CUBE — User Manual

Generic Display for Application Performance Data

Version 2.0 / December 5, 2005

Fengguang Song, Felix Wolf

Copyright© 2005 University of Tennessee
Copyright© 2005 Forschungszentrum Julich

Contents

1

Introduction

Installation

2.1
2.2
2.3
2.4
2.5

InstalingCUBE
Installing CUBE Libraryonly
License e
LibrariesRequired,

Support ... e e e

Using the Display

3.1
3.2

3.3

Basic Principles oo
GUIComponents e
3.21 TreeBrowsers
3.22 MenuBar........ 0.
3.23 ColorLegend
3.24 StatusBar.
3.25 ContextMenus
Topology Display
331 MenuBar..............

Performance Algebra

4.1
4.2
4.3
4.4

Difference

Implementation,

4.4.1 Integration of the Performance Space

4.4.2 ArithmeticOperation

Tools

5.1

tau2cube e

Creating CUBE Files

6.1

CUBEAPI e
6.1.1 MetricDimension

6.1.2 Program Dimension

6.1.3 SystemDimension 7 1

6.1.4 \Virtual Topologies e 18
6.1.5 SeverityMapping e 18
6.1.6 Miscellaneous 91
6.2 TypicalUsage e e e e 20
Abstract

CUBE is a generic presentation component suitable for disptpgtiwide variety of perfor-
mance metrics for parallel programs includimgi and Opemp applications. Program per-
formance is represented in a multi-dimensional space dttpvarious program and system
resources. The tool allows the interactive explorationhig space in a scalable fashion and
browsing the different kinds of performance behavior widis& CUBE also includes a library
to read and write performance data as well as operators tpa@nintegrate, and summarize
data from different experiments. This user manual proviigtsuctions of how to instaltUBE,
how to use the display, how to use the operators, and how te @uBE files.

1 Introduction

cuBk (CUBE Uniform Behavioral Encoding) is a generic presentattomponent suitable for dis-
playing a wide variety of performance metrics for parallegrams includingvpi [2] and OpemP
[3] applications.cuBE allows interactive exploration of a multidimensional niespace in a scal-
able fashion. Scalability is achieved in two ways: hieramahdecomposition of individual dimen-
sions and aggregation across different dimensions. Altioseare uniformly accommodated in the
same display and thus provide the ability to easily comgaeeffects of different kinds of program
behavior.

CUBE has been designed around a high-level data model of progedravior called thecuBe
performance spaceélhecuBE performance space consists of three dimensions: a matmi&rgion,

a program dimension, and a system dimension. The metriadiiore contains a set of metrics, such
as communication time or cache misses. The program dinregsiatains the program’s call tree,
which includes all the call paths onto which metric values ba mapped. The system dimension
contains all the control flows of the program, which can becesses or threads depending on
the parallel programming model. Each poim,c,|) of the space can be mapped onto a number
representing the actual measurement for metrighile the control flom was executing call path

¢. This mapping is called thgeverityof the performance space.

Each dimension of the performance space is organized inrarbigy. First, the metric dimension

is organized in an inclusion hierarchy where a metric at elovel is a subset of its parent, for
example, communication time is below execution time. Sd¢ctire program dimension is organized
in a call-tree hierarchy. Flat profiles can be representadudsple trivial call trees consisting only

of a single node. Finally, the system dimension is organizedmulti-level hierarchy consisting of

the levels: machinegsmpP node, process, and thread.

CUBE also includes a library to read and write instances of theipusly described data model in
the form of anxmL file. The file representation is divided intav@etadatgpart and alatapart. The
metadata part describes the structure of the three dinrenplas the definitions of various program
and system resources. The data part contains the actuaitpenenbers to be mapped onto the
different elements of the performance space.

The display component can load such a file and display therdift dimensions of the performance
space using three coupled tree browsers (Figure 1). Theskrsvare connected so that the user
can view one dimension with respect to another dimensiom.ekample, the user can click on a
particular metric and see its distribution across the caé.t If thecuse file contains topological
information, the distribution of the performance metricass the topology can be examined using
thecuBEtopology view. Furthermore, the display is augmented wibwace-code display that can
show the exact position of a call site in the source code.

As performance tuning of parallel applications usuallylmes multiple experiments to compare the
effects of certain optimization strategiesyBE includes a new feature designed to simplify cross-
experiment analysis. TheuBE algebra [4] is an extension of the framework for multi-exemu
performance tuning by Karavanic and Miller [1] and offerse& af operators that can be used to
compare, integrate, and summarize multipleBe data sets. The algebra allows the combination of
multiple CUBE data sets into a single one that can be displayed like thenatignes.

The following sections explain how to instatluBg, how to use the display, how to create@BE
files, and how to use the algebra and other tools.

2 Installation

CUBE s available as a source-code distributiondonx platforms. You can downloaduse from:
http://icl.cs.utk.edu/kojak/ cube/

Building cuBE requires thexmL parser libxml2 and theui toolkit wxWidgets.

2.1 Installing CUBE

The full installation includes theuse library to createcuBkefiles, and thecusEe display component
to display their contents.

1. gunzip cube-2.0.tar.gz | tar xvf
2. cd cube-2.0
3. EditMakefile. defs

e Set the variabl®REFI X to your desired installation path.

e Depending on the platform, select and uncomment a speciickbitorresponding to
your operating system. Available options anelux, AIX, IRIX, and SOLARIS. To
customize the compiler setting, please edit the followiagables:

CCC. C++ compiler. Note that the compiler must be the same as thpiter used for
compilingwxWIDGETS, unless you build the library only.

CCFLAGS: C++ compiler options

LDFLAGS: Linker options

AR Archive tool (e.g.ar or CC)

ARFLAGS: Archive tool options

4. make

5. make install

2.2 Installing CUBE Library only

The partial installation will build and install only tr@uge library on your system. This is intended
for users who just need to createBe file, but need not display it on their machines.

