PACKARD

(40 HEWLETT

RTE-A

System Manager’s Manual

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90056 Printed in U.S.A. April 1995
E0495 Fifth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1987, 1989, 1990, 1992, 1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

Fourth Edition Nov 1993 Rev. 6100
Fifth Edition Apr 1995 Rev. 6200

Software Update 6.1
Software Update 6.2

First Edition Aug 1987 Rev. 5000 (Software Update 5.0)
Second Edition Jan 1989 Rev. 5010 (Software Update 5.1)
Update 1 July 1990 Rev. 5020 (Software Update 5.2)
Third Edition.................. Dec 1992 Rev. 6000 (Software Update 6.0)
()

()

3/4

Preface

The RTE-A System Manager’s Manual describes the duties of a system manager. It is designed to
complement the RTE-A System Generation and Installation Manual.

The manual gives a brief overview of system management and refers to the other manuals in the
RTE-A manual set for detailed information on specific elements of the system. Particularly use-
ful are the RTE-A System Design Manual, the RTE-A Backup and Disk Formatting Utilities Man-

ual, the RTE-A Driver Reference Manual, and RTE-A Programmer’s Reference Manual for mainte-
nance and expansion.

The manual also describes resource management in the multiuser environment through the
Group and User Management Program (GRUMP) utility, the Security/1000 utility of VC+, and
the SECTL utility. Note that information on system security tables and the Security/1000 library

(SECLIB.1000) are contained in this manual so that the system manager can control the
distribution of this information.

Conventions Used in this Manual

The following conventions are used in this manual:
Convention Meaning

Uppercase letters In command syntax, uppercase letters indicate
characters that must be entered as shown.

Lowercase italic letters In command syntax, lowercase italic letters indicate
user-supplied information.

[] In command syntax, brackets indicate optional items.

In examples of interactive sessions, brackets
indicate default values.

, or blank A comma or blank are command delimiters.

5/6

Table of Contents

Chapter 1
System Management Overview
Designing and Planning e 1-4
Determining User Requirementsttt tinniinnenneen.. 1-4
USET Cat@EOTIES .« v v vttt ettt et e e et et e e e et 1-6
System APPLCAtIONS . . .« o vttt e 1-6
Peripheral Resource Usageouiiiiiin it 1-7
Disk Management Considerationsouuiiuniuneinennennenneen.. 1-8
File Volume 1-9
Directory Organizationc..oeutinntunenneeneennennenneennnn 1-11
Generating and Installing i e 1-11
Generationttt 1-12
Installation oo 1-13
Maintainingo ottt e e 1-13
AcCounting SYSEIMo . i ettt e e 1-14
Fine TUNINgot e e 1-14
System Usability e 1-15
System Backup 1-15
System Backup Strategyot 1-16
Primary/Physical System Backup il 1-17
Logical Backup . ..ot e 1-18
Keys to a Successful System Backup it 1-19
Recovering and Shutting Down the System 1-20
Running Out of SAM 1-20
Chapter 2
Multiuser Account System
The Session Environment e 2-1
Session Logon Process e 2-2
User-Definable Directory Search Path (UDSP) 2-3
Environment Variable Block (EVB) i 2-3
Session LU Access Table 2-4
Session Logoff Process o 2-4
Session ULIIIHIESottt e e 2-5
SESLU: Modifying and Listing Session LU Access Tables 2-5
KILLSES: Terminating a Sessionc..cuuiuiiinnininnennennnn. 2-5
ACCOUNE SIIUCLUTE .. oottt ettt e e et e e e e 2-5
User Account Planning i i e 2-7
Group Account Planning 2-7
JUSERS DIIeCtoryttt e e i 2-8
User Configuration File i . 2-9
MASTERACCOUNT File e 2-11
Group Configuration File 2-11
MASTERGROUP File . ..o e 2-12
NOGROUP and Default Logon Groupc.coiuiiiiiiiniinnenneen.. 2-12

Initializing the Multiuser Account System 2-13

Re-Initializing the Multiuser Account System ciiiiiininenn.... 2-14
Chapter 3
GRUMP, SESLU, and KILLSES Utilities
GRUMP ULIItY ..ottt e e e e e e e e e e 3-1
Running GRUMP 3-2
Interactivelyt e 3-2
Usinga Command File i 3-3
GRUMP Command Summaryoouiiniinnenti i, 3-4
Command CONVENLIONSvuuut ittt 3-5
GRUMP Commandscouuiiii e 3-7
ADOTE (JA) + e e ettt e 3-7
Alter Group (AL G) oot 3-7
Alter User (AL U) ..ot e e e 3-9
EXit (EX) oot 3-15
Help (HE Or 7) oot e e e e e e e 3-16
Kill Session (KI)t e 3-16
List Group (LI G) ..ot e e e e 3-16
List User (LIU) ..ot 3-17
New Group (NE G) . ..o e 3-21
New User (NE U) ..o e 3-23
Password (PA) . ..o 3-27
Purge Group (PU G) ... oot e e e 3-27
Purge User (PU U) ... e 3-28
Reset Group (RE G) ..o oot e 3-29
Reset User (RE U) ..o e 3-29
Run (RU) ..o e 3-30
Transfer (TR) ... e 3-30
SESLU ULIILY .ottt e e e e e e e e e e 3-31
Calling SESLU o e 3-31
Loading SESLU e e e 3-31
SESLU Protectioncouuiiinitit i, 3-31
Returned Values 3-31
SESLU EXamplesottt e et e e e e e e 3-32
KILLSES ULty ..ottt et e e e e e e e e 3-33
Calling KILLSES e e 3-33
Loading KILLSES e e e 3-33
KILLSES Protectioniiiuiiii ittt 3-33
Returned Valueso 3-33
KILLSES EXamplesttt e et et e 3-34
Chapter 4
File and System Security
File System Securityt e e 4-2
Security Under CI e e e e 4-2
File Ownership and Protection 4-2
Directory Ownership and Protection 4-2
Volume Ownership and Protection oo, 4-3
Security under FMGR 4-3

Security/1000 (VCH+ Only) . ..o e 4-3
System Manager Responsibilitiesc.. i 4-4
Capability Levels 4-4
Security Tables 4-5
Utilities with Security/1000 Implemented 0. i, 4-7
Forms of Security Implementation 4-7

Categories and Functionst 4-8
Security Table Format i 4-9
Modifying Security Tables i e 4-9
Security Information in Security Tables 4-10
Non-Security Information in Security Tables 4-11
Security/1000 Interfacesottt 4-12
Program Access Protection 4-12
Example of a Program Access Utilityc.o ... 4-12
Example of a CPLV Modification Program 4-14
Installing Security/1000 i 4-17
Initializing and Turning On Security/1000 4-18

Chapter 5

SECTL and STGEN Utilities

SECTL ULty . ..ttt et e e e e e e 5-1
Running SECTLo e e e e 5-1
SECTL Command SUMMATYttt ettt e 5-2
SECTL Commandscouuuiiiniiittit i, 5-3

Edit Capability Level (EC)o i 5-3
EXit (EX) oottt 5-3
Generate Table (GT) ...t e 5-4
Help (HE OF 7) oot e e e e e e 5-4
Initialize (IN) ... 5-5
List Table (LT) ...ttt e e e e e e 5-5
Program Capability (PC) e 5-6
Rename a Category (RN C) ... e 5-6
Rename a Function (RNF) e 5-7
Required User Capability (RQ) ... 5-7
SWItCh (SW) oo 5-8
ASTETISK () Lt 5-8

STGEN ULILY . ..ottt e e e e e e e 5-9

Example of Security Table Source i 5-10

Example of Generated Macro/1000 Codeot 5-11

Appendix A

Modifying Security/1000 Answer Files

Appendix B
Logon Files

Appendix C
GRUMP Command/Log Files

Example of GRUMP Command File
Example of Log File

Appendix D
SECURITY.TBL

Security Table Source Format
Categories .. v vttt
Special Categoriesc.ccoveen...
Functions il

SECURITY.TBL

Appendix E
Security Table Worksheet

Appendix F
Security/1000 Error Codes

Appendix G
Security/1000 Library Routines

SecGetCitNam,
SecGetCitNumcccvininan...
SecGetCplvs ..o
SecGetMyCplv
SecListTables
SecOnOf
SecProgCplv

Appendix H
Setup and Directory Create Programs

Example of a Setup Program
Example of a Directory Create Program

Appendix |
RINFO and SINFO Utilities

Reset Multiuser Accounting Information (RINFO)
Calling RINFO oo
Loading RINFO

RINFO Protectionooiii e e e I-2

Returned Values I-2
Show Multiuser Accounting Information (SINFO) oo, I-3

Calling SINFO o e I-3

Loading SINFO e e e e e e I-3

Returned Values I-3

List of lllustrations
Figure 1-1 System Management Procedural Overview 1-2
Figure 1-2 Determining User Requirementsc.oo i ... 1-5
Figure 2-1 Sample Account Structure 2-6
Figure 2-2 Sample Account Planning Matrix.............o, 2-7
Figure 4-1 RTE-A Resource Protection ...t .. 4-1
Figure 4-2 Example of Program Security Assignment 4-6
Figure 4-3 Security Table Structure i 4-8
Figure 4-4 Example of Program Access Utility, 4-13
Figure 4-5 Example of a Program Modification Facility 4-16
Figure 4-6 Turning On Security/1000 i 4-19
Figure 4-7 Linking Programs and Turning On Security/1000..................... 4-21
Tables

Table 1-1 RTE-A File System Comparisonc.coouuiinneuneunennn.. 1-9
Table 1-2 Two Typesof Backup ... 1-16
Table 3-1 General GRUMP Commands oo, 3-4
Table 3-2 GRUMP Commands for Adding Accounts 3-4
Table 3-3 GRUMP Commands for Modifying Accounts 3-4
Table 3-4 GRUMP Commands for Displaying Account Information 3-5
Table 3-5 GRUMP Commands for Purging Accounts 3-5
Table 5-1 SECTL Commandsiiiuniiiniiiiniiiinenineennn.. 5-2
Table E-1 Security Table Structure for CI Commands E-2
Table E-2 Security Table Structure for FMP Routines E-6
Table E-3 Security Table Worksheet i E-10
Table G-1 SECI000.LIB Commandsc.c.ouiiuniiiiniiinniinnneennn.. G-2

11

System Management Overview

The RTE-A Operating System (HP product number 92077A) is a powerful and flexible program
providing an environment that allows concurrent user access to system resources. As system
manager, your duties include:

e Designing and Planning — determining the system requirements and structure; deciding
whether or not to use the Primary System; installing the Primary System if it is to be used.

e Generating and Installing — creating a customized system from the Primary System if there is
no existing system; getting the new system running.

e Maintaining — supporting the existing system’s operation and integrity by regenerating as
required; performing backup of the operating system; performing backup of user files and
applications; keeping the system current with software updates; answering questions about
system operation; keeping software and hardware documentation current and available.

e Recovering and Shutting Down System— restoring system operation from the backup system
copies made at installation if needed; performing system shutdown as needed.

The process of system management is described by the flowchart in Figure 1-1.

System Management Overview 1-1

Boot Primary
System

Boot
Primary
System

Evaluate
User Base

Y

Plan Account
Structure and
Resource Reqgs

Y

Plan disk and
I/O Structure

Y

A

Check
Installation
of BOOTEX

Prepare
Answer File

Run Online
Generator

Fatal
Errors?

and Sys 1/0
Config

A

Run
Hardware
Diagnostic

No
Hardware
OK?

y o

Install BOOTEX

Y

Install System
Snap File, Cmd
Files, and Programs

Y

Boot System

Initialize

disks
and Create
Transfer Files

1-2

Figure 1-1. System Management Procedural Overview

System Management Overview

Additional Yes Load Additional
Software
?
Software? il
Initialize Yes
Multiuser Run
System? GRUMP
No
______________ 1
|
Back Up :
System
disks |
|
|
|
|
Yes Maintain
System

Yes
Regenerate

Acct Yes Alter Multiuser
Structure System
with GRUMP
Yes Adjust
Chng'd by RTE System
Cmd? Parameters
No I/0 & Yes Alter
Mem Reqgs Answer
Chg’d? File

—©

Figure 1-1. System Management Procedural Overview (continued)

System Management Overview

Designing and Planning

In planning system requirements, system managers need to know:

e Who will be using the system
e What applications will be run

e What system resources and peripherals will be required

You must consider types of applications to be run, required system resources and peripherals, and
possible future expansion. Refer to the RTE-A System Design Manual, part number 92077-90013,
for detailed information on system design concepts, software planning, and I/O design and
planning.

The steps in system planning are:

e Plan the account structure, and the disk volume and cartridge requirements.

e Plan the computer I/O structure, determining select codes for each card, LU numbers for each
device, and the drivers required to control these cards and devices. See the RTE-A System
Generation and Installation Manual, part number 92077-90034, for details.

e Plan the RTE-A memory allocation by determining the number of reserved partitions, size of
SAM (System Available Memory), size of XSAM (Extended SAM), number of ID segments,
class numbers, and resource numbers.

