp, protocol, srcIP, destIP,
 source_port, dest_port, len

FROM TCP
WHERE (protocol=6 or protocol=17) and offset=0

9.1.1. Using User-Defined Functions
This query uses the ‘getlpmid’ function, which does longest prefix matching to extract
data from IPv4 packets about local hosts. The getlpmid function returns with -1 if it is
unable to match the IP address in its prefix table.
DEFINE {

query_name 'local';
}
SELECT time as timebucket, srcIP as localip
FROM i2.IPV4
WHERE getlpmid(srcIP,'./localprefix.tbl') > 0

Note the following:
• The SELECT clause uses field renaming; the output fields are named

timebucket and localip.
• The query reads from a specific interface, named i2.
• The second parameter of the ‘getlpmid’ function is the path to a file containing

the local prefixes. This parameter is a handle parameter, meaning that it is
processed when the query starts. The processing creates a data structure,
which is passed to ‘getlpmid’ whenever it is called, making this type of
processing very efficient.

Page ! 69

User Manual	

AT&T Research August, 2014

9.1.2. Aggregation
This query computes the number of IPv4 packets and bytes seen in five-minute
increments. The results are returned at the end of each increment.

Note the following:
• The query defines aggregate_slots to be 2000. The LFTA portion of the

query will round up 2000 to the nearest power of two, and allocate a 2048 slot
hash table. If there is an entry in the lfta_htsize.cfg file for query src, thus
define will be overridden.

• The computed group value time/300 is renamed as tb.
• The query reads from the ‘default’ set of interfaces. This is the same

interface set you receive if you don’t specify the interfaces.
DEFINE {

query_name 'src';
aggregate_slots 2000;

}
SELECT tb*300 as timebucket, srcIP, sum(len) as total_bytes, count(*)
as packets
FROM [default].IPV4
WHERE ipversion=4
GROUP BY time/300 as tb, srcIP

9.1.3. Aggregation with Computed Groups
This aggregation query produces a per-minute report of web pages referenced at least
twice during that minute. Note the following:

• The group variable hostheader is computed using the ‘str_extract_regex’
function. This function is partial. If it can’t match the regular expression, it
fails. If it fails, the tuple is discarded and no group is created (as intended).

• The WHERE clause contains the predicate ‘str_match_start’, which ensures
that the payload of the packet starts with ‘GET’. This function is very fast
because it’s a one-word mask and compare. It is pushed to the LFTA and acts
as a fast and highly selective filter.

• The HAVING clause ensures that all of the reported groups have at least two
members. (The web page is referenced at least twice).

SELECT tb*60, min(timestamp), max(timestamp), 
 destIP, dest_port, hostheader, count(*)
FROM TCP
WHERE ipversion=4 and offset=0 and protocol=6 and  
 str_match_start[TCP_data, ‘GET’]
GROUP BY time/60 as tb, destIP, dest_port,
 str_extract_regex(TCP_data,‘[Hh][Oo][Ss][Tt]: [0-9A-Z\\.:]*’) as
 Hostheader

Page ! 70

User Manual	

AT&T Research August, 2014

HAVING count (*) > 1

9.1.4. Join
This query reads from two stream queries, http_request and http_response. It computes
the delay between http request and response by matching request and response pairs that
occur within the same time period, tb (a 10 second time interval). Although this loses
some of the request/response pairs, it captures most of them. The S.tb=R.tb predicate
in the WHERE clause is required to localize the join of the two streams.
SELECT S.tb as tb, getlpmid(S.destIP,'../../mappings/cpid.tbl') as
cpid,
 (A.timestamp - S.timestamp)/4294967 as rtt
INNER_JOIN from http_request S, http_response A
WHERE S.srcIP = A.destIP
 AND S.destIP = A.srcIP
 AND S.srcPort = A.destPort
 AND S.destPort = A.srcPort
 AND S.tb = A.tb
 AND S.timestamp <= A.timestamp
 AND S.to_ack = A.ack_number

9.1.5. A Query Set
Complex analyses are often best expressed as combinations of simpler pieces. In the
example below, four queries work together to compute traffic flow by application. These
queries are as follows:

• traffic_baseflow
• traffic_portflow
• total
• traffic

All four of the queries listed above can be specified in the same file. By default, the first
query can be subscribed to by applications, while the other queries are purely internal.
This default can be changed by properly setting the visibility ‘define’. Note the
following:

• Each query is separated by a semicolon.
• The query set uses different protocol mappings depending on the type of

traffic. The results are merged together in the ‘total’ query. The merge is
legal because both source queries have the same field types in the same order.
The ‘total’ query merges its streams on their timebucket field;
consequently, the output of the merge is ordered on timebucket.

DEFINE{
query_name 'traffic';

Page ! 71

User Manual	

AT&T Research August, 2014

}
SELECT tb*300 as timebucket, application, localID, remoteID, direction,
 SUM(packets) ,SUM(total_bytes)
FROM total
GROUP BY
 timebucket/300 as tb,
 application,
 localID,
 remoteID,
 direction
; !
DEFINE{

query_name 'total';
}
merge t1.timebucket : t2.timebucket
FROM traffic_baseflow t1 , traffic_portflow t2
; !
DEFINE {

query_name 'traffic_baseflow';
aggregate_slots '8192';

}
SELECT time as timebucket, application,localID,remoteID,direction,
 ULLONG(COUNT(*)) as packets,
 ULLONG(SUM(len)) as total_bytes
FROM IPV4
WHERE ipversion=4 and not (offset=0 and (protocol=6 or protocol=17))
GROUP BY
 time,
 prot2app(protocol,'../../mappings/protocolclass') as
application,
 getlpmid(srcIP,'./remoteprefix.tbl') + INT(1) as localID,
 getlpmid(destIP,'./remoteprefix.tbl') + INT(1) as remoteID,
 INT(1000) as direction
; !
DEFINE {

query_name 'traffic_portflow';
} !
SELECT time as timebucket, application, localID,remoteID,direction,
 ULLONG(COUNT(*)) as packets,
 ULLONG(SUM(len)) as total_bytes
FROM DataProtocol
WHERE ipversion=4 and offset=0 and (protocol=6 or protocol=17)
GROUP BY
 time,
 port2app(protocol, srcPort, destPort,

 '../../mappings/port2class.txt') as application,
 getlpmid(srcIP,'./remoteprefix.tbl') + INT(1) as localID,
 getlpmid(destIP,'./remoteprefix.tbl') + INT(1) as remoteID,
 INT(1000) as direction

!

