ESPOO 2008 VTT WORKING PAPERS 93

Model-Based Analysis of
an Arc Protection and an
Emergency Cooling System

MODSAFE 2007 Work Report

Janne Valkonen, Ville Pettersson, Kim Bjorkman & Jan-Erik Holmberg
VTT Technical Research Centre of Finland

Matti Koskimies, Keijo Heljanko & llkka Niemela

Helsinki University of Technology (TKK),
Department of Information and Computer Science

.

'VIT

ISBN 978-951-38-7154-3 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2008

JULKAISIJA - UTGIVARE - PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvégen 3, PB 1000, 02044 VTT
tel. viaxel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 6027

VTT, Bergsmansvégen 3, PB 1000, 02044 VTT
tel. viaxel 020 722 111, fax 020 722 6027

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 6027

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Series title, number and
report code of publication

WT VTT Working Papers 93

VTT-WORK-93

Author(s)
Valkonen, Janne, Pettersson, Ville, Bjorkman, Kim, Holmberg, Jan-Erik, Koskimies, Matti,
Heljanko, Keijo & Niemeld, llkka

Title

Model-Based Analysis of an Arc Protection and an Emergency
Cooling System

MODSAFE 2007 Work Report

Abstract

Instrumentation and control (I&C) systems play a crucial role in the operation of nuclear
power plants and other safety critical processes. An important change that will be going on in
the near future is the replacement of the old analogue 1&C systems by new digitalised ones.
The programmable digital logic controllers enable more complicated control tasks than the old
analogue systems and thus the verification of the control logic designs against safety
requirements has become more important. In order to diminish the subjective component of
the evaluation, there is a need to develop new formal verification methods.

This report summarizes the work done in the MODSAFE 2007 project on two case studies
where model checking techniques have been used to study an arc protection system and an
emergency cooling system. Model checking tools offer typically a finite state machine based
modelling language for modelling the system to be verified, a specification language
(temporal logic) for expressing the properties to be verified and a set of analysis tools to check
that the system satisfies the given properties. A state of the art open source model checking
system NuSMV was employed and using a reasonable effort it was possible to (i) model both
systems on an adequate level, (ii) to formulate required safety properties in the specification
language, and (iii) to perform a full verification of the properties using the NuSMV system.
This indicates that current model checking techniques are applicable in the analysis of safety
I&C systems in NPPs.

ISBN
978-951-38-7154-3 (URL.: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Working Papers
1459-7683 (URL.: http://www.vtt.fi/publications/index.jsp)

Date Language Pages
February 2008 English 13 p. + app. 38 p.
Name of project Commissioned by

MODASAFE

Keywords Publisher

nuclear power plants, safety critical processes, VTT Technical Research Centre of Finland
instrumentation, control systems, programmable digital P.O. Box 1000. FI-02044 VTT. Finland
logic controllers, control logic design, safety Phone internat.’ +358 20 722 45’20
requirements, formal verification methods, arc protection Fax +358 20 722 4374

system, emergency cooling system, open source model

checking systems, SAFIR 2010

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Preface

This report has been prepared under the research project Model-based safety evaluation
of automation systems (MODSAFE) which is part of the Finnish Research Programme
on Nuclear Power Plant Safety 2007-2010 (SAFIR2010). The aims of the project are to
develop methods for model-based safety evaluation, apply the methods in realistic case
studies, evaluate the suitability of formal model checking methods for NPP automation
analysis, and develop recommendations for the practical application of the methods.
The project started by analysing and modelling two case studies. The first case was an
industrial arc protection system and the second was a reactor emergency cooling
system. The modelling of the second case was carried out in a separate project outside
the SAFIR2010 programme but the results are documented and reported within
SAFIR2010. This report summarises the results of the analysis of the cases modelled
during the first project year.

We wish to express our gratitude to the representatives of the companies who provided
us with the case studies and all the persons who gave their valuable input in the
meetings and discussions during the project.

Espoo, February 2008,

Authors

Contents

PIEIACE ..ttt et 5
L. INEEOAUCHION ...ttt ettt et et e st e bt e et e e bt e et e e saeeennas 7
2. Selection Of the Case STUAIES........uevuiiriirierieieeie e 8
3. Planning of the Case StUAIES.......c.ccoviiiiiiiiiiiieie e 9
4. Modelling of the Case StUAIESccceriiriiiiriiniiiceee e 11
5. CONCIUSIONS ...ttt ettt et ettt et st e bt e et e bt e sabeenbeeeaee 13
Appendices

Appendix A: Arc Protection System — Technical Description and Experiences of

Model Checking

Appendix B: Reactor Emergency Cooling System — Technical Description and

Experiences of Model Checking

1. Introduction

This report summarises the experiences gained in the MODSAFE 2007 project of the
SAFIR2010 research programme while working on two case studies: an arc protection
system and an emergency cooling system. Section 2 describes the selection process of
the case studies and discusses also the other case example alternatives. Section 3
summarises the planning and defining the cases. Section 4 introduces the NuSMV
model checker used in the project and explains the abstractions made in the models.

This report acts as an executive summary that is complemented by two appendixes
describing the two modelled case studies more thoroughly.

2. Selection of the Case Studies

During the first project year (2007), the aim was to select at least one case study for
modelling. After some investigations and discussions, two cases were selected and also
modelled.

The first contacts were made with Metso Automation, which is an engineering and
technology corporation operating in the pulp and paper industry, rock and minerals
processing, and the energy industry. Metso’s case concerned Neles ValvGuard partial
stroke testing and monitoring system for emergency valve applications. It is a safety
management system that helps to ensure that emergency shutdown and emergency
venting valves will operate properly despite long periods of idle service. Unlike
traditional safety systems that require testing while the process is completely shut down,
Neles ValvGuard allows operators to reliably test valve performance online, anytime,
without disturbing the process. After thorough considerations, it was decided that the
case will not be analysed in more detail during the first phase of the MODSAFE project.

The second case candidate concerned an arc protection system called Falcon developed
by Urho Tuominen Oy (UTU). The Falcon arc protection system ensures the
personnel’s safety and minimises material damages in case of an electric arc. An arc
short-circuit is a seldom occurring failure event which causes explosive heat and
pressure effects. Protection is based on the light of the arc and, at the same time,
strongly rising current. When an arc short-circuit occurs, Falcon reacts and gives
tripping information to the breakers in less than one millisecond. After discussions with
UTU and its partner Mid Elec Oy, the case was selected and several tripping logics from
real life cases along with explanatory material were further inspected. This case is
described thoroughly in Appendix A.

The third case candidate started as internal research at VIT. A system well known by
VTT from earlier projects within the nuclear field was selected for trying and testing out
model checking methods and finally the case was taken as a part of MODSAFE. The
case concerned an emergency cooling system of a nuclear reactor core. It is described
thoroughly in Appendix B.

During the project year 2007, some additional contacts were also made with the industry
based on the suggestions and hints received from the project’s reference group.
Suggested devices to be investigated for possible future cases were, e.g. timing relays,
rectifiers and inverters for safety purposes, and fast solenoid valves.

3. Planning of the Case Studies

Instead of planning only one case study in 2007 (as stated in the original project plan),
both selected cases (arc protection and emergency cooling) were planned for modelling.
An important part of planning was defining the boundaries of the systems to be
modelled. Also the level of details to be included in the models was a vital part of the
planning phase.

In the arc protection case, the verification needs of the vendor were related to verifying
that the implementation of a tripping logic of the protection system conforms to its
specification. This verification task turned out to be very straightforward to plan as well
as to model.

For model checking, more challenging research problems were related to verifying the
correctness of system design and particularly for verifying whether the system design
fulfils given safety properties. However, there was not any specific list of safety
requirements provided by the vendor, so the planning of the case had to be started from
specifying the relevant safety requirements. It also turned out that the verification of
system design could not be carried out without also modelling the environment of the
protection system. Since there was no environment model of a real application of the arc
protection system available, we designed an imaginary environment by ourselves.

With respect to the actual model checking process, the design process involved deciding
which parts of the system environment had to be modelled and what was the right level
of abstraction in the case of modelling physical devices. We also had to decide how
freely the physical system is allowed to behave: a too permissive model becomes
intractable and a too restrictive model does not correspond to reality.

The emergency cooling system was already well described and documented in safety
assessment reports and in a system flow chart. Almost all of the automatic functions and
delays of the system were decided to be included in the model. In addition to modelling
the automatic functions, some of the system’s most important physical parts were
included in the model along with their connections to their input signals. The physical
parts included in the model were valves, pumps, and the water level in the reactor
containment.

For simplicity, the signals, sensors, pumps and valves in the system were supposed to be
faultless because the main purpose was to validate the design of the logical functions,
not the physical parts. No other subsystems than the reactor emergency cooling were
modelled — they were supposed to function correctly from the emergency cooling
system’s viewpoint. Later in the project, it was recognised that the abstractions made in

the system model did not weaken the comprehension or the predictive power of the
model.

The emergency cooling system was decided to be modelled with all four redundant

units to make the system comprehensive enough. However, there was no additional
benefit of having all four units in the system model recognised instead of only one unit.

10

4. Modelling of the Case Studies

The case studies presented in this report were analysed with the symbolic model
checker NuSMV (New Symbolic Model Verifier). It was originally created in a joint
research project between ITC-IRST, Carnegie Mellon University, the University of
Genoa and the University of Trento. The NuSMV tool can be used for the description of
finite state systems that range from completely synchronous to completely
asynchronous. NuSMV provides a state-of-the-art model checker capable of handling
industrial-sized systems supporting both BDD (Binary Decision Diagram) and SAT
(propositional satisfiability) -based model checking which are currently the main
approaches in implementing model checking tools. Moreover, NuSMV is distributed
under an OpenSource licence and, hence, offers a promising open source platform for
research purposes.

In the case of the arc protection system, the modelling process was rather
straightforward after the thorough planning phase. For checking the correctness of
system design, a system model was built, which consisted of a model of the controller
of the arc protection system and a model of its environment including current flow
model, circuit breakers and sensor units.

The verified properties required in general terms that the protection system should not
make any unnecessary tripping decisions and that the protection system functions
properly whenever an electric arc is actually present in the protected system. Since the
environment model was designed by the researchers, some design flaws were actually
discovered during the design process.