1. Same as steps of 1 to 3 described in the above section.

2. mke |ib
3. make install-lib
2.3 License

This software is free but by downloading and using it you eatically agree to comply with the
license agreement. You can read the [fll€ENSE in the distribution for precise wording.
24 LibrariesRequired

Both libraries listed below are necessary for using ¢k display component. For those users
who need thecUBE library only, only libxml2 is required to be installed.

e libxml2 (2.5.6), which is an XML C parser and toolkit developed fa Bhome project. It is
pre-installed on many systems. Please refer to the libxnel2 page for details:

http://xm soft.org/

e WXxWidgets (2.4.2), which is a cross-platform C++ framework for wrifimdvanced GUI
applications using native controls. Please refer to the iggéts web page for details:

http: //ww. wxw dgets. or g/

2.5 Support

If you have any question or comments you would like to shaté thie CUBE developers, please
send e-mails t&oj ak@s. ut k. edu.

3 Usingthe Display

This section explains how to use theBE display component. After a brief description of the basic
principles, different components of tieas1 will be described in detail.

3.1 Basic Principles

The cUBE display consists of three tree browsers, each of them reppiieg a dimension of the
performance space (Figure 1). The left tree displays theicrditnension, the middle tree displays
the program dimension, and the right tree displays the sysdimension. The nodes in the metric
tree represent metrics. The nodes in the program dimenaiohave different semantics depending
on the particular view that has been selected. In Figureel, thpresent call paths forming a call
tree. The nodes in the system dimension represent machioéss, processes, or threads from top
to bottom.

Users can perform two types of actions: selecting a node pareding/collapsing a node. The
currently selected nodes from each tree are highlightedepuatted in the status bar.

MCUBE: sweep3d_hyb.cube
File ¥iew Help

=[] 0.0 Communication
=[] 0.0 Collective
[] 0.0 Early Reduce
[0.0 Late Broadcast
0.6 Waitat N = M
= 2.7 P2P
[0.0 Late Receiver
3.2 Late Sender
] ooio
=[] 0.0 Synchronization
O 0.0 Barrier Completion
[0.0 Wait at Bartier

Performance hetrics | Call Tree System Tree
=[] 0.0 Time =[] 0.0 driver 2 = [0.0 Linux Cluster
= [47.4 Execution [0.0 task_init O 0.4 zam00ge3
1 2.4 MPI [1 0.0 read_input 0.9 zam0O0Ged

[] 0.0 decomp
=[] 0.0inner_auto
=[] 0.0 ihner
[0.0 initialize
[] 0.0 barrier_sync
[0.0 timers_
[] 0.0 source
=[] 0.0 sweep
[] 0.0 octant
=
[] 0.0 1$omp parallel
[J 0.0 snd_real

0.9 zam0O0§es
=[] 0.0 zam0D0Oges
=} [] 0.0 Process 3
1.0 Thread 0
[] 0.0 Thread 1
[] 0.0 Thread 2
[] 0.0 Thread 3

O 5.0 OMP [] 0.0 global_int_surm
[37.6 Idle Threads [0.0 flux_err

[] 0.0 global_real_sum
[] 0.0 task_end

A|
FIIIIIIIIIFIIIIIIIIIFIIIIIIIII
70 1] a0 100

SD| ED‘

R
10 20 30 40

ﬂzl_x 4 |

Figure 1:cuUBE display window.

Each node is associated with a metric value, which is calleddverityand is displayed simultane-
ously using a numerical value as well as a colored squareor€ehable the easy identification of
nodes of interest even in a large tree, whereas the numealteds enable the precise comparison of
individual values. The sign of a value is visually distinghued by the relief of the colored square. A
raised relief indicates a positive sign, a sunken relieiciaigks a negative sign. Figure 6 shows nodes
with positive and negative signs. Negative values can apgea result of applying the algebra’s
difference operator (Section 4.1) to two data sets.

A value shown in the metric tree represents the sum of a pé&tienetric for the entire program,
that is, across all call paths and the entire system. A vddows in the call tree represents the sum
of the selected metric across all processes or threads fartiayar call path. A value shown in the
system tree represents the selected metric for the selealigzhth and a particular system resource.
Briefly, a tree is always an aggregation of all of its neightoees to the right. If there are multiple
call trees,CUBE has two options to compute the overall severity for a padicmetric. Either it

can calculate the sum of all call trees (i.e., their root sddecollapsed state) or their maximum. If
CUBE is unable to determine the correct mode it will ask the user.

Note that all the hierarchies tuBE are inclusion hierarchies, meaning that a child node reptes
part of the parent node. For example, the metric hierarclghtaisplay cache misses as a child node
of cache accesses because the former event is a subsetatt¢hevent. Similarly, in Figure 2 the
call pathmaincontains the call pathmain-fooandmain-baras child nodes because their execution
times are included in their parent’s execution time.

The severity displayed inuBE follows the principle ofsingle representatigrthat is, within a tree
each fraction of the severity is displayed only once. Theppse of this display strategy is to
have a particular performance problem to appear only ondkerree and, thus, help identify it
more quickly. Therefore, the severity displayed at a nogeedds on the node’s state, whether it
is expanded or collapsed. The severity of a collapsed nqatesents the whole subtree associated
with that node, whereas the severity of an expanded nodegepts only the fraction that is not
covered by its descendants because the severity of itsruktis is now displayed separately. We
call the former onénclusiveseverity, whereas we call the latter ameclusiveseverity.

100 main

Figure 2: Node of the call tree in collapsed or expanded .state

For instance, a call tree may have a noagnwith two childrenmain-fooandmain-bar(Figure 2).

In the collapsed state, this node is labeled with the timatipghe whole program. In the expanded
state it displays only the fraction that is spent neithdbmnor in bar. Note that the label of a node

does not change when it is expanded or collapsed, even ifetrexity of the node changes from
exclusive to inclusive or vice versa.

3.2 GUI Components

The Gul consists of a menu bar, three tree browsers, a color legedda atatus bar. In addition,
some tree browsers provides a context menu associated agthrede that can be used to access
node-specific information.