Page ! 72

User Manual	

AT&T Research August, 2014

10.Tool References

10.1.Automated Build Script	

10.1.1.Synopsis
 tigon/tigon-sql/bin/buildit

tigon/tigon-sql/bin/buildit.pl

tigon/tigon-sql/bin/buildit_test.pl

tigon/tigon-sql/bin/buildit_with-stats

10.1.2.Description
The buildit script is a simple shell script which automates the task of building a Tigon
SQL instance from a set of GSQL files. Since the buildit script needs to find the Tigon
SQL tools and libraries the script expects to be executed in a sub directory of the tigon/
tigon-examples/tigon-sql/demos/ directory such as the CSVEXAMPLE directory. From
its executed directory the buildit script will combine all files with an ending of .gsql into
a Tigon SQL instance. The Tigon SQL instance will include binaries for a run time
system, and HFTAs as well as runit and stopit scripts.

The buildit.pl script allows Tigon SQL instances to be compiled in any directory under
the tigon root.

Buildit_with-stats is similar to buildit, with the exception that its executables log statistics
that help with auto-optimization. The logging slows down processing so for regular
processing we advise against enabling the extra logging.

Buildit_test.pl is used for the testing suite and should not be used to develop application
instances.

10.1.3.Example
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE

buildit .pl
!

!

Page ! 73

User Manual	

AT&T Research August, 2014

!
10.2.Auto-generated Start and Stop Scripts	

10.2.1. Synopsis
./runit

./stopit

10.2.2. Description
The runit and stopit scripts are auto generated when the ‘buildit.pl’ script is executed.
There is one ‘runit’ and one ‘stopit’ script for each Tigon SQL instance executing on a
single Tigon SQL machine. The scripts combine the knowledge of which binaries need to
be started or stopped and in which order to start or stop them. They also know which
physical network interfaces need to be instantiated to support the queries of a particular
Tigon SQL instance on a particular host. This information is deducted by analyzing the
FROM clause in the GSQL statements, the host name of the host and section 4.1-
Interface Definition and Use.

10.2.3. Example
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE

/tigon/tigon-sql/buildit .pl

./runit

... Tigon SQL instance starts up ...

./stopit

... Tigon SQL instance shuts down

See Also
buildit, interface definition file

!

!

Page ! 74

User Manual	

AT&T Research August, 2014

11. FTA Compiler	

11.1.1. Synopsis
Usage: translate_fta [-B] [-D] [-p] [-L] [-l <library_directory>] [-N] [-H] [-Q] [-M] [-C
<config_directory>] [-Q] [-S] [-h] [-c] [-f] [-R path] [schema_file] input_file [input
file ...]

11.1.2. Description
The command translate_fta launches C and C++ programs. The C and C++ programs
implement the queries given as the input files. These files must be compiled with the
Tigon SQL libraries in order to run properly. The –M option will generate a makefile.

The command line options are as follows:

[-B] : debug only (don't create output files)

[-D] : distributed mode.

[-p] : partitioned mode.

[-L] : use the live_hosts.txt file to restrict queries to a set of live hosts.

[-C] : use <config_directory> for definition files

[-l] : use <library_directory> for the query library.

[-N] : output query names in query_names.txt

[-H] : create HFTA only (no schema_file)

[-Q] : use query name for hfta suffix

[-M] : generate Makefile and runit and stopit scripts.

[-S] : enable LFTA statistics (alters the generated Makefile).

[-f] : Output schema summary to schema_summary.txt

[-h] : override host name (used to name the rts).

[-c] : clean out any existing Makefile and hfta_*.cc files before doing code
generation.

[-R] : path to the root of tigon

The command line parameters are as follows:
• schema_file : describes the Protocols available to be queried.
• input_file(s) : queries written in GSQL.

translate_fta creates the following files:

Page ! 75

User Manual	

AT&T Research August, 2014

• <host name>_lfta.c : The source code for the run time system to be
executed at <host name>.

• hfta_[0-9]+.cc : the source code for the higher-level query nodes.
• qtree.xml : a description of the query tree, in XML.
• gswatch.pl : a tool for monitoring the processes in the Tigon SQL

processing system.
• Makefile, runit, stopit : if the –M switch is set.

Translate_fta depends on the following definition files:
• external_fcns.def : prototypes of predicates, functions, UDAFS, etc.
• ifres.xml : descriptions of all interfaces available to Tigon SQL.
• <host_name>.ifq : query set predicates over the interfaces available at <host

name>.

11.1.3. Example
translate_fta –C ../../cfg –M packet_schema *.gsql

See Also
Automated Build Script, GSQL manual

!

11.4.Printing Streams to the Console	

11.4.1. Synopsis
 /tigon/tigon-sql/bin/gsprintconsole [-t tcp_port] [-r bufsize] [-v] [-X] [-D] query_name
param ... param

11.4.2. Description
The command ‘gsprintconsole’ will instantiate a query within an already running Tigon
SQL instance on the local machine. The tuples produced by the query instance are printed
to STDOUT as delimited records.

If the -v argument is given the first output line contains the field names. The line starts
with‘#’. This argument is optional. If –v is specified twice (-v –v) additional diagnostics
are printed.

The –X argument causes a timestamp to be printed for each output record.

Page ! 76

User Manual	

AT&T Research August, 2014

The -r argument allows the user to specify the size of the ringbuffer used between the
gsprintconsole process and the hfta or rts process which produces the tuples displayed by
‘gsprintconsole’. This argument is optional.

The –t argument directs the output to the indicated tcp port instead of to standard output.

After the optional command line arguments the user needs to specify the query name
which should be instantiated as well as all parameters required by the query. Parameters
are specified as parametername=value.

11.4.3. Example
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE

tigon/tigon-sql/bin/buildit.pl

./runit

... Tigon SQL instance starts up...

tigon/tigon-sql/bin/gsprintconsole -v ping

... ping the main Tigon SQL interface of the machine used...observe the results of the ping
query on STDOUT/STOPIT

See Also
gsgdatprint

11.4.4. Known Bugs
The directory gsprintconsole does not correctly support string parameters which contain
non-printable characters.

!

11.5.Saving streams to files	

11.5.1. Synopsis
 tigon/tigon-sql/bin/gsgdatprint [-r <int>] [-v] -f -s [-z] -c <int> -q <int> -b <field> -t
<int> -e <string> <query_name> <parameters>

Description

The command gsprintconsole will instantiate a query within an already running Tigon
SQL instance on the local machine. The tuples produced by the query instance are stored
in files in gdat format. (The gdat format is an efficient binary format for Tigon SQL
Tigon SQL streams). The gdat format can be subsequently processed by such tools as
‘gdatcat’, ‘gdat2ascii’ and ‘gdat2ethpcap’.