Figure 1-2 provides a sample form for organizing your system planning. Modify it to meet your
specific needs.

Determining User Requirements

To determine user requirements, you should create a questionnaire and use it to interview
potential system users. Most users do not think in terms of disk tracks, memory or disk-resident
programs, or priority levels when describing their needs. Therefore, the questions should be
readily understood and provide the kind of information that can be translated into data useful for
system generation, initialization, and maintenance.

The topics any questionnaire should cover include:

e User Categories.
e Applications.

e Peripheral Resource Usage.

1-4 System Management Overview

USER CATEGORIES

General Users
Operators
Application Programmers

System Programmers/System Managers

of concurrent users

User Names

Suggested User
Categories

Set Categories
Appropriate to
Your System

SYSTEM APPLICATIONS

Special Program Requirements

EMA Programs

Size
of class Numbers
of words of SAM and XSAM
of Resource Numbers
of shared programs
Number of programs active at one time
Labeled Common Size
Unlabeled Common Size

Program partition size

Should EMA be shareable? Y N With what programs?

PERIPHERAL RESOURCE USAGE

Subsystems

Partition reserved? Y N

Using hierarchical file system
Using FMGR file system
Common Data Base/File Access
Line Printer Access

Cartridge Tape Drive Access
Magnetic Tape Unit Access
Others

Special Requirements

Suggested
Peripherals

Set Categories
Appropriate to
Your System

Figure 1-2. Determining User Requirements

System Management Overview

User Categories

The first step in system planning is to identify the levels of user sophistication on the system. This
section is primarily applicable to systems with VC+ (Virtual Code Plus). VC+ is a
Hewlett-Packard software product (HP product number 92078A) that provides multiuser
capability, and extensive directory, file, and command access control. Four user categories are
defined below, but they should be customized for your system.

General users are at the lowest level of user sophistication. Users in this group interface with the
system only to the extent of operating specific programs or command files. No programming
knowledge is necessary, and very little knowledge of the system is required. Users are expected to
follow predefined procedures when working with the computer.

Operators are at the next level. Users at this level may require knowledge of the editor and
cursory knowledge of the file system. Only limited access to the system functions is needed.

Application programmers are at the fourth level. Most RTE-A users fall into this category. These
users have knowledge of, for example, operator commands and programming calls. They are
expected to take advantage of most system capabilities including operation of compilers,
management of data bases, manipulation of the file system, performance of network operations,
and so forth. However, these users are not concerned with the activities of the other users on the
system. Detailed system knowledge is not usually required.

System programmers and system managers are at the highest level of sophistication. These users
have a good working knowledge of system operation. They are capable of changing overall system
operating parameters.

The user categories information can be the basis for establishing groups. You should also
determine the number of users who will be on the system at the same time (concurrent users).
Refer to Chapter 2 for information on the multiuser account system.

System Applications

This section deals with intended system applications. The answers to the questions presented in
this section determine how system resources are allocated and how to set up system parameters.

All information such as the class number totals or program partition sizes should be collected for
each individual application, and tabulated for the total system requirement. If system size allows,
extra resources should be added to the total user requirement to accommodate future
applications.

The answers collected will determine:

e Subsystems required—Select the HP-supplied subsystems, languages, utilities, and user
application programs to be used on the system. Determine which subsystems (for example, NS
or IMAGE) will be used because all of them have individual system requirements. Encourage
users to consider future expansion as well as current needs.

e Response time requirements—Users should be asked their terminal and real-time response
requirements. Based on their responses, modules may be given higher priority levels and/or
assigned to partitions. For example, response considerations in a real-time environment may
dictate that certain programs be memory-resident at all times. These programs may need to
have priorities higher than the priority of the real-time fence. Also, you will use the
information about these programs to determine sizes of reserved partitions.

1-6 System Management Overview

Memory requirements— You must have information about real-time programs when creating a
boot command file so that you can create reserved partitions large enough to accommodate
those programs. Partitions must be large enough to accommodate any large application
programs users will run. Use the number of reserved partitions and user programs to adjust
the number of the memory descriptors specified in the generation file. EMA (Extended
Memory Area) usage is another factor to be considered. User applications using the EMA
feature require partitions of a certain minimum size. This affects the amount of physical
memory required in the system. Therefore, users should be asked for the maximum EMA
space used by their application programs, and whether or not the information in the EMA is to
be shared by more than one program.

Peripheral Resource Usage

Suggested peripheral resources are shown in Figure 1-2. You should tailor the list of peripherals
to your own system. Each user, or group of users, must provide the following information:

Will the user be storing files or creating data bases on the system? If so, how many and how
big? Does the user require disk space on a permanent or temporary basis? This indicates the
amount of disk space (if any) to allocate to the user.

Will the user’s files be accessed by other users in the system? Will this user access other users’
files? Which users? Does this user have files that cannot be shared? These questions are
important in systems using VC+ because file access can be restricted to the individual user,
made available to all system users, or made available to members of a group.

Does the group require a special peripheral? For example, a peripheral may be necessary for
one group’s application. Another group on the same system, but involved in a different
application, may have the use of that same peripheral restricted.

Will the users need EDIT, the text editor, for program development or other text processing?
If so, adequate disk space should be made available to accommodate the scratch files created
by EDIT. You can dedicate a disk volume to storing temporary editor scratch files. Refer to
the EDIT/1000 User’s Manual, part number 92074-90001, for editor loading information. You
must also make disk space available for other programs such as LINK (the linkage editor),
FST (File Storage to Tape), and TF (Tape Filer) that require large amounts of space for
scratch files.

Does the disk have an integrated Cartridge Tape Drive (CTD)? If so, reserve a buffer area on
the disk for the CTD. This area is referred to as the disk cache. The size of the disk cache for
the CTD operations greatly improves the data transfer rate. Refer to the RTE-A System
Generation and Installation Manual, part number 92077-90034, for information on how to
reserve this area.

System Management Overview 1-7

After determining the devices that will be used by your applications, assign them LUs (Logical
Units). Integrated devices have special requirements because each device needs a separate LU
number (and in some cases, a separate driver). Some applications require assignment to LUs that
are numbered less than 64. (There is a maximum of 255 LUs.) Conventions in assigning LUs to
logical devices are:

e System console =LU 1.
e Line printer = LU 6.

e Streaming magnetic tape = LU 7.

e Magnetic tape = LU 8.

e (S/80 cartridge tape = LU 24.

e Disk LUs = LUs up to and including 63.
e Maximum LU number = 255.

Determine if there are special needs such as time requirements or access restrictions. For
example, one group may need to use the magnetic tape drive for several hours each night; another
group may need the same tape drive early in the morning, and still another group may need the
tape drive to be available most of the day. Coordinating user needs is very important when
determining peripheral requirements.

Disk Management Considerations

In RTE-A, disks and files are managed by two file system interfaces, CI (Command Interpreter)
and FMGR, the file manager. In CI, the preferred interface, files and directories are managed
and protected by read/write protection. The CI hierarchical file system divides the disk into large
areas of free blocks. These areas are identified by LU numbers and are called disk volumes. Files
in each disk volume are managed by directories and subdirectories that maintain information on
the files.

The FMGR file system divides a disk into fixed-size cartridges that are identified with cartridge
reference numbers (CRN). The CRN can be any two-character alphanumeric string. Each
cartridge has a cartridge directory containing pertinent information on all files stored on that
cartridge. Files cannot be organized into directories and subdirectories. Although CI is the
preferred file management system, it is useful to have at least one FMGR cartridge in case some
utility requires one.

Table 1-1 shows a comparison of the two file systems. The CI file system lets you assign several
users to one large disk volume, making the free space on the volume available to all users.
Usually, each user is given a private set of hierarchical directories for file management. As shown
in Table 1-1, CI provides time stamps for file creation, last update and last access; it provides file
unpurge capabilities, and file names up to 16 characters long. FMGR, on the other hand, provides
only one directory per disk LU, and the files on each LU must have unique names limited to six
characters.

1-8 System Management Overview

Table 1-1. RTE-A File System Comparison

ClI File System FMGR File System
File name 1—16 characters 1—6 characters
Cartridge/ 1—-16 characters 1—2 characters or numeric
directory in directory cartridge names
File Security Protection based on Security code used for
directory and file ownership file protection
FileTypes File type extensions Defines the structure
describing the contents of the files
of the files
File Mask Mask qualifier and special char- Limited file masking
acters in file name
File Size Extendable Extendable
Time Stamps Create, access, and update None
times handled by the file system
Subdirectory Subdirectories within None
directories and other directories
File recovery Operator recoverable None
immediately after purge
Spooling Can be done interactively and Can be done interactively
programmatically and programmatically
Incremental Done in conjunction with None
Backup TF and FST utilities
File Volume

A volume is a self-contained section of a disk. Each volume is independent of any other volume.
Directories and files can never cross volumes. Each physical disk drive consists of one or more
volumes. Volumes can never cross physical drives. Each volume is identified by a logical unit
(LU) number. Volumes are always identified by their disk LU number. Volume LU numbers
range from 1 to 63 inclusive.

Each volume contains information about its layout. This information includes the names of all the
global directories in the volume, as well as a table that indicates which disk blocks have been
allocated in the volume. This table is called a bit map because the table is composed of bits rather
than addresses or values.

System Management Overview 1-9

When designing a disk layout, be aware of the advantages and disadvantages of using a single LU,
versus several large LUs. If you use a single LU, you will benefit from initial low maintenance,
and provide for some applications, such as a data base file, that require a large unit. However, a
single LU per disk tends to waste disk space. Using several large LUs has the advantages of better
space utilization, being easier to pack, and being easier to work with. In general, it is better to
divide a disk into several large disk LUs. Make sure that your scratch file and swap file are on
large LUs for system operation purposes.

Some advantages of larger LUs are:

e There is more room for files and subdirectories under one global directory.
e The disk does not need packing as often.

e Space for very large files, such as scratch and swap files, is readily available.
Some advantages of smaller LUs are:

e The backup of an individual LU is faster.
o Required FMGR LUs can be allocated a smaller amount of disk space.

e Users can be restricted to specific LUs. The advantage here is that you can use Security/1000
to restrict users to specific LUs, and volume ownership can be specified.

Mounting a volume makes that volume, and all the directories and files on it, available to the
operating system. Dismounting a volume removes that volume, and makes the directories and
files on it inaccessible to the system. These operations are performed infrequently; except with
removable media such as floppy disks where disks must be mounted after they are installed and
dismounted before they are removed.

Mounting a volume will initialize it if there are no valid data on the volume. Initializing a volume
sets up information needed by the operating system including the list of directories and the bit
map for keeping track of space use. If the disk volume does not have a valid FMP (File
Management Package) or FMGR directory, you are prompted of this before the volume is
initialized. This prevents accidentally corrupting volumes that are not FMP or FMGR types (for
example, backup utility volumes). If the disk volume does have a valid FMP or FMGR directory,
the volume is initialized.

Except for duplicate directory names on two or more volumes, the order in which disk volumes are
mounted is unimportant. If a global directory on the newly-mounted disk volume has the same
name as a previously mounted global directory, the new directory is inaccessible.

The CI MC (Mount) command does not place reserved blocks at the beginning of the volume. If
reserved blocks are required, use the CI IN (Initialize) command. For more information on CI
file volumes, refer to the RTE-A User’s Manual, part number 92077-90002.

1-10 System Management Overview

Directory Organization

Directories are the central CI file system data structure. Directories maintain the file system
status. All information pertaining to a file is maintained in a directory.

Directories may be included in other directories, these are considered subdirectories. Nesting of
subdirectories is allowed to provide a hierarchical file system structure. At the top is a root
directory that contains only unique global directories. There is one root directory per disk volume.
Mounting a disk volume makes directories on that volume accessible.

Global directory names must be unique in the file system. An abbreviated form of the directory
name is kept in free space in D.RTR; each global directory requires five words. For this reason, a
limit of approximately 300 global directories is recommended. This limit applies only to global
directories and not to subdirectories. Therefore, convert global directories into subdirectories
with the CI MO (Move) command if the limit is reached.

Generating and Installing

If your system is already running, refer to the “Maintaining” section.

If you are installing a system for the first time, the RTE-A Primary System Software Installation
Manual, part number 92077-90038, which comes with the software, provides the procedure for
installing a Primary System.

The Primary System is a tested, factory-configured operating system that can be booted up
immediately after installation. It provides a working starter system that can be used to test the
functions of the installed hardware. It can be used by the system manager to regenerate a
customized system. It can also be used by all levels of users to gain familiarity with the RTE-A
operating system features.

Each Primary System tape includes all the RTE-A operating system components needed to
generate a new system. The Software Numbering File (HP product number 92077A) is a text file
that lists all the files included in the RTE-A product directory /RTE-A.

Once your Primary System is running, the steps to install your disk-based system are:

1. Prepare the boot LU by creating a BOOTEX area, if necessary.

BOOTEX is a memory-based system that has the sole responsibility for loading and initializing
a disk-based operating system.

2. Install BOOTEX, if necessary.

3. Prepare the boot command file.

The boot command file contains commands for the BOOTEX system to initialize the
disk-based system.

