
CUBE — User Manual
Generic Display for Application Performance Data

Version 2.0 / December 5, 2005

Fengguang Song, Felix Wolf

Copyright c© 2005 University of Tennessee
Copyright c© 2005 Forschungszentrum Jülich

Contents

1 Introduction 3

2 Installation 4

2.1 Installing CUBE .. . 4

2.2 Installing CUBE Library only 5

2.3 License . 5

2.4 Libraries Required 5

2.5 Support . 5

3 Using the Display 5

3.1 Basic Principles 6

3.2 GUI Components .7

3.2.1 Tree Browsers . 7

3.2.2 Menu Bar . 8

3.2.3 Color Legend . 10

3.2.4 Status Bar . 10

3.2.5 Context Menus . 10

3.3 Topology Display .. . 11

3.3.1 Menu Bar . 11

4 Performance Algebra 12

4.1 Difference .. 12

4.2 Merge . 13

4.3 Mean . 13

4.4 Implementation .. . 14

4.4.1 Integration of the Performance Space 14

4.4.2 Arithmetic Operation .. . 14

5 Tools 15

5.1 tau2cube .15

6 Creating CUBE Files 15

6.1 CUBE API . 15

6.1.1 Metric Dimension . 16

6.1.2 Program Dimension . 16

6.1.3 System Dimension . 17

6.1.4 Virtual Topologies .. 18

6.1.5 Severity Mapping .18

6.1.6 Miscellaneous . 19

6.2 Typical Usage .. 20

Abstract

CUBE is a generic presentation component suitable for displaying a wide variety of perfor-
mance metrics for parallel programs includingMPI and OpenMP applications. Program per-
formance is represented in a multi-dimensional space including various program and system
resources. The tool allows the interactive exploration of this space in a scalable fashion and
browsing the different kinds of performance behavior with ease.CUBE also includes a library
to read and write performance data as well as operators to compare, integrate, and summarize
data from different experiments. This user manual providesinstructions of how to installCUBE,
how to use the display, how to use the operators, and how to write CUBE files.

1 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a generic presentation component suitable for dis-
playing a wide variety of performance metrics for parallel programs includingMPI [2] and OpenMP

[3] applications.CUBE allows interactive exploration of a multidimensional metric space in a scal-
able fashion. Scalability is achieved in two ways: hierarchical decomposition of individual dimen-
sions and aggregation across different dimensions. All metrics are uniformly accommodated in the
same display and thus provide the ability to easily compare the effects of different kinds of program
behavior.

CUBE has been designed around a high-level data model of program behavior called theCUBE

performance space. TheCUBE performance space consists of three dimensions: a metric dimension,
a program dimension, and a system dimension. The metric dimension contains a set of metrics, such
as communication time or cache misses. The program dimension contains the program’s call tree,
which includes all the call paths onto which metric values can be mapped. The system dimension
contains all the control flows of the program, which can be processes or threads depending on
the parallel programming model. Each point(m,c, l) of the space can be mapped onto a number
representing the actual measurement for metricm while the control flowl was executing call path
c. This mapping is called theseverityof the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric dimension
is organized in an inclusion hierarchy where a metric at a lower level is a subset of its parent, for
example, communication time is below execution time. Second, the program dimension is organized
in a call-tree hierarchy. Flat profiles can be represented asmultiple trivial call trees consisting only
of a single node. Finally, the system dimension is organizedin a multi-level hierarchy consisting of
the levels: machine,SMP node, process, and thread.

CUBE also includes a library to read and write instances of the previously described data model in
the form of anXML file. The file representation is divided into ametadatapart and adatapart. The
metadata part describes the structure of the three dimensions plus the definitions of various program
and system resources. The data part contains the actual severity numbers to be mapped onto the
different elements of the performance space.

3

The display component can load such a file and display the different dimensions of the performance
space using three coupled tree browsers (Figure 1). The browsers are connected so that the user
can view one dimension with respect to another dimension. For example, the user can click on a
particular metric and see its distribution across the call tree. If theCUBE file contains topological
information, the distribution of the performance metric across the topology can be examined using
theCUBE topology view. Furthermore, the display is augmented with asource-code display that can
show the exact position of a call site in the source code.

As performance tuning of parallel applications usually involves multiple experiments to compare the
effects of certain optimization strategies,CUBE includes a new feature designed to simplify cross-
experiment analysis. TheCUBE algebra [4] is an extension of the framework for multi-execution
performance tuning by Karavanic and Miller [1] and offers a set of operators that can be used to
compare, integrate, and summarize multipleCUBE data sets. The algebra allows the combination of
multiple CUBE data sets into a single one that can be displayed like the original ones.

The following sections explain how to installCUBE, how to use the display, how to createCUBE

files, and how to use the algebra and other tools.

2 Installation

CUBE is available as a source-code distribution forUNIX platforms. You can downloadCUBE from:

http://icl.cs.utk.edu/kojak/cube/

Building CUBE requires theXML parser libxml2 and theGUI toolkit wxWidgets.

2.1 Installing CUBE

The full installation includes theCUBE library to createCUBE files, and theCUBE display component
to display their contents.