Page ! 77

User Manual	

AT&T Research August, 2014

The gsgdatprint command has the following optional arguments:
• -v makes the STDOUT and stderr output verbose. Has no impact on the stream

data in the files.
• -r allows the user to specify the size of the ringbuffer used between the

‘gsgdatprint’ process and the hfta or rts process which produces the streams
consumed by gsgdatprint.

• -z compress the files generated by ‘gsgdatprint’ (using gzip)
• -f flush each record individually.
• -s use in streaming mode (not compatible with –v, -z, -b, -t, or –e).
• -c terminate after the indicated number of records are written.
• -q terminate after the indicated number of seconds.

The remaining arguments (-b, -t, -e) are monitory and are used as follows:
• In order to generate output files from the data stream, ‘gsgdatprint’ monitors the

values of the field specified by the –b option in the data stream.
• It is assumed that the values of that field are increasing monotonically.
• The field type needs to be one of int, uint, llong, ullong.
• Whenever the value of the field specified by -b has increased by the value

specified in the -t option, a new output file is generated.

The output files are named using the following naming convention:
• Each file name starts out with an integer followed by the file extension specified

with the -e argument.
• If files are being compressed with the -z option, ‘gsgdatprint’ does NOT add

the .gz extension automatically. This extension should be part of the extension
specifie with -e.

• The integer is computed based on the values of the field specified by the -b
option. The first value of this field seen by gsgdatprint determines the integer part
of the first file name.

• Subsequent integer parts of the file name are computed by adding this value to a
multiple of the increment specified by the -t option.

• Tuples within the data stream are stored in the file with the largest integer
component in its name. That integer is smaller or equal to the value of the field in
that tuple.

Note: Files are generated only if they are not empty. If the field value progresses more
than a single increment per step between two tuples in the data stream, some files may be
missing. Missing files do NOT indicate that the Tigon SQL is not functioning properly.

Page ! 78

User Manual	

AT&T Research August, 2014

11.5.2. Example
cd tigon/tigon-examples/tigon-sql/demos/ping

tigon/tigon-sql/bin/buildit

./runit

... Tigon SQL instance starts up ...

tigon/tigon-sql/bin/gsgdatprint -b time -t 10 -e ping.gdat ping

... ping the main Tigon SQL interface of the machine used ...

... observe the results of the ping query in files ending in ping.gdat...

... one such file will be generated if time progresses 10 seconds ...

... if there are tuples available ...

./stopit

See Also
gdatcat, gdat2ascii, gdat2ethpcap, and gsprintconsole.

11.5.3. Known Bugs
In addition to the arguments described here, ‘gsgdatprint’ supports a series of
experimental arguments. Execute tigon/tigon-sql/bin/gsgdatprint to see the current list
of supported experimental and production arguments.

!

!

Page ! 79

User Manual	

AT&T Research August, 2014

!
11.6.Concatenating Saved Stream Files	

11.6.1. Synopsis
 tigon/tigon-sql/bin/gdatcat File ... File

11.6.2. Description
The executable ‘gdatcat’ needs to be used to concatenate gdat files generated by
gsgdatprint. This executable can only concatenate gdat files which contain data with
identical schemas (files produced by one query). Executable ‘gdatcat’ verifies that the
aforementioned is true, and stops with an error message if one of the files specified has a
different schema. The command ‘gdatcat’ can concatenate a mix of compressed or
uncompressed gdat files; however, the concatenated output is always returned to
STDOUT without compression.

11.6.3. Example
 tigon/tigon-sql/bin/gdatcat 1109173485ping.gdat 1109173495.ping.gat > ping.gdat

See Also
gdat2ascii (section), gdat2ethpcap (section 9.8), and gsgdatprint (section).

11.6.4. Known Bugs
There are no known bugs at this time.

!

11.7.Converting Saved Stream Files to ASCII	

11.7.1. Synopsis
tigon/tigon-sql/bin/gdat2ascii -v File

11.7.2. Description
The executable ‘gdat2ascii’ converts a binary gdat file produced by ‘gsgdatprint’ into a
separated ASCII representation identical to the one produced by ‘gsprintconsole’. Only a
single uncompressed file name can be specified. If compressed or multiple files need to
be converted, ‘gdat2ascii’ should be used in a UNIX pipe in conjunction with ‘gdatcat’.
In this case the File name should be set to ‘-‘.

Page ! 80

User Manual	

AT&T Research August, 2014

If the -v argument is given, the first output line contains the field names. The line starts
with a hash mark (#). This argument is optional.

11.7.3. Example
 tigon/tigon-sql/bin/gdat2ascii -v 1109173485ping.gdat

tigon/tigon-sql/bin/gdatcat 1109173485ping.gdat 1109173495.ping.gat | tigon/tigon-sql/
bin/gdat2ascii -v -

See Also
gdatcat, gdat2ethpcap, gsgdatprint, gsprintconsole

11.7.4. Known Bugs
There are no known bugs at this time.

!

Page ! 81

User Manual	

AT&T Research August, 2014

!

Page ! 82

User Manual	

AT&T Research August, 2014

12. External Functions and Predicates

12.1.Conversion Functions	

str_exists_substr [string, string] : returns true if the second string is contained within the
first.

str_compare [string,string] : returns true if both strings are equal

str_match_offset [uint,string,string] : returns true if the string passed as the second
argument matches a substring of the third argument at the offset passed as first argument;
otherwise it returns false.

byte_match_offset [uint,uint,string]: matches a byte (passed as second argument) at the
offset (passed as first argument) in the string (passed as third argument).True is returned
if a match is found; otherwise false is returned.

byte_match_reverse_offset [uint,uint,string] : same as byte_match_offset except that the
offset is calculated from the end of the string backwards.

net_word_match_offset [uint,uint,string] : identical to byte_match_offset except that
second argument contains a word size number which is matched in network byte order

little_endian_word_match_offset [uint,uint,string] : identical to net_word_match_offset
except that the network data is first transfered to little endian order before the match is
performed

str_regex_match [string, string HANDLE] : returns true if the string passed as first
argument matches the regular expression passed as the second argument.

str_partial_regex_match(string, string HANDLE, uint) : similar to str_regex_match, but
match only up the the number of characters specified by the 3rd parameter.

str_extract_regex (string, string HANDLE): similar to str_regex_match except that the
first matched string is returned. If no match is found, the function fails.

str_extract_regex_null: Similar to str_extract_regex, but return an empty string if no
substring found.

str_file_regex_match(string, string HANDLE, uint, uint): Similar to str_regex_match, but
the regular expression is loaded from the file whose path is the second argument. The
regex is reloaded every timeout seconds, where timeout is the 3rd argument. !
!