4. Install system, snap, and boot command files on the boot LU.

5. Create the required directories and program files.

System Management Overview 1-11

6. Set up the startup program and the Welcome file.

The Welcome file is a CI command file that is run by the RTE-A Operating System to mount
volumes, initialize devices, and so forth.

7. Boot and initialize the system.

8. Verify operation and back up the system.

Generation

System generation consists of preparing a system generation answer file and running RTAGN, the
RTE-A online generator. An answer file contains prepared responses to generator program
questions when building the new system. Normally, an existing answer file (a sample answer file is
shipped with the RTE-A operating system) is edited to create a new answer file. See the RTE-A
System Generation and Installation Manual, part number 92077-90034, for a sample of an answer
file. Appendix A in this manual shows a portion of a sample answer file used in generating a
system with Security/1000.

The RTAGN program produces the system, snapshot and list files required to define the system to
be installed. The system file contains a memory image of the operating system. At system bootup,
the system file is copied from disk or other bootable media to physical memory and executed.

The snap (snapshot) file contains the value of system entry points, system library names, and other
system information such as system checksums and the system common checksum. This is used by
LINK to load programs online. The current snap file must be copied to the system directory and
named SNAPSNP; LINK automatically searches for that name.

The list file documents what is in the system and where the modules are located. It contains:

e The runstring used to schedule RTAGN.
e The system time at the beginning of the generation.
e A listing of the input commands and comments.

e A list of what was generated into the system and where the different parts of the operating
system will be located.

e The location and explanation of any errors that may occur.

You should record and store new generation files and any changed generation files.

Refer to the RTE-A System Generation and Installation Manual for instructions on system
generation.

1-12 System Management Overview

Installation

System installation consists of:

Generating a new system file.

Preparing the target system hardware and media for boot.

Booting the new system.

Setting up a primary program.

Establishing the account structure, spooling, and directories (if VC+ is used).

Backing up the new system.

Specific procedures are given in the RTE-A System Generation and Installation Manual.

Maintaining

You are responsible for maintaining the integrity of the running system and ensuring that it runs at
optimal performance.

You, the system manager, must be prepared to:

Alter the multiuser account system as required.

Add features for new applications (for example, security and reserved memory).

Back up and restore disk LUs and files.

Alter system parameters to meet new user requirements or change generation parameters.
Add online software (for example, subsystems such as graphics).

Keep system and device documents current and available.

Answer user questions about system operation.

Interface with Hewlett-Packard in problem reporting, resolution, and system updates (note
that this function depends on the level of support a customer has purchased from HP).

If the changes warrant, the system may require a new generation. You will need to regenerate an
existing system to:

Add devices.
Modity tag size.

Change the number of ID segments or class numbers.

System Management Overview 1-13

e Add subsystems.
e Add or delete relocatables.

e Update the system with software revisions.

Many maintenance tasks (for example, altering timeouts) can be done interactively. Ways to make
a system more efficient or update it without regenerating include using the maintenance utilities
on disks, files, and the accounting system; and performing the tasks listed in the fine tuning section
below.

Accounting System

A system with multiple users and sessions is referred to as a multiuser account system. The
GRoup and User Management Program (GRUMP) is used to create and maintain the multiuser
account system. The GRUMP utility is presented in the “Multiuser Account System” chapter
(Chapter 2), which also describes how to plan a system using groups. Use a questionnaire, such as
the one in Figure 1-2, as a method of gathering the information needed for multiuser account
planning.

Fine Tuning

To get optimal performance, you should:

e Minimize table space and base page links.

e Check device priority and location, making sure that important I/O devices are given higher
priority than less important ones and that fast and slow devices are not connected to the same
interface card. High-speed devices include disk drives and tape drives. All other I/O devices
are considered slow devices.

e Determine the number of ID segments and class numbers that will control the number of
system users without hindering those users’ activities on the system.

e Run PROMT with the —1 option in the Welcome file to initialize LOGON and CM (VC+
only).

e RP frequently used programs, such as CI and EDIT, with the D option to create prototype IDs
for them. Note that to force the system to use the prototype 1D, the program must be
specified without a directory path when run (VC+ only).

e If you have free memory, generate in a RAM disk. Put frequently used programs on the RAM
disk at bootup (in the Welcome file) and RP them with the D option. This way the programs
can be dispatched without disk accesses.

e Put the /SCRATCH directory on the RAM disk. This improves the performance of all
programs that use the /SCRATCH directory for their processing. This includes MACRO,
FTN7X, and PASCAL. It also includes VMA programs such as LINK. If you use the RAM
disk for VMA, you may want to consider reducing the working set size as the penalty is much
less severe. EDIT’s use of the RAM disk for its scratch file is discouraged, as a power fail or
crash loses the scratch file and thus the ability to enter EDIT’s recovery mode. For this reason
it is recommended that a /SCRATCHEDIT global directory be created if you put /SCRATCH
on the RAM disk. (See the EDIT manual discussion of /SSCRATCH.)

1-14 System Management Overview

e Ifyou are using the $VISUAL command editing modes in CI (VC+ only), you should RP the
CMPLT program in your Welcome file. CMPLT should also be run without wait (XQ,
CMPLT) from your Welcome file.

The disk utilities FORMC (CS/80 disk formatting) and FORMEF (floppy disk formatting utility)
are used to verify the integrity of disks, spare out bad areas of disks, and format and initialize
disks. These utilities are described in the RTE-A Backup and Disk Formatting Utilities Manual, part
number 92077-90249. The file utilities FPACK (File System Pack), FREES (Report Disk Free
Space), FOWN (Report File Space by Owner), FVERI (File System Verification), FSCON (File
System Conversion), and MPACK (displays and improves disk file allocation) report on the status
of disk volumes and are used to manage usable space within the volumes. The FMGR PK
command is used to pack FMGR cartridges, reclaiming space previously allocated to files that
have been purged. These utilities are described in the RTE-A User’s Manual, part number
92077-90002.

System Usability

You can use command files to set up or change special environments that make the system easier
to use and enhance user productivity. Global and user logon files, for example, are ways of
enhancing system usability. A global logon file can be set up on /USERS to list a logon message or
do other initialization, and then transfer to the user logon file. User logon files can be set up on
the user’s working directory to set up UDSPs (User-definable Directory Search Path), run a mail
and phone program, and set up commonly used CI variables. You can initiate the logon file when
specifying the user’s startup program in the GRoup and User Management Program (GRUMP).
An example is:

Enter the startup command [xxx]: ru ci.run::progranms /users/|ogon.cnd

where xxxx is the default value. Appendix B contains sample logon files.

System Backup

Backups are a method of saving data on a medium other than the current disk (LU). Backup
media includes DDS (DAT) tapes, CS/80 cartridge tapes, magnetic tapes, floppy disks, or another
disk.

Doing system backup at initialization, and periodically thereafter, protects you and users from
losing work and time in the event of unforeseen circumstances such as system shutdown. If system
disks are corrupted or destroyed, you can recover by restoring a backup copy of the system.

Backing up your system can be done in two ways:

e Physical backup that saves a physical snapshot of the disk and its exact contents.

e [ogical backup that looks for directory and file information on the disk and saves it as
directories and files.

The comparison in Table 1-2 on the following page describes the differences between the two types
of backup.

System Management Overview 1-15

Table 1-2. Two Types of Backup

Physical Backup

Logical Backup

Purpose

Online/Offline

Backup that can be
used to boot system

Save and restore disk LU on

entire disk unit; save exact
data on disk — does not
have to be files

(example, BOOTEX on a ClI

volume)

Online or Offline
(utility dependent)

Yes; usual format for
Primary Systems

Save and restore files or
groups of files only

Online only

Not applicable

Utilities/Commands ASAVE/ARSTR, FST, TF, FC, LIF, and CO
DSAVE/DRSTR, commands in Cl;
IPBV, COPYL ST and DU commands in

FMGR
Faster method if LU is full Faster method if there
are only a few files to be
saved

Advantages

Restore on a file and
directory basis

Restore entire LU

System Backup Strategy

The steps in system backup are:

After your system is running, build a primary system specifically tailored to your particular
requirements (based on responses to a questionnaire similar to the one in Figure 1-2). Build a
memory-based version of your system being sure to include D.RTR and ARSTR (or the
restore utility corresponding to your physical backup utility). See the RTE-A System
Generation and Installation Manual for details in building a primary system and creating a
memory-based version of the system. Copy the system to tape (see the RTE-A User’s Manual

Make a physical backup of the system and other important LUs.

Back up all files and programs necessary for minimal operation. Include the / pr ogr ans and
/ syst emdirectories as well as programs necessary to bring other programs and files from

1. Build a memory-based version of your own system.
for details on copying to tape).

2.
your physical and logical backups.

3. Make a logical backup.

4.

Make periodic file backups using the FST utility.

The RTE-A Backup and Disk Formatting Utilities Manual describes the physical backup and restore
utilities and the logical backup utilities.

1-16 System Management Overview

Primary/Physical System Backup

A physical backup is a copy of your system on a bootable medium or a medium that can be
downloaded to the system disk with an offline utility. You must have some form of physical
backup, or copy of your boot disk LU, in case errors on the LUs with programs, or the swap file,
result in system failure. This backup copy can be used to bring up a system quickly.

A physical backup stored on a disk is a bootable system. A physical backup stored on a magnetic
tape or a CTD has to be downloaded to a disk before it can be booted. This can be done in the
following way:

Boot a memory-based system that contains the corresponding physical restore utility. Then
restore the necessary LUs from tape to disk.

You must prepare a bootable memory-based system that contains ARSTR, the physical restore
utility, by using your backup restore utility. This system must be available on some medium other
than your system disk. This memory-based system is part of the physical backup.

The physical backup must be able to restore enough of the system to boot up, run the startup
program, and bring other programs and files onto the system.

Physical backups can also be used to save other disk LUs besides the boot LU. They can be used
to restore bad LUs in situations where your system is running and you can run ARSTR (or the
restore utility corresponding to your backup utility) online. In these situations, the backup must
be relatively current. You can use incremental logical backups to restore files that changed
between the physical backup and the time that errors occurred on the LUs.

It is important that you perform a physical backup each time you install a new revision of the
operating system. Older versions of a physical backup may not work with the current operation
system.

Physical backups should contain:

e Bootable BOOTEX.
e System file.

e Snap file.

e Boot command file.
e Welcome file.

e System libraries.

e Swap file.

e Necessary directories such as /PROGRAMS and /SYSTEM.

System Management Overview 1-17

e Necessary programs such as:

CI Command Interpeter.

CIX CI Auxiliary Program.

FMGR File Manager.

D.RTR Directory Manager.

D.ERR FMP Error Message Expander, General D.RTR Auxiliary Program.
EDIT Editor.

DL Directory List.

LI List Files.

10 Display I/O Configuration and Status.
WH System Status Reporting.

TF Tape Filer.

FST File Storage to Tape.

FSTP FST Auxiliary Program.

LINK Linker.

PROMT Prompt Program for VC+.
LOGON Logon Program for VC+.

® Message catalogs such as:

>TF000 Tape Filer.
>LK000 Linker.
>FS000 File Storage.

e Restore utility corresponding to your physical backup utility.

Physical backups do not save the file structure. They save the physical image of data on the disk.
The source and destination LUs must have the same physical characteristics. They must have the
same track size and blocks per track. However, the total number of tracks in a disk LU need not
match.

Logical Backup

A logical backup saves data on the disk on a per file basis. File structure and attributes are saved.

The FST utility is used to back up and restore files for both CI volumes and FMGR cartridges
(except type 0 files) on magnetic tape, DDS tape, or CS/80 cartridges. The TF and FC utilities are
also used for backup and recovery but are not as fast as FST. Like FST, TF backs up both CI and
FMGR files. FC only backs up FMGR files. You can do a full backup that makes a backup of all
files, or you can do an incremental backup of only the CI files by appending delta backups
(backups of all files changed since the last backup) to the same tape as the full backup. The next
full backup starts on a new tape. The advantages of doing incremental backups are:

e Higher system availability because average delta backup time is faster.
e Less tape used on the average.
e Fewer tapes used because backups can be appended to the same tape.

e Multiple versions of files can be accessed more conveniently for archiving.

1-18 System Management Overview

The disadvantages of incremental backups are:

e Files take longer to restore.
e The procedures require more effort to understand.

e Incremental backups are not applicable to FMGR files.

CI and FMGR commands are for disk-to-disk backup. Commands used in backups include the CI
CO (copy) command and the FMGR ST (store) and DU (dump) commands. Although these CI
and FMGR commands are available for disk-to-tape and tape-to-disk, use of FST or TF is more
common.

The LIF (Logical Interchange Format) utility provides file interchange between an HP 1000
system and other HP computer systems.

Keys to a Successful System Backup

The following are recommendations for implementing a successful backup scheme:
e Maintain a strict backup schedule.

e Keep users from accessing their files during system backup.

e Only one person should clear the backup bit for a given set of files.

e Label the tapes with date, time, contents, and type of backup.

e Store backups in a safe place.

e Keep system time accurate to maintain correct time stamps.

e Use transfer files for backup and restoration to avoid errors.

e Always verify backups and restores.

