VACON 100 AC DRIVES

I/O OPTION BOARDS TYPE 'B' AND 'F' USER MANUAL

INDEX

Document: DPD00211B Order code: DOC-INS06690+DLUK Version release date: 18.5.2012

1.	General information	.3
1.1	Board slots on Vacon 100	3
1.2	Option board type B	4
1.2.1	Board type B technical data	4
1.2.2	Isolation	
1.2.3	Analogue inputs	5
	Analogue outputs	
1.2.5	Control voltage (+24V/ext +24V)	5
1.2.6	Digital input signal conversions	5
1.3	Hardware protections	
1.3.1	Terminal block coding	
1.4	Type identification number	
1.5	Defining functions to inputs and outputs - programming	8
1.5.1	Example programming	8
2.	Installation of option boards	11
2.1	Vacon 100 and Vacon 100 HVAC	11
2.2	Prepare for use	13
2.3	Control cables	
2.4	Board information sticker	15
3.	Description of type 'B' and 'F' boards	17
3.1	Board OPTB1	
3.1 3.1.1		18
3.1.1	Board OPTB1	18 18
3.1.1 3.1.2 3.2	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2	18 18 19 20
3.1.1 3.1.2 3.2	Board OPTB1 I/O terminals on OPTB1 Jumper selections	18 18 19 20
3.1.1 3.1.2 3.2	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4	18 18 19 20 20 21
3.1.1 3.1.2 3.2 3.2.1	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2	18 18 19 20 20 21
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5	18 19 20 21 21 22
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5	18 18 19 20 21 21 22 22
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB5 Board OPTB9	18 18 19 20 21 21 22 22 22 23
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4 3.5 3.5.1	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9	18 18 20 20 21 21 22 22 23 23
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4 3.5 3.5.1 3.6	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 Board OPTBF	18 19 20 21 21 22 23 23 23 24
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 I/O terminals on OPTB9 I/O terminals on OPTBF	18 19 20 21 22 22 23 23 23 24 24
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1 3.6.2	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 Board OPTBF I/O terminals on OPTBF Jumper selections	18 18 20 20 21 22 22 23 23 24 24 25
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1 3.6.2 3.7	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 I/O terminals on OPTB7 Board OPTBF Jumper selections Board OPTBH	18 19 20 21 22 23 23 24 24 25 26
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4 3.5 3.5.1 3.6 3.6.1 3.6.2 3.7 3.7.1	Board OPTB1. I/O terminals on OPTB1. Jumper selections. Board OPTB2. I/O terminals on OPTB2. Board OPTB4. I/O terminals on OPTB4. Board OPTB5. I/O terminals on OPTB5. Board OPTB9. I/O terminals on OPTB9. I/O terminals on OPTB7. Board OPTBF. I/O terminals on OPTBF. Jumper selections. Board OPTBH. I/O Terminals on OPTBH.	18 19 20 21 22 23 23 24 25 26 26
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1 3.6.2 3.7 3.7.1 3.7.2	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 Board OPTBF I/O terminals on OPTBF Jumper selections Board OPTBH JUMPER SELECTIONS Board OPTBH I/O Terminals on OPTBH	18 19 20 21 22 22 23 24 24 25 26 27
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1 3.6.2 3.7 3.7.1 3.7.2 3.7.3	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 Board OPTBF I/O terminals on OPTBF Jumper selections Board OPTBH Jumper selections Board OPTBH I/O Terminals on OPTBH OPTBH option board wiring scheme: OPTBH board parameters	18 19 20 21 22 23 23 24 25 26 27 27
3.1.1 3.1.2 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.6 3.6.1 3.6.2 3.7 3.7.1 3.7.2 3.7.3 3.8	Board OPTB1 I/O terminals on OPTB1 Jumper selections Board OPTB2 I/O terminals on OPTB2 Board OPTB4 I/O terminals on OPTB4 Board OPTB5 I/O terminals on OPTB5 Board OPTB9 I/O terminals on OPTB9 Board OPTBF I/O terminals on OPTBF Jumper selections Board OPTBH JUMPER SELECTIONS Board OPTBH I/O Terminals on OPTBH	18 19 20 21 22 23 24 25 26 27 27 28

1. GENERAL INFORMATION

Vacon 100 product range embodies a wide selection of expander boards with which the available I/ O of Vacon 100 frequency converter can be increased and its versatility improved.

The input and output configuration (I/O) of Vacon 100 is designed with modularity in mind. The total I/O is comprised of basic and option boards, each having its own input and output configuration. The boards contain analogue and digital inputs and outputs and additional application-specific hardware.

The option boards are placed in the board slots on the frequency converter. The I/O boards are usually interchangeable between different Vacon converter types, i.e. Vacon 100 and Vacon NX series. However, the control boards of these types differ from each other to some extent which means that the use of some I/O boards in different Vacon frequency converter types may be restricted.

1.1 BOARD SLOTS ON VACON 100

The control board is situated inside the control unit of the Vacon 100 drive. There are two board slots (labelled D and E) on the Vacon 100 HVAC control board and three board slots (labelled C, D and E) on the Vacon 100 control board. To locate the slots, see page 12. See also the descriptions of the option boards in Chapter 3.

