

phyFLEX®-i.MX 6

Hardware Manual

Document No.: L-773e_2

SOM Prod. No.: **PFL-A-XL1-xxx**

SOM PCB. No.: 1362.1

CB Prod. No.: **PBA-B-01**

CB PCB. No.: **1364.2, 1364.3**

Edition: March 2013

Copyrighted products are not explicitly indicated in this manual. The absence of the trademark (TM , or \mathbb{R}) and copyright (\mathbb{C}) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is considered to be entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages that might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2013 PHYTEC Messtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Messtechnik GmbH.

	EUROPE	NORTH AMERICA	
Address:	PHYTEC Messtechnik GmbH Robert-Koch-Str. 39 D-55129 Mainz GERMANY	Str. 39 203 Parfitt Way SW, Suite G100	
Ordering Information:	+49 (6131) 9221-32 sales@phytec.de	1 (800) 278-9913 sales@phytec.com	
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com	
Fax:	+49 (6131) 9221-33	1 (206) 780-9135	
Web Site:	http://www.phytec.de http://www.phytec.eu	http://www.phytec.com	

2nd Edition March 2013

Lis	t of F	igures	ii
Lis	t of T	ables	iv
Coı	nventi	ions, Abbreviations and Acronyms	vi
		••••••••••••••••••••••••••••••••	
1		oduction	
_	1.1	Block Diagram	
	1.2	phyFLEX-i.MX 6 Component Placement	
	1.3	Minimum Requirements to operate the phyFLEX-i.MX 6	
2		Description	
3		npers	
4		ver	
7	4.1	Primary System Power (VDD_5V_IN_R)	
	4.2	Power Management IC (PMIC) (U14)	
	1.2	4.2.1 Power Domains	
	4.3	Supply Voltage for external Logic	
	4.4	Control Management IC (CMIC) (U17))	
5	Sys	tem Configuration and Booting	
6		tem Memory	
	6.1	DDR3-SDRAM (U2-U9)	38
	6.2	NAND Flash Memory (Ú13)	
	6.3	I ² C EEPROM (U10)	
		6.3.1 EEPROM Write Protection Control (J3)	40
	6.4	SPI Flash Memory (U25))	
7		/ MMC Card Interfaces	
8	Ser	ial Interfaces	43
	8.1	Universal Asynchronous Interface	44
	8.2	USB OTG Interface	
		USB Host Interface	
	8.4	Ethernet Interface	
		8.4.1 Ethernet PHY (U11)	
		8.4.2 Software Reset of the Ethernet Controller	
	8.5	8.4.3 MAC Address	
	8.6	SPI Interface	
	8.7	I ² S Audio Interface (SSI))	
	8.8	CAN Interface	
	8.9	SATA Interface	
	8.10	PCI Express Interface	
		Media Local Bus	

9	General Purpose I/Os	55
10	User LEDs	57
11	Debug Interface (X1, X4)	58
12	LVDS Display Interface	
	12.1 LVDS Display Interface pixel mapping	
13	High-Definition Multimedia Interface (HDMI)	
14	LVDS Camera Interface	
	14.1 Signal Configuration (J9 and J31)	
15	Environment Management IC (EMIC) (U19)	68
16	Technical Specifications	
17	Hints for Integrating and Handling the phyFLEX-i.MX 6	
1/		
	17.1 Integrating the phyFLEX-i.MX 6	
18	The phyFLEX-i.MX 6 on the phyFLEX Carrier Board	
10	18.1 Concept of the phyFLEX Carrier Board	
	18.2 Overview of the phyFLEX Carrier Board Peripherals	
	18.2.1 Connectors and Pin Header	
	18.2.2 Switches	
	18.2.3 LEDs	
	18.2.4 Jumpers	
	18.3 Functional Components on the phyFLEX Carrier Board	
	18.3.1 phyFLEX-i.MX 6 SOM Connectivity (X1, X2)	88
	18.3.2 Power	
	18.3.2.1 Wall Adapter Input (X12)	
	18.3.2.2 Power over Ethernet Plus (PoE+)	
	18.3.2.3 Power Management Connector (X22)	
	18.3.3 RS-232 Connectivity (X51, X50)	
	18.3.4 CAN Connectivity (X52)	
	18.3.5 Ethernet Connectivity (X28)	
	18.3.6 USB Host Connectivity (X45, X65, X66)	
	18.3.8 Display / Touch Connectivity (X65)	
	18.3.8.1 Display Data Connector (X65)	
	18.3.8.2 Display Power Connector (X65)	
	18.3.8.3 Touch Screen Connectivity	
	18.3.9 High-Definition Multimedia Interface (HDMI) (X40	
	18.3.10 Camera Interface (X63, X64)	
	18.3.11 Audio Interface (X7, X8, X9, X10, X11)))	. 112
	18.3.12 I ² C Connectivity	. 114

	18.3.13 SPI Connectivity	115
	18.3.14 User programmable GPIOs	116
	18.3.15 User programmable LEDs	117
	18.3.16 Secure Digital Memory Card/ MultiMedia Card	110
	(X57, X56)	
	18.3.18 SATA (X62, X61)	
	18.3.19 CPU Fan Connector (X41)	122
	18.3.20 Wi-Fi/Bluetooth Connector (X58)	
	18.3.21 Boot Mode Selection (S3)	124
	18.3.22 System Reset Button (S1)	
	18.3.23 JTAG Interface (X4)	
	18.3.24 RTC at U28	
	sion History	
inaex		133
List of F	igures	
Figure 1:	Block Diagram of the phyFLEX-i.MX 6	4
Figure 2:	phyFLEX-i.MX 6 Component Placement (top view)	5
Figure 3:	phyFLEX-i.MX 6 Component Placement (bottom view)	6
Figure 4:	Pinout of the phyFLEX-Connector (top view)	9
Figure 5:	Typical Jumper Pad Numbering Scheme	23
Figure 6:	Jumper Locations (top view)	24
Figure 7:	Jumper Locations (bottom view)	25
Figure 8: P	owering scheme of phyFLEX- i.MX 6	31
Figure 9:	JTAG Interface at X4 (top view)	59
Figure 10:	JTAG Interface at X4 (bottom view)	60
Figure 11:	Physical Dimensions (top view)	69
Figure 12:	Footprint of the phyFLEX-i.MX 6	73
Figure 13:	phyFLEX Carrier Board Overview of Connectors, LEDs and Buttons	78
Figure 14:	Typical Jumper Numbering Scheme	
	phyFLEX Carrier Board Jumper Locations	
<i>3</i> 2 2 2	1 J	00

Figure 16:	phyFLEX-i.MX 6 SOM Connectivity to the Carrier Board	88
Figure 17:	Powering Scheme	89
Figure 18:	Power Connector corresponding to Wall Adapter Input X12	2.92
Figure 19:	RS-232 Interface Connectors X50 and X51	95
Figure 20:	RS-232 Connector X50 Signal Mapping (UART1)	96
Figure 21:	RS-232 Connector X51 Signal Mapping (UART0)	96
Figure 22:	CAN Connector X52 Signal Mapping	97
Figure 23:	Ethernet Interface at Connector X28	98
Figure 24:	Components supporting the USB Host Interface	99
Figure 25:	USB OTG Interface at Connector X26	. 101
Figure 26:	PHYTEC Display Interface (PDI) at Connector X65	. 103
Figure 27:	Camera Interface at Connector X63	. 110
Figure 28:	Audio Interface at Connectors X7, X8, X9, X10, X11	. 112
Figure 29:	SD / MM Card interfaces at connector X57 and X56	. 118
Figure 30:	Boot Mode Selection DIP Switch S3	. 124
Figure 31:	System Reset Button S1	. 126
Figure 32:	RTC with Battery Buffer	. 128
List of T	ables	
Table 1:	Signal Types used in this Manual	ix
Table 2:	Abbreviations and Acronyms used in this Manual	X
Table 3:	Pinout of the phyFLEX-fix Connector X1, Row A	11
Table 4:	Pinout of the phyFLEX-fix Connector X1, Row B	13
Table 5:	Pinout of the phyFLEX-optional Connector X2, Row A	16
Table 6:	Pinout of the phyFLEX-optional Connector X2, Row B	17
Table 7:	Pinout of the phyFLEX-flex Connector X3, Row A	19
Table 8:	Pinout of the phyFLEX-flex Connector X3, Row B	20
Table 9:	Jumper Settings	26
Table 10:	Standard phyFLEX Boot Options	34

Table 11:	phyFLEX-i.MX 6 specific Boot Options	. 34
Table 12:	Boot Configuration Pins at phyFLEX-flex Connector X3	. 35
Table 13:	Boot Configuration Signals generated by the CMIC	. 37
Table 14:	EEPROM write protection states via J3	. 40
Table 15:	Location of SD/ MMC Card Interface Signals	. 41
Table 16:	Location of the UART Signals	. 44
Table 17:	Location of the USB OTG Signals	. 45
Table 18:	Location of the USB-Host Signals	. 46
Table 19:	Location of the Ethernet Signals	. 47
Table 20:	I ² C Interface Signal Location	. 49
Table 21:	SPI Interface Signal Location	. 50
Table 22:	I ² S Interface Signal Location	. 51
Table 23:	CAN Interface Signal Location.	. 52
Table 24:	SATA Interface Signal Location	. 52
Table 25:	PCIe Interface Signal Location	. 53
Table 26:	Media Local Bus Interface Signal Location	. 54
Table 27:	Location of GPIO Pins	. 55
Table 28:	Debug Interface Signal Location at phyFLEX-Connector X1	58
Table 29:	JTAG Connector X4 Signal Assignment	. 61
Table 30:	Display Interface Signal Location	. 62
Table 31:	Second Display Interface Signal Location at X3	. 63
Table 32:	Pixel Mapping of 18-bit LVDS Display Interface	. 64
Table 33:	Pixel Mapping of 24-bit LVDS Display Interface	. 64
Table 34:	HDMI Interface Signal Location at X2	. 65
Table 35:	Camera Interface Signal Location at X2	. 66
Table 36:	LVDS Signal Configuration J9 and J31	. 67
Table 37:	phyFLEX Carrier Board Connectors and Pin Headers	. 79
Table 38:	phyFLEX Carrier Board Push Buttons Descriptions	. 81
Table 39:	phyFLEX Carrier Board LEDs Descriptins	. 82

phyFLEX®-i.MX 6 [PFL-A-XL1-xxx

Table 40:	phyFLEX Carrier Board Jumper Descriptions	86
Table 41:	Voltage Domains on the Carrier Board	90
Table 42:	Power LEDs	90
Table 43:	Power Jumpers	91
Table 44:	Power Management Connector X22	93
Table 45:	USB Hub's Status LEDs D93 – D96	100
Table 46: U	USB VBUS indicator LEDs	100
Table 47:	Distribution of the USB Hub's (U5) Ports	100
Table 48:	Display Data Connector Signal Description	104
Table 49:	Auxiliary Interfaces at PDI Data Connector X65	106
Table 50:	PDI Power Connector X65 Signal Description	107
Table 51:	HDMI/DVI Connector X40 Pinout	108
Table 52:	PHYTEC Camera Connector X63	110
Table 53:	PHYTEC Camera Connector X64	111
Table 54:	I ² C Connectivity	114
Table 55:	I ² C0 Addresses in Use	114
Table 56:	SPI0 Connector Selection	115
Table 57:	SPI0 Pin Header X53 Pinout	115
Table 58:	SPI1 Pin Header X30 Pinout	116
Table 59:	GPIO Pin Header X54 Pinout	116
Table 60:	GPIO Function Description	117
Table 61:	PCIe0 Connector X59	119
Table 62:	SATA Data Connector X62	121
Table 63:	Molex Disk Power Connector X61	121
Table 64:	CPU Fan Connector X41	122
Table 65:	Wi-Fi/Bluetooth Connector X58	123
Table 66:	phyFLEX Carrier Board DIP Switch S3 Descriptions	125
Table 67:	JTAG Connector X4	127
Table 68:	RTC Interrupt Configuration JP1:	129

Conventions, Abbreviations and Acronyms

This hardware manual describes the PFL-A-XL1 System on Module in the following referred to as phyFLEX®-i.MX 6. The manual specifies the phyFLEX®-i.MX 6's design and function. Precise specifications for the Freescale Semiconductor i.MX 6 microcontrollers can be found in the enclosed microcontroller Data Sheet/User's Manual.

Note: We refrain from providing detailed part specific information within this manual, which can be subject to continuous changes, due to part maintenance for our products. Please read the paragraph "**Product Change Management and information in this manual on parts populated on the SOM"** within the *Preface*.

Note: The BSP delivered with the phyFLEX[®]-i.MX 6 usually includes drivers and/or software for controlling all components such as interfaces, memory, etc. Therefore programming close to hardware at register level is not necessary in most cases. For this reason, this manual contains no detailed description of the controller's registers, or information relevant for software development. Please refer to the *i.MX* 6 Reference Manual, if such information is needed to connect customer designed applications.

Conventions

The conventions used in this manual are as follows:

- Signals that are preceded by an "n", "/", or "#"character (e.g.: nRD, /RD, or #RD), or that have a dash on top of the signal name (e.g.: RD) are designated as active low signals. That is, their active state is when they are driven low, or are driving low.
- A "0" indicates a logic zero or low-level signal, while a "1" represents a logic one or high-level signal.
- The hex-numbers given for addresses of I²C devices always represent the 7 MSB of the address byte. The correct value of the LSB which depends on the desired command (read (1), or write (0)) must be added to get the complete address byte. E.g. given address in this manual 0x41 => complete address byte = 0x83 to read from the device and 0x82 to write to the device

- Tables which describe jumper settings show the default position in bold, blue text.
- Text in *blue italic* indicates a hyperlink within, or external to the document. Click these links to quickly jump to the applicable URL, part, chapter, table, or figure.
- References made to the phyFLEX-Connector always refer to the high density samtec connector on the undersides of the phyFLEX-i.MX 6 System on Module.

Types of Signals

Different types of signals are brought out at the phyFLEX-Connector. The following table lists the abbreviations used to specify the type of a signal.

Signal Type	Description	Abbr.		
Power	Supply voltage input	PWR I		
Ref-Voltage	Reference voltage output	REF O		
Input	Digital input	I		
Output	Digital output	O		
IO	Bidirectional input/output	I/O		
IPU	Digital input with pull-up, must only	IPU		
	be connected to GND. (jumper or			
	open-collector output)			
OC-Bidir PU	Open collector input/output with pull	OC-BI		
	up			
OC-Output	Open collector output without pull up, OC			
	requires an external pull up			
5V Input PD	5 V tolerant input with pull down 5V_PD			
LVDS Input	Differential line pairs 100 Ohm LVDS_I			
	LVDS level input			
LVDS	Differential line pairs 100 Ohm	LVDS_O		
Output	LVDS level output			
LVDS IO	Differential line pairs 100 Ohm	LVDS_I/O		
	LVDS level bidirectional input/output			
TMDS	Differential line pairs 100 Ohm	TMDS_O		
Output	TMDS level output			
USB IO	Differential line pairs 90 Ohm USB USB_I/O			
	level bidirectional input/output			

ETHERNET	Differential line pairs 100 Ohm	ETH I			
Input	Ethernet level input	_			
ETHERNET	Differential line pairs 100 Ohm	ETH_O			
Output	Ethernet level onput				
ETHERNET	Differential line pairs 100 Ohm	ETH_I/O			
IO	Ethernet level bidirectional				
	input/output				
PCIe Input	Differential line pairs 100 Ohm PCIe PCIe_I				
	level input				
PCIe Output	Differential line pairs 100 Ohm PCIe PCIe_O				
	level output				
MLB Output	Differential line pairs 100 Ohm Media MLB_O				
	local bus output				
MLB IO	Differential line pairs 100 Ohm Media MLB_I/O				
	local bus bidirectional input/output				
MIPI CSI-2	Differential line pairs 100 Ohm MIPI CSI-2_I				
Input	CSI-2 level input				

Table 1: Signal Types used in this Manual

Abbreviations and Acronyms

Many acronyms and abbreviations are used throughout this manual. Use the table below to navigate unfamiliar terms used in this document.

Abbreviation	Definition	
BSP	Board Support Package (Software delivered with the	
	Development Kit including an operating system	
	(Windows, or Linux) preinstalled on the module and	
	Development Tools).	
CB	Carrier Board; used in reference to the phyFLEX	
	Development Kit Carrier Board.	
DFF	D flip-flop.	
EMB	External memory bus.	
EMI	Electromagnetic Interference.	
GPI	General purpose input.	
GPIO	General purpose input and output.	
GPO	General purpose output.	

phyreen -t.ma o [i re-a-ali-aaa

IRAM	Internal RAM; the internal static RAM on the		
	Freescale Semiconductor i.MX 6 microcontroller.		
J	Solder jumper; these types of jumpers require solder		
	equipment to remove and place.		
JP	Solderless jumper; these types of jumpers can be		
	removed and placed by hand with no special tools.		
PCB	Printed circuit board.		
PDI	PHYTEC Display Interface; defined to connect		
	PHYTEC display adapter boards, or custom adapters		
PEB	PHYTEC Extension Board		
PMIC	Power management IC		
PoE	Power over Ethernet		
POR	Power-on reset		
RTC	Real-time clock.		
SMT	Surface mount technology.		
SOM	System on Module; used in reference to the		
	PFL-A-XL1 /phyFLEX®-i.MX 6 module		
Sx	User button Sx (e.g. S1, S2, etc.) used in reference to		
	the available user buttons, or DIP-Switches on the		
	carrier board.		
Sx_y	Switch y of DIP-Switch Sx; used in reference to the		
	DIP-Switch on the carrier board.		

Table 2: Abbreviations and Acronyms used in this Manual

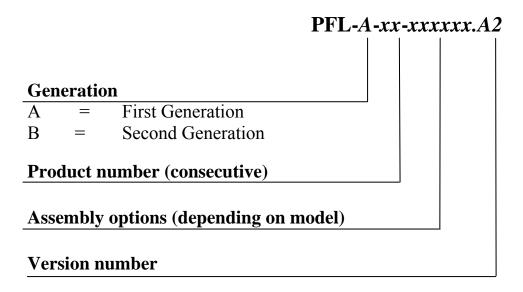
Preface

As a member of PHYTEC's new phyFLEX® product family the phyFLEX-i.MX 6 is one of a series of PHYTEC System on Modules (SOMs) that can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports a variety of 8-/16- and 32-bit controllers in two ways:

- (1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
- (2) as insert-ready, fully functional phyFLEX® OEM modules, which can be embedded directly into the user's peripheral hardware design.

Implementation of an OEM-able SOM subassembly as the "core" of your embedded design allows you to focus on hardware peripherals and firmware without expending resources to "re-invent" microcontroller circuitry. Furthermore, much of the value of the phyFLEX® module lies in its layout and test.

PHYTEC's new phyFLEX® product family consists of a series of extremely compact embedded control engines featuring various processing performance classes while using the newly developed phyFLEX® embedded bus standard. The standardized connector footprint and pin assignment of the phyFLEX® bus makes this new SOM generation extremely scalable and flexible. This also allows to use the same carrier board to create different applications depending on the required processing power. With this new SOM concept it is possible to design entire embedded product families around vastly different processor performances while optimizing overall system cost. In addition, future advances in processor technology are already considered with this new embedded bus standard making product upgrades very easy. Another major advantage is the forgone risk of potential system hardware redesign steps caused by processor or other critical component discontinuation. Just use one of PHYTEC's other phyFLEX® SOMs thereby ensuring an extended product life cycle of your embedded application.


Production-ready Board Support Packages (BSPs) and Design Services for our hardware will further reduce your development time and risk and allow you to focus on your product expertise. Take advantage of PHYTEC products to shorten time-to-market, reduce development costs, and avoid substantial design issues and risks. With this new innovative full system solution you will be able to bring your new ideas to market in the most timely and cost-efficient manner.

For more information go to:

http://www.phytec.de/de/leistungen/entwicklungsunterstuetzung.html or www.phytec.eu/europe/oem-integration/evaluation-start-up.html

Ordering Information

The part numbering of the phyFLEX has the following structure:

In order to receive product specific information on changes and updates in the best way also in the future, we recommend to register at http://www.phytec.de/de/support/registrierung.html or http://www.phytec.eu/europe/support/registration.html

For technical support and additional information concerning your product, please visit the support section of our web site which provides product specific information, such as errata sheets, application notes, FAQs, etc.

http://www.phytec.de/de/support/faq/faq-phyFLEX-i.MX6.html or http://www.phytec.eu/europe/support/faq/faq-phyFLEX-i.MX6.html

Declaration of Electro Magnetic Conformity of the PHYTEC phyFLEX $^{\circledR}$ -i.MX 6

PHYTEC System on Module (henceforth products) are designed for installation in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Caution:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header row connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

Product Change Management and information in this manual on parts populated on the SOM

When buying a PHYTEC SOM, you will, in addition to our HW and SW offerings, receive a free obsolescence maintenance service for the HW we provide.

Our PCM (Product Change Management) Team of developers, is continuously processing, all incoming PCN's (Product Change Notifications) from vendors and distributors concerning parts which are being used in our products.

Possible impacts to the functionality of our products, due to changes of functionality or obsolesce of a certain part, are being evaluated in order to take the right masseurs in purchasing or within our HW/SW design.

Our general philosophy here is: We never discontinue a product as long as there is demand for it.

Therefore we have established a set of methods to fulfill our philosophy:

Avoiding strategies

- Avoid changes by evaluating longlivety of parts during design in phase.
- Ensure availability of equivalent second source parts.
- Stay in close contact with part vendors to be aware of roadmap strategies.

Change management in rare event of an obsolete and non replaceable part

- Ensure long term availability by stocking parts through last time buy management according to product forecasts.
- Offer long term frame contract to customers.

Change management in case of functional changes

- Avoid impacts on Product functionality by choosing equivalent replacement parts.
- Avoid impacts on Product functionality by compensating changes through HW redesign or backward compatible SW maintenance.
- Provide early change notifications concerning functional relevant changes of our Products.

Therefore we refrain from providing detailed part specific information within this manual, which can be subject to continuous changes, due to part maintenance for our products.

In order to receive reliable, up to date and detailed information concerning parts used for our product, please contact our support team for through the given contact information within this manual.

1 Introduction

The phyFLEX-i.MX 6 belongs to PHYTEC's phyFLEX System on Module family. The phyFLEX SOMs represent the continuous development of PHYTEC System on Module technology. Like its mini-, micro- and nanoMODUL predecessors, the phyFLEX boards integrate all core elements of a microcontroller system on a subminiature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

PHYTEC's phyFLEX family introduces the newly developed phyFLEX embedded bus standard. Apart from processor performance, a large number of embedded solutions require a corresponding number of standard interfaces. Among these process interfaces are for example Ethernet, USB, UART, SPI, I²C, PCIe, audio, and display connectivity. The phyFLEX bus exactly meets this requirement with the phyFLEX-fix connector. As well the location of the commonly used interfaces as the mechanical specifications are clearly defined. Beside this, the phyFLEX concept also considers, that different controllers have many different interfaces. To take this into account, the phyFLEX concept allows two more connectors: the phyFLEXoptional connector, which has optional, but defined interfaces at fixed positions (e.g. SATA, CAN, camera) and the phyFLEX-flex connector, which has only fixed Ground signals. All other signals of the phyFLEX-flex connector are module specific. All interface signals of PHYTEC's new phyFLEX bus are available on up to three, highdensity pitch (0.5 mm) connectors, allowing the phyFLEXs to be plugged like a "big chip" into a target application.

As independent research indicates that approximately 70 % of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments approximately 20 % of all pin header connectors on the phyFLEX bus are dedicated to Ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyFLEX boards even in high noise environments.

phyFLEX boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled microvias are used on the boards, providing phyFLEX users with access to this cutting edge miniaturization technology for integration into their own design.

The phyFLEX-i.MX 6 is a subminiature (60 mm x 70 mm) insert-ready System on Module populated with the Freescale Semiconductor i.MX 6 microcontroller. Its universal design enables its insertion in a wide range of embedded applications.

Precise specifications for the controller populating the board can be found in the applicable controller reference manual or datasheet. The descriptions in this manual are based on the Freescale Semiconductor i.MX 6. No description of compatible microcontroller derivative functions is included, as such functions are not relevant for the basic functioning of the phyFLEX-i.MX 6.