System Management Overview 1-19

Recovering and Shutting Down the System

Common situations in disk-based systems that require system recovery are system crashes, disk
failure, or unsuccessful system installation. If you still have a bootable system in any of these
situations, you can simply reboot. However, if you do not have a bootable system, you must boot
from the Primary System stored on tape. To recover a system backed up with ASAVE, use the
ARSTR utility.

Once the system is running, use the FST, TFE, and FC utilities to restore files and directories
backed up with those utilities. With FST and TE directories are restored to their original LU
when possible. Directories restored by the superuser are owned by their original owner.
Directories restored by a non-superuser are owned by the user doing the restore.

Situations may arise that require you to shut down the system. For example, you might shut down
the system for hardware maintenance or new card installation. Adverse weather conditions
require system shutdown because disks are susceptible to the power surges that may result from
electrical storms. If you need to shut down the system, use the procedure recommended in the
system installation and service manual.

You can turn off the CPU power when necessary without destroying data on the hard disk. Main
memory is lost unless your system is equipped with battery backup.

If you must power down your hard disk, power it down separately after CPU power is off following
the instructions accompanying the disk. Refer to the operator manuals for all devices and follow
the individual shutdown instructions.

Running Out of SAM

If your RTE-A/VC+ system runs out of SAM (System Available Memory), the PROMT program
takes action to allow the system to be recovered. If you get error messages indicating this problem
exists, you should perform the following recovery procedures.

If it is possible for PROMT to do so, PROMT disables the multiuser system and allows access to
RTE (RTE: prompt is displayed). PROMT attempts to give access to RTE from LU 1. If this is
not possible, for example LU 1 is locked, an error message is displayed, and then RTE is made
available at the terminal that caused PROMT to be invoked. While the multiuser system is
disabled, PROMT does not allow any user access to LOGON, CM, or the SYSTEM > prompt.

When the RTE: prompt is displayed, you can take action to correct the SAM problem (use the OF
command to terminate a program using SAM). After you have released some SAM, enter GO
RESTR to restore the system to a normal multiuser environment.

Depending on the source of the SAM problem, SAM may be recovered without your help; for
example, the programs using SAM may release some SAM. If this happens, you still have to enter
GO RESTR to restore the system to a normal multiuser environment. PROMT continues to
display the out of SAM message until RESTR has finished executing.

If your system runs out of SAM, it is possible that terminals might get locked to CM or LOGON.
If you detect this (you can use the DS (Device Status) command from RTE:) simply OF CM or OF
LOGON. You can do this before or after you have restored the system.

1-20 System Management Overview

If RESTR is not RPed, PROMT attempts to RP RESTR when it detects that the system is out of
SAM; however, the RP may fail because of the SAM problem. If RESTR is not RPed and
PROMT is unable to RP RESTR, PROMT takes no further action for recovering SAM. The
multiuser system is not disabled and RTE is not made available. This is done so that the system
can still be restored later.

A preventive step you can take that allows your system to recover if it runs out of SAM is to RP
the SAM, WH, and RESTR utilities in your Welcome file at boot time. See RTE-A Virtual Code+
Manual, part number 92078-90001, for more details on this. SAM and WH are useful for
determining which programs, in which sessions, are causing the problem.

Caution If you run out of SAM and you recover with the above procedure, your system
integrity cannot be guaranteed. When this occurs, your only option is to
shutdown your applications and reboot your system.

System Management Overview 1-21

Multiuser Account System

Multiuser capability is provided through VC+ (HP product number 92078A). You create and
maintain the multiuser account system with the GRoup and User Manager Program (GRUMP)
described in detail in Chapter 3.

To prepare for setting up the multiuser account system, you must perform the following tasks:

e Organize the system users into a hierarchy of groups and users. Groups should include sets of
users with common characteristics and/or requirements such as members of a project team or
individuals with similar functions. Users can be members of more than one group.

e FEstimate the number and size of CI file volumes and FMGR disk cartridges in the system.
This will depend on your account structure, user application requirements, and the degree of
file independence required by various users of the system.

This information can be gathered from interviews with your users. See the “Designing and
Planning” section in the “System Management Overview” chapter (Chapter 1), for a sample
questionnaire for determining user requirements.

The multiuser system has two interfaces, the user or interactive interface, and the programmatic
interface. The user, or interactive, interface consists of the following utilities:

o GRUMP—Group and User Management Program
e KILLSES—Session Terminating Program
e SESLU—Session LU Access Table Ultility

The programmatic interface consists of the set of subroutines described in the “Subroutines for
Multiuser Support” chapter of the RTE-A ¢ RTE-6/VM Relocatable Libraries Reference Manual,
part number 92077-90037.

The Session Environment

The process of logging on, interacting with the system, and logging off, is referred to as a session.
A user accesses the system by entering, at a minimum, a user name. A group name is optional. If
the user wants to associate the session with a group other than the defined default group, then that
group name must be specified. If the user has a password defined, it must be supplied at logon.

The system sets up an operating environment for each user session based upon the user and group
accounts with which the session is associated. User and group account information is kept in user
and group configuration files on the /USERS directory. Both user and group configuration files
are created and modified with the GRoup and User Management Program (GRUMP).

Multiuser Account System 2-1

If the user’s startup program is CI, the session’s associated user and group name are put in the
predefined variable $LOGON in the form USER.GROUP.

After logon, the system permits only those user peripheral access requests and commands allowed
within the operating environment. Users can access many peripherals with default logical unit
numbers. They do not need to know system logical unit assignments. For example, each user’s
terminal is referred to as LU 1 rather than by the actual system LU assigned to it.

When finished with the system, the user logs off. If a user logs off via CI and a logoff
program/command file has been defined, CI schedules or transfers control to that file. The system
releases system resources allocated for the session and LOGON updates the user and group
configuration files associated with the session. The user’s total CPU usage and connect time for
the session are added to the user’s grand total, to the group’s totals, and to the totals for the user
in that group and is printed to the terminal if the user was in an interactive session.

Session Logon Process

LOGON, the session logon and logoff processor, operates in conjunction with PROMT and CM
(single command version of CI). LOGON is invoked by PROMT when there is an interrupt at a
terminal and no active session is operating from the terminal. CM is invoked by PROMT when
there is an interrupt at a terminal and an active session is operating at the terminal. At logon,
LOGON prompts the user for logon entry (USER.GROUP name) and password (if required).
LOGON attempts to match the logon entry with an existing USER.GROUP definition. If it finds
a match, a user ID entry is created for the session and the user’s session is initiated.

LOGON uses the group configuration file to:

Verify that the group exists.

Verify the user is a member of the group.

Check the group accounting limits.

Include the group’s resources in the operating environment of the user’s session.

LOGON uses the user configuration file to:

Verity the user logon name.

Check the user’s CPU usage and connect time limits within the group.
Run the start-up program.

Designate a working directory.

Initialize UDSP tables.

Create the session LU access table.

Set the session user’s capability level.

Record the last logon time.

Record the LU the user logged onto.

Record the group ID logged onto by the user.
Create the session Environment Variable Block.

2-2 Multiuser Account System

LOGON creates a user ID table entry for each user session. The ID table entry contains
information about the user session initially obtained from the user logon entry and later from the
user and group configuration files set up in the system. The user ID table entry contains:

User logon name.

Session sequence number.

Pointer to working directory.

Terminal LU of the user or session number.
Logoff program/command file bit.

Number of user programs counter.

User identification number.

Logon time for user.

Session CPU usage.

Address of UDSP table in XSAM.

ID segment address of the first session program.
Group ID number.

User capability level.

User-Definable Directory Search Path (UDSP)

There is a User Definable Directory Search Path (UDSP) associated with each session. A UDSP
is a list specifying which directories to search when opening a file, and the order in which they are
to be searched. There can be up to eight UDSPs, numbered from 0 through 8. UDSP 0 is a
special case, it represents the “home” directory and has a depth of one.

The number of UDSPs and their depth (the number of entries per UDSP) are defined when the
user account is created or modified. LOGON allocates space for the session UDSP in XSAM and
initializes them when a user logs on. PATH is the utility that defines and displays UDSPs. The
UDSP entries set by PATH are valid only for the duration of the session, they are initialized to
undefined each time a user logs on.

The RU (Run Program) command in CI uses UDSP #1, and the TR (Transfer to Command File)
command uses UDSP #2. Other UDSPs may be defined by the user for special use.
Programmatically, D.RTR can be directed to use a UDSP when opening a file by specifying the
UDSP number in the option string in an FmpOpen call.

You need to determine the optimal number and depth of paths for each user. The amount of
XSAM is affected by the number of users that have UDSPs, because all UDSPs are stored in
XSAM. The number of UDSPs allocated should be limited in order to conserve system available
memory. Use the GRoup and User Management Program (GRUMP) to define number and
depth of UDSPs. Command files can set up paths at logon.

Environment Variable Block (EVB)

The Environment Variable Block (EVB) is kept in sharable EMA and is identified by the session
number; for example, Environment 90 for session 90. The block is allocated and initialized by
LOGON. The size of a user’s EVB is indicated in the user file. The system manager should use
GRUMP to give each user an appropriate amount of space. If the user file is not modified using
GRUMP, the user will not be able to export variables, aliases, or functions. However, she or he
can still use them in local space.

Multiuser Account System 2-3

Local CI variable space (which also contains aliases and functions) size is system configurable.
This space is now in large model EMA. The default size is two pages; the effective size prior to
Revision 6.0 was one page. To change this, the system manager must edit CI.LOD and change the
“em, | ”line to “em n, | ”, where n is the desired number of pages. This size will be the same for
all users. See Chapter 3 for information on enlarging the EVB. Refer to the RTE-A User’s
Manual, part number 92077-90002, for descriptions of the variables.

Session LU Access Table

Each user and group definition contains a 16-word LU access table that provides a means of
limiting access to LUs. If the LU number is in the LU access table, access to the LU is granted. If
the LU number is not in the table, all access to the LU is denied. User and group LU access tables
are created and modified with GRUMP.

Note LU 0, the bit bucket, is used for program-to-program communication and should
not be removed from the LU bit map. Also make sure that all LUs
corresponding to directories that users need to access (such as /PROGRAMS),
and LUs corresponding to DS/NS physical links are in the LU access table.

LOGON creates the session LU access table by combining the LUs the user and associated group
can access when a user logs on. The session LU access table is stored in XSAM and can be
displayed and modified with SESLU (session LU access table utility). For technical detail about
logon limitations when the system runs out of XSAM, see the RTE-A System Design Manual.

When session users try to access an LU, their LU access tables are checked. The check is done in
the operating system after the LU specified in the user’s I/O request has been checked against the
actual system LU. If users have access to the LU, their requests are granted; otherwise, the
requests are aborted. This check catches all I/O requests no matter how they are issued (with
FMP calls or EXEC calls) and no matter how they are re-directed.

Note The LU access table is not part of Security/1000. Thus, user’s I/O requests are
checked even when Security/1000 is OFE.

Session Logoff Process

When a user has completed a session and logs off, LOGON updates the session account file with
the CPU usage and connect time and de-allocates system resources for the session.

2-4 Multiuser Account System

Session Utilities

To help you manage user sessions, the SESLU (Session LU) and KILLSES (Kill Session) utilities
are provided. A brief description of each utility follows. Refer to Chapter 3 for a detailed
description of how to use these utilities.

SESLU: Modifying and Listing Session LU Access Tables

SESLU lists and modifies session LU access tables. It does not affect the user or group
configuration files associated with the session user.

A user is not allowed to remove access to a session user’s terminal LU or to any LU containing the
current working directory or any directories specified in the UDSP table.

If the Security/1000 system is not turned on, any user can list a session LU bit map with SESLU,
but a user must be a superuser to modify a session LU bit map. If Security/1000 is turned on, the
system manager can assign different required capability levels for the base function and each
subfunction of the SESLU utility. Users must have the required capability to run SESLU. See
Chapter 4 for a detailed description of capability levels, base functions, and subfunctions.

KILLSES: Terminating a Session

KILLSES terminates a session immediately. The user is logged off, all programs associated with
the session are terminated, associated spool files are closed and released, and the user entry in the
user ID table for the session is released. The session can be any type: background, interactive, or
programmatic. The system session, session 0, is an exception and can never be killed.

If Security/1000 is not turned on, the user must be a superuser to run KILLSES. If Security/1000
is turned on, the system manager can assign the capability level required to run KILLSES.

Account Structure

The multiuser account system maintains two types of accounts: user accounts and group accounts.
A group is a set of users who share common functions, applications, and/or resources. Group
accounts are used to assign selected resources to specific sets of users and to track accounting use
for the groups. User accounts provide the system with the information necessary to set up and
maintain the operating environment and track accounting use for that user.