Usually, when the AC drive is delivered from the factory, the control unit includes at least the standard board, which is installed in the standard board slot. The I/O boards mounted at the factory are indicated in the type code of the frequency converter. The expander slots D, E (Vacon100 HVAC) and C, D, E (Vacon 100) are available for different option boards.

NOTE! You can download the English and French product manuals with applicable safety, warning and caution information from <u>www.vacon.com/downloads</u>.

REMARQUE Vous pouvez télécharger les versions anglaise et française des manuels produit contenant l'ensemble des informations de sécurité, avertissements et mises en garde applicables sur le site <u>www.vacon.com/downloads</u>.

1.2 OPTION BOARD TYPE B

Type B option boards are used for I/O expansion. They are interchangeable with the boards of the same type used in Vacon NX series.

1.2.1 BOARD TYPE B TECHNICAL DATA

	Comply with EN50178, C-UL and EN60204-1
Safety (all boards)	Inputs/outputs galvanically isolated; Isolation voltage rate
	500V
Analogue inputs (AI), voltage	0±10V, R _i 200 Ω , single-ended;
	Resolution 10 bits/0.1%, accuracy ±1% of the full display
Analogue inputs (AI), current	0(4)20mA, R _i = 250 Ω , differential
Anatogue inputs (Al), current	Resolution 10 bits/0.1%, accuracy ±1% of the full display
Digital inputs (DI), DC-controlled	24V: "0" 10V, "1" 18V, R _i > 5kΩ
Digital inputs (DI), AC-controlled	Control voltage 42240 VAC
	"0"<33V, "1">35V
Auxiliary voltage (output) (+24V)	24V (±15%), max 250mA (total summarized load from ext.
	+24V outputs, max. 150 mA from one board.
	24VDC (±10%, max. ripple voltage 100mV RMS), max. 1A.
Auxiliary voltage (input) (ext. +24V)	In special applications where PLC type functions are included in the control unit the input can be used as exter-
Auxiliary vollage (input) (ext. +24v)	nal auxiliary power supply for control boards as well as I/O
	boards.
Reference voltage (output) (+10Vref)	10V - 0%+2%, max. 10mA
Analogue output (AO), current (mA)	0(4)20mA, R _L <500Ω, resolution 10 bits/0.1%, accuracy
Analogue output (AO), current (IIIA)	±2%
Analogue output (AO), voltage (V)	0(2)10V, $R_L \ge 1k\Omega$, resolution 10 bits, accuracy $\pm 2\%$
	Switching capacity 24VDC/8A
	250VAC/8A
Relay outputs (RO)	125VDC/0.4A
	Max. continuous load 2A rms Min. switching load: 5V/10mA
Thermistor input (TI)	$R_{trip} = 4.7k\Omega$ (PTC type)

Table 1. Type B option boards, technical data

1.2.2 ISOLATION

The control connections are isolated from the mains potential and the I/O ground is connected directly to the frame of the frequency converter. Digital inputs and relay outputs are isolated from the I/O ground. For digital input arrangements, see Chapter Digital input signal conversions on page 5.

1.2.3 ANALOGUE INPUTS

The analogue inputs of the type B boards can be used as either current inputs or voltage (mA/V) inputs (see detailed description of each board). The signal type is selected with a jumper block (Btype boards), or a dip switch (F-type boards) on the board. In case the voltage type input is used you still have to define the voltage range with another jumper block/dip switch. The factory default value for the analogue signal type is given in the description of the board. For detailed information, see the description of the board in question.

1.2.4 ANALOGUE OUTPUTS

The analogue outputs of option boards of type B are used with current (mA) signal only. However, on some certain option boards the signal type (mA/V) can be selected with a jumper/dip switch. See more detailed information on individual boards in chapter 3.

1.2.5 CONTROL VOLTAGE (+24V/EXT +24V)

The control voltage output +24V/EXT+24V can be used in two ways. Typically, the +24V control voltage is wired to digital inputs through an external switch. The control voltage can also be used to power-up external equipment, such as encoders and auxiliary relays.

Observe that the specified total load on all available +24V/EXT+24V output terminals must not exceed 250mA.

The +24V/EXT+24V outputs can further be used to externally power up the control board as well as option boards. If an external power supply is connected to EXT+24V output, the control board and option boards remain live even if mains should be lost on the frequency converter. This ensures sufficient functioning of the control logic (not the motor control, however) and some alarms in exceptional power-loss situations. Furthermore, fieldbus links remain powered which enables e.g. the Fieldbus Master to read valuable data on the frequency converter. **NOTE**: The power unit is not powered through the EXT+24V and therefore the motor control does not work if the mains is lost.

Requirements for an external power back-up:

- output voltage +24DC±10%, max. ripple voltage 100mV RMS
- max. current 1A
- 1A external fuse (no internal short-circuit protection on the control board)

NOTE: Analogue outputs and inputs do not work with only +24V supplied to the control unit.

If there is a +24V/EXT+24V output on the board it is short-circuit protected locally. Should one of the +24V/EXT+24V outputs shortcircuit, the others would remain powered because of the local protection.