The biggest challenge in the modelling of the arc protection case was the modelling of
the physical delays associated with both the protection system and its environment. The
modelling was done by using discrete counters (see Appendix A for a more detailed
discussion on the technique.) The main benefit of the counter technique is that it is very
straightforward to implement. However, the scalability of the technique is a clear
problem and, therefore, models based on counters have to be strongly restricted either in
the number of counters or in the value range of the counters. The arc protection case
was shown to be at the limits for the applicability of the counter technique. The
determining physical delay, in this case, is the physical opening delay of circuit
breakers. We were able to carry out model checking with a basic desktop PC while
using parameter values corresponding to the opening times of the circuit breakers of up
to Sms. This result is promising but the question of the scalability of the modelling
technique to parameter values closer to the average opening time of standard circuit
breakers of high voltage networks was left open.

11

Because the emergency cooling system is a real case and it has been running in a
nuclear power plant for years, the purpose of the model was to test the suitability of the
model checking technique in such an application. The objective was to validate the
system’s logical functions and try different approaches to modelling. No errors in the
actual system were supposed to be found which we discovered to be true after the model
was created and used for validation.

One interesting aspect in modelling the emergency cooling system was the handling of
delays. The length of the delays was implemented non-deterministically meaning that
the length of the system’s clock cycle was not defined. In that way there was no limit
for the length of a single delay. The physical parts of the system were implemented in a
similar way. This solution covered all of the essential behaviour of the model and even
some impossible behaviour. The approach proved to be good for system validation; to
have the model more extensive than the actual system. In that way the system’s
erroneous behaviour will be found and those which are due to abstractions made in the
modelling phase will be discovered in manual inspections afterwards.

12

5. Conclusions

The report sums up the work done in the MODSAFE 2007 project on two case studies
where we used model checking techniques to study an arc protection system and an
emergency cooling system. The results are very encouraging. Model checking tools
typically offer a finite state machine-based modelling language for modelling the
system to be verified, a specification language (temporal logic) for expressing the
properties to be verified and a set of analysis tools to check that the system satisfies the
given properties. We employed a state of the art open source model checking system
NuSMV and using reasonable effort we were able to (i) model both systems at an
adequate level, (ii) to formulate required safe properties in the specification language,
and (ii1) to perform a full verification of the properties using the NuSMV system. This
indicates that current model checking techniques are applicable in the analysis of safety
[&C systems in NPPs.

Model checking seems to be directly usable for verifying designs of safety 1&C
systems. An advantage of this approach to more traditional testing and simulation work
is that it can provide full coverage of the verification. When model checking system
properties, it is often necessary to model the system environment to some degree.
Fortunately, modelling languages supported by model checking tools are quite usable
for capturing the environment and it is possible to create simple models covering all of
the essential behaviour of the environment. Both systems included timing aspects,
especially delays, which seem to be crucial in many safety I&C systems and which are
also very challenging to design and verify. This is an area where more work is needed
for developing robust design and verification techniques for safety systems where
delays are extensively used.

13

APPENDIX A

Arc Protection System — Technical Description and
Experiences of Model Checking

A.1 Introduction

A.1.1 Structure of the Document

This appendix is organised as follows. In this section a gemerview of the Falcon system with a
description of the research goals for the case study ar@.glmeSection A.2 we present an abstract
model for safety instrumented systems. This model captilmesverall structure of the systems
into which the modelling approach applied with the Falcostesn applies to. In Section A.4 we
present an example of the verification of the correspondehaa implementation and a design, and
in Section A.5 we present an example of the verification otthreectness of a design. In Section A.6
conclusions for the case study are given.

A.1.2 Overview of the Falcon System

Falcon protection system by Engineering Office Urho Tuomifi$TU) can be used to protect switch-
gear and electrical instrumentation from electric arcse $ystem consists of a master unit, overcur-
rent sensor units, and light sensor units. Sensors ardl@usiiato the protected system and connected
to the master unit via optical cables. The master unit ctdlge alarm signals from sensors, and when
necessary, launches circuit breakers which close the plesdrfrom the protected device leading to
the termination of the electric arc. This basic settinglissirated in Figure 1.

The master unit is based on a Programmable Logic Contrdle€C] so that one can freely design
and program the tripping logic according to the protectextesy and the protection required for it.
This provides the possibility for selective tripping: thefected system can be divided into several
protection zones with different tripping conditions. Faicsystem also provides a possibility for
controlling backup breakers which can be launched in the cda malfunction in a primary breaker.

Figure 2 shows an example of a tripping logic of the Falconesys The figure also shows the input
and output ports of the master unit. For attaching sensas timére are four regular input ports. In
addition, there is also a so-called “extra light board” vathadditional 16 inputs which are meant for
light sensors. However, the signals from these ports ardowed optically before they are transmitted
to the controller, so from the perspective of tripping lodiese input ports correspond to a single input
port.

The number of output ports of the master unitis 10. Four cdereae based on fast TRIAC semicon-
ductors and are meant for launching the primary circuitkees The other six outputs are based on
ordinary relays and are used for launching backup relayskamth signals for operators.

The basic programming of a tripping logic is done simply bymecting signals with logicalND and
OR gates. If backup breakers are used, delay gates of a ceyparate also needed. This is because

Al

110kV
o $44b6a4abed

Lightsensas 1695 g s fa i3 iz Ju fo femole:
UTU-Falcon T Ji_}a M e AJ:! T} £ %
T e e R e e e e e e b e e et 0 e e
Main unit r = ey

DISPLAY

w
N

Mo
Kertts 01
i
i |
D hun poveg e duoics .
= T wig out |7
L YT
I esuress F8lcON-CR
“]—‘ Curmrent unit
L went input L3
[[AZASA TA2A5A 1A2A5A]
N\ "
b .
J
RS
<
|

102 03 {04 105

kenttd 17

Figure 1: The Falcon Protection System.

A2

FALCON MASTER
il | >1 !E Triac 1
o [—l, !E Triag 2
CH3 :'2.[L 31 N 1 % T g
e g o e
_I'mimis'm'lﬁ Relay 1

el]
I IZI~| RE[EI)I‘ 5

F8.16 'Z;’E [I
: 0 # Relay 3
: : : 1 E'H Relay &

F8.01 P= | | = - L
s] T Ew E}# RElay 6
}2__; Remote

LOG'E T2l T

P.515

Figure 2: A tripping logic of the Falcon system.

A3

backup breakers might typically cover more than one primteaone and therefore they are supposed
to be launched only after it is evident that the primary besalcovered by it have been broken. This
is done by transmitting the launch signal of a backup bretikeugh such a delay gate which passes
an output signal only once it has received an input signdicoausly for a certain time period. Now,
the delay of a delay gate corresponding to a certain backegkbr has to be longer than the physical
activation time of the primary breakers protected by the&kbpdreaker. In this way it is guaranteed
that a backup breaker is not launched before the primaryjkbrearotected by it have had enough
time to have closed the power feed of the protection zone t@mnainated the cause of the alarm, i.e.,
the electric arc) if they are not broken.

A.1.3 Study Objectives

The main purpose of this case study was to find out what kindemfication needs a typical safety
instrumented system introduces, and moreover, on whdtdaedhas to model the system to be able to
verify the properties of interest with the chosen tool. Thecsal characteristic of the chosen NuUSMV
model checker [1] is that it is not specifically designed favdal checking of real-time properties.
However, non-real-time model checkers are capable of mamtdrger systems than real-time model
checkers, so for this reason one of our main research goalsoniand out whether a typical safety
instrumented system can be modelled in such a way that relegal-time properties can also be
model checked with NuSMV.

Safety instrumented systems introduce two different tyferification tasks. In the first class there
are tasks of verifying that an implementation of the conlingic conforms to its specification. This
type of a verification task is presented in Section A.4. Theptype of verification tasks consist of
verifying the correctness of a system design. This type abk is presented in Section A.5.

A.2 An Abstract Model of Safety Instrumented Systems

In this section we present an abstract model for safetyunsnted systems (SIS). This model is a
generic model for the kinds of systems to which the model kingcmethod that we used with the

Falcon system can be applied. We refer to this abstract ntatdelin the text while we describe the

modelling process of the Falcon system. Therefore, theatishodel can be used to explain what
kinds of systems our method applies to and as a reference fpoinew modelling processes. The

abstract model is depicted in Figure 3 and described in thedmg.

Time model

The time model of the system is discrete. That is, the timeegmes only in discrete time steps and
the values of the state variables are only read and alterdtbs¢ time instants. This follows from
the fact that the controller of the SIS is assumed to operdteanconstant scan cycle (a scan cycle
of a controller is a single operational period during whikk tontroller reads new inputs, executes
the program and returns new output values). Therefore, glestiime step in the abstract model
corresponds in the real world to the length of a single scafeayf the controller.

Structure of the model

The whole system consists of the controller part which aletérthe controller of the SIS and of the
system environment which abstracts the protected systewelhas the physical environment which

A4

0 steps

Controller

| nputs

0 steps

Logi c

1 step
|
M
M
M
m

System envi r onnent

Figure 3: An abstract model of a SIS.

A5

might affect the state or operation of the SIS.

The controller consists of a logic part and delays. The |pgit does not include any state variables,
but it merely calculates the output values as a function @input values received from the environ-

ment. The delays are associated with a delay length (nunilben® steps) and they operate in such
a way that a delay only passes an output signal if it has redeawn input signal for the delay length

associated to it. The delay length is at minimum one time, si@ge the physical controller spends at
minimum one scan cycle between receiving input values assipg output values.

The environment consists of a logic part, memory elementisigputs. The logic part encodes the
behaviour of the environment model, i.e., it calculatesstiage of the environment model as a function
of the state of the environment on the previous time step &titeanputs to the environment at the
current time step. The memory elements hold the informaifdhe state of the environment on the
previous time step. The inputs correspond to the kinds afrmétion of the physical world which
cannot be deduced from the model. As an example, considen aignals or malfunctions of devices,
etc.

A.3 Description of NuSMV Model Checker

In this section we describe the NuSMV model checker [1] whiels used to model check the Falcon
case study. Section A.3.1 gives a general overview of NuSB&¢tion A.3.2 describes how models
are build with the input language of NuSMV, and Section A@e3cribes how verified properties are
specified with the input language of NuSMV. The discussioth@syntax and semantics of the input
language of NuSMV covers only the parts of the language warehused in this study. For further
information we advise the reader to see the NuUSMV user md2Lial

A.3.1 General Overview

NuSMYV is an academic model checker maintained by ITC-IRSISMV can be used to describe
finite state systems that range from completely synchrotmasmpletely asynchronous. The main
reason for choosing NuSMV was that it is a state-of-the-astieh checker which has proven to
be capable of handling industrial-sized systems. MoredMaSMV supports both BDD (Binary
Decision Diagram) and SAT(propositional satisfiability) based model checking which currently
the main approaches in implementing model checking toolsindgdistributed under OpenSource
licence, NuSMV also offers a promising platform for reségoarposes.