3.2.1 TreeBrowsers

The tree browsers are controlled by the left and right mousiihs. The left mouse button is used
to select or expand/collapse a node. The right mouse bigtosed to pop up a context menu with
node-specific information, such as online documentatiant€xt menus are only available for the
metric and program trees.

A label in the metric tree shows a metric name. A label in thétoae shows the last callee of
a particular call path. If you want to know the complete cathp you must read all labels from
the root down to the particular node you are interested irterAgwitching to the module-profile
or region-profile view (see below), labels in the middle tdemote modules or regions depending
on their level in the tree. A label in the system tree showsriame of the system resource it
represents, such as a node name or a machine name. Proceb#esads are usually identified by

a number, but it is possible to give them specific names wheattiog acuBE file. The thread level
of single-threaded applications is hidden. Note that at¢rcan have multiple root nodes.

=
| |

CUBE: sweep3d64512.cube

FEile Wiew| Help
Petfon ™ Call tree J Call Tree ‘ System Tree
. I Module profile
[=] ["— : P =1 = [0.00 main = [] 0.00SUN
] A [+ [] 0.00 task_init_ i+ [014 yBE00-2-ethD
r Absolute =[] 0.00 read_input_] 0.08 ¥6800-3-5thD
I Percentage [] 0.00 decamp 3| 0.06 ¥380-7-ethd
_i{ Relative percentage =[] 09.00 inner_auto_ E3 0.06 v380-G-eth
i Comparative percentage ... [1C® = [000 inner 5] 0.05 ¥§80-10-ethD
cast [+ [] 0.00 initialize_ =1 [] 0.00 v¥550-9-ethd
Topaology .. o :
e oAl [+ [] 0.00 bartiet_sync_ O 0.01 Process 53
Hide values P Eein [] 000 source_ & 001 Process 60
= [0.00 Late Rec | Negative 8l 0.42 sweep_| [0.071 Process &1
EMml 042 Late Sender [+ [] 0.00 global_int_sum_ O 0.01 Process 62
[.00 1o [+ [] 0.00 flu=_err_ O 0.01 Process 63
] D 0.00 Synchronization [+] |:| 0.00 global_real_sum_
1.31 Visits ; [[] 0.00 task_end_ I
FIIIE! ------- ‘ LR]
f.248+03 1 B5a+04
jBax1 |
Figure 3:cuBE menu bar.
322 Menu Bar

The menu bar consists of three menus, a file menu, a view medw help menu.

File

View

The file menu can be used to open and close a file and tecegE. It also allows users to
add additional mirrors to the existing ones.

The view menu (Figure 3) can be used to alter the way the prodgimension is displayed, to
change the number representation for the entire displdg, lude positive or negative values.

After opening a data set the middle panel shows the call frfee@rogram — unless the data
set contains a flat profile. However, a user might wish to kndvctvfraction of a metric can
be attributed to a particular region regardless of from wlitawas called. In this case, the user
can switch from the call-tree mode (default) to the modulefie mode or the region-profile
mode (Figure 4). In the module-profile mode, the call-tredrichy is replaced with a source-
code hierarchy consisting of three levels: module, regaom subregions. The subregions,
if applicable, are displayed as a single child node labsldategions A subregionsnode
represents all regions directly called from the region &bdw this way, the user is able to see
which fraction of a metric is associated with a region exgkely, that is, without its regions
called from there. The region-profile mode is similar to thedule-profile mode except that
modul es are not shown.

The severity can be displayed in four different ways: asbsolute valugdefault), aper-
centage arelative percentageor as acomparative percentagd he absolute value is the real
value measured. When displaying a value as a percentageetbentage refers to the value

Help

shown at the root of the metric tree when it is in collapsetkstdowever, both absolute mode
and percentage mode have the disadvantage that valuesaandeery small the more you
go to the right, since aggregation occurs from right to [éftavoid this problem, the user can
switch to relative percentages. Then, a percentage ingheair middle tree always refers to
the selection in the neighbor to the left, that is, a pergmia the system dimension refers
to the selection in the program dimension and a percentatigiprogram dimension refers
to the selected metric dimension. In this mode the percestagthe middle and right tree
always sum up to one hundred percent. Figure 4 shows a regifitepvith relative percent-
ages. Furthermore, to facilitate the comparison of difieexperiments, users can choose the
comparative percentage mode to display percentagesvestatanother data set. The com-
parative percentage mode is basically like the normal p¢age mode except that the value
equal to 100% is determined by another data set. Note thhtialisolute mode, all values
are displayed in scientific notation. To prevent clutterihg display, only the mantissa is
shown at the nodes with the exponent displayed at the calent

If one or more virtual topologies have been defined indbek file, the Topologymenu item
is enabled. Otherwise it is disabled. After selecfifggpology the Cartesian-selection dialog
pops up if thecuBE file has multiple topologies. Through this dialog, users choose a
specific topology view to display in a topology window. Eadpdlogy is displayed in a
separate window. Please refer to Section 3.3 for detailednration.

Finally, to help users distinguish between positive andatieg values more easily, users can
hide either positive or negative values.

Currently, the help menu provides only an About dialog wélease information.

CUBE: sweep3d_hyb.cube

Performance hetrics

todule Profile

| System Tree

+

[] 0.0 inner_auto.mod.F

=[] 0.0 Time F [0.0 UNKMOWH =+ [00 Linux Cluster -
=[] 474 Execution &[] 0.0 libmpia =F[] 0.0 zam00ge3
[=] 2.4 MPI &[] 0.0 libomp.a = [] 0.0 Process 0
= [0 6.6 Communication =[] 0.3 sourcef [7.4 Thread 0
ool =[] 0.0 sweepf 3.0 Thread 1
= [0.0 Synchronization E3 76.8 l$omp do & 6.1 Thread 2
=[] 0.0 OmP I§amp ikarrier & 6.3 Thread 3
[] 0.0 Flush I§amp ibamiar = [25.5 zam00Ged
1.7 Fork [# 99.5 Igomp parallel =[] 254 zam00&es
z @ [02 fuws_arf =[] 0.0 zam008eR
[37.8 Idle Threads # [] 0.0 drivermod.F = [] 0.0 Process 3
[0.0 mpi_stufff O 7.2 Thread 0
#[] 0.0 read_inputmod.F 3.3 Thread 1
&[] 0.0 decomp.mod.F 5.7 Thread 2 |

& 7.9 Thread 3

m 1h| 20

30|

4D| 5D| ED|

"'?“_IL-’lemllFIIIIIIIIIFIIIIIIIIl
70 B0 30 10

/
i}

|4><4 |

Figure 4:cuBe module profile.