1.2.6 DIGITAL INPUT SIGNAL CONVERSIONS

The active signal level depends on which potential the common input CMA is connected to. The alternatives are +24V or Ground (0V). See 1, 2 and 3.

The 24-volt control voltage and the ground for the digital inputs and the common input (CMA) can be either internal or external.

Some typical input signal conversion examples are shown below. If you use the internal +24V from the frequency converter, the following arrangements are possible:

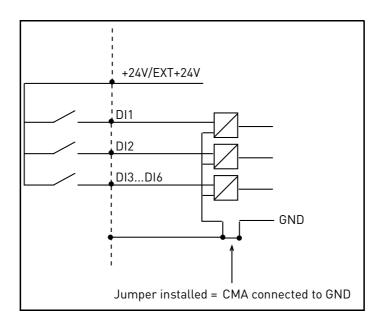
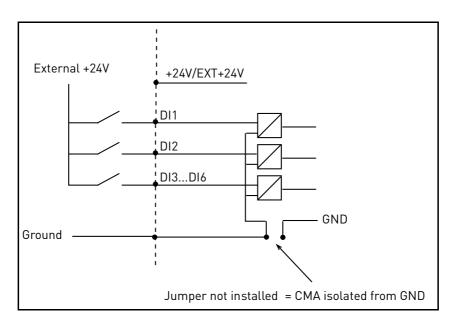



Figure 1. If CMA is connected to GND with inboard jumper the internal +24V is used and the CMA terminal need not be wired

Figure 2. Positive logic with external +24*V when CMA is isolated from GND using onboard jumper. The input is active when the switch is closed.*

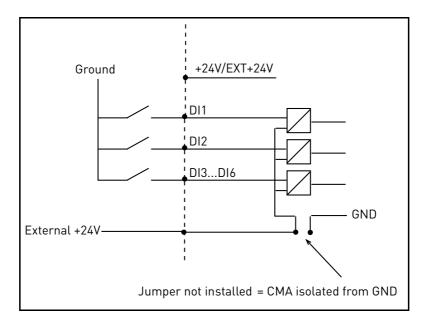


Figure 3. Negative logic with external +24V when CMA is isolated with onboard jumper. The input is active when the switch is closed (0V is the active signal).

You can make the positive and negative logic arrangements also with the internal +24V. Place the jumper block in the 'CMA isolated from GND' position (as above) and wire the CMA terminal to the GND terminal of the frequency converter.

1.3 HARDWARE PROTECTIONS

1.3.1 TERMINAL BLOCK CODING

In order to avoid incorrect connections of terminal blocks to boards, some terminal blocks as well as related terminal connectors on the board are uniquely coded. For more information, see the description of the individual board.

1.4 TYPE IDENTIFICATION NUMBER

NOTE: This information is relevant only for special applications designers using the Vacon Live engineering tool.

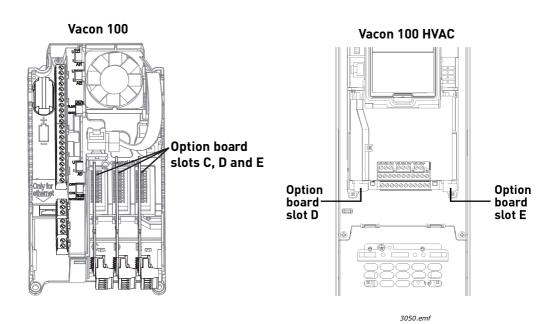
Each Vacon OPTxx board has a unique type designation code. Besides the type designation code, each board has a unique Type identification number which is used by the system program to identify which board is plugged into the board slot. The system program and the application use the Type ID also to establish the needed connections in order to achieve the desired functionality of the available I/O boards in the control unit. The ID code is loaded in the memory of the board.

1.5 DEFINING FUNCTIONS TO INPUTS AND OUTPUTS - PROGRAMMING

The programming of digital inputs and outputs is very flexible. There are no digital terminals assigned only for certain function. You can choose the terminal of your choice for the certain function, in other words, functions appear as parameters which the operator defines a certain input for.

1.5.1 EXAMPLE PROGRAMMING

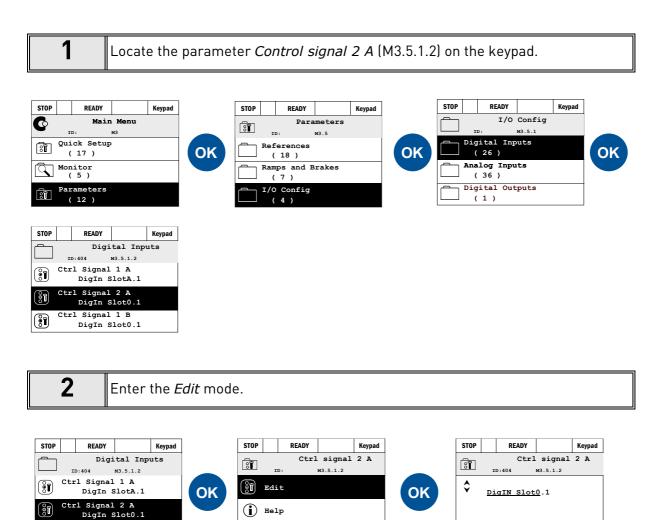
The selectable values of the parameters programmed are of type


DigIN SlotA.1

in which

'DigIN' stands for digital input.