1. gunzip cube-2.0.tar.gz | tar xvf

2. cd cube-2.0

3. EditMakefile.defs

• Set the variablePREFIX to your desired installation path.

• Depending on the platform, select and uncomment a specific block corresponding to
your operating system. Available options areLINUX , AIX , IRIX , and SOLARIS. To
customize the compiler setting, please edit the following variables:

CCC: C++ compiler. Note that the compiler must be the same as the compiler used for
compilingWXWIDGETS, unless you build the library only.

CCFLAGS: C++ compiler options

LDFLAGS: Linker options

AR: Archive tool (e.g.,ar or CC)

ARFLAGS: Archive tool options

4

4. make

5. make install

2.2 Installing CUBE Library only

The partial installation will build and install only theCUBE library on your system. This is intended
for users who just need to createCUBE file, but need not display it on their machines.

1. Same as steps of 1 to 3 described in the above section.

2. make lib

3. make install-lib

2.3 License

This software is free but by downloading and using it you automatically agree to comply with the
license agreement. You can read the fileLICENSE in the distribution for precise wording.

2.4 Libraries Required

Both libraries listed below are necessary for using theCUBE display component. For those users
who need theCUBE library only, only libxml2 is required to be installed.

• libxml2 (2.5.6), which is an XML C parser and toolkit developed for the Gnome project. It is
pre-installed on many systems. Please refer to the libxml2 web page for details:

http://xmlsoft.org/

• wxWidgets (2.4.2), which is a cross-platform C++ framework for writing advanced GUI
applications using native controls. Please refer to the wxWidgets web page for details:

http://www.wxwidgets.org/

2.5 Support

If you have any question or comments you would like to share with theCUBE developers, please
send e-mails tokojak@cs.utk.edu.

3 Using the Display

This section explains how to use theCUBE display component. After a brief description of the basic
principles, different components of theGUI will be described in detail.

5

3.1 Basic Principles

The CUBE display consists of three tree browsers, each of them representing a dimension of the
performance space (Figure 1). The left tree displays the metric dimension, the middle tree displays
the program dimension, and the right tree displays the system dimension. The nodes in the metric
tree represent metrics. The nodes in the program dimension can have different semantics depending
on the particular view that has been selected. In Figure 1, they represent call paths forming a call
tree. The nodes in the system dimension represent machines,nodes, processes, or threads from top
to bottom.

Users can perform two types of actions: selecting a node or expanding/collapsing a node. The
currently selected nodes from each tree are highlighted andreported in the status bar.

Figure 1:CUBE display window.

Each node is associated with a metric value, which is called theseverityand is displayed simultane-
ously using a numerical value as well as a colored square. Colors enable the easy identification of
nodes of interest even in a large tree, whereas the numericalvalues enable the precise comparison of
individual values. The sign of a value is visually distinguished by the relief of the colored square. A
raised relief indicates a positive sign, a sunken relief indicates a negative sign. Figure 6 shows nodes
with positive and negative signs. Negative values can appear as a result of applying the algebra’s
difference operator (Section 4.1) to two data sets.

A value shown in the metric tree represents the sum of a particular metric for the entire program,
that is, across all call paths and the entire system. A value shown in the call tree represents the sum
of the selected metric across all processes or threads for a particular call path. A value shown in the
system tree represents the selected metric for the selectedcall path and a particular system resource.
Briefly, a tree is always an aggregation of all of its neighbortrees to the right. If there are multiple
call trees,CUBE has two options to compute the overall severity for a particular metric. Either it

6

can calculate the sum of all call trees (i.e., their root nodes in collapsed state) or their maximum. If
CUBE is unable to determine the correct mode it will ask the user.

Note that all the hierarchies inCUBE are inclusion hierarchies, meaning that a child node represents a
part of the parent node. For example, the metric hierarchy might display cache misses as a child node
of cache accesses because the former event is a subset of the latter event. Similarly, in Figure 2 the
call pathmaincontains the call pathsmain-fooandmain-baras child nodes because their execution
times are included in their parent’s execution time.

The severity displayed inCUBE follows the principle ofsingle representation, that is, within a tree
each fraction of the severity is displayed only once. The purpose of this display strategy is to
have a particular performance problem to appear only once inthe tree and, thus, help identify it
more quickly. Therefore, the severity displayed at a node depends on the node’s state, whether it
is expanded or collapsed. The severity of a collapsed node represents the whole subtree associated
with that node, whereas the severity of an expanded node represents only the fraction that is not
covered by its descendants because the severity of its descendants is now displayed separately. We
call the former oneinclusiveseverity, whereas we call the latter oneexclusiveseverity.

 10 main

 30 foo

 60 bar

100 main

Figure 2: Node of the call tree in collapsed or expanded state.

For instance, a call tree may have a nodemainwith two childrenmain-fooandmain-bar(Figure 2).
In the collapsed state, this node is labeled with the time spent in the whole program. In the expanded
state it displays only the fraction that is spent neither infoonor inbar. Note that the label of a node
does not change when it is expanded or collapsed, even if the severity of the node changes from
exclusive to inclusive or vice versa.

