User Manual
AT&T Research August, 2014

Tigon SQL Users Manual

| —,
— at&t

Page 1

AT&T Research August, 2014

Authored by: The Tigon SQL Team, AT&T Research

Page 2

AT&T Research August, 2014

Table of Contents

Lo INEEOAUCTION ..ttt ettt e bbb e st eenb e saeeeateens 1
L.1.BACKEIOUNM ...ttt ettt ettt e et e s e e beesneeenreens 1
1.2. Theory Of OPErationcccueeeiiieeiiieeiieeeiieeeiteeetteeeieeeereeesreeesereeesseessseeensseesneeas 2

1.2.1. Stored Table Databasesc.cceeeevuerieriiiiinienieeieeeese st 2
1.2.2. Stream Databasesccceeiiiiiiiiiieiieiieee et 3
1.2.3. Hybrid ProCeSSINGccvieruieeiiieiieeiieiie ettt ettt ettt ettt seteesteesbeessaeenseens 6
1.3. Tigon SQL OPETationccc.ueeeiuiieeiiiieeiieeeiieeeiteeeieeeeieeeereeesreeeseaeeesseessseeensseesneeas 6

2. Tigon SQL Installation INStIUCIONSeevuieriieriieeiieriie ettt 8
2.1.Unpacking the SOUICEc.eeeviiiiiiiiieiiie ettt eee e ree e vee e e e saaeeseaeeenaeas 8
2.2.Compiling the SOUICEccouiiiiiiriiiiiieiie ettt seaeeeeens 8
2.3.Define an INTerfacec.coviiiiiiiiiiiiee e 8
2.4.Define @ SChEMAooueiiiiiiiiiiiiceee et 9
2.5.Completing the INStallationcceevciiieiiieeiiieceeee e e e 9

3. Tigon SQL Quick Start GUIAEccceeeiieiieiiiiiieeieeiee ettt 11
3.1.Compiling @ QUETY SET....cccciiieiiieeiiieeiieecieeeieeeeree st eesveeesreeseaeesssreessseesseeeens 11
3.2.5tarting @ QUETY S ...eoiuiieiieiiieiie ettt ettt et e e 11
3.3.Starting @ Data SOUICE........cceciiieiiieeiie ettt ettt s e s e e sreeesaeeeeaeas 12
3.4.Instantiating @ QUETYc.eoeiieiieiieeiieeie ettt et ete et et e ebe e ee bt essaesseesaaeenseennees 12
3.5.5topping @ QUETY St ..eeoeiiiiiieeie et ettt e e s e e eere e e e enaeas 13

4. Referencing Datac.ccouiiiiiiiiiiiieiece ettt e 15
4.1.Interface Definition and USEcooeeiiiiiiiiiiiiiiiiieieeee e 15

4.1.1. Introduction 15
4.1.2. Interface Management............ccccueeeriieerieeenieeeriieeeireeereeesreeesreeessseesnnseeeneens 15
4.1.3. File Stream ProCessingcceevieeiierieniiiesiieeieeiee et esiee st see et siee e 17
4.1.4. TCPPOIt PrOCESSINGccciiieeiiiieciieecieeeeiee et e eiteeetreeeteeesveeesveeesaaeesnaeeenneas 18
4.1.5. INEEITACE SEIS ...eeuviriiiiiiieeitete ettt 18

AT&T Research August, 2014

4.1.6. Defining INterface SetS.......ccccveviiiiiriiiieiiieeiieeeieeee e 19
4.1.7. Using Interface Properties in QUETIEScccuereerieriinienienienieeieeienieeieneeene 20
4.1.8. LIbrary QUETIESccccuveeriiieeeiieeriieerieeerteeerteeeereesereesseeessbeeesnseesnsseesnnseesneeas 21
5. Protocols and INterfacesceeviiiiiiiiiiiiee e 22
5.1.Group UNPaCKINGc.eeeiviiriiieiiesiieeieeeie et eeiteeteeeite et esseeebeeseaeesseessaesnseesssessseensnas 24
5.2.Built-in Field Access FUNCHONSoooiiiiiiiiiiiieiecee e 25
5.3, WIItING @ PTOtOCO] ..cnviieiiiie ettt e 27
5.4.Interfaces 27
0. GSQL ..t ettt ettt ettt ettt s et e bt et e eneenees 28
6.1.BaCKGIOUNdoeeiiiiiiiiiicee s 28
6.2.QUETY LANGUAZEoovoviiiiiiiiiiiieciie et ettt et e 29
6.2.1. Selection QUETIES........ccuieeiurieeiieeeiieeeieeeereeesreeetaeeeaeeeereeesereeesaseeessseeensneeans 29
6.2.2. FROM ClaUSE:....ceutieuiiitieiieieeiiesiteie ettt ettt sttt sttt st sae et eneesaeenseenne e 29
6.2.3. Scalar EXPreSSIONS.ccueririiriiriieieeitenie ettt ettt sttt 30
6.2.4. SeleCtion LiSt......cooiiiiiiiiiiiieiieeieeee e 36
6.2.5. Predicate EXPIeSSIONS.....c..cocviriirieiiinienieiieniterteeteeit ettt 38
6.2.6. WHERE ClaUuSE:......cceiiiieiiiieieeeeeee et 38
6.2.7. Comments 38
6.2.8. Selection SUMMATY:ooeiiiiiiieeriie e eeiee et e e e ere e s e e sreeesbeeennseeeaneeens 39
6.2.9. Join 39
6.2.10.Filter Join 42
6.2.11.GROUP-BY/AZEIegation........cccceeuirieriiiiniienieeieeiienieeie st 43
6.2.12. RUNNING AZEIEZAtION.cccurieriieeeiieeiiieerteeerteeeeteeeareeeseeesseeesnseeensseesnsseenns 48
6.2.13.Stream Sampling and AgEregation...........ccevvereerienieneenienieneeieeeeseeee e 50
6.2.14.StraM METEZEeeevvieeiiieeiiee ettt et eeste e et e e e eeesaeeessseeeenseeennseesnnneeens 52
6.3.QUETY SPECTIICALION. ...cueiuiiiiiiiiiiieciteee ettt st 53
6.3.1. Parameters 55
6.3.2. Options (DEFINE BIOCK)......cccoiiiiiiiiiiiiieeeeeeeeee e 56
6.3.3. QUETY NAIMEeviiiiiieiiiie et eiee et e et e et e e e teeeaaeessseeessseeeenseeensseesnsneeens 57

Page 4

AT&T Research August, 2014

6.4.DefiniNg @ QUETY SEL....cccoiiiiiiieeiieeeiie ettt et ettt et e eaee e seaee e ebeeeaseeeneees 57
6.5.Invoking the GSQL COmMPIIETcccueriiiiiriiniiiiiiieeeceeece e 59
6.5.1. Files Used by translate fta...........cccocceeriiiiiiiiniiieiienicceeceeeeee e 60
6.5.2. Files Generated by translate fta...........c.coccooiiniiiiniiniinnecc 60

0 01511012 1510) s PR SRSR 61
7. 1. QUETY SPIILEINE ..ottt ettt ettt sttt 61
7.2. Prefilter 61
7.3.Group UnNPacKiNngcoveviiiiiiriiieiiieieeeesteeet ettt ettt 61
7. 4. ProCesS PINNINGoooiuiieiiiieiiiieeiiee ettt ettt e et eesaee e snseesnseeenaeesnneeas 61
7.5.Optimization Hints and Self-Optimizationcccceeeriereriieniienenienieneceeeee 62
7.5.1. HFTA ParalleliSmcc.cooviiiniiiiiiiiiciccccncecrcee e 62
7.5.2. LFTA Aggregation Buffer Sizes..........ccoceeviniiniiiiniiniiniceccececee 62
7.5.3. Self OPtIMIZAtIONoeviiieeiiieeiieeeiee ettt et ee e eaeeesbeeesbeeessreeeaneeens 63

8. External Functions and Predicatesc.coooiiiiiiiiiiiiiiieceee e 65
8.1.User-defined OPETatorsc.eevuieeiieriieeiieiieeteesieeeteesteesereeteessaeeseessseesseessneenseens 67

9. EXAMPIE QUETIESeueiiiiiiiiiiiieieeteet ettt ettt st 69
L BN 1 L) 1<) SRR 69
9.1.1. Using User-Defined FUNCHONScocueriiiiiriiniiiiniceccnicecceecseee e 69
9.1.2. Aggregation 70
9.1.3. Aggregation with Computed GroupScccceveerueeriiriineerienieneeeeeese e 70
9.1.4. Join 71
9.1.5. A Query Set 71
10.TOOI RETEIENCES........eiriiiiiiiiiiiiiciectec e 73
10.1.Automated Build SCIIPt........coeeiiiriiiiiiiiiee e 73
10.1.1.Synopsis 73
10.1.2.Description 73
10.1.3.Example 73
10.2.Auto-generated Start and StOP SCIIPLS.....c.eevervieriiriiiiieiirecereseee e 74
10.2.1. Synopsis 74

Page 5

AT&T Research August, 2014

10.2.2. DESCTIPLION. ..ccueiieeiiieeiieeeiieeeritee ettt e eiteeeateesaeeesbeeessaeeesaseeeesseesnnseesnsseesnsens 74
10.2.3. Example 74
L1 FTA COMPILET....utiiiiiiiieiiieieecte ettt ettt ettt ae e e eaeebeessseenbaessseenseensnas 75
11.1.1. Synopsis 75
T1.1.2. DESCIIPIION. ..ccutiieiiieeiiieeiiee et e ettt e e teeeiteeeaeeesbeeeenaeeesaseeennseeenseessseesnneeas 75
11.1.3. Example 76
11.4.Printing Streams t0 the COonSOlec.oeoiiiiiiiieeiieiiecieee e 76
11.4.1. Synopsis 76

| S D 1Tt o1 1 o] 2) 1 R RRRPR 76
11.4.3. Example 77
11.4.4. KNOWN BUZSoiiiiiiiiiie ettt 77
11.5.Saving streams t0 fleScouiriiiiiiiiiiiiiee e 77
11.5.1. Synopsis 77
11.5.2. Example 79
11.5.3. KNOWN BUZSoiiiiiiieiieeeeeee ettt e 79
11.6.Concatenating Saved Stream Filesccccooiiviriiniiiiniiniiniececceeee 80
11.6.1. Synopsis 80
11.6.2. DESCIIPLION.....eueiiiiniieiiieiteieeit ettt sttt st 80
11.6.3. Example 80
11.6.4. KNOWN BUZS ...ooiiiiiiiieiieeee et 80
11.7.Converting Saved Stream Files to ASCIL........cccooovievieiciieniieiieiecieeeeeee e 80
11.7.1. Synopsis 80
L1.7.2. DESCIIPIION. ..ccutiieiiieeiiieeiieeeiteeerieeeeiteeetteeeaeeesbeeessseessaseeensseesnnseessseesnseeas 80
11.7.3. Example 81
11.7.4. KNOWN BUZS ..ottt e s e 81
12. External Functions and Predicatesccoeiiiiiieniiiiiiiieecee e 83
12.1.Conversion FUNCHONSccc.eiiiiiiiiiiiiieieceee et 83
12.2.Conversion FUNCHONScc.eiiiiiiieiiieiiee ettt 84
12.3.Prefix FUNCHONScoouiiiiiieieeiee et 85

Page 6

AT&T Research August, 2014

12. User-Defined Aggregate FUNCHONS..........cccieviiiiierieeiieeieceeee et 86
12.1.MovIng SUM FUNCHIONSocutiiiiiiniiiieiieeitcie ettt 86
12.2.String Matching and EXtraction..........c.ccecveevieiieeiieniiesieeiee e 86

12.2.1. Synopsis 86
12.2.2. DESCTIPLION. ..ccuetieeiiieeiieeeiieeeiteeerieeeeireeetteesteeesbeeessseessnseesnsseesnsseesnsseesnsens 86
12.2.3.Example 87
12.2.4 KNOWN BUZS ..ottt ettt et e e 89
12.3.Longest Prefix MatChcccooiiiiiiiiiiieeee e &9
12.3.1.Synopsis 89
12.3.2.Description 89
12.3.3.Example 89
12.3. 4. KNOWN BUZS ..ottt e 90
12.4.Static Subset-Sum SampPIING:cc.eeeviiieiiieeieeeieeee e e 91
12.4.1.Synopsis 91
12.4.2.Description 91
12.4.3 . Example 92
12.4.4 KNOWN BUZS ..eciiiieiiie ettt et et e e e st e e 92
L3 IMIN, MAX ettt st be st ettt be bbb ene s 93
13.1.1.Synopsis 93
13.1.2.Description 93
I3 1.3 KNOWN BUZS ..ottt ettt e e 93
13.6.Typecast 93
13.6.1.Synopsis 93
13.6.2.Description 94
13.6.3. KNOWN BUZS ..ottt et e e 94
13.7.Conditional aSSIZNIMENLcoueeiiriiiriieiiriienieete ettt ettt s 94
13.7.1.Synopsis 94
13.7.2.Description 94
13.7.3. KNOWN BUZS ..ottt et e 94

Page 7

AT&T Research August, 2014

13.8.L0CaL TTIZEEIS....cuiieiieiiieiieiie ettt e eteette et e etee et eebeessaeebeesaseenseessseenseessseanseensnas 95
13.8.1. Synopsis 95
13.8.2. DESCTIPLION. ..ccueiieeiiieeiiieeiieeete e ettt e eiteeeteeeeteeesibeeesnaeeesaseeesnseesnseessseesnnnees 95
13.8.3. KNOWN BUES ...ttt 96

13.User Defined Aggregate FUNCLIONSocoviiieiiiiiiiiieiieeeiie et 98

13.1.POSAVG 98
13.1.1.Synopsis 98
13.1.2.Description 98
13.1.3.Example 98
13.1.4. KNOWN BUZS ..coueiiiiiiiiiiiiieieeeeeetee et 98

T4, SAMPLING o..neviieiiieeeiee ettt ettt e et e e et e e et e e esbeeesabeeesnseesnseeenseessseesnneas 100

14.1.Dynamic Subset-Sum Sampling:........ccceeirviiriininiieniineiiesieeeeeese e 100
14.1.1. Synopsis 100
14.1.2.Description 100
14.1.3. KNOWN BUZS ..ottt et e 107

15.Flow Subset-Sum Sampling:........cccoceevuiiiiniiniiniinieeieeeceneereeeee e 108

15.1.Synopsis 108
15.1.1.Description 108
15.1.2. Examples 109

List of Appendixes

No table of figures entries found.

List of Tables

Table 1 Tigon SQL Team Points of Contact..........ccceeuerierieriienieninieneenenieseeeeeeeeees i
Table 2 Referenced DOCUMENLSeeruiiiiiiniieiieeiie ettt 1
Table 3 Document CONVENLIONScc.eeveererieenierienieerieetenieentestesttenteetesteesteeeeseeenseeaeesneenees i
Table 4: Data TYPE INAINESeevueeeuiieiieiieeniie ettt ettt ettt e sbt e et esbee st e sbeeeabeesbaesareens 1
Table 5: Field AtITDULES ...cc.vevuieriiiieriieieeeeteete ettt sttt st 1
TADIE 61 LALETALS ...eeuveeiiieiieeieeete ettt ettt et st e bt e e b e et ens 1

User Manual

AT&T Research August, 2014
Table 7: Operator PrOtOLYDES ...coeeee et 1
Table 8: Temporal TYDPE IMPULATION.eeeeeeeeeee et et e e e e et eeeeeeeeeeeeeeeeaeeeeeeeeeenenas 1
Table 9: Built-in Aggregate FUNCHIONS.cceeveee e 1

Page 9

AT&T Research

User Manual

August, 2014

Oliver Spatscheck

Lead Member of Technical Staff

(908) 901-2076

Theodore Johnson

Lead Member of Technical Staff

(212) 341-1010

Vladislav Shakepnyuk | Principle Member of Technical (212) 341-1813
Staff
Divesh Srivastava Director (908) 901-2077

Table 1 Tigon SQL Team Points of Contact

Gigascope™: Building a
Network Gigabit Sniffer

Charles D. Cranor, Yuan
Gao, Theodore Johnson,
Vladislav Shkapenyuk,
Oliver Spatscheck

AT&T Labs — Research

Streams, Security and
Scalability

Theodore Johnson , S.
Muthukrishnan , Oliver
Spatscheck, and Divesh
Srivastava

GSQL Users Manual

Theodore Johnson

August, 2014

Sampling Algorithms in a
Stream Operator

Theodore Johnson, S.
Muthukrishnan, Irina
Rosenbaum

16 June 2005

Table 2 Referenced Documents

Page 10

User Manual

AT&T Research August, 2014
Bold Device, Field, Host, File or directory
names.
Italicized Introducing a new concept or definition.
‘in single quotes’ Titles, executables, commands, predicates
and functions.
In Courier New Interface Set names, and definition
examples.
IN CAPS Clause titles

Table 3 Document Conventions

Page 11

AT&T Research August, 2014

1. Introduction

This manual describes Tigon SQL the SQL component of Tigon. Tigon SQL can be used
in conjunction with the Tigon system or in stand-alone mode.

1.1.Background

The phenomenal growth of the Internet has had a tremendous effect on the way people
lead their lives. As the Internet becomes more and more ubiquitous it plays an
increasingly critical role in society. Indeed, in addition to leisure-time activities such as
gaming and Web browsing, the Internet also carries important financial transactions and
other types of business communications. Clearly, our dependency on the correct
operation and good performance of the Internet is increasing and will continue to do so.

For network operators, understanding the types and volumes of traffic carried on the
Internet is fundamental to maintaining its stability, reliability, security, and performance.
Having efficient and comprehensive network monitoring systems is the key to achieving
this understanding. The process of network monitoring varies in complexity from simple
long term collection of link utilization statistics to complicated ad-hoc upper-layer
protocol analysis for detecting network intrusions, tuning network performance, and
debugging protocols. Unfortunately, rapid Internet growth has not made monitoring the
network any easier. In fact three trends associated with this growth present a significant
challenge to network operators and the network monitoring tools they use.

This introductory excerpt was taken from the reference paper “Gigascope™: Building a
Gigabit Network Sniffer.” A review of the rest of this paper is strongly recommended, as
it covers extensively the ideas, concepts, and architecture behind the initial Tigon SQL
implementation as conceived in 2001.

As described within the context of this document, Tigon SQL is a high-speed stream
database, the purpose of which is network monitoring. To provide additional insight into
why Tigon SQL was built and what it is primarily used for, it is advisable to read
Streams, Security and Scalability. This document provides examples of Tigon SQL uses
in the security sense, and highlights some of the more advanced Tigon SQL features.

Note: Not all features described in this paper are available in the current public
Tigon SQL release. For more information on these features, contact the Tigon
SQL team (see Table 1 =~ Tigon SQL Team Points of Contact on page i of this
document).

Page 1

AT&T Research August, 2014

1.2.Theory of Operation

Tigon SQL is a stream database, and while its user interface is in many ways similar to
that of a conventional stored-table database management system (dbms), its operation is
very different. Let us briefly review how a dbms operates.

1.2.1. Stored Table Databases

A dbms typically stores several tables on persistent storage. Each of these tables consists
of a collection of records, and each record has a collection of named fields. For example,
a database might contain tables FOO and BAR, where FOO has fields (String a, Float b,
Int c). These tables might be stored as files in the database server’s file system and
named FOO.dat and BAR.dat, respectively.

A dbms generally makes use of indices to accelerate the performance of queries. For
example, table FOO might have an index on field ¢, named Index FOO c and stored as
Index FOO_c.idx in the file system.

Users submit queries to access the data in a dbms. A popular language for expressing
queries is SQL. For example, the user might wish to fetch the a and b values of all
records in FOO where c=15. The SQL query for this query is

Select a, b
From FOO
Where c=15

The dbms translates this query into a sequence of steps for evaluating the query (the
query plan). There are many possible ways for evaluate even this simple query; one
possibility is
1. Open the index file Index FOO c and determine the record locations in FOO.dat
such that c=15.

2. Open FOO.data and, using the result of step 1, fetch the indicated records.
3. Using the result of step 2, format a new record comprised of the fields (a, b).
4. Using the result of step 3, output the records (e.g. to the user’s terminal).

Steps 1 through 4 are usually implemented using a pre-written program called an
operator, that has been parameterized to evaluate the particular processing that is needed.
For this simple example, the operators are linked (by the “using the result of”
relationship) into a list. The operator graphs of more complex queries will be Directed
Acyclic Graphs.

The database administrator (dba) is responsible for loading tables FOO, BAR, and others,
into the dbms. The dba defines the schema of FOO — its fields, indices, and other
properties. The dba then loads data into FOO. Data loading might occur once (for a

Page 2

AT&T Research August, 2014

static data set), or might occur e.g. daily (for a data warehouse). Data loading might
occur continually, as in a transaction processing system, but OLTP systems often limit the
scope of permitted data analysis queries to keep them from interfering with transaction
processing.

Because the data is loaded, the dbms has the opportunity for collect statistics about its
tables, which can be used for query plan optimization. For example, the statistics might
indicate that 15 is a very common value of FOO.c, occurring in 50% of the records. In
this case, a better query plan than the one above is to fetch all records from FOO and test
if c=15 (indexed access has a high overhead as compared to sequential access).

The query evaluation plan has the leisure to fetch records from permanent storage. If the
server is slow, the query evaluation program fetches records at a slower pace than usual.
If the dbms determines that it is low on resources (e.g., memory), it can delay the
evaluation of new queries until existing ones terminate.