'Slot_' refers to the board; either Vacon AC drive basic boards, or **D** and **E** which are option boards (see 4). The parameter (signal) is not connected to any terminal, i.e. it is not used, if, instead of a letter, the word Slot is followed by a **'0'** (for example **DigIN Slot0.1**).


The number after the board letter refers to the respective terminal on the selected board. Hence, **SlotX.1** means terminal DI1 on the basic board in board slot A.

EXAMPLE:

You want to connect the *Control signal 2 A* (parameter M3.5.1.2) to digital input DI2.

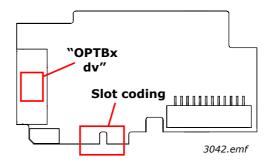
_		
	C	Change the value: The editable part of the value (DigIN Slot0.1) is underlined and blinking. Change the slot or assign to Time Channel with the arrow keys up and down. Make the terminal value (.1) editable by pressing the right key once and change the value with arrow keys up and down.
		Accept the change with OK button or return to previous menu level with BACK/ RESET button.

Add to favorites

Min: Max:

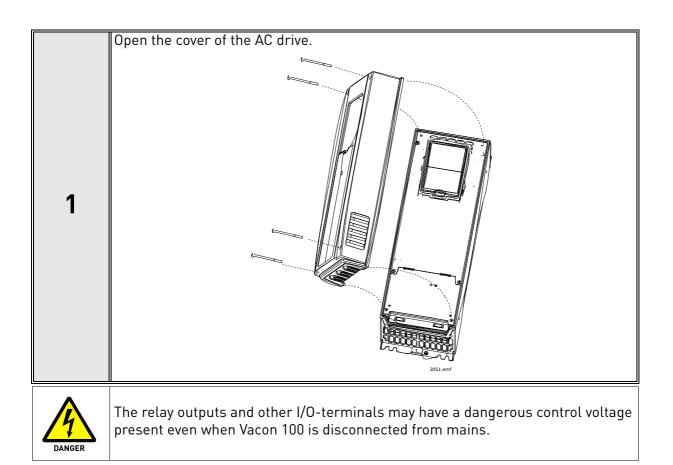
() () Ctrl Signal 1 B

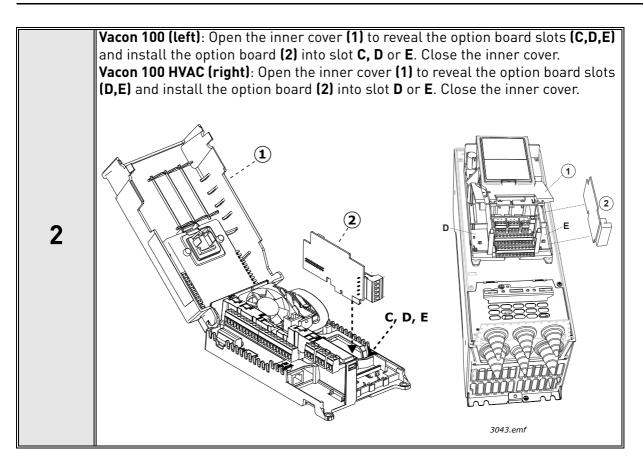
DigIn Slot0.1


Be ABSOLUTELY sure not to connect two functions to one and same output in order to avoid function overruns and to ensure flawless operation.

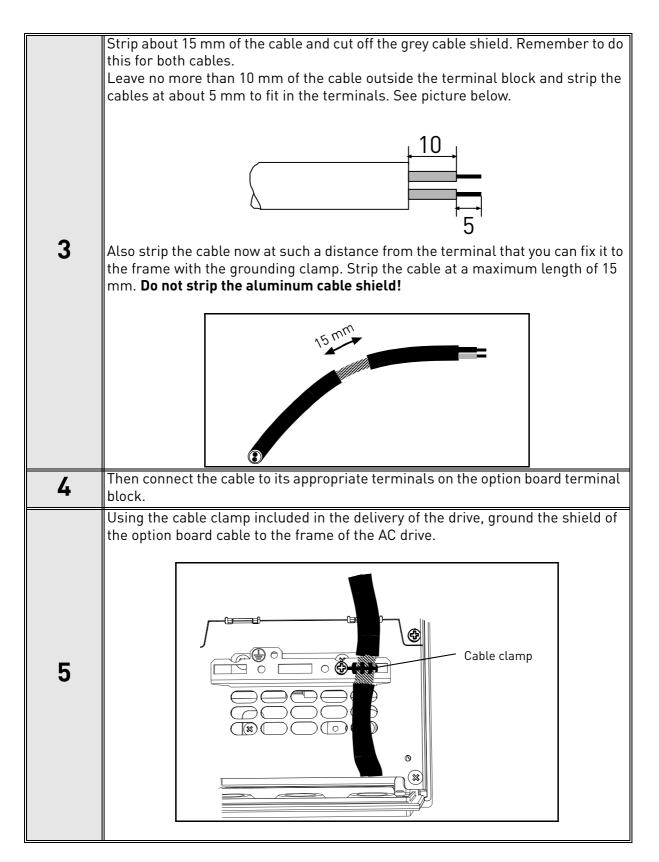
NOTE! The assignment of the inputs, unlike of the outputs, cannot be changed in RUN state.