The phyFLEX-i.MX 6 offers the following features:

- Subminiature System on Module (60 mm x 70 mm) achieved through modern SMD technology
- Populated with the Freescale Semiconductor i.MX 6 microcontroller (BGA624 packaging)
- Max. 1.2 GHz core clock frequency
- Boot from different memory devices (NAND Flash (standard))
- phyFLEX bus. Commonly used interfaces such as Ethernet, USB, UART, SPI, I²C, audio, PCIe, SATA, CAN, display and camera connectivity (both LVDS) are available at up to three high-density (0.5 mm) samtec connector, enabling the phyFLEX-i.MX 6 to be plugged like a "big chip" into target application
- Single supply voltage of 5 V
- All controller required supplies generated on board
- Improved interference safety achieved through multi-layer PCB technology and dedicated ground pins
- 1 GB (up to 4 GB) DDR3 SDRAM
- 1 GB (up to 16 GB) on-board NAND Flash

- Up to 16 MB on-board serial Flash (bootable)
- Up to 4 kB I²C EEPROM
- Serial interface with 4 lines (TTL) allowing simple hardware handshake
- High-Speed USB OTG transceiver
- High-Speed USB HOST transceiver
- 10/100/1000 Mbit Ethernet interface
- Two I²C interfaces
- Two SPI interfaces
- PCIe Interface
- I²S Interface
- CAN interface
- Media Local Bus (MLB) interface
- 4 Channel LVDS (24 Bit) LCD-Interface
- HDMI interface
- Two LVDS Camera Interface
- Two SD/MMC card interfaces
- SATA interface
- Support of standard 20 pin debug interface through JTAG connector
- Eleven GPIO/IRQ ports (with phyFLEX-flex connector even more)
- Two user programmable LEDs
- Power Management IC (PMIC)
- Optional Environment Management IC (EMIC) to monitor voltage, current and temperature, and for fan control
- One Wake Up input
- Industrial temperature range (-40 °C to +85 °C)

1.1 Block Diagram

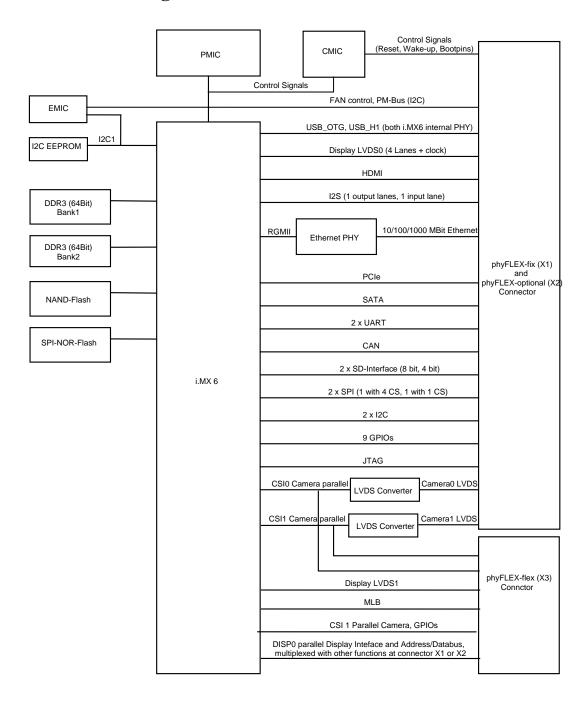


Figure 1: Block Diagram of the phyFLEX-i.MX 6

1.2 phyFLEX-i.MX 6 Component Placement

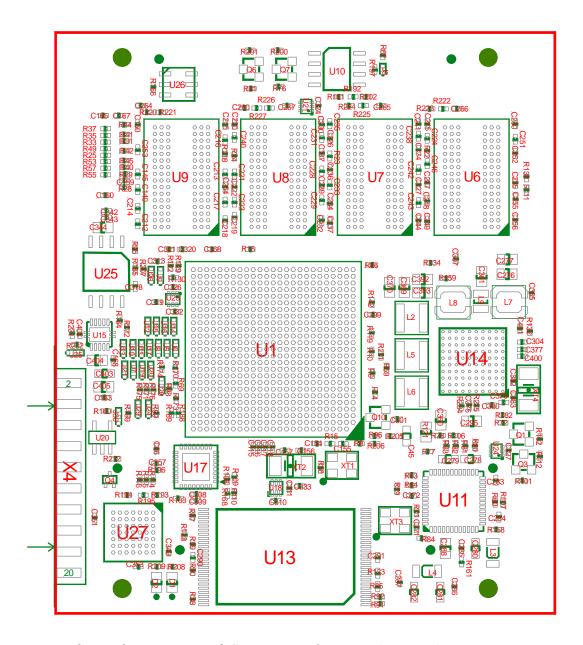


Figure 2: phyFLEX-i.MX 6 Component Placement (top view)

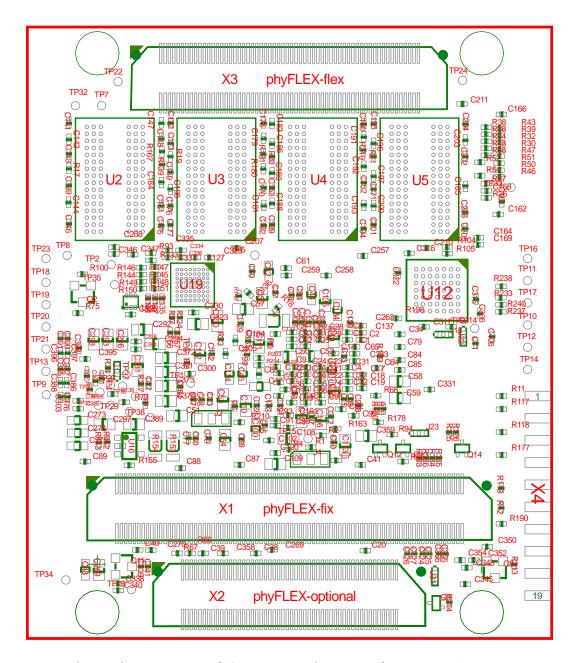


Figure 3: phyFLEX-i.MX 6 Component Placement (bottom view)

1.3 Minimum Requirements to operate the phyFLEX-i.MX 6

Basic operation of the phyFLEX-i.MX 6 only requires supply of a +5 V input voltage with 2 A load and the corresponding GND connection.

These supply pins are located at the phyFLEX-Connector X1:

Connect all +5 V VCC input pins to your power supply and at least the matching number of GND pins.

Corresponding GND: X1 A4, A10, A16, B4, B7, B13

Please refer to *section 2* for information on additional GND Pins located at the phyFLEX-Connector X1.

Caution:

We recommend connecting all available +5 V input pins to the power supply system on a custom carrier board housing the phyFLEX-i.MX 6 and at least the matching number of GND pins neighboring the +5 V pins.

In addition, proper implementation of the phyFLEX-i.MX 6 module into a target application also requires connecting all GND pins neighboring signals that are being used in the application circuitry.

Please refer to *section 4* for more information.

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

As *Figure 4* indicates, all phyFLEX bus signals extend to up to three surface mount technology (SMT) connectors (0.5 mm) (referred to as phyFLEX-Connector). This allows the phyFLEX-i.MX 6 to be plugged into any target application like a "big chip". As well the location of the commonly used interfaces as the mechanical specifications of the connectors are clearly defined.

The first connector X1 is called phyFLEX-fix connector. All phyFLEX SOMs support all interfaces specified for this connector at the same locations. The second connector X2, called phyFLEX-optional connector, has optional, but defined interfaces at fixed positions (e.g. SATA, CAN, camera). phyFLEX SOMs can, but do not have to support the interfaces at the phyFLEX-optional connector. The third connector, phyFLEX-flex connector X3, has only fixed Ground signals. All other signals of the phyFLEX-flex connector are module specific and depend on the features of the controller populating the SOM.

The numbering scheme for the phyFLEX-Connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number with prefixed Connector Reference (X1=phyFLEX-fix, X2=phyFLEX-optional, X3=phyFLEX-flex). Pin X1A1, for example, is always located in the upper left hand corner of the matrix of connector X1. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progresses alphabetically from left to right (refer to *Figure 4*).

The numbered matrix can be aligned with the phyFLEX-i.MX 6 (viewed from above; phyFLEX-Connector pointing down) or with the socket of the corresponding phyFLEX Carrier Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin X1A1) is thus covered with the corner of the phyFLEX-i.MX 6. The numbering scheme is always in relation to the PCB as viewed from above, even if all connector contacts extend to the bottom of the module.

The numbering scheme is thus consistent for both the module's phyFLEX-Connector as well as the mating connector on the phyFLEX Carrier Board or target hardware, thereby considerably reducing the risk of pin identification errors.

The following figure illustrates the numbered matrix system. It shows a phyFLEX-i.MX 6 with all three SMT phyFLEX-Connectors on its underside (defined as dotted lines) mounted on a carrier board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a cross-view of the phyFLEX-i.MX 6 module showing the phyFLEX-Connector mounted on the underside of the module's PCB.

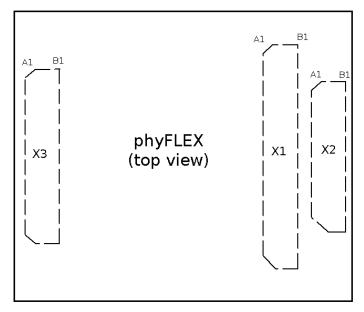


Figure 4: Pinout of the phyFLEX-Connector (top view)

Table 3 to Table 8 provide an overview of the pinout of the different phyFLEX-Connectors X1, X2, and X3 with signal names and descriptions specific to the phyFLEX-i.MX 6. It also provides the appropriate voltage domain, signal type (ST) and a functional grouping of the signals. The signal type includes also information about the signal¹. A description of the signal types can be found in Table 1.

The Freescale Semiconductor i.MX 6 is a multi-voltage operated microcontroller and as such special attention should be paid to the interface voltage levels to avoid unintentional damage to the microcontroller and other on-board components. Please refer to the *Freescale Semiconductor i.MX* 6 *Reference Manual* for details on the functions and features of controller signals and port pins.

^{1:} The specified direction indicated refers to the standard phyFLEX use of the pin.

Pin#	Signal	ST	Voltage domain	Description
X1A1	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1A2	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1A3	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1A4	GND	-	-	Ground 0 V
X1A5	X_JTAG_TRSTB	I	VDD_3V3_LOGIC	JTAG reset input (low active)
X1A6	X_JTAG_TDI	I	VDD_3V3_LOGIC	JTAG TDI
X1A7	X_JTAG_TMS	I	VDD_3V3_LOGIC	JTAG TMS
X1A8	X_JTAG_TDO	O	VDD_3V3_LOGIC	JTAG TDO
X1A9	X_JTAG_TCK	I	VDD_3V3_LOGIC	JTAG clock input
X1A10	GND	-	-	Ground 0 V
X1A11	N.C.	-	-	Not connected
X1A12	X_UART1_TxD_TTL	О	VDD_3V3_LOGIC	UART1 serial transmit signal
X1A13	X_UART1_RxD_TTL	I	VDD_3V3_LOGIC	UART1 serial data receive signal
X1A14	X_UART1_RTS_TTL	O	VDD_3V3_LOGIC	UART1 request to send
X1A15	X_UART1_CTS_TTL	I	VDD_3V3_LOGIC	UART1 clear to send
X1A16	GND	-	-	Ground 0 V
X1A17	reference-voltage	REF_O	VDD_3V3_LOGIC	UART1 reference voltage
X1A18	X_UART0_TxD_TTL	О	VDD_3V3_LOGIC	UART0 serial transmit signal
X1A19	reference-voltage	REF_O	VDD_3V3_LOGIC	UART0 reference voltage
X1A20	X_UART0_RxD_TTL	I	VDD_3V3_LOGIC	UART0 serial data receive signal
X1A21	X_SPI0_MOSI	О	VDD_3V3_LOGIC	SPI0 master output/slave input
X1A22	GND	-	-	Ground 0 V
X1A23	X_SPI0_MISO	I	VDD_3V3_LOGIC	SPI0 master input/slave output
X1A24	X_SPI0_CSBOOT	O	VDD_3V3_LOGIC	SPI0 Chip Select BOOT
X1A25	X_SPI0_CS0	O	VDD_3V3_LOGIC	SPI0 Chip Select 0
X1A26	X_SPI0_CS1	O	VDD_3V3_LOGIC	SPI0 Chip Select 1
X1A27	reference-voltage	REF_O	VDD_3V3_LOGIC	SPI0 reference voltage
X1A28	GND	-	-	Ground 0 V
X1A29	X_SPI0_CLK	O	VDD_3V3_LOGIC	SPI0 clock signal

Table 3: Pinout of the phyFLEX-fix Connector X1, Row A

X1A30 X SPI1 CS0¹ O VDD_3V3_LOGIC | SPI1 chip select 0 SPI1 master output/slave O X1A31 X SPI1 MOSI¹ VDD 3V3 LOGIC input SPI1 master input/slave Ι X1A32 X SPI1 MISO¹ VDD 3V3 LOGIC output X1A33 reference-voltage REF O VDD 3V3 LOGIC SPI1 reference voltage X1A34 GND Ground 0 V X1A35 X_SPI1_CLK¹ O VDD 3V3 LOGIC SPI1 clock signal X1A36 X SPI1 CS1¹ O VDD 3V3 LOGIC SPI1 chip select 1 USB0 VBUS enable X1A37 X USB0 nVBUSEN O VDD 3V3 LOGIC (active low) X1A38 X USB0 VBUS PWR_I USB0 VBUS input X1A39 X USB0 nOC **IPU** VDD 3V3 LOGIC USB0 overcurrent input X1A40 **GND** Ground 0 V X1A41 reference-voltage REF O VDD 3V3 LOGIC USB0 reference voltage X1A42 X USB0 CHGDET O VDD 3V3 LOGIC USB0 charger detection USB1 VBUS enable X1A43 X USB1 nVBUSEN O VDD_3V3_LOGIC (active low) 5V X1A44 X USB1 VBUS PWR I USB1 VBUS input X1A45 X USB1 nOC **IPU** VDD_3V3_LOGIC USB1 overcurrent input X1A46 GND Ground 0 V X1A47 reference-voltage REF O VDD 3V3 LOGIC USB1 reference voltage VDD 3V3 LOGIC X1A48 X I2S0 CLK O I²S receive clock X1A49 X I2S0 FRM O VDD 3V3 LOGIC I²S receive frame X1A50 X I2S0 ADC Ī VDD 3V3 LOGIC I²S receive data VDD 3V3 LOGIC X1A51 reference-voltage REF O I²S reference voltage X1A52 GND Ground 0 V X1A53 X I2S0 DAC O VDD 3V3 LOGIC I²S transmit data General purpose X1A54 X GPIO0 I/O VDD 3V3 LOGIC input/output 0 General purpose X1A55 X_GPIO1 I/O VDD_3V3_LOGIC input/output 1 General purpose X1A56 X GPIO2 I/O VDD 3V3 LOGIC input/output 2 GPIO reference voltage X1A57 reference-voltage REF O VDD 3V3 LOGIC Ground 0 V X1A58 GND General purpose X1A59 X GPIO3 I/O VDD 3V3 LOGIC input/output 3 General purpose X1A60 X GPIO4 I/O VDD_3V3_LOGIC input/output 4

Table 3: Pinout of the phyFLEX-fix Connector X1, Row A (continued)

^{1:} SPI1 is not available for i.MX 6 Solo and i.MX 6 Dual Lite

X1A61	X_GPIO5	I/O	VDD_3V3_LOGIC	General purpose input/output 5	
X1A62	X_GPIO6	I/O	VDD_3V3_LOGIC	General purpose input/output 6	
X1A63	X_GPIO7	I/O	VDD_3V3_LOGIC	General purpose input/output 7	
X1A64	GND	-	-	Ground 0 V	
X1A65	X_GPIO8	I/O	VDD_3V3_LOGIC	General purpose input/output 8	
X1A66	X_GPIO9	I/O	VDD_3V3_LOGIC	General purpose input/output 9	
X1A67	X_GPIO10	I/O	VDD_3V3_LOGIC	General purpose input/output 10	
X1A68	X_I2C0_SDA	OC-BI	VDD_3V3_LOGIC	I2C0 data	
X1A69	X_I2C0_SCL	OC-BI	VDD_3V3_LOGIC	I2C0 clock	
X1A70	GND	-	-	Ground 0 V	
X1A71	reference-voltage	REF_O	VDD_3V3_LOGIC	I2C0 reference voltage	
X1A72	X_PM_nRESET_IN	IPU	VDD_PM	Reset input	
X1A73	X_PM_nRESET_OUT	OC	-	Reset output	
X1A74	X_PM_SDA	OC-BI	VDD_3V3_LOGIC	Power management bus data (EMIC)	
X1A75	X_PM_SCL	OC-BI	VDD_3V3_LOGIC	Power management bus clock (EMIC)	
X1A76	GND	-	-	Ground 0 V	
X1A77	X_PM_nON/WAKEUP/ OFF	IPU	VDD_PM	Power on/wakeup/power off input	
X1A78	X_PM_PWR_GOOD	OC	-	Power good output	
X1A79	X_PM_PWM	OC	-	Fan PWM output	
X1A80	X_PM_TACHO	5V_PD	-	Fan tacho input	

Table 3: Pinout of the phyFLEX-fix Connector X1, Row A (continued)

Pin#	Signal	ST	Voltage Domain	Description
X1B1	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1B2	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1B3	VDD_5V_IN_R	PWR_I	5V	5 V Primary Voltage Supply Input
X1B4	GND	-	-	Ground 0 V
X1B5	reference-voltage	REF_O	VDD_3V3_LOGIC	JTAG reference voltage
X1B6	RSVD	-	-	Reserved
X1B7	GND	-	-	Ground 0 V

Table 4: Pinout of the phyFLEX-fix Connector X1, Row B

X1B8	reference-voltage	REF_O	VDD_SD0	SD0 reference voltage
X1B9	X_SD0_nWP	I	VDD_SD0	SD0 write protection (active low)
X1B10	X_SD0_nCD	I	VDD_SD0	SD0 card detection (active low)
X1B11	X_SD0_D3	I/O	VDD_SD0	SD0 data 3
X1B12	X_SD0_CMD	О	VDD_SD0	SD0 command
X1B13	GND	-	-	Ground 0 V
X1B14	X_SD0_CLK	O	VDD_SD0	SD0 clock
X1B15	X_SD0_D0	I/O	VDD_SD0	SD0 data 0
X1B16	X_SD0_D1	I/O	VDD_SD0	SD0 data 1
X1B17	X_SD0_D2	I/O	VDD_SD0	SD0 data 2
X1B18	X_SD0_D4	I/O	VDD_SD0	SD0 data 4
X1B19	GND	-	-	Ground 0 V
X1B20	X_SD0_D5	I/O	VDD_SD0	SD0 data 5
X1B21	X_SD0_D6	I/O	VDD_SD0	SD0 data 6
X1B22	X_SD0_D7	I/O	VDD_SD0	SD0 data 7
X1B23	RSVD	-	-	reserved
X1B24	X_ETH0_ANALOG_ VOLTAGE	REF_O	VDD_3V3_LOGIC	ETH0 reference voltage for 10/100 Mbit
X1B25	GND	-	-	Ground 0 V
X1B26	X_ETH0_A+/TX0+	ETH_O	VDD_3V3_LOGIC	ETH0 data A+/transmit+
X1B27	X_ETH0_A-/TX0-	ETH_O	VDD_3V3_LOGIC	ETH0 data A-/transmit-
X1B28	X_ETH0_LED0	OC	VDD_3V3_LOGIC	ETH0 link LED output
X1B29	X_ETH0_B+/RX0+	ETH_I	VDD_3V3_LOGIC	ETH0 data B+/receive+
X1B30	X_ETH0_B-/RX0-	ETH_I	VDD_3V3_LOGIC	ETH0 data B-/receive-
X1B31	GND	-	-	Ground 0 V
X1B32	X_ETH0_C+	ETH_I/O	VDD_3V3_LOGIC	ETH0 data C+ (only GbE)
X1B33	X_ETH0_C-	ETH_I/O	VDD_3V3_LOGIC	ETH0 data C- (only GbE)
X1B34	X_ETH0_LED1	OC	VDD_3V3_LOGIC	ETH0 traffic LED output
X1B35	X_ETH0_D+	ETH_I/O	VDD_3V3_LOGIC	ETH0 data D+ (only GbE)
X1B36	X_ETH0_D-	ETH_I/O	VDD_3V3_LOGIC	ETH0 data D- (only GbE)
X1B37	GND	-	-	Ground 0 V
X1B38	X_USB0_D-	USB_I/O	i.MX 6 internal	USB0 data-
X1B39	X_USB0_D+	USB_I/O	i.MX 6 internal	USB0 data+
X1B40	X_USB0_ID	I	VDD_3V3_LOGIC	USB0 ID Pin
X1B41	N.C.	-	-	Not connected
X1B42	N.C.	-	-	Not connected
X1B43	GND	-	-	Ground 0 V
X1B44	X_USB1_D-	USB_/IO	i.MX 6 internal	USB0 data-
X1B45	X_USB1_D+	USB_I/O	i.MX 6 internal	USB0 data+

Table 4: Pinout of the phyFLEX-fix Connector X1, Row B (continued)

X1B46	RSVD	-	-	reserved
X1B47	N.C.	-	-	Not connected
X1B48	N.C.	-	-	Not connected
X1B49	GND		-	Ground 0 V
X1B50	X_LVDS0_L0+	LVDS_O	i.MX 6 internal	LVDS0 data0+
X1B51	X_LVDS0_L0-	LVDS_O	i.MX 6 internal	LVDS0 data0-
X1B52	X_LVDS0_nDISP_EN	I/O	VDD_3V3_LOGIC	LVDS0 display enable (low active)
X1B53	X_LVDS0_L1+	LVDS_O	i.MX 6 internal	LVDS0 data1+
X1B54	X_LVDS0_L1-	LVDS_O	i.MX 6 internal	LVDS0 data1-
X1B55	GND	-	-	Ground 0 V
X1B56	X_LVDS0_L2+	LVDS_O	i.MX 6 internal	LVDS0 data2+
X1B57	X_LVDS0_L2-	LVDS_O	i.MX 6 internal	LVDS0 data2-
X1B58	X_LVDS0_DISP_BL_P WM	I/O	VDD_3V3_LOGIC	LVDS0 backlight PWM output
X1B59	X_LVDS0_L3+	LVDS_O	i.MX 6 internal	LVDS0 data3+
X1B60	X_LVDS0_L3-	LVDS_O	i.MX 6 internal	LVDS0 data3-
X1B61	GND	-	-	Ground 0 V
X1B62	X_LVDS0_CLK+	LVDS_O	i.MX 6 internal	LVDS0 clock+
X1B63	X_LVDS0_CLK-	LVDS_O	i.MX 6 internal	LVDS0 clock-
X1B64	reference-voltage	REF_O	VDD_3V3_LOGIC	LVDS0 reference voltage
X1B65	X_PCIe0_nPRSNT	I/O	VDD_3V3_LOGIC	PCIe0 present signal (low active)
X1B66	reference-voltage	REF_O	VDD_3V3_LOGIC	PCIe0 reference voltage
X1B67	GND	-	-	Ground 0 V
X1B68	X_PCIe0_TX+	PCIe_O	i.MX 6 internal	PCIe0 transmit lane+
X1B69	X_PCIe0_TX-	PCIe_O	i.MX 6 internal	PCIe0 transmit lane-
X1B70	X_PCIe0_nWAKE	I/O	VDD_3V3_LOGIC	PCIe0 wake signal (low active)
X1B71	X_PCIe0_RX+	PCIe_I	i.MX 6 internal	PCIe0 receive lane+
X1B72	X_PCIe0_RX-	PCIe_I	i.MX 6 internal	PCIe0 receive lane-
X1B73	GND	-	-	Ground 0 V
X1B74	X_PCIe0_CLK+	PCIe_O	i.MX 6 internal	PCIe0 clock lane+
X1B75	X_PCIe0_CLK-	PCIe_O	i.MX 6 internal	PCIe0 clock lane-
X1B76	X_BOOT0	IPU	VDD_PM	Boot configuration 0
X1B77	X_BOOT1	IPU	VDD_PM	Boot configuration 1
X1B78	X_BOOT2	IPU	VDD_PM	Boot configuration 2
X1B79	GND	-	-	Ground 0 V
X1B80	RSVD	-	-	reserved

Table 4: Pinout of the phyFLEX-fix Connector X1, Row B (continued)

Pin#	Signal	ST	Voltage Domain	Description
X2A1	X I2C1 SDA	OC-BI	VDD 3V3 LOGIC	I2C1 data
X2A2	X_I2C1_SCL	OC-BI	VDD_3V3_LOGIC	I2C1 clock
X2A3	reference-voltage	REF_O	VDD_3V3_LOGIC	I2C1 reference voltage
X2A4	X_CAN0_TXD	0	VDD_3V3_LOGIC	CAN0 transmit
X2A5	X_CAN0_RXD	I	VDD_3V3_LOGIC	CAN0 receive
X2A6	GND	-	-	Ground 0 V
X2A7	reference-voltage	REF_O	VDD_3V3_LOGIC	CAN0 reference voltage
X2A8	X_HDMI0_SDA	I/O	VDD_3V3_LOGIC	HDMI0 I ² C data
X2A9	X_HDMI0_SCL	I/O	VDD_3V3_LOGIC	HDMI0 I ² C clock
X2A10	X_SATA0_TX+	LVDS_O	i.MX 6 internal	SATA0 transmit lane+
X2A11	X_SATA0_TX-	LVDS_O	i.MX 6 internal	SATA0 transmit lane-
X2A12	GND	-	-	Ground 0 V
X2A13	X_SATA0_RX+	LVDS_I	i.MX 6 internal	SATA0 receive lane+
X2A14	X_SATA0_RX-	LVDS_I	i.MX 6 internal	SATA0 receive lane-
X2A15	X_SD1_D3	I/O	VDD_SD1	SD1 data 3
X2A16	X_SD1_CMD	O	VDD_SD1	SD1 command
X2A17	X_SD1_CLK	O	VDD_SD1	SD1 clock
X2A18	GND	-	-	Ground 0 V
X2A19	reference-voltage	REF_O	VDD_SD1	SD1 reference voltage
X2A20	X_SD1_nWP	Ι	VDD_SD1	SD1 write protection (active low)
X2A21	X_SD1_nCD	Ι	VDD_SD1	SD1 card detection (active low)
X2A22	X_SD1_D0	I/O	VDD_SD1	SD1 data 0
X2A23	X_SD1_D1	I/O	VDD_SD1	SD1 data 1
X2A24	GND	-	-	Ground 0 V
X2A25	X_SD1_D2	I/O	VDD_SD1	SD1 data 2
X2A26	N.C.	-	-	Not connected
X2A27	N.C.	-	-	Not connected
X2A28	N.C.	-	-	Not connected
X2A29	N.C.	-	-	Not connected
X2A30	GND	-	-	Ground 0 V
X2A31	N.C.	-	-	Not connected
X2A32	N.C.	-	-	Not connected
X2A33	N.C.	-	-	Not connected
X2A34	N.C.	-	-	Not connected
X2A35	N.C.	-	-	Not connected
X2A36	GND	-	-	Ground 0 V
X2A37	N.C.	-	-	Not connected