3.2.3 Color Legend

The color is taken from a spectrum ranging from blue to redasgnting the whole range of possible
values. To avoid an unnecessary distraction, insignificahies close to zero are displayed in dark
gray. Exact zero values just have the background color. Diipg on the severity representation,
the color legend shows a numeric scale mapping colors ofhtiesa

3.2.4 StatusBar

The left section showingn x n indicates that there am processes and for each process there are
at mostn threads in the execution. The right section reports theesatlyr selected nodes from each
tree and the value of the last-selected node (with percerdgatptal).

3.25 Context Menus

The metric and program dimensions provide a context menuctira be used to obtain specific
information on each node. The context menu is accessiblehgigight mouse button. It displays
all or a subset of the options described below.

The call tree has a context menu consisting of two levels. firbelevel menu items ar€all site
andCalled region Choosing theCall site menu shows the information related to the call site, and
choosing theCalled regionmenu shows the information related to the region being d@dilethe
call site (i.e., the callee).

Locati on: Displays the source-code location of a program resourcexinial form (i.e., at which
line and in what module). In the module-profile and regioofile modes, it always refers
to the location of its associated region. In the call-treedejca call-tree node is usually
associated with two entities: a callsite and the regionedally the callsite. By entering a
specific level of the context menQallsite or Called region users are able to check either the
associated call site’s or the called region’s location. thercall site, it shows the call site’s
location where it has been called or its calling region’sataan if the line number of the call
site is undefined. For the called region, it shows the looaticthe region being called by the
call site.

Source code: Displays and highlights the source code of a program resauarthe source code
browser. In the module-profile and region-profile modeslwbgs shows and highlights the
source code of its associated region. In the call-tree msidege each call-tree node has a
context menu of two levels, by choosing t@all site menu it displays and highlights the
source code of the call site or the block of source code ofdlimg region. And by choosing
the Called regionmenu it displays and highlights the block of code of the redieing called
by the call site. Note that not all data sets provide suffidiee-number information to show
the correct section of the source code.

Online description: Both metrics and regions can be linked to an online desoriptFor ex-
ample, metrics might point to an online documentation eérpig their semantics, or regions
representing library functions might point to the corrasiag library documentation.

I nfo: A brief description of metrics or regions supplied by thesE data set.

10

3.3 Topology Display

In many parallel applications, each process (or threadaonicates only with a limited number of
processes. The parallel algorithm divides the applicatimmain into smaller chunks known as sub
domains. A process usually communicates with processesgwnb domains adjacent to its own.
The mapping of data onto processes and the neighborhodibmnslaip resulting from this mapping
is calledvirtual topology Many applications use one or more virtual topologies (Fady) specified
as one-, two- or three- dimensional Cartesian grids. dinge topology display shows performance
data mapped onto the Cartesian topology of the applicalibe.corresponding grid is specified by
two parameters: number of dimensions and size of each diorens

The display consists of a menu bar and

the actual Cartesian grid. The Cartesian [N a - =N oty
grid is presented by planes stacked on tofe® ﬁe""etru gun flars
of each other in a three dimensional pro-

jection. The number of planes depends et
on the number of dimensions in the grid. /! ”

Each plane is divided into squares. The €y by 48
number of squares depends on the dimen- ﬂ ,

sion size. Each square represents a system 0. 0,

resource (e.g a process) of the application L
and has a coordinate associate with it. p i

CUBE Cartesian; 0

-

The grid displays the severity of the se-.7ez-ot 4.0882+00

lected metric in the selected call path fof! I—
each system resource participating in the |

application’s topology. The severity is

represented as a color. A system resource Figure 5: Topology display

might not be a part of the application’s

virtual topology or may have a zero value for a metric. Themef it is sometimes possible to
have some uncolored squares in the grid picture.

3.31 MenuBar

The menu bar consists of four menus: a view menu, a geometny,naczoom menu and, a colors
menu.

View. The view menu can be used to choose one of the three possiaiations of the grid. The
coordinate axes at the bottom of the picture indicate thecton of X, Y and Z dimensions
in the three-dimensional space. In case of one- or two- dsmeal grids, users are provided
with only one orientation of the grid.

CGeonetry: Due to varying dimension sizes, planes in the grid might lagewith each other and
the size of the squares might be too small to recognize théor.cThis may pose a problem
for the user to view the topology information effectivelyhd geometry menu circumvents
this problem by providing options to scale the picture iriaas ways. Théngleoption helps
the user to adjust the skew of the three-dimensional piojecfThePlane Distanceoption
helps to adjust the inter-plane distance. Pt@ne Lengtloption helps users scale the area of
each plane.

11

Zoom The zoom menu can be used to zoom-in or zoom-out on the grid.

Col ors: The colors menu can be used to modify the text color and thkgbaend color of the
topology display. Finally, there are two resolution modeshoose from. Theow Resolution
mode assigns colors to the squares according to the sevatitgs shown in the system
dimension. Often, these values have small variations frach ether and do not help the user
to study the relative distribution of severities acrossgtd. To exploit the entire spectrum of
available colors and to enable the user to study the reldtstebution of severities, &ligh
Resolutionmode is provided. This mode highlights the minute diffeembetween severity
values of the system resources. Severity values of zercsaigned the background color of
the display. This mode has its own color legend showing themmim and maximum values
for the selected severities across the grid. These valuebecabsolute values, percentages,
or relative percentages depending onc¢huisE view mode.