Every session user must be assigned a user account. The user account contains unique user
information and information about the user for each group in which the user is a member. Unique
user information pertains to the user no matter what group the user logs on with. The information
about the user in each group is called USER.GROUP information and pertains to the user only
when logged on associated with the group for which the information is defined. Unique user
information ensures that the same set of private resources are retained in the user’s operating
environment regardless of associated logon group. USER.GROUP information allows tailoring of
the user’s environment to the application needed for the associated logon group. It also allows for
finer control of accounting.

Multiuser Account System 2-5

All accounts are specified to the system in the form USER.GROUP where USER and GROUP
are identifiers of one to sixteen characters in length. User identifiers and group identifiers must
be unique in the system.

A user can belong to several groups, but for accounting, is considered a separate entity in each.
Example: Fred, logged on in group ABA, cannot switch to group CDC in mid-session. He must
log off ABA before logging onto CDC.

An example account structure is shown in Figure 2-1. The sample account structure is broken
into three levels: system manager, group, and user. Note that Jones is a member of three groups
so that Jones can access the same private files and/or peripherals from all three groups.

SAMPLE ACCOUNT STRUCTURE

SYSTEM
MANAGER

7 7
% DUNN BROWN GARciA || Fona % LOUIE AMBRA /// USER
/ MANUF | | mANUF MKTING || mkTING ACCTS ACCTS / RESOURCES
/ A

MANUF MKTING ACCTS RESOURGES

SYSTEM MANAGEMENT RESOURCES

GLOBAL RESOURCES

z Same user Jones in different groups

Figure 2-1. Sample Account Structure

2-6 Multiuser Account System

User Account Planning

Use an account planning worksheet to list all the individual users of your system. For planning
convenience, you should assign a unique identifier (up to 16 characters) to each user. A sample
account matrix is shown in Figure 2-2.

GROUPS

MANUF MKTING ACCTS
USERS

JONES X X X

DUNN

BROWN

GARCIA X

FONG

LOUIE

AMBRA

Figure 2-2. Sample Account Planning Matrix

Group Account Planning

After you have listed your system users, divide them into groups. Members of a group usually
share one or more common attributes. Some of the criteria that may apply here are explained
below.

Existing Organization

You may find it convenient to follow an existing organizational pattern. Your account structure
could reflect the actual groups in your user community.

Common Files

Users who share files or data bases can be included in a group. FMGR and disk LUs can be
associated with a group in such a way that they can be accessed solely by members of the group.
CI volumes and directories can be assigned protection in a way that allows only group members to
access them.

Common Peripherals

Groups can be formed around special peripheral access requirements. If desired, peripherals can
be restricted to selected groups and users. By including the corresponding LU in the group’s LU
access table, peripherals may be defined to the account system so that they are automatically
added to the list of peripherals individual group members may access.

Multiuser Account System 2-7

Common Applications

You can separate users into groups based on their applications and job functions. Users
performing similar tasks could then share related files and peripherals.

Usually, you should only form new groups when the list of users sharing a common resource is
composed of users from two or more existing groups. If the users are all members of one existing
group, you may be able to add the resource to that group’s domain. The information gathered
here will be used later on to initialize and maintain the account system.

Assign a name or an identifier, up to sixteen characters, to each group in your system. This
identifier must be unique. It will be used by members of that group to identify themselves to the
system. List each group in the group column of the account planning matrix, see Figure 2-2. Next,
indicate the members of each group. In each group column, place an “X” in all rows
corresponding to the members of that particular group. Note that there is no restriction on the
number of groups to which a user may belong. This may be a requirement in situations where
individuals need to access resources owned by many different groups.

/USERS Directory

Group and user accounts are managed in a multiuser account system by the Group and User
Management Program (GRUMP). The multiuser account system requires a global directory,
/USERS, which must contain the following:

MANAGER User configuration file containing the user definition for the
system manager who has maximum capability.

MASTERACCOUNT System file containing logon names and corresponding user ID
numbers for all users on the system.

NOGROUPGRP Group configuration file containing the group definition for
NOGROUP. All users must belong to this group.

SYSTEM.GRP Group configuration file containing the group definition for
SYSTEM. It is used for system management purposes.
MANAGER must always be a member of this group.

MASTERGROUP System file containing logon names and corresponding group ID
numbers for all groups on the system.

LOGONPROMPT System file containing the system logon prompt.

HELP.DIR Subdirectory that contains GRUMP help files.

These files and directories are created automatically by GRUMP if there is no /USERS directory
when it is scheduled. (For more details, see “Initializing the Multiuser Account System” in this
chapter). Each group and user defined in the system also has an account file residing on the
/USERS directory. These files are called group and user configuration files, respectively. They
are created and modified by using GRUMP.

Files on /USERS should only be modified with GRUMP or with the HP-supplied multiuser
account routines and/or utilities. The files should be write protected for security reasons.

2-8 Multiuser Account System

User Configuration File

The operating system maintains information on all user accounts in files called user configuration

files. All user configuration files reside on the /USERS directory (which should be write protected
for security), and each file name corresponds to a user’s logon name. Each user configuration file

contains information unique to the user regardless of associated group, and information unique to
the user within each group in which that user is a member.

Caution Do not purge a user configuration file from the /USERS directory with the PU
command in CI. Use the PURGE USER command in GRUMP, which purges
the user from the multiuser account system with all the necessary cleanup.

The information in the configuration file is filled in during the creation of a new user account with
GRUMP. The system manager, or a user with the required capability, supplies some of the
information and GRUMP generates the rest. GRUMP also is used to modify or list information
in the user configuration files.

Routines GetAcctInfo, ResetAcctInfo, and SetAcctLimits can be used to access and
programmatically alter some of the user information. See the RTE-A ® RTE-6/VM Relocatable
Libraries Reference Manual, part number 92077-90037.

The system uses the user configuration file name to verify the user’s logon name. The unique user
information in the file is used by the system to:

e Verify the user’s password.

e [Initialize UDSP tables.

e Update the last logon time.

e Update the group ID that the user last logged on with.

e Update the LU the user last logged on to.

e C(Create the session LU access table.

e Determine the capability of the user.

e Determine the size of the Environment Variable Block for the user’s session.
e Update the total CPU time usage of the user.

e Update the total connect time usage of the user.

e Update the last logoff time.

The information unique to the user within a group is used by the system to check that the user’s
CPU usage and connect time limits within the group have not been exceeded, run the startup
program, designate a working directory, run the logoff program/command file, and update the
CPU and connect time usage for the user within the group.

Multiuser Account System 2-9

The information in the user configuration file falls into the following two categories:

1. Unique USER Information — information associated with the user regardless of group:

Real name.

Superuser bit.

Encoded password.

User ID number.

UDSP number and depth.

Block number of the first group record (internal information).
Number of entries in the user’s group list (internal information).
Default logon group.

Last logoff time.

Last logon time.

Group ID number with which the user last logged on.

LU the user logged on to last.

LU access table.

Size of the Environment Variable Block.

Capability level.

Total CPU usage for user in all groups.

Total connect time for user in all groups.

2. USER.GROUP Information — information associated with the user only when logged on with
the group for which it is defined:

Startup program to run.

Logoff program/command file.

Working directory name.

CPU usage and connect time totals within a specific group.
CPU usage and connect time limits within a specific group.

The information is divided this way:

e For a user as a single entity—one real name, one password, one user ID number, and
comprehensive CPU usage and connect time totals.

e To enforce the definition that one user has one set of resources—one LU access table and one
UDSP number and depth.

e o enforce security—one capability level.
e o enable the system manager to tailor the working environment of the user to the application
needed for that user in each group—one startup program, one logoff program/command file,

and one working directory per group.

e For finer control of accounting and accounting limits—CPU usage and connect time totals, and
limits for the user in each group.

2-10 Multiuser Account System

MASTERACCOUNT File

The MASTERACCOUNT file is a protected system file on the /USERS directory. This file is
created by GRUMP during the initialization phase and contains the logon name and
corresponding user ID number for all system users. It should be write protected for security.

The first record contains system information with each of the remaining records containing the
logon name of a system user. The contents of the record is the user logon name (maximum of 16
characters). The user identification number is the same as the record number (example, user ID
26 is record number 26 in the MASTERACCOUNT file) so it is easy to determine the user name
given the user ID. If you have the user ID number and need to know the name of any user, use
the subroutine IDToOwner.

Given the user name, this file is not searched to determine the user ID because users may have
been deleted or there may have been an unrecoverable error in the creation of a new user. In this
case, use subroutine OwnerTolD.

Group Configuration File

The operating system maintains information on all group accounts in files called group
configuration files. The file resides on the /USERS directory (which should be write protected for
security) and its name corresponds to the group’s logon name with the type extension .GRP. This
distinguishes it from user configuration files on /USERS.

Caution Do not purge a group configuration file from the /USERS directory with the PU
command in CI. Use the PURGE GROUP command in GRUMP, which purges
the group from the multiuser account system with all the necessary cleanup.

The information in the group configuration file is filled in during the creation of a new group
account with GRUMP. The system manager, or a user with the required capability, supplies some
of the information and GRUMP generates the rest. For example, GRUMP uses the
MASTERGROUP file to assign the group identification number when the new group is created.
GRUMP also can be used to list or modify information in an existing group configuration file.

Routines GetAcctInfo, ResetAcctTotals, and SetAcctLimits can be used to programmatically
access and alter group information. See the RTE-A ® RTE-6/VM Relocatable Libraries Reference
Manual for information about these routines.

Each group configuration file contains the following information:

e Group identification number.

e Group totals for CPU usage and connect time.

e Group limits for CPU usage and connect time.

e Group LU access table.

e Number of records in its members list (internal information).

o List of member records.

Multiuser Account System 2-11

The system uses this file when it creates a user session to check that the user is a member of the
group, that the group accounting limits have not been exceeded, and to include the group’s
resources in the operating environment of the user’s session. When a group member logs off, the
CPU usage and connect time totals are updated in the group configuration file.

MASTERGROUP File

The MASTERGROUP file is a protected file on the /USERS directory. This file is created by
GRUMP during the initialization phase and contains the logon name and corresponding group ID
of all the groups on the system.

The first record contains the last group identification number assigned by the system and other
system information. The remaining records contain the logon name of each group defined in the
system. A group’s identification number is its corresponding record number in the
MASTERGROUP file, with the maximum group ID number being 2047. The contents of the
record is the group’s logon name (maximum of 16 characters), so it is easy to determine the group
name given the group ID. If there is a need to know the name of a group for which the group ID
is known, use subroutine IdToGroup.

This file is never searched to determine the group ID given the group name. If there is a need to
know the ID of a group for which the group name is known, use subroutine GroupTolD.

NOGROUP and Default Logon Group

One requirement of the multiuser account system is that all users belong to group NOGROUP.
NOGROUP is a group from which users gain no resources. Its purpose is to allow systems to
operate without setting up groups. To operate without assigning groups, all that needs to be done
is to make NOGROUP the default logon group for all user accounts by using GRUMP.

If the system has been set up to assign users to groups, and you do not want a particular user
logging on with a group assignment of NOGROUP, you can set that user’s connect time limit
within NOGROUP to zero. If you do not want any users to log on with a group assignment of
NOGROUP, set the connect time limit for NOGROUP to zero.

All user account definitions contain a list of groups (one or more) to which the user belongs. Any
one of the groups may be declared the default logon group by using GRUMP. This allows users to
log on without specifying a group account name in the logon entry while automatically associating
the session with the default logon group.

2-12 Multiuser Account System

Initializing the Multiuser Account System

The Group and User Management Program (GRUMP) creates and manages the multiuser
account system. The account system requires a directory called /USERS, which contains a
subdirectory HELP and the files MASTERACCOUNT, MASTERGROUP, LOGONPROMPT,
MANAGER, NOGROUP.GRP and SYSTEM.GRP. All of these are created automatically by
GRUMP if there is no /USERS directory when it is scheduled. GRUMP initializes the multiuser
account system in these steps:

1. Prompts for the LU where the directory /USERS is to reside.
2. Creates directories /USERS and /USERS/HELP (for the GRUMP help files).
3. Creates the MASTERACCOUNT file.

4. Reserves record number two and three in the MASTERACCOUNT file for SYSTEM and
MANAGER, respectively.

5. Sets the last assigned user identification number to 3 in the MASTERACCOUNT file.

6. Initializes the LOGONPROMPT file. The default is:

Please log on:

7. Creates the MASTERGROUP file and sets the last assigned group identification number to 2.
Records 3 through 2048 are initialized to zeros.

8. Creates the group configuration file for NOGROUP and sets all the attributes that can never
be modified; ID #0, no LUs set in the LU access table, and MANAGER is a member. The
CPU and connect time limits are set to infinity but can be modified.

9. Creates the group configuration file for SYSTEM and sets all the attributes that can never be
modified; ID #2, no CPU or connect time limits, and MANAGER is a member. All LUs are
put in the LU access table, but they can be modified.

10. Creates a user configuration file for MANAGER and sets the following attributes that can
never be modified; capability level of 31, all LUs put in LU access table, create group entries
for NOGROUP and SYSTEM. It then prompts to see if the operator wants to make any
modifications to the MANAGER account definition.