Table 5: Pinout of the phyFLEX-optional Connector X2, Row A

X2A38	N.C.	-	-	Not connected	
X2A39	N.C.	-	-	Not connected	
X2A40	X_CAMERA0_L0+	LVDS_I	VDD_3V3_LOGIC	Camera0 data+	
X2A41	X_CAMERA0_L0-	LVDS_I	VDD_3V3_LOGIC	Camera0 data-	
X2A42	GND	-	-	Ground 0 V	
X2A43	X_CAMERA0_CLK	O	VDD_3V3_LOGIC	Camera0 master clock	
X2A44	reference-voltage	REF_O	VDD_3V3_LOGIC	Camera0 reference voltage	
X2A45	RSVD	-	-	reserved	
X2A46	X_CAMERA1_L0+	LVDS_I	VDD_3V3_LOGIC	Camera1 data+	
X2A47	X_CAMERA1_L0-	LVDS_I	VDD_3V3_LOGIC	Camera1 data-	
X2A48	GND	-	-	Ground 0 V	
X2A49	X_CAMERA1_CLK	O	VDD_3V3_LOGIC	Cameral master clock	
X2A50	reference-voltage	REF_O	VDD_3V3_LOGIC	Cameral reference voltage	

Table 5: Pinout of the phyFLEX-optional Connector X2, Row A (continued)

Pin#	Signal	ST	Voltage Domain	Description
X2B1	X_HDMI0_TMDS_DATA2+	TMDS_ O	i.MX 6 internal	HDMI0 data2+
X2B2	X_HDMI0_TMDS_DATA2-	TMDS_ O	i.MX 6 internal	HDMI0 data2-
X2B3	GND	-	-	Ground 0 V
X2B4	X_HDMI0_TMDS_DATA1+	TMDS_ O	i.MX 6 internal	HDMI0 data1+
X2B5	X_HDMI0_TMDS_DATA1-	TMDS_ O	i.MX 6 internal	HDMI0 data1-
X2B6	reference-voltage	REF_O	VDD_3V3_LOGIC	HDMI0 reference voltage
X2B7	X_HDMI0_TMDS_DATA0+	TMDS_ O	i.MX 6 internal	HDMI0 data0+
X2B8	X_HDMI0_TMDS_DATA0-	TMDS_ O	i.MX 6 internal	HDMI0 data0-
X2B9	GND	-	-	Ground 0 V
X2B10	X_HDMI0_TMDS_CLOCK+	TMDS_ O	i.MX 6 internal	HDMI0 clock+
X2B11	X_HDMI0_TMDS_CLOCK-	TMDS_ O	i.MX 6 internal	HDMI0 clock-
X2B12	X_HDMI0_CEC	I/O	VDD_3V3_LOGIC	HDMI0 CEC
X2B13	X_HDMI0_nHPD	Ι	VDD_3V3_LOGIC	HDMI0 hot plug detect
X2B14	N.C.	-	-	Not connected
X2B15	GND	-	-	Ground 0 V
X2B16	N.C.	-	-	Not connected

Table 6: Pinout of the phyFLEX-optional Connector X2, Row B

X2B17	N.C.	-	-	Not connected
X2B18	N.C.	-	-	Not connected
X2B19	N.C.	-	-	Not connected
X2B20	N.C.	-	-	Not connected
X2B21	GND	-	-	Ground 0 V
X2B22	N.C.	-	-	Not connected
X2B23	N.C.	-	-	Not connected
X2B24	N.C.	-	-	Not connected
X2B25	N.C.	-	-	Not connected
X2B26	N.C.	-	-	Not connected
X2B27	GND	-	-	Ground 0 V
X2B28	N.C.	-	-	Not connected
X2B29	N.C.	-	-	Not connected
X2B30	RSVD	-	-	reserved
X2B31	N.C.	-	-	Not connected
X2B32	N.C.	-	-	Not connected
X2B33	GND	-	-	Ground 0 V
X2B34	N.C.	-	-	Not connected
X2B35	N.C.	-	-	Not connected
X2B36	RSVD	-	-	reserved
X2B37	N.C.	-	-	Not connected
X2B38	N.C.	-	-	Not connected
X2B39	GND	-	-	Ground 0 V
X2B40	N.C.	-	-	Not connected
X2B41	N.C.	-	-	Not connected
X2B42	RSVD	-	-	reserved
X2B43	N.C.	-	-	Not connected
X2B44	N.C.	_	-	Not connected
X2B45	GND	_	-	Ground 0 V
X2B46	N.C.	-	-	Not connected
X2B47	N.C.	_	-	Not connected
X2B48	N.C.		-	Not connected
X2B49	N.C.	-	-	Not connected
X2B50	N.C.	-	-	Not connected

Table 6: Pinout of the phyFLEX-optional Connector X2, Row B (continued)

Note: Signals on the phyFLEX-fix (X1) and phyFLEX-optional (X2) connectors have fixed positions equal for all phyFLEX SOMs. Furthermore all phyFLEX SOMs support all interfaces specified for the phyFLEX-fix connector (X1). As opposed to this, the phyFLEX-optional connector (X2) has optional, but defined interfaces at fixed

positions (e.g. SATA, CAN, camera). Other phyFLEX SOMs might have more, or less interfaces.

Pin#	Signal	ST	Voltage Domain	Description
X3A1	X_CSI_CLK0P	CSI-2_I	i.MX 6 internal	CSI clock+
X3A2	X_CSI_CLK0M	CSI-2_I	i.MX 6 internal	CSI clock-
X3A3	X_CSI0_DAT10	I	VDD_3V3_LOGIC	CSI0 data10
X3A4	X_CSI_D0P	CSI-2_I	i.MX 6 internal	CSI data0+
X3A5	X_CSI_D0M	CSI-2_I	i.MX 6 internal	CSI data0-
X3A6	GND	-	-	Ground 0 V
X3A7	X_CSI_D1P	CSI-2_I	i.MX 6 internal	CSI data1+
X3A8	X_CSI_D1M	CSI-2_I	i.MX 6 internal	CSI data1-
X3A9	X_CSI0_DAT11	I	VDD_3V3_LOGIC	CSI0 data11
X3A10	X_CSI_D2P	CSI-2_I	i.MX 6 internal	CSI data2+
X3A11	X_CSI_D2M	CSI-2_I	i.MX 6 internal	CSI data2-
X3A12	GND	-	-	Ground 0 V
X3A13	X_CSI_D3P	CSI-2_I	i.MX 6 internal	CSI data3+
X3A14	X_CSI_D3M	CSI-2_I	i.MX 6 internal	CSI data3-
X3A15	X_CSI0_DAT12	I	VDD_3V3_LOGIC	CSI0 data12
X3A16	X_CSI0_DAT13	I	VDD_3V3_LOGIC	CSI0 data13
X3A17	X_CSI0_DAT14	Ι	VDD_3V3_LOGIC	CSI0 data14
X3A18	GND	-	-	Ground 0 V
X3A19	X_CSI0_DAT15	I	VDD_3V3_LOGIC	CSI0 data15
X3A20	X_CSI0_DAT16	I	VDD_3V3_LOGIC	CSI0 data16
X3A21	X_CSI0_DAT17	I	VDD_3V3_LOGIC	CSI0 data17
X3A22	X_CSI0_DAT18	I	VDD_3V3_LOGIC	CSI0 data18
X3A23	X_CSI0_DAT19	I	VDD_3V3_LOGIC	CSI0 data19
X3A24	GND	-	-	Ground 0 V
X3A25	X_CSI0_MCLK	О	VDD_3V3_LOGIC	CSI0 master clock
X3A26	X_CSI0_PIXCLK	O	VDD_3V3_LOGIC	CSI0 pixel clock
X3A27	X_CSI0_VSYNC	I	VDD_3V3_LOGIC	CSI0 vertical sync
X3A28	X_CSI0_DATA_EN	O	VDD_3V3_LOGIC	CSI0 data enable
X3A29	X_TAMPER	I	VDD_3V3_LOGIC	Tamper
X3A30	GND	-	-	Ground 0 V
X3A31	X_EIM_WAIT	I	VDD_3V3_LOGIC	EIM wait
X3A32	X_EIM_A24	O	VDD_3V3_LOGIC	EIM address24
X3A33	X_EIM_A23	O	VDD_3V3_LOGIC	EIM address23
X3A34	X_EIM_A22	O	VDD_3V3_LOGIC	EIM address22
X3A35	X_EIM_A21	О	VDD_3V3_LOGIC	EIM address21

Table 7: Pinout of the phyFLEX-flex Connector X3, Row A

X3A36	GND	-	-	Ground 0 V
X3A37	X_EIM_A20	O	VDD_3V3_LOGIC	EIM address20
X3A38	X_EIM_A19	О	VDD_3V3_LOGIC	EIM address19
X3A39	X_EIM_A18	О	VDD_3V3_LOGIC	EIM address18
X3A40	X_EIM_A17	О	VDD_3V3_LOGIC	EIM address17
X3A41	X_EIM_EB0	О	VDD_3V3_LOGIC	EIM enable byte0
X3A42	GND	-	-	Ground 0 V
X3A43	X_EIM_EB1	О	VDD_3V3_LOGIC	EIM enable byte1
X3A44	X_EIM_DA0	I/O	VDD_3V3_LOGIC	EIM address/data0
X3A45	X_EIM_DA1	I/O	VDD_3V3_LOGIC	EIM address/data1
X3A46	X_EIM_DA2	I/O	VDD_3V3_LOGIC	EIM address/data2
X3A47	X_EIM_DA3	I/O	VDD_3V3_LOGIC	EIM address/data3
X3A48	GND	-	-	Ground 0 V
X3A49	X_EIM_DA4	I/O	VDD_3V3_LOGIC	EIM address/data4
X3A50	X_EIM_DA5	I/O	VDD_3V3_LOGIC	EIM address/data5
X3A51	X_EIM_DA6	I/O	VDD_3V3_LOGIC	EIM address/data6
X3A52	X_EIM_DA7	I/O	VDD_3V3_LOGIC	EIM address/data7
X3A53	X_EIM_DA8	I/O	VDD_3V3_LOGIC	EIM address/data8
X3A54	GND	-	-	Ground 0 V
X3A55	X_EIM_DA9	I/O	VDD_3V3_LOGIC	EIM address/data9
X3A56	X_EIM_DA10	I/O	VDD_3V3_LOGIC	EIM address/data10
X3A57	X_EIM_DA11	I/O	VDD_3V3_LOGIC	EIM address/data11
V3 A 58	X EIM DA12	I/O	VDD_3V3_LOGIC	EIM address/data12
AJAJO				
X3A59	X_EIM_A16	О	VDD_3V3_LOGIC	EIM address16

Table 7: Pinout of the phyFLEX-flex Connector X3, Row A (continued)

Pin#	Signal	ST	Votlage domain	Description
X3B1	X_LVDS1_TX0_P	LVDS_O	i.MX 6 internal	LVDS1 data0+
X3B2	X_LVDS1_TX0_N	LVDS_O	i.MX 6 internal	LVDS1 data0-
X3B3	GND	1	-	Ground 0 V
X3B4	X_LVDS1_TX1_P	LVDS_O	i.MX 6 internal	LVDS1 data1+
X3B5	X_LVDS1_TX1_N	LVDS_O	i.MX 6 internal	LVDS1 data1-
X3B6	X_DISP0_DAT9/PWM 2_PWMO	О	VDD_3V3_LOGIC	DISP0 data9/PWM2 output
X3B7	X_LVDS1_TX2_P	LVDS_O	i.MX 6 internal	LVDS1 data2+
X3B8	X_LVDS1_TX2_N	LVDS_O	i.MX 6 internal	LVDS1 data2-
X3B9	GND	-	-	Ground 0 V
X3B10	X_LVDS1_TX3_P	LVDS_O	i.MX 6 internal	LVDS1 data3+
X3B11	X_LVDS1_TX3_N	LVDS_O	i.MX 6 internal	LVDS1 data3-

Table 8: Pinout of the phyFLEX-flex Connector X3, Row B

X3B12	X CSI0 DAT4	I	VDD 3V3 LOGIC	CSI0 data4
X3B13	X_LVDS1_CLK_P	LVDS O	i.MX 6 internal	LVDS1 clock+
X3B14		LVDS_O	i.MX 6 internal	LVDS1 clock-
X3B15	GND	-	-	Ground 0 V
X3B16	X_MLB_DP	MLB_I/O	i.MX 6 internal	Media local bus data line+
X3B17	X_MLB_DN	MLB_I/O	i.MX 6 internal	Media local bus data line-
X3B18	X_CSI0_DAT5	I	VDD_3V3_LOGIC	CSI0 data5
X3B19	X_MLB_SP	MLB_I/O	i.MX 6 internal	Media local bus signal line+
X3B20	X_MLB_SN	MLB_I/O	i.MX 6 internal	Media local bus signal line-
X3B21	GND	-	-	Ground 0 V
X3B22	X_MLB_CP	MLB_O	i.MX 6 internal	Media local bus clock+
X3B23	X_MLB_CN	MLB_O	i.MX 6 internal	Media local bus clock-
X3B24	X_CSI0_DAT9	I	VDD_3V3_LOGIC	CSI0 data9
X3B25		О	VDD_3V3_LOGIC	EIM load burst address
X3B26	X_EIM_RW	O	VDD_3V3_LOGIC	EIM Read/write
X3B27	GND	-	-	Ground 0 V
X3B28	X_CSI0_DAT8	I	VDD_3V3_LOGIC	CSI0 data8
X3B29	X_EIM_OE	0	VDD_3V3_LOGIC	EIM output enable
X3B30	X_EIM_BCLK	O	VDD_3V3_LOGIC	EIM burst clock
X3B31	X_EIM_DA13	I/O	VDD_3V3_LOGIC	EIM address/data13
X3B32	X_EIM_DA14	I/O	VDD_3V3_LOGIC	EIM address/data14
X3B33	GND	-	-	Ground 0 V
X3B34	X_EIM_DA15	I/O	VDD_3V3_LOGIC	EIM address/data15
X3B35	X_CLK2_P	LVDS_I/ O	i.MX 6 internal	Differential clock2+
X3B36	X_CLK2_N	LVDS_I/ O	i.MX 6 internal	Differential clock2-
X3B37	X_GPIO_16	I/O	VDD_3V3_LOGIC	GPIO16
X3B38	X_EIM_D22	I/O	VDD_3V3_LOGIC	EIM data22
X3B39	GND	-	-	Ground 0 V
X3B40	X_CSI0_DAT7	I	VDD_3V3_LOGIC	CSI0 data7
X3B41	X_CSI0_DAT6	I	VDD_3V3_LOGIC	CSI0 data6
X3B42	X_KEY_COL1	I/O	VDD_3V3_LOGIC	Keypad column1
X3B43	X_KEY_ROW1	I/O	VDD_3V3_LOGIC	Keypad row1
X3B44	PMIC_VBBAT	PWR_I	2V – 5V	PMIC Backup power supply
X3B45	GND	-	-	Ground 0 V
X3B46	VDD_MX6_SNVS	PWR_I	3V	i.MX6 Backup power supply (normally generated by PMIC)

Table 8: Pinout of the phyFLEX-flex Connector X3, Row B (continued)

X3B47	X_DI0_DISP_CLK	О	VDD_3V3_LOGIC	DI0 display clock
X3B48	X_DI0_PIN4	О	VDD_3V3_LOGIC	DI0 pin4
X3B49	X_DISP0_DAT6	О	VDD_3V3_LOGIC	DISP0 data6
X3B50	X_DISP0_DAT7	О	VDD_3V3_LOGIC	DISP0 data7
X3B51	GND	1	-	Ground 0 V
X3B52	X_DISP0_DAT10	О	VDD_3V3_LOGIC	DISP0 data10
X3B53	X_DISP0_DAT11	О	VDD_3V3_LOGIC	DISP0 data11
X3B54	X_DISP0_DAT12	О	VDD_3V3_LOGIC	DISP0 data12
X3B55	X_DISP0_DAT15	О	VDD_3V3_LOGIC	DISP0 data15
X3B56	X_DISP0_DAT20	О	VDD_3V3_LOGIC	DISP0 data20
X3B57	GND	-	-	Ground 0 V
X3B58	X_DISP0_DAT21	О	VDD_3V3_LOGIC	DISP0 data21
X3B59	X_DISP0_DAT22	О	VDD_3V3_LOGIC	DISP0 data22
X3B60	X_DISP0_DAT23	О	VDD_3V3_LOGIC	DISP0 data23

Table 8: Pinout of the phyFLEX-flex Connector X3, Row B (continued)

Caution! Signals on the phyFLEX-optional connector (X3) are module specific. This connector has only fixed Ground signals. All other signals of the phyFLEX-flex connector depend on the features of the controller populating the SOM.

3 Jumpers

For configuration purposes, the phyFLEX-i.MX 6 has several solder jumpers, some of which have been installed prior to delivery. *Figure 5* illustrates the numbering of the solder jumper pads, while *Figure 6* and *Figure 7* indicate the location of the solder jumpers on the board. *Table 9* below provides a functional summary of the solder jumpers which can be changed to adapt the phyFLEX-i.MX 6 to your needs. It shows their default positions, and possible alternative positions and functions. A detailed description of each solder jumper can be found in the applicable chapter listed in the table.

Note:

Jumpers not listed should not be changed as they are installed with regard to the configuration of the phyFLEX-i.MX 6.

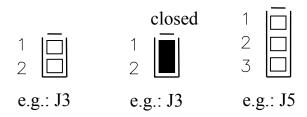


Figure 5: Typical Jumper Pad Numbering Scheme

If manual jumper modification is required please ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

Please pay special attention to the "TYPE" column to ensure you are using the correct type of jumper (0 Ohms, 10k Ohms, etc...). The jumpers are either 0805 package or 0402 package with a 1/8 W or better power rating.

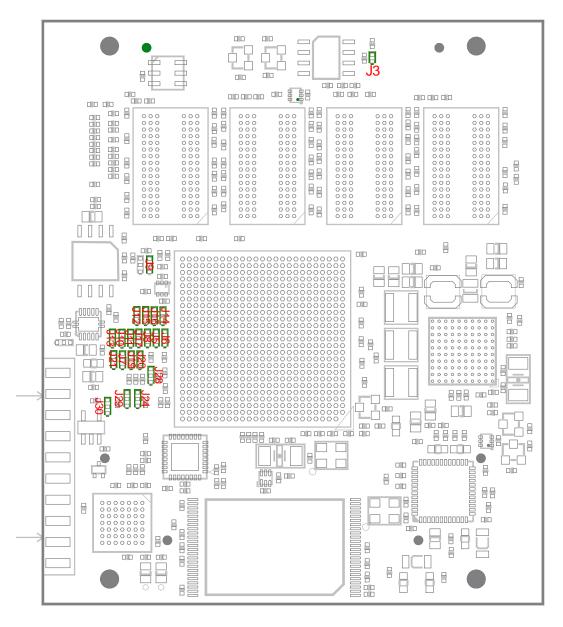


Figure 6: Jumper Locations (top view)

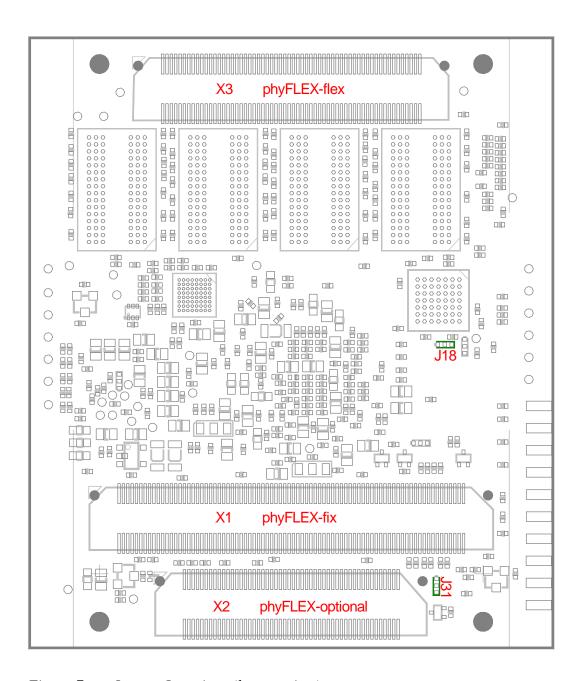


Figure 7: Jumper Locations (bottom view)

The jumpers (J = solder jumper) have the following functions:

Jumper	Description	Type	Chapter
J3	J3 connects the write protect input of the on board EEPROM with GND. If this jumper is not populated, the EEPROM is write protected.	0R (0402)	6.2
closed	EEPROM is not write protected		6.3
open	EEPROM is write protected. The protection can be changed by the EEPROM_WP signal		
J5-J8, J10-J21, J24,J28- J30	These jumpers are connected to the boot configuration inputs of the i.MX 6. They can be used to change the boot settings according to the i.MX 6 datasheet. Please refer to the i.MX 6 data sheet for more detailed information.	10 kΩ (0402)	5
J 9	J9 selects rising, or falling edge strobe for the LVDS Deserializer at U12 used for the camera connectivity of the phyFLEX-i.MX 6 (CSI1)	0 Ω (0402)	
2+3	rising edge strobe used for the LVDS camera signals		14.1
1+2	falling edge strobe used for the LVDS camera signals		
J31	J31 selects rising, or falling edge strobe for the LVDS Deserializer at U27 used for the camera connectivity of the phyFLEX-i.MX 6 (CSI0)	0 Ω (0402)	
2+3	rising edge strobe used for the LVDS camera signals		14.1
1+2	falling edge strobe used for the LVDS camera signals		

Table 9: Jumper Settings¹

-

^{1:} Default settings are in **bold blue** text

4 Power

The phyFLEX-i.MX 6 operates off of a single power supply voltage.

The following sections of this chapter discuss the primary power pins on the phyFLEX-Connector X1 in detail.

4.1 Primary System Power (VDD_5V_IN_R)

The phyFLEX-i.MX 6 operates off of a primary voltage supply with a nominal value of +5 V. On-board switching regulators generate the 3.3 V, 2.5 V, 1.375 V, 1.5 V, 0.75 V, 1.2 V and 3 V voltage supplies required by the i.MX 6 MCU and on-board components from the primary 5 V supplied to the SOM.

For proper operation the phyFLEX-i.MX 6 must be supplied with a voltage source of 5 V \pm 5 % with 2 A load at the VCC pins on the phyFLEX-Connector X1.

Connect all +5 V VCC input pins to your power supply and at least the matching number of GND pins.

Corresponding GND: X1 A4, A10, A16, B4, B7, B13

Please refer to *section 2* for information on additional GND Pins located at the phyFLEX-Connector X1.

Caution:

As a general design rule we recommend connecting all GND pins neighboring signals which are being used in the application circuitry. For maximum EMI performance all GND pins should be connected to a solid ground plane.

4.2 Power Management IC (PMIC) (U14)

The phyFLEX-i.MX 6 provides the on-board Power Management IC (PMIC) DA9063 at position U14 to generate different voltages required by the processor and the on-board components. *Figure 8* presents a graphical depiction of the powering scheme.

The DA9063 supports many functions like on-chip RTC and different power management functionalities like dynamic voltage control, different low power modes and regulator supervision. It is connected to the i.MX 6 via the on board I²C bus. The I²C address of the DA9063 is 0x58.