1.2.2. Stream Databases

New applications, such as network packet monitoring, produce data on a continual basis.
The traditional approach to analyzing this kind of data is to gather it, load it onto
permanent storage, and then analyze it. However, this kind of processing has a lot of
inefficiencies and delays built into it. A more promising approach is to analyze data as it
flows past. The data is only touched once, useless data is not gathered, and the results are
produced rapidly.

For example, we might be monitoring packets flowing through a router. By using the
router’s SPAN port, we get a copy of each of these packets and direct them to our
streaming analysis server. The packets are read by a Network Interface Card, or NIC, and
then presented to a system such as Tigon SQL for analysis.

A stream database such as the Tigon SQL structures the raw data sources it receives for
the convenience of analysis. The dba defines the interfaces that provide data — in this
example, the NIC. The dba also defines a schema on the packets that arrive, parsing the
data contents for convenient analysis. For example, a network packet will typically have
a source IP address, a destination IP address, a time of arrival, and so on.

Suppose that the user wishes to extract the source IP address and timestamp of [PV4
packets such that the destination address is 1.2.3.4. This query can be expressed in an
SQL-like language as

Select SourcelP, TimeStamp

From IPV4
Where DestIP=IPV4 VAL:'1.2.3.4'

The stream database translates this query into a plan for evaluating the query, for
example

Page 3

AT&T Research August, 2014

1. Receive a new record

2. Testif DestIPis 1.2.3.4

3. If so, format a record consisting of (SourcelP, TimeStamp)
4. Output the record

As is the case with the stored procedure database, each of these steps can be performed as
separate pipelined operators - meaning that one step does not need to run to completion
before the next step can start. Step 1 receives records and pipes them to step 2. Step 2
performs its test and pipes the qualifying records to step 3, and so on.

The output of a stream database such as the Tigon SQL is another data stream. A Tigon
SQL query set must specify what is to be done with the output: save it to a
collection of files, or pipe it to a consuming application.

Tigon SQL uses an SQL-like language, GSQL for specifying its queries — the sample
query is valid GSQL. A significant restriction of GSQL is that all queries must have a
pipelined evaluation plan. For example, the following query does not have a pipelined
plan:

Select SourcelIP, count (*)

From IPV4

Where DestIP=IPV4_VAL:’1.2.3.4’
Group By SourcelIP

The “Group By” clause means that the qualifying records should be organized by their
SourcelP value, and the query reports the number of records observed for each observed
SourcelP value. Since no part of the final answer is known before all of the data has been
processed, the query cannot produce piecemeal results.

However, if the input data is partially sorted by a field in the Group By clause, then we
can perform pipelined processing. Each packet has a TimeStamp, which is its time of
observation. Successive records are have nondecreasing values of the TimeStamp, so the
TimeStamp can serve as the sort order. Therefore this query

Select SourcelIP, TimeStamp, count (*)
From IPV4

Where DestIP=IPV4 VAL:'1.2.3.4'
Group By SourcelIP, TimeStamp

has a pipelined query plan. Whenever Timestamp increases from say 1:00 pm to 1:01
pm, we know the final value of all records with Timestamp 1:00 pm and earlier.
Therefore the query plan can remove all such records from its internal tables and produce
them as output. In general, all joins must have a predicate which matches the timestamps
of its sources, and every aggregation query must have a timestamp in its list of group-by
fields.

Page 4

AT&T Research August, 2014

Requiring pipelined query plans has three advantages. First, Tigon SQL can continually
produce output. Second, internal tables (for joins and aggregations) remain small as they
are continually cleaned of obsolete data. Third, queries can be connected together into
complex data processing systems because the output of every stream is another data
stream, suitable as the input to another query.

For an example, suppose we wish to count the number of distinct Sourcelp addresses
observed for every tick of the timestamp. Tigon SQL queries are named; suppose the
example pipelined aggregation query is named SourceCount. We can use the output of
SourceCount as follows

Select TimeStamp, count (*)
From SourceCount
Group By TimeStamp

A Tigon SQL instantiation generally does not run a single query, it runs a collection of
queries, organized into a DAG of communicating processed. The parts of the queries
which access data directly from the interfaces are grouped into a single executable called
RTS (for run time system). This grouping is done so that data from the interface does not
need to be copied, instead each query is invoked on each successive packet. Complex
downstream processing is performed in downstream programs, named hfta [0-9]+. Each
program (the RTS or the hfta) executes a large collection of operators, to avoid
unnecessary data copying.

A Tigon SQL installation can support a significant amount of parallelization. A typical
installation will process from multiple NICs simultaneously; each NIC is represented as
an interface, and there is an RTS for each interface. For example, a Tigon SQL
installation might process data from two Gigabit Ethernet ports bge0 and bgel. Tigon
SQL will contain an RTS for the bge0 interface and the bgel interface, and will combine
the results in downstream processing (the hfta’s).

High volume interfaces (e.g. 10 gigabit Ethernet) might produce such large volumes of
data that we need to parallelize their RTSs. This parallelization is accomplished using
virtual interfaces: records from a NIC are hashed to virtual interfaces before entering
Tigon SQL. If bgeO and bgel both have four virtual interfaces, then the Tigon SQL
installation will have eight RTS processed running, with the results combined properly in
the downstream hfta processing.

Some of the queries in the downstream hfta processing might require significant CPU
processing, and therefore it might be necessary to execute multiple copies of an hfta
process. Records from the input stream are hashed to copies of the hfta, with partial
results getting merged with further downstream processing.

Page 5

AT&T Research August, 2014

The processing graph for a large parallelized Tigon SQL instantiation might become very
large with complex record routing. However Tigon SQL transparently computes the

proper query plan.

1.2.3. Hybrid Processing

In many large stream processing installations, the stream of data arrives as periodic
chunks of records, generally in the form of data files. For example, a logging application
might monitor a web server and collect all URL requests that arrive. These URLs are
collected in the server’s main memory, and then dumped to a file once per minute. Igon
will by default produce a similar sequence of files. These sequences of files form a hybrid
stream of continual bulk arrivals.

When Tigon SQL operates in file processing mode, it uses one or more file sequences as
its data source. New files are pushed into Tigon SQL processing queue. A Tigon SQL
component accesses the files in their order of production, extracts data records, and
pushes them into the conventional Tigon SQL stream processing. Except for the bulk
arrivals, the processing is the same.

Data records can also be delivered to Tigon SQL though a TCP socket. This style of
processing delivers a continual one-at-a-time flow of records to a Tigon SQL query set,
but over an explicit TCP connection.

The manner in which data is delivered to a Tigon SQL query set is described by the
interface definitions for the installation. Tigon SQL will automatically determine how to
load data from an interface based on the interface definition.

1.3.Tigon SQL Operation

The version of the Tigon SQL described in this manual is a data stream management
system that primarly uses hybrid processing. Data can be delivered to Tigon SQL either
through a stream of files, or through a TCP socket connection.

Page 6

User Manual
AT&T Research August, 2014

Page 7

AT&T Research August, 2014

2. Tigon SQL Installation Instructions

The Tigon SQL installation instructions in this document will be sufficient for audiences
familiar with UNIX. Users should note, however, that due to contributions from many
sources since its initial release, the build process of Tigon SQL has grown considerably.

2.1.Unpacking the Source

The sources should arrive as a single tar ball. To unpack it, type the following:

tar -xzf STREAMING.tar.gz

This will generate sub directory tigon.

Alternatively, one can access github.

2.2.Compiling the Source

cd tigon/tigon-sqgl/src/main/c
make clean

make

make install

2.3.Define an Interface

At this point all required sources have been compiled and installed in the right place. The
next step is to define the interface(s) that will be used to connect to data sources. For a
more complete discussion of interfaces, please consult Section 4.

To get started, let us assume that you wish to read a file stream consisting of a sequence
of files named exampleCsv on machine dwarf9.research.att.com. To define this interface
on a machine you first have to add the interface to tigon/tigon-sql/cfg/ifres.xml as an
additional resource. One simple definition would be the following:

<Resources>
<Host Name='localhost'>
<Interface Name='CSV0'>
<Class value='Main’>
<InterfaceType value='CSV'/>
<CSVSeparator value='|"'/>
<Filename value='exampleCsv'/>
<StartUpDelay value='10"'/>
<Verbose value='TRUE'/>
</Interface>
</Host>
</Resources>

Page 8

AT&T Research August, 2014

After defining the interface, map it to a Tigon SQL interface set for localhost. This is
done by placing default: Contains[InterfaceType,GDAT] and

Equals[Host, 'localhost']; in the following file: tigon/tigon-sql/cfg/
localhost.ifq.

The Tigon SQL tarball should contain an ifres.xml file with sample interfaces defined for
localhost, and a localhost.ifq file with a couple of sample definitions. These sample
interfaces include the one illustrated above.

2.4.Define a Schema

A Tigon SQL query needs to be able to parse the records it processes into fields with
names and data types. The file tigon/tigon-sql/cfg/packet schema.txt contains these
record definitions. The Tigon SQL tarball will contain a tigon/tigon-sql/cfg/

packet schema.txt file with some sample record definitions which are used by the
sample queries. For more information on defining a record schema, see Section 5.35.

2.5.Completing the Installation

In directory tigon/tigon-sql/bin, run the following

perl parse cpuinfo.pl > ../cfg/ cpu info.csv

The tigon/tigon-sql/cfg/cpu_info.csv file now contains a map of the processing cores
available on the server. This information is used by the Tigon SQL performance
optimizer.

At this point the installation is complete. For instructions on making the first GSQL query
operable, please reference Section 4.1-Interface Definition and Use for more details.

Page 9

User Manual
AT&T Research August, 2014

Page 10

AT&T Research August, 2014

3. Tigon SQL Quick Start Guide

3.1.Compiling a Query Set

Query sets are collections of GSQL queries stored in files with the .gsql extensions.
These query sets should be stored in subdirectories of tigon/tigon-examples/tigon-sql. For
example, one query set included in the distribution is in tigon/tigon-examples/tigon-sql/
CSVEXAMPLE. It contains two query files (example.gsql and example2.gsqgl) which
contain one query each (see section 11-Example Queries). The first query reads records
defined by the csv ExaMpLE schema from the csv query set, and computes per-second
aggregates. The second query reads the library query csv example/ex2 src and
computes other per-second aggregates. See Section 4.1.8 for more information about
defining and using library queries.

Tigon SQL allows the user to define complex chains of query nodes, perhaps accessing
library queries. For performance optimization, many of these query streams are
inaccessible, being wrapped up into larger operators or perhaps transformed to
accommodate better performance. The file output spec.cfg lists all accessible query
outputs, with descriptions of how the output is generated. In the output spec.cfg file in
tigon/tigon-examples/tigon-sql/CSVEXAMPLE, example and example2 are accessible
while library query csv_example/ex2 src isnot. See Section 6.4 for more information
about the output spec.cfg file.

To build the Tigon SQL binaries implementing these queries, type the following:

cd tigon/tigon-examples/tigon-sgl/CSVEXAMPLE
tigon/tigon-sqgl/bin/buildit.pl

For more information on the ‘buildit’ script, see section 9.l1-Automated Build
Script.

You will notice multiple configurations, .c, .cc and script files being generated in addition
to the Tigon SQL binaries for this query set.

3.2.Starting a Query Set

To start the Tigon SQL implementing the tigon/tigon-examples/tigon-sql/demos /
CSVEXAMPLE query set, use the auto generated ‘runit’ script by typing the following:

cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE

./runit

There will be some debugging output on the screen, and when the prompt returns, all
Tigon SQL processes will be up and running. If an error message is received during this
process, check for the following discrepancies:

Page 11

AT&T Research August, 2014

The interface definition is incorrect.

3.3.Starting a Data Source

The query set needs an input data source. The queries in tigon/tigon-examples/tigon-sql/
csvexaMPLE read from the CSVO interface, which reads data from file examplecsv. A
running Tigon SQL instance will scan for the examplecsv file and if found, will unlink it
and then process each record in sequence. An external data mover process can now
create a new exampleCsv file with new data.

The directory tigon/tigon-examples/tigon-sql/CSVEXAMPLE contains a script gen_feed
which creates a new exampleCsv file once per second. Notice the sequence of actions —
first a new file is created from a template using cp, and then the file is renamed to
exampleCsv using mv. By renaming the file to the target name only when it is complete,
we avoid the problem of Tigon SQL trying to consume a partial file.

The directory tigon/tigon-examples/tigon-sql/CSVEXAMPLE contains a script, runall,
which starts Tigon SQL using runit, and then starts the data feed using gen feed.

3.4.Instantiating a Query

The next step is to instantiate a query within the running Tigon SQL. In our example the
running Tigon SQL instance contains two possible queries we could instantiate (example
and example2). A query can either be instantiated by your own application using our API
(see section 8-Gigascope™ API) or by one of the two tools provided (gsprintconsole or
gsgdatprint). To use the ‘gsprintconsole’ tool, one must determine proper the correct
Tigon SQL instance (several can be running simultaneously). To do this, execute cat
gshub.log:

[dpi@dwarfl4d CSVEXAMPLE]S$ cat gshub.log
127.0.0.1:58398

Use the response as a parameter to gsprintconsole as follows:

|tigon/tigon—sql/bin/gsprintconsole -v 127.0.0.1:58398 default example

Tigon-SQL needs a start signal to ensure that all data is read and synchronized. To start
processing, run the script

tigon/tigon-sgl/bin/ bin/start processing

If you have already started gen feed, or you used runall, you will get an output record
once per second.

The output of the query example can be redirected to data files using the gsgdatprint
application. If you want to save the output of the query example, you must use a tool
such as gsgdatprint because in output spec.cfg, its output is defined to be a stream.

Page 12

AT&T Research August, 2014

The example2 query has an output specification of file in output spec.cfg, SO its
output is automatically saved in a file, in this case in directory output dir as specified in
output spec.cfg. The query example2 still needs to be instantiated by a tool such as
gsprintconsole. There will be no output because output spec.cfg has does not have
any line specifying a stream output for example2 — but one can be added if desired.

3.5.Stopping a Query Set

To stop all processes of a query set which were started using . /runit’, execute the
autogenerated ‘. /stopit’ script by typing the following:

cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
./stopit

The stopit script does not know about the applications which are accessing Tigon SQL
output, nor does it know about any feed-generating processes. It is often convenient to
write a script which stops these applications also, as the killexample script in the tigon/
tigon-examples/tigon-sql/csvexavpLE directory does.

Page 13

User Manual
AT&T Research August, 2014

Page 14

AT&T Research August, 2014

4. Referencing Data

A Tigon SQL query set runs off of one or more streaming data sources. The fundamental
data source in Tigon SQL is a file stream, defined as an Interface. A particular query
might reference data that is output from another query. In particular, a query might
reference the output of a library query. We describe these methods of accessing data in
this section.

4.1.Interface Definition and Use

4.1.1. Introduction

The data sources for any Tigon SQL query set are one or more interfaces. These
correspond to data from the outside world — a stream of data files. As discussed in
Section 1, data from an interface is interpreted through a protocol specification. This still
leaves the question of how one specifies which interfaces are available on a host and
which interfaces a query reads from. Issues related to interface management and
specification are discussed extensively in this section.

4.1.2. Interface Management

In Tigon SQL, a file stream (or other input stream) is represented by an interface. A list
of all known interfaces is assumed to be recorded in the i fres.xml file, normally located
in the tigon/tigon-sql/cfg directory. (See section 2.3, “Define an Interface,” for more
information on this configuration step). As the extension implies, this file is in XML,
with the following schema:

Resources
Host+
Interface+
[Properties]*

For example,

<Resources>
<Host Name='localhost'>

<Interface Name='GDATO'>
<InterfaceType value='GDAT'/>
<Filename value='exampleGdat'/>
<StartUpDbelay value='10"'/>
<Verbose value='TRUE'/>

</Interface>

<Interface Name='CSV0'>
<InterfaceType value='CSV'/>
<Class value=’'Primary’ />
<CSVSeparator value='|"'/>

Page 15

AT&T Research August, 2014

<Filename value='exampleCsv'/>
<StartUpDelay value='10"'/>
<Verbose value='TRUE'/>
<Source value='ExampleData’/>

</Interface>

<Interface Name='CSVOTCP'>
<InterfaceType value='CSVTCP'/>
<CSVSeparator value='|"'/>
<TcpPort value='45678"'/>
<StartUpDelay value='10"'/>
<Verbose value='TRUE'/>

</Interface>

</Host>
</Resources>

For the host server, say dwarfl4.research.att.com, there are one or more interfaces (e.g.,
GDATO0). The GDATO interface is of type GDAT and is sourced from the file
exampleGdat. There is a second interface, CSVO of type CSV and is sourced from file
exampleCsv, and a third CSVOTCP which is of type CSV but is sourced from a TCP
connection at TCP port 45678. Some interface properties are required (as noted below),
while others are optional (e.g., Class). Note the format of the file. The Host and the
Interface take a single parameter Name, while the properties take the single parameter
value. The Host parameter becomes the property host, while the Interface parameter
becomes the property Name.

In some installations it is convenient to define the interfaces of multiple hosts in a single
ifres.xml file. In this case, the Host value property should be the host name. For
example <Host value="dwarfl4.research.att.com’>. Other installations make use of a
single server and do not need the complexity of specific host names. The single-server
case can use host name localhost, as is done in the example above, and in the samples
provided with Tigon SQL. The buildit scripts in tigon/tigon-sql/bin make use of host
name localhost.

The required interface properties are:

InterfaceType : specifies the nature of the format. GDAT means that the data
source is a file stream in GDAT format and CSV means that the source is a file
stream in delimited-ascii format.

Filename : is the name of the file that sources the data for the interface. This may
be a relative or an absolute path name.

Optional interface properties are:

® CSVSeparator : is the delimiter for CSV interfaces. The default value is °,’.

Page 16

AT&T Research August, 2014

StartUpDelay : is a start up delay to ensure that all data consumers have started
before data streaming begins. The default value is 0.

Verbose : if True, triggers informational tracing messages. The default value is
False.

SingleFile : if True, a single file is processed and then the Tigon SQL instance
shits down, flushing all results. The processed file is not deleted.

TcpPort : if a TepPort property exists, the interface reads records from the tcp port
specified as the value. Any FileName property is ignored. The records must be in
CSV format. A TcpPort property overrides the Filename property.

Gshub: If a Gshub property exists, then Tigon SQL will connect to the GShub
process to determine the tcp port over which to receive data. Tigon SQL will use
the value of the Filename property as the name of the interface when
communicating with GShub. Tigon SQL will expect to receive GDAT records
over the socket connection.

Additional interface properties can also be specified, and can be helpful for two reasons

4.1.3.

Interface properties can be used to define interface sets (see below)

Interface properties can be referenced in queries, to help establish the provenance
of arecord. See Section 4.1.7 for more details on referencing interface properties
in GSQL queries.

File Stream Processing

Tigon SQL processes data in a file stream as follows:

1.

5.

Tigon SQL waits until it can find and open the file specified by the Filename
property.

Tigon SQL unlinks the file (removing the directory entry but preserving the now-
anonymous file).

Tigon SQL processed each record in the file.

Tigon SQL closes the file — which deletes the file from the filesystem (assuming
no other process has the file open).

If SingleFile is false, go to step 1 and repeat.

The normal method of feeding a file stream to Tigon SQL is

I.
2.
3.

Collect data in a new file.
Wait for the new file to be closed.

Wait until the file specified by the Filename property has been unlinked.

Page 17

AT&T Research August, 2014

4. mv the new file to the filename specified by the Filename

5. gotostep 1.

4.1.4. TcpPort Processing
Tigon SQL processes data from a TcpPort stream as follows:
1. Tigon SQL opens the tcp port associated with the interface.
2. Tigon SQL receives CSV formatted records from the port and processes them.

An example of TcpPort processing is in tigon/tigon-examples/tigon-sql/
CSVTCPEXAMPLE. Ensure that the interface definition in ifres.xml that the query
example.gsql reads from (CSV0) has the following property:

<TcpPort value='45678"'/>

Build the example, and start the processing using the runalls script. The gendata.pl script
will open tcp port 45678 and feed data to it.

4.1.5. Interface Sets

GSQL queries must specify interfaces and protocols. Per Section Error! Reference
source not found., “Error! Reference source not found.,” there are two ways to specify
the interfaces:

Specify the particular interface from which to read.

* Use an interface set.

Specifying the particular interface from which to read can be explained by the following
example: Suppose that we compile the following query on dwarf9:

SELECT systemTime, uintInPositionl
FROM CSVO.CSV_EXAMPLE
WHERE ullongInPosition2=6

GSQL will direct Tigon SQL to read from the CSVO0 interface for this query. The GSQL
compiler will check the ifres.xml to ensure that the CSVO interface actually exists on the
host machine. Attempting to run this query on host dwarf9 instead of dwarfl4 will
likely result in an error since CSVO0 interface might not be defined on that host.

Using an interface set can be explained by the following example: Suppose that the ex1
interface set consists of all interfaces with a Source property of ‘Examplebata’. Then the
following query reads from these interfaces:

SELECT systemTime, uintInPositionl
FROM [ex1].CSV_EXAMPLE

Page 18

AT&T Research August, 2014

WHERE ullongInPosition2=6

If this query is run on dwarf9, it would read from, e.g., CSVO. If it is run on dwarf14, it
would read from e.g., GDATO. It is possible that an interface set might contain more than
one interface. For example, suppose that the ‘csv’ interface set consists of all interfaces
with an InterfaceType property of CSV. If we run the following query on dwarf9:

SELECT systemTime, uintInPositionl
FROM [csv].CSV_EXAMPLE
WHERE protocol=6

It will read from CSV interfaces — say CSV0 and CSV1. (Tigon SQL will handle the
details of merging the data from the interfaces into a single stream). If this query is run
on dwarf14, it will read only from interface CSVO.