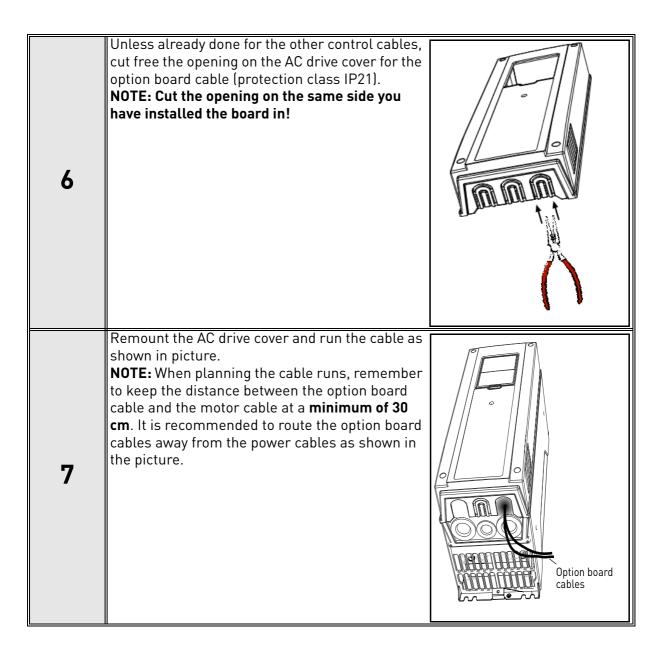
2. INSTALLATION OF OPTION BOARDS


With B-type boards, make sure that the sticker on the connector of the board says "dv" (dual voltage). This indicates that the board is compatible with Vacon drives mentioned in this manual. See below:


NOTE: Incompatible boards cannot be installed on Vacon drives. Compatible boards have a slot coding that enable the placing of the board (see below).

2.1 VACON 100 AND VACON 100 HVAC


NOTE: It is not allowed to add or replace option boards or fieldbus boards on a frequency converter with the power switched on. This may damage the boards.



2.2 PREPARE FOR USE

We recommend to ground the control cables in the manner presented below. Note that the images are suggestive, because the cables can vary.

2.3 CONTROL CABLES

The control cables used shall be at least 0.5 mm² screened multicore cables. The maximum terminal wire size is 2.5 mm² for the relay terminals and other terminals.

Find the tightening torques of the control and relay board terminals in Table 2 below.

Terminal screw	Tightening torque		
	Nm	lb-in.	
All I/O and relay terminals (screw M3)	0.45	4.00	

Table 2. Control cable tightening torques

	1 st environment	2nd enviror	nment	
Cable type	EMC levels According to EN61800-3 (2004)			
	Category C2	Category C3	Level T	
Control cable	4	4	4	

Table 3. Cable types required to meet standards

4 = Screened cable equipped with compact low-impedance shield (JAMAK, SAB/ÖZCuY-O or similar).

2.4 BOARD INFORMATION STICKER

Each I/O option board package delivered by the factory includes a sticker (shown below) where possible modifications made in the frequency converter are noted. Write the board type, the slot in which it was mounted and the date on the sticker. Finally, attach the sticker on your drive.

3. DESCRIPTION OF TYPE 'B' AND 'F' BOARDS

The number of control inputs and outputs on your Vacon AC drive can be increased with the I/O option boards. This kind of boards can usually be placed in all option board slots inside the AC drive.

The boards you wish to have installed in your frequency converter have to be defined in the type designation code of the AC drive when ordering it from the factory.

I/O board	DI	AI	ті	A0	DO	RO	Other
Board OPTB1	(6)				(6)		Programmable
Board OPTB2			1			2	
Board OPTB4		1 (isolated); mA		2 (isolated); mA			+24V/ EXT +24V
Board OPTB5						3	
Board OPTB9	5					1	5 (42-240 VAC)
Board OPTBF				1	1	1	
Board OPTBH							PT100, PT1000, NI1000 KTY84-130 KTY84-150 KTY84-131
Board OPTF3	(6)	2		1		3	
Board OPTF4	(6)	2	1	1		2	

Table 4. Vacon option boards and their equipment

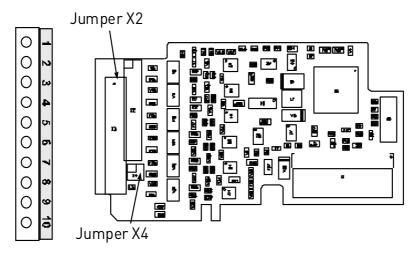

I/O board	Vacon 100	Vacon 100 HVAC
Board OPTB1	C,D,E	D,E
Board OPTB2	C,D,E	D,E
Board OPTB4	C,D,E	D,E
Board OPTB5	C,D,E	D,E
Board OPTB9	C,D,E	D,E
Board OPTBF	C,D,E	D,E
Board OPTBH	C,D,E	D,E
Board OPTF3	A +B	-
Board OPTF4	A +B	-