4.2.1 Power Domains

External voltages:

• VDD_5V_IN_R 5V main supply voltage

• USB0_VBUS USB0 Bus voltage, must be supplied with

5 V if USB0 is used

• USB1 VBUS USB1 Bus voltage, must be supplied with

5 V if USB1 is used

• PMIC_VBBAT PMIC Backup supply

Internal voltages:

VDD 5V $IN^{\bar{1}}$: only used to generate other voltages

Internally generated voltages: VDD MX6 ARM (1.375 V),VDD 3V3 LOGIC VDD MX6 SOC (1.375V),(3.3 V),VDD 3V3 PMIC IO (3.3V), VDD SD0 and VDD SD1 (3.3V), VDD ETH IO (2.5V)VDD MX6 SNVS (3.0 V)VDD MX6 HIGH (3.0V), VDD PM (3.3 V), VDD ETH 1V2 (1.5 V),VDD DDR3 1V5 DDR3 VTT (0.75 V)(1.2V),DDR3 VREF (0.75 V)

- VDD_MX6_ARM: i.MX 6 core (VDDARM_IN, (1.375 V) VDDARM23 IN)
- VDD_MX6_SOC: i.MX 6 SOC (VDDSOC_IN) (1.375 V)
- VDD_MX6_HIGH: i.MX 6 internal regulator (3.0 V) (VDDHIGH IN)
- VDD_MX6_SNVS: i.MX 6 backup supply (VDD_SNVS_IN) (3.0 V)
- VDD_ETH_IO: i.MX6 RGMII supply (NVCC_RGMII, (2.5 V) NVCC_ENET), Ethernet PHY RGMII IO supply
- VDD_ETH_1V2: Ethernet PHY core voltage (1.2 V)

_

^{1:} derived from 5V_IN_R via current sense amplifier at U16

phyFLEX®-i.MX 6 [PFL-A-XL1-xxx

• VDD SD0: i.MX6 SD3 supply (NVCC SD3)

(3.3 V)

• VDD_SD1: i.MX6 SD2 supply (NVCC_SD2)

(3.3 V)

• VDD_PM: CMIC supply

(3.3 V)

• VDD 3V3 PMIC IO: PMIC IO supply

(3.3 V)

• VDD_DDR3_1V5: i.MX 6 DDR (NVCC_DRAM), RAM

(1.5 V) devices

• DDR3 VTT: RAM devices termination voltage

(0.75 V)

• DDR3_VREF: i.MX 6 DDR3 reference voltage

(0.75 V) (DRAM_VREF), RAM devices

reference voltage

• VDD 3V3 LOGIC: i.MX 6 pad supply (NVCC NANDF,

(3.3 V) NVCC_JTAG, NVCC_LCD,

NVCC_CSI, NVCC_EIM,

NVCC GPIO), I2C EEPROM, SPI

Flash, NAND Flash, Camera

Deserializer, Ethernet PHY, EMIC

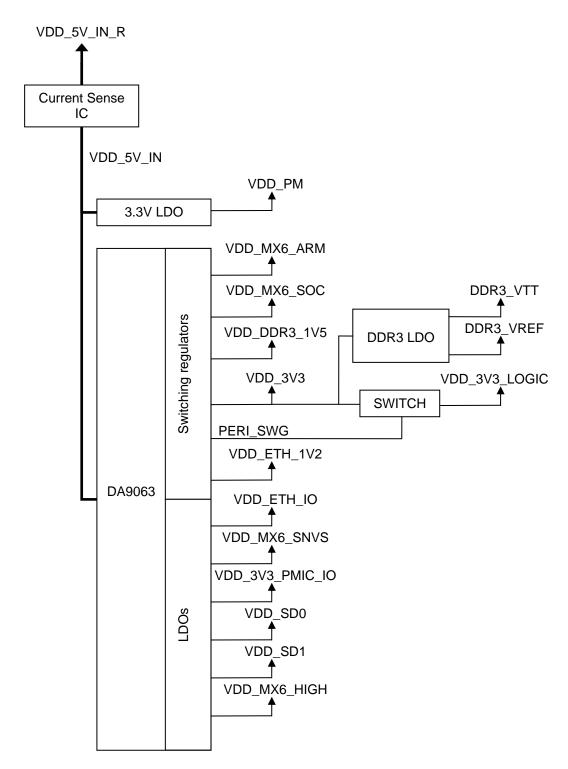


Figure 8: Powering scheme of phyFLEX- i.MX 6

4.3 Supply Voltage for external Logic

The voltage level of the phyFLEX's logic circuitry is VDD_3V3_LOGIC (3.3 V) which is generated on-board. In order to allow connecting external devices to the phyFLEX-i.MX 6 without the need of another voltage source in addition to the primary supply this voltage is brought out at the different reference voltage pins of the phyFLEX-Connector.

Use of level shifters supplied with VDD_3V3_LOGIC allows converting the signals according to the needs on the custom target hardware. Alternatively signals can be connected to an open drain circuitry with a pull-up resistor attached to VDD_3V3_LOGIC. Please use this voltage only as reference and not for supplying purpose.

4.4 Control Management IC (CMIC) (U17))

The phyFLEX-i.MX 6 provides an on-board Control Management IC (CMIC) at position U17 to control different phyFLEX specific functions such as power management, reset or boot configuration.

Please refer to the phyFLEX specification for further information.

5 System Configuration and Booting

Although most features of the i.MX 6 microcontroller are configured and/or programmed during the initialization routine, other features, which impact program execution, must be configured prior to initialization via pin termination.

The system start-up configuration includes:

• Boot device order configuration

During the reset cycle the operational system boot mode of the i.MX 6 processor is determined by the configuration of two BOOTMODE pins BOOT_MODE[1:0]. These pins select the boot type. If the boot type is set to "Internal boot" (BOOT_MODE[1:0]=10, BOOT_CFGx[7:0] are used to configure further boot options. You can find further information about these boot pins in the *i.MX* 6 Reference Manual.

The internal ROM code is the first code executed during the initialization process of the i.MX 6 after POR. The ROM code detects which boot devices the controller has to check by using the BOOT_MODE[1:0] and particular BOOT_CFGx[7:0] pin configuration. For serial boot devices, the ROM code polls the communication interface selected, initiates the download of the code into the internal RAM and triggers its execution from there. For memory booting, the ROM code finds the bootstrap in permanent memories such as NAND-Flash or SD-Cards and executes it. Please refer to the *i.MX* 6 Reference Manual for more information.

The phyFLEX-i.MX 6 provides three boot configuration pins BOOT[2:0]. The setting of these pins configures the boot device which is selected by the processor. The standard phyFLEX boot options are shown in *Table 10*. Boot options specific for the i.MX 6 controller are shown in *Table 11*.

Boot Mode	X_BOOT2	X_BOOT1	X_BOOT0	Bootsource
0	1	1	1	On board memory (e.g. NAND, SSD, eMMC)
1 (optional)	1	1	0	SPI0
2 (optional)	1	0	1	alternative on board memory (e.g. SSD, eMMC)
3 (optional)	1	0	0	SD0 external
4 (optional)	0	1	1	Serial (UART or USB)
5 (optional)	0	1	0	SATA0
6 (optional)	0	0	1	USB0
7 (optional)	0	0	0	specific (e.g. PCIe, I2C, Ethernet)

Table 10: Standard phyFLEX Boot Options

The phyFLEX-i.MX 6 specific boot options are shown in the following table.

Boot Mode	X_BOOT2	X_BOOT1	X_BOOT0	Bootsource
0	1	1	1	NAND
1	1	1	0	SPI3, CS0 (on board SPI Flash if populated, same as mode 2)
2	1	0	1	SPI3, CS0 (on board SPI Flash if populated, same as mode 1)
3	1	0	0	SD0 external
4	0	1	1	Serial USB OTG (USB0, same as mode 6)
5	0	1	0	SATA
6	0	0	1	Serial USB OTG (USB0, same as mode 4)
7	0	0	0	Bootconfig from eFUSE

Table 11: phyFLEX-i.MX 6 specific Boot Options

The BOOT[2:0] lines have $10 \text{ k}\Omega$ pull-up resistors populated on the module. Hence leaving the three pins unconnected sets the controller to boot mode 0, NAND boot.

Note:

As some of the signals which are brought out on the phyFLEX-flex connector are used to configure the boot mode for specific boot options, please make sure that these signals are not driven by any device on the baseboard during reset. The signals which may affect the boot configuration are shown in *Table*.

Pin#	Signal	I/O	SL	Description	Configuration
F111 #	Signai	1/0	SL	Description	Pin
X3A31	X EIM WAIT	Ι	3.3 V	EIM wait	
				11111	BCFG4[1]
X3A32	X_EIM_A24	О	3.3 V	EIM address24	BCFG4[0]
X3A33	X_EIM_A23	O	3.3 V	EIM address23	BCFG3[7]
X3A34	X_EIM_A22	О	3.3 V	EIM address22	BCFG3[6]
X3A35	X_EIM_A21	О	3.3 V	EIM address21	BCFG3[5]
X3A37	X_EIM_A20	О	3.3 V	EIM address20	BCFG3[4]
X3A38	X_EIM_A19	О	3.3 V	EIM address19	BCFG3[3]
X3A39	X_EIM_A18	О	3.3 V	EIM address18	BCFG3[2]
X3A40	X_EIM_A17	О	3.3 V	EIM address17	BCFG3[1]
X3A41	X_EIM_EB0	О	3.3 V	EIM enable byte0	BCFG4[3]
X3A43	X_EIM_EB1	О	3.3 V	EIM enable byte1	BCFG4[4]
X3A44	X_EIM_DA0	I/O	3.3 V	EIM address/data0	BCFG1[0]
X3A45	X_EIM_DA1	I/O	3.3 V	EIM address/data1	BCFG1[1]
X3A46	X_EIM_DA2	I/O	3.3 V	EIM address/data2	BCFG1[2]
X3A47	X_EIM_DA3	I/O	3.3 V	EIM address/data3	BCFG1[3]
X3A49	X_EIM_DA4	I/O	3.3 V	EIM address/data4	BCFG1[4]
X3A50	X_EIM_DA5	I/O	3.3 V	EIM address/data5	BCFG1[5]
X3A51	X_EIM_DA6	I/O	3.3 V	EIM address/data6	BCFG1[6]
X3A52	X_EIM_DA7	I/O	3.3 V	EIM address/data7	BCFG1[7]
X3A53	X_EIM_DA8	I/O	3.3 V	EIM address/data8	BCFG2[0]
X3A55	X_EIM_DA9	I/O	3.3 V	EIM address/data9	BCFG2[1]
X3A56	X_EIM_DA10	I/O	3.3 V	EIM address/data10	BCFG2[2]

Table 12: Boot Configuration Pins at phyFLEX-flex Connector X3

Pin #	Signal	I/O	SL	Description	Configuration Pin
X3A57	X_EIM_DA11	I/O	3.3 V	EIM address/data11	BCFG2[3]
X3A58	X_EIM_DA12	I/O	3.3 V	EIM address/data12	BCFG2[4]
X3A59	X_EIM_A16	О	3.3 V	EIM address16	BCFG3[0]
X3B25	X_EIM_LBA	О	3.3 V	EIM load burst address	BCFG4[2]
X3B26	X_EIM_RW	О	3.3 V	EIM Read/write	BCFG4[5]
X3B31	X_EIM_DA13	I/O	3.3 V	EIM address/data13	BCFG2[5]
X3B32	X_EIM_DA14	I/O	3.3 V	EIM address/data14	BCFG2[6]
X3B34	X_EIM_DA15	I/O	3.3 V	EIM address/data15	BCFG2[7]

Table 12: Boot Configuration Pins at phyFLEX-flex Connector X3 (continued)

By setting the desired boot mode with the phyFLEX boot configuration pins BOOT[2:0], the CMIC, which is populated on the module, sets some of the appropriate BCFG pins and the BOOT_MODE[1:0] pins of the i.MX 6 controller. Only BCFG1[7:4], BCFG2[1], BCFG4[2] and BOOT_MODE[1:0] can be set by the CMIC. All other BCFG pins are set to a fixed value by $10 \, \mathrm{k}\Omega$ configuration resistors which are located on the phyFLEX module. Furthermore BCFG1[4], BCFG2[1] and BCFG4[2] have $10 \, \mathrm{k}\Omega$ on board configuration resistors, too.

The specific boot configuration settings, which are set by the on board configuration resistors, can be changed by modifying the resistors on the module or by connecting a configuration resistor (e.g. $1 \text{ k}\Omega$) to the configuration signal. Please consider that any change of the default BCFG configuration can also influence other boot modes, which might result in faulty boot behavior.

For further information about the different boot modes and the influence of the BCFG pins please see the *i.MX 6 Reference Manual*.

Table 13 shows to which level the CMIC sets the different configuration signals for the boot modes. "Z" means that the CMIC sets the signal to high impedance, and thus the value of the configuration resistor is used.

Boot mode	Description	BOOT_MODE [1:0]	BCFG1[7:4]	BCFG2[1]	BCFG4[2]
0	NAND	0b10	0b1000	depends on NAND size	0bZ
1	SPI	0b10	0b0011	0bZ	0bZ
2	SPI	0b10	0b0011	0bZ	0bZ
3	SD0	0b10	0b010Z	0bZ	0bZ
4	USB OTG	0b01	0bZZZZ	0bZ	0bZ
5	SATA	0b10	0b0010	0bZ	0bZ
6	USB OTG	0b01	0bZZZZ	0bZ	0bZ
7	eFUSE	0b00	0bZZZZ	0bZ	0bZ

Table 13: Boot Configuration Signals generated by the CMIC

6 System Memory

The phyFLEX-i.MX 6 provides three types of on-board memory:

• 2 Banks DDR3 RAM: 1 GB DDR3 SDRAM (up to 4 GB)¹

• NAND Flash (VFBGA): 1 GB (up to 16 GB)¹

I²C-EEPROM: 4 kB¹
 SPI Flash: 16 MB¹

The following sections of this chapter detail each memory type used on the phyFLEX-i.MX 6.

6.1 DDR3-SDRAM (U2-U9)

The RAM memory of the phyFLEX-i.MX 6 is comprised of up to two 64 bit wide banks each of four 16-bit wide DDR3-SDRAM chips (Bank 1: U2-U5, Bank 2: U6-U9). The chips are connected to the special DRR interface called Multi Mode DDR Controller (MMDC) of the i.MX 6 processor.

The DDR3 memory is accessed via the second AHB port starting at 0x1000 0000.

Typically the DDR3-SDRAM initialization is performed by a boot loader or operating system following a power-on reset and must not be changed at a later point by any application code. When writing custom code independent of an operating system or boot loader, SDRAM must be initialized by accessing the appropriate SDRAM configuration registers on the i.MX 6 controller. Refer to the *i.MX* 6 *Reference Manual* for accessing and configuring these registers.

^{1:} Please contact PHYTEC for more information about additional module configurations.

6.2 NAND Flash Memory (U13)

Use of Flash as non-volatile memory on the phyFLEX-i.MX 6 provides an easily reprogrammable means of code storage. The following Flash devices can be used on the phyFLEX-i.MX 6:

The Flash devices are programmable with 3.3 V. No dedicated programming voltage is required.

As of the printing of this manual these NAND Flash devices generally have a life expectancy of at least 100,000 erase/program cycles and a data retention rate of 10 years.

The NAND Flash memories are connected to the External Interface Module (EIM). /CS0 (NANDF_CS0) of the EIM interface selects the NAND Flash at U13.

6.3 I²C EEPROM (U10)

The phyFLEX-i.MX 6 is populated with a non-volatile 4 kB I¹ EEPROM with an I²C interface at U10. This memory can be used to store configuration data or other general purpose data. This device is accessed through I²C port 1 on the i.MX 6. The control registers for I²C port 1 are mapped between addresses 0x021A 0000 and 0x021A 3FFF. Please see the *i.MX* 6 Reference Manual for detailed information on the registers.

The three lower address bits are fixed to zero which means that the EEPROM can be accessed at I²C address 0x50.

Write protection to the device is accomplished via jumper J3. Refer to section 6.3.1 for further details.

¹: See the manufacturer's data sheet for interfacing and operation.

6.3.1 EEPROM Write Protection Control (J3)

Jumper J3 controls write access to the EEPROM (U10) device. Closing this jumper allows write access to the device, while removing this jumper will cause the EEPROM to enter write protect mode, thereby disabling write access to the device.

The following configurations are possible:

EEPROM Write Protection State	Ј3
Write access allowed	closed
Write protected	open

Table 14: EEPROM write protection states via J3¹

Note: If the jumper is not set, the write protection signal can also be changed by GPIO3_19 of the i.MX 6 controller.

6.4 SPI Flash Memory (U25))

The optional SPI Flash Memory of the phyFLEX-i.MX 6 at U25 can be used to store configuration data or any other general purpose data. Beside this it can also be used as boot device. The device is accessed through eCSPI3 CS0 on the i.MX 6. The control registers for eCSPI3 are mapped between addresses 0x0201 0000 and 0x0201 3FFF. Please see the *i.MX* 6 Reference Manual for detailed information on the registers.

As of the printing of this manual these SPI Flash devices generally have a life expectancy of at least 100,000+ erase/program cycles and a data retention rate of 20 years. This makes the SPI Flash a reliable and secure solution to store the first and second level bootloaders.

_

^{1:} Defaults are in **bold blue** text

7 SD / MMC Card Interfaces

The phyFLEX bus features one fixed and one optional SD / MMC Card interface. On the phyFLEX-i.MX 6 the interface signals extend from the controllers third and second Ultra Secured Digital (uSDHC3 / uSDHC2) Host Controller to the phyFLEX-Connector. *Table* shows the location of the different interface signals on the phyFLEX-Connector. The MMC/SD/SDIO Host Controller is fully compatible with the SD Memory Card Specification 3.0 and SD I/O Specification, Part E1, v1.10. SD / MMC Card interface SD0 (uSDHC3 of the i.MX 6), supports 8 data channels and SD1 (uSDHC2 of the i.MX 6) 4 data channels. Both interfaces have a maximum data rate of up to 104 MB/s (refer to the *i.MX* 6 *Reference Manual* for more information).

Pin #	Signal	ST	Voltage Domain	Description
X1B8	reference-voltage	REF_O	VDD_SD0	SD0 reference voltage
X1B9	X_SD0_nWP	Ι	VDD_SD0	SD0 write protect- tion (active low)
X1B10	X_SD0_nCD	Ι	VDD_SD0	SD0 card detection (active low)
X1B11	X_SD0_D3	I/O	VDD_SD0	SD0 data 3
X1B12	X_SD0_CMD	O	VDD_SD0	SD0 command
X1B13	GND	-	-	Ground 0 V
X1B14	X_SD0_CLK	O	VDD_SD0	SD0 clock
X1B15	X_SD0_D0	I/O	VDD_SD0	SD0 data 0
X1B16	X_SD0_D1	I/O	VDD_SD0	SD0 data 1
X1B17	X_SD0_D2	I/O	VDD_SD0	SD0 data 2
X1B18	X_SD0_D4	I/O	VDD_SD0	SD0 data 4
X1B20	X_SD0_D5	I/O	VDD_SD0	SD0 data 5
X1B21	X_SD0_D6	I/O	VDD_SD0	SD0 data 6

Table 15: Location of SD/MMC Card Interface Signals

Pin#	Signal	ST	Voltage Domain	Description
X1B22	X_SD0_D7	I/O	VDD_SD0	SD0 data 7
X2A15	X_SD1_D3	I/O	VDD_SD1	SD1 data 3
X2A16	X_SD1_CMD	O	VDD_SD1	SD1 command
X2A17	X_SD1_CLK	O	VDD_SD1	SD1 clock
X2A19	reference-voltage	REF_O	VDD_SD1	SD1 reference voltage
X2A20	X_SD1_nWP	Ι	VDD_SD1	SD1 write protection (active low)
X2A21	X_SD1_nCD	Ι	VDD_SD1	SD1 card detection (active low)
X2A22	X_SD1_D0	I/O	VDD_SD1	SD1 data 0
X2A23	X_SD1_D1	I/O	VDD_SD1	SD1 data 1
X2A25	X_SD1_D2	I/O	VDD_SD1	SD1 data 2

Table 15: Location of SD/ MMC Card Interface Signals (continued)

8 Serial Interfaces

The phyFLEX-i.MX 6 provides numerous serial interfaces some of which are equipped with a transceiver to allow direct connection to external devices:

- 1. Two High speed UARTs (TTL, derived from UART3 and UART4 of the i.MX 6) with up to 4 MHz and one with hardware flow control (RTS and CTS signals)
- 2. High speed USB OTG interface (extended directly from the i.MX 6's USB-HS OTG PHY (USB-PHY))
- 3. High speed USB HOST interface (extended directly from the i.MX 6 USB HOST PHY (USB-PHY))
- 4. Auto-MDIX enabled 10/100/1000 Mbit Ethernet interface
- 5. Two I²C interface (derived from I²C port 2 and port 3 of the i.MX 6)
- 6. Two Serial Peripheral Interface (SPI) interface (extended from the third and fifth SPI module (eCSPI3 and eCSPI5) of the i.MX 6)
- 7. I²S audio interface (originating from the fifth module of the i.MX 6's Synchronous Serial Interface (SSI5))
- 8. CAN 2.0B interface (extended directly from the i.MX 6 FlexCAN1 module)
- 9. SATA II, 3.0 Gbps (extended directly from the i.MX 6 SATA PHY)
- 10. PCI Express Gen. 2.0 (extended directly from the i.MX 6 PCIe PHY)
- 11. Media Local Bus (MLB) interface (connecting to the i.MX 6's MediaLB 150 block)

The following sections of this chapter detail each of these serial interfaces and any applicable configuration jumpers.

8.1 Universal Asynchronous Interface

The phyFLEX-i.MX 6 provides two high speed universal asynchronous interfaces with up to 4 MHz and one with additional hardware flow control (RTS and CTS signals). The following table shows the location of the signals on the phyFLEX-Connector.

Pin#	Signal	ST	Voltage Domain	Description
X1A12	X_UART1_TxD_TTL	О	VDD_3V3_LOGIC	UART3 serial transmit signal
X1A13	X_UART1_RxD_TTL	Ι	VDD_3V3_LOGIC	UART3 serial data receive signal
X1A14	X_UART1_RTS_TTL	О	VDD_3V3_LOGIC	UART3 request to send
X1A15	X_UART1_CTS_TTL	Ι	VDD_3V3_LOGIC	UART3 clear to send
X1A17	reference-voltage	REF_O	VDD_3V3_LOGIC	UART3 reference voltage
X1A18	X_UART0_TxD_TTL	О	VDD_3V3_LOGIC	UART4 serial transmit signal
X1A19	reference-voltage	REF_O	VDD_3V3_LOGIC	UART4 reference voltage
X1A20	X_UART0_RxD_TTL	Ι	VDD_3V3_LOGIC	UART4 serial data receive signal

Table 16: Location of the UART Signals

The signals extend from UART3 respectively UART4 of the i.MX 6 directly to the phyFLEX-Connector without conversion to RS-232 level. External RS-232 transceivers must be attached by the user if RS-232 levels are required.

8.2 USB OTG Interface

The phyFLEX-i.MX 6 provides a high speed USB OTG interface which uses the i.MX 6 embedded HS USB OTG PHY. An external USB Standard-A (for USB host), USB Standard-B (for USB device), or USB mini-AB (for USB OTG) connector is all that is needed to interface the phyFLEX-i.MX 6 USB OTG functionality. The applicable interface signals can be found on the phyFLEX-fix Connector X1 as shown in *Table 17*.

Pin #	Signal	ST	Voltage Domain	Description
X1A37	X_USB0_nVBUSEN	О	VDD_3V3_LOGIC	USB0 VBUS enable (active low)
X1A38	X_USB0_VBUS	PWR_I	5V	USB0 VBUS input
X1A39	X_USB0_nOC	IPU	VDD_3V3_LOGIC	USB0 overcurrent pin
X1A41	reference-voltage	REF_O	VDD_3V3_LOGIC	USB0 reference voltage
X1A42	X_USB0_CHGDET	О	VDD_3V3_LOGIC	USB0 charger detection
X1B38	X_USB0_D-	USB_I/O	i.MX 6 internal	USB0 data-
X1B39	X_USB0_D+	USB_I/O	i.MX 6 internal	USB0 data+
X1B40	X_USB0_ID	I	VDD_3V3_LOGIC	USB0 ID Pin

Table 17: Location of the USB OTG Signals

8.3 USB Host Interface

The phyFLEX-i.MX 6 provides a high speed USB Host interface which uses the i.MX 6 embedded HS USB Host PHY.

An external USB Standard-A (for USB host) connector is all that is needed to interface the phyFLEX-i.MX 6 USB Host functionality. The applicable interface signals (D+/D-/ PWR/OC) can be found on the phyFLEX-fix Connector X1.

Pin#	Signal	ST	Voltage Domain	Description
X1A43	X_USB1_nVBUSEN	О	VDD_3V3_LOGIC	USB1 VBUS enable (active low)
X1A44	X_USB1_VBUS	PWR_I	5V	USB1 VBUS input
X1A45	X_USB1_nOC	IPU	VDD_3V3_LOGIC	USB1 overcurrent pin
X1A47	reference-voltage	REF_O	VDD_3V3_LOGIC	USB1 reference voltage
X1B44	X_USB1_D-	USB_I/O	i.MX 6 internal	USB0 data-
X1B45	X_USB1_D+	USB_I/O	i.MX 6 internal	USB0 data+

Table 18: Location of the USB-Host Signals

8.4 Ethernet Interface

Connection of the phyFLEX-i.MX 6 to the world wide web or a local area network (LAN) is possible using the on-board GbE PHY at U11. It is connected to the RGMII interface of the i.MX 6. The PHY operates with a data transmission speed of 10 Mbit/s, 100 Mbit/s or 1000 Mbit/s.

8.4.1 Ethernet PHY (U11)

With an Ethernet PHY mounted at U11 the phyFLEX-i.MX 6 has been designed for use in 10Base-T, 100Base-T and 1000Base-T networks. The 10/100/1000Base-T interface with its LED signals extends to the phyFLEX-fix Connector X1.

Pin#	Signal	ST	Voltage Domain	Description
X1B24	X_ETH0_ANALOG_ VOLTAGE	REF_O	VDD_3V3_LOGIC	ETH0 reference voltage for 10/100Mbit, for phyFLEX-i.MX 6 this pin is only connected to a 100 nF capacitor tied to ground
X1B26	X_ETH0_A+/TX0+	ETH_O	VDD_3V3_LOGIC	ETH0 data A+/transmit+
X1B27	X_ETH0_A-/TX0-	ETH_O	VDD_3V3_LOGIC	ETH0 data A-/transmit-
X1B28	X_ETH0_LED0	OC	VDD_3V3_LOGIC	ETH0 link LED output
X1B29	X_ETH0_B+/RX0+	ETH_I	VDD_3V3_LOGIC	ETH0 data B+/receive+
X1B30	X_ETH0_B-/RX0-	ETH_I	VDD_3V3_LOGIC	ETH0 data B-/receive-
X1B32	X_ETH0_C+	ETH_I/O	VDD_3V3_LOGIC	ETH0 data C+ (only GbE)
X1B33	X_ETH0_C-	ETH_I/O	VDD_3V3_LOGIC	ETH0 data C- (only GbE)
X1B34	X_ETH0_LED1	OC	VDD_3V3_LOGIC	ETH0 traffic LED output
X1B35	X_ETH0_D+	ETH_I/O	VDD_3V3_LOGIC	ETH0 data D+ (only GbE)
X1B36	X_ETH0_D-	ETH_I/O	VDD_3V3_LOGIC	ETH0 data D- (only GbE)

Table 19: Location of the Ethernet Signals

The on board GbE PHY supports HP Auto-MDIX technology, eliminating the need for the consideration of a direct connect LAN cable, or a cross-over patch cable. It detects the TX and RX pins of the connected device and automatically configures the PHY TX and RX

pins accordingly. The Ethernet PHY also features an Auto-negotiation to automatically determine the best speed and duplex mode.