A.3.2 Modelling with NuSMV
General Structure of NuSMV Models

NuSMV models (also referred to as NuSMV programs) consisinaf or moremodul e declarations.

A module declaration is an encapsulated collection of datitans, constraints, and specifications.
Intuitively, the idea of the module concept is to encapsutdbsely related state variables together
in order clarify the structure of the whole model. Modules ased in such a way that a module
declaration is used as a variable type to creaddule instances. Therefore, multiple realisations of
a module can be created based on a single module declardtiorodule declaration may contain

1Some of the SAT based model checking algorithms inside Nu$isix been developed at TKK/TCS [3]

A6

instances of other modules so that the modules form a hlgcalcstructure. Each NuSMV model is
built on a declaration of a special module which has to be wbas@ain.

Next we describe the basic constructs needed for creatirdul@aleclarations. The description is
based on the NuSMV model shown in Figure 4, which has two neodatlarations. The model is
complete and it introduces all structures used in our aciase study.

MODULE exanpl eModul e(par aml, par an®)
VARS
varl : bool ean;
var2 : -1 .. 10;
var3 : -1 .. 10;
ASSI GN
-- An exanple of direct assignment.
varl : = parant;

-- An exanpl e of recursive assignnent.
init(var2) := 0;
next (var2) := parang,;
init(var3) := -1;
next (var3) :=
case

(var3 < 10) : var3 + 1;
(var3 = 10) : {-1,10};
esac;

MODULE mai n()

VARS

nodul el nstance : exanpl eMbdul e(defi nedConstant, 5);
DEFI NE

defi nedConstant := 1,

Speci fication of properties

LTLSPEC G (nodul el nstance.varl -> O (nodul el nstance.var2 = 10))
LTLSPEC F (nodul el nstance. var2 > nodul el nstance. var 3)

Figure 4: An example of a NuSMV model.

Structure of a Module Declaration

A description of a NuSMV module consists of several difféi@gments containing different kinds of
declarations, specifications, and constraints. In thie sasdy, only the most central constructs were
needed. These include the parameters of modules, the alsmhaand assignment of state variables,
and define declarations. These are described in the folgpwin

Parameters of a module. Parameters are defined as a list of identifiers which can be fase
passing data to a module from other modules. The paramdtammodule are specified with a paren-
thesised list of identifiers following the name of a moduleggaram1 andparam2 in the example
above. Thenain module is not allowed to have parameters.

A7

State variables of a module. The state variables of a module are listed in a segment foehtvith

the keywordVAR. A state variable declaration consists of an identifier Wwidan be used to refer to
the variable and a type specification which describes treetgipe and the range of possible values of
the variable. As data types one can use either built-in gatstor module declarations.

In our case study, only two built-in data types, boolean awtelger, are used. The boolean data type
comprises two integer values, 0 and 1 (or their symbolic tenpartsfalse andtrue respectively.)
The value range of the integer type consists of integer gdiwen —232 4 1 to 232 — 1. The integer
type is specified by declaring a value range after the variaantifier (see declaration e&r2 in the
exampleModule.)

If a module declaration is used as a data type in a variabldion, the variable is said to be
an instance of the module, and the variable declarationigsteabe a module instantiation. The
declaration is formed simply by referring to the module ngfolblowed by a list of parameters) in the
place of the variable type (see variahtgluleInstance of themain module in Figure 4.)

Assignment of state variables. State variables are assigned in a segment identified witkeie
word ASSIGN. A state variable can be assigned in two distinct ways, eitheectly or with an
init/next construct. The variablear1 in the exampleModule in Figure 4 shows an example of
direct assignment. In this case, the value of the currenieval thevar1 is set to the value of param-
eterparaml.

In the case of the variabkear2 in theexampleModule, the assignment is done using thei t /next
construct. In this case, the assignment is done in two stegtstheinitial value (i.e., the value of the
state variable at the first time step, or in the initial stafejar2 is set to zero. On the following line,
it is stated that the value @hr2 in the next state will be the value gfaram?2.

The variablevar3 in the exampleModule is defined asrar2 but in itsnext-expression another two
important constructs related to assignments are showncatigeexpression and theset expression.
The segment surrounded by keywordsse andesac define acase expression. It can be used to
express that the value assigned to a state variable departtie gondition of other state variables.
Each line of the case segment has on its left-hand side adowlued condition statement and on
its right-hand side a value which is assigned to the staiabarif the condition holds. The lines are
evaluated sequentially one-by-one starting from the fingt lintil the first line whose condition part
is equals to 1 is reached. If the conditions of each line inctise statement are equal to O, then an
arbitrary value belonging to the value range of the statmbbe is assigned to it.

In the case ofrar3, the case statement increases its value in the next statechy the current value

is below the value 10 (which is the maximum value it can halfehe current value ofrar3 is 10, its
value in the next state is chosen non-deterministicallynftbe set expressiofo, 10}. Consequently,

a set expression is a way of stating that the value used insgigranent can be chosen among a set
of values. The choice can be done freely and, in fact, as NuSMykies out an exhaustive search, all
of the specified values in a set expression will be examinégrm

DEFINE declarations Define declarations are yet another basic construct usediltbrhodules.
Define declarations are added in a module declaration dftekéywordDEFINE and they are used
to associate a common expression with a symbol. That is,dafieeddeclarations are used to define
shorthands for complex expressions or numeric values iardalmake module descriptions more

A8

concise. ThelefineConstant of themain module in Figure 4 shows an example of define declara-
tion in which the numeric value 1 is associated with an idmti

A.3.3 Specification of Properties

The properties of this study are specified by using Linearpkaal Logic extended with past operators
(hereafter LTL). Also invariant specifications are used,thay can be formulated in LTL as well. In
this section we describe the syntax of LTL in NUSMV.

In NuSMV, LTL formulas are used to specify conditions or telas between the state variables of
a NuSMV model. The specifications are formed by connectiatgstariables with LTL operators
which include the basic logical boolean operators and sp&nporal operators which can be used
to specify time related statements.

The following list containts the LTL operators of NuSMV usiedthis study and describes their se-
mantics informally. More extensive coverage of LTL with paperators can be found in addition to
the NuSMV user manual [2] from [3] by Heljanko, Junttila, dratvala.

NuSMV syntax of boolean operators:

'x (logical not): !x is true ifx is not true.

x & y (logical AND): x & y is true ifx is true andy is true.

x | y (logical OR): x | yis true ifx is true ory is true.

— (implication): x — yistrue ify is true whenevex is true.

— (equivalence): x « y s true if the values ok andy are equal.

NuSMV syntax of temporal operators of LTL with past operator

G (globally): G f is true iff is true at all time steps.

F (finally): F £ is true at this time step if will be true at some time step in the future.

O (once): 0 f is true if f is true at this time step or has been true at some previousstiepe

Y (previous state): Y £ is true if £ was true at previous time step.

In the example model of Figure 4, two examples of LTL propepgcifications are shown. The first
property states that “in all time steps it holds that if théueaof var1 of moduleInstance is true,
then there has to be a time step in the past in which the valueraf of moduleInstance was 10”.
The second property states that “there has to be some tipenstehich it holds that the value of
var2 of moduleInstance is bigger than the value afar3 of moduleInstance.”

A9

A.4 \Verifying the Implementation of Control Logic

A.4.1 Overview on the Verification Task

Here we present an example of the task of verifying whethemg@tementation of control logic con-
forms to its specification. In this context, by a specificatice mean a description of the input/output
behaviour of the control logic. That is, a specification déss what output signals the controller
should return for each possible input combination. Thefigation task introduced is to verify that
an implementation built on a specification actually beharesisely according to the specification.
With respect to the abstract model presented in Sectiondhl®,the Logic part of the Controller in
Figure 3 is considered.

The verification was carried out on a real system descrigigronided by UTU. Figure 5 shows the
implementation of the control logic which is based on thecgmation document shown in Figure 6.

A.4.2 Description of the NuSMV Model

The NuSMV model consist simply of two modules nanTeathTable andFalcon which encode
the specification and the implementation (respectivelythefcontrol logic. The structure of both of
the modules is very similar. Both have the inputs of the Ralec@ster unit as parameters and both
include boolean state variables for the four output signsésl in the control logic. In the case of the
Falcon module, the logic is encoded conveniently by introducingfing declaration for each of the
logical gates of the tripping logic and by using these detians with the assignments of the state
variables.

In the case of th@ruthTable module, the state variable assignments were done by ermctiun
rows of the specification document directly intase expressions.

A.4.3 Specification of Properties with NuSMV

With this verification task only one property needed to becgal. It is an invariant specification
which states that with all possible combinations of inptit® outputs have to be the same. This
property is specified in the input language of NuSMV in thédeing way:

LTLSPEC G ((falcon.triacl <-> truth_table.triacl) &
(falcon.triac2 <-> truth_table.triac2) &
(falcon.triac3 <-> truth table.triac3) &
(falcon.relay6 <-> truth_table.rel ay6))

A.4.4 Full Source Code of the NuSMV Model

MODULE Fal con(chl, ch2, ch3, ch4,1ights)
VAR

triacl : bool ean;

triac2 : bool ean;

triac3 : bool ean;

rel ay6 : bool ean;

DEFI NE

Al10

CH1

CH2
CH3

CH&

F8.16

F8.01

FALCON MASTER
= [— g H>1 ==
5] g >1 v
= 121 =a
)%[. & !E
8 L =i
- 7] Eﬂ}
5 H I
o =z
[!
s >1 10— =
¢« 1= & :
| ; >1 L=
iy Iyl
_ _ | 3t T
A&

Triac 1
Triac 2

Triac 3

Triac &

Relay 1
Relay 2
Relay 3
Relay &
Relay 5

Relay 6

Remote

Jk _ |27.6.05

LOGIC

P13

Figure 5: Tripping logic diagram of the example system.