If you read from a protocol but do not specify any interfaces, GSQL assumes that the
query reads from the interface set ‘default’. The following query,

SELECT systemTime, uintInPositionl
FROM CSV_EXAMPLE
WHERE protocol=6

is equivalent to

SELECT systemTime, uintInPositionl
FROM [default].CSV_EXAMPLE
WHERE protocol=6

4.1.6. Defining Interface Sets

The file <host>.ifq contains the specification of the interface sets for that host. If
running in a single-host mode (which is the default), the file is localhost.ifq. For multi-
server configurations, substitute the host name for <host>. For example, the file
dwarf9.research.att.com.ifq contains the interface set specifications for host
dwarf9.research.att.com. These files are normally kept in the tigon/tigon-sql/cfg
directory.

An ifq file contains interface set specifications in the format of the interface set name
followed by a colon, then the defining predicate, with a semicolon separating the
specifications, as in the example below:

[interface set name 1] : [predicate 1] ;
[interface set name n-1] : [predicate n-1] ;
[interface set name n] : [predicate n]

The interface specification uses a simple language for its predicates, consisting of the
Boolean connectives AND, OR, and NOT, parentheses to force evaluation order, and the
following three predicates:

Page 19

AT&T Research August, 2014

Contains[<property>, <value>] :Evaluates true if one of the
values of <property> is <value>, else false.

Equals[<property>, <value>] :true ifthere is only one value of
<property>, and it is <value>, else false.

Exists[<property>] :true if the property is defined, with any value,
otherwise false.

Both the property and the value must be strings (with the single quote ‘delimiter’) or
names (alphanumeric, starting with a letter with no spaces or punctuation). As with other
GSQL files, both ‘-’ and “//* are comment indicators.

Let’s consider an example. Suppose that localhost.ifq contains the following:

default : Equals[Host, 'dwarf9'];

csv : Contains[InterfaceType,CSV] and Equals[Host, 'dwarf9'];
gdat: Contains[InterfaceType,GDAT] and Equals[Host, 'dwarf9'];
other: Contains[InterfaceType,FooBar] and Equals[Host, 'dwarf9'];

The predicate ‘Equals[Host, 'dwarf9']’ for the interface set default is redundant; it is
assumed for all interface sets in the dwarf9.ifq file. The ‘default’ interface set contains
(GDATO0, CSV0), the ‘csv’ interface set contains (CSV0), and the ‘gdat’ interface set
contains (GDATO). The ‘other’ interface set is empty. Using it will result in an error.

4.1.7. Using Interface Properties in Queries

The values of the interface properties can be referenced in a query. This is useful for
determining a packet’s origin and its properties. We can reference an interface property
in a query by preceding it with a ‘@’ symbol. For example,

SELECT systemTime, uintInPositionl, @Name
FROM CSV_EXAMPLE
WHERE ullongInPosition2=6

This query will return the name of the interface (GDATO or CSVO0) that the packet came
from, along with its timestamp and source IP.

Some issues with using interface properties in queries are as follows:

‘Name’ must be used to reference the interface name, and ‘Host’ to reference the
interface host.

The data type of an interface property is always a string.

A reference to an interface property must be bound (implicitly or explicitly) to a
protocol source.

Page 20

AT&T Research August, 2014

For every interface in the interface set, the property must be defined, and defined
only once.

The code generation system replaces interface properties by their corresponding constants
in the low-level (LFTA) queries (which execute on data sent by specific interfaces).

4.1.8. Library Queries

As sample query example2.gsql in tigon/tigon-examples/tigon-sql/CSVEXAMPLE
demonstrates, a Tigon SQL query can use the output of another Tigon SQL query as its
data source. Furthermore, the source query can be a library query. In example2.gsql

DEFINE ({

query name 'example2';
}
select systemTime,uintInPositionl, sum(Cnt)
from csv_example/ex2 src

group by systemTime,uintInPositionl

the data source is csv_example/ex2 src. The GSQL compiler interprets a data source
with a slash character ‘/* as a reference to a library query. Library queries are stored in
the directory tigon/tigon-sql/qlib. The GSQL compiler will search directory tigon/tigon-
sql/qlib/csv_example for a file named ex2 src.gsql, and will try to extract a query named
ex2_src (by default, the first query in a file is named by the file prefix). Library queries
can reference other library queries, but ultimately the data sources must resolve to
interfaces.

Page 21

AT&T Research August, 2014

5. Protocols and Interfaces

One of the basic functions of the Tigon SQL runtime is to intercept data records on
interfaces and present them to LFTAs. In some installations, these data records
correspond to network data packets (e.g. [IPV6 packets), but in other installations they
correspond to formatted data records received from a data feed. The resource
specification and software component that defines these data records is called a profocol
(from Tigon SQL roots in processing network packets). One of the primary services of a
protocol is to provide a collection of functions for interpreting the contents of a packet.
For example, a protocol for IPV4 packets would have a function ‘get ipv4 dest ip’
returning an unsigned integer representing the destination IP address.

GSQL uses a protocol schema to allow named access to the values returned by these
functions. Let’s look at an example:

PROTOCOL base({
uint systemTime get system time
(required, increasing, snap_ len 0);

}

PROTOCOL CSV_EXAMPLE (base) {
uint uintInPositionl get csv _uint posl;
ullong ullongInPosition2 get csv_ullong pos2;
IP ipInPosition3 get csv_ip pos3;
IPV6 ipv6InPositiond4 get csv_ipv6 posé;
string stringInPosition5 get csv string pos5;
bool boolInPosition6 get csv _bool pos6;
int intInPosition7 get csv_int pos7;
llong llongInPosition8 get csv_llong pos8;
float floatInPosition9 get csv_float pos9;

PROTOCOL CSV_TCPEXAMPLE (base) {
uint ivalue get csv_uint posl (increasing);
uint value get csv_uint pos2;

}

PROTOCOL GDAT EXAMPLE (base) {
uint uintOldTime get gdat uint posl;
uint uintInPositionl get gdat uint pos2;
ullong ullongInPosition2 get gdat ullong pos3;
IP ipInPosition3 get gdat ip pos4;
IPV6 ipv6InPositiond4 get gdat ipv6 pos5;
string stringInPosition5 get gdat string pos6;
bool boolInPosition6 get gdat bool pos7;
int intInPosition7 get gdat int pos8;
llong llongInPosition8 get gdat llong pos9;
float floatInPosition9 get gdat float posl0;

Page 22

User Manual
AT&T Research August, 2014

The schema for csv_exampLE has nine explicit fields, uintInPositionl through
floatInPosition9. The field named uintInPosition] has a uint (unsigned 32-bit integer)
data type, and is extracted from a source record using the built-in extraction function
get csv_uint posl.

Network protocols tend to be layered (e.g., an IPV4 packet is delivered via an Ethernet
link). As a convenience, the protocol schemas have a mechanism for field inheritance. In
this schema, CSV_EXAMPLE is layered on top of base, which has a single field
systemTime. In total, CSV_EXAMPLE has ten fields. A protocol schema can inherit
from any number of other protocol schemas, subject to the following two restrictions:

There must be no cycles in the inheritance.

No field name can appear twice in any protocol schema, whether
directly listed or through inheritance.

The systemTime field has several field attributes associated with it, in parentheses
(see Table 5 for a list of recognized attributes).

The following is a list of data types. Some of these data types might not be available at
the LFTA level (due to resource limitations in specialized hardware). The IP type stores
an IPv4 address in an unsigned integer, but its annotation as an IPv4 address allows
access to IPv4 functions and specialized printing routines.

bool Bool BOOL Boolean

ushort Ushort USHORT Unsigned short integer
uint Uint UINT Unsigned integer

IP Unsigned integer

IPV6 IPv6 IPV6

int Int INT Signed integer

ullong Ullong ULLONG Unsigned long long
llong Llong LLONG Signed long long

float Float FLOAT Floating point (double)
string String STRING v _str V_str | String (variable length)
V_STR

Table 4: Data Type Names

Page 23

User Manual
AT&T Research August, 2014

The field attributes give hints to GSQL about the meaning of the field, typically used for
optimizations. @~ The increasing and decreasing attributes tell GSQL about
ordering properties of the stream. This information is critical for the correct operation of
the queries. Fields which are marked increasing or decreasing are called
temporal fields. The following is a list of recognized field attributes:

Required Field is present in every data packet

increasing Increasing INCREASING Field value never decreases

Decreasing Decreasing DECREASING Field value never increases

snap len The parameter of the attribute is the
maximum length of the packet that must
be searched to find the attribute (for
optimizations).

subtype An attribute that can be associated with the
type. The subtype is not used by GSQL,
but it is reported in the output schema.

Table 5: Field Attributes

5.1.Group Unpacking

Tigon SQL operates at extremely high data rates; consequently, the cost of extracting
fields from packets is a serious optimization concern. Our experience in writing
optimized field unpacking code has led us to observe that often it is cheaper to unpack a
group of fields at the same time than it is to unpack each field individually. For example,
to extract a field, (e.g. the sequence number) in a TCP header, the unpacking function
must navigate several layers of network protocols, and only then can the sequence
number be extracted.

If several TCP fields are needed by queries in the query set, then field unpacking is more
efficient if all the TCP fields are extracted at once. If only the sequence number is
needed, then extracting it alone is more efficient.

To support the automatic optimization of field extraction, Tigon SQL supports extraction
functions in packet schema.txt. Each unpacking function has a name, a function that is
called to perform the unpacking, and a cost. An example of an unpacking function
declaration is as follows:

UNPACK FCNS{

Page 24

AT&T Research August, 2014

unpack TCP unpack tcp group 2;
foo unpack foo group 1;
bar unpack bar group 1

}

Here, in the example above, three unpacking functions are declared:

unpack _tcp, with unpacking function unpack tcp group and cost 2

bar, with unpacking function unpack bar group, and cost 1.

foo, with unpacking function unpack foo group, and cost 1.

The fields that a group unpacking function unpacks are indicated by a comma-separated
list of the names of the unpacking functions which unpack a field, in square brackets and
at the end of the field declaration. As a convenience, a PROTOCOL can be marked in the
same manner with the names of the unpacking functions which unpack all fields in the
PROTOCOL. For example,

PROTOCOL TCP (DataProtocol) [unpack TCP]({
uint sequence number get tcp sequence number (snap len 138) [foo];
uint ack number get tcp ack number (snap len 138) [foo, bar];
bool urgent get tcp urgent flag (snap len 138);

The field sequence number can be unpacked by unpack TCP and foo; ack number can
be unpacked by unpack TCP, foo, and bar; and urgent can be unpacked by unpack TCP.

In the Ifta code, the prototype for an unpack function is as follows:

void unpack function (void *)

It is called with a pointer to the packet data. An example of the generated code is as
follows:

unpack tcp group(p);

If a field does not have an unpacking function, the field access function (e.g.,
get_tcp_sequence number for sequence number) must also act as its unpacking function.
If a field does have an unpacking function, the field access function is still used within
the query processing code.

5.2.Built-in Field Access Functions

The purpose of a protocol specification is to define field names and data types in records,
and to specify the function used to extract a particular field from a record. In some
applications (e.g., network monitoring), these functions are highly specialized and need
to be carefully written to extract bit-packed data. However, many data sources provide

Page 25

AT&T Research August, 2014

data in a standard and regular format, so that field access functions can be pre-generated
and provided with the Tigon SQL run time.

Tigon SQL provides a large collection of field access functions to assist with developing
a custom Protocol. The name of one of these access functions is highly structured,
reflecting its action. The format of a built-in field access function name is

get <record format> <data type> pos<field position>

where

* record format is either csv or gdat. A csv record is better described as delimited

ascii; the record is ascii text with a “\n’ record delimiter. Fields are separated by a
field delimiter character, which is by default a comma °,’, but can be overridden
by the csvseparator property in the Interface specification (see Section
4.1.24.1). A gdat record is a binary record encoded using Tigon SQL default
format (both gsgdatprint and a file output specification in output_spec.cfg
produce gdat files).

data_type is one of (uint, ullong, ip, ipv6, string, bool, int, llong, float) and
corresponds to the data types listed in Table 4: Data Type NamesTable 4.

field position is the position of the field in the record, starting with position 1.
Postion 0 is always occupied by systemTime.

For example,
get csv_string pos3
extracts the 3" field of a csv record and interprets the value as a string.

These functions can be found in tigon/tigon-sql/include/lfta/csv_macro.h and tigon/tigon-
sql/include/lfta/gdat_macro.h. For each record format and each data type, there is a field
access function for field positions 1 through 1000. If more access functions are needed,
the scripts gencsvinclude.pl and gengdatinclude.pl generate these functions (actually,
macros).

The gdat access functions access records which are packed using the internal Tigon SQL
record format, which by convention us the .gdat filename extension.

The csv access functions provide limited field parsing functionality. In particular:

* Bool: the string TRUE (all upper case) is interpreted as true, all other values are
interpreted as false.

* Short, Unsigned short : is not supported.
* Uint: read with sscanf using %u

* Int: %d

Page 26

AT&T Research August, 2014

* Ullong : %llu

* Llong: %lld

* Float: %lIf

* Ipv4: %u.%u.%u.%u

* Ipv6 : %x:%x:%x:%x:%x:%0x:%x: Y%x

* String : the text between the delimiters is used as the string value.

An additional built-in field access function is get system time function, which does
not access any data in the record, but instead samples the current unix time by calling
time().

5.3.Writing a Protocol

The example Protocols provided with Tigon SQL and listed in Section 5 are somewhat
artificial. Let’s examine a more realistic one. Suppose that we need to ingest a data feed
in csv format with fields (dest_ip, bytes_transferred, url) with data types (ipv6, ullong,
string) respectively.

PROTOCOL User Downloads (base) {
IPV6 dest ip get csv_ipv6 posl;
ullong bytes transferred get csv _ullong pos2;
string url get csv_string pos3;

}

Inheriting from base gives access to systemTime. The remaining entries are a straight-
forward translation of the record format specification into a Protocol specification.

5.4.Interfaces

If a GSQL query reads data using a protocol, it must read the data from a particular
interface -- that is, from a particular source of data. For a full discussion, please see
Section 4.1-Interface Definition and Use. See also the discussion of the FROM clause in
Section 6.2.2 below.

Page 27

AT&T Research August, 2014

6. GSQL

One of the important features of Tigon SQL is the ability to specify packet monitoring
programs in a high-level, SQL-like language (GSQL). Tigon SQL transforms a GSQL
query into C-language and C++ language modules which are integrated into the Tigon
SQL run time. This manual documents the tools used to generate FTA modules and
supporting code.

This document discusses the GSQL language features. See Section 6-Example Queries
and Section 7.2-Writing your own UDAFS.

6.1.Background

Tigon SQL is a stream query processing system. Data from an external source arrives in
the form of packets at one or more inferfaces that Tigon SQL monitors. These records
are interpreted by a protocol and used as input for the queries which are running on the
interface. Each of these queries creates a stream of records as its output. The stream may
be read by an application, or by another query (which in turn creates its own output
stream).

A query that reads from a protocol is a Low-level query, or LFTA, while a query which
reads only from streams is a high-level query, or HFTA. One reason for distinguishing
between LFTA and HFTA queries is to ensure high performance. All LFTA queries are
compiled into the Tigon SQL run-time system, thus allowing external packets to be
presented to the LFTA queries with minimal overhead. In some cases, the LFTAs might
execute even in part or in whole on the Network Interface Card (NIC). Because the
LFTAs are compiled into the runtime system, the set of available LFTAs cannot be
changed without stopping and re-linking the runtime. HFTAs execute as independent
processes, and can be added on the fly. Another reason for the distinction between
LFTAs and HFTAs is that LFTAs read data from interfaces (see Section 4.1), and
therefore requires some special runtime support.

The distinction between HFTA and LFTA is almost transparent to the user. In some
cases, the GSQL optimizer will break a user’s query into an HFTA component and one or
more LFTA components. In other cases, the user’s query executes entirely as an LFTA.
In either case, the query output is accessed using the query name.

The output of a query is always a stream, which is a sequence of records (sometimes
called tuples) that are delivered to the application. This output is very different than what
a conventional DBMS produces. First, the records are pushed to the application rather
than the application pulling them (e.g., there is no cursor). There are some methods by
which the application can tickle the query system to obtain some records (for use in some
special cases). Second, the size of the output is roughly proportional to the length of time

Page 28

AT&T Research August, 2014

that the stream is monitored, rather than being a fixed size. The records in the stream are
usually in a sorted order on one or more of its fields.

6.2.Query Language

Queries are specified using a SQL-like language. Several different query types are
possible, but they reuse some common language components.

6.2.1. Selection Queries

A selection query filters out a subset of the tuples of its input stream, computes a
transformed version of these tuples, and outputs the transformed tuples in its output
stream (the Filtering and Transformation of an FTA). Consider the following example:

SELECT sourcelIP, destIP
FROM IPV4
WHERE protocol=1l

The data source is a stream derived from an IPV4 protocol. The ‘filter’ predicate is the
condition protocol=1 (i.e., the ICMP protocol). The transformation is to output only
the source and destination IP addresses.

The meaning of a very simple query such as this is pretty clear even to a novice user
(however, more than 150 lines of C code are generated from it). All three of the
components of a selection query can have a more complex structure, however.

6.2.2. FROM Clause:

The FROM clause specifies the data source(s) of the query. In general, its format is as
follows:

FROM tablel [tablevarl], .., tablen [tablevarn]

That is, the argument of the FROM clause is a comma separated list of table names and
the corresponding table variables. The table variable represents the item being queried,
as shown in the FROM clause below:

FROM IPV4 I, PacketSum P

There are two table variables, I and P. Every field reference is to one of these two table
variables (e.g. I.protocol or P.bytecount). It is possible for two different table
variables to be drawn from the same source:

FROM PacketSum P1l, PacketSum P2

This construction allows us to compare tuples in PacketSum to other tuples in
PacketSum.

Page 29

AT&T Research August, 2014

At the risk of some confusion, GSQL allows you to drop references to the table variable
as long as it can deduce which table variable supplies each of the fields referenced in the
query. If table variables are not supplied, GSQL will impute them. For example, the
selection query at the start of this section is translated into the following:

SELECT tO.sourceIP, t0.destIP
FROM IPV4 _tO
WHERE tO.protocol=l

If the table variable of a field reference is ambiguous, GSQL will reject the query with an
error message. If the query references more than one table source, it is best to use
explicit table variables to eliminate possible errors due to unexpected table variable
imputation. While all selection queries use only a single table variable, other query types
such as stream merge and stream join use multiple data sources.

6.2.3. Scalar Expressions

Every reference to a particular value is through a scalar expression. The query at the start
of this section references the following three scalar expressions:

® sourcelP

®* destIP

protocol

All three of these scalar expressions are simple field references. More complex scalar
expressions can be built using the following rules:

1. Literals: A literal is an expression which has a constant value known at
compile time. Examples include 3, 4.0, and FALSE. The data type of the
literal is determined by the form of the literal. A list of literals accepted by
GSQL is shown in Table 6: Literals

2. Defined Literals: A literal can take its value from the DEFINE block (see
section 5.5.2-Options). The value of a defined name can be referenced by a
hash mark (#) in front of the name. For example, if the define block
contains the line foo ‘bar’ ;, then a reference to #foo is equivalent to

‘bar’ in the query. Defined literals always have the string data type. This
feature is useful if you need to reference the same literal several times in a
query.

3. Query parameters: A query parameter is a value which does not depend on
the contents of any data stream, but is supplied at the start of the query and

can be changed as the query executes. A query parameter is indicated by a
dollar sign ($) followed by a symbolic name, e.g. $MinCount. The data

Page 30

AT&T Research August, 2014

type of the query parameter is declared in the PARAM declaration of the
query. We discuss query parameters in greater detail in a later section.

4. Interface properties: An interface property is a literal which takes its value
at the LFTA level from the defined properties of the interface it reads from.
An interface property is indicated by an ‘at’ symbol (@) followed by a
symbolic name, e.g. @Dir. For a more detailed discussion of interface

properties, see Section 4.1-Interface Definition and Use.

5. Field references: A field reference takes its value from a tuple field in a
table variable. All field references must be associated with a table variable.
However, explicit table variable references can be dropped (for convenience
in simple queries) and GSQL will attempt to impute table variables. As is
noted in Section 6.2.2, “FROM Clause:,” it is best to use explicit table
variables if there is any possibility of confusion. The table variable
imputation mechanism allows three ways to specify a field reference:

a) TableVariable.FieldName : The table variable is explicit.
For example, t0.destIP.

b) TableName.FieldName : The table variable is imputed to be the
one bound to a table of the same name. If there is more than one
table variable bound to this table, the imputation fails and the query
is rejected. An example of this kind of field reference is
IPV4.destIP or eth0.IPV4.destIP.

c) FieldName : The table variable is identified as the one bound to the
table which contains a field of the same name. If no such table is
listed in the FROM clause, or if more than one table variable can be
matched, the imputation fails and the query is rejected. An example
of this kind of field reference is destIP.

6. GROUP-BY variable reference: A GROUP-BY variable is a component
of the entity which defines a group. GROUP-BY variables are discussed in
greater detail in the section on GROUP-BY/aggregation queries. We note
here that GSQL tries to impute a field to be a GROUP-BY variable before it
tries to impute a table variable for the field.