The Ethernet controller is connected to the RGMII interface of the i.MX 6. Please refer to the *i.MX* 6 Reference Manual for more information about this interface.

In order to connect the module to an existing 10/100/1000Base-T network some external circuitry is required. The required termination resistors on the analog signals (ETH0_A±, ETH0_B±, ETH0_C±, ETH0_D±) are integrated in the chip, so there is no need to connect external termination resistors to these signals. Connection to an external Ethernet magnetics should be done using very short signal traces. The A+/A-, B+/B-, C+,C- and D+/D- signals should be routed as 100 Ohm differential pairs. The same applies for the signal lines after the transformer circuit. The carrier board layout should avoid any other signal lines crossing the Ethernet signals.

If you are using the applicable carrier board for the phyFLEX-i.MX 6 (part number PBA-B-01), the external circuitry mentioned above is already integrated on the board (refer to *section 18.3.5*).

Caution!

Please see the datasheet of the Ethernet PHY when designing the Ethernet transformer circuitry.

8.4.2 Software Reset of the Ethernet Controller

The Ethernet PHY at U11 can be reset by software. The reset input of the Ethernet PHY is permanently connected to Pad EIM_D23 (GPIO3_23) of the i.MX 6.

8.4.3 MAC Address

In a computer network such as a local area network (LAN), the MAC (Media Access Control) address is a *unique* computer hardware number. For a connection to the Internet, a table is used to convert the assigned IP number to the hardware's MAC address.

In order to guarantee that the MAC address is unique, all addresses are managed in a central location. PHYTEC has acquired a pool of MAC addresses. The MAC address of the phyFLEX-i.MX 6 is located on the bar code sticker attached to the module. This number is a 12-digit HEX value.

8.5 I²C Interface

The Inter-Integrated Circuit (I²C) interface is a two-wire, bidirectional serial bus that provides a simple and efficient method for data exchange among devices. The i.MX 6 contains three identical and independent multimaster fast-mode I²C modules. The interface of the second and third module (I2C2 and I2C3) are available on the phyFLEX-Connectors. The first module connects to the on-board EEPROM (refer to *section 6.3*) and to the EMIC at U19 (see *section 15*). Both I2C interfaces which are brought out on the connector have on board resistors which are laid-out for a capacitive load of max. 150 pF in fast mode. The following table lists the I²C port on the phyFLEX-Connector:

Pin #	Signal	ST	Voltage Domain	Description
X1A68	X_I2C0_SDA	I/O	VDD_3V3_LOGIC	I2C0 data
X1A69	X_I2C0_SCL	I/O	VDD_3V3_LOGIC	I2C0 clock
X1A71	reference- voltage	REF_O	VDD_3V3_LOGIC	I2C0 reference voltage
X2A1	X_I2C1_SDA	I/O	VDD_3V3_LOGIC	I2C1 data
X2A2	X_I2C1_SCL	I/O	VDD_3V3_LOGIC	I2C1 clock
X2A3	reference- voltage	REF_O	VDD_3V3_LOGIC	I2C1 reference voltage

Table 20: I²C Interface Signal Location

8.6 SPI Interface

The Serial Peripheral Interface (SPI) interface is a four-wire, bidirectional serial bus that provides a simple and efficient method for data exchange among devices. The phyFLEX provides two SPI interfaced on the phyFLEX-fix connector X1. The SPI interfaces provide three respectively two chip select signals. The Enhanced Configurable SPI (ECSPI) of the i.MX 6 has five separate modules (ECSPI1, ECSPI2, ECSPI3, ECSPI4 and ECSPI5) which support data rates of up to 20 Mbit/s. The interface signals of the third and fifth module (ECSPI3, ECSPI5) are made available on the phyFLEX-Connector. This module is master/slave configurable. The following table lists the SPI signals on the phyFLEX-Connector:

Pin#	Signal	ST	Voltage Domain	Description
X1A21	X_SPI0_MOSI	О	VDD_3V3_LOGIC	SPI0 master output/slave input
X1A23	X_SPI0_MISO	I	VDD_3V3_LOGIC	SPI0 master input/slave output
X1A24	X_SPI0_CSBOOT	О	VDD_3V3_LOGIC	SPI0 chip select BOOT
X1A25	X_SPI0_CS0	O	VDD_3V3_LOGIC	SPI0 chip select 0
X1A26	X_SPI0_CS1	О	VDD_3V3_LOGIC	SPI0 chip select 1
X1A27	reference-voltage	REF_O	VDD_3V3_LOGIC	SPI0 reference voltage
X1A29	X_SPI0_CLK	О	VDD_3V3_LOGIC	SPI0 clock signal
X1A30	X_SPI1_CS0	О	VDD_3V3_LOGIC	SPI1 chip select 0
X1A31	X_SPI1_MOSI	О	VDD_3V3_LOGIC	SPI1 master output/slave input
X1A32	X_SPI1_MISO	I	VDD_3V3_LOGIC	SPI1 master input/slave output
X1A33	reference-voltage	REF_O	VDD_3V3_LOGIC	SPI1 reference voltage
X1A35	X_SPI1_CLK	О	VDD_3V3_LOGIC	SPI1 clock signal
X1A36	X_SPI1_CS1	О	VDD_3V3_LOGIC	SPI1 chip select 1

Table 21: SPI Interface Signal Location

8.7 I²S Audio Interface (SSI))

The Synchronous Serial Interface (SSI) of the phyFLEX-i.MX 6 is a full-duplex, serial interface that allows to communicate with a variety of serial devices, such as standard codecs, digital signal processors (DSPs), microprocessors, peripherals, and popular industry audio codecs that implement the inter-IC sound bus standard (I²S) and Intel AC'97 standard. The i.MX 6 provides three instances of the SSI module. On the phyFLEX-i.MX 6 SSI5 is brought out to the phyFLEX-Connector.

With reference to the phyFLEX specification, the main purpose of this interface is to connect to an external codec, such as I²S. Four signals extend from the i.MX 6 SSI module to the phyFLEX-Connector (I2S0_CLK, I2S0_FRM, I2S0_ADC, I2S0_DAC).

Pin #	Signal	ST	Voltage Domain	Description
X1A48	X_I2S0_CLK	I/O	VDD_3V3_LOGIC	I ² S clock
X1A49	X_I2S0_FRM	I/O	VDD_3V3_LOGIC	I ² S frame
X1A50	X_I2S0_ADC	I	VDD_3V3_LOGIC	I ² S receive data
X1A51	reference-voltage	REF_O	VDD_3V3_LOGIC	I ² S reference voltage
X1A53	X_I2S0_DAC	О	VDD_3V3_LOGIC	I ² S transmit data

Table 22: I²S Interface Signal Location

8.8 CAN Interface

The CAN interface of the phyFLEX-i.MX 6 is connected to the first FlexCAN module (FlexCAN1) of the i.MX 6 which is a full implementation of the CAN protocol specification Version 2.0B. It supports standard and extended message frames and programmable bit rates of up to 1 Mb/s.

The signals of the CAN interface are brought out on the phyFLEX-optional connector X2. The following table shows the position of the signals.

Pin#	Signal	ST	Voltage Domain	Description
X2A4	X_CAN0_TXD	O	VDD_3V3_LOGIC	CAN0 transmit
X2A5	X_CAN0_RXD	I	VDD_3V3_LOGIC	CAN0 receive
X2A7	reference-voltage	REF	VDD_3V3_LOGIC	CAN0 reference voltage
	8			voltage

Table 23: CAN Interface Signal Location

8.9 SATA Interface

The SATA II interface of the phyFLEX-i.MX 6 is a high-speed serialized ATA data link interface compliant with SATA Revision 3.0 (physical layer complies with SATA Revision 2.5) which supports data rates of up to 3.0 Gbit/s. The interface includes an internal DMA engine, command layer, transport layer, link layer and the physical layer. The interface itself supports only one SATA device.

The phyFLEX-i.MX 6 provides an SATA II Interface at the phyFLEX-optional connector X2 at the following locations:

Pin#	Signal	ST	Voltage Domain	Description
X2A10	X_SATA0_TX+	LVDS_O	i.MX 6 internal	SATA0 transmit lane+
X2A11	X_SATA0_TX-	LVDS_O	i.MX 6 internal	SATA0 transmit lane-
X2A13	X_SATA0_RX+	LVDS_I	i.MX 6 internal	SATA0 receive lane+
X2A14	X_SATA0_RX-	LVDS_I	i.MX 6 internal	SATA0 receive lane-

Table 24: SATA Interface Signal Location

8.10 PCI Express Interface

The 1-lane PCI Express interface of the phyFLEX-i.MX 6 provides PCIe Gen. 2.0 functionality which supports 5 Gbit/s operation. Furthermore the interface is fully backwards compatible to the 2.5 Gbit/s Gen. 1.1 specification. The present and the wake signals are realized by GPIOs.

Table 25 shows the position of the PCIe signals on the phyFLEX-fix connector X1.

Pin#	Signal	ST	Voltage Domain	Description
X1B65	X_PCIe0_nPRSNT	I/O	VDD_3V3_LOGIC	PCIe0 present signal (low active)
X1B66	reference-voltage	REF_O	VDD_3V3_LOGIC	PCIe0 reference voltage
X1B68	X_PCIe0_TX+	PCIe_O	i.MX 6 internal	PCIe0 transmit lane+
X1B69	X_PCIe0_TX-	PCIe_O	i.MX 6 internal	PCIe0 transmit lane-
X1B70	X_PCIe0_nWAKE	I/O	VDD_3V3_LOGIC	PCIe0 wake signal (low active)
X1B71	X_PCIe0_RX+	PCIe_I	i.MX 6 internal	PCIe0 receive lane+
X1B72	X_PCIe0_RX-	PCIe_I	i.MX 6 internal	PCIe0 receive lane-
X1B74	X_PCIe0_CLK+	PCIe_O	i.MX 6 internal	PCIe0 clock lane+
X1B75	X_PCIe0_CLK-	PCIe_O	i.MX 6 internal	PCIe0 clock lane-

Table 25: PCIe Interface Signal Location

8.11 Media Local Bus

The Media Local Bus (MLB) interface provides a link to a MOST® data network, using the standardized Media Local Bus protocol (up to 150 Mbit/s) for inter-chip communication. The Media Local Bus interface is implemented as MediaLB 6-pin interface (differential). The module is backward compatible to MLB-50. The MLB interface is only available on the not standardized phyFLEX-flex connector X3. The following table shows the position of the signals on the connector.

Pin#	Signal	ST	Voltage Domain	Description
X3B16	X_MLB_DP	MLB_I/O	i.MX 6 internal	Media local bus data line+
X3B17	X_MLB_DN	MLB_I/O	i.MX 6 internal	Media local bus data line-
X3B19	X_MLB_SP	MLB_I/O	i.MX 6 internal	Media local bus signal line+
X3B20	X_MLB_SN	MLB_I/O	i.MX 6 internal	Media local bus signal line-
X3B22	X_MLB_CP	MLB_O	i.MX 6 internal	Media local bus clock+
X3B23	X_MLB_CN	MLB_O	i.MX 6 internal	Media local bus clock-

Table 26: Media Local Bus Interface Signal Location

9 General Purpose I/Os

The phyFLEX bus provides 11 GPIO signals. *Table* shows the location of the GPIO pins on the phyFLEX-Connector, as well as the corresponding ports of the i.MX 6.

Pin#	Signal	ST	Voltage Domain	Description
X1A54	X_GPIO0	I/O	VDD_3V3_LOGIC	General purpose input/output 0 (GPIO5_8 of i.MX 6)
X1A55	X_GPIO1	I/O	VDD_3V3_LOGIC	General purpose input/output 1 (GPIO5_7 of i.MX 6)
X1A56	X_GPIO2	I/O	VDD_3V3_LOGIC	General purpose input/output 2 (GPIO4_18 of i.MX 6)
X1A57	reference- voltage	REF_O	VDD_3V3_LOGIC	GPIO reference voltage
X1A59	X_GPIO3	I/O	VDD_3V3_LOGIC	General purpose input/output 3 (GPIO4_19 of i.MX 6)
X1A60	X_GPIO4	I/O	VDD_3V3_LOGIC	General purpose input/output 4 (GPIO1_6 of i.MX 6)
X1A61	X_GPIO5	I/O	VDD_3V3_LOGIC	General purpose input/output 5 (GPIO1_9 of i.MX 6)
X1A62	X_GPIO6	I/O	VDD_3V3_LOGIC	General purpose input/output 6 (GPIO7_12 of i.MX 6)

Table 27: Location of GPIO Pins

Pin#	Signal	ST	Voltage Domain	Description
X1A63	X_GPIO7	I/O	VDD_3V3_LOGIC	General purpose input/output 7 (GPIO7_13 of i.MX 6)
X1A65	X_GPIO8	I/O	VDD_3V3_LOGIC	General purpose input/output 8 (GPIO4_5 of i.MX 6)
X1A66	X_GPIO9	I/O	VDD_3V3_LOGIC	General purpose input/output 9 (GPIO2_23 of i.MX 6)
X1A67	X_GPIO10	I/O	VDD_3V3_LOGIC	General purpose input/output 10 (GPIO2_24 of i.MX 6)

Table 27: Location of GPIO Pins (continued)

Beside these 11 dedicated GPIOs, most of the i.MX 6 signals which are connected directly to the module connector can be configured to act as GPIOs, due to the multiplexing functionality of most controller pins.

10 User LEDs

The phyFLEX-i.MX 6 provides two user LEDs on board, a red (D2) and a green (D1). D2 can be controlled by setting GPIO2_31 (pad EIM_EB3) and D1 can by controlled by setting GPIO1_30 (pad ENET_TXD0) to the desired output level. A high-level turns the LED on, a low-level turns it off.

11 Debug Interface (X1, X4)

The phyFLEX-i.MX 6 is equipped with a JTAG interface for downloading program code into the external flash, internal controller RAM or for debugging programs currently executing. The JTAG interface extends to the phyFLEX-fix connector X1 and also to a 2.0 mm pitch pin header at X4 on the edge of the module PCB.

Table 28 shows the location of the JTAG pins on the phyFLEX-fix connector X1.

Pin#	Signal	ST	Voltage Domain	Description
X1A5	X_JTAG_nTRST	I	VDD_3V3_LOGIC	JTAG reset input
X1A6	X_JTAG_TDI	Ι	VDD_3V3_LOGIC	JTAG TDI
X1A7	X_JTAG_TMS	I	VDD_3V3_LOGIC	JTAG TMS
X1A8	X_JTAG_TDO	O	VDD_3V3_LOGIC	JTAG TDO
X1A9	X_JTAG_TCK	I	VDD_3V3_LOGIC	JTAG clock input
X1A10	GND	-	-	Ground 0 V
X1A11	X_JTAG_RTCLK	О	VDD_3V3_LOGIC	JTAG RTCLK
X1B5	reference-voltage	REF_O	VDD_3V3_LOGIC	JTAG reference voltage

Table 28: Debug Interface Signal Location at phyFLEX-Connector X1

Figure 9 and Figure 10 show the position of the debug interface (JTAG connector X4) on the phyFLEX-i.MX 6 module.

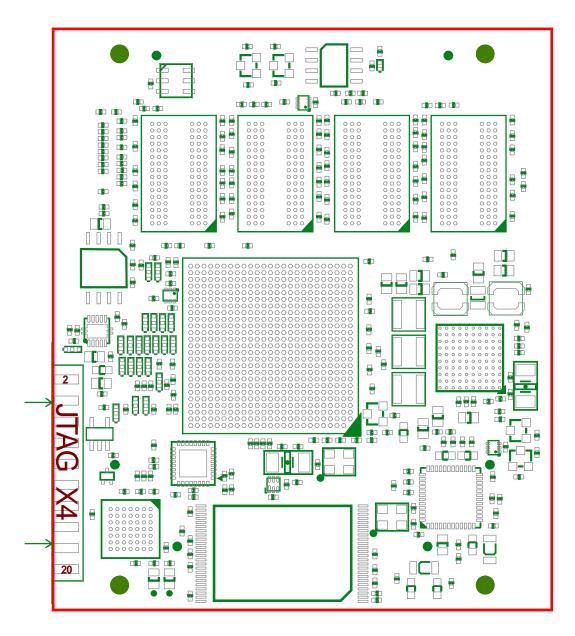


Figure 9: JTAG Interface at X4 (top view)

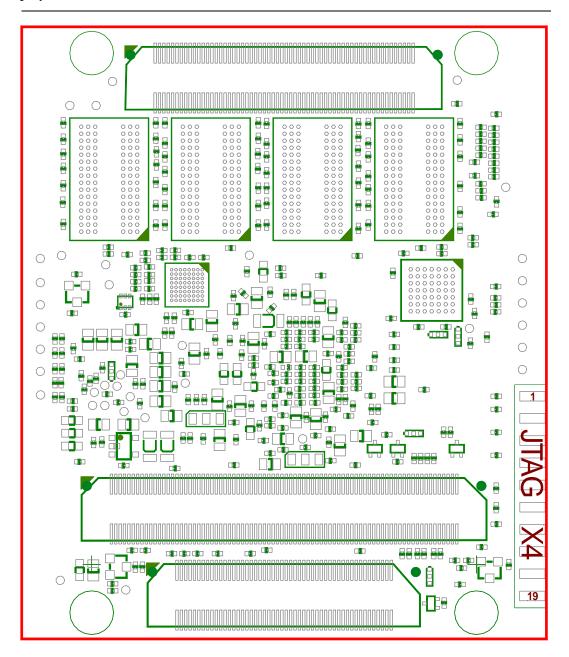


Figure 10: JTAG Interface at X4 (bottom view)

Pin 1 of the JTAG connector X4 is on the connector side of the module. Pin 2 of the JTAG connector is on the controller side of the module.

Table 29 shows details on the JTAG signal pin assignment.

Note:

The JTAG connector X4 only populates phyFLEX-i.MX 6 modules with a specific order option. We recommend integration of a standard (2 mm pitch) pin header connector in the user target circuitry to allow easy program updates via the JTAG interface.

Signal	Pin Row*		Signal	
Signai	A	В	Signai	
VSUPPLY (VDD_3V3_LOGIC)	2	1	TREF (VDD_3V3_LOGIC via	
			0 Ohms)	
GND	4	3	X_JTAG_TRSTB	
GND	6	5	X_JTAG_TDI	
GND	8	7	X_JTAG_TMS	
GND	10	9	X_JTAG_TCK	
GND	12	11	X_JTAG_RTCK	
			(connected via 0 Ohms to	
			X_JTAG_TCK)	
GND	14	13	X_JTAG_TDO	
GND	16	15	X_PM_nRESET_IN	
GND	18	17	not connected	
GND	20	19	not connected	

Table 29: JTAG Connector X4 Signal Assignment

*Note: Row A is on the controller side of the module and row B is on the connector side of the module

PHYTEC offers a JTAG-Emulator adapter (order code JA-002) for connecting the phyFLEX-i.MX 6 to a standard emulator. The JTAG-Emulator adapter extends the signals of the module's JTAG connector to a standard ARM connector with 2 mm pin pitch. The JA-002 therefore functions as an adapter for connecting the module's non-ARM-compatible JTAG connector X4 to standard Emulator connectors.

12 LVDS Display Interface

The LVDS-Signals from the on-chip LVDS Display Bridge (LDB) of the i.MX 6 are brought out at the phyFLEX-fix connector X1. Thus an LVDS-Display can connect directly to the phyFLEX-i.MX 6. The location of the applicable interface signals (X_LVDS0_L0-3+, X_LVDS0_L0-3-, X_LVDS0_CLK+ and X_LVDS0_CLK-) and of the two control signals display enable and backlight PWM (nLVDS0_DISP_EN and LVDS0_DISP_BL_PWM) can be found in the table below.

Pin#	Signal	ST	Voltage Domain	Description
X1B50	X_LVDS0_L0+	LVDS_O	i.MX 6 internal	LVDS0 data0+
X1B51	X_LVDS0_L0-	LVDS_O	i.MX 6 internal	LVDS0 data0-
X1B52	X_LVDS0_nDISP_EN	О	VDD_3V3_LOGIC	LVDS0 display enable (low active)
X1B53	X_LVDS0_L1+	LVDS_O	i.MX 6 internal	LVDS0 data1+
X1B54	X_LVDS0_L1-	LVDS_O	i.MX 6 internal	LVDS0 data1-
X1B56	X_LVDS0_L2+	LVDS_O	i.MX 6 internal	LVDS0 data2+
X1B57	X_LVDS0_L2-	LVDS_O	i.MX 6 internal	LVDS0 data2-
X1B58	X_LVDS0_DISP_BL_ PWM	O	VDD_3V3_LOGIC	LVDS0 backlight PWM output
X1B59	X_LVDS0_L3+	LVDS_O	i.MX 6 internal	LVDS0 data3+
X1B60	X_LVDS0_L3-	LVDS_O	i.MX 6 internal	LVDS0 data3-
X1B62	X_LVDS0_CLK+	LVDS_O	i.MX 6 internal	LVDS0 clock+
X1B63	X_LVDS0_CLK-	LVDS_O	i.MX 6 internal	LVDS0 clock-
X1B64	reference-voltage	REF_O	VDD_3V3_LOGIC	LVDS0 reference voltage

Table 30: Display Interface Signal Location

Furthermore the phyFLEX-i.MX 6 supports a second LVDS Display at the non standardized phyFLEX-flex connector X3. The table below shows the location of the signals:

Pin#	Signal	ST	Voltage Domain	Description
X3B1	X_LVDS1_TX0_P	LVDS_O	i.MX 6 internal	LVDS1 data0+
X3B2	X_LVDS1_TX0_N	LVDS_O	i.MX 6 internal	LVDS1 data0-
X3B4	X_LVDS1_TX1_P	LVDS_O	i.MX 6 internal	LVDS1 data1+
X3B5	X_LVDS1_TX1_N	LVDS_O	i.MX 6 internal	LVDS1 data1-
X3B7	X_LVDS1_TX2_P	LVDS_O	i.MX 6 internal	LVDS1 data2+
X3B8	X_LVDS1_TX2_N	LVDS_O	i.MX 6 internal	LVDS1 data2-
X3B10	X_LVDS1_TX3_P	LVDS_O	i.MX 6 internal	LVDS1 data3+
X3B11	X_LVDS1_TX3_N	LVDS_O	i.MX 6 internal	LVDS1 data3-
X3B13	X_LVDS1_CLK_P	LVDS_O	i.MX 6 internal	LVDS1 clock+
X3B14	X_LVDS1_CLK_N	LVDS_O	i.MX 6 internal	LVDS1 clock-

Table 31: Second Display Interface Signal Location at X3

12.1 LVDS Display Interface pixel mapping

The phyFLEX specification defines the pixel mapping of the LVDS display interface. The pixel mapping equates to the OpenLDI respectively Intel 24.0 or JEIDA standard. Thus you can connect 18-bit as well as 24-bit LVDS displays to the phyFLEX. *Table 32* and *Table 33* show the recommended pixel mapping of the LVDS display. However since the i.MX 6 LDB Module supports also the SPWG pixel mapping, this one can be used as well by setting the appropriated configuration bit.

Note:

To be fully compatible to the phyFLEX specification, make sure that the LVDS display you want to use provides the same pin mapping as the phyFLEX (JEIDA respectively OpenLDI). Normally this is only important for 24-bit LVDS displays because due to the organization of the LVDS pixel mapping all common 18-bit LVDS displays should work.

18-bit LVDS Display

	1	2	3	4	5	6	7
CLK	1	1	0	0	0	1	1
A0	G0	R5	R4	R3	R2	R1	R0
A 1	B1	B0	G5	G4	G3	G2	G1
A2	DE	VSYNC	HSYNC	B5	B4	В3	B2
A3	0	0	0	0	0	0	0

Table 32: Pixel Mapping of 18-bit LVDS Display Interface

24-bit LVDS Display

21 of E v B Bisping							
	1	2	3	4	5	6	7
CLK	1	1	0	0	0	1	1
A0	G2	R7	R6	R5	R4	R3	R2
A1	В3	B2	G7	G6	G5	G4	G3
A2	DE	VSYNC	HSYNC	B7	B6	B5	B4
A3	0	B1	B0	G1	G0	R1	R0

Table 33: Pixel Mapping of 24-bit LVDS Display Interface

13 High-Definition Multimedia Interface (HDMI)

The High-Definition Multimedia Interface (HDMI) of the phyFLEX-i.MX 6 is compliant to HDMI 1.4 and DVI 1.0. It supports a maximum pixel clock of up to 340 MHz for up to 720p at 100 Hz and 720i at 200 Hz, or 1080p at 60 Hz and 1080i/720i at 120 Hz HDTV display resolutions, and a graphic display resolution of up to 2048x1536 (QXGA). Please refer to the *i.MX* 6 Reference Manual for more information.

The following table shows the location of the HDMI signals on the phyFLEX-optional connector X2.