Multiuser Account System 2-13

Re-Initializing the Multiuser Account System

Caution Read all instructions carefully. Unless done carefully and in correct sequence,
re-initializing the multiuser account system can prevent you from logging on to
your system.

Do not log off after you have purged /USERS and before you have re-initialized
the multiuser account system or you will not be able to log on again.

If you already have a multiuser account system set up, but want to re-initialize from scratch, follow
these steps:

1. Make sure no other users are logged on.

2. Copy all the GRUMP help files from /USERS/HELP to a temporary directory with the purge
option.

3. Purge everything in /USERS.
4. Purge the /USERS directory.
5. Run GRUMP immediately to re-initialize the multiuser account system.

6. Copy the help files from the temporary directory to /USERS/HELP that GRUMP created
during the initialization.

7. Create the new multiuser system.

Note You will have to redefine ownership and associated groups for almost all
volumes and directories because they are based on user and group identification
numbers that very likely have changed. Groups NOGROUP and SYSTEM are
always guaranteed the same group identification numbers. User SYSTEM will
always have the same user ID. User MANAGER will always have user ID 3
when created with GRUMP, but could have a different user ID if it was created
prior to Revision 5000.

2-14 Multiuser Account System

GRUMP, SESLU, and KILLSES Utilities

GRUMP Utility

The GRoup and User Management Program (GRUMP) is a command-driven utility for managing
a multiuser account system. It is part of the VC+ multiuser product.

Commands are run from a command file or interactively from a terminal. The operation mode of
GRUMP can alternate between interactive and non-interactive with the TR(ansfer) command.
The TR command can be issued any time GRUMP is waiting for input.

GRUMP produces two kinds of messages: error messages printed to the terminal (and a log file if
one is specified) to indicate that an error has occurred, and information messages printed to a
specified log file (and the terminal if the quiet option is not on) to describe what is happening
when running GRUMP.

The RINFO (Reset Multiuser Accounting Information) and SINFO (Show Multiuser Accounting
Information) utilities that reset and display CPU usage and connect time should be used only on
systems that are not using groups. If you use RINFO in a system with groups, it resets the
information for the unique user and USER.NOGROUP, which may not be what you want. Use
GRUMP to reset and display CPU usage and connect time for systems using groups. The RINFO
and SINFO utilities are described in Appendix I.

Caution Do not remove GRUMP’s ID segment (OF GRUMP) because this can corrupt
multiuser files.

Note GRUMP’s scheduled name may change temporarily to GRMP0, GRMP1,...or
GRMP9 during execution. GRUMP tries to maintain the scheduled name as
much as possible.

GRUMP, SESLU, and KILLSES Utilities 3-1

Running GRUMP

The GRUMP runstring is as follows:
[RU CGRUNP [InputSource [LogFile]] [+Q
where:

InputSource user’s terminal LU or file descriptor for a command file. If not specified or if a
user’s terminal LU is specified, GRUMP enters interactive mode. If a file
descriptor is specified, GRUMP executes the command file.

LogFile user’s terminal LU or file descriptor to which all prompts, responses, error and
information messages are to be written. If not specified, all prompts,
responses, and messages are printed to your terminal LU.

+Q quiet option that suppresses information messages.

The parameters are position dependent; therefore, an unspecified parameter must be delimited
with commas. For example, to default the InputSource parameter to your terminal LU and specify
MYFILE as the log file, you would enter the following command:

Cl> grump, nyfile

The +Q option must be the last parameter in the runstring if an input source and log file are
specified. Space holders for input source and log file need not be entered if +Q is the only option
used.

Except for responses, everything written to the log file is preceded by an asterisk-blank (*) to
make the line a comment line. Comment lines are not executed if the log file is later used as an
input source. TR commands are preceded by asterisk-arrows (* >>) so they become comments
indicating the source of subsequent commands.

Interactively

To run GRUMP interactively, enter the GRUMP runstring without specifying an input source; for
example:

Cl > grunp
GRUWP>

In interactive mode, you can enter a GRUMP command after each GRUMP prompt. If the
GRUMP command you enter has required parameters, you can specify values for the parameters
when entering the command. If you do not specify any or all parameter values, GRUMP prompts
you to enter the unspecified values.

GRUMP uses the standard RTE command stack. This supports various operations such as finds,
page movement, line marking, and so on. Refer to the RTE-A User’s Manual for information on
command stack usage.

3-2 GRUMP, SESLU, and KILLSES Utilities

The following example shows the start of creating a new group called MAX:

Cl > grunp
CGRUMP> ne ¢
Enter Group Logon Nanme: max

In the following example, a new user is created with the name “Jamala”, real name “James
Alabama”, password “pup”, capability level 12, and UDSP 4:4.

Cl > grunp
GRUVMP> ne u jamala ‘Janmes Al abama’ pup 12 /e 4:4

Creating user JAMALA

Al'l users nust be in group NOGROUP.

Enter informati on for JAMALA. NOGROUP

Enter working directory nanme [::JAVALA]:

If you are entering commands interactively and GRUMP encounters an error (an illegal value in a
CPU usage limit, for example) GRUMP prints an error message and again prompts you for the
value or information.

Using a Command File

To run GRUMP with a command file, enter the GRUMP runstring and specify a file containing
GRUMP commands as the input source; for example:

Cl > grunp newacct

Non-interactive commands are supplied by command files and no prompts are issued. Use
caution when working with command files because errors within them can cause unexpected
results. You should always use a log file in conjunction with your command file to help you check
results and trace errors.

If you are using a command file, GRUMP prints errors to the screen and log file and tries to
continue. If GRUMP is unable to recover from the error, it reports the error, flushes the current
input string, goes interactive, and again prompts for the input. Use the log file to locate the errors
in the command file. After correcting the command file, use GRUMP to undo any changes made
by the command file before reexecuting the command file.

Appendix C contains an example of a log file used in conjunction with a command file.

GRUMP, SESLU, and KILLSES Utilities 3-3

GRUMP Command Summary

GRUMP commands fall into five categories:

General Commands.

Commands for Adding Accounts.

Commands for Modifying Accounts.

Commands for Displaying Account Information.

Commands for Purging Accounts.

Tables 3-1 through 3-5 group GRUMP commands by function.

Table 3-1. General GRUMP Commands

Command Purpose Page
/A Aborts current command 3-7
EX Terminates GRUMP 3-15
HE or ? Lists valid commands and help for individual commands | 3-16
Ki Immediately terminates current user session 3-16
RU Clones and runs a program from GRUMP 3-30
TR Transfers control from one LU or file to another 3-30

Table 3-2. GRUMP Commands for Adding Accounts

Command Purpose Page
NE G Creates a group configuration file for a new group 3-21
NE U Creates a user configuration file for a new user 3-23

Table 3-3. GRUMP Commands for Modifying Accounts

Command Purpose Page
AL G Alters attributes defined for groups 3-7
AL U Alters attributes defined for users 3-9
PA Alters user password in the user configuration file 3-27
RE G Resets group accounting information 3-29
RE U Resets user accounting information 3-29

3-4 GRUMP, SESLU, and KILLSES Utilities

Table 3-4. GRUMP Commands for Displaying Account Information

Command Purpose Page
LIG Lists one or more group account entries 3-16
LIu Lists one or more user account entries 3-17

Table 3-5. GRUMP Commands for Purging Accounts

Command Purpose Page
PU G Removes a group from the accounting system 3-27
PU U Removes a user from the accounting system 3-28

Command Conventions

The following conventions apply to all GRUMP commands:

Only the first, or first and second, characters of the command are checked; all other characters
are ignored.

GRUMP prompts for required command characters and parameters that are not entered at
the GRUMP> prompt. For example,

GRUMP> ne
Enter (@roup or (U)sers:

GRUMP> ne ¢
Enter group |ogon nane:

GRUMP> new g gener al
Enter CPU limt (hh:mmss or -1 for No Limt) [No Limt]:

All GRUMP commands must be entered at the GRUMP prompt. /A, /HE, and /TR can also
be entered at the parameter prompts.

Multiple GRUMP commands cannot be entered in a single input string.

One command and all its parameters can be entered in a single input string at the GRUMP
prompt. The parameters must be entered in the proper order. If an error is encountered, the
rest of the string is ignored, and GRUMP tries to recover. GRUMP prompts again for any
omitted values.

Enclose character strings with embedded commas or blanks in back quotes (‘ ©), or GRUMP
reads the blanks and commas as parameter separators. Back quotes can be omitted if the
string is the only input on a line or is the last parameter in a multiple value string. Use caution
when omitting back quotes. The following examples all give the same result (user input is
underlined):

GRUMP, SESLU, and KILLSES Utilities 3-5

1. GRUWP> ne U jamala ‘Janmes Al abama' pup 12 /e 4:4 2

2. GRUW> ne u janmla
Enter user’s real nane : Janes Al abama
Enter user’s password: pup 12 /e
Enter #UDSPs:depth : 4:4
Enter the size of the Environnent Variable Block in pages

3. GRUW> new u janala Janes Al abama
Enter user’s password: pup 12 /e 4:4 2

The result of each example is the creation of user JAMALA with:

real name James Alabama
password pup

capability level 12

LU access table all bits set
UDSPs:depth 4:4

EVB size in pages 2

3-6 GRUMP, SESLU, and KILLSES Utilities

GRUMP Commands

Abort (/A)

Purpose: Aborts the current command or subfunction within the ALTER USER
command.

Syntax: / Aor CTRL-D

Description:
/A is identical to EXIT when entered at the GRUMP> prompt (global command).

Note that you must use CTRL-D to abort from the prompt “Enter working directory name[xx]:”
because /A is considered a valid response. In other words, /A is interpreted as a working directory
name.

If /A is entered within any command except ALTER USER, the command has no effect on the
related multiuser files. See the ALTER USER command for its different use of the /A command.

Alter Group (AL G)
Purpose: Modify the attributes defined for a group.
Syntax: AL G group
group Name of the group account to be modified. Legal values for group are:
groupName modify the group account specified.

@ modify all existing groups.

Description:

The modifications you make with ALTER GROUP do not affect users currently logged on, only
users logging on associated with that group after the alterations have been made to the group
configuration file.

GRUMP prompts for values for all the attributes that can be modified with this command.
Current values are listed as defaults with [X...X] meaning default.

e Group name.

e CPU usage.

e Connect time limits.
e LU access table.

GRUMP returns the message “Capability level not high enough to alter group...” when you do not
have the required capability to change an attribute and proceeds to the next attribute.

The prompts for ALTER GROUP are:

Enter group | ogon nane:

Enter new group | ogon nanme [XXXXX]:

Enter CPU limt (hh:mmss or -1 for No Limt) [XX]:

Enter connect tinme limt (hh:mmss or -1 for No Limt) [XX]:
LU access table nodifications ([—]LU#[:LU#2]):

GRUMP, SESLU, and KILLSES Utilities 3-7

Group Name

This is the group logon name. The name must be unique, follow file naming conventions, and be
one to sixteen characters with no parentheses. This definition is not case sensitive so either upper
or lowercase characters can be used.

CPU Usage Limit

This defines the CPU limit for the group. The values for CPU limit are:

hh:mm:ss hh — hours (up to 5960).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits CPU use by group.
-1 group has unlimited use of CPU.
<cr> no change to value.

No more members may log on after the CPU limit has been exceeded until you rectify the
situation by recording the usage and resetting the usage with the RESET GROUP command or by
altering the CPU limit for the group. Users logged on when the limit is exceeded are not affected.
Connect Time Limit

This defines the connect time limits for the group. The values for connect time limits are:

hh:mm:ss hh — hours (up to 596500).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits group from logging on.
-1 gives group unlimited connect time.
<cr> no change to value.

No more members may log on if the connect time limit has been exceeded until you rectify the
situation by recording the connect time and resetting it with the RESET GROUP command or by
altering the connect time limit for the group. Users logged on when the connect time limit is
exceeded are not affected.

LU Access Table

The LU access table defines the LUs to which the group has access. The values are:

n adds LU n to LU access table.
—-n removes LU »n from LU access table.
m:n adds LU m to LU n to LU access table.
—m:n removes LU m to LU n from LU access table.
/L lists LUs set in LU access table that group can access.
lE ends LU access table modifications.
<cr> ends LU access table modifications if sole input at prompt.

GRUMP continues to prompt for alterations until a /E is encountered in an input string or a <cr>
is entered at the LU access table modifications prompt.

Multiple input must be separated by a comma or space as in this example where access to LUs 5,
6, 10 through 20, and 30 is given, and access to LUs 40 and 50 through 55 is removed:

LU access table nodifications ([— JLU#[:LU#2]): 5 6 10:20 30 -40 -50:55

3-8 GRUMP, SESLU, and KILLSES Utilities

Alter User (AL U)
Purpose: Modity certain attributes of an existing user account.
Syntax: AL U UserGroup
UserGroup User and group information. Can be specified as follows:

user Information unique to user and certain attributes in
the user NOGROUP record.

user. Information unique to user regardless of group. It is used to
add a user to a group and change the default logon group.

user.group User.group information about user within specified group.