All

Falcon Master logic P.2.1.5 Truth table
|
|
Inputs Outputs
fCH1 CH2 CH3 CH4 | G iG] [TR2 TR3 TR4 [RELT [RELz_|RELs |ReLa |RELS |RELE
0 0) 0 0| 0]] 0) 0 1] 0 0 0 0 0 0
0 0) 0 0| 1] 0] 0 0 0 1] 0 0 0
0 0| g| 1 0] 1] [_.‘l| 1] 1] 1] 1] 0 X
0 0) [x] 1 1 0 0) 0 4]]] 1] 0 0
0 0) 1 0| 0] 1] 0) 0 0 0 0 1] 0)
0 0| 1 1] 1 1 1 0] 0 0 0 [u] 0 1
0 0| 1 1 0 1 1 1 a 1] 1] 1] 1] 1
0 0) 1 1 1 1 1 1 0 0 0 1] 0 1
0 1 [¥] 0| 0 1] 0) 0] 0 0 i 1] 0 i)
0 1] 0| 0| 1 0| 0) 0 a 0 1] a 0 0
0 1 0 1 0] 0 0) 0] 0 0 0 1] 0 0
0 1 0 1 1 1] 0) 0] 4] 0 0 1] 1])
0 1 ik 0| 0 1 0) 1 0 1} 0 0 0 i
0 1 1 0| 1 1 1 1 1] 0 1] 1] 0 1
0 1 1 1 0] 1 1 1 0 0 4] 1] 1] 1
0 1 1 1 1 1 1 1 0 0 [a] 1] 0 1
1 0|] 0] 0 1] 0) 0 1] 0 1] 1] 0 X
1 0) Q| 1] 1 1 1 0] 1] 0 1] 1] 0 1
1 0| 0 1 0 1 1 1 0 0 0 0 0 1
1 0|] 1 1 1 1 1 1] 0 1] 1] 0 1
1 0) 1 Q| 0] 0 0) II_)| 4]] i 1] 0 0
1 0) 1 0| 1 1 1 0 0 0 1] 1] 0 1
1 0) 1 1 0] 1 1 1 1] 0 i 1] 1] 1
1 0) 1 1 1 1 1 1 1] 0 1] 1] 0 1)
1 1 0 0| 0 1 0) 1 0 1] 0 0 0 1
1 1 0 0| 1 1 1 1 0 0 1] 1] 0 1
1 1 g| 1 0 1 1 1 1] 0 1] 1] 0 il
1 1 [x] 1 1 1 1 1 4]]] 1] 0 1
1 1 1 0| 0] 1 0) 1 0 0 L] 1] 0 1
1 1 1 1] 1 1 1 1 0] 0 1] 0 1
1 1 1 1 0 1 1 1 a 1] 1] 1] 1] 1
1 1 1 1 1 1 1 1 0 0 1] 1] 0 1

Figure 6: Truth table representation of the specificatiotneftripping logic of the example system.

or _gateO := chl | ch3;

and _gateO := or_gate0 & ch2;

and_gatel := or_gate0 & ch4;

and_gate2 := or_gateO & lights;

or _gatel := and_gateO | and _gatel | and _gate2

or_gate2 := and_gatel | and_gate2;

or_gate3 := and_gateO | and_gatel

or_gate4 := and_gateO | and_gatel | and_gate2
ASSI GN

init(triacl) := 0;

init(triac2) := 0;

init(triac3) := 0;

init(relay6) := 0;

next(triacl) := or_gatel

next (triac2) := or_gate2;

next (triac3) := or_gate3;

next (rel ay6) := or_gate4;

MODULE Trut hTabl e(chl, ch2, ch3, ch4, i ghts)
VAR
triacl : bool ean;

Al2

triac2 : bool ean;
triac3 : bool ean;
rel ay6 : bool ean;

ASSI GN
init(triacl)
init(triac2)
init(triac3)
init(rel ay6)

o uon
eeee

next (triacl)
case

-- Truth table rows with output val ue 0.
lchl & !'ch2 & 'ch3 & !ch4 & !'lights : O; -- row 1
lchl & !'ch2 & 'ch3 & !ch4 & lights 0; -- row 2
lchl & !'ch2 & 'ch3 & ch4 & !lights : O; -- row 3
lchl & !'ch2 & 'ch3 & ch4 & lights : O; -- row 4
lchl & !'ch2 & ch3 & !ch4 & !'lights : O; -- row5
lchl & ch2 & !'ch3 & !ch4 & !'lights : O; -- row 9
lchl & ch2 & !'ch3 & !ch4 & lights : O; -- row 10
lchl & ch2 & !'ch3 & ch4 & !lights : O; -- row 11
lchl & ch2 & 'ch3 & ch4 & lights 0; -- row 12
chl & !'ch2 &!ch3 &!ch4 & !'lights : O; -- row 17
chl & !'ch2 & ch3 & !ch4 &!lights : O; -- row 21
-- Truth table rows with output value 1
1 L

esac;

next(triac2) :=

case
-- Truth table rows with output val ue 0.
lchl & !'ch2 & 'ch3 & !ch4 & !'lights : O; -- row 1
lchl & !'ch2 & 'ch3 & !ch4 & lights : O; -- row 2
lchl & !'ch2 & 'ch3 & ch4 & !lights : O; -- row 3
lchl & !'ch2 & 'ch3 & ch4 & lights : O; -- row 4
lchl & !'ch2 & ch3 & !ch4 & !'lights : O; -- row5
lchl & ch2 & !'ch3 & !ch4 & !'lights : O; -- row 9
lchl & ch2 & !'ch3 & !ch4 & lights : O; -- row 10
lchl & ch2 & !'ch3 & ch4 & !lights : O; -- row 11
lchl & ch2 & !'ch3 & ch4 & lights : O; -- row 12
lchl & ch2 & ch3 & !ch4 & !lights : O; -- row 13
chl & !ch2 & 'ch3 & !ch4 & !'lights 0; -- row 17
chl & !'ch2 & ch3 & !ch4 & !lights : O; -- row 21
chl & ch2 & !ch3 & !ch4 & !'lights : O0; -- row 25
chl & ch2 & ch3 & !ch4 & !lights : O0; -- row 29
-- Truth table rows with output value 1
1 R

esac;

next(triac3) :=
case
-- Truth table rows with output val ue 0.

Al3

lchl & !'ch2 & 'ch3 & !ch4 & !'lights : O; -- row 1

lchl & !'ch2 & 'ch3 & !ch4 & lights : O; -- row 2

lchl & !'ch2 & 'ch3 & ch4 & !lights : O; -- row 3

lchl & !'ch2 & 'ch3 & ch4 & lights : O; -- row 4

lchl & !'ch2 & ch3 & !ch4 & !lights : O; -- row5

lchl & !'ch2 & ch3 & !ch4 & lights : O; -- row 6

lchl & ch2 & !'ch3 & !ch4 & !'lights : O; -- row 9

lchl & ch2 & !'ch3 & !ch4 & lights : O; -- row 10
lchl & ch2 & !'ch3 &ch4 & !lights : O; -- row 11
lchl & ch2 & !'ch3 & ch4 & lights : O; -- row 12
chl & !'ch2 &!ch3 &!ch4 & !lights : O; -- row 17
chl & !'ch2 & !ch3 & !'ch4 & lights 0; -- row 18
chl & !'ch2 &ch3 & !ch4 & !lights : O; -- row 21
chl & '!'ch2 & ch3 & !ch4 & lights 0; -- row 22
-- Truth table rows with output value 1

1 L

esac;
next (rel ay6) :=
case

-- Truth table rows with output value 0O

lchl & !'ch2 & 'ch3 & !ch4 & !'lights : O; -- row 1

lchl & !'ch2 & 'ch3 & !ch4 & lights : O; -- row 2

lchl & !'ch2 & 'ch3 & ch4 & !lights : O; -- row 3

lchl & !'ch2 & 'ch3 & ch4 & lights : O; -- row 4

lchl & !'ch2 & ch3 & !chd4 & !lights : 0 -- row5

lchl & ch2 & !'ch3 & !ch4 & !'lights : O; -- row 9

lchl & ch2 & !'ch3 & !ch4 & lights : O; -- row 10
lchl & ch2 & !'ch3 &ch4 & !lights : O; -- row 11
lchl & ch2 & 'ch3 & ch4 & lights 0; -- row 12

chl & !'ch2 & !ch3 lch4 & !'lights : O; -- row 17
chl & !'ch2 & ch3 lch4 & !'lights : O; -- row 21
1
1

Ro Ro

-- Truth table rows with output val ue
1 :
esac;

VAR
chl : bool ean;
ch2 : bool ean;
ch3 : bool ean;
ch4 : bool ean;
[ights : bool ean;

fal con : Fal con(chl, ch2,ch3,ch4,lights);
truth table : TruthTabl e(chl, ch2,ch3,ch4,lights);

ASSI GN
init(chl) := {0, 1};
init(ch2) := {0,1};
init(ch3) := {0,1};

Al4

init(ch4) :=1{0,1};
init(lights) :={0,1};

next (chl) := {0, 1};
next (ch2) := {0, 1};
next (ch3) := {0, 1};
next (ch4) := {0, 1};
next (lights) := {0, 1};

- Specification of properties

- The outputs of the nobdul es have to be equal with all inputs.

LTLSPEC G ((falcon.triacl <-> truth_table.triacl) &
(falcon.triac2 <-> truth_table.triac2) &
(falcon.triac3 <-> truth_table.triac3) &
(falcon.relay6 <-> truth_table.relay6))

A.5 Verifying the Correctness of System Design

In Section A.4 we showed how it can be verified that the combigit of the Falcon system conforms
to its specification. In contrast, here we show how the ctmess in the design of a whole system
can be verified. That is, we want to verify that a protectiostegn based on a certain control logic
operates as intended with respect to the system it protects.

The section is organised as follows: Section A.5.1 dessribe properties which the system is re-
quired to fulfil in order that the design is considered to beex. Section A.5.2 describes the types of
information required from the system that the model chegk#n carry out. Section A.5.3 describes
the specific application of the Falcon system which was us#tki case study. Section A.5.4 describes
what kinds of assumptions one needs to make on the systeratsbdan be modelled. Section A.5.5
gives an overview of the NuSMV model of the case study and@e£t 5.6 explains how the verified
properties are specified in the input language of NuSMV.iBe@&.5.7 presents some experimental
results of the running times of the model checking of the ctisdy with different parameter values.
Finally, in Section A.5.8, the full source code of the NuSMVael with the property specifications
is presented.

A.5.1 \Verified Properties

In the case of the Falcon system, the most important properte verified is that the system does

not make unnecessary tripping decisions. This is becawssytstem is often used to protect, for

example, large manufacturing plants for which an unnecgsdautdown caused by an unnecessary
tripping decision might cause very high expenses.