3.2 GUI Components

The GUI consists of a menu bar, three tree browsers, a color legend, and a status bar. In addition,
some tree browsers provides a context menu associated with each node that can be used to access
node-specific information.

3.2.1 Tree Browsers

The tree browsers are controlled by the left and right mouse buttons. The left mouse button is used
to select or expand/collapse a node. The right mouse button is used to pop up a context menu with
node-specific information, such as online documentation. Context menus are only available for the
metric and program trees.

A label in the metric tree shows a metric name. A label in the call tree shows the last callee of
a particular call path. If you want to know the complete call path, you must read all labels from
the root down to the particular node you are interested in. After switching to the module-profile
or region-profile view (see below), labels in the middle treedenote modules or regions depending
on their level in the tree. A label in the system tree shows thename of the system resource it
represents, such as a node name or a machine name. Processes and threads are usually identified by

7

a number, but it is possible to give them specific names when creating aCUBE file. The thread level
of single-threaded applications is hidden. Note that all trees can have multiple root nodes.

Figure 3:CUBE menu bar.

3.2.2 Menu Bar

The menu bar consists of three menus, a file menu, a view menu, and a help menu.

File
The file menu can be used to open and close a file and to exitCUBE. It also allows users to
add additional mirrors to the existing ones.

View
The view menu (Figure 3) can be used to alter the way the program dimension is displayed, to
change the number representation for the entire display, orto hide positive or negative values.

After opening a data set the middle panel shows the call tree of the program — unless the data
set contains a flat profile. However, a user might wish to know which fraction of a metric can
be attributed to a particular region regardless of from where it was called. In this case, the user
can switch from the call-tree mode (default) to the module-profile mode or the region-profile
mode (Figure 4). In the module-profile mode, the call-tree hierarchy is replaced with a source-
code hierarchy consisting of three levels: module, region,and subregions. The subregions,
if applicable, are displayed as a single child node labeledsubregions. A subregionsnode
represents all regions directly called from the region above. In this way, the user is able to see
which fraction of a metric is associated with a region exclusively, that is, without its regions
called from there. The region-profile mode is similar to the module-profile mode except that
modules are not shown.

The severity can be displayed in four different ways: as anabsolute value(default), aper-
centage, a relative percentage, or as acomparative percentage. The absolute value is the real
value measured. When displaying a value as a percentage, thepercentage refers to the value

8

shown at the root of the metric tree when it is in collapsed state. However, both absolute mode
and percentage mode have the disadvantage that values can become very small the more you
go to the right, since aggregation occurs from right to left.To avoid this problem, the user can
switch to relative percentages. Then, a percentage in the right or middle tree always refers to
the selection in the neighbor to the left, that is, a percentage in the system dimension refers
to the selection in the program dimension and a percentage inthe program dimension refers
to the selected metric dimension. In this mode the percentages in the middle and right tree
always sum up to one hundred percent. Figure 4 shows a region profile with relative percent-
ages. Furthermore, to facilitate the comparison of different experiments, users can choose the
comparative percentage mode to display percentages relative to another data set. The com-
parative percentage mode is basically like the normal percentage mode except that the value
equal to 100% is determined by another data set. Note that in the absolute mode, all values
are displayed in scientific notation. To prevent clutteringthe display, only the mantissa is
shown at the nodes with the exponent displayed at the color legend.

If one or more virtual topologies have been defined in theCUBE file, theTopologymenu item
is enabled. Otherwise it is disabled. After selectingTopology, the Cartesian-selection dialog
pops up if theCUBE file has multiple topologies. Through this dialog, users canchoose a
specific topology view to display in a topology window. Each topology is displayed in a
separate window. Please refer to Section 3.3 for detailed information.

Finally, to help users distinguish between positive and negative values more easily, users can
hide either positive or negative values.

Help
Currently, the help menu provides only an About dialog with release information.

Figure 4:CUBE module profile.

9

3.2.3 Color Legend

The color is taken from a spectrum ranging from blue to red representing the whole range of possible
values. To avoid an unnecessary distraction, insignificantvalues close to zero are displayed in dark
gray. Exact zero values just have the background color. Depending on the severity representation,
the color legend shows a numeric scale mapping colors onto values.

3.2.4 Status Bar

The left section showingm×n indicates that there arem processes and for each process there are
at mostn threads in the execution. The right section reports the currently selected nodes from each
tree and the value of the last-selected node (with percentage of total).

3.2.5 Context Menus

The metric and program dimensions provide a context menu that can be used to obtain specific
information on each node. The context menu is accessible viathe right mouse button. It displays
all or a subset of the options described below.

The call tree has a context menu consisting of two levels. Thefirst-level menu items areCall site
andCalled region. Choosing theCall sitemenu shows the information related to the call site, and
choosing theCalled regionmenu shows the information related to the region being called by the
call site (i.e., the callee).