@.group Corresponding user.group information of all members of the
specified group. GRUMP loops through the list of members
and modifies member attributes one at a time.

user.(@ Group attributes of user in all groups in which the user is a
member. GRUMP loops through user’s group list and
modifies the attributes in each of the user.group records one
at a time.

Description:

You can use GRUMP to modify the attributes for which you have the required capability. If the
user does not have the required capability level, GRUMP returns the message “Capability level
not high enough to alter user...” and proceeds to the next attribute.

If an attribute (such as the name of the SYSTEM group) can never be modified, GRUMP returns
the message “XXXXX attribute can never be modified” and proceeds to the next attribute.

Invalid input is ignored, and the prompt is re-issued. If invalid input is read from a transfer file,
GRUMP goes into the interactive mode before re-issuing the prompt.

To add a user to a group or change the default logon group, enter “USER.” as the USER.GROUP
parameter. GRUMP prompts for modifications to the unique user attributes. Then it prompts for
the group name(s) to which the user should be added, the USER.GROUP information needed for
each group, and the default logon group.

You cannot remove a user from a group with the ALTER USER command. Use the PURGE
USER command to do this.

Use of /A in the ALTER USER command differs from use of /A in the other commands because
ALTER USER is divided into four steps:

1. Altering unique user information.
2. Altering information for a user within a group in which the user is a member.

3. Adding a user to a group where not a member and defining the user attributes within that
group.

4. Changing the default logon group.

GRUMP, SESLU, and KILLSES Utilities 3-9

If you have completed one or more steps and enter a /A within a subsequent step, modifications
made in the step you are in are not acted upon and the ALTER USER command is aborted.
Modifications made in any previous step are permanent. Also, you may add the user to several
groups in Step 3. Once you have defined all the information for the user within a group, the user
cannot be removed from that group by a subsequent /A in Step 3 or Step 4.

You cannot modify the capability level, CPU and connect time limits, and LU access table for the
user MANAGER.

You can use the ALTER USER command to:

e Modify unique user information
— Logon name
— Real name
— Password
— Capability level
— LU access table
— Number and depth of UDSPs
— Size of the EVB

e Modify user information within a group

— Default working directory

— Startup command

— Logoff program/command file
— CPU and connect time limits

e Add a user to a group

e Define default logon group

See the examples at the end of the “Alter User” section for the command prompts.

Unique User Information

Logon Name

This is the logon name for the user. The logon name must be unique, follow the file naming
conventions, and be one to sixteen characters with no parentheses. This definition is not
case-sensitive, therefore, either uppercase or lowercase characters can be used.

Real Name

This is the user’s real name. The real name may not be more than thirty characters. This
definition is case sensitive. The name must be enclosed in back quotes (*) if it is a parameter in a
multiple parameter input string.

Password

You can define a password for the user. The password can be no more than fourteen characters
with no commas or blanks. Special characters are not recommended. GRUMP issues the
following prompt if a password is already defined and you enter a <cr> (indicating no password)
at the enter password prompt:

Change password to no password (Yes/No) [N]:

3-10 GRUMP, SESLU, and KILLSES Utilities

This prevents accidentally erasing an existing password. You are not required to know an existing
password to change it.

Capability Level

This is the user’s capability level (USERCPLV). The capability level is an integer value from 0
(lowest) through 31 (highest). Capability level 31 sets the superuser bit in the user configuration
file. A capability level of 0 to 30 clears the superuser bit in the user configuration file. The default
capability level is 10. You can only assign capability levels that are equal to or lower than your
Oown.

LU Access Table

The LU access table defines the LUs that can be accessed. You can remove or add any LUs from
the user’s LU access table. The values are:

n adds LU n to LU access table.
-n removes LU »n from LU access table.
m:n adds LU m to LU n to LU access table.
—-m:n removes LU m to LU n from LU access table.
/L lists LUs set in LU access table that user can access.
lE ends LU access table modification.
<cr> ends LU access table modifications if sole input at prompt.

GRUMP continues to prompt for alterations until a /E is encountered in an input string or a <cr>
is entered at the LU access table modifications prompt.

Multiple input must be separated by a comma or space as in this example where access to LUs 5,
6, 10 through 20, and 30 is given and access to LUs 40, and 50 through 55 is removed.

LU access table nodifications ([— JLU#[:LU#2]): 5 6 10:20 30 -40 -50:55

Be sure the user has access to LU 0, used for program-to-program communmication. Also, make
sure the user can access the LUs containing directories needed such as /PROGRAMS and the
default working directory.

Number and Depth of UDSPs

This defines the number and depth of the User-definable Directory Search Paths for this user. A
<cr> leaves the values as they are. The number and depth of UDSPs must be separated by a
colon with no spaces between the numbers and the colon. The legal values are:

m:n both zero or both not zero (m = number, n = depth).
m: modify number only.

n modify depth only.

<cr> use the default (value is unchanged).

Environment Variable Block

This is the size of the Environment Variable Block (EVB) in pages, which is allocated to the user’s
session at logon. The size can be set to any value from 0 pages to 32 pages, inclusive.

GRUMP prints a message indicating that unique user information was modified and terminates
unique user information modification. Any changes made up to this point are permanent.

GRUMP, SESLU, and KILLSES Utilities 3-11

USER.GROUP Information

Default Working Directory

This defines the default working directory for the user within the group. A <cr> leaves the value
as it is. The directory name must not exceed 63 characters including delimiters and must follow
the file naming conventions. GRUMP does not verify that the named directory belongs to the
user whose account is being modified. The LU containing the working directory must be in the
user’s LU access table.

If the directory specified does not exist, a GRUMP prompt asks whether the directory should be
created.

Create directory XXXXX (Yes/No) [N:

If the directory is to be created, GRUMP prompts for the LU on which it should be created.
What LU should the directory go on [O]:

The default LU, 0, is the same as the current working directory or the lowest numbered disk LU
on which directories can be created.

Startup Command

This defines the startup command (for the user in the group), which is the program to be executed
when the user logs on. The LU containing the directory on which the logoff program/command
file must be in the user’s LU access table. A <cr> leaves the value as it is. The command can
have a maximum of 80 characters.

Enter the startup command [RU Cl. RUN: : PROGRAMS] : ru ci.run::progranms | ogon.cnd

If the program to be run at logon is RP’ed with the D option in the Welcome file to increase
system performance, it must be specified without a path name at the startup command prompt to
force the system to use the Proto-ID in XSAM instead of creating one from scratch. Thus, in the
above example, the command

ru ci.run | ogon.cnd

should be specified, not “ru ci . run:: prograns | ogon.cnd”.

Starting programs other than CI must be loaded and in the directory specified in the command. A
startup command string must be enclosed in back quotes (*) if it is a parameter in a multiple
parameter string. For example:

CGRUWMP> al ter user janmala.lab , ‘ru ci.run::prograns | ogon.cnd* , , 100:0:0

Logoff Program/Command File

This defines the logoff program/command file (for the user in the group) to be scheduled or to
which execution is transferred when the user exits CI. The logoff program must be loaded and on
the directory specified. The logoff command file’s directory location must be specified. The LU
having the directory where the logoff program/command file is located must be in the user’s LU
access table. If Security/1000 is OFFE, the protection of /USERS and the corresponding user

3-12 GRUMP, SESLU, and KILLSES Utilities

configuration file must be RW/R (if groups are not being used) or RW/R/R (if groups are being
used) in order for this feature to work.

The logoff program/command file must be enclosed in back quotes (* ‘) if it is a parameter in a
multiple parameter string. A <cr> at the prompt specifies that the logoff program/command file
is undefined. If a logoff program/command file is defined and you enter a <cr> at the ‘Enter
Logoff program/command file’ prompt, GRUMP prompts to ask if the logoff program/command
file should be changed to undefined.

Enter the |ogoff program command file [RU, CLEANUP. RUN: : FRED]: <cr>
Change the |ogoff program command file to UNDEFINED (Yes/No) [N]:
CPU Usage Limit

This defines the CPU limit for the user within the group. The values for the CPU limit are:

hh:mm:ss hh — hours (up to 5960).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits CPU use by group.
-1 group has unlimited use of CPU.
<cr> no change to value.

If the USER.GROUP CPU usage limit has been exceeded, the user cannot log on associated with
the group until the situation has been rectified.
Connect Time Limit

This defines the connect time limits for the user within the group. The values for connect time
limits are:

hh:mm:ss hh — hours (up to 596500).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits group from logging on.
-1 gives group unlimited connect time.
<cr> no change to value.

If the USER.GROUP connect time limit has been exceeded, the user cannot log on associated
with the group until the situation has been rectified.

Adding a User to a Group

If USER. was entered, GRUMP prompts for unique user information and then prompts if you
want to add the user to any existing groups. If you enter YES, GRUMP prompts for a group name
and USER.GROUP information for the user in the specified group. A /E or <cr> at the “Enter
group name” prompt terminates prompts for groups. A /A aborts the rest of the ALTER USER
command but previous modifications are permanent.

GRUMP, SESLU, and KILLSES Utilities 3-13

Default Logon Group

This is the name of the user’s default logon group. If USER. was entered, GRUMP prompts for
the unique user information, existing groups to which the user should be added and then for the
default logon group for the user. The user must already be a member of the group that is
specified. To change the default logon group, the user name must be followed by a period. For
example, JAMALA. is a correct user name. If the period is omitted, the default logon group
question is not asked. A /A aborts the rest of the ALTER USER command but previous
modifications are permanent.

Alter User Command Examples

If the USER.GROUP parameter is not supplied, the first prompt for all cases is “Enter user.group
parameter:”.

1. Altering “USER”

GRUMP> al us jamal a
Enter new user |ogon nanme [JAMALA]:
Enter user’s real nanme [Janes Al abanm]:
Enter password (a <CR> gives no password):
*Change password to no password (Yes/No) [N
Enter capability level (31=SU) [10]:
LU access table nodifications ([—]LU#[:LU#2]):
Enter #UDSPs:depth [4:4]:
Enter the size of the Environnent Variable Block in pages [2]:
Enter working directory name [::JAMALA]:
“Create directory ::JAVALA (Yes/No) [N:
*What LU should the directory go on [0]:
Enter the startup conmmand [RU Cl. RUN: : PROGRAMS] :
Enter the |ogoff program command file [LOGOFF. CVD:: JAMALA] :
*Change the | ogoff program command file to UNDEFINED (Yes/No) [N]:
Enter CPU limt (hh:mmss or -1 for No Limt) [No Limt]:
Enter connect tine limt (hh:mmss or -1 for No Limt) [No Limt]:

* This prompt is dependent upon the response to the prompt immediately preceding it. See
the discussion of individual terms for information on the occurrence of asterisked prompts.

3-14 GRUMP, SESLU, and KILLSES Utilities

2. Altering “USER.” (Note the trailing period)

GRUMP> al us jamal a.

Enter new user |ogon name [JAMALA]:

Enter user’s real nanme [Janes Al abanm]:

Enter password (a <CR> gives no password):

*Change password to no password (Yes/No) [N :

Enter capability level (31=SU [10]:

LU access table nodifications ([—]LU#[:LU#2]):

Enter #UDSPs:depth [4:4]:

Enter the size of the Environnent Variable Block in pages [2]:

Do you wish to include the user in any existing
group other than NOGROUP (Yes/No) [N]:
*Enter group nanme (/E or <CR> to end):

VWi ch group should be the default | ogon group [NOGROUP]:

* This prompt is dependent upon the response to the prompt immediately preceding it. See
the discussion of individual terms for information on the occurrence of asterisked prompts.

3. Altering “USER.GROUP”

GRUWMP> al us janal a. nogroup
Enter working directory name [::JAMALA]:
*Create directory ::JAVALA (Yes/No) [N:
*What LU should the directory go on [O]:
Enter the startup conmmand [RU Cl. RUN: : PROGRAMS] :
Enter the |ogoff program command file [LOGOFF. CVD:: JAMALA] :
*Change the | ogoff program command file to UNDEFINED (Yes/No) [N]:
Enter CPU limt (hh:mmss or -1 for No Limt) [1:00:00]:
Enter connect tinme limt (hh:mmss or -1 for No Linmit) [500:00:00]:

* This prompt is dependent upon the response to the prompt immediately preceding it. See
the discussion of individual terms for information on the occurrence of asterisked prompts.

Exit (EX)
Purpose: Terminates GRUMP.
Syntax: EX

lE

GRUMP, SESLU, and KILLSES Utilities 3-15

Help (HE or ?)

Purpose: Displays a summary of GRUMP commands or a brief description of a specific
command.
Syntax: ?[?] [command)]

[/]1HE [command)]

command Specific GRUMP command to be explained, default is a list of
possible GRUMP commands.

Description:

HELP, /HELP, ??, and ? are identical except that /HELP, ??, and ? may be entered from within
GRUMP commands while HELP may be entered only at the GRUMP> prompt.

GRUMP does not prompt for the optional command parameter. It lists all the commands.
Additional input on the line is read as a command parameter. For example,

Enter password: /HE /TR cndfil e

results in a description of the TRANSFER command and sets the password to cmdfile. It does not
list all commands and then transfer to cmdfile.