7. Unary operators: A unary operator computes a value from the value of a
single sub expression. For example, ~destIP.

8. Binary operators: A binary operator computes a value from the value of
two sub expressions. For example, total length-offset.

9. Functions: A function takes zero or more parameters and returns another
value. The file external fcns.def, which normally resides in the tigon/

Page 31

AT&T Research August, 2014

10.

tigon-sql/cfg directory, defines the set of available functions and their
prototypes. The data types of the function parameters must exactly match
the function prototype; no type escalation is performed. However, functions
can be overloaded. We also note that some of the function parameters must
be expressions involving only literals and query parameters (i.e., no field
references or GROUP-BY variable references). Functions are discussed in
greater length in Section 11 (External Functions). An example of a function
call is: ‘PACK (sourcelIP, source port)’.

Aggregate functions: An aggregate function is syntactically similar to a
regular function, but it is evaluated over a set of input values rather than
over a single value. See section 5.4.10 GROUP-BY/Aggregation for more
discussion.

Every scalar expression (and each of its sub expressions) has a data type. As mentioned
above, the parameters of a function call must match its prototype. Because operators are
really overloaded functions expressed using infix notation, the parameters must match
some prototype of the operator. The rules for type imputation are shown below in Table

6: Literals

Page 32

AT&T Research

User Manual

August, 2014

Unsigned integer ([0-9]1)|([0-9]+UL) 35, 17UL

Unsigned integer HEX' [0-9A-Fa-f]+' HEX'7{ff

(hex)

IP IP_VAL'[0-9]{1-3}.[0-9] IP_VAL'135.207.26.120'
{1-3}.]0-91{1-3}.[0-9]
{1-3}'

IPv6 IPV6_VAL' ([0-9abdcef] IPV6_VAL'0000.2222.4444.6666.
{11-43){73([0-9abdcef] | ggeg 1aaa cece.ceee
{1-4}'

Unsigned long long | [0-9]+ULL 1000000000000ULL

Unsigned long long | LHEX' [0-9A-Fa-f]+ LHEX"7abcdef012'

(hex)

Float (double [0-9]+".”[0-9]* 35.0

precision)

Boolean TRUE|FALSE TRUE FALSE

String "Mn]* 'foobar’

Table 6: Literals

Page 33

AT&T Research

User Manual

August, 2014

! (logical negation)

int, uint, ushort,
ullong

llong, bool

Same as operand.

~ (bitwise negation)

int, uint, ushort,
ullong

llong

same as operand

- (unary minus)

Int, uint, ushort,
ullong, llong, float

Same as operand

ullong, llong, float

+ (plus) Int, uint, ushort, Int, uint, ushort, Same as larger
ullong, llong, float | ullong, llong, float | operand

- (minus) Int, uint, ushort, Int, uint, ushort, Same as larger
ullong, llong, float | llong, float operand.

- (minus) Int, uint, ushort, Ullong Llong

* (multiply)

Int, uint, ushort,
float

Int, uint, ushort,
float

Same as larger
operand.

llong

/ (divide) Int, uint, ushort, Int, uint, ushort, Same as larger
float float operand.

| (bitwise or) Int, uint, ushort, Int, uint, ushort, Same as larger
ullong, llong, IP ullong, llong, IP operator

| (bitwise or) IPV6 IPV6 IPV6

| (bitwise or) bool bool bool

& (bitwise and) Int, uint, ushort, Int, uint, ushort, Same as larger
ullong, llong, IP ullong, llong, IP operator

& (bitwise and) IPV6 IPV6 IPV6

& (bitwise and) bool bool bool

>> (shift right) int, uint, int, ullong, | Int, uint, int Same as larger

operand

Page 34

AT&T Research August, 2014

<< (shift left) int, uint, int, ullong,

llong

Int, uint, int

Same as larger
operand

Table 7: Operator Prototypes

In addition to a conventional data type, each value has a temporal type, which indicates
how the value changes in successive packets in its data stream. Possible values of the
temporal type are constant (never changes), increasing (never decreases), decreasing
(never increases) and varying (no information). Table 8, “Temporal Type Imputation,”
shows the rules for temporal type imputation (rules resulting in varying are not listed).

Page 35

User Manual
AT&T Research August, 2014

+, * Increasing Constant, increasing | increasing
+, * Decreasing Constant, Decreasing
decreasing
+, * Constant Constant, Same as right
increasing, operand
decreasing
- Constant Constant Constant
- Constant, Increasing decreasing
decreasing
- Constant, increasing | Decreasing increasing
/ Constant, Constant, increasing | Decreasing
decreasing
/ Constant, increasing | Constant, Increasing
decreasing
/ Constant Constant Constant

Table 8: Temporal Type Imputation

6.2.4. Selection List

A selection list is a list of (optionally named) scalar expressions following the SELECT
clause. The output of the query is exactly this selection list, in the order listed. Each
entry in the selection list is a field in an output stream, and is named, either implicitly or
explicitly, using the AS clause. For example,

Scalar_expression as name

If the field is not explicitly named, a name is pre-populated for it. For instance, if the
scalar expression is a field reference, then the output field name is the same as the input
field name. Aggregates of field references are formed by aggregate field, e.g.,
SUM len for SUM(len). In other cases, the field name is not so obvious. For example,
the following produces tuples with output fields FieldO and MaskedDestIP:

Page 36

User Manual
AT&T Research August, 2014

Select sourceIP & IP VAL'255.255.255.0', destIP &
IP VAL'255.255.255.0"' AS MaskedDestIP

Page 37

AT&T Research August, 2014

6.2.5. Predicate Expressions

A predicate represents a true or false value used for the purpose of filtering records (not
to be confused with the TRUE and FALSE values of a Boolean type). An atomic
predicate is a source of a true/false value, similar to a field reference in a scalar
expression. The three types of atomic predicates are as follows:

Q Comparison: A comparison predicate has the form scalar expression relop
scalar_expression, where relop is one of {=, <>, <, >, <=, >=}. The two
scalar expressions must have comparable types. Any pair of numeric types
is comparable, while Boolean, string, and timeval can only be compared to
each other. This type of predicate has the obvious meaning. An example is
‘protocol=1".

A IN: An IN predicate is of the form scalar expression IN [literal list].
This predicate evaluates to true if the value of the scalar expression is one of
the values in the literal list. The type of the scalar expression must be the
same as the types of all of the literals. An example is

‘source port IN [80, 8000, 8080]°.

Q Predicate Function: A predicate function has syntax similar to that of a
regular function, except that the parameters are enclosed in square braces
‘[" and its return value is used as a predicate. The prototype of the
predicate function is defined in external fcns.def. An example is
‘http port[source port]’.

Atomic predicates can be combined into predicate expressions using the connectors AND,
OR, and NOT, which have the expected meaning. An example is ‘protocol=4 AND

b

http port[source port]

6.2.6. WHERE clause:

The predicate of the WHERE clause is used to filter the tuples of the input stream. If the
tuple does not satisfy the predicate, it is discarded.

6.2.7. Comments

A comment can appear anywhere in a query, schema definition, or external function
definition. All text following two dash characters "--" or two slash characters "//" is
ignored until the end of line. For example,

// A simple query
SELECT sourceIP, destIP // just source and dest
FROM IPV4

Page 38

AT&T Research

WHERE protocol=6 -- All TCP

6.2.8. Selection Summary:

The syntax of a selection query is as follows:

SELECT list of select expressions
FROM table
[WHERE predicate]

That is, the WHERE clause is optional. Recall the transformed version of the query:

SELECT tO.sourceIP, tO.destIP
FROM eth0.IPV4 t0
WHERE tO.protocol=1

The meaning of the selection query is this:

Monitor the packets from ethO.
Interpret the packets using the IPV4 protocol.

If the value of the protocol field is 1, marshal the sourcelP and destIP fields into a

tuple and put the tuple into the output stream.

6.2.9. Join

A join query is similar to a selection query, except that in a join query there can be more
than one table in the FROM clause. A join query will emit a tuple for every pair of tuples
from its sources which satisfy the predicate. This can be a very large number of tuples,
but normally a correctly written join query will filter out almost all of the pairs. An
example of a join query is as follows:

August, 2014

SELECT R.sourceIP, R.destIP, R.tb, R.length sum,S.length sum
OUTER_JOIN from Inpackets R, Outpackets S

WHERE R.sourceIP = S.destIP and R.destIP = S.sourcelP and
R.tb = S.tb

This query associates aggregate measurements from an in-link and an out-link to create a
combined report.

Notice the keyword OUTER _JOIN in front of the FROM clause. There are two types of
join semantics:

inner join, which generally conducts filtering

outer join, which generally conducts report generation

Page 39

AT&T Research August, 2014

6.2.9.1. INNER_JOIN

An inner join will create a tuple only when it can match a pair of tuples from R and S.
Unmatched tuples are discarded (and hence inner join does filtering). An example query
which uses inner join is the following, which computes the delay between a syn and a
synack:

SELECT S.tb, S.sourcelIP, S.destIP,S.source port, S.dest port
(R.timestamp-S.timestamp)

INNER JOIN from tcp syn ack R, tcp syn S
WHERE S.sourceIP=R.destIP and S.destIP=R.sourcelP and
S.source port=R.dest port and S.dest port=R.source port
AND
S.tb=R.tb and S.timestamp<=R.timestamp

6.2.9.2. OUTER_JOIN

An outer join will create an output tuple for every matched pair from R and S, and in
addition it will create an output tuple for each unmatched tuple from both R and S. The
reporting example above is a typical use of an outer join. If there are Inpackets but no
Outpackets (or vice versa) for a particular sourcelP, destIP pair, there still needs to be a
report about the Inpacket traffic (or Outpacket traffic). The query will generate a
meaningful output tuple in spite of the missing information, but there are some subtleties
to be aware of.

1. The SELECT clause will probably contain scalar expressions that reference both
R and S. When an output tuple is generated for an unmatched input tuple, there
will be missing information. If creating an output tuple for an unmatched R tuple,
use default values for fields from S (and vice versa). Integers become 0, floats
become 0.0, and strings become a empty (").

2. There is an exception to the above rule. If there is a predicate in the WHERE
clause of the form R.fieldr=S.fields, the value R.fieldr is substituted for S.fields
when processing an unmatched tuple from R, and conversely for S. This is the
only condition under which GSQL will infer non-default values for the missing
field values. The motivation is that equality predicates on fields identify the join
key, and you are gathering a report about that key. The source, R or S, is
irrelevant, although you are forced to choose one when writing the SELECT
clause.

6.2.9.3. LEFT_OUTER_JOIN

The LEFT_OUTER_JOIN is like an outer join, except that only the matched pairs and
the unmatched tuples from R will generate an output tuple. Unmatched tuples from S are
discarded.

Page 40

AT&T Research August, 2014

6.2.9.4. RIGHT_OUTER_JOIN

The RIGHT_OUTER_JOIN is like an outer join, except that only the matched pairs and
the unmatched tuples from S will generate an output tuple. Unmatched tuples from R are
discarded.

6.2.9.5. Restrictions on Join Queries
The following are restrictions on join queries in the current implemetation of Tigon SQL:
1. No more that two tables can be in the FROM list (2-way join only)

2. Tigon SQL has to be able to figure out a window on the input streams over
which to evaluate the join. To do this, there must be a predicate in the query
which equates a temporal value (increasing or decreasing) from one table to
a temporal value from the other table. In the example on the previous page,
the predicate is R.tb = S.tb (assuming that R.tb and S.tb are both
increasing). The temporal predicate can involve scalar expressions, so that
R.tb+1=8.tb/60 will also work; however, the following predicates will not
work:

a. Rtb-S.tb=2
b. R.tb <S.tb+1 and R.tb >=S.tb

3. Tigon SQL will deduce the temporalness of fields in the SELECT clause
only under the following conditions:

a. There are predicates R.tb=S.tb, which imply that R.tb and S.tb are
temporal. The temporalness of these fields can be used to impute
the temporalness of a scalar expression in the SELECT clause.

b. There is a predicate (temporal scalar expression in R) = (temporal
scalar expression in S). If a scalar expression in the SELECT clause
exactly matches one of the scalar expressions in the predicate, the
output field is temporal. For example, R.tb+1 = S.time/60 means
that R.tb+1 and S.time/60 are temporal.

4. The current implementation of the join operator uses a hash join : that is, it
puts potentially matching tuples into the same hash bucket, and then applies
any remaining predicates. Tigon SQL looks for predicates of the form
(scalar expression in S) = (scalar expression in R) to define the hash bucket.
In the example, Tigon SQL will use the predicates ‘R.SourcelP =
S.SourcelP’ and ‘R.DestIP = S.DestIP’ to define its hash buckets. The more
selective these predicates are, the more efficient the join will be. Since
scalar expressions are allowed, the predicate
‘UMIN(R.SourcelP,R.destIP)=S.sourcelP&IP VAL'255.255.0.0° will also

Page 41

AT&T Research August, 2014

be used for hashing. However the following predicates will not be used for
hashing:

a. S.length sum > R.length sum
b. S.length sum - R.length sum = 500
c. R.ength sum =155

6.2.10.Filter Join

A filter join is a special type of join that can be evaluated at the LFTA. A common use
scenario is to look for packet in protocol P whose payload contains a particular string. An
efficient way to perform this task is to first look for the start of a protocol P flow. Then
perform regular expression matching on subsequent packets of the same flow. That is,
we are joining a stream (the match stream) which identifies packets that start a protocol P
flow with all packets from the same interface (the result stream), for some period of time.

The syntax of a filter join is the same as that of regular join, with the following four
exceptions:

1. Field references in the Select list must be from the result stream, not the match
stream.

2. There must be at least one hashable join predicate, e.g. of the form (scalar
expression in R) = (scalar expression in S).

3. There must not be any join predicate on temporal scalar expressions.

4. The from clause is written as
FILTER JOIN(temporal_field, duration) From Protocoll R, Protocol2 S
where

a. R is the result stream and S is the match stream. Protocoll and
Prototocol2 may be different.

b. temporal field is an increasing temporal field, and duration is a positive
non-zero integer.

After identifying a packet from the match stream, the filter join will look for joining
packets from the result stream for duration ticks of the temporal field. The
FILTER _JOIN keyword is augmented with the temporal field and duration as a
convenience, replacing the otherwise required expression, which is as follows:

R.temporal field>=S.temporal field and R.temporal field<=S.temporal field+duration

The filter join implementation uses an approximate set membership algorithm to perform
the join. There are two algorithm options:

Bloom filter

Page 42

AT&T Research August, 2014

* (Limited-size) hash table

The Bloom filter algorithm has false positives (it accepts packets from the result stream
that don’t actually have a match in the match stream) but no false negatives. The hash
table algorithm has false negatives (it fails to accept result stream packets that match a
match stream packet). The default algorithm is the Bloom filter, but define algorithm
hash to use the hash algorithm.

By default, the Bloom algorithm uses 10 Bloom filters each covering 1/10 of the
temporal duration. Define num bloom to use a different number of Bloom filters. By
default, each Bloom filter has 4096 bits and uses three probes per hash value. To use a
different size bloom filter, define bloom size to the logz of the desired number of bits.
For example, define bloom size 16 touse 65536 bits per bloom filter. By default the
hash algorithm uses 4096 hash table entries. Define aggregate slots to change the
hash table size. The following is an example of a filter join query:

DEFINE {
algorithm hash;
}

SELECT R.subinterface, R.time, R.timewarp, R.srcIP, R.srcPort,
R.destIP, R.destPort,

R.sequence number, R.ack number
FILTER JOIN(time, 15) from TCP R,TCP S

WHERE R.srcIP = S.srcIP and //key
R.destIP = S.destIP and //key
R.srcPort = S.srcPort and //key
R.destPort = S.destPort and //key
R.protocol = 6 and
S.protocol = 6 and
R.offset = 0 and
S.offset = 0 and
R.data length <> 0 and
S.data length <> 0 and
str match offset[0, "HTTP',S.TCP_data] and

str regex match[R.TCP_data,'. (mov|wav|mp3|mpg|mpeg|wna |
wmv ']

// expensive single relational predicate

6.2.11.GROUP-BY/Aggregation

A GROUP-BY/aggregation query divides its input stream into a set of groups, computes
aggregate functions over all tuples in the group, and then outputs a tuple based on the
group definition and the values of the aggregate function. The syntax of a GROUP-BY/
aggregation function is as follows:

Page 43

AT&T Research August, 2014

SELECT list of scalar expressions
FROM table

[WHERE predicate]

GROUP BY list of groupby variables
[Having predicate]

An example query is as follows:

SELECT sourcelIP, tb, count(*), max (offset)
FROM eth0.IPV4 T

WHERE T.protocol=1l

GROUP BY T.sourcelIP, T.time/60 as tb
HAVING count (*) > 5

6.2.11.1. GROUP-BY Variables

The collection of GROUP-BY variables defines the group. All tuples with the same
values of their GROUP-BY variables are in the same group. The syntax for defining a
group is as follows:

Scalar_expression as name

When a tuple arrives, the scalar expression is computed and its value is assigned to the
GROUP-BY variable name. At the risk of some confusion, GSQL provides a shortcut
expression for defining a GROUP-BY variable. If the value of the input stream field is
the value of the GROUP-BY variable, then the syntax

Fieldname

defines a GROUP-BY variable with the same name as the field name, and whose value is
computed to be the value of the field; therefore, the following three GROUP-BY clauses
are equivalent:

GROUP BY sourcelP
GROUP BY T.sourcelP
GROUP BY T.sourcelP as sourcelP

As previously noted, when GSQL imputes the meaning of a fieldname, it will prefer to
impute the name as referring to a GROUP-BY variable. Therefore use T.sourceIP to
refer to the field value, and sourceIP to refer to the GROUP-BY variable if there is
any possibility of confusion.

6.2.11.2. Extended Group-by Patterns

In some applications, the user wishes to compute aggregations at multiple granularities.
For example, the user might wish to compute, the number of packets flowing from each
source IP address to each destination IP address over a five minute period — and also the
number of packets flowing from each source IP address, and the number of packets

Page 44

AT&T Research August, 2014

flowing to each destination IP address. This task could be accomplished using three
queries, but for convenience, maintainability, and performance optimization, we can use a
single query:

SELECT sourcelP, destIP, count(*)
FROM ethO.IPV4 T
GROUP BY T.time/60 as tb, Cube (sourcelP, destIP)

The CUBE keyword indicates that grouping should be performed using all subsets of the
group-by variables in its argument. For a two-parameter argument, four groups are
affected by each record that is processed: (sourcelP, destIP), (sourcelP,-), (-, destIP), and
(-,-). All output records must have the same schema, so the missing group-by variables
are assigned a default value (see Table 6: Literals). The default value for the IPv4 type is
0.0.0.0, so if a packet arrives with time=6,000,000, sourcelP=1.2.3.4 and destIP=4.3.2.1,
then the count is incremented for the following four groups: (6,000,000, 1.2.3.4, 4.3.2.1),
(6,000,000, 1.2.3.4, 0.0.0.0), (6,000,000, 0.0.0.0, 4.3.2.1), (6,000,000, 0.0.0.0, 0.0.0.0).

GSQL offers three types of extended group-by patterns: Cube, Rollup, and
Grouping_Sets.

Cube: is specified with a CUBE, Cube, or cube keyword, followed by a list of group-by
variables as defined in Section 6.2.11.1. When a record arrives, a collection of groups is
created, one for each element of the set of all subsets of the group-by variables in the
Cube’s argument. If there are n group-by variables in the Cube’s argument, then 2"
patterns of group-by variable assignment are created. Group-by variables not in a
generated pattern receive a default value.

Rollup: is specified with a ROLLUP, Rollup, or rollup keyword. The Rollup keyword
also takes a list of group-by variables as an argument, but creates a hierarchical pattern.
For example, Rollup(sourcelP, destIP) creates the patterns (sourcelP, destIP), (sourcelP,-),
(-,-). If there are n group-by variables in the Rollup’s argument, then n+1/ patterns are
created.

Grouping_Sets: is specified with a GROUPING_SETS, Grouping_Sets, or
grouping_sets keyword. The Grouping_Set keyword takes a list of lists of grouping
variables as its argument. The patterns created are exactly those specified by the list of
lists. For example, Grouping_Sets((sourcelP, destIP), (sourcelP), (destIP)) creates the
patterns (sourcelP, destIP), (sourcelP,-), (-,destIP).

A Group By clause can contain a mixture of Cube, Rollup, and Grouping_Sets keywords
as well as individual grouping variables. The number of patterns that result is the product
of the number of patterns of each entry. For example, the following Group By clause has
16 patterns:

GROUP BY T.time/60 as tb, Cube(substr(customer id,8) as cid,
product id), rollup(state, city, zip)

Page 45

User Manual
AT&T Research August, 2014

A group-by variable can be referenced in only one of the entries of the entries in the
Group-By clause. So for example, the following is illegal because state is referenced
twice in two different components:

GROUP BY T.time/60 as tb, state, rollup(state, city, zip)

6.2.11.3. Aggregate Functions

An aggregate function is one whose value is computed from all tuples in the group. The
syntax of an aggregate function is the same as that of a regular function, except for the
aggregate function ‘count (*)’. Table 9 below contains a list of aggregate functions

in GSQL. In addition, Section 12-User-Defined Aggregate Functions can be referenced,
as discussed below.

Count Number of tuples in | * Int
group.