Page ! 83

User Manual	

AT&T Research August, 2014

12.2.Conversion Functions	

get_int(string s, uint n): extract the 4 bytes which are at positions n-1 through n+3 in
string 3, interpret then as an unsigned integer, and return the result.

get_bool(string s, uint n): extract the 4 bytes which are at positions n-1 through n+3 in
string 3, interpret then as a boolean, and return the result.

get_suffix(string s, uint n): Extract the suffix of string s starting at byte position n-1.

LLMIN(ullong, ullong): return the minimum of the two arguments.

LLMAX(ullong, ullong): return the maximum of the two arguments.

UMIN(uint, uint): return the minimum of the two arguments.

UMAX(uint, uint): return the maximum of the two arguments.

UMIN(ip, ip): return the minimum of the two arguments.

UMAX(ip, ip): return the maximum of the two arguments.

EQ(uint, uint): return true if the arguments are equal.

GEQ(uint, uint): return true if the first argument is greater than or equal to the second.

LEQ(uint, uint): return true if the first argument is less than or equal to the second.

IF(bool, uint, uint): if the first argument is true, return the second, else the third argument.

non_temporal(int), non_temporal(uint), non_temporal(llong), non_temporal(ullong): cast
away any temporal properties of the argument.

INT(uint), INT(ullong), INT(llong): cast the argument as an int.

UINT(int), UINT(ullong), UINT(llong), UINT(ip): cast the argument as an uint.

STRID(string): interpret the first 4 bytes as a uint.

FLOAT(uint), FLOAT (int), FLOAT (ullong), FLOAT (llong): cast the argument as a
float.

ULLONG(uint), ULLONG (int): cast the argument as a ullong

strtoi(string): interpret the argument as a uint.

strtoip(string): interpret the argument as an ip.

strtoi_c(string): interpret the constant argument as a uint.

strtoip_c(string): interpret the constant argument as an ip.

!

Page ! 84

User Manual	

AT&T Research August, 2014

12.3.Prefix Functions	

getlpmid(ip, string): load a file of ipv4 prefixes and identifiers using the filename
specified buy the first parameter, match the ip in the first parameter, and return the
corresponding id.

getv6lpmid(ipv6, string): similar to getlpmid but use ipv6 addresses.

Page ! 85

User Manual	

AT&T Research August, 2014

12.User-Defined Aggregate Functions

12.1.Moving Sum Functions	

moving_sum_exp(uint, uint, float) : computing the sum of the first parameter
exponentially decaying over the number of windows specified by the second parameter;
the third parameter is the rate of decay.

12.2.String Matching and Extraction	

12.2.1. Synopsis
PRED [LFTA_LEGAL]str_exists_substr[string, string];

PRED [LFTA_LEGAL]str_compare[string,string];

PRED [LFTA_LEGAL]str_match_offset (uint,string,string);

PRED [LFTA_LEGAL]byte_match_offset (uint,uint,string);

PRED [LFTA_LEGAL]byte_match_reverse_offset (uint,uint,string);

PRED [LFTA_LEGAL]net_word_match_offset (uint,uint,string);

PRED [LFTA_LEGAL]little_endian_word_match_offset(uint,uint,string);

PRED [LFTA_LEGAL] str_regex_match(string, string HANDLE);

PRED [LFTA_LEGAL] str_partial_regex_match(string, string HANDLE,
uint);

string FUN [PARTIAL]str_extract_regex(string, string HANDLE);

string FUN [LFTA_LEGAL]str_truncate (string, uint);

12.2.2. Description
This is a collection of functions and predicates that can be used to analyze fields of the
type string (such as the payload of a TCP segment). All predicates defined above are also
available as functions of type uint FUN, which return 1 instead of true, and 0 instead of
false. The different functions and predicates perform the following:

• str_exists_substr[string, string] : returns true if the second string is contained
within the first.

• str_compare[string,string] : returns true if both strings are equal
• str_regex_match[string, string HANDLE] : returns true if the string passed as

first argument matches the regular expression passed as the second argument.
• str_match_offset [uint,string,string] : returns true if the string passed as the second

argument matches a substring of the third argument at the offset passed as first
argument; otherwise it returns false.

Page ! 86

User Manual	

AT&T Research August, 2014

• byte_match_offset [uint,uint,string]: matches a byte (passed as second argument)
at the offset (passed as first argument) in the string (passed as third
argument).True is returned if a match is found; otherwise false is returned.

• byte_match_reverse_offset [uint,uint,string] : same as byte_match_offset except
that the offset is calculated from the end of the string backwards.

• net_word_match_offset [uint,uint,string] : identical to byte_match_offset except
that second argument contains a word size number which is matched in network
byte order.

• little_endian_word_match_offset[uint,uint,string] : identical to
net_word_match_offset except that the network data is first transfered to little
endian order before the match is performed.

• str_extract_regex(string, string HANDLE): similar to str_regex_match except that
the first matched string is returned

• str_truncate (string, uint): returns the first n bytes of the string given as first
argument. The n is the minimum of the second argument and the string length of
the first argument.

12.2.3.Example
The following example matches TCP payloads to check if some common P2P signatures
are present: select time, srcIP, destIP,
srcPort, destPort,

// Here we calculate the bit vectore. This is conceptually the
// same statement as in the WHERE clause, except that we
// calculate a bit vectore not a predicate
// kazaa
(((str_match_offset(0,'GET',TCP_data)
| str_match_offset(0,'HTTP',TCP_data))
& str_regex_match(TCP_data,'[xX]-[Kk][Aa][Zz][Aa][Aa]'))*32)
//gnutella
| str_match_offset(0,'GNUTELLA',TCP_data)*64
// next statement used for Gnutella signal
| ((byte_match_offset(16,HEX'00',TCP_data)
| byte_match_offset(16,HEX'01',TCP_data)
| byte_match_offset(16,HEX'40',TCP_data)
| byte_match_offset(16,HEX'80',TCP_data)

| byte_match_offset(16,HEX'81',TCP_data))
&net_word_match_offset(19,data_length-23,TCP_data))*2
// next statement have to be both matched for directconnect
| (byte_match_offset(0,36,TCP_data)
& byte_match_reverse_offset(1,124,TCP_data)