4 Performance Algebra

As performance tuning of parallel applications usuallyolmes multiple experiments to compare
the effects of certain optimization strategies|BE offers a mechanism callgzerformance algebra
that can be used to merge, subtract, and average the datalifferent experiments and and view
the results in the form of a single “derived” experiment. ngsthe same representation for derived
experiments and original experiments provides accessetaéhived behavior based on familiar
metaphors and tools in addition to an arbitrary and easy ositipn of operations. The algebra is
an ideal tool to verify and locate performance improvemantsdegradations likewise. The algebra
includes three operatodiff, merge andmeanprovided as command-line utilities which take two or
moreCUBE files as input and generate anotloerse file as output. The operations are closed in the
sense that the operators can be applied to the results abpsesperations. Note that although all
operators are defined for any valtidBE data sets, not all possible operations make actually sense.
For example, whereas it can be very helpful to compare twsimes of the same code, computing
the difference between entirely different programs iskatyi to yield any useful results.

4.1 Difference

Changing a program can alter its performance behavior.riAgighe performance behavior means
that different results are achieved for different metri@me might increase while others might
decrease. Some might rise in certain parts of the prograg while they drop off in other parts.
Finding the reason for a gain or loss in overall performarftenarequires considering the perfor-
mance change as a multidimensional structure. WitBE's difference operator, a user can view
this structure by computing the difference between two grpents and rendering the derived re-
sult experiment like an original one. The difference opmrtdkes two experiments and computes a
derived experiment whose severity function reflects thiedifice between the minuend’s severity
and the subtrahend’s severity.

Figure 6 shows the difference betwaemiak [5] analysis results obtained from the original and an
optimized version of a nano-particle simulation. Raisdigf®indicate performance improvements,

and sunken reliefs indicate performance degradationsfifjae indicates that a certain optimiza-

tion was only partially successful because some of the watiés migrated to other locations in the

program instead of disappearing.

12

Usage: cube_di ff <ni nuend> <subtrahend> [-0 <out put >]

The default output file name @& f f . cube.

MACUBE: diff.cube
File Miew Help
Performance hetrics Call Tree System Tree
=[] 0.0 Total [0.0 global_sumr 4] =[] 0.0 Linux Cluster =
=[] 0.3 Execution W -0.5 global_sumc =[] 0.0 zam00gel
=7 -003 MPI =[] 0.0 hpsi_comp_nso M -06 Process 0
=[] 0.0 Communication [] 0.0 MPI_BEarrier W -06 Process 1
ll-5.7 Collective [0.0 daft_comp M -05 Process 2
W -21F2P = [T -0.5 Process 3
[ooio [0.0 MPI_lsend =1 [] 0.0 zam00ge?
= 2.7 Synchronization [] 0.0 MPI_Recv [T -0.2 Process 4
2.6 Barrier Completion [0.0 MPI_Wait [T -0.2 Process 5 -
O 12.2 Wait at Barrier =[] 0.0 global_sumr [T -0.1 Process 6
W -0.5 MP_alireduce [T -0.2 Process 7
[T -0.1 diag_comp =} [] 0.0 zam00ge3
T i S ———
F 10‘ ZD‘ 30‘ 40 50‘ SD‘ ?DF BDF 90 'IDH
ﬂ:ﬁ *1 |

Figure 6: A derived experiment computed usoupe _di ff.

42 Merge

The merge operator’s purpose is the integration of perfaomalata from different sources. Often a
certain combination of performance metrics cannot be mredsduring a single run. For example,
certain combinations of hardware events cannot be couirtedtaneously due to hardware resource
limits. Or the combination of performance metrics requiuegg different monitoring tools that
cannot be deployed during the same run. The merge oper&is &n arbitrary number @afuBe
experiments with a different or overlapping set of metrind gields a derivedcUBE experiment
with a joint set of metrics.

Usage: cube_merge [-n] <opl> <op2> ... <opN> [-0 <out put>]

The default output file name ®r ge. cube. The- n option reverts to a simpler merge mode,
which was the former merge mode, that doesn’t respectaakttips between metrics.

4.3 Mean

The mean operator is intended to smooth the effects of ramaors introduced by unrelated system
activity during an experiment or to summarize across a rafggecution parameters. The user can
conduct several experiments and create a single averageiragnt from the whole series. The
mean operator takes an arbitrary number of arguments.

Usage: cube_nmean <opl> <op2> ... <opN> [-0 <out put>]

The default output file name mean. cube.

13

4.4 Implementation

The actions performed by the operators can be divided inbcstybtasks: integration of the perfor-
mance space followed by the actual arithmetic operation.

4.4.1 Integration of the Performance Space

The integration of two or more performance spaces consfdisr@e separate parts: merging the
metric dimension, merging the program dimension, and mgrthe system dimension. Merging
metric trees and call trees works very similar to the stmattmerge operator in [1]. While traversing
from the roots to the leavesUBE tries to match up the nodes. Nodes that cannot be matched are
separately included in the new performance space, wheosesthat can be successfully matched
become shared nodes, that is, they appear as a single ndgenaw space.

Merging the system dimension is slightly different. There &ur levels with different mean-
ings: machine, node, process, and thread. First, procassethreads are matched based on their
application-level identifiers, for example, their glob&tbi rank andopervip thread number. Next,
CUBE examines whether the partitioning of processes into naslesrinpatible between the two
operands. If compatible;UBE copies the entire node and machine hierarchy including ones¢
sponding process-node mapping of one of the operands iatedult. Otherwise it collapses the
machine and node level into a single machine and a single node

4.4.2 Arithmetic Operation

After performance-space integration, a new severity foncis computed whose domain is the
integrated space. An element-wise operation is perforrmeg@airs of input arrays. To be able
to perform an element-wise operation, the operand’s dgvemction is extended with respect to
the integrated metadata so that it is defined for every tupketric, call path, thread) of the new
metadata. This is done by assigning zero to previously umelgfiuples. For example, a call path
occurring in one metadata set might not occur in anothehigfiappens the resulting value for this
call path will be set to zero in those experiments that didaittain the call path before.