Location: Displays the source-code location of a program resource in textual form (i.e., at which
line and in what module). In the module-profile and region-profile modes, it always refers
to the location of its associated region. In the call-tree mode, a call-tree node is usually
associated with two entities: a callsite and the region called by the callsite. By entering a
specific level of the context menu:Callsiteor Called region, users are able to check either the
associated call site’s or the called region’s location. Forthe call site, it shows the call site’s
location where it has been called or its calling region’s location if the line number of the call
site is undefined. For the called region, it shows the location of the region being called by the
call site.

Source code: Displays and highlights the source code of a program resource in the source code
browser. In the module-profile and region-profile modes, it always shows and highlights the
source code of its associated region. In the call-tree mode,since each call-tree node has a
context menu of two levels, by choosing theCall site menu it displays and highlights the
source code of the call site or the block of source code of the calling region. And by choosing
theCalled regionmenu it displays and highlights the block of code of the region being called
by the call site. Note that not all data sets provide sufficient line-number information to show
the correct section of the source code.

Online description: Both metrics and regions can be linked to an online description. For ex-
ample, metrics might point to an online documentation explaining their semantics, or regions
representing library functions might point to the corresponding library documentation.

Info: A brief description of metrics or regions supplied by theCUBE data set.

10

3.3 Topology Display

In many parallel applications, each process (or thread) communicates only with a limited number of
processes. The parallel algorithm divides the applicationdomain into smaller chunks known as sub
domains. A process usually communicates with processes owning sub domains adjacent to its own.
The mapping of data onto processes and the neighborhood relationship resulting from this mapping
is calledvirtual topology. Many applications use one or more virtual topologies (Figure 5) specified
as one-, two- or three- dimensional Cartesian grids. TheCUBE topology display shows performance
data mapped onto the Cartesian topology of the application.The corresponding grid is specified by
two parameters: number of dimensions and size of each dimension

Figure 5: Topology display

The display consists of a menu bar and
the actual Cartesian grid. The Cartesian
grid is presented by planes stacked on top
of each other in a three dimensional pro-
jection. The number of planes depends
on the number of dimensions in the grid.
Each plane is divided into squares. The
number of squares depends on the dimen-
sion size. Each square represents a system
resource (e.g a process) of the application
and has a coordinate associate with it.

The grid displays the severity of the se-
lected metric in the selected call path for
each system resource participating in the
application’s topology. The severity is
represented as a color. A system resource
might not be a part of the application’s
virtual topology or may have a zero value for a metric. Therefore, it is sometimes possible to
have some uncolored squares in the grid picture.

3.3.1 Menu Bar

The menu bar consists of four menus: a view menu, a geometry menu, a zoom menu and, a colors
menu.

View: The view menu can be used to choose one of the three possible orientations of the grid. The
coordinate axes at the bottom of the picture indicate the direction of X, Y and Z dimensions
in the three-dimensional space. In case of one- or two- dimensional grids, users are provided
with only one orientation of the grid.

Geometry: Due to varying dimension sizes, planes in the grid might overlap with each other and
the size of the squares might be too small to recognize their color. This may pose a problem
for the user to view the topology information effectively. The geometry menu circumvents
this problem by providing options to scale the picture in various ways. TheAngleoption helps
the user to adjust the skew of the three-dimensional projection. ThePlane Distanceoption
helps to adjust the inter-plane distance. ThePlane Lengthoption helps users scale the area of
each plane.

11

Zoom: The zoom menu can be used to zoom-in or zoom-out on the grid.

Colors: The colors menu can be used to modify the text color and the background color of the
topology display. Finally, there are two resolution modes to choose from. TheLow Resolution
mode assigns colors to the squares according to the severityvalues shown in the system
dimension. Often, these values have small variations from each other and do not help the user
to study the relative distribution of severities across thegrid. To exploit the entire spectrum of
available colors and to enable the user to study the relativedistribution of severities, aHigh
Resolutionmode is provided. This mode highlights the minute differences between severity
values of the system resources. Severity values of zero are assigned the background color of
the display. This mode has its own color legend showing the minimum and maximum values
for the selected severities across the grid. These values can be absolute values, percentages,
or relative percentages depending on theCUBE view mode.

4 Performance Algebra

As performance tuning of parallel applications usually involves multiple experiments to compare
the effects of certain optimization strategies,CUBE offers a mechanism calledperformance algebra
that can be used to merge, subtract, and average the data fromdifferent experiments and and view
the results in the form of a single “derived” experiment. Using the same representation for derived
experiments and original experiments provides access to the derived behavior based on familiar
metaphors and tools in addition to an arbitrary and easy composition of operations. The algebra is
an ideal tool to verify and locate performance improvementsand degradations likewise. The algebra
includes three operatorsdiff, merge, andmeanprovided as command-line utilities which take two or
moreCUBE files as input and generate anotherCUBE file as output. The operations are closed in the
sense that the operators can be applied to the results of previous operations. Note that although all
operators are defined for any validCUBE data sets, not all possible operations make actually sense.
For example, whereas it can be very helpful to compare two versions of the same code, computing
the difference between entirely different programs is unlikely to yield any useful results.