In order to avoid any false trips, the following propertievé to hold:
pl: The couplings and the tripping logic have to conform to thecsed tripping conditions.
p2: The backup breakers should not be tripped unless necessary.

The requirement of the absence of unnecessary trippingidesifalls into the category ahfety
properties as it states that the system should not do anything unwawtedther type of properties

Al5

calledliveness properties informally state that the system should always perform #s& that it is
designed for. In the case of the Falcon system, this woulddiedsas the following requirement:

p3: Existence of an electric arc on the protected system leaslgteally to shutting down the power
feed for the protected system.

These properties are the most relevant requirements fdfaloen system. In the following section
we list the the types of information and documents neededderdo be able to verify these properties
with the aid of model checking.

A.5.2 Information Required for Verification

Here we describe what sorts of information one needs in doderodel check the properties of the
Falcon system:

1. Description of the specific application
In case of verifying the correctness of the system designsaffety instrumented system, the
question is of verifying whether the control logic of a catier is designed correctly with
respect to the environment in which the controller is idethl Therefore, in this case it is not
sufficient to model only the control logic of the controllbut one also has to build a model of
the environment of the controller. For this reason, besidesontrol logic, we need now also
a switch diagram and a system description with the followirigrmation:

e What is the structure of the protected system (structurkepbwer-distribution network,
location of the power feeds, transformers, circuit bres)ker

How the sensor units are installed into the protected syatem
Into what kinds of protection zones the protected systenvided?
What are the tripping conditions of the protection zones?

Which circuit breakers need to be launched in order to déesti® power feed from the
protection zones?

e Are there any backup circuit breakers, and if so, what ane thgping conditions?

2. Assumptions about the whole system
The information listed in the previous item describes tlobigectural structure of the protected
system and the installation and intended operation modkegsrotection system. However, for
the modelling of the whole system, one also needs to clallifgl@vant physical and functional
properties on both the protection system and the protegttda. A few examples of the things
to be clarified in the case of the Falcon system are:

e What kinds of delays there are with the devices of the system?
¢ In which parts of the protected system can short circuitsiitc
e What are the failure modes of the associated devices?

Because all aspects of the physical world cannot be modeliezihas to makassumptions on
the physical system so that the physical model can be stateontform to the model in case
the assumptions hold.

Al6

These kinds of detailed descriptions of the system mighbeavailable in the existing docu-
mentation neither in the case of the protected or the piiotesystem. Therefore, with critical
applications, the modelling of the system should always dreied out in cooperation with
domain specialists.

3. List of unambiguously defined requirements to be verified
In the previous section the verified properties of the Fakgstem were listed on a general
level. However, in order to perform model checking, the grtips have to be described more
precisely so that there are no questions about how the girepehould be interpreted. In this
case, for example, one needs to state precisely when angijgigicision is unnecessary. In the
Section A.5.6, it is shown how the verified properties arenesfiso that they can be stated in
the terms of the formal model of the system.

Unfortunately a complete set of all this information comieg a single specific application of
the Falcon system was not available. Therefore we desigmedven application on the basis of the
documents we received from UTU and which related to sevéfalent applications. Our model was
reviewed by UTU representatives and it was considered talbergalistic in all aspects.

A.5.3 Description of the Application
A.5.3.1 Architecture of the System

Our fictional application of the Falcon system is shown inufgg7. The system consists of the
protected system and the Falcon system. The protectedrsgsigsists of the following things:

e main power feeds pfl and pf2,

e transformers trl, tr2, tr3, and tr4,

e primary circuit breakers A, B, C, and D,

e backup circuit breakers E, F, H, and G, and

e protection zones 1, 2, and 3.

The Falcon system introduces the following elements indothole system:
¢ the Falcon master unit,
e overcurrent sensors Crl, Cr2, Cr3a, and Cr3b, and

e lightsensors L1, L2, and L3.

A.5.3.2 Operation of the System

The main power feeds pfl and pf2 distribute electricity t® pinotected system. They are connected
to each other by a switch operated by the circuit breaker @,therefore, they act as each others
backup systems. That is, both pfl and pf2 can deliver powtiteevhole protected system alone if a

malfunction occurs in one of them.

The protected system is divided into three distinct prav@ctones. For all of these there is a zone-
specific tripping condition which causes tripping of citchreakers that leads to the isolation of

Al7

pfl (110 k) Falcon pf2 (110 kV)

Breaker E S ‘ Breaker F
Breaker H ‘ ‘ Breaker G
trl 8 8 tr2
Cr3a Cr3b
| Current I
Breaker D
20 kv
20 kV
N —_ = — — |
Breaker C l
| |
tr3 tr4
|
Cr2

| Current Ié
Crl |
| Current Ié Breaker B - - - -

Breaker A

Figure 7: Switch diagram of the example system.

Al8

the protection zone from the power feed. The protectionesyst designed to operate with each
protection zone so that there are two “levels” of backup keesa That is, if the primary breakers are
broken, the protection system first tries to cut down the pdeed only from the main power feed
which is closest to the alarming zone (the “first level”). hitalarm is still on (which might result
e.g., if the connecting breaker C was broken), then the pd&eezt will be cut also from the other
main power feed which will lead to the power feed from the veé®}stem (presumed that the backup
breakers are working correctly) being cut off.

The tripping conditions and related actions are listed enTable 1 and in Figure 8 a tripping logic
which is created based on this table is presented. The dBlhysd D3 are related to the backup
breakers of the “first level” and delays D2 and D4 are relatethé “second level”. Therefore, it
should be that DX D2 and D3< DA4.

Alarm First action Second action Third action
CrlAND L1 Breakers A and C launched Breaker E launched Breaker F launched
(alarm on zone 1) (after delay D1) (after delay D2)
Cr2AND L2 Breakers B and C launchegl Breaker E launched Breaker F launched
(alarm on zone 2) (after delay D1) (after delay D2)
(Cr3a0Rr Cr3b)AND L3 | Breakers C and D launched Breaker G launched Breaker H launched
(alarm on zone 3) (after delay D3) (after delay D4)

Table 1: Actions caused by alarms on different protectiameso

Triac 1

Crl AND L1 -> Breaker A

Triac 2
Cr2 AND L2 -> Breaker B

OR Triac 3
-> Breaker C

OR _|_ |_
Crab | AND : Triac 4

Cr3a

-> Breaker D

L3

Relay 1

OR D1
-> Breaker E

Relay 2
-> Breaker F

D2

Relay 3
-> Breaker G

D3

Relay 4
-> Breaker H

D4

Figure 8: Tripping logic of the example system.

Al9

A.5.4 Assumptions of the System

In the previous section the structure and operation of tlaenge system was described. However,

in order to be able to carry out the modelling process, wesa to make some assumptions about
the functional and behavioural properties of the systenreltethe list of assumptions made on the

example system.

General assumptions:

e The duration of oneperation cycle of the controller of the Falcon master unit, i.e., time dgrin
which the Falcon system detects an alarm signal throughsosand passes a launch signal to
a circuit breaker is 1 millisecond. (This time period willroespond to a single time step in the
model of the system, so it is of great importance.)

e The physical devices excluding the primary circuit brealamnot break down.
Overcurrent alarms:
e Overcurrent peaks detected by the overcurrent sensorsaased by short circuits.

e Short circuits can arise only in the parts of the protectestiesy which are defined as protection
zones.

e Overcurrent peaks cannot move through the transformers.

e An overcurrent sensor can raise an alarm signal anytimenasds it is connected to the pro-
tection zone it is overseeing and the protection zone iscstilnected to a power feed. If these
conditions are not met, the overcurrent sensor cannot aais¢arm.

Light alarms:

¢ Alight sensor can raise an alarm signal nondeterminisgiealiny given time instant, i.e., light
alarms are independent of the rest of the system.

Circuit breakers:

e Once a circuit breaker has beactivated, it opens the electric circuit and prevents the flowing
of the current.

An activated circuit breaker will remain activated forever

There is anactivation delay associated with each circuit breaker, which is the timequeri
between the moment when a breaker is launched and the morhentithas opened the circuit
preventing the electric current flowing. (The model chegkivas carried out with different
parameter values for the size of the activation delay, seedpeA.5.7.)

A non-activated primary circuit breaker can break down gtgiwen time.

A broken circuit breaker cannot open a circuit.

A broken circuit breaker will stay broken forever.

A20

A.5.5 Description of the NuSMV Model

In this section we give an overall description on how the &akystem and it's environment was mod-
elled with NuSMV. The text is organised according to the exs$tSIS model covered in Section A.2.
We describe for each part of the abstract model which parteeofalcon system correspond to it.
Moreover, we give an overall description on how these pdtiseoFalcon system were modelled with
NuSMV. In the following text we will refer to the parts of thestract model with the “abstract”-prefix

to emphasise the distinction between corresponding phifte ¢-alcon system or the NuSMV model.

We begin the discussion from the Controller part of the @a$tnmodel and then proceed to the System
environment. The NuSMV modules described in the following aso illustrated in Figure 9 which
depicts the data flow between the modules.

Controll er nodul e

|

|

|

: Del ay
I nmodul es
|

T

|

|

|

Current flow nodel Br eaker modul es
Overcurrent sensor

|
|
| nodul es Ti mer
\ nodul es
|
| []

- I nput s

I nputs (overcurrent alarm (mal functions)

Li ght sensor nodul es

S

Inputs (light alarm

' Syst em envi ronnment

Figure 9: Data flow between NuSMV modules.

Controller

In the case of the Falcon system, the master unit corresponiti® Controller part of the abstract
SIS model. The Falcon counterpart for the logic part of theralct model is the logical circuit of the
tripping logic excluding the delay gates. The delay gatesespond to the delays of the controller in
the abstract model.

In our NuSMV model there is a module declaration for encodiregdelays and a module for encoding
the controller part. They are described in the following.

Delay module:
The Delay module has two parameters: boolean valued ingnakand a delay value whose

A21

type is non-negative integer (it should be noted here, theiNV does not allow explicit type
declarations for module parameters, but type checkingrisechout implicitly.) The module
has a boolean valued variable representing the outputlsiftiee abstract delay.

The operation logic of the Delay module is based on an integlered counter whose values
may vary between zero and the value of the parameter del@cdumter is set to zero whenever
the input signal is 0. If the input signal is 1, the countemisreased until it reaches the value
of the delay parameter. The value of the output signal igjassi to 1 only if the counter has

reached the value of the delay parameter.