Sum Sum of values of | Unsigned short, Same as operand
operand unsigned int, signed

int, unsigned long
long, signed long

long, float
Min Minimum of values | Unsigned short, | Same as operand
of operand unsigned int, signed

int, unsigned long
long, signed long
long, string, IP,

IPV6, float
Max Maximum of values | Unsigned short, | Same as operand
of operand unsigned int, signed

int, unsigned long
long, signed long
long, string, IP,
IPV6, float

Page 46

AT&T Research

August, 2014

And Aggr

AND of values of
operand

Unsigned short,
unsigned int, signed

Same as operand

int, unsigned long
long, signed long
long, bool

Or Aggr OR of values of | Unsigned short, | Same as operand
operand unsigned int, signed
int, unsigned long
long, signed long

long, bool

Xor Aggr Exclusive OR of | Unsigned short, | Same as operand
values of operand unsigned int, signed
int, unsigned long
long, signed long

long, bool

Table 9: Built-in Aggregate Functions

6.2.11.4. HAVING clause
The HAVING clause has the syntax below:
HAVING predicate

The HAVING clause defines an optional postfilter to apply after the group and its
aggregates are computed. An output tuple is created only if the group and its aggregates
satisfy the predicate.

6.2.11.5. Restrictions on Scalar Expressions

A GROUP-BY/aggregation query defines a two-stage process. First, gather the
groups and compute the aggregates. Second, apply the postfilter and generate output
tuples. The different components of a GROUP-BY/aggregation query have restrictions
on the entities that can be referenced, depending on which part of the process they affect:

* GROUP-BY variable definition: The scalar expression that defines the
value of a GROUP-BY variable may not reference any aggregate
function or any other GROUP-BY variable.

Aggregate function operands: The operand of an aggregate function
may not reference the value of any other aggregate function.

WHERE clause: No scalar expression in a WHERE clause may
reference the value of any aggregate function.

Page 47

AT&T Research August, 2014

* HAVING clause: No scalar expression in a HAVING clause may
reference any field of the input table (e.g., only GROUP-BY variables,
aggregate function values, literals, query parameters, and interface
properties).

* SELECT clause: No scalar expression in the SELECT clause may

reference any field of the input table — the same as for the HAVING
clause.

6.2.11.6. Temporal Aggregation

In the conventional definition of GROUP-BY/aggregation, no output can be produced
until all of the input has been processed. Because the stream input (in general) does not
end, we have incorporated optimizations into GSQL to unblock the GROUP-BY/
aggregation operator.

If one or more of the GROUP-BY variables can be imputed to be temporal (i.e., either
increasing or decreasing), then the group is closed (no further tuples will be a member of
the group) when an incoming tuple has a different value for one of the temporal GROUP-
BY variables. When the group is closed, its output tuple can be computed and put on the
output stream, and the group’s memory reclaimed.

6.2.11.7. GROUP-BY and Aggregation Summary

Let us recall the example query:

SELECT sourcelIP, tb, count(*), max(offset)
FROM eth0.IPV4 T

WHERE T.protocol=1

GROUP BY T.sourceIP, T.time/60 as tb
HAVING count(*) > 5

This query will interpret data packets from the ethO interface using the IPV4 protocol. If
the protocol field of the packet has the value 1, the query will compute the GROUP-BY
variables sourcelP and tb. If this group does not exist in memory, a new group will be
created. The query will count the number of tuples in this group, and also the maximum
value of the offset field. When the group is closed (a tuple with a larger value of tb
arrives), the query will check if the number of tuples in the group is larger than 5. If so,
the query will marshal a tuple as specified by the SELECT clause, and put it on the
output stream.

6.2.12.Running Aggregation

A limitation of regular aggregation is that it can summarize data from a single time
window only, and that time window is the reporting interval. However, in many cases we

Page 48

AT&T Research August, 2014

would like to report aggregates from data over multiple time windows. Here are two
examples:

1. One might want to compute a moving average of the number of bytes per
connection over the last five time windows.

2. One might want to compute the number of duplicate sequence numbers in a TCP/
IP connection. It is possible to write a user-defined aggregate function to compute
this aggregate, but its state should span the entire time during which the
connection is active.

GSQL provides running aggregates to enable aggregation across multiple time windows.
A running aggregate is a user-defined aggregate which is labeled as RUNNING in the
external fcns.def file (normally located in the tigon/tigon-sql/cfg directory). For
example, the declaration of a moving average function could look like the following:

float UDAF [RUNNING] moving avg(uint, uint HANDLE) ;

(The second parameter is the window size. It is declared to be HANDLE to ensure that it
is a constant in the query.)

A running aggregate is an aggregation query that references a regular aggregate. The
processing is similar to that of a regular aggregation query. In particular, when the time
window changes, the groups that satisfy the HAVING clause are output. A running
aggregation differs from a regular aggregation in the following ways:

1. Groups are not automatically deleted when the time window changes. If a group
does not satisfy the Closing When clause when the time window changes, it is
created in the new time window, with updated values of its temporal GROUP-BY
variables.

2. Groups which satisfy the Closing When clause when the time window
changes are discarded.

3. Ifagroup is carried over to the new time window,
a) Regular (non-running) aggregates are initialized to an empty value.

b) Running aggregates receive a notification that the time window
changed.

The syntax of a running aggregation query is as follows:

SELECT list_of scalar_expressions
FROM table

[WHERE predicate]

GROUP BY list_of groupby variables
[HAVING predicate]

[CLOSING WHEN predicate]

Page 49

AT&T Research August, 2014

For example,

SELECT tb, srcIP, moving avg(len,5)
FROM TCP

WHERE protocol = 6

GROUP BY time/10 as tb, srcIP
HAVING moving avg(len,5)>0

CLOSING WHEN count (*)=0

This query computes the moving average of the lengths over the last 5 time periods of 10
seconds each, closing the group and discarding state whenever the source IP emits no
packets during a 10 second interval. This query will generate a report every 10 seconds;
acting like a continuous query.

6.2.13.Stream Sampling and Aggregation

Stream Sampling Operator is used to implement a wide variety of algorithms that
perform sampling and sampling based aggregation over data streams. The operator
collects and outputs sets of tuples which are representative of the input.
6.2.13.1.Query Definition

Most sampling algorithms follow a common pattern of execution:

1. A number of tuples are collected from the original data stream according to
certain criteria (perhaps with aggregation).

2. If a condition on the sample is triggered (e.g. the sample is too large), a cleaning
phase is initiated and the size of the sample is reduced according to another
criteria.

This sequence can be repeated several times until the border of the time window is
reached and the final sample is outputted.

Following this pattern of execution, a GSQL sampling query has the following format:

SELECT <select expression list>
FROM <stream>
WHERE <predicate>
GROUP BY <group-by variables definition list>
[: SUPERGROUP < group-by variables definition list>]
[HAVING <predicate>]
CLEANING WHEN <predicate>
CLEANING BY <predicate>

A predicate in the “CLEANING WHEN” clause defines the condition for invocation of
the cleaning phase. For example, a cleaning phase might be triggered when the size of the

Page 50

AT&T Research August, 2014

current sample is too big, i.e. exceeds a predefined threshold value for the desired size of
the sample.

A predicate in the “CLEANING BY” clause defines the criteria according to which the
current sample is reduced to the desired size and will be evaluated only when the
predicate from the “CLEANING WHEN?” clause had been evaluated to true.

SELECT: may reference constants, query parameters, group-by variables, aggregate
values and stateful functions.

WHERE: may reference constants, query parameters, tuple attributes and stateful
functions.

CLEANING WHEN: may reference constants, query parameters, group-by variables and
stateful functions.

CLEANING BY: may reference constants, query parameters, group-by variables,
aggregate values and stateful functions.

HAVING: may reference constants, query parameters, group-by variables, aggregate
values and stateful functions.

In order to implement a sampling algorithm using this type of query, user must be
familiar with the definition of stateful functions and supergroups. Next section gives a
light overview of these two concepts. More detailed information is available in the next
segment (Stateful Functions).

6.2.13.2. Supergroups

As was mentioned earlier, a state structure stores various control variables of the
sampling algorithm. Since a user might wish to obtain a sample on a group-wise basis,
the sampling state is associated with supergroups, and samples are associated with the
groups in a supergroup.

The variables in the SUPERGROUP clause must be a subset of group-by variables
defined in the GROUP BY clause, not including temporal variables. By default, the
supergroup is ALL, which in most cases mean that a single supergroup is associated with
a time window specified by a query.

Along with sampling state variables, the supergroup can compute superaggregates
(aggregates of the supergroup rather than the group). We use the dollar sign ($) to denote
that an aggregate is associated with the supergroup rather than the group. Superaggregate
min$ (len) for instance will return a tuple with the smallest length attribute for every
supergroup. One of the most useful superaggregates is count distinct$ (), which
returns the number of distinct groups in a supergroup. This is a built-in superaggregate
that is maintained regardless of whether it was explicitly used in a query.

Page 51

AT&T Research August, 2014

6.2.13.3.3. Query Evaluation Process

The Sampling query is designed to express stream sampling algorithms that follow a
common pattern of execution. First a number of items are collected from the original data
stream according to a certain criteria, and perhaps with aggregation in the case of
duplicates. If a condition on the sample is triggered (e.g., the sample is too large), a
cleaning phase is initiated and the size of the sample is reduced. This sequence can be
repeated several times until the border of the time window is reached and the sample is
outputted.

The semantics of a sampling query are as follows:

When a tuple is received, evaluate the WHERE clause. If the WHERE clause evaluates to
false, discard the tuple.
If the condition of the WHERE clause evaluates to TRUE, do the following:

* Create and initialize a new supergroup and a new superaggregate structure, if
needed; otherwise, update the existing superaggregates (if any).

Create and initialize a new group and a new aggregate structure, if needed;
otherwise, update the existing aggregates (if any).

¢ Evaluate the CLEANING WHEN clause.
* Ifthe CLEANING WHEN predicate is TRUE
o Apply CLEANING_BY clause to every group.
o If the condition of CLEANING BY clause evaluates to FALSE

- Remove group from the group table, and update
superaggregates

When the sampling window is finished, do the following:

Evaluate the HAVING clause on every group.

¢ If the condition in the HAVING clause is satisfied, then the group is sampled;
otherwise, discard the group.

Evaluate SELECT clause on every sampled group. Create an output tuple.

6.2.14.Stream Merge

A stream merge query combines two streams in a way that preserves the temporal
properties of one of the attributes. The syntax of a stream merge query is as follows:

Merge fieldl : field2: ... : fieldn
FROM tablel, table2, ..., tablen

Page 52

AT&T Research August, 2014

For example,

Merge Pl.tb : P2.tb
FROM PacketSuml P1l, PacketSum2 P2

The merge query is restricted in the following ways:

The two input tables must have the same layout, the same number of
fields, and fields in corresponding positions must have the same data
type. The field names, however can be different.

The two merge fields must be temporal and in the same way (with both
either increasing or decreasing). They must be in the same position in
both input tables.

Please note that input streams are merged on fields of the input streams. Computed
values are not accepted. The output stream is temporal in the merge field.

6.3.Query Specification
A GSQL query has the following syntax:

[Parameters definition]
[Options definition]
query_text

A query file has the following format:

queryl;

queryn

As is shown, the format is a list of queries (with optional parameters and options)
separated by semicolons. For example,

SELECT tb, srcIP, count (*)
FROM tcp pkts
GROUP BY tb, srcIP;

DEFINE {
query name tcp pkts;
}
SELECT time/60 as tb, srcIP
FROM TCP
WHERE protocol = 6 and offset = 0

The first query reads from the second query, which is named tep_pkts by the option in
the define block. By default, the name of the first query in a file is the file name up to the

Page 53

AT&T Research August, 2014

.gsql’ suffix. For example, if the file above were named count tcp.gsql then the first
query would be named count_tcp.

Some queries produce externally-accessible output, while others perform internal
processing. The file output spec.cfg specifies which queries produce output, and the
nature of the output. See Section 6.4 for more information about the output spec.cfg file.

The previous section covered the query language. In this section we discuss how to set
the query options and parameters.

Page 54

AT&T Research August, 2014

6.3.1. Parameters

A query can be parameterized, as discussed in Section 6.2.3, “Scalar Expressions.” A
parameter has the format $name, and acts in most respects like a literal. All parameters
used in a query must be defined in the parameter block of the query. The parameter
block has the following format:

PARAM({

Parameter name parameter type;

parameter name parameter type;

}

The parameter name has the following format: [A-Za-z][A-Za-z0-9]*, while the
parameter type is one of the data type names listed in Table 4: Data Type Names. The
parameter value then has the corresponding data type. All parameters for the query must
be supplied when the query is started. In addition, the parameters can be changed while
the query executes.

The Tigon SQL run time library provides a suite of functions that simplify the process of
creating a parameter block for a query. Given a query definition, the following two
library functions parse the query to enable functions which pack parameter blocks:

int ftaschema_parse_string(char *f);

int ftaschema_parse_file(FILE *f);

These functions return a handle, referred to as 'sh' in the following functions:

int ftaschema_parameter len(int sh); // number of parameters

char * ftaschema parameter name(int sh, unsigned int index); // parameter
name

/Il set the parameter, pass in textual representation of the param value
int ftaschema_setparam_by name(int sh, char *param_name,
char *param_val, int len);
int ftaschema_setparam by index(int sh, int index,
char *param_val, int len);
/! Create a parameter block to be passed to the query

int ftaschema_create_param_block(int sh, void ** block, int * size);

Page 55

AT&T Research August, 2014

If one query reads from another, they must have identical sets of parameters. The top

level queries will instantiate the queries they read from and pass along the parameter
block.

6.3.2. Options (DEFINE Block)

A query can accept a set of options, which affect how the query is processed.
These options are defined in the define block, which has the following format:

DEFINE {

Option name option value;

option name option value;

}

The option name has the format [A-Za-z][A-Za-z0-9]*, while the option value has the
same format as a string literal, '[*\n]*'. However the enclosing single quotes around the
option value can be dropped if the value has the same format as a name. The following
are the options currently accepted by GSQL:

* real _time: If the option real time is set to any non-empty string, the

aggregation LFTAs will try to flush their aggregation buffers as soon as
possible. This entails computing the temporal GROUP-BY variables for
each tuple regardless of whether the tuple satisfies the Where predicate.

aggregate slots: The number of slots to allocate in the LFTA aggregation
table. The default value is 4096. This define will be overridden if there is
an entry in the Ifta htsize file, see Section 7.5.2.

query_name: The name of the query (used to access the query output).

slow_flush: The number of input packets processed per output tuple
flushed in LFTA aggregation processing (default 1).

Ifta_aggregation: Generate only the LFTA part of an aggregation query,
and give the LFTA the query name (instead of a mangled name)

select Ifta: If an aggregation query can't be split in a way that creates an
LFTA-safe aggregation subquery, create a selection LFTA instead.

algorithm : if set to hash, use a hash table to process the filter join instead
of the default Bloom filter.

num_bloom : The number of Bloom filters to use when processing a filter
join using Bloom filters (i.e., the number of distinct temporal intervals
covered).

Page 56

AT&T Research August, 2014

Bloom_size : The log> of the number of bits in each Bloom filter used to
process a filter join. E.g., a value of 10 means that each Bloom filter has
1024 bits.

comment: uninterpreted comment text.
title : text interpreted as the title of the query for auto-documentation.

namespace : interpreted as the namespace of the query for auto-
documentation.

print_warnings : If present, causes the merge operator to print out-of-order
warnings.

max_Ifta_disorder : Tigon SQL uses “out-of-order” processing to
eliminate spikes in resource usage when aggregate epochs change (which
triggers a buffer flush). However, out-of-order processing increases the
delay before producing a report for aggregate queries. Set

max_Ifta disorder to 1 to reduce the reporting delay, at the cost of spikes in
rts processing.

The DEFINE block can also define the value of string literals. For example, if foo
‘bar’ ; is in the DEFINE block, then in the query text #foo is string literal with value
‘bar’. See Section 6.2.3.

6.3.3. Query Name

Each query in the system has a name, which the application specifies to access the output
stream. GSQL uses the following procedure to determine the name of a query:

I.
2.

Use the value of query name option, if this value is non-empty.

If this is not the case, use the name of the file containing the query, between
the last ¢/’ character and the first ‘.” character following it.

If the file name can’t be determined or if the name extraction results in an
empty string, use the name default query.

6.4.Defining a Query Set

A typical use of Tigon SQL generally executes multiple queries simultaneously. A
collection of queries can be specified by

= Putting multiple queries in a file, separated with semicolons (see Section 6.3).

- Providing multiple queries as input to the query compiler (see Section 6.5). The
buildit script (see Section 10.1) uses all files ending in .gsql

- Referencing library queries (see Section 4.1.8).

Page 57

AT&T Research August, 2014

Not every query query in the set will produce output — ofttimes a complex query is built
from a collection of simple subqueries. The collection of queries that can produce output
is specified by the output spec.cfg file.

The format of the output spec.cfg file is:
gquery name,operator type,operator param,output directory,bucketwidth,

partitioning fields,n partitions
Where
query_name : is the name of the query.

operator_type : how output is generated. Currently supported types are stream, file,

zfile.

stream means, the hfta will stream its output (if there is not another hfta
consuming its output). Use this option if you want use gsgdatprint to generate files.

file : generate uncompressed files (but see the gzip option)
zfile: generate compressed files, using zlib.

operator_param : parameters for the output operator. Currently the only parameter that
is recognized is gzip, and only by the file output operator. If gzip is specified, the file
is gzipped after creation.

output_directory : where the files are written (operator type file or zfile). The path can
be a relative directory.

bucketwidth : the change in the temporal field required before creating a new file. The
default is 60. Set to 1 to use the natural bucket width.

partitioning_fields : if the file output operator is asked to produce multiple output
streams, use these fields to hash the output among the output streams. Only for
operator_type file and zfile.

n_partitions : number of (file or zfile) output streams to create.

If an hfta that creates output is parallelized (as specified in hfta parallelism.cfg), then
each file output stream is mangled with _ copyX. If the hfta parallelism is larger than
n_partitions, then the hfta is still parallelized as specified, and the number of file streams
is equal to the hfta parallelism. If the hfta parallelism is equal to n_partitions, then each
parallel hfta produces a single output file stream. If n_partitions is larger than the hfta
parallelism, then the parallelism must divide n_partitions. Each hfta copy produces its
share of the file output streams, mangled by fileoutputX.

The specification of which queries can produce output is a critical optimization for Tigon
SQL, as helper subqueries can be combined into processes (minimizing communications
costs) and optimized by query rewriting.

Page 58

AT&T Research August, 2014

While the gsgdatprint tool (Section 10.5) can be used to write streaming data to files,
using a file output operator is significantly more efficient. A query can produce multiple
types of output, e.g. both stream and file output, by specifying both types of output in the
output_spec.cfg file.

If a query has file or zfile output, it must still be instantiated before it can execute. The
gsprintconsole tool (Section 10.4) can be used to instantiate a query. No output will be
sent to the gsprintconsole process (unless the query also has stream output), instead the
query will write its data to files.

6.5.Invoking the GSQL Compiler

Normally, a user will use one of the provided buildit scripts to create the Tigon SQL
executables. However, an advanced user might wish to adjust how translate fta operates.

Usage: translate fta [-B] [-D] [-p] [-L] [-] <library_directory>] [-N] [-H] [-Q] [-M] [-C
<config_directory>] [-Q] [-S] [-h hostname] [-c] [-f] [-R path] [schema file] input file
[input file ...]

[-B] : debug only (don't create output files)

[-D] : distributed mode.

[-p] : partitioned mode.

[-L] : use the live_hosts.txt file to restrict queries to a set of live hosts.
[-C] : use <config directory> for definition files

[-1] : use <library directory> for the query library.

[-N] : output query names in query names.txt

[-H] : create HFTA only (no schema file)

[-Q] : use query name for hfta suffix

[-M] : generate Makefile and runit and stopit scripts.

[-S] : enable LFTA statistics (alters the generated Makefile).
[-f] : Output schema summary to schema summary.txt

[-h] : override host name (used to name the rts).

[-c] : clean out any existing Makefile and hfta *.cc files before doing doce
generation.

[-R] : path to the root STREAMING directory (default is ../..)

The output is an Ifta.c file and some number of hfta *.cc files. The —N option will output
the names of all generated queries in the file query names.txt. The root (output) query is

Page 59

AT&T Research August, 2014

marked by an ‘H’ following the name. Child queries follow the root query and are
marked by an ‘L’ following the name.

See also Section 10.3.

6.5.1. Files Used by translate fta

Translate fta depends on the following definition files. external fcns.def, ifres.xml,
<hsot_name>,ifq, and the packet schema file are all assumed to be in the directory
specified by the —C switch. The other files are assumed to be in the current directory.

external_fens.def : prototypes of predicates, functions, UDAFS, etc.
ifres.xml : descriptions of all interfaces available to Tigon SQL.

<host_name>.ifq : query set predicates over the interfaces available at <host
name>.

output_spec.cfg : defines the collection of queries which generate output.

Optimization hint files as described in Section 7.5.

6.5.2. Files Generated by translate_fta

A successful invocation of translate fta will create the following files

Source code: <hostname> lfta.c and hfta [0-9]+.c. <hostname> is the value
returned by the shell tool hostname. Use —h to override the hostname.

preopt hfta into.txt, postopt hfta info.txt : information about system
configuration before and after distributed optimizations are performed.

qtree.xml : detailed query operator configuration in xml format.

gswatch.pl : a tool for monitoring the processes in the Tigon SQL processing
system.

set_vinterface hash.bat : a command for setting virtual interface settings in DAG
cards.

Makefile, runit, stopit : are generated if translate fta is invoked with the —-M
parameter. Makefile is the makefile used for compiling the system. runit starts all
Tigon SQL processes — it DOES NOT start any subscribing applications. stopit
kills all Tigon SQL processes and any of the common subscribing applications.