Table 5. Allowed slots on Vacon drives

DI = Digital input	AO = Analogue ou
J	J

- **AI** = Analogue input
- **TI** = Thermistor input
- **0** = Analogue output
- **RO** = Relay output
- **DO** = Digital output

3.1 BOARD OPTB1

Description:	Option board with six bidirectional terminals.
Type ID:	16945
Terminals:	One terminal block; Screw terminals (M2.6); No coding
Jumpers:	2; X2 and X4

3.1.1 I/O TERMINALS ON OPTB1

OPTB1			
Terminal	Signal	Parameter reference	Technical information
1	Digital input DIO1 Digital output DIO1	DigIN SlotX.1 DigOUT SlotX.1	Digital input: 24V; R _i >5k Ω Digital output: Open collector, 50mA/48V
2	Digital input DIO2 Digital output DIO2	DigIN SlotX.2 DigOUT SlotX.2	See above.
3	Digital input DIO3 Digital output DIO3	DigIN SlotX.3 DigOUT SlotX.3	See above.
4	СМА		Common for DI01DI03. NOTE: CMA is internally connected to GND with jumper by default.
5	Digital input DIO4 Digital output DIO4	DigIN SlotX.4 DigOUT SlotX.4	Digital input: 24V; R _i >5k Ω Digital output: Open collector, 50mA/48V
6	Digital input DI05 Digital output DI05	DigIN SlotX.5 DigOUT SlotX.5	See above.
7	Digital input DIO6 Digital output DIO6	DigIN SlotX.6 DigOUT SlotX.6	See above.
8	СМВ		Common for DIO4DIO6
9	GND		I/O ground; Ground for reference and controls.
10	+24V		Control voltage output; Voltage for switches etc.; max. current 150mA; Short-circuit protected.

Table 6. OPTB1 I/O terminals

3.1.2 JUMPER SELECTIONS

On the OPTB1 board, there are two jumper blocks. The jumper block X2 is used to define the bidirectional terminal as either input or output. The other jumper block, X4, is used to connect the common terminals to GND. The factory default and other available jumper selections are presented below.

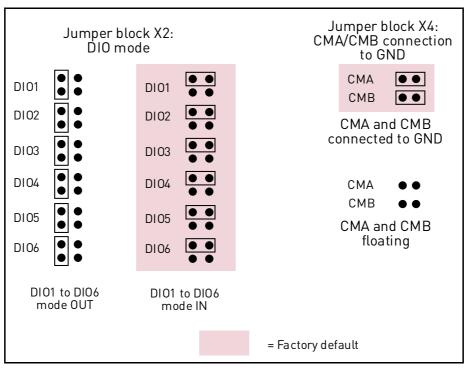
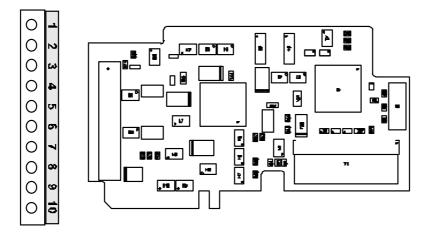


Figure 5.Jumper positions for OPTB1

3.2 BOARD OPTB2

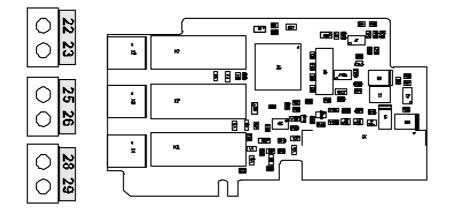

Description:	I/O expander board with a thermistor input and two relay outputs.
Type ID:	16946
Terminals:	Three terminal blocks; Screw terminals (M3); No coding
Jumpers:	None

3.2.1 I/O TERMINALS ON OPTB2

OPTB2						
Terminal	Signal	Parameter reference	Technical information			
21 22 23	R01/normal closed R01/common R01/normal open	DigOUT SlotX.1	Switching capacity: 24VDC/8A 250VAC/8A 125VDC/0.4A Min. switching load: 5V/10mA			
25 26	R02/common R02/normal open	DigOUT SlotX.2	Switching capacity: 24VDC/8A 250VAC/8A 125VDC/0.4A Min. switching load: 5V/10mA			
28 29	TI1+ TI1-	DigIN SlotX.1	Thermistor input (galvanically isolated) R_{trip} = 4.7k Ω			

Table 7. OPTB2 I/O terminals

3.3 BOARD OPTB4

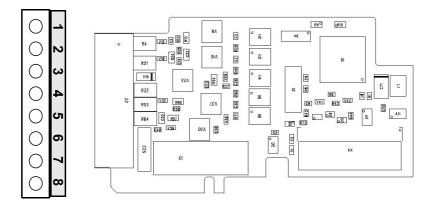

Description:	I/O expander board with one galvanically isolated analogue input and two galvanically isolated analogue outputs (standard signals 0(4)20mA).
Type ID:	16948
Terminals:	One terminal block; Screw terminals (M2.6); No coding
Jumpers:	None