Page ! 87

User Manual	

AT&T Research August, 2014

& str_regex_match(TCP_data,'^[$](types|MyNick|Lock|Key|Direction|
GetListLen|ListLen|MaxedOut|Error|Send|Get|FileLength|Canceled|HubName|
ValidateNick|ValidateDenide|GetPass|MyPass|BadPass|Version|Hello|
LogedIn|MyINFO|GetINFO|GetNickList|NickList|OpList|To|ConnectToMe|
MultiConnectToMe|RevConnectToMe|Search|MultiSearch|SR|Kick|OpForceMove|
ForceMove|Quit)'))*4
// next statements for bittorent have to be both matched
| (byte_match_offset(0,19,TCP_data)
& str_match_offset(1,'BitTorrent protocol',TCP_data))*8
// next statement for edonkey
| (byte_match_offset(0,HEX'e3',TCP_data)
& little_endian_word_match_offset(1,

data_length-5,TCP_data))*16 as app_class
//, TCP_data
FROM TCP
WHERE (ipversion=4 and protocol=6 and offset=0)
and ((getlpmid(destIP,'./mesaprefix.tbl') = 18) or
(getlpmid(srcIP,'./mesaprefix.tbl') =18))
and
// next two statements are used for Kazaa
(((str_match_offset(0,'GET',TCP_data)=1
or str_match_offset(0,'HTTP',TCP_data)=1)
and (str_regex_match(TCP_data,'[xX]-[Kk][Aa][Zz][Aa][Aa]')=1))
// gnutella
or
str_match_offset(0,'GNUTELLA',TCP_data)=1
// next statement used for Gnutella signal
or ((byte_match_offset(16,HEX'00',TCP_data)=1
or byte_match_offset(16,HEX'01',TCP_data)=1
or byte_match_offset(16,HEX'40',TCP_data)=1
or byte_match_offset(16,HEX'80',TCP_data)=1
or byte_match_offset(16,HEX'81',TCP_data)=1)
and net_word_match_offset(19,data_length-23,TCP_data)=1)
// next statement have to be both matched for directconnect
or (byte_match_offset(0,36,TCP_data) =1
and byte_match_reverse_offset(1,124,TCP_data)=1
and str_regex_match(TCP_data,'^[$](types|MyNick|Lock|Key|Direction|
GetListLen|ListLen|MaxedOut|Error|Send|Get|FileLength|Canceled|HubName|
ValidateNick|ValidateDenide|GetPass|MyPass|BadPass|Version|Hello|
LogedIn|MyINFO|GetINFO|GetNickList|NickList|OpList|To|ConnectToMe|
MultiConnectToMe|RevConnectToMe|Search|MultiSearch|SR|Kick|OpForceMove|
ForceMove|Quit)')=1)
// next statements for bittorent have to be both matched
or (byte_match_offset(0,19,TCP_data) = 1
and str_match_offset(1,'BitTorrent protocol',TCP_data)=1)
// next statement for edonkey
or (byte_match_offset(0,HEX'e3',TCP_data)=1 and
little_endian_word_match_offset(1,
data_length-5,TCP_data)=1))

Page ! 88

User Manual	

AT&T Research August, 2014

12.2.4.Known Bugs
Our fastest regex matching algorithms are not available in the AT&T external release. In
fact we replaced them with libc regex functions for the release.

!

12.3.Longest Prefix Match	

12.3.1.Synopsis
int FUN [LFTA_LEGAL] getlpmid(IP,string HANDLE);

12.3.2.Description
This function is used to perform longest prefix matches against an IP address. The prefix
table has the following format: 0.0.0.0/0|0
1.2.3.4/29|5
2.3.4.5/29|6
5.6.7.8/27|6
9.10.10.11/29|7
11.11.11.11/27|7

The table needs to be stored in a file on the local filesystem of Tigon SQL. The filename
is passed as the string parameter in either function. Currently, the function only evaluates
the file if a query is instantiated; therefore, changes to the prefix table file are not
reflected in already running queries.

Given an IP address in the first argument the function will return the id of the longest
matching prefix. The id is stored after the pipe ‘|’ in the prefix table and must be a uint.

12.3.3.Example
The following query collects IP and TCP header fields of all traffic which either
originates or targets an IP address (in prefixes with a prefix id of 1) in the fitler.tbl prefix
table file.
!

Page ! 89

User Manual	

AT&T Research August, 2014

SELECT
time,timestamp,ttl,id,srcIP,destIP,srcPort,destPort,sequence_number,ack
_number,flags,len,data_length
FROM TCP
WHERE protocol=6 and
(getlpmid(srcIP,'./filter.tbl')=1

or getlpmid(destIP,'./filter.tbl')=1)

12.3.4.Known Bugs
After a query has been instantiated, the changes to the prefix table are not reflected in the
running query.

!  

Page ! 90

User Manual	

AT&T Research August, 2014

!
12.4.Static Subset-Sum Sampling:	

12.4.1.Synopsis
Subset-Sum sampling algorithm estimates the sum of object sizes which share a common
set of properties. This section describes a basic version of the algorithm, where the
threshold of the tuple size is set by the user and doesn’t change throughout execution of
the program. The result of the algorithm is a sample of arbitrary size.

12.4.2.Description
S – Sample

R – Stream of objects to sample from

t – An object

t.x - The value of the size attribute of an object

z – Initialized by the user, doesn’t change during execution

The subset-sum algorithm collects a sample (S) of tuples from ‘R’ in such a way that
accurately estimates sums from the sample. In the static version of the algorithm, the
user sets the threshold (z), which determines the sample size. Each tuple (t) is
sampled with probability: p(x) = min{1,t.x/z}. The following is an implementation of
the static subset-sum sampling algorithm:
bool static_sample(data t, int z){
 static int count = 0;
 if (t.x > z){
 //sampled
 return true;
 }
 else{
 count += t.x;
 if (count > z){
 count -= z;
 //sampled
 return true;
 }
 }
 // not sampled
 return false;
}

Page ! 91

User Manual	

AT&T Research August, 2014

To estimate the sum, the measure ‘t.x’ of the sampled small tuple (less than the value
of the threshold ‘z’) is adjusted to: z: t.x = max{t.x,z}.

This static version of the algorithm can be expressed as a stateful function which can
access a state structure with relevant control variables.

12.4.3.Example
The following query makes use of a stateful function which implements the sampling
procedure of the static version of the algorithm:

SELECT time, srcIP, destIP, len
FROM TCP
WHERE nssample(len,100)= TRUE

The stateful function ‘nssample(len, 100)’ accepts the value of the attribute to
sample on (length of the tuple in this case) as well as the value of the threshold ‘z’.
This query is evaluated as follows:

• for each incoming tuple, evaluate the WHERE clause. If the function
‘nssample(len, 100) ’returns true, the tuple is sampled and outputted.
Otherwise start processing the next tuple.

• on every sampled tuple evaluate the SELECT clause and output listed
attributes of the tuple.

See also stateful functions, Supergroups, Dynamic Subset-Sum Sampling, and Flow
sampling query.

12.4.4.Known Bugs
There are no known bugs at this time.

!