4.1 Difference

Changing a program can alter its performance behavior. Altering the performance behavior means
that different results are achieved for different metrics.Some might increase while others might
decrease. Some might rise in certain parts of the program only, while they drop off in other parts.
Finding the reason for a gain or loss in overall performance often requires considering the perfor-
mance change as a multidimensional structure. WithCUBE’s difference operator, a user can view
this structure by computing the difference between two experiments and rendering the derived re-
sult experiment like an original one. The difference operator takes two experiments and computes a
derived experiment whose severity function reflects the difference between the minuend’s severity
and the subtrahend’s severity.

Figure 6 shows the difference betweenKOJAK [5] analysis results obtained from the original and an
optimized version of a nano-particle simulation. Raised reliefs indicate performance improvements,
and sunken reliefs indicate performance degradations. Thefigure indicates that a certain optimiza-
tion was only partially successful because some of the wait states migrated to other locations in the
program instead of disappearing.

12

Usage: cube diff <minuend> <subtrahend> [-o <output>]

The default output file name isdiff.cube.

Figure 6: A derived experiment computed usingcube diff.

4.2 Merge

The merge operator’s purpose is the integration of performance data from different sources. Often a
certain combination of performance metrics cannot be measured during a single run. For example,
certain combinations of hardware events cannot be counted simultaneously due to hardware resource
limits. Or the combination of performance metrics requiresusing different monitoring tools that
cannot be deployed during the same run. The merge operator takes an arbitrary number ofCUBE

experiments with a different or overlapping set of metrics and yields a derivedCUBE experiment
with a joint set of metrics.

Usage: cube merge [-n] <op1> <op2> ... <opN> [-o <output>]

The default output file name ismerge.cube. The-n option reverts to a simpler merge mode,
which was the former merge mode, that doesn’t respect relationships between metrics.

4.3 Mean

The mean operator is intended to smooth the effects of randomerrors introduced by unrelated system
activity during an experiment or to summarize across a rangeof execution parameters. The user can
conduct several experiments and create a single average experiment from the whole series. The
mean operator takes an arbitrary number of arguments.

Usage: cube mean <op1> <op2> ... <opN> [-o <output>]

The default output file name ismean.cube.

13

4.4 Implementation

The actions performed by the operators can be divided into two subtasks: integration of the perfor-
mance space followed by the actual arithmetic operation.

4.4.1 Integration of the Performance Space

The integration of two or more performance spaces consists of three separate parts: merging the
metric dimension, merging the program dimension, and merging the system dimension. Merging
metric trees and call trees works very similar to the structural merge operator in [1]. While traversing
from the roots to the leaves,CUBE tries to match up the nodes. Nodes that cannot be matched are
separately included in the new performance space, whereas nodes that can be successfully matched
become shared nodes, that is, they appear as a single node in the new space.

Merging the system dimension is slightly different. There are four levels with different mean-
ings: machine, node, process, and thread. First, processesand threads are matched based on their
application-level identifiers, for example, their globalMPI rank andOpenMP thread number. Next,
CUBE examines whether the partitioning of processes into nodes is compatible between the two
operands. If compatible,CUBE copies the entire node and machine hierarchy including the corre-
sponding process-node mapping of one of the operands into the result. Otherwise it collapses the
machine and node level into a single machine and a single node.

4.4.2 Arithmetic Operation

After performance-space integration, a new severity function is computed whose domain is the
integrated space. An element-wise operation is performed on pairs of input arrays. To be able
to perform an element-wise operation, the operand’s severity function is extended with respect to
the integrated metadata so that it is defined for every tuple (metric, call path, thread) of the new
metadata. This is done by assigning zero to previously undefined tuples. For example, a call path
occurring in one metadata set might not occur in another. If this happens the resulting value for this
call path will be set to zero in those experiments that didn’tcontain the call path before.

In the case of the difference or the mean operators, the element-wise operation is just a subtraction
or arithmetic mean operation, respectively. In the case of the merge operatorCUBE makes a simple
case distinction. Recall that the purpose of doing the mergeoperation is to integrate performance ex-
periments with different metrics. For example, one experiment counts floating point operations, and
the other one counts cache misses, since we might not be able to count both of them simultaneously.

Since the two counter measurements are disjoint, these two experiments can be merged by a simple
join of the two metric trees, which formerly was the default merge behavior. So, if the metric is
provided only by one experiment,CUBE takes the data from that experiment, and if it is provided
by both experiments,CUBE takes it from the first one (without loss of generality).

With counter metric hierarchies composed of multiple measured metrics, a more sophisticated
merge is required, which is the new default behavior (and should make no difference to non-counter
experiments). The merge should respect the special characteristics (i.e., relationships) between com-
posed and measured counter metrics. Where a metric is derived by composition of several measured
counter metrics, it will be a complete derivation if all constituents are available, and only partially
complete if one or more constituents are unavailable: partially complete metrics are distinguished

14

by prepending the special character ‘∼’ to their name. These partially complete derivations can be
improved during merging, if the required constituents are available from another experiment, by
accumulating all of the partial metrics. Additionally, some compositions may also be measured di-
rectly, where appropriate counters exists, and in these cases, the measured metric values are prefered
over (possibly inaccurate or incomplete partial) compositions.