In the case of the difference or the mean operators, the alewise operation is just a subtraction
or arithmetic mean operation, respectively. In the casb®hierge operataUBE makes a simple
case distinction. Recall that the purpose of doing the mapgeation is to integrate performance ex-
periments with different metrics. For example, one experittounts floating point operations, and
the other one counts cache misses, since we might not beoatmernt both of them simultaneously.

Since the two counter measurements are disjoint, thesexparienents can be merged by a simple
join of the two metric trees, which formerly was the defauktrge behavior. So, if the metric is
provided only by one experimentUBE takes the data from that experiment, and if it is provided
by both experiments;UBE takes it from the first one (without loss of generality).

With counter metric hierarchies composed of multiple meadumetrics, a more sophisticated
merge is required, which is the new default behavior (andishmake no difference to non-counter
experiments). The merge should respect the special ckasdicts (i.e., relationships) between com-
posed and measured counter metrics. Where a metric is dérjveomposition of several measured
counter metrics, it will be a complete derivation if all ctihgents are available, and only partially
complete if one or more constituents are unavailable: gdbrtcomplete metrics are distinguished

14

by prepending the special character to their name. These partially complete derivations can be
improved during merging, if the required constituents aralable from another experiment, by
accumulating all of the partial metrics. Additionally, semompositions may also be measured di-
rectly, where appropriate counters exists, and in thesesctise measured metric values are prefered
over (possibly inaccurate or incomplete partial) compass.

5 Tools

5.1 tau2cube

TAU is designed to provide a framework for integrating prograuh performance analysis tools and
components. Using the tool bau2cube, TAU profiles are able to be converted to thesE format.

Usage: tau2cube [<tau-profile-dir>] [-0 <output>]

The first parameter is theau profile directory. The second parameter is the name of the
outputcuBek file. The default for<tau-profile-dit- is the current directory and the default
output file name is. cube.

Limitations:

e Converts only flat, two-level (one level more than flat), df éall path profiles (all callers up
to main).

e The main function must be included and every other functiarstnioe called from within
main. Static initializers outside the main function are sigpported.

6 Creating CUBE Files

The cUBE data format in arxML instance [6]. The correspondinguLschema specification [7]
can be found idoc/ cube. xsd in thecuse distribution. ThecuBE library provides an interface to
createcUBE files. It is a simple class interface and includes only a fewhwas. This section first
describes theuBE API and then presents a simple C++ program as an example of hase tib. u

6.1 CUBE API

The class interface defineschass Cube. The class provides a default constructor and sixteen
methods. The methods are divided into four groups. The firsetgroups are used to define the
three dimensions of the performance space and the last gsaiged to enter the actual data. In
addition, an output operatek to write the data to a file is provided.

The methods used to create the different entities of theopraence space always returrt@nst
object pointer which can be used for further reference.

15

6.1.1 Metric Dimension

This group refers to the metric dimension of the performasmace. It consist of a single method
used to build metric trees. Each node in the metric tree septs a performance metric. Met-
rics have different units of measurement. The unit can beeeitsec” (i.e., seconds) for time
based metrics, such as execution time,amc” (i.e., occurrences) for event-based metrics, such as
floating-point operations. During the establishment of &riméree, a child metric is usually more
specific than its parent, and both of them have same unit cfunement. Thus, a child performance
metric has to be a subset of its parent metric (e.g., systemiti a subset of execution time).

const Metric* def_met (string name, string uom string val,
string url, string descr, const Metric* parent);

Returns a metric with nameane and descriptiordescr. uom specifies the unit of mea-
surement, which is eithers&c” for seconds or 6cc” for number of occurrencesral is an
(optional) default metric severity value: 0 D’ no value data is defined, ifZERO’ value
data is defined to be all zero-valued, otherwise severityevdhta should be provided using
set _sev() (see Section 6.1.5par ent is a previously created metric which will be the new
metric’s parent. To define a root node, WML instead.ur| is a link to anHTML page de-
scribing the new metric in detail. If you want to mirror theggaat several locations, you can
use the macro @ rror @ as a prefix, which will be replaced by an available mirrorrofi
usingdef _mrror () (see Section 6.1.6).

6.1.2 Program Dimension

This group refers to the program dimension of the perforraapace. The entities presented in this
dimension arenodule region, call site, andcall-tree node(i.e., call paths). A module is a source
file, which can contain several code regions. A region can tumetion, a loop, or a basic block.
Each region can have multiple call sites from which the adrftow of the program enters a new
region. Although we use the term call site here, any placedfiases the program to enter a new
region can be represented as a call site, including loojesni€orrespondingly, the region entered
from a call site is calledallee which might as well be a loop. Every call-tree node pointa tall
site. The actual call path represented by a call-tree naadbeaerived by following all the call sites
starting at the root node and ending at the particular nodeterfest. Therefore, before defining a
call-tree node, the necessary call sites, callees, andle®bave to be defined. The user can chose
among three ways of defining the program dimension:

1. Call tree with line numbers
2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes fpocall sites. A call tree without
line numbers is defined as a tree whose nodes point to regienstlie callees). A flat profile is
simply defined as a set of regions, that is, no tree has to beedefi

const Mbdul e* def _nodule (string nane);

Returns a new module with module nanmaare, which can be either a complete path or a file
name.