Page ! 92

User Manual	

AT&T Research August, 2014

13.MIN, MAX	

13.1.1.Synopsis
ullong FUN [LFTA_LEGAL] LLMIN (ullong,ullong);

ullong FUN [LFTA_LEGAL] LLMAX (ullong,ullong);

uint FUN [LFTA_LEGAL] UMIN (uint,uint);

uint FUN [LFTA_LEGAL] UMAX (uint,uint);

IP FUN [LFTA_LEGAL] UMIN (IP,IP);

IP FUN [LFTA_LEGAL] UMAX (IP,IP);

FLOAT FUN [LFTA_LEGAL] UMAX (uint,FLOAT);

FLOAT FUN [LFTA_LEGAL] UMAX (FLOAT,FLOAT);

FLOAT FUN [LFTA_LEGAL] UMAX (FLOAT,uint);

13.1.2.Description
The various MIN and MAX functions compute the pairwise MIN and MAX.

13.1.3.Known Bugs
There is no definition of MIN and MAX for all type combination.
!

13.6.Typecast	

13.6.1.Synopsis
int FUN [LFTA_LEGAL]INT(uint);

int FUN [LFTA_LEGAL]INT(ullong);

int FUN [LFTA_LEGAL]INT(llong);

uint FUN [LFTA_LEGAL]UINT(int);

uint FUN [LFTA_LEGAL]UINT(ullong);

uint FUN [LFTA_LEGAL]UINT(llong);

float FUN FLOAT(llong);

float FUN FLOAT(ullong);

float FUN FLOAT(int);

float FUN FLOAT(uint);

ullong FUN [LFTA_LEGAL]ULLONG(uint);

ullong FUN [LFTA_LEGAL]ULLONG(int);

uint FUN [LFTA_LEGAL]TIMESTAMPTOSEC(ullong);

uint FUN [LFTA_LEGAL]TIMESTAMPTOMSEC(ullong);

Page ! 93

User Manual	

AT&T Research August, 2014

13.6.2.Description
These functions perform the appropriate type casts.

13.6.3.Known Bugs
Only typecasts needed for this document are defined; not all possible typecasts.

!

13.7.Conditional assignment	

13.7.1.Synopsis
uint FUN [LFTA_LEGAL]IF(uint,uint,uint);

int FUN [LFTA_LEGAL]IF(int,int,int);

string FUN [LFTA_LEGAL]IF(int,string,string);

string FUN [LFTA_LEGAL]IF(uint,string,string);

13.7.2.Description
Each ‘IF’ function returns the second parameter only if the first parameter is not 0, and
the third parameter is 0.

13.7.3.Known Bugs
Currently only the functions in the type subsets used are defined.

!

Page ! 94

User Manual	

AT&T Research August, 2014

!
13.8.Local Triggers	

13.8.1. Synopsis
PRED [LFTA_LEGAL,COST TOP] set_local_trigger[uint, uint];

 PRED [LFTA_LEGAL,COST HIGH] check_local_trigger[uint];

 bool FUN [LFTA_LEGAL,COST TOP] set_local_trigger(uint, uint);

 bool FUN [LFTA_LEGAL,COST HIGH] check_local_trigger(uint);

13.8.2. Description
This function provides a local trigger which can be set by one query by calling
‘set_local_trigger’ and can be read by other queries by calling ‘check_local_trigger’. The
first argument in either function or predicate is the trigger ID. Currently up to 127
triggers are supported. The second argument for ‘set_local_trigger’ indicates how many
times ‘get_local_trigger’ should return true after ‘set_local_trigger’ was called.

In the example below the collection of 1000 packets is triggered after a packet is visible
with a broken Ipv4 checksum using trigger number 1.
DEFINE {
query_name 'type_header' ;
real_time 'true';
visibility 'external';
} !
SELECT @Host, @Name,time,len,timewarp,raw_packet_data
FROM IPV4
WHERE ipversion = 4 and total_length < hdr_length
;
DEFINE {
query_name 'type_checksum' ;
real_time 'true';
visibility 'external';
} !
SELECT @Host, @Name,time,len,timewarp,raw_packet_data
FROM IPV4
WHERE ipversion =4 and ipchecksum(IPv4_header)<>0 and
set_local_trigger(1,1000)=TRUE !
; !
DEFINE {
query_name 'trailer' ;

Page ! 95

User Manual	

AT&T Research August, 2014

real_time 'true';
visibility 'external';
} !
SELECT @Host, @Name,time,len,timewarp,raw_packet_data
FROM IPV4
WHERE ipversion =4 and check_local_trigger[1]

13.8.3. Known Bugs
Triggers only function within a single process. Therefore great care must be taken to
assure that both queries are compiled into the same binary.

!

Page ! 96

User Manual	

AT&T Research August, 2014

!

Page ! 97

User Manual	

AT&T Research August, 2014

13.User Defined Aggregate Functions

13.1.POSAVG	

13.1.1.Synopsis
float UDAF POSAVG fstring16(float);

13.1.2.Description
A user defined aggregation function which computes the average of all positive values
passed to it. This is useful in cases such as processing the output of ‘TRAT’ which sets its
measurement value to -1 if it is not valid. In that circumstance, ‘POSAVG’ will compute
the average of all valid measurements.

13.1.3.Example

13.1.4.Known Bugs
There are no known bugs at this time.

!

Page ! 98

User Manual	

AT&T Research August, 2014

!

Page ! 99

User Manual	

AT&T Research August, 2014

14.Sampling

14.1.Dynamic Subset-Sum Sampling:	

14.1.1. Synopsis
The dynamic subset-sum sampling algorithm estimates sums of the sizes of flows (objects
sharing a common set of properties) from a sampled subset of objects. Unlike the static
version of the algorithm, the dynamic version produces a sample of a constant size
defined by the user.

14.1.2.Description
S: Sample

R: Stream of objects to sample from

N: Desired size of the sample

T: An object

t.x: The value of the size attribute of an object

z: Dynamically adjusted threshold for the size of the objects to be sampled

B: Number of objects whose size t.x exceeds current threshold z

The algorithm works in the following manner:
• Collect samples, each with probability p(x) = min{1,t.x/z}
• If |S| > γN (e.g., γ=2), estimate a new value of z which will result in N objects.

Subsample S using new value of z, and continue the sampling process.
• When all tuples from R have been processed, if |S| > N then adjust z and

subsample S.

Parameter z can be adjusted in a number of ways.
• Conservative
• Aggressive
• Root finding: recursive method (not applicable).

To estimate the sum, the measure ‘t.x’ of the sampled small objects is adjusted to: z: t.x =
max {t.x, z}. Then the estimate of the flow size is the sum of all ‘t.x’ in the sample that
belongs to the flow. For more details please refer to Sampling Algorithms in a Stream
Operator.