3.3.1 I/O TERMINALS ON OPTB4

OPTB4			
Terminal	Signal	Parameter reference	Technical information
1	AI1+	AnIN SlotX.1	0(4)20mA; R _i =250 Ω ; galvanically isolated
2	AI1-		Resolution 10 bits/0.1%; Accuracy ±1% of the full display
3	A01+	AnOUT SlotX.1	0(4)20mA; R_<500 Ω ; Resolution 10 bits/0.1%;
4	A01-		Accuracy \leq ±2% (galvanically isolated)
5	A02+	AnOUT SlotX.2	0(4)20mA; RL<500 Ω ; Resolution 10 bits/0.1%;
6	A02-		Accuracy \leq ±2% (galvanically isolated)
7	GND		24V (±15%); Max. load 250mA (total load from EXT+24V out- puts), max. 150mA from one board. See Figure 1 on page 5
8	GND		
9	GND		24V (±15%), in special applications where PLC type func- tions are included in the control module, this input can be
10	+24V		used as external auxiliary power supply for control boards as well as for I/O boards.

Table 8. OPTB4 I/O terminals

3.4 BOARD OPTB5

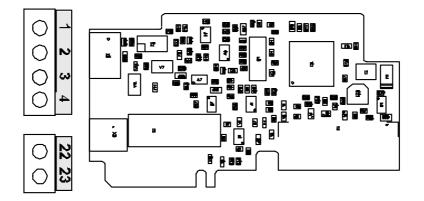

Description:	I/O expander board with three relay outputs
Type ID:	16949
Terminals:	Three terminal blocks; Screw terminals (M3); No coding
Jumpers:	None

3.4.1 I/O TERMINALS ON OPTB5

OPTB5					
Terminal	Signal	Parameter reference	Те	chnical information	
22 23	R01/common R01/normal open	DigOUT SlotX.1	Switching capacity: Min. switching load:	24VDC/8A 250VAC/8A 125VDC/0.4A 5V/10mA	
25 26	R02/common R02/normal open	DigOUT SlotX.2	Switching capacity: Min. switching load:	24VDC/8A 250VAC/8A 125VDC/0.4A 5V/10mA	
28 29	R02/common R02/normal open	DigOUT SlotX.3	Switching capacity: Min. switching load:	24VDC/8A 250VAC/8A 125VDC/0.4A 5V/10mA	

Table 9. OPTB5 I/O terminals

3.5 BOARD OPTB9


I/O expander board with five 42240 VAC digital inputs and one relay output.
16953
One terminal block; Screw terminals (M2.6); No coding
None

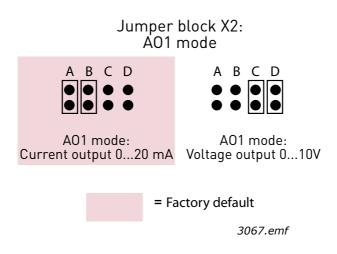
3.5.1 I/O TERMINALS ON OPTB9

OPTB9			
Terminal	Signal	Parameter reference	Technical information
1	ACIN1	DigIN SlotX.1	Digital input, 42240 VAC (threshold 35V) Control voltage: "0"<33V, "1">35V
2	ACIN2	DigIN SlotX.2	Digital input, 42240 VAC (threshold 35V) Control voltage: "0"<33V, "1">35V
3	ACIN3	DigIN SlotX.3	Digital input, 42240 VAC (threshold 35V) Control voltage: "0"<33V, "1">35V
4	ACIN4	DigIN SlotX.4	Digital input, 42240 VAC (threshold 35V) Control voltage: "0"<33V, "1">35V
5	ACIN5	DigIN SlotX.5	Digital input, 42240 VAC (threshold 35V) Control voltage: "0"<33V, "1">35V
6	СОМА		Common for inputs
7 8	R01/common R01/normal open	DigOUT SlotX.5	Switching capacity 24VDC/8A 250VAC/8A 125VDC/0.4A

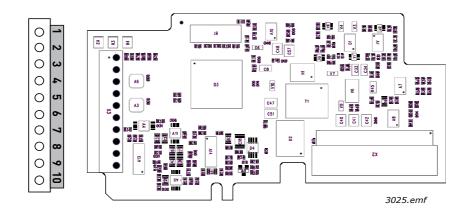
Table 10. OPTB9 I/O terminals

3.6 BOARD OPTBF

Description:	I/O expander board with analogue output, digital output and relay output.
Type ID:	16966
Terminals:	Two terminal blocks; Screw terminals (M2.6 and M3); No coding
Jumpers:	1; X2


3.6.1 I/O TERMINALS ON OPTBF

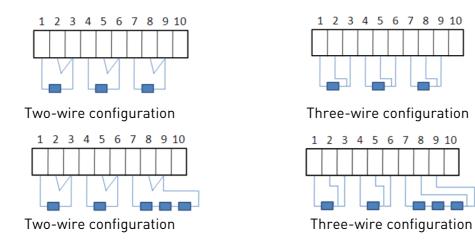
OPTBF					
Terminal	Signal	Parameter reference	Technical information		
1	A01+	AnOUT SlotX.1	0(4)20mA; R _L <500:; Resolution 10 bits/0.1%; Accuracy <u><</u> ±2% (Not isolated)		
2	A01-		$0(2)10V; R_L < 1k\Omega; Resolution 10 bits/0.1%; Accuracy \le \pm 2\% (Non isolated)mA / V -selection with jumper X2$		
3	D01	DigOUT SlotX.1	Digital output: Open collector, 50mA/48V (Not isolated)		
4	GND				
22 23	R01/Common R01/normal open	DigOUT SlotX.2	Switching capacity: 24VDC/8A 250VAC/8A 125VDC/0.4A Min. switching load: 5V/10mA		


Table 11. OPTBF I/O terminals

3.6.2 JUMPER SELECTIONS

On the OPTBF board, there is one jumper block for selecting the analogue output mode (mA/V). The factory default and other available jumper selections are presented below.