Pin #	Signal	ST	Voltage Domain	Description
X2A8	X_HDMI0_SDA	I/O	VDD_3V3_LOGIC	HDMI0 I2C data
X2A9	X_HDMI0_SCL	I/O	VDD_3V3_LOGIC	HDMI0 I2C clock
X2B1	X_HDMI0_TMDS_DATA2+	TMDS_O	i.MX 6 internal	HDMI0 data2+
X2B2	X_HDMI0_TMDS_DATA2-	TMDS_O	i.MX 6 internal	HDMI0 data2-
X2B4	X_HDMI0_TMDS_DATA1+	TMDS_O	i.MX 6 internal	HDMI0 data1+
X2B5	X_HDMI0_TMDS_DATA1-	TMDS_O	i.MX 6 internal	HDMI0 data1-
X2B6	reference-voltage	REF_O	VDD_3V3_LOGIC	HDMI0 reference voltage
X2B7	X_HDMI0_TMDS_DATA0+	TMDS_O	i.MX 6 internal	HDMI0 data0+
X2B8	X_HDMI0_TMDS_DATA0-	TMDS_O	i.MX 6 internal	HDMI0 data0-
X2B10	X_HDMI0_TMDS_CLOCK+	TMDS_O	i.MX 6 internal	HDMI0 clock+
X2B11	X_HDMI0_TMDS_CLOCK-	TMDS_O	i.MX 6 internal	HDMI0 clock-
X2B12	X_HDMI0_CEC	I/O	VDD_3V3_LOGIC	HDMI0 CEC
X2B13	X_HDMI0_nHPD	Ι	VDD_3V3_LOGIC	HDMI0 hot plug detect

Table 34: HDMI Interface Signal Location at X2

14 LVDS Camera Interface

The phyFLEX-i.MX 6 uses two 1-channel 10-Bit LVDS Random Lock Deserializer (U12 and U27) to receive LVDS-Signals from a LVDS Camera Interface. The LVDS Deserializer converts the LVDS Signals to a 10-bit wide parallel data bus and separate clock which can be used as inputs for the i.MX 6 Camera Sensor Interfaces (U12 is connected to CSI1 and U27 is connected to CSI0). The 10-bit wide data bus consists of 8 color information bits and 2 sync bits (HSYNC/VSYNC).

The following table shows the location of the applicable interface signals (X_CAMERAx_CLK, X_CAMERAx_L+, X_CAMERAx_L-) on the phyFLEX-Connector.

Pin#	Signal	ST	Voltage Domain	Description
X2A40	X_CAMERA0_L0+	LVDS_I	VDD_3V3_LOGIC	Camera0 data+
X2A41	X_CAMERA0_L0-	LVDS_I	VDD_3V3_LOGIC	Camera0 data-
X2A43	X_CAMERA0_CLK	О	VDD_3V3_LOGIC	Camera0 master clock
X2A44	reference-voltage	REF_O	VDD_3V3_LOGIC	Camera0 reference voltage
X2A46	X_CAMERA1_L0+	LVDS_I	VDD_3V3_LOGIC	Camera1 data+
X2A47	X_CAMERA1_L0-	LVDS_I	VDD_3V3_LOGIC	Cameral data-
X2A49	X_CAMERA1_CLK	О	VDD_3V3_LOGIC	Camera1 master clock
X2A50	reference-voltage	REF_O	VDD_3V3_LOGIC	Cameral reference voltage

Table 35: Camera Interface Signal Location at X2

To assists the implementation of a power management the Deserializer's REN inputs are connected to the CSI0_DATA_EN pad (U27) respectively to the EIM_DA10 pad (U12) of the i.MX 6. Furthermore the nPWRDN signals of the Deserializers are connected to the ENET_RX_ER pad (U27) respectively to the EIM_EB0 pad (U12) of the i.MX 6. Thereby the LVDS Deserializer can be turned off by software.

14.1 Signal Configuration (J9 and J31)

J9 selects rising, or falling edge strobe for the LVDS Deserializer at U12 used for the camera connectivity of the phyFLEX-i.MX 6 CSI1 port.

J31 selects rising, or falling edge strobe for the LVDS Deserializer at U27 used for the camera connectivity of the phyFLEX-i.MX 6 CSI0 port.

Position	Description	Type
2+3	rising edge strobe used for the LVDS camera signals	0R (0402)
1+2	falling edge strobe used for the LVDS camera signals	

Table 36: LVDS Signal Configuration J9 and J31

15 Environment Management IC (EMIC) (U19)

The optional Environment Management IC (EMIC) at U19 gives the possibility to detect, monitor and record particular physical parameter such as current consumption, temperature und voltages. Furthermore the Environment Management IC comes with a PWM output and a tacho input for fan controlling and an I²C Management bus.

16 Technical Specifications

The physical dimensions of the phyFLEX-i.MX 6 are represented in *Figure 11*. The module's profile is max. 10 mm thick, with a maximum component height of 3.0 mm on the bottom (connector) side of the PCB and approximately 5.0 mm on the top (microcontroller) side. The board itself is approximately 1.4 mm thick.

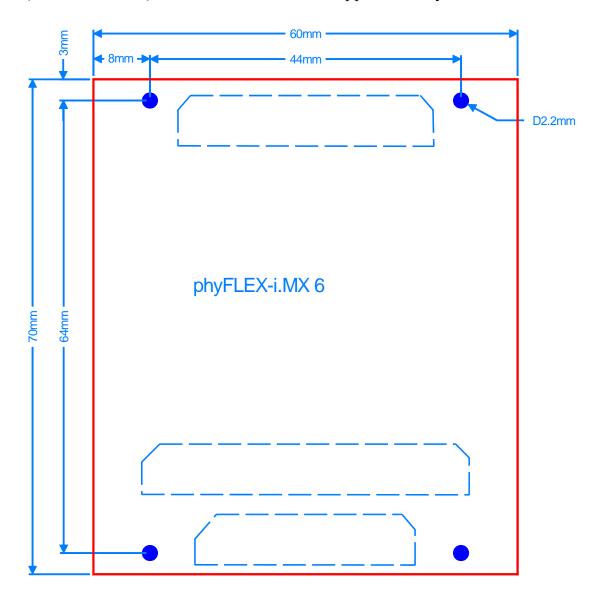


Figure 11: Physical Dimensions (top view)

Note:

To facilitate the integration of the phyFLEX-i.MX 6 into your design, the footprint of the phyFLEX-i.MX 6 is available for download (see *section 17.1*).

Additional specifications:

Dimensions:	60 mm x 70 mm
Weight:	TBD
Storage temperature:	-40°C to +125°C
Operating temperature:	0°C to +70°C (commercial) -40°C to +85°C (industrial)
Humidity:	95% r.F. not condensed
Operating voltage:	VCC 5 V +/- 5%
Power consumption:	TBD

These specifications describe the standard configuration of the phyFLEX-i.MX 6 as of the printing of this manual.

Connectors on the phyFLEX-i.MX 6:

Manufacturer Samtec

phyFLEX-fix (X1):

Number of pins per contact rows 160 pins (2 rows of 80 pins each)

Samtec part number (lead free) BSH-080-01-L-D-A-K-TR

phyFLEX-optional (X2):

Number of pins per contact rows 100 pins (2 rows of 50 pins each)

Samtec part number (lead free) BSH-050-01-L-D-A-K-TR

phyFLEX-flex (X3):

Number of pins per contact rows 120 pins (2 rows of 60 pins each)

Samtec part number (lead free) BSH-060-01-L-D-A

The following list shows the receptacle sockets that correspond to the connectors populating the underside of the phyFLEX—i.MX 6. The given connector height indicates the distance between the two connected PCBs when the module is mounted on the corresponding carrier board. In order to get the exact spacing, the maximum component height (3 mm) on the bottom side of the phyFLEX must be subtracted.

Connector height 5 mm

Manufacturer Samtec

Number of pins per contact row 160 pins (2 rows of 80 pins each)

Samtec part number (lead free) ASP-167037-01

(BTH-080-01-L-D-A-K-TR)

PHYTEC part number (lead free) VM245

Number of pins per contact row 100 pins (2 rows of 50 pins each)

Samtec part number (lead free) BTH-050-01-L-D-A-K-TR

PHYTEC part number (lead free) VM247

Number of pins per contact row 120 pins (2 rows of 60 pins each)

Samtec part number (lead free) BTH-060-01-L-D-A

PHYTEC part number (lead free) VM240

Please refer to the corresponding data sheets and mechanical specifications provided by Samtec (www.samtec.com).

17 Hints for Integrating and Handling the phyFLEX-i.MX 6

17.1 Integrating the phyFLEX-i.MX 6

Besides this hardware manual much information is available to facilitate the integration of the phyFLEX-i.MX 6 into customer applications.

- 1. the design of the standard phyFLEX Carrier Board can be used as a reference for any customer application
- 2. many answers to common questions can be found at http://www.phytec.de/de/support/faq/faq-phyFLEX-i.MX 6.html, or http://www.phytec.eu/europe/support/faq/faq-phyFLEX-i.MX 6.html
- 3. the link "Carrier Board" within the category Dimensional Drawing leads to the layout data as shown in *Figure 12*. It is available in different file formats. Use of this data allows to integrate the phyFLEX-i.MX 6 SOM as a single component into your design.
- 4. different support packages are available to support you in all stages of your embedded development. Please visit http://www.phytec.de/de/support/support-pakete.html, or http://www.phytec.eu/europe/support/support-packages.html, or contact our sales team for more details.

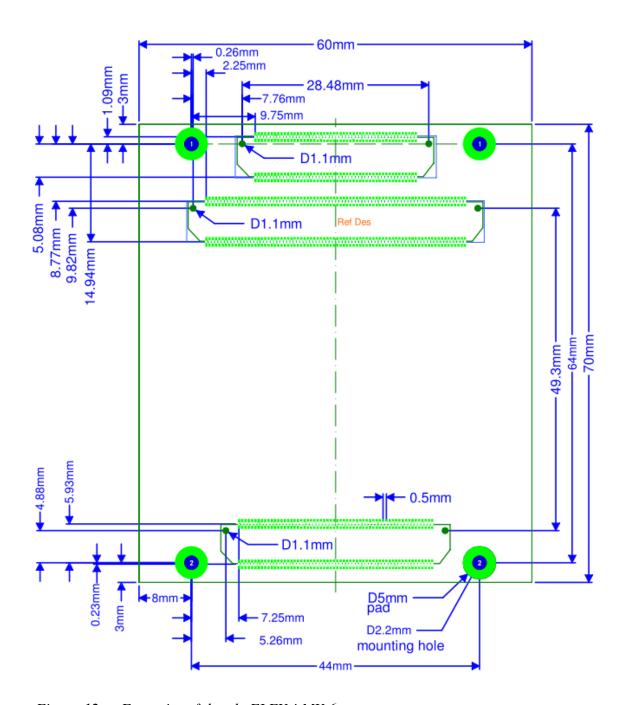


Figure 12: Footprint of the phyFLEX-i.MX 6

17.2 Handling the phyFLEX-i.MX 6

• Modifications on the phyFLEX Module

Removal of various components, such as the microcontroller and the standard quartz, is not advisable given the compact nature of the module. Should this nonetheless be necessary, please ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

Caution!

If any modifications to the module are performed, regardless of their nature, the manufacturer guarantee is voided.

• Integrating the phyFLEX into a Target Application

Successful integration in user target circuitry greatly depends on the adherence to the layout design rules for the GND connections of the phyFLEX module. For maximum EMI performance we recommend as a general design rule to connect all GND pins to a solid ground plane. But at least all GND pins neighboring signals which are being used in the application circuitry should be connected to GND.

18 The phyFLEX-i.MX 6 on the phyFLEX Carrier Board

PHYTEC phyFLEX Carrier Boards are fully equipped with all mechanical and electrical components necessary for the speedy and secure start-up and subsequent communication to and programming of applicable PHYTEC System on Module (SOM) modules. phyFLEX Carrier Boards are designed for evaluation, testing and prototyping of PHYTEC System on Module in laboratory environments prior to their use in customer designed applications.

The phyFLEX Carrier Board provides a flexible development platform enabling quick and easy start-up and subsequent programming of the phyFLEX-i.MX 6 System on Module. The carrier board design allows easy connection of additional extension boards featuring various functions that support fast and convenient prototyping and software evaluation.

The phyFLEX Carrier Board supports the following features for the phyFLEX-i.MX 6 modules:

- Power supply circuits to supply the phyFLEX-i.MX 6 and the peripheral devices of the carrier board
- 12 V Power Supply
- POE+ Power over Ethernet support (25 W)
- Support of all interfaces available at the phyFLEX-fix and phyFLEX-optional Connector
- Support of different power modes of the appropriate phyFLEXs
- Switch to configure the boot order of the i.MX 6
- Full featured 4 line RS-232 transceiver supporting data rates of up to 1 Mbps, hardware handshake and RS-232 connector
- Second 2 line RS-232 transceiver supporting data rates of up to 1 Mbps
- High Integrated and isolated CAN interface
- USB 3.0 Hub with 4 downstream ports available at different Connectors (the i.MX 6 supports only USB 2.0)
- USB-OTG interface

- 10/100/1000 Mbps Ethernet interfaces
- Support of two I²C buses from the SOM, available at different connectors on the carrier board
- Connectivity to two SPI interfaces from the phyFLEX-Module
- Complete audio interface available at four 3.5 mm audio jacks + speaker connector
- DVI interface
- PHYTEC Display Interface (PDI) (LVDS display with separate connectors for data lines and display / backlight supply voltage)
- Circuitry to allow dimming of a backlight
- Touchscreen interface for use of 4 wire resistive touch screens
- Two LVDS camera interfaces compatible to PHYTEC phyCAM-S+ camera standard with I²C for camera control
- Two Secure Digital Card / Multi Media Card Interfaces
- PHYTEC Wi-Fi/Bluetooth Connector
- DIP-Switch to configure the boot options for the phyFLEX-i.MX 6 module mounted
- RTC with battery supply/backup
- SATA Power and Data Connector
- PCIe Port
- Five user programmable LEDs
- Pin header connector to connect to 10 GPIOs of the phyFLEX-Module
- Fan Connector
- JTAG interface for programming and debugging

18.1 Concept of the phyFLEX Carrier Board

The phyFLEX Carrier Board provides a flexible development platform enabling quick and easy start-up and subsequent programming of the phyFLEX System on Module. The carrier board design allows easy connection of additional extension boards featuring various functions that support fast and convenient prototyping and software evaluation. The carrier board is compatible with all phyFLEX SOMs.

This modular development platform concept includes the following components:

- the **phyFLEX-i.MX 6 Module** populated with the i.MX 6 processor and all applicable SOM circuitry such as DDR SDRAM, Flash, PHYs, and transceivers to name a few.
- the **phyFLEX Carrier Board** which offers all essential components and connectors for start-up including: a power socket which enables connection to an **external power adapter**, interface connectors such as **DB-9**, **USB** and **Ethernet** allowing for use of the SOM's interfaces with standard cable.

The following sections contain specific information relevant to the operation of the phyFLEX-i.MX 6 mounted on the phyFLEX Carrier Board.

Note:

Only features of the phyFLEX Carrier Board which are supported by the phyFLEX-i.MX 6 are described. Jumper settings and configurations which are not suitable for the phyFLEX-i.MX 6 are not described in the following chapters.

18.2 Overview of the phyFLEX Carrier Board Peripherals

The phyFLEX Carrier Board is depicted in *Figure 13*. It is equipped with the components and peripherals listed in *Table*, *Table 38*, *Table* and *Table*. For a more detailed description of each peripheral refer to the appropriate chapter listed in the applicable table. *Figure 13* highlights the location of each peripheral for easy identification.

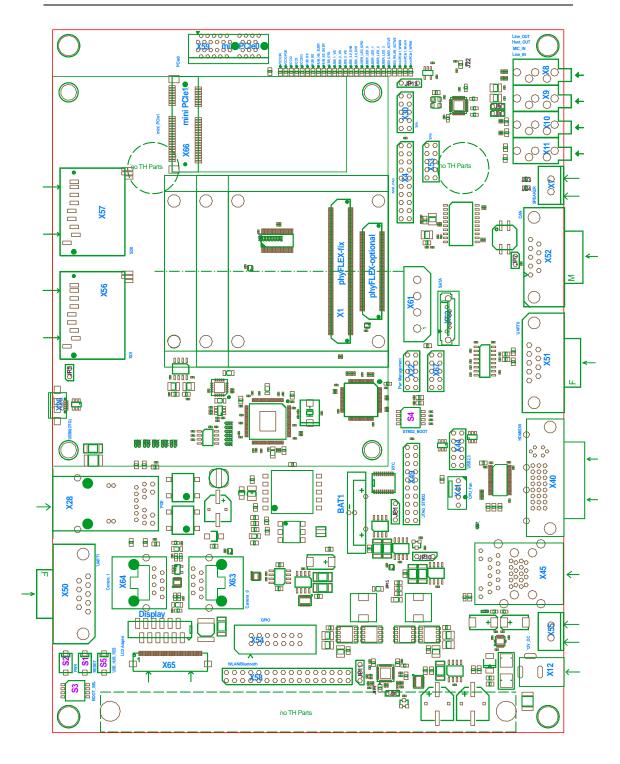


Figure 13: phyFLEX Carrier Board Overview of Connectors, LEDs and Buttons

18.2.1 Connectors and Pin Header

Table lists all available connectors on the phyFLEX Carrier Board. *Figure 13* highlights the location of each connector for easy identification.

Reference Designator	Description	See Section
X1	phyFLEX-fix connector for mounting the phyFLEX-i.MX 6	18.3.1
X2	phyFLEX-optional connector for mounting the phyFLEX-i.MX 6	18.3.1
X4	JTAG pin header connector	18.3.23
X7	Speaker connector	
X8	Line out connector	
X9	Headset out connector	18.3.11
X10	Microphone in connector	
X11	Line in connector	
X12	Wall adapter input power jack to supply main board power (12 V, max. 5 A)	18.3.2.1
X26	USB OTG connector	18.3.7
X28	Ethernet0/POE RJ-45 connector	18.3.2.2 and 18.3.5
X30	SPI1 pin header connector	18.3.13
X40	DVI connector	18.3.9
X41	CPU fan connector	18.3.19
X45	USBDN0, USBDN1 & Ethernet1 ⁸ connector	18.3.6
X50	Serial interface, DB-9F UART1 with handshakes	18.3.3

Table 37: phyFLEX Carrier Board Connectors and Pin Headers

_

⁸: Ethernet1 is not supported by the phyFLEX-i.MX 6

Reference Designator	Description	See Section
X51	Serial Interface, DB-9F UART0 without Handshakes	18.3.3
X52	CAN interface, DB-9M	18.3.4
X53	SPI0 pin header connector	18.3.13
X54	GPIO pin header connector	18.3.14
X55	Alternative power connector (12 V $>$ 5 A)	18.3.2.1
X56	Secure Digital/MultiMedia Card slot1	18.3.16
X57	Secure Digital/MultiMedia Card slot0	10.5.10
X58	Wi-Fi/Bluetooth connector	18.3.20
X59	PCIe0 connector	18.3.17
X61	SATA power connector	18.3.18
X62	SATA data connector	10.3.10
X63	Camera_0, phyCAM-S+ Connector	18.3.10
X64	Camera_1, phyCAM-S+ Connector	18.3.10
X65	PDI (PHYTEC Display Interface)	18.3.8

Table 37: phyFLEX Carrier Board Connectors and Pin Headers (continued)

Note:

Ensure that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller User's Manual/Data Sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

18.2.2 Switches

The phyFLEX Carrier Board is populated with some switches which are essential for the operation of the phyFLEX-i.MX 6 module on the carrier board. *Figure 13* shows the location of the switches and push buttons.

Button	Description	See Section
S1	System Reset Button – system reset signal generation	18.3.22
S2	Power Button – powering on and off main supply voltages of the carrier board	Not implemented, yet
S3	DIP-switch – boot mode selection	18.3.21

Table 38: phyFLEX Carrier Board Push Buttons Descriptions

- Issues a **system reset** signal. Pressing this button will toggle the nRESET_IN pin (X1A72) of the phyFLEX microcontroller LOW, causing the controller to reset.
- Issues a **power on/off/wake** event. Pressing this button less than 5 seconds will wake up the phyFLEX-i.MX 6 module and the peripherals on the carrier board, or will turn on the system, if it is powered off. Pressing this button more than 5 seconds will turn off the system without proper shut down of the operating system.
- S3 This DIP-switch allows to change the booting device order of the phyFLEX-i.MX 6

18.2.3 **LEDs**

The phyFLEX Carrier Board is populated with numerous LEDs to indicate the status of the various USB-Host interfaces, as well as the different supply voltages. *Figure 13* shows the location of the LEDs. Their function is listed in the table below:

LED	Color	Description	See Section
D91	green	Indicates presence of 12 V input voltage VCC12_POE_X from Ethernet at connector X28	
D100	green	Indicates presence of 12 V input voltage VCC12_IN at power connector X12, or X55	
D102	green	12 V supply voltage VCC12 available at the DC-to-DC synchronous buck controller U58 (derived from VCC12_IN or VCC12_POE)	18.3.2
D101	green	5 V supply voltage VCC5_X for the phyFLEX-i.MX 6	
D112	green	5 V supply voltage VCC5 for various peripherals on the phyFLEX Carrier Board	
D111	green	3.3 V supply voltage VCC3V3_X for various peripherals on the phyFLEX Carrier Board available	
D105	green	green User LED connected to GPIO10 (GPIO2_24 at i.MX 6)	
D97	red	User LED0 conrolled by a 4-bit LED dimmer (U52)	10 2 15
D98	yellow	User LED1 conrolled by a 4-bit LED dimmer (U52)	18.3.15
D99	yellow	User LED2 conrolled by a 4-bit LED dimmer (U52)	
D86	green	User LED3 conrolled by a 4-bit LED dimmer (U52)	
D93	green	High-speed indicator LED for USB hub's upstream port connection speed	
D94	green	Super-speed indicator LED for USB hub's upstream port connection speed	18.3.6
D95	green	High-speed suspend status indicator LED for USB hub's upstream port	

Table 39: phyFLEX Carrier Board LEDs Descriptins

LED	Color	Description	See Section
D96	green	Super-speed suspend status indicator LED for USB hub's upstream port	18.3.6
D106	red	SD0 Card Connector X57 active	18.3.16
D107	red	SD0 Wi-Fi/Bluetooth Connector X58 active	18.3.20
D85	green	Indicates presence of VBUS at the USB OTG interface	18.3.7
D84	green	Indicates presence of VBUS at the USB Host interface (USB1, USB hub's upstream)	
D87	green	VBUS indicator for USB Hub downstream port USB DN0	
D88	green	VBUS indicator for USB Hub downstream port USB DN1	

Table 39: phyFLEX Carrier Board LEDs Descriptions (continued)

Note:

Detailed descriptions of the assembled connectors, jumpers and switches can be found in the following chapters.

18.2.4 Jumpers

The phyFLEX Carrier Board comes pre-configured with removable jumpers (JP) and solder jumpers (J). The jumpers allow the user flexibility of configuring a limited number of features for development constraint purposes. *Table 40* below lists the jumpers, their default positions, and their functions in each position. *Figure 14* depicts the jumper pad numbering scheme for reference when altering jumper settings on the development board.

Figure 15 provides a detailed view of the phyFLEX Carrier Board jumpers and their default settings. In these diagrams a beveled edge indicates the location of pin 1.

Before making connections to peripheral connectors it is advisable to consult the applicable section in this manual for setting the associated jumpers.

	1	removable jumper	solder jumper
1 2 3	0 0 0	1 (0 0 0	1
e.g	.: JI	e.g.: JP5	e.g.: J9

Figure 14: Typical Jumper Numbering Scheme

Table provides a comprehensive list of all carrier board jumpers. The table only provides a concise summary of jumper descriptions. For a detailed description of each jumper see the applicable chapter listing in the right hand column of the table.

If manual modification of the solder jumpers is required please ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the board inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

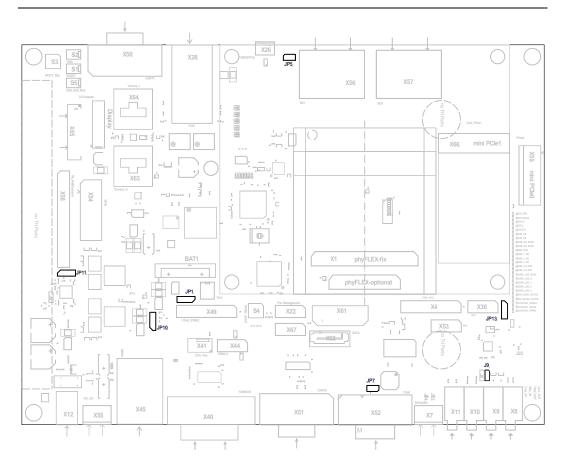


Figure 15: phyFLEX Carrier Board Jumper Locations

The following conventions were used in the Jumper column of the jumper table (Table)

- J = solder jumper
- JP = removable jumper

Jumper/ Setting	Description	See Section
JP1	Jumper JP1 connects the RTC Interrupt to the Power_ON/Wake/Off Signal or to the GPIO5 Signal of the phyFLEX-i.MX 6.	
1+2	RTC Interrupt connect to Power_ON/Wake/Off 18.3.23	
2+3	RTC Interrupt connect to GPIO5	
JP5	Jumper JP5 forces the USB OTG interface of the phyFLEX-i.MX 6 to function either as host (master), or device (slave).	
open	USB0_ID floating, phyFLEX-i.MX 6 in slave mode, or according to the mode configured by software	18.3.7
1+2	USB0_ ID connected to GND, phyFLEX-i.MX 6 in host mode	
JP7	Jumper JP7 allows to connect an terminating resistor of 120 Ohm to the CAN interface	
open	Terminating resistor not connected	18.3.4
1+2	1+2 Terminating resistor connected	
JP10	Jumper JP10 selects whether the voltage VCC5 and VCC3V3 are turned on and off by the PWR_GOOD signal of the phyFLEX-i.MX 6 or are permanently switched on.	
1+2	Power_ON connected to high level. VCC5 and VCC3V3 are permanently on	
2+3	Power_ON connected to PWR_GOOD. If PWR_GOOD is low the voltages VCC5 and VCC3V3 are switched on.	