5 Tools

5.1 tau2cube

TAU is designed to provide a framework for integrating program and performance analysis tools and
components. Using the tool oftau2cube, TAU profiles are able to be converted to theCUBE format.

Usage: tau2cube [<tau-profile-dir>] [-o <output>]

The first parameter is theTAU profile directory. The second parameter is the name of the
output CUBE file. The default for<tau-profile-dir> is the current directory and the default
output file name isa.cube.

Limitations:

• Converts only flat, two-level (one level more than flat), or full call path profiles (all callers up
to main).

• The main function must be included and every other function must be called from within
main. Static initializers outside the main function are notsupported.

6 Creating CUBE Files

The CUBE data format in anXML instance [6]. The correspondingXMLSchema specification [7]
can be found indoc/cube.xsd in theCUBE distribution. TheCUBE library provides an interface to
createCUBE files. It is a simple class interface and includes only a few methods. This section first
describes theCUBE API and then presents a simple C++ program as an example of how to use it.

6.1 CUBE API

The class interface defines aclass Cube. The class provides a default constructor and sixteen
methods. The methods are divided into four groups. The first three groups are used to define the
three dimensions of the performance space and the last groupis used to enter the actual data. In
addition, an output operator<< to write the data to a file is provided.

The methods used to create the different entities of the performance space always return aconst
object pointer which can be used for further reference.

15

6.1.1 Metric Dimension

This group refers to the metric dimension of the performancespace. It consist of a single method
used to build metric trees. Each node in the metric tree represents a performance metric. Met-
rics have different units of measurement. The unit can be either “sec” (i.e., seconds) for time
based metrics, such as execution time, or “occ” (i.e., occurrences) for event-based metrics, such as
floating-point operations. During the establishment of a metric tree, a child metric is usually more
specific than its parent, and both of them have same unit of measurement. Thus, a child performance
metric has to be a subset of its parent metric (e.g., system time is a subset of execution time).

const Metric* def met (string name, string uom, string val,
string url, string descr, const Metric* parent);

Returns a metric with namename and descriptiondescr. uom specifies the unit of mea-
surement, which is either “sec” for seconds or “occ” for number of occurrences.val is an
(optional) default metric severity value: if “VOID” no value data is defined, if “ZERO” value
data is defined to be all zero-valued, otherwise severity value data should be provided using
set sev() (see Section 6.1.5).parent is a previously created metric which will be the new
metric’s parent. To define a root node, useNULL instead.url is a link to anHTML page de-
scribing the new metric in detail. If you want to mirror the page at several locations, you can
use the macro @mirror@ as a prefix, which will be replaced by an available mirror defined
usingdef mirror() (see Section 6.1.6).

6.1.2 Program Dimension

This group refers to the program dimension of the performance space. The entities presented in this
dimension aremodule, region, call site, andcall-tree node(i.e., call paths). A module is a source
file, which can contain several code regions. A region can be afunction, a loop, or a basic block.
Each region can have multiple call sites from which the control flow of the program enters a new
region. Although we use the term call site here, any place that causes the program to enter a new
region can be represented as a call site, including loop entries. Correspondingly, the region entered
from a call site is calledcallee, which might as well be a loop. Every call-tree node points toa call
site. The actual call path represented by a call-tree node can be derived by following all the call sites
starting at the root node and ending at the particular node ofinterest. Therefore, before defining a
call-tree node, the necessary call sites, callees, and modules have to be defined. The user can chose
among three ways of defining the program dimension:

1. Call tree with line numbers

2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes point to call sites. A call tree without
line numbers is defined as a tree whose nodes point to regions (i.e., the callees). A flat profile is
simply defined as a set of regions, that is, no tree has to be defined.

const Module* def module (string name);

Returns a new module with module namename, which can be either a complete path or a file
name.

16

const Region* def region (string name, long begln, long endln,
string url, string descr,
const Module* mod);

Returns a new region with region namename and descriptiondescr. The region is located
in the modulemod and exists from linebegln to line endln. url is a link to anHTML page
describing the new region in detail. For example, if the region is a library function, theurl
can point the documentation. If you want to mirror the page atseveral locations, you can
use the macro @mirror@ as a prefix, which will be replaced by an available mirror defined
usingdef mirror() (see Section 6.1.6).

const Callsite* def csite (const Module* mod, int line,
const Region* callee);

Returns a new a call site located at the lineline of the modulemod. The call site calls the
calleecallee (i.e., a previously defined region).

const Cnode* def cnode (const Callsite* csite,
const Cnode* parent);

Returns a new call-tree node representing a call from call site csite. parent is a previously
created call-tree node which will be the new one’s parent. Todefine a root node, useNULL
instead. This method is used to create a call tree with line numbers.

const Cnode* def cnode (const Region* region,
const Cnode* parent);

Defines a new call-tree node representing a call to the regionregion. parent is a previously
created call-tree node which will be the new one’s parent. Todefine a root node, useNULL
instead. Note that different from the previousdef cnode(), this method is used to create a
call-tree without line numbers where each call-tree node points to a region, instead of a call
site.