Page 60

AT&T Research August, 2014

7. Optimizations

GSQL uses a number of optimizations to improve performance. Here we list the
optimizations to keep in mind when using Tigon SQL.

7.1.Query splitting

GSQL will try to execute as much of the query as possible as an LFTA; however, some
queries cannot execute as LFTAs even if they reference only protocols as data sources.
These queries are split into an HFTA and an LFTA component. The HFTA inherits the
query name, while the LFTA is given a name which is created by prepending ‘ fta ’ to
the query name. For example, if the query name is ‘Foo’, then the HFTA will be named
‘Foo’ while the LFTA will be named ‘ fta Foo’.

A query will be split for a variety of reasons, one example being access to a function
which is not available at the LFTA level. In addition, all aggregation queries are split.
The LFTA will perform partial aggregation, while the HFTA computed the exact result
from the partially summarized output of the LFTA. The LFTA performs partial
aggregation to achieve the data reduction benefits of aggregation, but using limited space.
The number of GROUP-BY slots is set by the aggregate slots option, which has a
default value of 10. The LFTA uses a set-associative hash table, so collisions are possible
even if the number of groups is less than the number of GROUP-BY slots.

7.2.Prefilter

After computing the collection of LFTAs to execute, GSQL finds a prefilter for the query.
If a packet satisfies the WHERE clause of some LFTA, it will satisfy the prefilter. A
packet is presented to the LFTAs only if it satisfies the prefilter. The prefilter provides a
shortcut that allows the Tigon SQL RTS process to avoid invoking a query on a packet
that it will reject.

7.3.Group Unpacking

See Section 5.1.

7.4.Process Pinning

Query processing in a streaming system forms a Directed Acyclic graph of data records
flowing from one process to another. By careful placement of Tigon SQL processes, we
can minimize the costs of data transfers, e.g. by making use of 2" level and 3 level
cache. Processes can be pinned to particular cores using the taskset command. Tigon
SQL provides a self-optimization facility (Section 7.5.3), which will create a file
pinning info.csv with recommendations for process placement. The script tigon/

Page 61

AT&T Research August, 2014

tigon-sql/bin/pin processes.pl will perform the process pinning recommended by
pinning_info.csv. The Tigon SQL instance must be executing when pin_processes.pl is
run.

7.5.0ptimization Hints and Self-Optimization

The translate fta query compiler (Section 6.5) uses several configuration files to set
parameters for performance optimization. In this section we discuss these files, and a
mechanism by which these files can be automatically generated and tuned.

7.5.1. HFTA Parallelism

The query compiler translate fta consults the file hfta parallelism.cfg to determine
the number of copies of an HFTA to create. The format of hfta parallelism.cfg is

Query name, level of parallelism
For example,

example, 2

example2, 1

The level of parallelism must divide the level of parallelism of the hfta’s sources — and
ultimately must divide the number of “virtual interfaces” which scan an interface. The
default level of parallelism is 1. Since virtual interfaces are not yet implemented for file
input, the hfta parallelism must always be 1.

7.5.2. LFTA Aggregation Buffer Sizes

Tigon SQL has a two-level query processing architecture. As described in Section 1,
records from a streaming source are processed by all subscribing queries in the run-time
system. This processing is simple and fast, performing only selection, projection, and
partial aggregation.

In the run-time system, an aggregation query is preprocessed using a small fixed-size
hash table. If the number of groups is larger than the number of hash-table entries, one of
the groups is evicted and sent to an HFTA, where all partial aggregates are summed up in
a hash table that can expand to the size that is needed.

Tuning the LFTA aggregation buffer size is a balance between two costs. To improve
cache locality, the buffer size should be as small, but to minimize the eviction costs, the
buffer should be large.

The default buffere size is 4096 entries. This value can be overridden by the
aggregate_slots define (see Section 6.3.2). Both of these values are overridden by
entries in the file 1fta htsize.cfg, which has the format

Page 62

AT&T Research August, 2014

Ifta_query name,hash_table size

The Ifta query names in the file Ifta_htsize.cfg are (usually) mangled names of query
fragments executing in the run-time system. The names of all Ifta queries are listed in the
file qtree.xml, which is generated by translate fta (see Section 6.5.2). However,
Ifta_htsize is intended to be part of the automatic optimization process.

7.5.3. Self Optimization

Tigon SQL Tigon SQL provides a self-optimization facility which generates files that
help to optimize Tigon SQL performance: 1fta htsize.cfg,

hfta parallelism.cfg, and pinning info.csv. In this section, we document how
to use the self-optimization facility.

Optimization requires statistics, which in the case of a streaming system is available by
running the system on the actual data streams. In general, self-optimization is an iterative
process: run an unoptimized version of Tigon SQL, collect statistics, determine an
improved configuration, and repeat.

1. The translate fta query compiler accepts —S as a flag, indicating that it should
collect statistics (see Section 6.5). The buildit script buildit with-stats (see
Section 10.1) uses the —S flag.

a. By default, statistics are logged to file /var/log/gstrace. The script tigon/
tigon-sql/bin/get last trace.pl will extract the trace of the last run.

2. When running a query set generated with the —S flag, Tigon SQL generates
internal statistics, but not performance statistics. The script tigon/tigon-sql/bin/
monitor gs.pl Will collect performance statistics about the running Tigon SQL
instance, putting them in the file resource log.csv

3. For process placement, the optimizer needs a map of the server’s cores. This
information is normally kept in the file tigon/tigon-sql/cfg/cpu_info.csv. Use
the script tigon/tigon-sql/bin/parse_cpu_info.pl to generate this file, as described
in Section 2.5.

4. The program tigon/tigon-sql/bin/process logs will process qtree.xml
(generated by translate fta, see Section 6.5.2), cpu_info.csv, resource log.csv, and
a selected portion of the gslog (e.g. selected by get last trace.pl) to make a
variety of analyses and performance recommendations.

5. The script tigon/tigon-sql/bin/accept recommendations.bat accepts the
configuration recommendations made by process_logs.

The process logs program produce the following.

Page 63

AT&T Research August, 2014

. Performance report.csv : a report on data traffic, record loss, and resource

utilizations of various components of the Tigon SQL instance. This file is in csv
format and is readily loaded into tools such as Excel.

hfta parallelism.cfg.recommended : a recommended level of parallelization for
query operators executed at the hfta level. The script accept recommendations.pl
will copy this file to hfta parallelism.cfg (see Section 7.5.1).

Ifta_htsize.cfg.recommended : a recommended Ifta hash table size for Ifta query
fragments which perform aggregation. The script accept recommendations.pl
will copy this file to 1fta_htsize.cfg (see Section 7.5.2).

rts_load.trace.txt : a record of previously attempted Ifta hash table size allocations.
This file is used to speed convergence in hash table size allocation.

. pinning_info.csv : a recommended placement of run time systems nad hfta

processes to cores (see Section 7.4)

The recommended procedure for self-tuning is

1.
2.
3.

9.

Compile the query set using buildit with-stats
Start up the query set (runit) and all clients.

tigon/tigon-sql/bin/pin_processes.pl (if a pinning_info.csv file has been
previously produced).

. Run tigon/tigon-sql/bin/monitor _gs.pl
. Let the system run for a while.

4
5
6.
7
8

Stop the system (stopit)

. tigon/tigon-sql/bin/get last trace.pl
. tigon/tigon-sql/bin/process_logs last tracefile.txt

tigon/tigon-sql/bin/accept_recommendations.bat

This procedure will iteratively optimize a Tigon SQL query set. Running the
accept_recommendations.bat script will cause the next run to use the generated
recommendations.

Page 64

AT&T Research August, 2014

8. External Functions and Predicates

GSQL can be extended with externally defined functions and predicates. The prototypes
for these functions and predicates must be registered in the file external_fcns.def,
normally kept in tigon/tigon-sql/cfg. Each entry in this file is one of the following
declarations:

Function: return_type FUN [optional list of modifiers] function name(list
of parameter data types); This declaration indicates that the function
accepts parameters with the specified data types and returns the specified
data type.

* Predicate: PRED [optional list of modifiers] predicate name/ list of
parameter data types |; This declaration indicates that the predicate accepts
parameters with the indicated data types. Predicates evaluate to true or false
in a predicate expression.

® User-defined Aggregate: return_type UDAF[optional list of modifiers]
udaf name storage_type (list of parameter types); This declaration indicates
that “‘udaf name’ is an aggregate function returning the specified data type,
using a block of type ‘storage type’ for its scratchpad space, and taking the
specified list of parameters.

Aggregate Extraction Function: return_type EXTR function_name
aggregate_name extraction_function (list of parameter types); This
declaration indicates that when ‘function name’ is referenced in a query, it
is replaced by the call ‘extraction fcn(aggregate name(...),...)".

State: storage type STATE state _name, This declaration indicates that the
storage block ‘state_name’ has the specified storage type. All stateful
functions which declare this state name as their state share the storage
block.

Stateful Function : return_type SFUN function name state_name (list of
parameter types) ; This declaration indicates that the stateful function
‘function_name’ returns the indicated type, takes the specified list of
parameters, and uses the indicated state as its storage block.

Comment : a comment starts with two dash “—* or two slash ““//”
characters.

The optional list of modifiers of a function or predicate set the properties of that function
or predicate. The modifiers are as follows:

COST : Indicate the cost of evaluating the function or predicate to the
optimizer. Legal values are FREE, LOW, HIGH, EXPENSIVE, and TOP
(in increasing order of cost). The default value is LOW. FREE functions

Page 65

AT&T Research August, 2014

and predicates can be pushed to the prefilter. Tigon SQL uses the function
cost to determine the order in which to evaluate predicate clauses. If the
COST of a function is HIGH or larger, then Tigon SQL will perform
function caching if possible.

* LFTA _LEGAL : the function or predicate is available in an LFTA (by
default, functions and predicates are not available in an LFTA).

®* LFTA ONLY : the function or predicate is available in an LFTA, but not in
an HFTA (by default functions and predicates are available in an HFTA).

PARTIAL : the function does not always return a value. In this case the
function has a special call sequence.

SUBAGGR : indicates that the user-defined aggregate can be split; use the
SUBAGGR in the Ifta.

* SUPERAGGR : indicates that the user-defined aggregate can be split; use
the SUPERAGGR in the hfta.

* HFTA SUBAGGR : Used to support aggregation in distributed mode.
* HFTA SUPERAGGR : to support aggregation in distributed mode.
RUNNING : indicates that the aggregate is a running aggregate.

®* MULT _RETURNS : indicates that the aggregate doesn’t destroy its state
when asked to produce output, and therefore can produce output multiple
times. Aggregates used in Cleaning When and Cleaning By clauses must
have this property.

* LFTA BAILOUT : indicates that the aggregate accepts the
_LFTA AGGR_BAILOUT _ callback.

* COMBINABLE : Indicates that the predicate is combinable at the prefilter
(the predicate value is the same).

* SAMPLING : Used for load shedding.

The list of parameter data types completes the prototype. Function, stateful function,
user-defined aggregate, and predicate names can be overloaded by changing the list of
parameter data types. The properties of a parameter can be modified by following the
data type name with one or more of the following modifiers:

HANDLE : the parameter is a handle parameter (see below).

CONST : the parameter must be a constant expression (a scalar expression
involving unary or binary operators, literals, query parameters, and interface
properties only).

Page 66

AT&T Research August, 2014

® CLASS : the parameter is used for classifying COMBINABLE predicates at the
prefilter. Predicates with identical scalar expressions for their CLASS parameters

can be combined. All other other parameters (i.e., non-CLASS parameters) must
be CONST or HANDLE.

A parameter can be designated a handle parameter by following the data type with the
keyword HANDLE. Handle parameters are not passed directly; instead, they are
registered with the function to obtain a parameter handle. Instead of passing the
parameter value, the generated code will pass the parameter handle. This mechanism is
provided to accommodate functions which require expensive preprocessing of some of
their attributes, e.g. regular expression pre-compilation.

Some examples of function and predicate prototypes are as follows:

bool FUN [LFTA LEGAL] str exists substr(string, string HANDLE) ;

string FUN [PARTIAL] str between substrings(string , string ,
string);

PRED [LFTA LEGAL] is http port[uint];
float EXTR extr avg avg udaf extr avg fcn (uint);
float FUN extr avg fcn (string);

string UDAF[SUBAGGR avg udaf 1lfta, SUPERAGGR avg udaf hfta]
avg_udaf fstringl2 (uint);

string UDAF avg udaf hfta fstringl2 (string);
string UDAF avg udaf 1fta fstringl2 (uint);
fstringl00 STATE smart sampling state;

BOOL SFUN ssample smart sampling state (INT, UINT);

BOOL SFUN ssample smart sampling state (UINT, UINT);

For more information about user defined functions, predicates, and aggregates, see
Section 7-Writing Functions and Aggregates.

8.1.User-defined Operators

Each HFTA is an independent process; therefore, it is possible to write a “user defined
operator” which makes use of the HFTA API (see section 8- Gigascope™ API). A GSQL
query can reference the user-defined operator as long as the interface of the operator is
defined in the schema file. For example,

OPERATOR VIEW simple sum{

OPERATOR (file 'simple sum')

FIELDS{
uint time time (increasing);
uint sum len sum len;

}

SUBQUERIES{
leng (UINT (increasing), UINT)

Page 67

AT&T Research August, 2014

SELECTION_ PUSHDOWN
}

The name of the view is simple_sum (which is the name to use in the FROM clause).
The OPERATOR keyword indicates the nature and location of the operator. Currently,
the only option is ‘file’, and the parameter of this option is the path to the operator’s
executable file. The FIELDS keyword indicates the schema which the operator exports.
The SUBQUERIES keyword indicates the source queries for the operator. In the
example, there must be a query in the query set named lenq whose schema matches that
indicated by the schema in parentheses. An operator can read from more than one
subquery. In this case, separate them by a semicolon (;). SELECTION PUSHDOWN
will be used for optimization, but currently nothing is done. An example of a query which
references simple sum is

SELECT time, sum len
FROM simple sum

Page 68

AT&T Research August, 2014

9. Example Queries

9.1. A Filter Query

This query extracts a set of fields for detailed analysis from all TCP and UDP packets.
The timestamp field has nanosecond granularity, so it can be used for detailed timing
analysis. Note the following:

The query is reading data from the default set of interfaces.

When reading data from a protocol source, such as TCP, the schema only says
how to interpret the data packet. The system does not perform any explicit
tests to verify that the packet is in fact from the TCP protocol. There is an
implicit test, however. All fields referenced in the query must be part of the
packet. Since all the referenced fields are part of both the TCP and UDP
schemas, this query can extract information about both types of packets.
Using DataProtocol would be better, since it contains all the referenced fields.

SELECT time, timestamp, protocol, srcIP, destIP,
source port, dest port, len

FROM TCP

WHERE (protocol=6 or protocol=17) and offset=0

9.1.1. Using User-Defined Functions

This query uses the ‘getlpmid’ function, which does longest prefix matching to extract
data from IPv4 packets about local hosts. The getlpmid function returns with -1 if it is
unable to match the IP address in its prefix table.

DEFINE {

query name 'local';
}
SELECT time as timebucket, srcIP as localip
FROM 12.IPV4
WHERE getlpmid(srcIP,'./localprefix.tbl') > 0

Note the following:

The SELECT clause uses field renaming; the output fields are named
timebucket and localip.

The query reads from a specific interface, named i2.

The second parameter of the ‘getlpmid’ function is the path to a file containing
the local prefixes. This parameter is a handle parameter, meaning that it is
processed when the query starts. The processing creates a data structure,
which is passed to ‘getlpmid’ whenever it is called, making this type of
processing very efficient.

Page 69

AT&T Research August, 2014

9.1.2. Aggregation

This query computes the number of IPv4 packets and bytes seen in five-minute
increments. The results are returned at the end of each increment.

Note the following:

* The query defines aggregate_slots to be 2000. The LFTA portion of the
query will round up 2000 to the nearest power of two, and allocate a 2048 slot
hash table. If there is an entry in the 1fta htsize.cfg file for query src, thus
define will be overridden.

The computed group value time/300 is renamed as tb.

* The query reads from the ‘default’set of interfaces. This is the same
interface set you receive if you don’t specify the interfaces.

DEFINE {
query name 'src';
aggregate slots 2000;
}
SELECT tb*300 as timebucket, srcIP, sum(len) as total bytes, count(¥*)
as packets
FROM [default].IPV4
WHERE ipversion=4
GROUP BY time/300 as tb, srcIP

9.1.3. Aggregation with Computed Groups

This aggregation query produces a per-minute report of web pages referenced at least
twice during that minute. Note the following:

The group variable hostheader is computed using the ‘str_extract regex’
function. This function is partial. If it can’t match the regular expression, it
fails. If it fails, the tuple is discarded and no group is created (as intended).

The WHERE clause contains the predicate ‘str match_start’, which ensures
that the payload of the packet starts with ‘GET’. This function is very fast
because it’s a one-word mask and compare. It is pushed to the LFTA and acts
as a fast and highly selective filter.

The HAVING clause ensures that all of the reported groups have at least two
members. (The web page is referenced at least twice).

SELECT tb*60, min(timestamp), max(timestamp),
destIP, dest port, hostheader, count (*)
FROM TCP
WHERE ipversion=4 and offset=0 and protocol=6 and
str match start[TCP data, ‘GET’]
GROUP BY time/60 as tb, destIP, dest port,
str extract regex(TCP_data, ‘[Hh] [0o] [Ss] [Tt]: [0-9A-Z\\.:1*') as
Hostheader

Page 70

AT&T Research August, 2014

|HAVING count (*) > 1

9.1.4. Join

This query reads from two stream queries, http_request and http _response. It computes
the delay between http request and response by matching request and response pairs that
occur within the same time period, tb (a 10 second time interval). Although this loses
some of the request/response pairs, it captures most of them. The S. tb=R. tb predicate
in the WHERE clause is required to localize the join of the two streams.

SELECT S.tb as tb, getlpmid(S.destIP,'../../mappings/cpid.tbl') as
cpid,
(A.timestamp - S.timestamp) /4294967 as rtt
INNER _JOIN from http request S, http response A
WHERE S.srcIP = A.destIP
AND S.destIP = A.srcIP

AND S.srcPort = A.destPort

AND S.destPort = A.srcPort

AND S.tb = A.tb

AND S.timestamp <= A.timestamp
AND S.to_ack = A.ack number

9.1.5. A Query Set

Complex analyses are often best expressed as combinations of simpler pieces. In the
example below, four queries work together to compute traffic flow by application. These
queries are as follows:

traffic_baseflow

* traffic_portflow
® total
* traffic

All four of the queries listed above can be specified in the same file. By default, the first
query can be subscribed to by applications, while the other queries are purely internal.
This default can be changed by properly setting the visibility ‘define’. Note the
following:

Each query is separated by a semicolon.

The query set uses different protocol mappings depending on the type of
traffic. The results are merged together in the ‘total’ query. The merge is
legal because both source queries have the same field types in the same order.
The ‘total’ query merges its streams on their timebucket field;
consequently, the output of the merge is ordered on timebucket.

DEFINE {
query name 'traffic';

Page 71

User Manual
AT&T Research August, 2014

}
SELECT tb*300 as timebucket, application, locallD, remotelID, direction,

SUM (packets) ,SUM(total bytes)

FROM total
GROUP BY
timebucket/300 as tb,
application,
locallD,
remotelD,
direction
DEFINE{

query name 'total';
}
merge tl.timebucket : t2.timebucket
FROM traffic baseflow tl , traffic portflow t2

’

DEFINE {
query name 'traffic baseflow';
aggregate slots '8192';
}
SELECT time as timebucket, application,locallD,remotelD,direction,
ULLONG (COUNT (*)) as packets,
ULLONG (SUM(len)) as total bytes
FROM IPV4
WHERE ipversion=4 and not (offset=0 and (protocol=6 or protocol=17))
GROUP BY
time,
prot2app (protocol, '../../mappings/protocolclass') as
application,
getlpmid(srcIP,'./remoteprefix.tbl') + INT(1l) as locallD,
getlpmid(destIP,'./remoteprefix.tbl') + INT(l) as remotelD,
INT (1000) as direction

’

DEFINE {
query name 'traffic portflow';

}

SELECT time as timebucket, application, locallD,remotelID,direction,
ULLONG (COUNT (*)) as packets,
ULLONG (SUM(len)) as total bytes
FROM DataProtocol
WHERE ipversion=4 and offset=0 and (protocol=6 or protocol=17)
GROUP BY
time,
port2app (protocol, srcPort, destPort,
'../../mappings/port2class.txt') as application,
getlpmid(srcIP,'./remoteprefix.tbl') + INT(1l) as locallD,
getlpmid (destIP,'./remoteprefix.tbl') + INT(l) as remotelD,
INT (1000) as direction

Page 72

AT&T Research August, 2014

10.Tool References

10.1.Automated Build Script

10.1.1.Synopsis
tigon/tigon-sql/bin/buildit
tigon/tigon-sql/bin/buildit.pl
tigon/tigon-sql/bin/buildit_test.pl
tigon/tigon-sql/bin/buildit_with-stats

10.1.2.Description

The buildit script is a simple shell script which automates the task of building a Tigon
SQL instance from a set of GSQL files. Since the buildit script needs to find the Tigon
SQL tools and libraries the script expects to be executed in a sub directory of the tigon/
tigon-examples/tigon-sql/demos/ directory such as the CSVEXAMPLE directory. From
its executed directory the buildit script will combine all files with an ending of .gsql into
a Tigon SQL instance. The Tigon SQL instance will include binaries for a run time
system, and HFTAs as well as runit and stopit scripts.