16

const Region* def_region (string name, |ong begln, long endln,
string url, string descr,
const Mbdul e* nod);

Returns a new region with region namane and descriptiordescr. The region is located
in the modulemd and exists from lindegl n to line endl n. url is a link to anHTML page
describing the new region in detail. For example, if the@ags a library function, their |
can point the documentation. If you want to mirror the pagseateral locations, you can
use the macro @ rror @ as a prefix, which will be replaced by an available mirrorrofi
usingdef _mrror() (see Section 6.1.6).

const Callsite* def_csite (const Mdule* mod, int |ine,
const Regi on* callee);

Returns a new a call site located at the linme of the modulenod. The call site calls the
calleecal | ee (i.e., a previously defined region).

const Cnode* def cnode (const Callsite* csite,
const Cnode* parent);

Returns a new call-tree node representing a call from daltsi t e. parent is a previously
created call-tree node which will be the new one’s parentd@ine a root node, uséJLL
instead. This method is used to create a call tree with limebaus.

const Cnode* def cnode (const Regi on* region,
const Cnode* parent);

Defines a new call-tree node representing a call to the regiginon. par ent is a previously
created call-tree node which will be the new one’s parentd@ine a root node, uséJLL
instead. Note that different from the previodef _cnode(), this method is used to create a
call-tree without line numbers where each call-tree nodetpdo a region, instead of a call
site.

To define a call tree with line numbers wssf _csite() anddef _cnode(const Callsite*...).
To define a call tree without line numbers wkd _cnode(const Region*...). To create a flat
profile use neither one — just defining a set of regions will ifficent.

6.1.3 System Dimension

This group refers to the system dimension of the performapeee. It reflects the system resources
on which the program is using at runtime. The entities prieisethis dimension arenaching node
process andthread which populate four levels of the system hierarchy in theegiorder. That
is, the first level consists of machines, the second levebdeg, and so on. Finally, the last (i.e.,
leaf) level is populated only by threads. The system treaiiis i a top-down way starting with a
machine. Note that even if every process has only one thresas still need to define the thread
level.

const Machi ne* def _mach (string nane);

Returns a new machine with the namsre.

const Node* def_node (string nane, const Machine* mach);

Returns a newgmpP) node which has the namane and which belongs to the machimach.

17

const Process* def _proc (string name, int rank,
const Node* node);

Returns a new process which has the nawaree and the rank ank. The rank is a number
from 0— (n— 1), wheren is the total number of processesp| applications may use the rank
in MPl _COMWORLD. The process runs on the noatele.

const Thread* def_thrd (string nane, int rank,
const Process* proc);

Defines a new thread which has the namaee and the rank ank. The rank is a number
from 0— (n—1), wheren is the total number of threads spawned by a process. @pen
applications may use the Open thread number. The thread belongs to the propess.

6.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relstigms among machinesmp nodes, pro-
cesses or threads. A topology usually consists of a singkesabf entities such as threads or pro-
cesses. TheUBE API provides a set of functions to create Cartesian topologiest@a define the
machinegmpP node/process/thread mappings onto coordinates. Notdhthatefinition of virtual
topologies is optional.
const Cartesian* def _cart (long ndins, const vector<long>& dinv,
const vect or<bool >& peri odv);

Defines a new Cartesian topologyi ns anddi nv specify the number of dimensions and the
size of each dimensiomer i odv specifies the periodicity for each dimension. Currentlg, th
maximum value fondi ns is three.

voi d def coords (const Cartesian* cart, const Location* |oc,
const vector<long>& coordv);

Maps a specific location onto a Cartesian coordinate. Thetitmt! oc may be a machine,
SMP node, process or a thread. It is not recommended to map a re@teaf entities onto
one topology (e.g., machines and threads are located imathe topology). The parameter
of cart has been defined by the abalef cart () method.

6.1.5 Severity Mapping

After the establishment of performance space, users cagnassverity values to points of the
space. Each point is identified by a tugleet, cnode, thrd). The value should be inclusive
with respect to the metric, but exclusive with respect toddlétree node, that is it should not cover
its children. Taking Figure 2 as an example, this means tiiat ivalue refers tonainthen it should
not includemain-fooor main-bar The default severity value for the data points left undefirse
zero. Thus, users only need to define non-zero data points.

void set_sev (const Metric* net, const Cnhode* cnode,
const Thread* thrd, double value);

Assigns the valugal ue to the point(net, cnode, thrd).

void add_sev (const Metric* net, const Cnhode* cnode,
const Thread* thrd, double value);

18

Adds the valueral ue to the present value at poiftret, cnode, thrd).

The previous two methodset _sev() andadd_sev() are intended to be used when the program
dimension contains a call tree and not a flat profile. As thepfiafile does not require the definition
of call-tree nodes, the following two functions should bedigstead:

void set_sev (const Metric* met, const Region* region,
const Thread* thrd, double value);

Assigns the valugal ue to the point(nmet, region, thrd).
void add_sev (const Metric* met, const Region* region,
const Thread* thrd, double value);
Adds the valueral ue to the present value at poiftret, region, thrd).

6.1.6 Miscellaneous

Often users may want to define some information related tathee file itself, such as the creation
date, experiment platform, and so on. For this purpassgE allows the definition of arbitrary
attributes in every)CUBE data set. An attribute is simply a key-value pair and can ek using
the following method:

void def_attr (string key, string value);
Assigns the valugal ue to the attributekey.
There is one predefined attribut®& BE_.CT_AGGR with valuesmMAX andsum to stipulate the aggre-

gation mode applied in the presence of multiple call treestiSn 3.1). If this attribute is defined
cusk will use the specified mode and suppress the input dialog.

CUBE: example.cube

File ¥iew Help

Performance hetrics | Call Tree | System Tree
= O = [E 4.00 main =[] 000 MsC k)
O 6.00 User time = =[] 0.00 athena
O 6.00 System time & 4.00 bar =} [] 0.00 Frocess 0
O 2.00 Thread 0
[.00 Thread 1 4
I NN
F...I 12.00 | 24.00

[1x2 |

Figure 7: Display okxanpl e. cube

CUBE allows using multiple mirrors for the online documentatassociated with metrics and re-
gions. Theur| expression supplied as an argumentdef netric() anddef region() can
contain a prefix@n rror @ When the online documentation is accessedgE can substitute all
mirrors defined for the prefix until a valid one has been foutfcho valid online mirror can be
found, cuBE will substitute the / doc directory of the installation path fa@ri rr or @

void def _mirror (string mrror);

Defines the mirroni rror as potential substitution for therL prefix@n rror @

19

1 void foo() {

10 }

11 void bar() {

20 }

21 int main(int argc, char* argv) {
60 fobb;

80 bar ();

100 } .