 Example:

Page ! 100

http://portal.acm.org/citation.cfm?doid=1066157.1066159

User Manual	

AT&T Research August, 2014

!
When applied to a data stream, subset-sum sampling occurs in successive time windows.
The following query expresses the dynamic subset-sum sampling algorithm which
collects 100 samples per 20 seconds:

SELECT uts, srcIP, destIP, UMAX(sum(len),ssthreshold())
FROM PKTS
WHERE ssample(len,100)= TRUE
GROUP BY time/20 as tb, srcIP, destIP, uts
HAVING ssfinal_clean(sum(len))=TRUE
CLEANING WHEN ssdo_clean()=TRUE

CLEANING BY ssclean_with(sum(len))=TRUE

In this case a single supergroup is created every 20 seconds. The state structure for the
algorithm is defined as follows:
struct SSstate {
 int count; // count to sample small packets with
 // certain probability
 double gcount; // count for clean_with() function
 double fcount; // count for final_clean() function
 double z; // z is the threshold for a size of the
 // packet
 double z_prev; // z from the previous iteration of the
 // cleaning phase
 double gamma; // tolerance parameter for emergency
 // control over the number of samples,
 // should be >= 1
 int do_clean; // set to 1 when cleaning phase is being
 // triggered
 int bcount; // count for number of packets that exceed
 // threshold, need it for threshold
 // adjustment
 int s_size; // need to remember sample size for
 // _sfun_state_init()
 int final_z; // indicates if z was adjusted to its
 // final value before the final clean
 int time; // remember timestamp from the previous
 // iteration

};

14.1.2.1.Detailed Query Evaluation Process

When the first tuple is received, a supergroup for the time window is created and its state
is initialized with ‘clean_init’ initialization function call. The function is called only
once at the beginning of the execution:

Page ! 101

User Manual	

AT&T Research August, 2014

void _sfun_state_clean_init_smart_sampling_state(void *s){
struct SSstate *state = (struct SSstate *)s;

state->count = 0;
state->gcount = 0;
state->fcount = 0;
state->z = 200; //initial value for z
state->z_prev = 0;
state->gamma = 2;
state->do_clean = 0;
state->bcount = 0;
state->s_size = 0;
state->final_z = 0;
state->time = 0;
};

On every packet, evaluate the ‘ssample(len,100)’ function, where the
parameters passed to the function are the length of the packet in bytes (packet
attribute) and the desired final size of the sample for the current time frame of 20
seconds. The function implements the condition for admitting the tuple into the
sample with probability p(x) = min{1, len/z}:
int ssample(void *s, int curr_num_samples, unsigned long long int
len, unsigned int sample_size){
 struct SSstate *state = (struct SSstate *)s;
 int sampled = 0; !
 //initialize s_size to 100
 state->s_size = sample_size;

 //evaluate when just returned from the cleaning phase
 if(state->do_clean == 1){
 state->gcount = 0;
 state->do_clean = 0;
 }

 //sampling condition
 if(len > state->z){
 state->bcount++;
 sampled=1;
 }
 else{
 state->count += len;
 if(state->count >= state->z){
 sampled=1;
 state->count -= state->z;
 }
 }
 return sampled;

Page ! 102

User Manual	

AT&T Research August, 2014

};

If the function returns as false, then the predicate condition for admitting a tuple
to the sample failed and the next tuple needs to be processed. If the function
passes as true, the tuple is admitted into the sample.

14.1.2.2.Cleaning Phase

On every sampled packet, evaluate ‘ssdo_clean()’. This function implements the
condition for triggering the cleaning phase on the current sample and returns true
whenever the size of the current sample exceeds the threshold ‘γN’. The new value of the
threshold is then calculated and the cleaning phase is triggered; otherwise, proceed to the
next tuple:

int ssdo_clean(void *s, int curr_num_samples){
 struct SSstate *state = (struct SSstate *)s;

 if(curr_num_samples > (state->gamma*state->s_size)){
 state->do_clean = 1;
 state->z_prev = state->z;
 state->z=(double)state->gamma*state->z;
 state->bcount = 0;
 state->count = 0;
 state->gcount = 0;
 }
 return state->do_clean;
};

In this case, the initial threshold can be estimated for the new time window based on the
value of the threshold in the previous window, adjusting its value to obtain an estimated
‘N’ sample during the new time window.

If the cleaning phase was triggered, evaluate ‘ssclean_with(sum(len))’ function on
every tuple in the current sample. As a result of this evaluation process, the current
sample will be subsampled using the previously calculated value of the threshold.

int ssclean_with(void *s,int curr_num_samples, unsigned long long
int glen){
 struct SSstate *state = (struct SSstate *)s;

 //cleaning condition
 int sampled = 0;
 double new_len = 0;

 if (glen < state->z_prev)
 new_len = state->z_prev;
 else
 new_len = glen;

Page ! 103

User Manual	

AT&T Research August, 2014

 if(new_len > state->z){
 state->bcount++;
 sampled = 1;
 }
 else{
 state->gcount += new_len;
 if(state->gcount >= state->z){
 sampled = 1;
 state->gcount -= state->z;
 }
 }
 return sampled;
};

!
If the function returns as false, then the predicate condition for leaving a tuple in
the sample failed and the tuple is deleted; otherwise, the tuple is sampled.

14.1.2.3.Clean Initialization

When the border of the time window is reached, the state of each supergroup (in this
example only one) is first finalized with the ‘final_init’ function. The new time
window is detected when the first tuple from the next time window is received.

void _sfun_state_final_init_smart_sampling_state(void *s, int
curr_num_samples){
 struct SSstate *state = (struct SSstate *)s; !
 if(state->final_z == 0){

 state->z_prev = state->z; !
 if(curr_num_samples < state->s_size){
 state->z = state->z*((max((double)curr_num_samples-
 (double)state->bcount,1))/((double)state->s_size-
 (double)state->bcount)); !
 }
 else {
 if(curr_num_samples >= state->s_size){
 state->z = stat->z*
 ((double)curr_num_samples/(double)state->s_size);
 }
 } !
 if(state->z <= 0)
 state->z = 1;

Page ! 104

User Manual	

AT&T Research August, 2014

 state->bcount = 0;
 state->final_z = 1;
 state->do_clean_count++;

 }
};

Evaluate ‘ssfinal_clean(sum(len)’on every tuple that is currently in the
sample. The threshold ‘z’ is adjusted according to the aggressive method of the
algorithm. The function makes a final pass through the sample and subsamples it
to the desired size.
int ssfinal_clean(void *s, int curr_num_samples, unsigned long
long int glen){
 struct SSstate *state = (struct SSstate *)s;

 state->do_sooth = true; !
 // for ssample() where just returned from the clening
 // phase
 state->do_clean = 1;

 int sampled = 0;
 double new_len = 0;

 if (glen < state->z_prev)
 new_len = state->z_prev;
 else
 new_len = glen; !
 //no need to clean
 if(curr_num_samples <= state->s_size){
 return 1;
 }
 else{
 if(new_len > state->z){
 sampled = 1;
 state->bcount++;
 }
 else{
 state->fcount += new_len;
 if(state->fcount >= state->z){
 sampled = 1;
 state->fcount -= state->z;
 }
 }

 return sampled;

Page ! 105

User Manual	

AT&T Research August, 2014

 }
};

If the function returns as true, the tuple is in the final sample for the current time
window and its attributes listed in the SELECT clause of the query are outputted
to the user. Otherwise the tuple is deleted.