The buildit.pl script allows Tigon SQL instances to be compiled in any directory under
the tigon root.

Buildit_with-stats is similar to buildit, with the exception that its executables log statistics
that help with auto-optimization. The logging slows down processing so for regular
processing we advise against enabling the extra logging.

Buildit test.pl is used for the testing suite and should not be used to develop application
instances.

10.1.3.Example
cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
buildit .pl

Page 73

AT&T Research August, 2014

10.2.Auto-generated Start and Stop Scripts

10.2.1. Synopsis
Jrunit

/stopit

10.2.2. Description

The runit and stopit scripts are auto generated when the ‘buildit.pl’ script is executed.
There is one ‘runit’ and one ‘stopit’ script for each Tigon SQL instance executing on a
single Tigon SQL machine. The scripts combine the knowledge of which binaries need to
be started or stopped and in which order to start or stop them. They also know which
physical network interfaces need to be instantiated to support the queries of a particular
Tigon SQL instance on a particular host. This information is deducted by analyzing the
FROM clause in the GSQL statements, the host name of the host and section 4.1-
Interface Definition and Use.

10.2.3. Example

cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
/tigon/tigon-sql/buildit .pl

Jrunit

... Tigon SQL instance starts up ...

/stopit

... Tigon SQL instance shuts down

See Also

buildit, interface definition file

Page 74

AT&T Research August, 2014

11. FTA Compiler

11.1.1. Synopsis

Usage: translate fta [-B] [-D] [-p]
<config_directory>] [-Q] [-S] [-h]
file ...]

-L] [-I <library_directory>] [-N] [-H] [-Q] [-M] [-C
-c] [-f] [-R path] [schema file] input_file [input

—

11.1.2. Description

The command translate_fta launches C and C++ programs. The C and C++ programs
implement the queries given as the input files. These files must be compiled with the
Tigon SQL libraries in order to run properly. The —M option will generate a makefile.

The command line options are as follows:
[-B] : debug only (don't create output files)
[-D] : distributed mode.
[-p] : partitioned mode.
[-L] : use the live hosts.txt file to restrict queries to a set of live hosts.
[-C] : use <config_directory> for definition files
[-1] : use <library directory> for the query library.
[-N] : output query names in query names.txt
[-H] : create HFTA only (no schema file)
[-Q] : use query name for hfta suffix
[-M] : generate Makefile and runit and stopit scripts.
[-S] : enable LFTA statistics (alters the generated Makefile).
[-f] : Output schema summary to schema_summary.txt
[-h] : override host name (used to name the rts).

[-c] : clean out any existing Makefile and hfta *.cc files before doing code
generation.

[-R] : path to the root of tigon
The command line parameters are as follows:

schema_file : describes the Protocols available to be queried.

input_file(s) : queries written in GSQL.

translate fta creates the following files:

Page 75

AT&T Research August, 2014

<host name>_Ifta.c : The source code for the run time system to be
executed at <host name>.

hfta [0-9]+.cc : the source code for the higher-level query nodes.
qtree.xml : a description of the query tree, in XML.

gswatch.pl : a tool for monitoring the processes in the Tigon SQL
processing system.

* Makefile, runit, stopit : if the —M switch is set.
Translate fta depends on the following definition files:

external fcns.def : prototypes of predicates, functions, UDAFS, etc.

ifres.xml : descriptions of all interfaces available to Tigon SQL.

<host_name>.ifq : query set predicates over the interfaces available at <host
name>.

11.1.3. Example

translate fta —C ../../cfg —M packet schema *.gsql
See Also

Automated Build Script, GSQL manual

11.4.Printing Streams to the Console

11.4.1. Synopsis

/tigon/tigon-sql/bin/gsprintconsole [-t tcp_port] [-r bufsize] [-v] [-X] [-D] query name
param ... param

11.4.2. Description

The command ‘gsprintconsole’ will instantiate a query within an already running Tigon
SQL instance on the local machine. The tuples produced by the query instance are printed
to STDOUT as delimited records.

If the -v argument is given the first output line contains the field names. The line starts
with‘#’. This argument is optional. If —v is specified twice (-v —v) additional diagnostics
are printed.

The —X argument causes a timestamp to be printed for each output record.

Page 76

AT&T Research August, 2014

The -r argument allows the user to specify the size of the ringbuffer used between the
gsprintconsole process and the hfta or rts process which produces the tuples displayed by
‘gsprintconsole’. This argument is optional.

The —t argument directs the output to the indicated tcp port instead of to standard output.

After the optional command line arguments the user needs to specify the query name
which should be instantiated as well as all parameters required by the query. Parameters
are specified as parametername=value.

11.4.3. Example

cd tigon/tigon-examples/tigon-sql/CSVEXAMPLE
tigon/tigon-sql/bin/buildit.pl

Jrunit

... Tigon SQL instance starts up...
tigon/tigon-sql/bin/gsprintconsole -v ping

... ping the main Tigon SQL interface of the machine used...observe the results of the ping
query on STDOUT/STOPIT

See Also
gsgdatprint

11.4.4. Known Bugs

The directory gsprintconsole does not correctly support string parameters which contain
non-printable characters.

11.5.Saving streams to files

11.5.1. Synopsis

tigon/tigon-sql/bin/gsgdatprint [-r <int>] [-v] -f -s [-z] -¢ <int> -q <int> -b <field> -t
<int> -e <string> <query name> <parameters>

Description

The command gsprintconsole will instantiate a query within an already running Tigon
SQL instance on the local machine. The tuples produced by the query instance are stored
in files in gdat format. (The gdat format is an efficient binary format for Tigon SQL
Tigon SQL streams). The gdat format can be subsequently processed by such tools as
‘gdatcat’, ‘gdat2ascii’ and ‘gdat2ethpcap’.

Page 77

AT&T Research August, 2014

The gsgdatprint command has the following optional arguments:

-v makes the STDOUT and stderr output verbose. Has no impact on the stream
data in the files.

-r allows the user to specify the size of the ringbuffer used between the
‘gsgdatprint’ process and the hfta or rts process which produces the streams
consumed by gsgdatprint.

-z compress the files generated by ‘gsgdatprint’ (using gzip)

-f flush each record individually.

-s use in streaming mode (not compatible with —v, -z, -b, -t, or —e).
-¢ terminate after the indicated number of records are written.

-q terminate after the indicated number of seconds.

The remaining arguments (-b, -t, -e) are monitory and are used as follows:

In order to generate output files from the data stream, ‘gsgdatprint’ monitors the
values of the field specified by the —b option in the data stream.

It is assumed that the values of that field are increasing monotonically.
The field type needs to be one of int, uint, llong, ullong.

Whenever the value of the field specified by -b has increased by the value
specified in the -t option, a new output file is generated.

The output files are named using the following naming convention:

Each file name starts out with an integer followed by the file extension specified
with the -e argument.

If files are being compressed with the -z option, ‘gsgdatprint’ does NOT add
the .gz extension automatically. This extension should be part of the extension
specifie with -e.

The integer is computed based on the values of the field specified by the -b
option. The first value of this field seen by gsgdatprint determines the integer part
of the first file name.

Subsequent integer parts of the file name are computed by adding this value to a
multiple of the increment specified by the -t option.

Tuples within the data stream are stored in the file with the largest integer
component in its name. That integer is smaller or equal to the value of the field in
that tuple.

Note: Files are generated only if they are not empty. If the field value progresses more
than a single increment per step between two tuples in the data stream, some files may be
missing. Missing files do NOT indicate that the Tigon SQL is not functioning properly.

Page 78

AT&T Research

August, 2014

11.5.2. Example

cd tigon/tigon-examples/tigon-sql/demos/ping
tigon/tigon-sql/bin/buildit

Jrunit

... Tigon SQL instance starts up ...
tigon/tigon-sql/bin/gsgdatprint -b time -t 10 -e ping.gdat ping

... ping the main Tigon SQL interface of the machine used ...

... observe the results of the ping query in files ending in ping.gdat...

... one such file will be generated if time progresses 10 seconds ...
... if there are tuples available ...

/stopit

See Also

gdatcat, gdat2ascii, gdat2ethpcap, and gsprintconsole.

11.5.3. Known Bugs

In addition to the arguments described here, ‘gsgdatprint’ supports a series of
experimental arguments. Execute tigon/tigon-sql/bin/gsgdatprint to see the current list

of supported experimental and production arguments.

Page 79

AT&T Research August, 2014

11.6.Concatenating Saved Stream Files

11.6.1. Synopsis
tigon/tigon-sql/bin/gdatcat File ... File

11.6.2. Description

The executable ‘gdatcat’ needs to be used to concatenate gdat files generated by
gsgdatprint. This executable can only concatenate gdat files which contain data with
identical schemas (files produced by one query). Executable ‘gdatcat’ verifies that the
aforementioned is true, and stops with an error message if one of the files specified has a
different schema. The command ‘gdatcat’ can concatenate a mix of compressed or
uncompressed gdat files; however, the concatenated output is always returned to
STDOUT without compression.

11.6.3. Example

tigon/tigon-sql/bin/gdatcat 1109173485ping.gdat 1109173495 .ping.gat > ping.gdat
See Also

gdat2ascii (section), gdat2ethpcap (section 9.8), and gsgdatprint (section).

11.6.4. Known Bugs

There are no known bugs at this time.

11.7.Converting Saved Stream Files to ASCII

11.7.1. Synopsis
tigon/tigon-sql/bin/gdat2ascii -v File

11.7.2. Description

The executable ‘gdat2ascii’ converts a binary gdat file produced by ‘gsgdatprint’ into a
separated ASCII representation identical to the one produced by ‘gsprintconsole’. Only a
single uncompressed file name can be specified. If compressed or multiple files need to
be converted, ‘gdat2ascii’ should be used in a UNIX pipe in conjunction with ‘gdatcat’.
In this case the File name should be set to *-°.

Page 80

AT&T Research August, 2014

If the -v argument is given, the first output line contains the field names. The line starts
with a hash mark (#). This argument is optional.

11.7.3. Example
tigon/tigon-sql/bin/gdat2ascii -v 1109173485ping.gdat

tigon/tigon-sql/bin/gdatcat 1109173485ping.gdat 1109173495.ping.gat | tigon/tigon-sql/
bin/gdat2ascii -v -

See Also

gdatcat, gdat2ethpcap, gsgdatprint, gsprintconsole

11.7.4. Known Bugs

There are no known bugs at this time.

Page 81

User Manual
AT&T Research August, 2014

Page 82

AT&T Research August, 2014

12. External Functions and Predicates

12.1.Conversion Functions

str_exists_substr [string, string] : returns true if the second string is contained within the
first.

str_compare [string,string] : returns true if both strings are equal

str_match_offset [uint,string,string] : returns true if the string passed as the second
argument matches a substring of the third argument at the offset passed as first argument;
otherwise it returns false.

byte _match_offset [uint,uint,string]: matches a byte (passed as second argument) at the
offset (passed as first argument) in the string (passed as third argument). True is returned
if a match is found; otherwise false is returned.

byte match reverse offset [uint,uint,string] : same as byte match_offset except that the
offset is calculated from the end of the string backwards.

net word match_offset [uint,uint,string] : identical to byte_match offset except that
second argument contains a word size number which is matched in network byte order

little_endian_word match_offset [uint,uint,string] : identical to net word match offset
except that the network data is first transfered to little endian order before the match is
performed

str_regex_match [string, string HANDLE] : returns true if the string passed as first
argument matches the regular expression passed as the second argument.

str_partial regex match(string, string HANDLE, uint) : similar to str_regex_match, but
match only up the the number of characters specified by the 3 parameter.

str_extract regex (string, string HANDLE): similar to str_regex match except that the
first matched string is returned. If no match is found, the function fails.

str_extract regex null: Similar to str_extract regex, but return an empty string if no
substring found.

str_file regex match(string, string HANDLE, uint, uint): Similar to str_regex match, but
the regular expression is loaded from the file whose path is the second argument. The
regex is reloaded every timeout seconds, where timeout is the 3 argument.

Page 83

AT&T Research August, 2014

12.2.Conversion Functions

get_int(string s, uint n): extract the 4 bytes which are at positions n-1 through n+3 in
string 3, interpret then as an unsigned integer, and return the result.

get _bool(string s, uint n): extract the 4 bytes which are at positions n-1 through n+3 in
string 3, interpret then as a boolean, and return the result.

get suffix(string s, uint n): Extract the suffix of string s starting at byte position n-1.
LLMIN(ullong, ullong): return the minimum of the two arguments.

LLMAX(ullong, ullong): return the maximum of the two arguments.

UMIN(uint, uint): return the minimum of the two arguments.

UMAX(uint, uint): return the maximum of the two arguments.

UMIN(ip, ip): return the minimum of the two arguments.

UMAX(ip, ip): return the maximum of the two arguments.

EQ(uint, uint): return true if the arguments are equal.

GEQ(uint, uint): return true if the first argument is greater than or equal to the second.
LEQ(uint, uint): return true if the first argument is less than or equal to the second.
IF(bool, uint, uint): if the first argument is true, return the second, else the third argument.

non_temporal(int), non_temporal(uint), non temporal(llong), non_temporal(ullong): cast
away any temporal properties of the argument.

INT(uint), INT(ullong), INT(llong): cast the argument as an int.
UINT(int), UINT(ullong), UINT(llong), UINT(ip): cast the argument as an uint.
STRID(string): interpret the first 4 bytes as a uint.

FLOAT (uint), FLOAT (int), FLOAT (ullong), FLOAT (llong): cast the argument as a
float.

ULLONG(uint), ULLONG (int): cast the argument as a ullong
strtoi(string): interpret the argument as a uint.

strtoip(string): interpret the argument as an ip.

strtoi_c(string): interpret the constant argument as a uint.

strtoip_c(string): interpret the constant argument as an ip.

Page 84

AT&T Research August, 2014

12.3.Prefix Functions

getlpmid(ip, string): load a file of ipv4 prefixes and identifiers using the filename
specified buy the first parameter, match the ip in the first parameter, and return the
corresponding id.

getvolpmid(ipv6, string): similar to getlpmid but use ipv6 addresses.

Page 85

AT&T Research August, 2014

12. User-Defined Aggregate Functions

12.1.Moving Sum Functions

moving_sum_exp(uint, uint, float) : computing the sum of the first parameter
exponentially decaying over the number of windows specified by the second parameter;
the third parameter is the rate of decay.

12.2.String Matching and Extraction

12.2.1. Synopsis
PRED [LFTA LEGAL]str exists substr[string, string];

PRED [LFTA LEGAL]str compare[string,string];

PRED [LFTA LEGAL]str match offset (uint,string,string);
PRED [LFTA LEGAL]byte match offset (uint,uint,string);
PRED [LFTA LEGAL]byte match reverse offset (uint,uint,string);

PRED

[]
[]
[]
[]
PRED [LFTA LEGAL]net word match offset (uint,uint,string);
[LFTA LEGAL]little endian word match offset (uint,uint,string);
[]
[]

PRED [LFTA LEGAL] str regex match(string, string HANDLE);
PRED [LFTA LEGAL] str partial regex match(string, string HANDLE,
uint) ;

string FUN [PARTIAL]str extract regex(string, string HANDLE) ;
string FUN [LFTA LEGAL]str truncate (string, uint);

12.2.2. Description

This is a collection of functions and predicates that can be used to analyze fields of the
type string (such as the payload of a TCP segment). All predicates defined above are also
available as functions of type uint FUN, which return 1 instead of true, and 0 instead of
false. The different functions and predicates perform the following:

str_exists_substr[string, string] : returns true if the second string is contained
within the first.

str_compare[string,string] : returns true if both strings are equal

str_regex_match[string, string HANDLE] : returns true if the string passed as
first argument matches the regular expression passed as the second argument.

str_match offset [uint,string,string] : returns true if the string passed as the second
argument matches a substring of the third argument at the offset passed as first
argument; otherwise it returns false.

Page 86

AT&T Research August, 2014

byte _match_offset [uint,uint,string]: matches a byte (passed as second argument)
at the offset (passed as first argument) in the string (passed as third
argument).True is returned if a match is found; otherwise false is returned.

byte match reverse offset [uint,uint,string] : same as byte match offset except
that the offset is calculated from the end of the string backwards.

net word match_offset [uint,uint,string] : identical to byte_match offset except
that second argument contains a word size number which is matched in network
byte order.

little endian_word match_offset[uint,uint,string] : identical to
net word match offset except that the network data is first transfered to little
endian order before the match is performed.

str_extract regex(string, string HANDLE): similar to str_regex match except that
the first matched string is returned

str_truncate (string, uint): returns the first n bytes of the string given as first
argument. The n is the minimum of the second argument and the string length of
the first argument.

12.2.3.Example

The following example matches TCP payloads to check if some common P2P signatures
are present: select time, srcIP, destIP,

srcPort, destPort,

// Here we calculate the bit vectore. This is conceptually the
// same statement as in the WHERE clause, except that we

// calculate a bit vectore not a predicate

// kazaa

(((str_match offset (0, 'GET',TCP_data)

| str match offset (0, "HTTP', TCP_data))

& str regex match(TCP data, ' [xX]-[Kk][Aa][Zz][Aa][Aa]"))*32)
//gnutella

| str match offset (0, 'GNUTELLA', TCP data) *64

// next statement used for Gnutella signal

| ((byte match offset (16,HEX'00',TCP data)

| byte match offset (16,HEX'01',TCP data)

| byte match offset (16,HEX'40',TCP data)

| byte match offset (16,HEX'80',TCP data)

| byte match offset (16,HEX'81',TCP data))

&net_word _match_offset(19,data length-23,TCP_data))*2

// next statement have to be both matched for directconnect
| (byte match offset(0,36,TCP_data)

& byte match reverse offset(1l,124,TCP data)

Page 87

User Manual
AT&T Research August, 2014

& str regex match(TCP_data, '”[S$] (types|MyNick|Lock|Key|Direction]
GetListLen|ListLen|MaxedOut |Error|Send|Get|FileLength|Canceled|HubName |
ValidateNick|ValidateDenide|GetPass|MyPass|BadPass|Version|Hello]
LogedIn |MyINFO|GetINFO|GetNickList |NickList|OpList|To|ConnectToMe |
MultiConnectToMe |RevConnectToMe | Search|MultiSearch|SR|Kick|OpForceMove |
ForceMove |Quit) ")) *4

// next statements for bittorent have to be both matched
| (byte match offset(0,19,TCP_data)

& str match offset(l, 'BitTorrent protocol',TCP data))*8
// next statement for edonkey

| (byte match offset(0,HEX'e3',TCP data)

& little endian word match offset (1,

data_ length-5,TCP data))*16 as app class

//, TCP data

FROM TCP

WHERE (ipversion=4 and protocol=6 and offset=0)

and ((getlpmid(destIP,'./mesaprefix.tbl') = 18) or
(getlpmid(srcIP, './mesaprefix.tbl') =18))

and

// next two statements are used for Kazaa

(((str match offset (0, 'GET',TCP data)=1

or str match offset (0, 'HTTP',TCP data)=1)

and (str_ regex match(TCP_data, ' [xX]-[Kk][Aa][Zz] [Aa][Aa]')=1))
// gnutella
or

str match offset (0, 'GNUTELLA',TCP data)=1

// next statement used for Gnutella signal

or ((byte match offset(16,HEX'00',TCP data)=1

or byte match offset(16,HEX'01',TCP data)=1

or byte match offset(16,HEX'40',TCP data)=1

or byte match offset(16,HEX'80',TCP data)=1

or byte match offset(16,HEX'81',TCP data)=1)

and net word match offset (19,data length-23,TCP data)=1)

// next statement have to be both matched for directconnect

or (byte match offset(0,36,TCP _data) =1

and byte match reverse offset(1l,124,TCP data)=1

and str regex match(TCP_data, '~ [$] (types|MyNick|Lock|Key|Direction]
GetListLen|ListLen|MaxedOut|Error|Send|Get|FileLength|Canceled|HubName |
ValidateNick|ValidateDenide|GetPass|MyPass|BadPass|Version|Hello]
LogedIn|MyINFO|GetINFO|GetNickList |NickList |OpList|To|ConnectToMe |
MultiConnectToMe |RevConnectToMe | Search|MultiSearch|SR|Kick]|OpForceMove |
ForceMove |Quit) ')=1)

// next statements for bittorent have to be both matched

or (byte match offset(0,19,TCP data) =1

and str match offset(l, 'BitTorrent protocol',TCP data)=1)

// next statement for edonkey

or (byte match offset (0,HEX'e3',TCP data)=1 and

little endian word match offset(1,

data_ length-5,TCP data)=1))

Page 88

AT&T Research August, 2014

12.2.4.Known Bugs

Our fastest regex matching algorithms are not available in the AT&T external release. In
fact we replaced them with libc regex functions for the release.

12.3.Longest Prefix Match

12.3.1.Synopsis

int FUN [LFTA LEGAL] getlpmid(IP,string HANDLE) ;

12.3.2.Description

This function is used to perform longest prefix matches against an IP address. The prefix
table has the following format: 0.0.0.0/0/0

1.2.3.4/2915

2.3.4.5/2916

5.6.7.8/2716

9.10.10.11/29|7

11.11.11.11/2717

The table needs to be stored in a file on the local filesystem of Tigon SQL. The filename
is passed as the string parameter in either function. Currently, the function only evaluates
the file if a query is instantiated; therefore, changes to the prefix table file are not
reflected in already running queries.