To define a call tree with line numbers usedef csite() anddef cnode(const Callsite*...).
To define a call tree without line numbers usedef cnode(const Region*...). To create a flat
profile use neither one — just defining a set of regions will be sufficient.

6.1.3 System Dimension

This group refers to the system dimension of the performancespace. It reflects the system resources
on which the program is using at runtime. The entities present in this dimension aremachine, node,
process, and thread, which populate four levels of the system hierarchy in the given order. That
is, the first level consists of machines, the second level of nodes, and so on. Finally, the last (i.e.,
leaf) level is populated only by threads. The system tree is built in a top-down way starting with a
machine. Note that even if every process has only one thread,users still need to define the thread
level.

const Machine* def mach (string name);

Returns a new machine with the namename.

const Node* def node (string name, const Machine* mach);

Returns a new (SMP) node which has the namename and which belongs to the machinemach.

17

const Process* def proc (string name, int rank,
const Node* node);

Returns a new process which has the namename and the rankrank. The rank is a number
from 0− (n−1), wheren is the total number of processes.MPI applications may use the rank
in MPI COMM WORLD. The process runs on the nodenode.

const Thread* def thrd (string name, int rank,
const Process* proc);

Defines a new thread which has the namename and the rankrank. The rank is a number
from 0− (n− 1), wheren is the total number of threads spawned by a process. OpenMP

applications may use the OpenMP thread number. The thread belongs to the processproc.

6.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relationships among machines,SMP nodes, pro-
cesses or threads. A topology usually consists of a single class of entities such as threads or pro-
cesses. TheCUBE API provides a set of functions to create Cartesian topologies and to define the
machine/SMP node/process/thread mappings onto coordinates. Note thatthe definition of virtual
topologies is optional.

const Cartesian* def cart (long ndims, const vector<long>& dimv,
const vector<bool>& periodv);

Defines a new Cartesian topology.ndims anddimv specify the number of dimensions and the
size of each dimension.periodv specifies the periodicity for each dimension. Currently, the
maximum value forndims is three.

void def coords (const Cartesian* cart, const Location* loc,
const vector<long>& coordv);

Maps a specific location onto a Cartesian coordinate. The location loc may be a machine,
SMP node, process or a thread. It is not recommended to map a mixedset of entities onto
one topology (e.g., machines and threads are located in the same topology). The parameter
of cart has been defined by the abovedef cart() method.

6.1.5 Severity Mapping

After the establishment of performance space, users can assign severity values to points of the
space. Each point is identified by a tuple(met, cnode, thrd). The value should be inclusive
with respect to the metric, but exclusive with respect to thecall-tree node, that is it should not cover
its children. Taking Figure 2 as an example, this means that if the value refers tomainthen it should
not includemain-fooor main-bar. The default severity value for the data points left undefined is
zero. Thus, users only need to define non-zero data points.

void set sev (const Metric* met, const Cnode* cnode,
const Thread* thrd, double value);

Assigns the valuevalue to the point(met, cnode, thrd).

void add sev (const Metric* met, const Cnode* cnode,
const Thread* thrd, double value);

18

Adds the valuevalue to the present value at point(met, cnode, thrd).

The previous two methodsset sev() andadd sev() are intended to be used when the program
dimension contains a call tree and not a flat profile. As the flatprofile does not require the definition
of call-tree nodes, the following two functions should be used instead:

void set sev (const Metric* met, const Region* region,
const Thread* thrd, double value);

Assigns the valuevalue to the point(met, region, thrd).

void add sev (const Metric* met, const Region* region,
const Thread* thrd, double value);

Adds the valuevalue to the present value at point(met, region, thrd).

6.1.6 Miscellaneous

Often users may want to define some information related to theCUBE file itself, such as the creation
date, experiment platform, and so on. For this purpose,CUBE allows the definition of arbitrary
attributes in everyCUBE data set. An attribute is simply a key-value pair and can be defined using
the following method:

void def attr (string key, string value);

Assigns the valuevalue to the attributekey.

There is one predefined attributeCUBE CT AGGR with valuesMAX andSUM to stipulate the aggre-
gation mode applied in the presence of multiple call trees (Section 3.1). If this attribute is defined
CUBE will use the specified mode and suppress the input dialog.

Figure 7: Display ofexample.cube

CUBE allows using multiple mirrors for the online documentationassociated with metrics and re-
gions. Theurl expression supplied as an argument fordef metric() and def region() can
contain a prefix@mirror@. When the online documentation is accessed,CUBE can substitute all
mirrors defined for the prefix until a valid one has been found.If no valid online mirror can be
found,CUBE will substitute the./doc directory of the installation path for@mirror@.

void def mirror (string mirror);

Defines the mirrormirror as potential substitution for theURL prefix@mirror@.

19

1 void foo() {
...

10 }
11 void bar() {

...
20 }
21 int main(int argc, char* argv) {

...
60 foo();

...
80 bar();

...
100 }

Figure 8: Target-application source codeexample.c

6.2 Typical Usage

A simple C++ program is given to demonstrate how to use theCUBE write interface. Figure 7 shows
the correspondingCUBE display. The source code of the target application is provided in Figure 8.