Table 40: phyFLEX Carrier Board Jumper Descriptions

Jumper/	Description	See Section
Setting JP11	Jumper JP11 allows to control the supply voltage of VCC5_X of the phyFLEX-i.MX 6 module	
1+2	VCC5_X Voltage is off	18.3.2
2+3	VCC5_X Voltage is on	
JP13	Jumper JP13 allows to route the signals of SDIO0 either to the SD card slot X57, or to the Wi-Fi /Bluetooth connector X58	
1+2	SD0 routed to the SD card slot X57	18.3.20
2+3	SD0 routed to the Wi-Fi /Bluetooth connector X58	
J9	Jumper J9 connects the shield contact of audio jack X9 (headphone out) to either GND, or the HPCOM output driver of the stereo audio codec at U25. Connecting the shield contact to HPCOM allows using the jack detection function of the stereo audio codec.	
1+2	Shield contact connected to GND, jack detection disabled	
2+3	Shield contact connected to the HPCOM output driver of the stereo audio codec, jack detection enabled	
J12	Jumper J12 configures the I ² C address of the touch screen controller at U6	
1+2	Touch Controller (U6) Address: 0x41	18.3.8.3
2+3	Touch Controller (U6) Address: 0x44	
J27-J30	Jumpers J27–J30 connect the TTL signals of UART1 either to the RS-232 transceiver at U11 (thus making UART1 available at DB-9 connector X50 at RS-232 level), or to the Wi-Fi/Bluetooth module connector X58 (at TTL level)	
1+2	UART1 connected to Transceiver U11 18.3.20	
2+3	UART1 connected to wifi/Bluetooth module connector X58	

Table 40: phyFLEX Carrier Board Jumper Descriptions (continued)

18.3 Functional Components on the phyFLEX Carrier Board

This section describes the functional components of the phyFLEX Carrier Board supporting the phyFLEX-i.MX 6. Each subsection details a particular connector/interface and associated jumpers for configuring that interface.

18.3.1 phyFLEX-i.MX 6 SOM Connectivity (X1, X2)

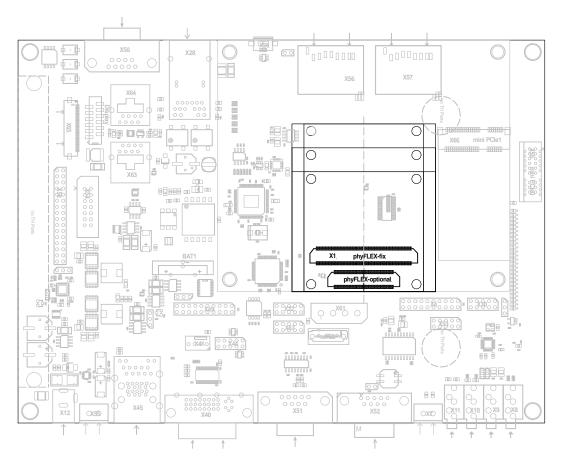


Figure 16: phyFLEX-i.MX 6 SOM Connectivity to the Carrier Board

Connectors X1 and X2 on the carrier board provide the phyFLEX System on Module connectivity. The connector is keyed for proper insertion of the SOM.

Figure 16 above shows the location of connectors X1 and X2, along with the pin numbering scheme as described in section 2.

Caution:

Samtec connectors guarantee optimal connection and proper insertion of the phyFLEX-i.MX 6. Please make sure that the phyFLEX-i.MX 6 is fully plugged into the matting connectors of the carrier board. Otherwise individual signals may have a bad, or no contact.

18.3.2 **Power**

Figure 17: Powering Scheme

The primary input power of the phyFLEX-i.MX 6 Carrier Board comes from either the wall adapter jack X12 (+12 V), or connector X55 (input current > 5 A), or the Power-over-Ethernet circuit (via Ethernet jack X28).

Switching regulators on the carrier board generate six different voltages to supply the phyFLEX-i.MX 6 and the different components of the carrier board supported by the SOM. The following table lists the five voltage domains and their main use.

Voltage domain	Description
VCC12	supply voltage (VCC5_X, VCC5, VCC3V3, buck converter, PDI interface, PCIe, SATA, CPU fan), resulting from either VCC12_In, or VCC_POE
VCC5	supply voltage (PDI interface, SATA, DVI, CAN, USB)
VCC5_X	Supply voltage phyFLEX SOM
VCC3V3	supply voltage (PDI, camera, CPU fan, power management, RTC, Wi-Fi/Bluetooth, SD/MMC card interface, UART interface, PCIe)
VCC1V8	supply voltage Wi-Fi/Bluetooth
VCC1V8_Audio Supply voltage audio codec	
VCC1V5	Supply voltage mini PCIe1 ⁹ connector X66
VCC1V1	Supply core voltage USB Hub

Table 41: Voltage Domains on the Carrier Board

Five LEDs on the phyFLEX Carrier Board show the status of the different voltage domains. The assignment of the LEDs to the voltage domains is shown in the following table:

LEDs	Color	Description	
D91	green	VCC12_POE -	12 V POE voltage attached to connector X28
D100	green	VCC12_IN -	12 V supply voltage for the phyFLEX Carrier Board attached to connector X12 or X55
D102	green	VCC12 –	12 V supply voltage for DC-to-DC synchronous buck controller and peripherals on the phyFLEX Carrier Board resulting from either VCC12_IN, or VCC12_POE.
D101	green	VCC5_X -	5 V supply voltage for the phyFLEX module
D112	green	VCC5 –	5 V supply voltage for various peripherals on the phyFLEX Carrier Board
D111	green	VCC_3V3_X -	3.3 V supply voltage for peripherals on the phyFLEX Carrier Board

Table 42: Power LEDs

⁹: PCIe1 is not supported by the phyFLEX-i.MX 6

Two jumpers on the phyFLEX-i.MX 6 Carrier Board allow to enable, or disable single voltage domains. The following table lists the jumpers and the associated voltage domain.

Voltage					
domain	Jumper	Description			
	JP10	Jumper JP10 selects whether the voltages VCC5			
		and VCC3V3 are turned on and off by the			
		PWR_GOOD signal of the phyFLEX-i.MX 6 or			
VCC5,		are permanently switched on.			
VCC3, VCC3V3	1+2	Power_ON connected to high level. VCC5 and			
VCC3V3		VCC3V3 are permanently on			
	2+3	Power_ON connected to PWR_GOOD. If			
		PWR_GOOD is low the voltages VCC5 and			
		VCC3V3 are switched on.			
	JP11	Jumper JP11 allows to control the supply voltage			
VCC5 V		of VCC5_X of the phyFLEX-i.MX 6 module			
VCC5_X	1+2	VCC5_X Voltage is off			
	2+3	VCC5_X Voltage is on			

Table 43: Power Jumpers

18.3.2.1 Wall Adapter Input (X12)

Caution:

Do not use a laboratory adapter to supply power to the carrier board! Power spikes during power-on could destroy the phyFLEX module mounted on the carrier board! Do not change modules or jumper settings while the carrier board is supplied with power!

Permissible input voltage at X12: 12 V DC regulated.

The required current load capacity of the power supply depends on the specific configuration of the phyFLEX mounted on the carrier board as well as whether optional PCIe boards, USB Devices or SATA drives are connected to the carrier board. An adapter with a minimum supply of 2.0 A is recommended.

Caution:

The power supply circuitry on the carrier board is not designed to support all connectable devices at the same time!

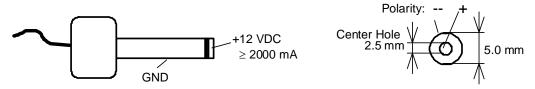


Figure 18: Power Connector corresponding to Wall Adapter Input X12

Note:

If many functions and peripherals of the phyCORE-i.MX 6 kit are used at the same time the power consumption might exceed 60 W (5 A). Wall Adapter Input X12 is not capable to support this. In this case connector X55 must be used. This Connector supports a current of up to 16 A..

18.3.2.2 Power over Ethernet Plus (PoE+)

The Power-over-Ethernet Plus (POE+) circuit provides a method of powering the board via the Ethernet interface. In this configuration the carrier board acts as the Powered Device (PD) while the connecting Ethernet interface acts as the Power Source Equipment (PSE). For applications that require Ethernet connectivity this is an extremely convenient method to also simultaneously provide power. To make use of the PoE circuit a PSE e.g. a PoE enabled router or switch is necessary. LED D91 indicates the availability of the PoE supply voltage.

The PoE+ circuit generates a supply voltage of 12 V, which is feed into the VCC12 branch through an ideal diode.

The IEEE PoE+ standard restricts the maximum amount of power a PSE must provide and therefore a PD can consume. The carrier board PoE+ circuit was designed to provide up to 25 W of power to the board.

The carrier board Ethernet connector X28 supports both PSE sourcing methods of power over the data wires, or power over the spare wires.

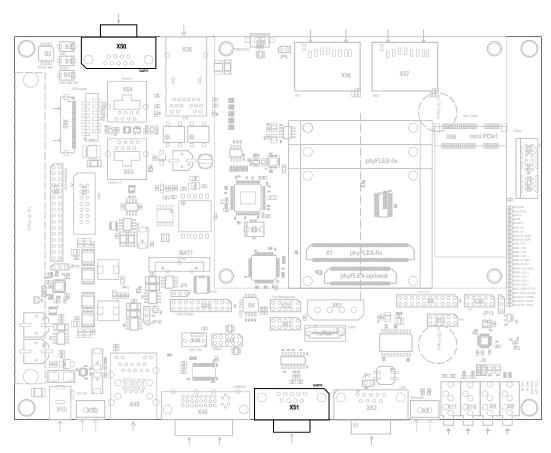
Caution:

The PoE+ circuit was designed to provide up to 25 W of power to the board. This is less than the board can potentially consume. Be aware that this limitation could cause board operation to fail if peak power is exceeded due to enabled peripherals. Do not supply the system over Ethernet, if the power consumption expected might exceed 25 W! Do not change modules or jumper settings while the carrier board is supplied with power over the Ethernet!

18.3.2.3 Power Management Connector (X22)

The pin header (X22) provides the Power Management Signals.

Pin#	Signal Name	Description
1	VCC3V3	3.3 V power supply
2	RESET_OUT	Reset Output
3	RESET_IN	Reset Input
4	Power_ON/Wake/OFF	Power ON/Wake/Off Signal
5	PM_SDA	Power Management I ² C SDA ¹⁰
6	PM_SCL	Power Management I ² C SCL ¹
7	NC	Not connected
8	PWR_GOOD	Power Good Signal
9	NC	Not connected
10	GND	Ground


Table 44: Power Management Connector X22

¹⁰: The function of this signal is not available yet

18.3.2.3.1 Power States

- **RUN** can be entered by pressing using power button S2 less than 5 seconds. Button S2 is connected to Power_ON/Wake/OFF Signal.
- **OFF** can also be entered using power button S2. In this mode we have to make a distinction between two possible of OFF modes. The first is, when the system is shut down by software. In this case, the phyFLEX-i.MX 6 will stop the running processes and shutdown. If button S2 is held for a time longer than 5 seconds, OFF mode will be reached by turning off the phyFLEX-i.MX 6 internal voltages without stopping processes and shutdown.

It is also possible to control state modes from outside the carrier board with the help of the Power_ON/Wake/OFF Signal accessible on the Power Management plug connector X22. To enter the different power states, signal Power_ON/Wake/OFF must be active low for different times as described in the text above.

18.3.3 RS-232 Connectivity (X51, X50)

Figure 19: RS-232 Interface Connectors X50 and X51

Connectors X50 and X51 are DB9 sub-connectors and provide connection interfaces to UART0 (X51) and UART1 (X50) of the phyFLEX-i.MX 6 (UART4 and UART3 of the i.MX 6). Two RS-232 transceivers (U10, U11) on the carrier board convert the TTL level signals from the phyFLEX-i.MX 6 to RS-232 level signals. The serial interface UART1 allows for a 5-wire connection including the signals RTS and CTS for hardware flow control. UART0 provides only signals TX and RX. *Figure 20* and *Figure 21* below show the signal mapping of the RS-232 level signals at connectors X50 and X51.

The RS-232 interface at connector X51 (UART0) is hard-wired and no jumpers must be configured for proper operation.

To use the RS-232 interface UART1 at X50 jumpers J27 to J30 (on the backside of the carrier board) must be set to 1+2.

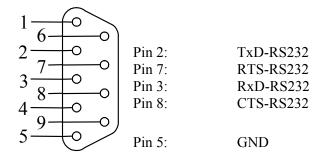


Figure 20: RS-232 Connector X50 Signal Mapping (UART1)

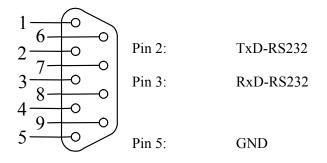


Figure 21: RS-232 Connector X51 Signal Mapping (UARTO)

18.3.4 CAN Connectivity (X52)

Connector X52 is a SUB-D9M connector and provides connection interfaces to the CAN interface of the i.MX 6. The TTL level signals from the phyFLEX-i.MX 6 are converted to differential CAN signals by the CAN transceiver at U24. This chip is completely integrated with DC/DC Switching Regulator to generate an isolated 5 V voltage.

Jumper JP7 can be installed to add a 120 Ohm termination resistor across the CAN data lines if needed (refer to *Table*).

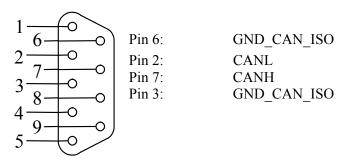


Figure 22: CAN Connector X52 Signal Mapping

18.3.5 Ethernet Connectivity (X28)

Figure 23: Ethernet Interface at Connector X28

The Ethernet interface of the phyFLEX is accessible at the RJ-45 connector (X28) on the carrier board. Due to its characteristics this interface is hard-wired and can not be configured via jumpers. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connector.

The Ethernet interface also supports Power over Ethernet (PoE+). Please refer to *section 18.3.2.2* for more information.

18.3.6 USB Host Connectivity (X45, X65, X66)

Figure 24: Components supporting the USB Host Interface

The USB host interface of the phyFLEX is accessible via the USB hub controller U33 on the carrier board. The controller supports control of input USB devices such as keyboard, mouse or USB key. The USB hub has 4 downstream facing ports. Two ports extend to standard USB connectors at X45 (dual USB A and Ethernet). These interfaces are compliant with USB revision 3.0¹¹. The remaining ports are accessible at the display data connector X65 and the mini PCIe Connector X66. These two interfaces provide only the data lines D+ and D-. They do not feature a supply line Vbus.

Please note that the USB interfaces of the phyFLEX-i.MX 6 Module are only compliant to USB 2.0. Because of that USB 3.0 devices attached to X45 will not operate at their maximum transmission rate.

LEDs D93 to D96 signal the USB hub's upstream port status. The following table shows the function of the.

LED	Color	Description
D93	green	High-speed indicator LED for USB hub's upstream port connection speed
D94	green	Super-speed indicator LED for USB hub's upstream port connection speed
D95	green	High-speed suspend status indicator LED for USB hub's upstream port
D96	green	Super-speed suspend status indicator LED for USB hub's upstream port

Table 45: USB Hub's Status LEDs D93 – D96

LEDs D84, D87 and D88 indicate the presence of the VBUS supply voltage.

LED	Color	Description
D84	green	USB1_VBUS indicator LED (USB hub's upstream)
D87	green	USB30_VBUS_DN0 indicator LED (X45)
D88	green	USB30_VBUS_DN1 indicator LED (X45)

Table 46: USB VBUS indicator LEDs

Table 47 shows the distribution of the four downstream facing ports to the different connectors.

USB hub port #	Connector	Connector Type
USB_DN0	X45 (bottom)	USB A (3.0)
USB_DN1	X45 (top)	USB A (3.0)
USB_DN2	X65	40 pin FCC (pins B16 (D+) and B17 (D-))
USB_DN3	X66	Mini PCIe (pins 36 (D-) and D38 (D+))

Table 47: Distribution of the USB Hub's (U5) Ports

18.3.7 USB OTG Connectivity (X26)

Figure 25: USB OTG Interface at Connector X26

The USB OTG interface of the phyFLEX is accessible at connector X26 (USB micro AB) on the carrier board. The phyFLEX supports the On-The-Go feature. The Universal Serial Bus On-The-Go is a device capable to initiate the session, control the connection and exchange Host/Peripheral roles between each other. This interface is compliant with USB revision 2.0.

Jumper JP5 configures the OTG operating mode. By default this jumper is open, which leaves the USB_OTG_ID pin floating, and thus configuring the OTG interface as slave. Alternatively this jumper can be closed, connecting USB_OTG_ID to GND, and configuring the OTG interface as host. Typically the configuration of a connecting device as host or slave is done automatically via a USB OTG cable.

However, given the limited number of OTG enabled devices in the embedded market this jumper is provided to either simulate an OTG cable, or force the OTG interface into host mode when OTG operation is not required.

LED D85 signals VBUS power output.

18.3.8 Display / Touch Connectivity (X65)

Figure 26: PHYTEC Display Interface (PDI) at Connector X65

The various performance classes of the phyFLEX family allow to attach a large number of different displays varying in resolution, signal level, type of the backlight, pinout, etc. In order not to limit the range of displays connectable to the phyFLEX, the phyFLEX carrier board has no special display connector suitable only for a small number of displays. The new concept intends the use of an adapter board (e.g. PHYTEC's LCD display adapters LCD-014, LCD-017 and LCD-018) to attach a special display, or display family to the phyFLEX. A new PHYTEC Display-Interface (PDI) was defined to connect the adapter board to the phyFLEX Carrier Board. It consists of two universal connectors which provide the connectivity for the display adapter. They allow easy adaption also to any customer display. One connector (40 pin FCC connector 0.5 mm pitch) at X65

is intend for connecting all data signals to the display adapter. It combines various interface signals like LVDS, USB, I₂C, etc. required to hook up a display. The second connector of the PDI (AMP microMatch 8-338069-2) at X65 provides all supply voltages needed to supply the display and a backlight, and the brightness control.

The following sections contain specific information on each connector.

18.3.8.1 Display Data Connector (X65)

PDI data connector X65 provides display data from the serial LVDS display interface of thephyFLEX- i.MX 6 (see *section 12*).

In addition other useful interfaces such as USB, I²C, etc. are available at PDI data connector X65. *Table 49* lists all miscellaneous signals and gives detailed explanations. The following table shows the pin-out of the PDI's display data connectors at X65.

The display data connector at X65 is 40 pin FCC connector with 0.5 mm pitch.

Pin#	Signal name	ST	SL	Description
B1	SPI0_SCLK	О	3.3 V	SPI 0 clock
B2	SPI0_MISO	I/O	3.3 V	SPI 0 master data in; slave data out
В3	SPI0_MOSI	O/I	3.3 V	SPI 0 master data out; slave data in
B4	SP10_CS1	О	3.3 V	SPI 0 chip select display
B5	GPIO6	I	3.3 V	Display interrupt input
B6	VCC3V3	О	3.3 V	Power supply display ¹²
B7	I2C0_SCL	I/O	3.3 V	I ² C clock signal
B8	I2C0_SDA	I/O	3.3 V	I ² C data signal
B9	GND	-	-	Ground
B10	LS_BRIGHT	О	3.3 V	PWM brightness output
B11	VCC3V3	О	3.3 V	Logic supply voltage ¹
B12	/PWR_KEY	I	3.3 V	Power on/off Button

Table 48: Display Data Connector Signal Description

^{12:} Provided to supply any logic on the display adapter. Max. draw 100 mA

Pin#	Signal name	ST	SL	Description
B13	/DISP_ENA	О	3.3 V	Display enable signal
B14	PHYWIRE	I/O	3.3 V	Hardware Introspection Interface for internal use only
B15	GND	-	-	Ground
B16	USB_DP_DN2	I/O	3.3 V	USB_DN2 data +
B17	USB_DM_DN2	I/O	3.3 V	USB_DN2 data -
B18	GND	-	-	Ground
B19	LVDS_L0-	О	3.3 V	LVDS data channel 0 negative output
B20	LVDS_L0+	О	3.3 V	LVDS data channel 0 positive output
B21	GND	-	-	Ground
B22	LVDS_L1-	О	3.3 V	LVDS data channel 1 negative output
B23	LVDS_L1+	О	3.3 V	LVDS data channel 1 positive output
B24	GND	-	-	Ground
B25	LVDS_L2-	О	3.3 V	LVDS data channel 2 negative output
B26	LVDS_L2+	О	3.3 V	LVDS data channel 2 positive output
B27	GND	-	-	Ground
B28	LVDS_L3-	О	3.3 V	LVDS data channel 3 negative output
B29	LVDS_L3+	О	3.3 V	LVDS data channel 3 positive output
B30	GND	-	-	Ground
B31	LVDS_CLK-	О	3.3 V	LVDS clock channel negative output
B32	LVDS_CLK+	О	3.3 V	LVDS clock channel positive output
B33	GND	-	-	Ground
B34	TS_X+	I/O	3.3 V	Touch
B35	TS_X-	I/O	3.3 V	Touch
B36	TS_Y+	I/O	3.3 V	Touch
B37	TS_Y-	I/O	3.3 V	Touch
B38	NC	-	-	Not connected
B39	GND	-	-	Ground
B40	LS_ANA	Ι	3.3 V	Light sensor analog input

Table 48: Display Data Connector Signal Description (continued)

The table below shows the auxiliary interfaces at display data connector X65.

Signal	Description
USBDN2	USB host interface derived form
	port 2 of the USB hub at U33.
	Suitable for optional features e.g.
	front USB.
I2C0	I ^c C interface for optional
	EEPROM, or other I ² C devices
SPI0	SPI interface to connect optional
	SPI slave
1-WIRE	Hardware Introspection Interface
	For internal use only
/Power_ON/Wake/OFF	Power on/off signal to allow for
	an ON/OFF switch on a front
	panel. It connects to the PWRON
	input of the CMIC on the
	phyFLEX-i.MX 6 and to the
	power management connector
A LIDG DIGD EN	X22
/LVDS_DISP_EN	Can be used to enable, or disable
	the display, or to shutdown the
LVDC DICD DACKLICHT DWA	backlight.
LVDS_DISP_BACKLIGHT_PWM	PWM output to control the
	brightness of a display's
	backlight (0%=dark,
I S. ANA	100%=bright). Analog light sensor input.
LS_ANA	The analog light sensor input at
	pin 40 extends to an 8-bit A/D
	converter (U7) which is
	connected to the I2C0 Bus at
	address 0x64. To get the
	maximum adjustment range the
	output voltage of an applicable
	light sensor should range from
	0 V to VRef (VCC3V3).

Table 49: Auxiliary Interfaces at PDI Data Connector X65

18.3.8.2 Display Power Connector (X65)

The display power connector X65 (AMP microMatch 8-188275-2) provides all supply voltages needed to supply the display and a backlight.

Pin#	Signal name	ST	SL	Description
A1	GND	-		Ground
A2	VCC3V3	О	3.3 V	3.3 V power supply display
A3	GND	-		Ground
A4	VCC5_1	О	5 V	5V power supply display
A5	GND	-		Ground
A6	VCC5_1	O	5 V	5 V power supply display
A7	GND	-		Ground
A8	VCC5_1	O	5 V	5 V power supply display
A9	GND	-		Ground
A10	LVDS_DISP_BACK LIGHT_PWM	О	3.3 V	PWM brightness output
A11	VCC12	О	+12 V	Backlight power supply
A12	VCC12	О	+12 V	Backlight power supply

Table 50: PDI Power Connector X65 Signal Description

18.3.8.3 Touch Screen Connectivity

As many smaller applications need a touch screen as user interface, provisions are made to connect 4- wire resistive touch screens to the PDI data connector X65 (pins B34 - B37, refer to *Table*). The signals from the touch screen panel are processed by a touch panel controller at U6. The touch panel controller is connected to I²C bus I2C0 at address 0x41.

By changing jumper J12 the address can be set to 0x44 if needed (refer to *Table*).

An additional interrupt output is connected to GPIO0 (X1A54 on the phyFLEX-fix Connector) of the phyFELX-i.MX 6.

18.3.9 High-Definition Multimedia Interface (HDMI) (X40)

The High-Definition Multimedia Interface (HDMI) of the phyFLEX-i.MX 6 Module is compliant to HDMI 1.4, HDCP 1.4 and DVI 1.0. It supports a maximum pixel clock of 340 Mhz at a resolution of up to 1080p @ 60 Mhz and 720p/1080i @ 120 Mhz. Please refer to the *i.MX* 6 Reference Manual for more information. The HDMI interface brought out at an DVI female connector X40 on phyFLEX Carrier Board comprises the following signal groups: three pairs of data signals, one pair of clock signals, an I²C bus which is exclusively for the HDMI interface, and the hot plug detect (HPD) signal. Level shifters shift the I²C interface signals and the hot plug detect signal from IO voltage (VCC3V3) to 5 V, while the data and clock signals extend directly form the phyFLEX-Connector to the DVI receptacle.