Given an [P address in the first argument the function will return the id of the longest
matching prefix. The id is stored after the pipe ‘|’ in the prefix table and must be a uint.

12.3.3.Example

The following query collects IP and TCP header fields of all traffic which either
originates or targets an IP address (in prefixes with a prefix id of 1) in the fitler.tbl prefix
table file.

Page 89

AT&T Research August, 2014

SELECT
time, timestamp, ttl,id, srcIP,destIP, srcPort,destPort, sequence number, ack
_number, flags, len,data length

FROM TCP
WHERE protocol=6 and
(getlpmid(srcIP,'./filter.tbl")=1

or getlpmid(destIP,'./filter.tbl')=1)

12.3.4.Known Bugs

After a query has been instantiated, the changes to the prefix table are not reflected in the
running query.

Page 90

AT&T Research August, 2014

12.4.Static Subset-Sum Sampling:

12.4.1.Synopsis

Subset-Sum sampling algorithm estimates the sum of object sizes which share a common
set of properties. This section describes a basic version of the algorithm, where the
threshold of the tuple size is set by the user and doesn’t change throughout execution of
the program. The result of the algorithm is a sample of arbitrary size.

12.4.2.Description
S — Sample
R — Stream of objects to sample from
t — An object
t.x - The value of the size attribute of an object
z — Initialized by the user, doesn’t change during execution

The subset-sum algorithm collects a sample (S) of tuples from ‘R’ in such a way that
accurately estimates sums from the sample. In the static version of the algorithm, the
user sets the threshold (z), which determines the sample size. Each tuple (t) is
sampled with probability: p(x) = min{1,t.x/z}. The following is an implementation of
the static subset-sum sampling algorithm:

bool static sample(data t, int z) {

static int count = 0;
if (t.x > z) {
//sampled

return true;
}
else{
count += t.x;
if (count > z){
count -= z;
//sampled
return true;
}
}
// not sampled
return false;

Page 91

AT&T Research August, 2014

To estimate the sum, the measure ‘t.x’ of the sampled small tuple (less than the value
of the threshold °z’) is adjusted to: z: t.x = max {t.x,z}.

This static version of the algorithm can be expressed as a stateful function which can
access a state structure with relevant control variables.

12.4.3.Example

The following query makes use of a stateful function which implements the sampling
procedure of the static version of the algorithm:

SELECT time, srcIP, destIP, len
FROM TCP
WHERE nssample(len,100)= TRUE

The stateful function ‘nssample (len, 100)’ accepts the value of the attribute to
sample on (length of the tuple in this case) as well as the value of the threshold ‘z’.
This query is evaluated as follows:

e for each incoming tuple, evaluate the WHERE clause. If the function
‘nssample (len, 100) ’returns true, the tuple is sampled and outputted.
Otherwise start processing the next tuple.

* on every sampled tuple evaluate the SELECT clause and output listed
attributes of the tuple.

See also stateful functions, Supergroups, Dynamic Subset-Sum Sampling, and Flow
sampling query.

12.4.4.Known Bugs

There are no known bugs at this time.

Page 92

AT&T Research

August, 2014

13.MIN, MAX

13.1.1.Synopsis

ullong FUN [LFTA LEGAL] LLMIN (ullong,ullong);
ullong FUN [LFTA LEGAL] LLMAX (ullong,ullong);
uint FUN [LFTA LEGAL] UMIN (uint,uint);

uint FUN [LFTA LEGAL] UMAX (uint,uint);

IP FUN [LFTA LEGAL] UMIN (IP,IP);

IP FUN [LFTA LEGAL] UMAX (IP,IP);

FLOAT FUN [LFTA LEGAL] UMAX (uint, FLOAT) ;
FLOAT FUN [LFTA LEGAL] UMAX (FLOAT,FLOAT);
FLOAT FUN [LFTA LEGAL] UMAX (FLOAT,uint);

13.1.2.Description

The various MIN and MAX functions compute the pairwise MIN and MAX.

13.1.3.Known Bugs
There is no definition of MIN and MAX for all type combination.

13.6.Typecast

13.6.1.Synopsis

int FUN [LFTA LEGAL]INT (uint);

int FUN [LFTA LEGAL]INT (ullong);
int FUN [LFTA LEGAL]INT (llong);
uint FUN [LFTA LEGAL]UINT (int);
uint FUN [LFTA LEGAL]JUINT (ullong) ;
uint FUN [LFTA LEGAL]JUINT (llong);
float FUN FLOAT (llong);

float FUN FLOAT (ullong) ;

float FUN FLOAT (int) ;

float FUN FLOAT (
ullong FUN [LFTA_LEGAL]ULLONG(uint);

uint)

ullong FUN [LFTA LEGAL]JULLONG (int);
uint FUN [LFTA LEGAL]TIMESTAMPTOSEC (ullong);
uint FUN [LFTA LEGAL]TIMESTAMPTOMSEC (ullong) ;

Page 93

AT&T Research August, 2014

13.6.2.Description

These functions perform the appropriate type casts.

13.6.3.Known Bugs

Only typecasts needed for this document are defined; not all possible typecasts.

13.7.Conditional assignment

13.7.1.Synopsis

uint FUN [LFTA LEGAL]IF (uint,uint,uint);

int FUN [LFTA LEGAL]IF (int,int,int);

string FUN [LFTA LEGAL]IF (int,string,string);
string FUN [LFTA LEGAL]IF (uint,string,string);

13.7.2.Description

Each ‘IF’ function returns the second parameter only if the first parameter is not 0, and

the third parameter is 0.

13.7.3.Known Bugs

Currently only the functions in the type subsets used are defined.

Page 94

AT&T Research August, 2014

13.8.Local Triggers

13.8.1. Synopsis

PRED [LFTA LEGAL,COST TOP] set local trigger[uint, uint];
PRED [LFTA LEGAL,COST HIGH] check local trigger[uint];
bool FUN [LFTA LEGAL,COST TOP] set local trigger (uint, uint);
bool FUN [LFTA LEGAL,COST HIGH] check local trigger (uint);

13.8.2. Description

This function provides a local trigger which can be set by one query by calling

‘set local trigger’ and can be read by other queries by calling ‘check local trigger’. The
first argument in either function or predicate is the trigger ID. Currently up to 127
triggers are supported. The second argument for ‘set local trigger’ indicates how many
times ‘get local trigger’ should return true after ‘set local trigger’ was called.

In the example below the collection of 1000 packets is triggered after a packet is visible
with a broken Ipv4 checksum using trigger number 1.

DEFINE {

query name 'type header' ;
real time 'true';
visibility 'external';

}

SELECT @Host, @Name,time,len,timewarp,raw packet data
FROM IPV4

WHERE ipversion = 4 and total length < hdr length
DEFINE {

query name 'type checksum'

real time 'true';

visibility 'external';

}

SELECT @Host, @Name,time,len,timewarp,raw packet data
FROM IPV4

WHERE ipversion =4 and ipchecksum(IPv4 header)<>0 and
set local trigger(1,1000)=TRUE

DEFINE {
query name 'trailer' ;

Page 95

AT&T Research August, 2014

real time 'true';
visibility 'external';

}

SELECT @Host, @Name,time,len,timewarp,raw packet data
FROM IPV4
WHERE ipversion =4 and check local trigger[1l]

13.8.3. Known Bugs

Triggers only function within a single process. Therefore great care must be taken to
assure that both queries are compiled into the same binary.

Page 96

User Manual
AT&T Research August, 2014

Page 97

AT&T Research August, 2014

13. User Defined Aggregate Functions
13.1.POSAVG

13.1.1.Synopsis

float UDAF POSAVG fstringlé6 (float);

13.1.2.Description

A user defined aggregation function which computes the average of all positive values
passed to it. This is useful in cases such as processing the output of “TRAT’ which sets its
measurement value to -1 if it is not valid. In that circumstance, ‘POSAVG’ will compute
the average of all valid measurements.

13.1.3.Example

13.1.4.Known Bugs

There are no known bugs at this time.

Page 98

User Manual
AT&T Research August, 2014

Page 99

AT&T Research August, 2014

14.Sampling

14.1.Dynamic Subset-Sum Sampling:

14.1.1. Synopsis

The dynamic subset-sum sampling algorithm estimates sums of the sizes of flows (objects
sharing a common set of properties) from a sampled subset of objects. Unlike the static
version of the algorithm, the dynamic version produces a sample of a constant size
defined by the user.

14.1.2.Description
S: Sample
R: Stream of objects to sample from
N: Desired size of the sample
T: An object
t.x: The value of the size attribute of an object
z: Dynamically adjusted threshold for the size of the objects to be sampled
B: Number of objects whose size t.x exceeds current threshold z

The algorithm works in the following manner:

Collect samples, each with probability p(x) = min{1,t.x/z}

If |S] > yN (e.g., y=2), estimate a new value of z which will result in N objects.
Subsample S using new value of z, and continue the sampling process.

When all tuples from R have been processed, if |S| > N then adjust z and
subsample S.

Parameter z can be adjusted in a number of ways.

®* Conservative

Aggressive

* Root finding: recursive method (not applicable).

To estimate the sum, the measure ‘t.x’ of the sampled small objects is adjusted to: z: t.x =
max {t.X, z}. Then the estimate of the flow size is the sum of all ‘t.x’ in the sample that
belongs to the flow. For more details please refer to Sampling Algorithms in a Stream

Operator.

Example:

Page 100

http://portal.acm.org/citation.cfm?doid=1066157.1066159

AT&T Research August, 2014

When applied to a data stream, subset-sum sampling occurs in successive time windows.
The following query expresses the dynamic subset-sum sampling algorithm which
collects 100 samples per 20 seconds:

SELECT uts, srclP, destIP, UMAX(sum(len),ssthreshold())
FROM PKTS

WHERE ssample(len,100)= TRUE

GROUP BY time/20 as tb, srcIP, destIP, uts

HAVING ssfinal clean (sum(len))=TRUE

CLEANING WHEN ssdo clean () =TRUE

CLEANING BY ssclean with (sum(len))=TRUE

In this case a single supergroup is created every 20 seconds. The state structure for the
algorithm is defined as follows:

struct SSstate {

int count; // count to sample small packets with
// certain probability

double gcount; // count for clean with() function

double fcount; // count for final clean() function

double z; // z is the threshold for a size of the
// packet

double z prev; // z from the previous iteration of the
// cleaning phase

double gamma; // tolerance parameter for emergency
// control over the number of samples,
// should be >= 1

int do_clean; // set to 1 when cleaning phase is being
// triggered

int bcount; // count for number of packets that exceed
// threshold, need it for threshold
// adjustment

int s size; // need to remember sample size for
// _sfun state init ()

int final z; // indicates if z was adjusted to its
// final value before the final clean

int time; // remember timestamp from the previous

}i

// iteration

14.1.2.1.Detailed Query Evaluation Process

When the first tuple is received, a supergroup for the time window is created and its state
is initialized with ‘clean init’ initialization function call. The function is called only
once at the beginning of the execution:

Page 101

AT&T Research August, 2014

void sfun state clean init smart sampling state(void *s) {

struct SSstate *state = (struct SSstate *)s;
state->count = 0;
state->gcount = 0;
state->fcount = 0;
state->z = 200; //initial value for z
state->z prev = 0;

state->gamma = 2;

state->do _clean = 0;
state->bcount = 0;
state->s size = 0;
state->final z = 0;
state->time = 0;

}i

b

On every packet, evaluate the ‘ssample(len,100)

function, where the

parameters passed to the function are the length of the packet in bytes (packet
attribute) and the desired final size of the sample for the current time frame of 20
seconds. The function implements the condition for admitting the tuple into the

sample with probability p(x) = min{1, len/z}:

int ssample(void *s, int curr num samples, unsigned long long int

len, unsigned int sample size) {
struct SSstate *state = (struct SSstate *)s;
int sampled = 0;

//initialize s size to 100
state->s size = sample size;

//evaluate when just returned from the cleaning phase
if (state->do_clean == 1) {

state->gcount = 0;

state->do _clean = 0;

//sampling condition
if(len > state->z) {
state->bcount++;
sampled=1;
}
else(
state->count += len;
if (state->count >= state->z) {
sampled=1;
state->count -= state->z;

}

return sampled;

Page 102

AT&T Research August, 2014

}i

If the function returns as false, then the predicate condition for admitting a tuple
to the sample failed and the next tuple needs to be processed. If the function
passes as true, the tuple is admitted into the sample.

14.1.2.2.Cleaning Phase

On every sampled packet, evaluate ‘ssdo clean()’. This function implements the
condition for triggering the cleaning phase on the current sample and returns true
whenever the size of the current sample exceeds the threshold “yN’. The new value of the
threshold is then calculated and the cleaning phase is triggered; otherwise, proceed to the
next tuple:

int ssdo_clean(void *s, int curr num samples) {
struct SSstate *state = (struct SSstate *)s;

if (curr num samples > (state->gamma*state->s size)) {
state->do_clean = 1;
state->z prev = state->z;
state->z=(double) state->gamma*state->z;
state->bcount = 0;
state->count = 0;
state->gcount = 0;

}

return state->do_clean;

}s

In this case, the initial threshold can be estimated for the new time window based on the
value of the threshold in the previous window, adjusting its value to obtain an estimated
‘N’ sample during the new time window.

If the cleaning phase was triggered, evaluate ‘ssclean with (sum(len))’ function on
every tuple in the current sample. As a result of this evaluation process, the current
sample will be subsampled using the previously calculated value of the threshold.

int ssclean with(void *s,int curr num samples, unsigned long long
int glen) {
struct SSstate *state = (struct SSstate *)s;

//cleaning condition
int sampled = 0;

double new len = 0;

if (glen < state->z prev)

new len = state->z prev;
else
new len = glen;

Page 103

AT&T Research August, 2014

if (new_len > state->z) {
state->bcount++;
sampled = 1;
}
else(
state->gcount += new len;
if (state->gcount >= state->z) {
sampled = 1;
state->gcount -= state->z;

}

return sampled;

If the function returns as false, then the predicate condition for leaving a tuple in
the sample failed and the tuple is deleted; otherwise, the tuple is sampled.

14.1.2.3.Clean Initialization

When the border of the time window is reached, the state of each supergroup (in this
example only one) is first finalized with the ‘final init’ function. The new time
window is detected when the first tuple from the next time window is received.

void sfun state final init smart sampling state(void *s, int
curr_num_samples) {
struct SSstate *state = (struct SSstate *)s;

if (state->final z == 0){
state->z_prev = state->z;

if (curr num samples < state->s_size) {
state->z = state->z* ((max((double)curr num samples-
(double) state->bcount, 1))/ ((double)state->s size-
(double) state->bcount)) ;

}

else {
if (curr num samples >= state->s size) {
state->z = stat->z*
((double)curr_num_samples/(double)state—>s_size);

}

if (state->z <= 0)
state->z = 1;

Page 104

User Manual
AT&T Research August, 2014

state->bcount = 0;
state->final z = 1;
state->do_clean count++;

}
}s

Evaluate ‘ssfinal clean (sum(len)’on every tuple that is currently in the
sample. The threshold ‘z’ is adjusted according to the aggressive method of the
algorithm. The function makes a final pass through the sample and subsamples it
to the desired size.

int ssfinal clean(void *s, int curr num samples, unsigned long
long int glen) {
struct SSstate *state = (struct SSstate *)s;

state->do_sooth = true;

// for ssample() where just returned from the clening
// phase
state->do_clean = 1;

int sampled = 0;
double new len = 0;

if (glen < state->z prev)
new len = state->z prev;
else
new len = glen;

//no need to clean
if (curr num samples <= state->s size) {
return 1;
}
else(
if (new len > state->z){
sampled = 1;
state->bcount++;
}
else{
state->fcount += new len;
if (state->fcount >= state->z) {
sampled = 1;
state->fcount -= state->z;

return sampled;

Page 105

AT&T Research August, 2014

}i

If the function returns as true, the tuple is in the final sample for the current time
window and its attributes listed in the SELECT clause of the query are outputted
to the user. Otherwise the tuple is deleted.

14.1.2.4. Dirty Initialization

When the first tuple from the next time window is received, the new state for this
supergroup is created and initialized with ‘dirty init’ (instead of clean init)
initialization function. This function uses some values of the state from the previously
processed time window. If there is no need in initializing a new state structure with the
old state values, the function will be similar to the ‘clean init’ initialization function.

void sfun state dirty init smart sampling state(void *s new,
void *s old, int curr num samples) {
struct SSstate *state new = (struct SSstate *)s new;
struct SSstate *state old (struct SSstate *)s old;

if (curr num samples < state old->s size) {
state new->z = state old->z*
((max ((double)curr num samples- (double)state old-
>bcount, 1))/ ((double)state old->s size-
(double)state old->bcount));

}
else {
if (curr num samples >= state old->s size) {
state new->z = state old-
>z*((double)curr_num_samples/(double)state_old—
>s size);

if (state new->z <= 1.0)

state new->z = 1;
state_new->gamma = state_old->gamma;
state new->do clean = state old->do clean;
state new->s size = state old->s size;
state new->bcount = 0;
state new->gcount = 0;
state new->count = 0;
state new->fcount = 0;
state new->final z = 0;

Page 106

AT&T Research August, 2014

state new->time = 0;

}i

From this point on all the tuples in the current window are processed according to
the evaluation process described above.

See also the following:

Stateful functions

Supergroups

Static Subset-Sum Sampling

Flow Sampling Query
14.1.3.Known Bugs

There are no known bugs at this time.

Page 107

AT&T Research August, 2014

15.Flow Subset-Sum Sampling:
15.1.Synopsis

This section describes a flow sampling query. The packet sampling step in the flow
collection process of the Dynamic Subset-Sum sampling approach is replaced by a more
sophisticated flow sampling approach which combines the flow aggregation with flow
sampling.

15.1.1.Description

The query described in the Dynamic Subset-Sum sampling section is a high level
sampling query, which is fed by a low level flow aggregation query. Another approach is
to integrate flow aggregation into sampling and do them simultaneously on the traffic at
the packet level:

SELECT tb, srcIP, destIP, COUNT(*),
UMAX (sum(len), ssthreshold())

FROM TCP

WHERE flow ssample (100) = TRUE

GROUP BY time/20 as tb, srcIP, destIP

HAVING flow ssfinal clean(P, sum(len)) = TRUE
CLEANING WHEN flow_ssdo_clean(max$(time))= TRUE
CLEANIN BY flow _ssclean with (P, sum(len)) = TRUE

This query uses a new set of stateful functions and is evaluated by the stream sampling
operator in the following manner:

1. When a tuple is received, call state initialization function (‘clean init’ifit’sa
first tuple being evaluated, ‘dirty init’ otherwise). Evaluate the WHERE
clause. Call ‘flow ssample (100) ’, which always returns true and admits all
incoming tuples into the sample without performing any preliminary filtering.

2. Evaluate the CLEANING WHEN clause. Call ‘flow ssdo clean (max$
(time))’. This function implements two phases of query evaluation; the
counting phase and the cleaning phase. The counting phase is triggered every
second. During this phase the numbers of closed flows which are currently in the
group table are counted (see below). The count of closed flows is used to trigger
the cleaning phase. The cleaning phase is triggered when the current number of
closed flows, which was obtained during the most recent counting phase, exceeds
the threshold for the number of samples. If the function returns false, neither of

the two conditions is met so proceed to the next tuple.

3. Evaluate the ‘CLEANING BY’ clause whenever ‘CLEANING WHEN’ returns
true. Call ‘flow ssclean with (P, sum(len))’ function, wher‘P’ is a set of
conditions which indicate whether a flow is closed. For instance, a flow can be

Page 108

AT&T Research August, 2014

15.1.2.

considered closed if we have received FINISH or RESET or there was no packet
from this flow within the last 15 seconds:

(Or Aggr (finish) |Or Aggr (reset)),15,max (time)

If the function is called during the counting phase, P is applied to every group to
determine whether the flow is closed. The counter of closed flows which is not
evicted from the sample is incremented accordingly. The function always returns
true during the counting phase. When the function is called during the cleaning
phase, the current set of closed flows is subsampled by applying to each flow the
newly estimated value of the size threshold of the tuple and deleting those flows
which do not meet the cleaning condition. The function returns as true if the flow
satisfies the condition.

When the sampling window is closed, call ‘final init’ state initialization
function. Evaluate HAVING clause. At this point all flows are considered closed.
Call ‘flow ssfinal clean(P, sum(len))’, which performs the final
subsampling of the current sample only if it exceeds the desired size. If the
function returns false, the flow is evicted from the sample. Otherwise, the flow is
sampled.

SELECT is applied to every sampled group while it is output as the answer to the
query.

Examples

SELECT tb, srcIP, destIP, COUNT(*),
UMAX (sum (len) , ssthreshold())
FROM TCP
WHERE flow ssample (1000) = TRUE
GROUP BY time/60 as tb, srcIP, destIP
HAVING flow ssfinal clean((Or_ Aggr (finish) |Or_ Aggr (reset)),
5,max (time), sum(len)) = TRUE
CLEANING WHEN flow_ssdo_clean(max$(time))= TRUE
CLEANIN BY flow ssclean with ((Or Aggr (finish) |
Or Aggr (reset)),5,max(time), sum(len)) = TRUE

This query will return a sample of 1000 tuples per 1 minute time window. A flow is
considered closed if FINISH or RESET was received, or if there was no packet from this
flow within the last five seconds.

See also the following:

Stateful functions
Supergroups

Static Subset-Sum Sampling

Page 109

User Manual
AT&T Research August, 2014

Dynamic Subset-Sum Sampling

Page 110