Controller module:

A module implementation corresponding to the Controllert & the abstract model would
have boolean valued parameters for each input signals afltsieact Controller, one instance
of a Delay module described above for each delay of the attsB@ntroller, and two constant
definitions for the input and output values for each delayhef abstract Controller. The in-
put values of the delays are, at the same time, the outpuésalfithe Logic of the abstract
Controller and they are defined as functions of the paramefahe Controller module. These
functions encode the logic of the abstract Controller. Athe values of the input constants have
been assigned, they are set as the parameters for the defiagdes. The values of the output
constants are set to hold the values of the outputs of thg dedtances, i.e., they represent the
values of the output signals of the Controller part of theraos model.

In the case of the Falcon system, the Controller module hapévameters (in the actual system
the 16 inputs of the light board are combined into a singlealigvith an opticalor). For
each output of the Falcon Master unit there is an instanceeoDielay module and constant
definitions for input and output values as described above.

The delay parameter values of the Delay module instancesetite values D /t]| whereD is
the delay in milliseconds of the corresponding delay gatiénFalcon tripping logic andis
the length (also in milliseconds) of the operation cyclehd tontroller of the Falcon master
unit. In practice, the parameter value is the physical delayilliseconds since the operation
cycle of the Falcon master unit is 1ms as stated in Sectio®A.5

System environment

In the case of the Falcon system, the system environmeneddlibtract model breaks down to the
protected system (divided into one or more protection zZpregnary and backup circuit breakers,
and the sensor units of the Falcon system.

The logic of the system environment consists of the foll@ntimngs:

e operational and failure models of the breakers,
e operational model of the sensors, and

e reasoning of whether each protection zone is connected dvardfeed.

The memory elements of the abstract system environmensacefar holding the state of the system
environment in the previous time step. In the case of thedRadystem, these states are related to the

A22

circuit breakers. That is, for each circuit breaker we neekhow whether the following things held
in the previous time step:

e is the breaker broken,
e has the breaker launched, and
e is the breaker activated.
In the case of the Falcon system, the inputs of the systermagmaent are:
e overcurrent and light signals, and
¢ the information of break-ups of the primary breakers.

The NuSMV model of the system environment consists of twardis modules for light and over-
current sensors, a module for circuit breakers (the samail@asiused for both primary and backup
breakers), a module for encoding a counter representingdheation delay of the breakers, and
constant definitions for the current flow model. In the foliogywe give an overview on how these
entities were implemented.

Timer module:

The Timer module has the same parameters as the Delay mcekdeloed above: a boolean
valued input signal and a delay value whose type is non-ivegiaiteger. It also defines the
output signal as a boolean valued variable. As the Delay hegdinbe Timer module is also
based on a integer valued counter which measures the nurhbeps passed. However, the
logic of the counter is different: Initially the counter istdo the value of the delay parameter
and it stays at that value until the input signal is 1. Aftdsthmegardless of the value of the
input signal, the counter is decreased by one until it reatie value zero, after which it is set
back to the value of the delay parameter. The output valuleeofrtodule is set to 1 only at the
time when the value of the counter is set to 0.

Breaker module:
The Breaker module has three parameters: Boolean valuecHaignal, a delay which is non-
negative integer, and a boolean valued flag which specifiethehthe breaker can get broken
or not (in order to simplify the model, the backup breakess rawt allowed to break down.)
The Breaker module has two boolean variables which tell ndrethe breaker is active or not,
and whether the breaker is broken or not. It also has an iostahthe Timer module which
represents the activation delay of the breaker.

The activation delay of the breaker is determined with tHaydparameter passed to the instance
of the Delay module. This parameter should/b&/t| whereD is the physical activation delay
(in milliseconds) of the corresponding real circuit brea&ed? is the length (in milliseconds)
of the operation cycle of the controller of the Falcon masigt. In practice, the parameter
value is the physical delay in milliseconds since the opamatycle of the Falcon master unit
is 1ms as stated in Section A.5.4.

Light sensor module:
The light sensor module does not have any parameters andiyihaa one boolean variable
which represents a light alarm. The light sensor could benddfsimply as a boolean variable
but it is defined as a module so that it is uniform with the impéaitation of the overcurrent
sensor.

A23

Overcurrent sensor module:
The Overcurrent sensor module has two boolean valued ptgeswehich describe whether the
sensor is still connected to the protection zone that it seoking and whether the protection
zone is still connected to the power feed. The module has ka@owariable representing an
overcurrent signal.

Current flow model implementation:
The current flow model is implemented in such a way that theeedonstant definition corre-
sponding to each of the three protection zones which telltdrehe zone is connected to a
power feed or not. The value of the constant correspondirggdertain protection zone is set
to 1 if there is at least one closed circuit line connectirg photection zone to a power feed.
Therefore, the zone constants are functions of the outguesaf the circuit breakers which
tell whether the circuit breaker is active or not.

We also included one additional constant definition for gaccection zone which tells whether
the tripping condition of a zone isrueat each time step. These constants are not indispensable
but with them the specification of properties becomes mongeaaent.

A.5.6 Specification of Properties with NuSMV

In this section it is shown how the properties described ictiBe A.5.1 are specified with the input
language of the NuSMV model checker. However, first we refimé specify each property in as
specific form as is needed for the formal specification to lsside.

Safety properties

The first safety propertgl of Section A.5.1 states that the couplings of the system@pying logic
are done correctly. In the case of the primary breakersptioigerty is formulated specifically in the
following way:

If a primary circuit breaker islaunched at a certain time step, then the tripping condition of this
breaker was realised in the previous time step.

With NuSMV this is specified as:
LTLSPEC G (LTLSPEC G (breaker _A.launched -> Y zonel_alarm)

In the case of the backup breakers, the property can be fatetlinore conveniently as follows:

If a backup breaker islaunched at a given time step, then one of the primary breakers covered by
it islaunched also at the same time step.

With NuSMV this is specified like this:
LTLSPEC G (breaker_E. |l aunched -> (breaker _A.launched | breaker_ B.l aunched))

The second safety propenp of Section A.5.1 states that the backup breakers shouldeatimched
unless necessary. This requirement is formulated moresgtgan this way:

A24

If a backup breaker receives a launch signal, then at least one of the primary breakers covered by
it has broken down.

With NuSMV this is specified as follows:

LTLSPEC G (breaker E.launched -> (breaker A.is_broken | breaker B.is_broken))

Liveness properties

The liveness property3 of Section A.5.1 is formulated more specifically like this:

If the protection system receives an alarm from a protection zone in a given instant of time, there
will be a instant of timein the future, when the alarm has either disappeared from the protection zone
or the protection zone is disconnected from the power feed.

With NuSMV this is specified like this:

LTLSPEC G (zonel alarm-> F (!zonel_alarm| !zonel hasvoltage))

A.5.7 Experimental Results

In the following we present some measurements on the rurtimireg of the model checking of our
example system.

Test Equipment

The model checking was carried out with a PC with 1.8GHz IQtefe 2 Duo E63xx DualCore
processor. Available virtual memory was limited to 1.5 GiBie operating system used was Debian
GNU/Linux and the model checking was carried out with NuSMarsion 2.4.2.

Measurements

The model checking was carried out on the model shown in @eéti5.8. The parameters altered
were the delay parameters D1, D2, D3, and D4 of the trippimgclof the example system (see
Figure 8 and Table 1) and the activation time of the circiegiers (with each distinct model checking
process the same activation time was used with all the breakés explained in Section A.5.5
(see the descriptions of the Controller and Breaker moylullesse parameter values correspond to
milliseconds in real-time. The measurements are shownbieTa

The measurements show that the size of the running time gwativsr quickly as the function of the
delay parameters. For the activation delay parameter agv@l roughly half of the properties could
be verified within 24 hours which was set as the maximum pgiogdime for each measurement.

Activation delay| D1 | D2 | D3 | D4 | Running Time
of breakers

2 6 9 3 6 27 min
3 9 114]| 5 9 4h 20min
6 18| 27| 9 | 18 >24h

Table 2: Running times of the model checking process witlediht parameter values.

A25

A.5.8 Full Source Code of the NuSMV Model

-- Delay nodule is used to nodel the delay gates of the tripping |ogic
-- of the Falcon master unit.

-- Wth delay=0 the relay acts in one cycle. The del ay

-- paraneter specifies how many additional scan cycles the input has
-- to be TRUE before an output signal TRUE is given.

MODULE Del ay(i nput _signal, del ay)
VAR

count : 0..51;

out put : bool ean;

DEFI NE
-- Total delay consist of the delay + scan cycle
total _delay := delay + 1;

ASSI GN
init(count)
next (count)

case

i nput_signal =0 : 0

count >= total del ay . count;

1 :ocount + 1
esac;

0;

i nit(output)
next (out put)
case
-- At the step when count = delay, output has to be 1
next (count) >= total _del ay C1
1 : 0
esac;

0;

-- Timer nodul e is used by the Breaker nodul e to nodel the physica
-- activation delay of a breaker.

MODULE Ti ner (si gnal , del ay)
VAR
counter : 0..15;

DEFI NE
output :=
case
(delay = 0) : signal
(counter = 0) : 1;
1: 0
esac;

ASSI GN
init(counter)
next (count er)

case
(delay = 0) : O0;
(counter = 0) : delay;

del ay;

A26

(counter < delay) : counter - 1

(counter = delay) & (signal = 1) : counter - 1;
1 : counter;
esac;

-- Breaker nmodule is used to nodel the physical circuit breakers
-- controlled by the Falcon naster unit.

MODULE Br eaker (1 aunch_signal, setting_up_tine, can_break)
VAR

i s_broken : bool ean;

cuts : bool ean;

timer : Timer(launch_signal,setting up_tine);

DEFI NE
[aunched : = | aunch_si gnal
ASSI GN
init(is_broken) := 0;
next (i s_broken) :=
case
can_break = 0 : O;
is_broken = 0 : {0,1};
is_broken =1 : 1;
1 c1,
esac;
init(cuts) := tiner.output;
next (cuts) :=
case
(cuts = 1) : 1,
(is_broken = 1) cuts;
(next(timer.output) = 1) : 1;
(next(timer.output) = 0) : O;

esac,

-- UTU CR nodul e is used to nodel the overcurrent sensors of the Fal con
-- system

MODULE UTU_CR(has_vol t age, br eaker)
VAR
overcurrent : bool ean

ASSI GN
overcurrent :=
case
l'has_voltage | breaker.cuts : O;
1 0 {0, 1};
esac;

A27

-- UTU ARC nmodul e is used to nodel the light sensors of the Fal con
-- system

MODULE UTU_ARC()
VAR
[ight : bool ean;

ASSI GN
light := {0, 1};

-- Controller module nodels the Fal con master unit.