14.1.2.4.Dirty Initialization

When the first tuple from the next time window is received, the new state for this
supergroup is created and initialized with ‘dirty_init’ (instead of clean_init)
initialization function. This function uses some values of the state from the previously
processed time window. If there is no need in initializing a new state structure with the
old state values, the function will be similar to the ‘clean_init’ initialization function.

void _sfun_state_dirty_init_smart_sampling_state(void *s_new,
void *s_old, int curr_num_samples){
 struct SSstate *state_new = (struct SSstate *)s_new;
 struct SSstate *state_old = (struct SSstate *)s_old;

 if(curr_num_samples < state_old->s_size){
 state_new->z = state_old->z*
 ((max((double)curr_num_samples-(double)state_old-
 >bcount,1))/((double)state_old->s_size-
 (double)state_old->bcount));

 }
 else {
 if(curr_num_samples >= state_old->s_size){
 state_new->z = state_old-
 >z*((double)curr_num_samples/(double)state_old-
 >s_size); !
 }
 }

 if(state_new->z <= 1.0)
 state_new->z = 1;

 state_new->gamma = state_old->gamma;
 state_new->do_clean = state_old->do_clean;
 state_new->s_size = state_old->s_size;
 state_new->bcount = 0;
 state_new->gcount = 0;
 state_new->count = 0;
 state_new->fcount = 0;
 state_new->final_z = 0;

Page ! 106

User Manual	

AT&T Research August, 2014

 state_new->time = 0;
};

From this point on all the tuples in the current window are processed according to
the evaluation process described above.

See also the following:
• Stateful functions
• Supergroups
• Static Subset-Sum Sampling
• Flow Sampling Query

14.1.3.Known Bugs
There are no known bugs at this time.

Page ! 107

User Manual	

AT&T Research August, 2014

15.Flow Subset-Sum Sampling:

15.1.Synopsis	

This section describes a flow sampling query. The packet sampling step in the flow
collection process of the Dynamic Subset-Sum sampling approach is replaced by a more
sophisticated flow sampling approach which combines the flow aggregation with flow
sampling.

15.1.1.Description
The query described in the Dynamic Subset-Sum sampling section is a high level
sampling query, which is fed by a low level flow aggregation query. Another approach is
to integrate flow aggregation into sampling and do them simultaneously on the traffic at
the packet level:

SELECT tb, srcIP, destIP, COUNT(*),
 UMAX(sum(len),ssthreshold())
FROM TCP
WHERE flow_ssample(100) = TRUE
GROUP BY time/20 as tb, srcIP, destIP
HAVING flow_ssfinal_clean(P, sum(len)) = TRUE
CLEANING WHEN flow_ssdo_clean(max$(time))= TRUE
CLEANIN BY flow_ssclean_with(P, sum(len)) = TRUE

This query uses a new set of stateful functions and is evaluated by the stream sampling
operator in the following manner:

1. When a tuple is received, call state initialization function (‘clean_init’ if it’s a
first tuple being evaluated, ‘dirty_init’ otherwise). Evaluate the WHERE
clause. Call ‘flow_ssample(100) ’, which always returns true and admits all
incoming tuples into the sample without performing any preliminary filtering.

2. Evaluate the CLEANING WHEN clause. Call ‘flow_ssdo_clean(max$
(time))’. This function implements two phases of query evaluation; the
counting phase and the cleaning phase. The counting phase is triggered every
second. During this phase the numbers of closed flows which are currently in the
group table are counted (see below). The count of closed flows is used to trigger
the cleaning phase. The cleaning phase is triggered when the current number of
closed flows, which was obtained during the most recent counting phase, exceeds
the threshold for the number of samples. If the function returns false, neither of
the two conditions is met so proceed to the next tuple.

3. Evaluate the ‘CLEANING BY’ clause whenever ‘CLEANING WHEN’ returns
true. Call ‘flow_ssclean_with(P, sum(len))’ function, wher‘P’ is a set of
conditions which indicate whether a flow is closed. For instance, a flow can be

Page ! 108

User Manual	

AT&T Research August, 2014

considered closed if we have received FINISH or RESET or there was no packet
from this flow within the last 15 seconds:

(Or_Aggr(finish)|Or_Aggr(reset)),15,max(time)

4. If the function is called during the counting phase, P is applied to every group to
determine whether the flow is closed. The counter of closed flows which is not
evicted from the sample is incremented accordingly. The function always returns
true during the counting phase. When the function is called during the cleaning
phase, the current set of closed flows is subsampled by applying to each flow the
newly estimated value of the size threshold of the tuple and deleting those flows
which do not meet the cleaning condition. The function returns as true if the flow
satisfies the condition.

5. When the sampling window is closed, call ‘final_init’ state initialization
function. Evaluate HAVING clause. At this point all flows are considered closed.
Call ‘flow_ssfinal_clean(P, sum(len))’, which performs the final
subsampling of the current sample only if it exceeds the desired size. If the
function returns false, the flow is evicted from the sample. Otherwise, the flow is
sampled.

6. SELECT is applied to every sampled group while it is output as the answer to the
query.

15.1.2. Examples
SELECT tb, srcIP, destIP, COUNT(*),
 UMAX(sum(len),ssthreshold())
FROM TCP
WHERE flow_ssample(1000) = TRUE
GROUP BY time/60 as tb, srcIP, destIP
HAVING flow_ssfinal_clean((Or_Aggr(finish)|Or_Aggr(reset)),
 5,max(time), sum(len)) = TRUE
CLEANING WHEN flow_ssdo_clean(max$(time))= TRUE
CLEANIN BY flow_ssclean_with((Or_Aggr(finish)|
 Or_Aggr(reset)),5,max(time), sum(len)) = TRUE

This query will return a sample of 1000 tuples per 1 minute time window. A flow is
considered closed if FINISH or RESET was received, or if there was no packet from this
flow within the last five seconds.

See also the following:
• Stateful functions
• Supergroups
• Static Subset-Sum Sampling

Page ! 109

User Manual	

AT&T Research August, 2014

• Dynamic Subset-Sum Sampling

Page ! 110