Figure 8: Target-application source cadeanpl e. ¢

6.2 Typical Usage

A simple C++ program is given to demonstrate how to usecthee write interface. Figure 7 shows
the correspondingUuBE display. The source code of the target application is pexvid Figure 8.

Il A C++ exanple using CUBE wite interface
int main(int argc, char* argv[]) {
Il Declarations (Al const class pointers)

Cube cube;

Il specify mrrors (optional)
cube. def mirror("http://icl.cs.utk.edu/software/kojak/");
cube. def mirror("http://ww. fz-juelich.de/ zanf koj ak/");

Il specify information related to the file (optional)
cube. def _attr("experiment tine", "Novenber 1st, 2004");
cube. def _attr("description”, "a sinple example");

/1 build netric tree

met0 = cube. def met("Time", "sec", "'
"@rrror @atterns-2.2. htnl #execution",
"root node", NULL); // using nmirror

met 1 = cube. def met("User tine", "sec", "",
"http://ww. cs. utk. edu/usr.htm ",
"2nd level", net0); // without using mirror
met2 = cube. def nmet("System time", "sec", "",

"http://wm. cs. utk. edu/sys. htm ",
"2nd level", net0); // without using mirror

Il build a call tree with Iine nunbers
mod = cube. def _modul e("/1 CL/ CUBE/ exanpl e.c");

20

regn0 = cube.def _region("min", 21, 100, "", "1st level", nod)
regnl = cube.def region("foo", 1, 10, "", "2nd level", nod)
regn2 = cube.def region("bar", 11, 20, "", "2nd level", nod)

Il \Wen creating flat profiles, you do not need
Il define call sites and call-tree nodes

csite0 = cube.def csite(nod, 21, regn0);
csitel = cube.def csite(nod, 60, regnl);
csite2 = cube.def csite(nod, 80, regn2);
cnode0 = cube. def _cnode(csite0, NULL)

cnodel = cube. def _cnode(csitel, cnode0);
cnode2 = cube. def _cnode(csite2, cnode0);

[* If creating call trees without |ine nunbers
put a region as the 1st argunent in the
above def _cnode()'s and don't define csites */

Il build systemtree

mach = cube. def nmach("nsc");

node = cube.def node("athena", mach);

proc = cube.def proc("Process 0", 0, node);
thrd0 = cube.def thrd("Thread", 0, proc);
thrdl = cube.def thrd("Thread", 1, proc)

/1 build a 2D Cartesian topology (a 5x5 grid)

int ndims = 2;

vect or <l ong> di nv;

vect or <bool > peri odv;

di mv. push_back(5);

di nv. push_back(5);

peri odv. push_back(0);

peri odv. push_back(0);

const Cartesian* cart = cube.def cart(ndinms, dinv, periodv)
vect or <l ong> coord0, coordl

coor d0. push_back(0);

coor d0. push_back(0);

coordl. push_back(3);

coordl. push_back(3);

Il map the two threads onto the above 2 coordinates
cube. def _coords(cart, thrd0, coord0)

cube. def coords(cart, thrdl, coordl)

Il severity mapping

cube. set _sev(met0, cnodeO, thrdo, 4
cube. set _sev(met0, cnodeO, thrdl, 4
cube. set _sev(nmet0, cnodel, thrdo, 4
cube. set _sev(nmet0, cnodel, thrdl, 4
cube. set _sev(met0, cnode2, thrdo, 4
cube. set _sev(met0, cnode2, thrdl, 4
cube. set _sev(metl, cnodeO, thrdo, 1
cube. set _sev(metl, cnodeO, thrdl, 1
cube. set _sev(metl, cnodel, thrdo, 1
cube. set _sev(netl, cnodel, thrdl, 1
cube. set _sev(metl, cnode2, thrdo, 1
cube. set _sev(metl, cnode2, thrdl, 1

21

met 2, cnode0, thrdo,
met 2, cnode0, thrdl,
met 2, cnodel, thrdoO,
met 2, cnodel, thrdil,
met 2, cnode2, thrdo,
met 2, cnode2, thrdil,

cube. set_sev
cube. set_sev
cube. set_sev
cube. set_sev
cube. set_sev
cube. set_sev

—_~ e~~~ —~
[TN G S
— — — — ~— ~—

Il when creating a flat profile, put a region as the 2nd argument in
Il the above set _sev() calls

Il wite output to a file
of stream out;
out . open("exanpl e. cube");
out << cube;

References

[1] K.L. Karavanic and B. Miller. A Framework for Multi-Exetion Performance Tunindparallel
and Distributed Computing Practiceg(3), September 2001. Special Issue on Monitoring
Systems and Tool Interoperability.

[2] Message Passing Interface ForumlPl: A Message Passing Interface Standaiddne 1995.
http: //ww. mpi - forum org.

[3] OpenMP Architecture Review Boar@penMP Application Program Interface — Version,2.5
May 2005.ht t p: / / www. opennp. or g.

[4] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. Algebra for Cross-Experiment
Performance Analysis. IRroc. of ICPP 2004pages 63—72, Montreal, Canada, August 2004.

[5] F. Wolf and B. Mohr. Automatic performance analysis obhg MPI/OpenMP applications.
Journal of Systems Architectr49(10-11):421-439, 2003. Special Issue “Evolutions imlpa
lel distributed and network-based processing”.

[6] World Wide Web ConsortiumExtensible Markup Language (XML) 1.0 (Second Editi@y-
tober 20000t t p: / / www. w3. or g/ TR/ REC- xi .

[7] World Wide Web Consortium XML Schema Part 0, 1,,2Mlay 2001. htt p: / / www. w3. or g/
XM/ Schena#dev.

22