// A C++ example using CUBE write interface
int main(int argc, char* argv[]) {
// Declarations (All const class pointers)

...

Cube cube;

// specify mirrors (optional)
cube.def_mirror("http://icl.cs.utk.edu/software/kojak/");
cube.def_mirror("http://www.fz-juelich.de/zam/kojak/");

// specify information related to the file (optional)
cube.def_attr("experiment time", "November 1st, 2004");
cube.def_attr("description", "a simple example");

// build metric tree
met0 = cube.def_met("Time", "sec", "",

"@mirror@patterns-2.2.html#execution",
"root node", NULL); // using mirror

met1 = cube.def_met("User time", "sec", "",
"http://www.cs.utk.edu/usr.html",
"2nd level", met0); // without using mirror

met2 = cube.def_met("System time", "sec", "",
"http://www.cs.utk.edu/sys.html",
"2nd level", met0); // without using mirror

// build a call tree with line numbers
mod = cube.def_module("/ICL/CUBE/example.c");

20

regn0 = cube.def_region("main", 21, 100, "", "1st level", mod);
regn1 = cube.def_region("foo", 1, 10, "", "2nd level", mod);
regn2 = cube.def_region("bar", 11, 20, "", "2nd level", mod);

// When creating flat profiles, you do not need
// define call sites and call-tree nodes.
csite0 = cube.def_csite(mod, 21, regn0);
csite1 = cube.def_csite(mod, 60, regn1);
csite2 = cube.def_csite(mod, 80, regn2);
cnode0 = cube.def_cnode(csite0, NULL);
cnode1 = cube.def_cnode(csite1, cnode0);
cnode2 = cube.def_cnode(csite2, cnode0);
/* If creating call trees without line numbers,

put a region as the 1st argument in the
above def_cnode()’s and don’t define csites */

// build system tree
mach = cube.def_mach("msc");
node = cube.def_node("athena", mach);
proc = cube.def_proc("Process 0", 0, node);
thrd0 = cube.def_thrd("Thread", 0, proc);
thrd1 = cube.def_thrd("Thread", 1, proc);

// build a 2D Cartesian topology (a 5x5 grid)
int ndims = 2;
vector<long> dimv;
vector<bool> periodv;
dimv.push_back(5);
dimv.push_back(5);
periodv.push_back(0);
periodv.push_back(0);
const Cartesian* cart = cube.def_cart(ndims, dimv, periodv);
vector<long> coord0, coord1;
coord0.push_back(0);
coord0.push_back(0);
coord1.push_back(3);
coord1.push_back(3);
// map the two threads onto the above 2 coordinates.
cube.def_coords(cart, thrd0, coord0);
cube.def_coords(cart, thrd1, coord1);

// severity mapping
cube.set_sev(met0, cnode0, thrd0, 4);
cube.set_sev(met0, cnode0, thrd1, 4);
cube.set_sev(met0, cnode1, thrd0, 4);
cube.set_sev(met0, cnode1, thrd1, 4);
cube.set_sev(met0, cnode2, thrd0, 4);
cube.set_sev(met0, cnode2, thrd1, 4);
cube.set_sev(met1, cnode0, thrd0, 1);
cube.set_sev(met1, cnode0, thrd1, 1);
cube.set_sev(met1, cnode1, thrd0, 1);
cube.set_sev(met1, cnode1, thrd1, 1);
cube.set_sev(met1, cnode2, thrd0, 1);
cube.set_sev(met1, cnode2, thrd1, 1);

21

cube.set_sev(met2, cnode0, thrd0, 1);
cube.set_sev(met2, cnode0, thrd1, 1);
cube.set_sev(met2, cnode1, thrd0, 1);
cube.set_sev(met2, cnode1, thrd1, 1);
cube.set_sev(met2, cnode2, thrd0, 1);
cube.set_sev(met2, cnode2, thrd1, 1);

// when creating a flat profile, put a region as the 2nd argument in
// the above set_sev() calls

// write output to a file
ofstream out;
out.open("example.cube");
out << cube;

}

References

[1] K. L. Karavanic and B. Miller. A Framework for Multi-Execution Performance Tuning.Parallel
and Distributed Computing Practices, 4(3), September 2001. Special Issue on Monitoring
Systems and Tool Interoperability.

[2] Message Passing Interface Forum.MPI: A Message Passing Interface Standard, June 1995.
http://www.mpi-forum.org.

[3] OpenMP Architecture Review Board.OpenMP Application Program Interface — Version 2.5,
May 2005.http://www.openmp.org.

[4] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An Algebra for Cross-Experiment
Performance Analysis. InProc. of ICPP 2004, pages 63–72, Montreal, Canada, August 2004.

[5] F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP applications.
Journal of Systems Architecture, 49(10-11):421–439, 2003. Special Issue “Evolutions in paral-
lel distributed and network-based processing”.

[6] World Wide Web Consortium.Extensible Markup Language (XML) 1.0 (Second Edition), Oc-
tober 2000.http://www.w3.org/TR/REC-xml.

[7] World Wide Web Consortium.XML Schema Part 0, 1, 2, May 2001. http://www.w3.org/
XML/Schema#dev.

22