MODULE Controller(chl, ch2,ch3, ch4,ch_light)
VAR
triacl _delay : Delay(trl input, TRI AC DELAY);
triac2 delay : Delay(tr2_ input, TRI AC DELAY);
triac3 delay : Delay(tr3_ input, TRI AC DELAY);
triacd _delay : Delay(tr4_input, TRI AC DELAY);

time_relayl : Delay(rl_input, RELAY1 DELAY);
time_relay2 : Delay(r2_input, RELAY2_DELAY);
time_relay3 : Delay(r3_input, RELAY3 DELAY);
time_relay4 : Delay(r4_input, RELAY4 DELAY);

DEFI NE
-- Delay values of the delay gates. These val ues should be set to
-- the delay values (in nmlliseconds) of the correspondi ng del ay
-- gates in the nodelled tripping |ogic.

TRI AC_DELAY : = 0;

RELAY1_DELAY : = 35;
RELAY2_DELAY : = 50;
RELAY3_DELAY : = 35;
RELAY4_DELAY : = 50;

-- Logic of the circuits.
OR1 := (ch3 | ch4);
ANDL := (OR1 & ch_light);

OR2 := (chl | ch2 | AND1);
OR3 := (chl | ch2);
-- I nputs to del ays.
trl_input := chl;
tr2_input := ch2;
tr3_input := OR2;
tr4_input := AND1;
ri_input := ORS;
r2_input := ORS;
r3_i nput := AND1,
r4_i nput := AND1,

-- Qutputs of the controller nodule.
triacl := triacl _del ay. out put;

A28

triac2 := triac2_del ay. out put;
triac3 := triac3_del ay. out put;
triacd := triac4_del ay. out put;
rl :=tine_relayl. output;
r2 :=tine_relay2. out put;
r3 :=tine_rel ay3. out put;
rda :=tinme_rel ay4. out put;

-- main nmodule is the main program of the whole nodel and it enconpasses
-- both, the nodel of the controller and its environment.

MODULE rmrai n
VAR
-- The controller of Falcon master unit
ctrl : Controller(zonel alarm zone2 alarm Cr_3a.overcurrent,

Cr_3b.overcurrent, L _3.light);

- Overcurrent sensors

: UTU_CR(zonel hasvol t age, breaker _A);
UTU_CR(zone2_hasvol t age, breaker _B);
UTU_CR(zone3_hasvol t age, breaker _C);
UTU_CR(zone3_hasvol t age, breaker _D);

T o

1
2
_3
_3

QQ0Q

- Light sensors
1 UTU_ARC() ;
2 1 UTU_ARC();
3 UTU_ARC() ;

o

-- Primary breakers

breaker A : Breaker(ctrl.triacl, BREAKER OPENI NG Tl ME, CAN BREAK DOWN) ;
breaker B : Breaker(ctrl.triac2, BREAKER OPENI NG Tl ME, CAN BREAK DOWN) ;
breaker C : Breaker(ctrl.triac3, BREAKER OPENI NG TI ME, CAN BREAK DOWN) ;
breaker D : Breaker(ctrl.triac4, BREAKER OPENI NG TI ME, CAN BREAK DOWN) ;

-- Backup breakers

breaker E : Breaker(ctrl.rl, BREAKER OPENI NG Tl Mg, CAN _NOT_ BREAK DOWN) ;
breaker F : Breaker(ctrl.r2, BREAKER OPENI NG Tl Mg, CAN _NOT_ BREAK DOWN) ;
breaker G : Breaker(ctrl.r3, BREAKER OPENI NG Tl ME, CAN NOT_ BREAK DOWN) ;
breaker H : Breaker(ctrl.r4, BREAKER OPENI NG Tl ME, CAN NOT_ BREAK DOWN) ;

DEFI NE
-- The activation delay of the breakers
-- (=the tinme passed fromreceiving a | aunch
-- signal to cut off the power.) Wth each breaker, the
-- value should be set to the value of the activation delay in
-- mlliseconds of the corresponding real circuit breaker.
BREAKER_OPENI NG TI ME : = 15;

-- Define constants for specifying whether
-- a breaker can be nml functioned.
CAN_BREAK DOWN : = 1;

CAN_NOT_BREAK _DOWN : = 0;

-- The al arm nodel
zonel alarm:= C_1.overcurrent & L_1.1ight;

A29

zone2 alarm:
zone3 alarm:

Cr_2.overcurrent & L_2.1ight;
(Cr_3a.overcurrent | C _3b.overcurrent) & L_3.1ight;

-- The current flow nodel
zonel hasvol tage : =
I (breaker _A.cuts |
((breaker E.cuts | breaker_ H cuts) &
(breaker C.cuts | breaker_D.cuts | breaker_ F.cuts | breaker_ G cuts)));

zone2_hasvol tage : =
I (breaker _B.cuts |
((breaker E.cuts | breaker_ H cuts) &
(breaker C.cuts | breaker_D.cuts | breaker_ F.cuts | breaker_ G cuts)));

zone3_hasvol tage : =
I'((breaker C.cuts | breaker E.cuts | breaker H cuts) &
(breaker _D.cuts | breaker_ F.cuts | breaker_ G cuts));

-- Specification of properties:

-- 1. Connections of the primary breakers have to be correct.

LTLSPEC G (breaker_A.launched -> Y zonel_al arm

LTLSPEC G (breaker B.launched -> Y zone2_al arm

LTLSPEC G (breaker C.launched -> Y (zonel alarm| zone2 alarm| zone3_ alarn))
LTLSPEC G (breaker_D. |l aunched -> Y zone3_al arm

-- 2. Connections of the backup breakers have to be correct.

LTLSPEC G (breaker E.launched -> (breaker A.launched | breaker B.launched))
LTLSPEC G (breaker_ F.launched -> (breaker E.launched & breaker C.|aunched))
LTLSPEC G (breaker G | aunched -> (breaker D.|aunched))

LTLSPEC G (breaker _H. I aunched -> (breaker G | aunched))

-- 3. Backup breakers nust not be | aunched too easily.

LTLSPEC G (breaker E.launched -> (breaker A.is_broken | breaker B.is_broken))
LTLSPEC G (breaker F.launched -> (breaker A.is_broken | breaker B.is_broken))
LTLSPEC G (breaker _F.l aunched -> (breaker_C.is_broken))

LTLSPEC G (breaker _G I aunched -> (breaker_ C.is_broken | breaker_D.is_broken))
LTLSPEC G (breaker _H. I aunched -> (breaker_C.is_broken))

-- 4. The systemhas to term nate a continuous electric arc.

LTLSPEC G (zonel alarm-> F (!zonel_alarm| !zonel hasvoltage))
LTLSPEC G (zone2_alarm-> F (!zone2_alarm| !zone2_hasvoltage))
LTLSPEC G (zone3_alarm-> F (!zone3_alarm| !zone3_hasvoltage))

A.6 Conclusions of the Case Study

The case study presented here shows that model checkingedawmtliban applicable and a valuable
tool in the verification of safety instrumented systems. mhmber of reachable states of the model
built in the case of verifying the correctness of a de3igi3, 4 » 107 while the size of the whole state
space i3, 0 10%L. This clearly shows the need for automatic verification. &wer, model checking
makes an exhaustive analysis of the system which is not gigaa by any other validation method,
like simulation for example.

2These numbers correspond to the case with breaker activatie of 2 in Table 2.

A30

This case study showed us, that besides using model cheokingrifying an existing system design,
it can be a valuable aid in the design phase of a new systera.wids discovered while we designed
the environment model presented in Section A.5.3.

Finally, while model checking is used to verify a system ¢siigg of a physical environment along-
side a controller, the process of building a model of the wisystem compels one to think very
carefully about assumptions on the behaviour and featdris® avhole system.

References

[1] NuSMV Model Checker v.2.4.2, 2007. Available framt p: // nusnmv.irst.itc.it/.

[2] Roberto Cavada, Alessandro Cimatti, Charles ArthuhilogGavin Keighren, Emanuele Olivetti,
Marco Pistore, Marco Roveri, and Andrei TchaltseMuSMV 2.4 User Manual. ITC-IRST,
http://nusnmv.irst.itc.it/.

[3] Keijo Heljanko, Tommi A. Junttila, and Timo Latvala. Iremental and Complete Bounded Model
Checking for Full PLTL. In Kousha Etessami and Sriram K. Ragai, editorsCAV, volume 3576
of Lecture Notes in Computer Science, pages 98—-111. Springer, 2005.

A3l

http://nusmv.irst.itc.it/
http://nusmv.irst.itc.it/

Appendix B

Reactor Emergency Cooling System — Technical
Description and Experiences of Model Checking

B.1 Introduction

This report summarises the experiences gained when using a formal model checking method on
validating parts of the design of a reactor emergency cooling system in a nuclear power plant. The
main focus of this report is the automatic functions of the system.

Formal model checking methods are generally used for ensuring the validity of a system by creating
a computerised model and then investigating if the model functions correctly in all situations. The
main difference between testing and model checking is that the latter allows the complete inspection
of the essential behaviour in all situations. It means that none of the erroneous states will remain
unobserved, provided that the model has been created and the model checker is used correctly.

B.2 General Description of the Emergency Cooling System

The purpose of the emergency cooling system is to ensure the cooling of the water in the reactor
core if the ordinary cooling systems are out of order. The cooling system is controlled by electronic
control system which regulates the water level in the reactor containment by controlling the pumps
and valves. The operational principle is analogous to a thermostat: when the water level gets too
low (due to boiling and evaporation) in the containment, more water is pumped in until the water
level reaches the upper level. This cycle is repeated for as long as necessary. The system has four
redundant and identical units. Figure B.1 demonstrates the system’s behaviour and relationship
between the physical parts, sensors, and control logic.

Signals to
valves and
? pumps
Cooling
Scenario T
(=Appropriate

f

INPUT

]

Figure B.1. System’s functional principle.

HioH external OUTPUT
signals) T
MEDIUM
Water Cont_rol
Low Logic
Level

Sensors

B1

B.3 Description of the System Model

The system model was created mainly on the basis of safety assessment reports and system flow
charts. The modelling concentrated specifically on evaluating the correctness of the control logic.
The model covers all of the automatic functions and delays in the system excluding only a couple of
parts that were considered to be irrelevant in the scope of the research.