Pin#	Signal name	ST	SL	Description
1	HDMI_TMDS_DATA2-	О	HDMI	HDMI data channel 2 negative output
2	HDMI_TMDS_DATA2+	О	HDMI	HDMI data channel 2 positive output
3	GND	-	-	Ground
4	NC	-	-	Not connected
5	NC	-	-	Not connected
6	X_HDMI_SCL	I/O	5 V	HDMI I ² C clock signal
7	X_HDMI_SDA	I/O	5 V	HDMI I ² C data signal
8	NC	-	-	Not connected
9	HDMI_TMDS_DATA1-	О	HDMI	HDMI data channel 1 negative output
10	HDMI_TMDS_DATA1+	О	HDMI	HDMI data channel 1 positive output
11	GND	-	-	Ground
12	NC	-	_	Not connected
13	NC	-	_	Not connected
14	V5_HDMI	О	5 V	5 V power supply
15	GND	-	-	Ground

Table 51: HDMI/DVI Connector X40 Pinout

Pin#	Signal name	ST	SL	Description
16	nX_HDMI_HPD	I	5 V	HDMI hot plug detection
17	HDMI_TMDS_DATA0-	О	HDMI	HDMI data channel 0 negative output
18	HDMI_TMDS_DATA0+	О	HDMI	HDMI data channel 0 positive output
19	GND	-	-	Ground
20	NC	-	-	Not connected
21	NC	-	-	Not connected
22	GND	-	-	Ground
23	HDMI_TMDS_CLOCK+	О	HDMI	HDMI clock positive output
24	HDMI_TMDS_CLOCK-	О	HDMI	HDMI clock positive output
C1	NC	-	-	Not connected
C2	NC	-	-	Not connected
C3	NC	-	-	Not connected
C4	NC	-	-	Not connected
C5	NC	-	-	Not connected
S1	Shield	-	-	Shield
S2	Shield	-	_	Shield
S3	NC	-	-	Not connected
S4	NC	-	-	Not connected
S5	Shield	-	-	Shield

Table 51: HDMI/DVI Connector X40 Pinout (continued)

18.3.10 Camera Interface (X63, X64)

Figure 27: Camera Interface at Connector X63

The phyFLEX-i.MX 6 has two camera interfaces. This interfaces extend from the phyFLEX-Connector to the RJ45 sockets X63 and X64 on the carrier board. The camera interfaces are compatible with the PHYTEC phyCAM-S+ camera interface standard.

The table below shows the pinout of connector X63:

Pin#	Signal Name	Description
1	Camera0_L0+	LVDS Input+
2	Camera0_L0-	LVDS Input-
3	Camera0_RXCLK-	LVDS Clock-
4	I2C_SDA_CAMERA	I ² C Data
5	I2C_SCL_CAMERA	I ² C Clock
6	Camera0_RXCLK +	LVDS Clock+
7	VCC_CAMERA0	Power supply camera (3.3 V)
8	GND	Ground

Table 52: PHYTEC Camera Connector X63

The following table shows the pinout of connector X64:

Pin#	Signal Name	Description
1	Camera1_L0+	LVDS Input+
2	Camera1_L0-	LVDS Input-
3	Camera0_RXCLK-	LVDS Clock-
4	I2C_SDA_CAMERA	I ² C Data
5	I2C_SCL_CAMERA	I ² C Clock
6	Camera1_RXCLK +	LVDS Clock+
7	VCC_CAMERA1	Power supply camera (3.3 V)
8	GND	Ground

Table 53: PHYTEC Camera Connector X64

18.3.11 Audio Interface (X7, X8, X9, X10, X11)))

Figure 28: Audio Interface at Connectors X7, X8, X9, X10, X11

The audio interface provides a method of exploring the phyFLEX-i.MX 6 I²S capabilities. The phyFLEX Carrier Board is populated with a low-power stereo audio codec with integrated mono class-d amplifier at U25. It provides a High Performance Audio DAC and ADC with sample rates from 8 kHz to 96 kHz. It supports a stereo line input, stereo microphone input, stereo line output, stereo headphone output and direct speaker output.

The audio codec is interfaced to the phyFLEX-i.MX 6 via I²S interface for audio data and the I²C0 interface for codec configuration (I²C address 0x18). Audio devices can be connected to 3.5 mm audio jacks at X8, X9, X10 and X11. A detailed list of applicable connectors

is presented below. The pin header connector at X7 allows for direct connection of a Mono Class-D 1W BTL 8 Ohm Speaker.

Audio Outputs:

X8 – Line Output

X9 – Headset Output

X7 – Speaker Output

Audio Inputs:

X10 – Microphone In

X11 – Line In

Please refer to the audio codec's reference manual for additional information regarding the special interface specification.

The audio codec's master clock of 19.2 MHz will be generated at OZ1 on the carrier board.

The microphone input (X10) and the headset output (X9) allows jack detection. The jack detection of the microphone input is hardwired, while jack detection of the headset output can be disabled by jumper J9. In default position (2+3) jumper J9 connects the shield contact of audio jack X9 (headset out) to the HPCOM output driver of the stereo audio codec at U25. In this configuration jack detection is enabled. Connecting the shield contact to GND (J9 at 1+2) disables the jack detection function.

18.3.12 I²C Connectivity

The carrier board provides two I²C buses (I2C0 and I2C1). These are available at different connectors on the phyFLEX Carrier Board. The following table provides a list of the connectors and pins with I²C connectivity.

Connector	Location
Camera interface X63	pin 4 (I2C_SDA_CAMERA); pin 5 (I2C_SCL_CAMERA) derived from I2C1
Camera interface X64	pin 4 (I2C_SDA_CAMERA); pin 5 (I2C_SCL_CAMERA) derived from I2C1
Display data connector X65	pin B8 (I2C0_SDA); pin B7 (I2C0_SCL)

Table 54: I^2C Connectivity

To avoid any conflicts when connecting external I²C devices to the phyFLEX Carrier Board the addresses of the on-board I²C devices must be considered. On the carrier board only I2C0 is used for the different devices. I2C1 is reserved for camera interfaces. Some of the addresses can be configured by jumper. *Table 55* lists the addresses already in use. The table shows only the default address. Please refer to *section 18.2.4* for alternative address settings.

Device	Address used I2C0 (7 MSB)	Jumper
RTC (U28)	0x51	
A/D converter (U7)	0x64	
Touch screen controller (U6)	0x41 (Switchable to 0x44)	J12
Audio Controller (U25)	0x18	
LED dimmer (U52)	0x62	

Table 55: I^2CO Addresses in Use

18.3.13 SPI Connectivity

The carrier board supports connectivity to both SPI Interfaces of the phyFLEX Module.

The SPI0 interface is available at the display data connector X65, Wi-Fi/Bluetooth connector X58 and the SPI0 pin header connector X53. SPI0 supports 3 slave select signals. SPI0_CS0 is reserved to address the SPI Flash on the module and is not available on the carrier board.

Connector	Location
PDI data connector X65	pin B1 (SPI0_CLK); pin B2 (SPI0_MISO); pin B3 (SPI0_MOSI); pin B4 (SPI0_CS1)
Wi-Fi/Bluetooth connector X58	pin 5 (SPI0_CLK); pin 20 (SPI0_MISO); pin 3 (SPI0_MOSI); pin 1 (SPI0_CS3)
SPI0 pin header connector X53	see Table 57

Table 56: SPIO Connector Selection

Pin	ST	SL	Description
1	NC	-	Not Connected
2	NC	-	Not Connected
3	NC	-	Not Connected
4	О	3.3 V	SPI0_CS2
5	О	3.3 V	SPIO_CS3
6	I	3.3 V	SPI0_MISO
7	О	3.3 V	SPI0_MOSI
8	О	3.3 V	SPI0_CLK
9	-	GND	Ground
10	O	3.3 V	VREF_SPI0

Table 57: SPIO Pin Header X53 Pinout

The second SPI1 interface is available with two chip selects at pin header connector X30.

Pin	ST	SL	Description
1	NC	-	Not Connected
2	NC	-	Not Connected
3	NC	-	Not Connected
4	О	3.3 V	SPI1_CS1
5	О	3.3 V	SPI0_CS0
6	I	3.3 V	SPI1_MISO
7	О	3.3 V	SPI1_MOSI
8	О	3.3 V	SPI1_CLK
9	-	GND	Ground
10	О	3.3 V	VREF_SPI1

Table 58: SPI1 Pin Header X30 Pinout

18.3.14 User programmable GPIOs

Some GPIOs on phyFLEX Carrier Board are reserved for several functions. All GPIOs are also mapped at GPIO Connector X54. See *Table 60* which function each GPIO has.

Pin	ST	SL	Description
1	-	3.3 V	VREF_GPIO
2	I/O	3.3 V	GPIO0
3	I/O	3.3 V	GPIO1
4	I/O	3.3 V	GPIO2
5	I/O	3.3 V	GPIO3
6	I/O	3.3 V	GPIO4
7	I/O	3.3 V	GPIO5
8	I/O	3.3 V	GPIO6
9	I/O	3.3 V	GPIO7
10	I/O	3.3 V	GPIO8
11	I/O	3.3 V	GPIO9
12	I/O	3.3 V	GPIO10
13	-	GND	Ground
14	-	GND	Ground

Table 59: GPIO Pin Header X54 Pinout

GPIO	Function
GPIO0	Interrupt Touch Controller at U6
GPIO5	If JP1 is connected between pin 2 and 3, signal RTC_INT is connected to GPIO5
GPIO6	SPI_IRQ at LCD Connector X65 (pin B5)
GPIO10	Connected to User LED D105

Table 60: GPIO Function Description

18.3.15 User programmable LEDs

The phyFLEX Carrier Board provides 5 user programmable LEDs.

LED D105, is directly connected to GPIO10 of the phyFLEX-i.MX 6 (pin X1A67). A logic 1 at GPIO10 turns the LED on.

The other user programmable LEDs (D86, D97-D99) are controlled by a 4-bit LED dimmer at U52 which is connected to I²C0 at adress 0x62.

18.3.16 Secure Digital Memory Card/ MultiMedia Card (X57, X56)

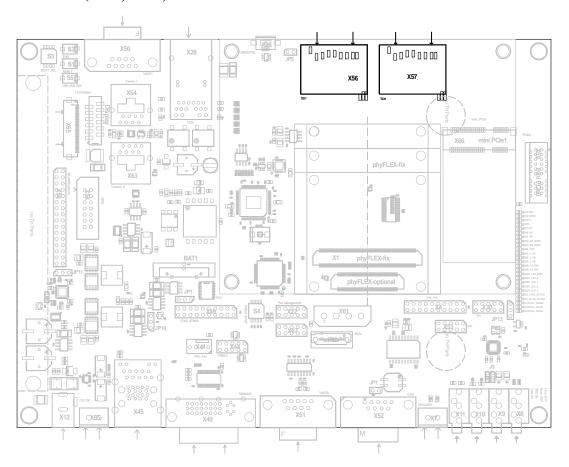


Figure 29: SD/MM Card interfaces at connector X57 and X56

The phyFLEX Carrier Board provides two standard SDHC card slots at X57 and X56 for connection to SD/MM cards. It allows easy and convenient connection to peripheral devices like SD- and MM cards. Power to the SD interface is supplied by inserting the appropriate card into the SD/MMC slot. SD0 at X57 shares the SDIO signals with the Wi-Fi/Bluetooth connector X58. To use the SD0 card slot at X57, JP13 must be closed at 1 and 2. LED D106 shows that card slot SD0 (X57) is active.

18.3.17 PCIe Connectivity (X59)

The phyFLEX Carrier Board provides one PCIe x1 lane at X59. PCIe0 is available at this connector.

Pin#	Signal Name	Description
A1	GND	Ground
B1	VCC12	12 V power supply
A2	VCC12	12 V power supply
B2	VCC12	12 V power supply
A3	VCC12	12 V power supply
В3	NC	Not connected
A4	GND	Ground
B4	GND	Ground
A5	NC	Not connected
B5	NC	Not connected
A6	NC	Not connected
B6	NC	Not connected
A7	NC	Not connected
В7	GND2	Ground
A8	NC	Not connected
В8	+3.3V1	3.3 V power supply (VCC3V3)
A9	+3.3V2	3.3 V power supply (VCC3V3)
B9	NC	Not connected
A10	+3.3V3	3.3 V power supply (VCC3V3)
B10	3.3VAUX	3.3 V power supply (VCC3V3)
A11	PWRGD	#RESET_OUT
B11	WAKE	PCIex_WAKE
A12	GND7	Ground
B12	NC	Not connected
A13	REFCLK+	PCIe1_CLK+

Table 61: PCIe0 Connector X59

Pin#	Signal Name	Description
B13	GND3	Ground
A14	REFCLK-	PCIex_CLK-
B14	HSOP_0	PCIex_TX+
A15	GND8	Ground
B15	HSON_0	PCIex_TX-
A16	HSLP_0	PCIex_RX+
B16	GND4	Ground
A17	HSLN_0	PCIex_RX-
B17	#PRSNT2	PCIex_PRSNT
A18	GND9	Ground
B18	GND5	Ground

Table 61: PCIe0 Connector X59 (continued)

18.3.18 SATA (X62, X61)

The phyFLEX Carrier Board provides the possibility to directly connect an SATA hard disk drive. There are two connectors provided. The first connector (X62) is a Foxconn LD1807F-S51P and dedicated for Data Signals. The Second Connector (X61) is Molex Disk Drive Connector and dedicated for power supply of the hard disk drive.

Pin#	Signal Name	Description
S 1	Shield1	Ground
S2	Shield2	Ground
1	GND	Ground
2	TX+	SATA_TX+
3	TX-	SATA_TX-
4	GND	Ground
5	RX-	SATA_RX-
6	RX+	SATA_RX+
7	GND	Ground

Table 62: SATA Data Connector X62

Pin#	Signal Name	Description
1	VCC12	12 V power supply
2	GND	Ground
3	GND	Ground
4	VCC5	5 V power supply

Table 63: Molex Disk Power Connector X61

18.3.19 CPU Fan Connector (X41)

If a CPU Fan is used, the carrier board supports the direct connection of a standard CPU fan with speed control at X41.

Pin#	Signal Name	Description	
1	GND	Ground	
2	VCC12	12 V power supply	
3	Tacho	Fan Speed Signal	
4	PWM	Speed Control Signal	

Table 64: CPU Fan Connector X41

18.3.20 Wi-Fi/Bluetooth Connector (X58)

A Wi-Fi/Bluetooth module, such as the PHYTEC PCM-958, can connect to the carrier board's pin header at X58.

Different interfaces connect to the Wi-Fi/Bluetooth module (UART1, SPI0, SD0). To provide the TTL signals of UART1 at the Wi-Fi/Bluetooth connector X58 jumpers J27 – J30 must be closed at 2+3. Use of SDI0 for Wi-Fi/Bluetooth requires JP13 to be switched from position 1+2 to 2+3. LED D107 indicates that SDIO is available at connector X58. No special configuration is required to use SPI0 (CS3) for Wi-Fi/Bluetooth connectivity. *Table 65* shows the pinout of connector X58.

Pin	ST	SL	Description	
1	О	3.3 V	SPI0 CS3	
2	-	-	Ground	
3	О	3.3 V	SPI0_MOSI	
4	-	1.8 V	VCC1V8	
5	О	3.3 V	SPI0 CLK	
6	-	1.8 V	VCC1V8	
7	-	-	Ground	
8	-	-	Ground	
9	О	3.3 V	UART1 TXD WLAN (TTL)	
10	-	3.3 V	VREF SD1	
11	О	3.3 V	UART1 RTS WLAN (TTL)	
12	-	3.3 V	VREF SD1	
13	I/O	3.3 V	SD0_D5_WLAN	
14	-	3.3 V	VCC3V3	
15	-	-	Ground	
16	-	3.3 V	VCC3V3	
17	I/O	3.3 V	SD0 D4 WLAN	
18	-	-	Ground	
19	I/O	3.3 V	SD0 D6 WLAN	
20	I	3.3 V	SPI0 MISO	
21	I/O	3.3 V	SD0_D3_WLAN	
22	I	3.3 V	UART1_RXD_WLAN (TTL)	
23	-	-	Ground	
24	I	3.3 V	UART1_CTS_WLAN (TTL)	
25	I/O	3.3 V	SD0_D2_WLAN	
26	-	-	Ground	
27	I/O	3.3 V	SD0_D1_WLAN	
28	I/O	3.3 V	SD0_D7_WLAN	
29	I/O	3.3 V	SD0_D0_WLAN	
30	I/O	3.3 V	SD0_CMD_WLAN	
31	-	-	Ground	
32	О	3.3 V	SD0_CLK_WLAN	

Table 65: Wi-Fi/Bluetooth Connector X58

18.3.21 Boot Mode Selection (S3)

Figure 30: Boot Mode Selection DIP Switch S3

The boot mode DIP Switch S3 is provided to configure the boot mode of the phyFLEX-i.MX 6 after reset. This DIP Switch allows to choose different boot sources. The following table gives an overview of the different boot Sources.

Note:

The following table describes only settings suitable for the phyFLEX-i.MX 6. Other settings must not be used with the phyFLEX-i.MX 6.

Boot Mode	X_BOOT2 (S3_3)	X_BOOT1 (S3_2)	X_BOOT0 (S3_1)	BOOT Source
0	1	1	1	On board mass storage (NAND, SSD, eMMC
1	1	1	0	SPI0
2	1	0	1	Alternative on board mass storage (SSD, eMMC)
3	1	0	0	SD0 external
4	0	1	1	Serial (UART0)
5	0	1	0	SATA0
6	0	0	1	USB0
7		0	0	Specific (PCIe, I ² C, Ethernet

Table 66: phyFLEX Carrier Board DIP Switch S3 Descriptions 13

13: Default settings are in **bold blue** text

18.3.22 System Reset Button (S1)

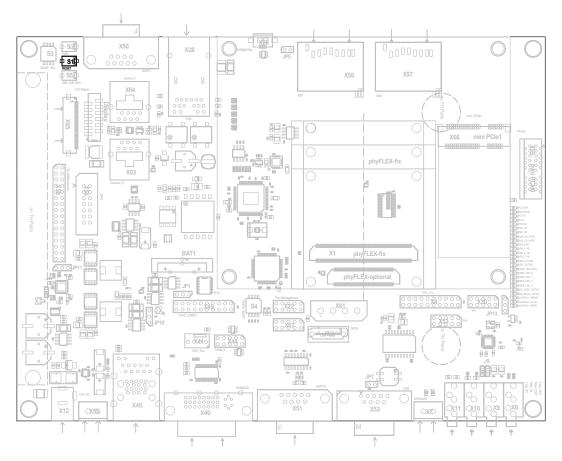


Figure 31: System Reset Button S1

The phyFLEX Carrier Board is equipped with a system reset button at S1. Pressing the button will reset the phyFLEX mounted on the phyFLEX Carrier Board. In the sequel the phyFLEX module generates the signal nRESET_OUT, which resets the peripheral devices on the phyFLEX Carrier Board, such as the USB Hub, etc.

18.3.23 JTAG Interface (**X4**)

The JTAG interface of the phyFLEX-i.MX 6 is accessible at connector X4 on the carrier board. This interface is compliant with JTAG specification IEEE 1149.1 or IEEE 1149.7. No jumper settings are necessary for using the JTAG port. The following table describes the signal configuration at X4. When referencing contact numbers note that pin 1 located at the angled corner. Pins towards the labeling "ARM JTAG" are odd numbered

Pin#	Signal Name	ST	SL	Description
1	VREF_JTAG	O	3.3V	JTAG reference voltage
2	VREF_JTAG	О	3.3V	JTAG reference voltage
3	nJTAG_TRST	I	3.3V	JTAG Test Reset
4,6,8,10,	GND	-		Ground
12,14,18				
,20				
5	JTAG_TDI	Ι	3.3V	JTAG Test Data Input
7	JTAG_TMS	I/O	3.3V	JTAG Test Mode Select
/				Signal
9	JTAG_TCK	Ι	3.3V	JTAG Test Clock Signal
11	JTAG_RTCLK	О	3.3V	JTAG Return Test Clock
11				Signal
13	JTAG_TDO	О	3.3V	JTAG Test Data Output
15	nRESET_IN	Ι	3.3V	System Reset
17	n.c.	-	-	-
19	n.c.	_	-	-

Table 67: JTAG Connector X4

18.3.24 RTC at U28

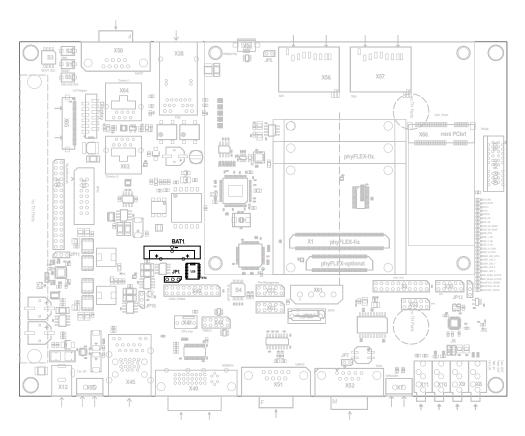


Figure 32: RTC with Battery Buffer

For real-time or time-driven applications, the phyFLEX Carrier Board is equipped with an RTC-8564 Real-Time Clock at U28. This RTC device provides the following features:

- Serial input/output bus (I²C), address 0x51 (7 MSB)
- Power consumption

Bus active (400 kHz): < 1 mA Bus inactive, CLKOUT inactive: = 275 nA

- Clock function with four year calendar
- Century bit for year 2000-compliance
- Universal timer with alarm and overflow indication
- 24-hour format
- Automatic word address incrementing
- Programmable alarm, timer and interrupt functions

The Real-Time Clock is programmed via the I²C bus (address 0x51). Since the phyFLEX-i.MX 6 is equipped with an internal I²C controller, the I²C protocol is processed very effectively without extensive processor action (refer also to *section 8.5*)

The Real-Time Clock also provides an interrupt output that extends to jumper JP1. Jumper JP1 allows to connect the RTC interrupt to the Power ON/Wake/Off Signal or the GPIO5 ofthe to phyFLEX-i.MX 6¹⁴. An interrupt occurs in the event of a clock alarm, timer alarm, timer overflow and event counter alarm. It has to be cleared by software. With the interrupt function. the Real-Time Clock can be utilized in various applications.

Position	Description
1+2	RTC Interrupt connected to Power_ON/Wake/Off
2+3	RTC Interrupt connected to GPIO5

Table 68: RTC Interrupt Configuration JP1:

After connection of the supply voltage the Real-Time Clock generates no interrupt. The RTC must be first initialized (see *RTC Data Sheet* for more information).

Use of a coin cell at BAT1 allows to buffer the RTC.

¹⁴: connected to GPIO 9 (pin T2) of the i.MX 6 on the phyFLEX-i.MX 6

19 Revision History

Date	Version numbers	Changes in this manual	
25.09.2012	Manual	First draft, Preliminary documentation.	
	L-773e_0	Describes the phyFLEX-i.MX 6 with	
	_	phyFLEX Carrier Board.	
07.12.2012	Manual	First Edition appropriate for the .2	
	L-773e_1	PCB of the carrier board	
15.03.2013	Manual	Second Edition information updated	
	L-773e 2	for the .1 PCB of the	
	_	phyFLEX-i.MX 6 and the .3 PCB of	
		the carrier board	

Index

1	F	
1000Base-T	Features	
10Base-T47	G	
9 9 67	General Purpose I/OsGND Connection	
\mathbf{A}	Н	
Audio Interface51	Humidity	70
В	I	
Block Diagram	I ² C EEPROM I ² C Interface I ² C Memory	49 26
Camera Interface	I ² S J	51
CMIC	J10-J21	107
D	J24 J28-J30	
DDR3_1V5	J3 26, 40 J312 J5-J8	26, 67
Debug Interface	JA-002	61
Dimensions	JP7JTAG Interface	97 58
${f E}$	JTAG-Emulator Adapter	61
EEPROM 38, 39 EEPROM Write Protection 40 EMC xiii EMIC 32, 68 Emulator 61 Environment Management IC 68	L LAN LED SOM D1 SOM D2 LINK LED	57 57
Ethernet47	LVDS	

Camera Signals 26, 67	X63110
M	X64110
	X65 99, 103
MAC	X7112
MAC Address49	X8112
N	X9
NAND Flash	phyFLEX-Connector
	PHYTEC Display-Interface 103
О	Pin Description
Operating Temperature70	Pinout
Operating Voltage70	X1 11, 12, 13, 14, 15
P	X216, 17, 18
DDI 102	X319, 20, 21, 22
PDI	PMIC28
Connectors79	Power Consumption70
JP1 129	Power Domains
JTAG Interface	Power Supply7
Peripherals77	R
Pin Header79	RS-23296
RTC 128	RS-232 Level
S1126	RTC
S3124	
Switches 81	S
X1	SATA Interface52
X10112	SD / MMC Card Interfaces 41
X11112	Serial Interfaces
X12 89 X2 88	SMT Connector
X26101	SPEED LED
X28	SPI Flash 38, 40 SPI Interface 50
X4127	Storage Temperature70
X40108	Supply Voltage
X41122	System Configuration
X4599	System Memory
X5195	System Power
X5297	T
X58122	1
X59119	Technical Specifications69
X61121	Touch Screen Connectivity 107
X62121	

U		USB Host	45, 46
1110	20	USB OTG	45
U10		User LEDs	57
U11			
U12	26, 67	${f V}$	
U13	39	VCC PM	30
U17	32	VDD 5V IN	
U19	68	VDD 5V IN R	
U25	40	Voltage Output	
U27	26, 67	Voltage Output	,
U2-U9	· · · · · · · · · · · · · · · · · · ·	\mathbf{W}	
UART	44	Weight	70
USB		W Cigitt	
OTG Interface	45	X	
USB 2.0	101	X26	101
USB 3.0	99	X4	
USB Device	45		

Document: Document num	phyFLEX®-i.MX 6 mber: L-773e_2, March 2013	
How would you improve this manual?		
Did you find a	ny mistakes in this manual?	page
Submitted by: Customer numb		
Name:		
Company:		
Address:		
Return to:	PHYTEC Messtechnik GmbH Postfach 100403 D-55135 Mainz, Germany Fax: +49 (6131) 9221-33	