3.7 BOARD OPTBH


Description:	Temperature measurement board with three individual channels.
Supported sensors:	PT100, PT1000, NI1000, KTY84-130, KTY84-150, KTY84-131
Type ID:	16968
Terminals:	One terminal block; Screw terminals (M2.6); No coding
Jumpers:	None

3.7.1 I/O TERMINALS ON OPTBH

Те	rminal	Parameter reference Keypad	Technical information
1 2 3	R1.1 R1.2 R1.3	AnIn:X.1	Temperature sensor input 1, -50200 °C Accuracy ±1°C
4 5 6	R2.1 R2.2 R2.3	AnIn:X.2	Temperature sensor input 2, -50200 °C Accuracy ±1°C
7 8 9	R3.1 R3.2 R3.3	AnIn:X.3	Temperature sensor input 3, -50200 °C Accuracy ±1°C
10	NC		

3.7.2 OPTBH OPTION BOARD WIRING SCHEME:

Use shielded cables and connect the cable shield to grounding clamp in the drive. Allowed sensor configurations are shown in the figures below:

3.7.3 OPTBH BOARD PARAMETERS

NOTE! The correct sensor for the correct channel must be selected. Always configure unused channels to 0 = No sensor

Code	Parameter	Min	Max	Unit	Default	ID	Description
7.x.1.1	Sensor 1 type	0	6		0		0 = No Sensor 1 = PT100 2 = PT1000 3 = Ni1000 4 = KTY84 5 = 2 x PT100 6 = 3 x PT100
7.x.1.2	Sensor 2 type	0	6		0		See above
7.x.1.3	Sensor 3 type	0	6		0		See above

3.8 BOARDS OPTF3 AND OPTF4

OPTF3:

Description:	Basic I/O and relay board.
Type ID:	17971
Terminals:	Five terminal blocks; Screw terminals (M3); coding
Dip switches:	5 (see Vacon 100 Installation manual, ch. 6.1.2 for more information)

OPTF4:

53 54 53 54 54 54 55 54 56 500 57 54 58 500 59 200 59 200 50 200 51 200 52 200 53 200 54 200 55 200 55 200 55 200 55 200 55 200 55 200 55 200 56 200 57 200 50 200 50 200 50 200 50 200 50 200 51 200 52 200 53 200 54 200 55 200 56 200		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 10 11 12 13 14 15 16 17 18 19 30 A B 21 22 23 24 25 26 28 29 0 0 0 0 0 0 0 0 9307.emf	
Description:	Basic I/O, relay and thermistor board.	
Type ID:	17972	
Terminals:	Five terminal blocks; Screw terminals (M3); coding	
Dip switches:	5 (see Vacon 100 Installation manual, ch. 6.1.2 for more information)	

NOTE: See detailed technical data on boards OPTF3 and OPTF4 in Vacon 100 Installation manual, ch. 8.2.1!

3.8.1 I/O TERMINALS ON OPTF3 AND OPTF4 BOARDS

0PTF3, 0	OPTF3, OPTF4				
Terminal		Signal			
1	+10 Vref	Reference output			
2	Al1+	Analogue input, voltage or current			
3	Al1-	Analogue input, common (current)			
4	Al2+	Analogue input, voltage or current			
5	Al2-	Analogue input, common (current)			
6	24Vout	24V auxiliary voltage			
7	GND	I/O ground			
8	DI1	Digital input 1			
9	DI2	Digital input 2			
10	DI3	Digital input 3			
11	СМ	Common for DI1 - DI6			
12	24Vout	24V auxiliary voltage			
13	GND	I/O ground			
14	DI4	Digital input 4			
15	DI5	Digital input 5			
16	DI6	Digital input 6			
17	СМ	Common for DI1 - DI6			
18	A01+	Analogue signal (+output)			
19	A01-/GND	Analogue output common			
30	+24Vin	24V auxiliary input voltage			
Α	RS485	Serial bus, negative			
В	RS485	Serial bus, positive			
21	R01/1 NC				
22	R01/2 CM	Relay output 1			
23	R01/3 N0				
24	R02/1 NC				
25	R02/2 CM	Relay output 2			
26	R02/3 N0				

OPTF3:

32	R03/2 CM	Relay output 3
33	R03/3 N0	

OPTF4:

28	TI1+	Thermistor input
29	TI1-	

VACON DRIVEN BY DRIVES

Find your nearest Vacon office on the Internet at:

www.vacon.com

Manual authoring: documentation@vacon.com

Vacon Plc. Runsorintie 7 65380 Vaasa Finland

Subject to change without prior notice © 2012 Vacon Plc.

Order code:

Rev. B