The length of the delays is implemented non-deterministically (see section B.4) meaning that the
length of the system’s clock cycle is not defined. In that way there is no limit to the length of a
single delay. This solution should cover all of the essential behaviour of the model of the system
and even some unrealistic behaviour as well.

Besides the control logic, the most relevant physical parts around the control logic were modelled.
A physical part was considered relevant if it directly or indirectly affected the pumping process in
some noticeable way, for example, by changing the input-signals of the control logic. The parts that
were finally modelled consisted mostly of the system’s pumps, valves, and water level. All of the
relevant input and output signals were tied to the corresponding physical part.

The water level of the reactor container is a good example of a physical part included in the model.
Water level is introduced in the model as a simple state variable having three possible states:
“high”, “medium” and “low”. The sensors used by the control logic only measure the water level
from two different positions, so three different states are sufficient. The behaviour of the water level
in the model was fairly straightforward: If no water is flowing into the reactor, then the water level
can stay the same, or decrease. If water is flowing in, then the water level can stay the same, or rise.

For simplicity, the signals, sensors, pumps and valves in the system were supposed to be faultless
because the main purpose was to validate the design of the logical functions, not the physical parts.
No subsystems other than the reactor emergency cooling were modelled — they were supposed to
function correctly.

The system has four redundant units, which are all included in the model. However, so far there has
not been any additional benefit of having all four units in the system model. With the current model,
all of the interesting situations and conditions can be checked and investigated by using only one of
the units. The simplifications made in the system model do not weaken the comprehension or the
predictive power of the model.

B.4 Implementation of Time

Time has been implemented in the model non-deterministically. All of the clocks may run as
quickly or as slowly as possible. The benefits of such way of implementation are the fast operation
of the model checker and the extensive coverage of the behaviour.

All timers in the system measure how long a single logic condition has been true. As soon as one of

the conditions related to a certain timer becomes false, the timer is reset. If the corresponding value
is true, the timer starts running. In the case of some of the conditions measured by timer being true

B2

for so long that its exact value has no significance for the control logic, the value of the timer is
rounded into suitable value which represents the maximum.

The values of the timers are represented by numeral variables that have a limited number of
possible values. Each second does not have its own specific numeral value but the time periods are
divided into pieces of a reasonable size determined based on the conditions coming from the control
logic. Each time period that comprehensively fulfils the conditions coming from the control logic is
represented by one possible numerical value in the timer. Notwithstanding the conditions, each
timer has the zero point and the immediately following state 1. These correspond to the timer being
“running” and “reset”.

The state of a single timer can change arbitrarily from one state to another or remain the same
(provided that the condition measured by the timer is true). This causes non-determinism to the
lengths of the time periods. However, there are so-called FAIRNESS conditions in the model which
restrict the time periods from being infinitely long. That reduces the number of unrealistic
behaviours caused by the implementation of timers.

Because the model does not restrict the length of the time periods, in some executions a delay of 30
seconds may run during a delay of only 6 seconds. Due to the simplicity of timers in the system,
that does not cause remarkable problems. However, some of the so-called “false alarms” have had
to be fixed with some additional conditions. More about the conditions in section B.6.

B.5 Module Structure

The file containing the NuSMV model of the system has been divided into modules with names:
common signals (yhteiset signaalit), part’s signals (osan_signaalit), common timers (yhteiset kellot),
part’s timers (osan_ kellot), common physics (yhteinen_ fysiikka), part’s physics (osan_fysiikka),
part’s automatics (osan_automatiikka), P323X and main. Each module contains a part of the model
as their names imply.

The main module is the highest in the hierarchy. It defines the conditions to be checked and how the

other modules are used in the model. Figure B.2 below illustrates the relationship between the
modules showing where their instances are created.

B3

» common_signals

» common_physics

main

» common_timers

> P323X p part's_signals

part's_physics

A

» part's_timers

» part's_automatics

Figure B.2. Module division of the emergency cooling system.

The modules also pass parameter values to each other but that is not depicted in the figure. In
P323X, the X can be replaced by 1, 2, 3, or 4 which mean the four redundant systems. However, the
reader of the documents and the code should be careful since, e.g. in S516_ X1, X is part of the
parameter name and does not refer to the numbering of the redundant systems.

B.5.1 Module “main”

The module main creates instances of the modules common signals, common_physics, and
common_timers. In addition, four instances of redundant systems are created from P323X, named
logically P3231, P3232, P3233, and P3234. Along with module definitions, the main module
contains a macro called Flows, which calculates if system 323 can supply the reactor container with
water. The main module also contains the listing of conditions to be model checked.

B.5.2 Module “common signals”

The module common signals contains all of the input signals common to all subsystems. Some of
the signals are defined as macros because they are directly dependent on the water level of the
reactor containment.

B4

B.5.3 Module “common timers”

The module common timers contains all of the timers that are common to the automatics of the
subsystems. Also, the common delays and signal cutting rules are deduced from the common
timers. The automatics module only uses the timer variables, not directly the timers themselves.

The module common timers contains only one timer, which has three possible values: 0, 1, and 6. It
means that the timer may be reset, running or it has reached the end of its cycle. The actual length
of the time period is not restricted. In the beginning, the timer has the value 0. In the following
states, the timer may be reset (-=> 0) if the timer condition is untrue. If the timer condition is true, the
value of the timer may non-deterministically grow (-> 1) or be rounded to maximum value (-> 6).

B.5.4 Module “common physics”

The module common physics contains the physical parts outside the redundant subsystems. In the
current version of the model, the only external variable in this module is the water level of the
reactor containment. The variable has three possible values: low, medium, and high. At the
beginning of running the model, the water level is at the medium level. If more water flows into the
containment, the water level may increase or stay at the same level. Similarly, if no water flows into
the containment, the water level may decrease (boil off) or stay at the same level. The behaviour of
the water level depends non-deterministically on the macro Flows, which is defined in the module
main.

B.5.5 Module “P323X”

The module P323X corresponds to one of the redundant sub-systems. It contains the definition of
parameters and the instances of four sub modules: part’s signals, part’s physics, part’s timers, and
part’s automatics.

B.5.6 Module “part’s signals”

The module part’s signals contains its own signals of a partial system, meaning signals that are not
used by any other partial system. However, in practice, some of the signals always have the same
values in all partial systems because they are calculated directly from common signals.

There are also several ordinary freely changing signals like the separation and clearing signals. The
signals measuring the water level and flow rate are defined in macros because they are directly
calculated from other variables.

B.5.7 Module “part’s automatics”

The module part’s automatics contains the definitions of the outputs of the automatics of one partial
system. Output signals control the operation of valves and pumps. Each output signal is defined as a
macro and calculated directly based on the input signals and timers.

BS5

B.5.8 Module “part’s physics”

The module part’s physics contains the physical parts of one partial system. The parts are valves,
pumps and the water flow in the pipes. The possible states of the valves are open, closed, opening,
and closing. The water flow variable has three possible states: low, medium, and high.

At the beginning of running the model, some of the valves are open and some of them are closed.
That depends on the valve and the rules are described thoroughly in the documentation of the
system. If a valve gets both the opening and closing commands simultaneously, the closing
command is dominant. Opening and closing may take an arbitrarily long time. The model does not
restrict that.

In the beginning, the pump is off. Later it changes its state according to the commands it receives.
The close command is dominant in the case of both commands arriving at the same time. The state
of a pump does not change until it gets a new command.

The water flow variable is the most complicated of the physical parts. It affects the operations of the
recirculation valve (VX14). The value of the flow rate is based non-deterministically on its own
previous value and the states of the respective valve (VX04) and pump (PX). If the valve is fully
closed, the water flow rate drops immediately to low regardless of the pump. If the pump is off, the
flow rate can stay the same or decrease. When the pump is on, the flow rate can increase or stay the
same if the state of the valve is not “closed”. Additionally, when the valve is in a closing state, the
flow rate can also decrease when the pump is on.

B.5.9 Module “part’s timers”

The module part’s timers contains all the timers and timer conditions of a single partial system. The
timers are implemented as described in section B.4. Also, the module common timers explains the
implementation of timers.

B.6 Conditions

The conditions that are checked are listed in the code of the main module. They begin with headings
LTLSPEC (linear temporal logic) or CTLSPEC (computational tree logic) after which the
conditions to be tested are written.

Some of the counter examples that the model checker suggests may be due to the simplifications
made in the model, like non-deterministic timers. The invalid counter examples can be handled by
inserting additional conditions which restrict the behaviour of the model and prevents the model
entering unrealistic behaviours.

One way to restrict the behaviour of the model checker is to use so-called FAIRNESS restrictions,
which make the model checker concentrate on executions where the given FAIRNESS conditions is
valid infinitely. In this case, FAIRNESS restrictions are used for avoiding situations where some
moving part could remain between two states forever. For example, a valve cannot stay in the state
“opening” forever.

B6

B.7 Computational Aspects

The state space of the model is about 1.3*10"® which is reached by multiplying the number of the
different states of variables in the model including the four redundant partial systems. A normal
office computer was able to process the model and perform model checking in a few seconds per
condition. The redundancy of the partial systems may have made the processing faster due to
possible optimisations. However, the execution times are very reasonable.

B.8 Results

As the purpose of modelling the emergency cooling system was to try and test the NuSMV model
checker and to see if it is applicable for the safety analysis of systems (especially 1&C) in NPPs,
there was no specific list of conditions to be tested. Therefore, some conditions and properties of the
model were tested to get an idea of how NuSMV could be utilised in future case studies of the
MODSAFE project. Below is a description of some conditions that were tested with the model.

e In a normal operating state, low water level in the reactor container always leads (in some
future state) to water inflow in the reactor container. A normal operating state means that the
pressure in the container is low and the reactor isolation signal I is on.

e The pumps of the system may occasionally remain pumping against closed valves. After
more specific investigations, this was proved to be planned behaviour and was due to the
clearing signal.

e If the clearing signal is not given, the pump in the system never remains pumping against
closed valves.

No erroneous behaviour between the system model and its specification were found. However, this

examination showed the potential and power of model checking and gives a good basis for future
work within the MODSAFE project.

B7

ISBN 978-951-38-7154-3 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Untitled
	Contents
	1. Introduction
	2. Selection of the Case Studies
	3. Planning of the Case Studies
	4. Modelling of the Case Studies
	5. Conclusions
	APPENDIX A: Arc Protection System - Technical Description and
Experiences of Model Checking

	Appendix B: Reactor Emergency Cooling System − Technical
Description and Experiences of Model Checking