To get help from the “Enter working directory name” prompt, you must use ? rather than /HE
because /HE is considered a valid response. In other words, “/HE” is interpreted as a working
directory name.

Kill Session (KI)

Purpose: Terminates a session.
Syntax: Kl session [OK]

session Session identifier of user to be logged off.

X Optional parameter to override the verification prompt.
Description:

The KI command logs off a particular user session, removes all programs associated with the
session, closes and releases the associated spool files, and releases the user ID entry in the User
Table for the session. Session 0, the system session, cannot be killed. KI cannot be used to kill a
session that is also running GRUMP. You must be a superuser to use this command.

List Group (LI G)

Purpose: Lists the account information in the configuration file for the group(s) specified
Syntax: LI G group [ListFile]
group Group name whose configuration file information is to be listed, @

may be specified to indicate all group accounts.

ListFile Name of a file or terminal LU to which the listing should be sent,
default is the terminal.

3-16 GRUMP, SESLU, and KILLSES Utilities

Example of the List Group Command

GRUWMP> i g accounting

R R R I S S I S I S I S I S I S R S S S I S I S I S I S I S S S I S I S S I S S I S I I I S I S I I S A S S I S I S I

G oup: ACCOUNTI NG

G oup I D 26

Total CPU Ti ne: 1 HR 57 MN 24 SEC 740 MSEC
Total Connect Tine: 44 HR 1 MN 50 SEC 0 MSEC
CPU Limt: No Limt

Connect Tine Limt: No Limt

LU Access Tabl e:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 =** 15

240 241 242 243 244 245 246 247 ** ** %% 251 252 253 254 255

Menber s:
SANDI SAM JAMALA MAX
HENRY JUuDY

EE R R R I S I S I S S S I S I S I S R S S S I S S I S S S I S S S I S I S I S I S S I S I S I I I S I I S S I S S I S S I S I

Note that LUs 14 and 248 through 250 are not in the LU access table.

List User (LI U)

Purpose: Lists the account information in the configuration file for the specified users.
Syntax: LI U UserGroup [ListFile]
UserGroup User and group information. Can be specified as follows:
user Unique user information and certain fields in the
user.NOGROUP record (for systems not using groups).
user. Unique user information (regardless of group).
user.group Unique user information and user.group information about

user within the specified group.

@.group Corresponding user.group information for all members of
the specified group. GRUMP lists the group information,
then loops through the list of members listing the user.group
information for the members one at a time.

user.@ User.group information for the user in all groups in which
the user is a member. GRUMP lists the unique user
information, then loops through the user’s group list listing
each of the user.group records one at a time.

ListFile Name of a file or terminal LU to which the listing should be
sent, default is the terminal.

GRUMP, SESLU, and KILLSES Utilities 3-17

Examples of the List User Command

1. Example of “USER”

GRUWP> |i u jamal a

kkhkkhkkhkkhkkhkkhkikhkikhkikhkikikikikikikikikikik*x

User:

Real Nane:
User | D:
UDSPs: Dept h:

EVB size in pages:
Capability Level:
Def ault Logon Group:
Startup Program
Working Directory:
Logoff Program Cmdfil e:
Last Logon Ti ne:
Last Logoff Tine:
G oup I D Last Logged on:
LU Last Logged onto:
Total CPU Tine:
Total Connect Ti ne:
CPU Limt:
Connect Tine Limt:
LU Access Tabl e:

0 1 2 3 4

240 241 242 243 244 245 246 247 ** ** ** 251 252 253 254 255

kkhkkhkkhkkhkkhkkhkikhkikhkikhkhkhkikikikikikikikk*x

JAVALA

Janmes Al abama

527

4: 4

2

10

NOGROUP

RU Cl . RUN: : PROGRANMS

c o JAMALA

[LOGOFF. CVD: : JAMALA] :

Thu Jan 2, 1990 10: 00: 00 am
Thu Jan 2, 1990 12:05:31 pm
0

101

1 HR 57 MN 24 SEC 740 MSEC
0 MBEC

44 HR 1 MN 50 SEC
No Limt
No Limt

6 7 8

Note that LUs 14 and 248 through 250 are not in the LU access table

3-18 GRUMP, SESLU, and KILLSES Utilities

9 10 11 12 13 ** 15

2. Example of “USER.”

GRUWMP> |i u jamal a.

kkhkkhkkhkkhkkhkkhkhkkhkhkkhkikhkikhkikhkikikikikikikikikkik*x

User: JAVALA

Real Narme: James Al abama

User I D 527

UDSPs: Dept h: 4: 4

EVB size in pages: 2

Capability Level: 10

Def ault Logon Group: NOGROUP

Last Logon Ti ne: Thu Jan 2, 1990 10: 00: 00 am

Last Logoff Tine: Thu Jan 2, 1990 12:05:31 pm

Total CPU Ti ne: 1 HR 57 MN 24 SEC 740 MSEC
Total Connect Ti ne: 44 HR 1 MN 50 SEC 0 MSEC

LU Access Tabl e:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ** 15

240 241 242 243 244 245 246 247 ** ** % 251 252 253 254 255

G oups:
NOGROUP MANUAL S ACCOUNTI NG

kkhkkhkkhkkhkkhkkhkhkkhkikhkikhkikikhkikikikikikikikikk*x

Note that LUs 14 and 248 through 250 are not in the LU access table.

GRUMP, SESLU, and KILLSES Utilities 3-19

3. Example of “USER.GROUP”

GRUMP> i u jamal a. nogroup

kkhkkhkkhkkhkkhkkhkhkkhkhkkhkikhkikhkikhkikikikikikikikikkik*x

User: JAVALA

Real Narme: James Al abama
User I D 527

UDSPs: Dept h: 4: 4

EVB size in pages: 2

Capability Level: 10

Def ault Logon Group: NOGROUP

Last Logon Ti ne: Thu Jan 2, 1970 10: 00: 00 am

Last Logoff Tine: Thu Jan 2, 1970 12:05:31 pm

Total CPU Ti ne: 1 HR 57 MN 24 SEC 740 MSEC
Total Connect Ti ne: 44 HR 1 MN 50 SEC 0 MSEC
LU Access Tabl e:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ** 15

240 241 242 243 244 245 246 247 ** ** % 251 252 253 254 255

User. G oup: JAVALA. NOGROUP

RU Cl . RUN: : PROGRAMS
;o JAMALA

Startup Program
Working Directory:
Logof f Progranf Cmdfil e: [LOGOFF. CVD: : JAMALA] :

Total CPU Tine: 2 HR 30 MN 10 SEC 209 MsSEC
Total Connect Ti ne: 80 HR 6 MN 23 SEC 48 MSEC
CPU Limt: No Limt

Connect Tinme Limt: No Limt

kkhkkhkkhkkhkkhkkhkikhkikhkhkhkikikikikikikikik*x

Note that LUs 14 and 248 through 250 are not in the LU access table.

3-20 GRUMP, SESLU, and KILLSES Utilities

New Group (NE G)

Purpose: Create a new group by creating a new group configuration file and putting it in the
/USERS directory with the type extension .GRP.

Syntax: NE G

Description:

You must be a superuser or have the required capability level to create new accounts with the
NEW GROUP command.

New accounts may be created during or following system initialization and are usable as soon as
they are defined.

The prompts in creating a group are:

Enter group | ogon nane:

Enter CPU limt (hh:mmss or -1 for No Limt) [No Limt]:

Enter connect tine limt (hh:mmss or —1 for No Limt) [No Limt]:
LU access table nodifications ([—]LU#[:LU#2]):

The following defaults are defined for the group attributes set by the NEW GROUP command:

Attribute Default Value
Group CPU limit —1 (no limit).
Group conntect time limit —1 (no limit).
LU access table all LUs.

Group Logon Name

This is the group logon name. The name must be unique, follow the file naming conventions, and
be one to sixteen characters with no parentheses. The definition is not case sensitive, therefore,
either uppercase or lowercase characters can be used.

CPU Usage Limit

This defines the CPU limit for the group. The values for CPU limit are:

hh:mm:ss hh — hours (up to 5960).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits CPU use by group.
-1 group has unlimited use of CPU.
<cr> no change to value.

No more members may log on after the CPU limit has been exceeded until you rectify the
situation by recording the usage and resetting the usage with the RESET GROUP command or by
altering the CPU limit for the group. Users logged on when the limit is exceeded are not affected.

GRUMP, SESLU, and KILLSES Utilities 3-21

Connect Time Limit
This defines the connect time limit for the group. The values for connect time limit are:

hh:mm:ss hh — hours (up to 596500).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits group from logging on.
-1 gives group unlimited connect time.
<cr> no change to value.

No new members may log on if the connect time limit has been exceeded until you rectify the
situation by recording the connect time and resetting it with the RESET GROUP command or by
altering the connect time limit for the group. Users logged on when the connect time limit is
exceeded are not affected.

LU Access Table

The LU access table defines the LUs to which the group has access. The values for the LU access
table are:

n adds LU n to LU access table.
-n removes LU »n from LU access table.
m:n adds LU m to LU n to LU access table.
—m:n removes LU m to LU n from LU access table.
/L lists LUs set in LU access table that group can access.
lE ends LU access table modification.
<cr> ends LU access table modifications if sole input at prompt.

Multiple inputs must be separated by a comma or space. Access to all LUs is the default, remove
those that you do not want the group to access. Setting an LU bit that has already been set causes
no modification and no warning message is sent.

Example of Group Account Creation

Group has unlimited CPU and connect time and has access to LUs 0, 8, and 24.

Cl > grunp

GRUMP> new group

Enter group logon nane : sanple

Creating group SAMPLE

Enter CPU limt (hh:mmss or -1 for No Limt) [No Limt]: <cr>
Enter Connect tine limt (hh:mmss or —1 for No Limt) [No Limt]:
<Cr>

LU access table nodifications ([—]LU#[:LU#2]): -1:23
LU access table nodifications ([—]LU#[:LU#2]): 8

LU access table nodifications ([—]LU#[:LU#2]): -25:255
LU access table nodifications ([-]LU#[:LU#2]): <cr>

GRUVP>

LU access table was altered by removing LUs 1 to 23 and 25 to 255 and adding back LU 8. The
same modification could have been made with the single string:

3-22 GRUMP, SESLU, and KILLSES Utilities

LU access table nodifications ([—]LU#[:LU#2]): -1:23 8 -25:255 /e
or at the GRUMP> prompt:

GRUMP> ne g sample -1 -1 -1:23 8 -25:255 /e
or with commas marking default values:

GRUMP> new g sanmple , , —-1:23 8 -25:255 /e

New User (NE U)

Purpose: Creates a new user configuration file on the /USERS directory.
Syntax: NE U
Description:

You must be a superuser or have the required capability level to create new accounts with the NE
U command.

New accounts may be created during or following system initialization and are usable as soon as
they are defined.

The prompts for creating a user are:

Enter user |ogon nane:
Enter user’s real name [??7?]:
Enter password (a <CR> gives no password):
Enter capability level (31=SU [10]:
LU access table nodifications ([—]LU#[:LU#2]):
#UDSPs: depth [0: 0] :
Enter the size of the Environnent Variable Block in pages [O0]:
Enter working directory nane [::nane]:
*Create directory ::name (Yes/No) [N:
*What LU should the directory go on [0]:
Enter the startup conmmand [RU Cl. RUN: : PROGRAMS] :
Enter the |ogoff program command file [Not Defined]:
Enter CPU limt (hh:mmss or -1 for No Limt) [No Limt]:
Enter connect tinme limt (hh:mmss or -1 for No Limt) [No Limt]:

Do you wish to include the user in any existing
group other than NOGROUP (Yes/No) [N:

*Enter Group Nane (/E or <CR> to end):
*Should this be the default |ogon group (Yes/No)[N]:

* This prompt is dependent upon the response to the prompt immediately preceding it.

GRUMP, SESLU, and KILLSES Utilities 3-23

The following defaults are defined for the user attributes set by the NEW USER command:

Attribute

User’s real name

User password

Number and depth of UDSPs

Default Value
2?72.

no password assigned.
0:0 (no UDSPs).

Size of Environment Variable Block 0 (no EVB)

LU access table all LUs.

Default logon group NOGROUP.
Working directory ::LogonName.
Startup command RU CI:PROGRAMS.
Logoff program/command file undefined.

CPU limit —1 (no limit).
Connect time limit —1 (no limit).

Unique User Information

User Logon Name

This is the logon name for the user. The name must be unique, follow the file naming
conventions, be one to sixteen characters with no parentheses. The definition is not case sensitive,
therefore, either uppercase or lowercase characters can be used.

User’s Real Name

This is the user’s real name. The real name may be no more than 30 characters. This definition is
case sensitive. The name must be enclosed in backquotes (* *) if it is a parameter in a multiple
input string. A <cr> gives the default value of “?77?”.

Password

You can define a password for the user. The password can be no more than 14 characters with no
commas or blanks. Special characters are not recommended. The default is no password.

Capability Level

This is the user’s capability level (USERCPLV). The capability level is an integer value from 0
(lowest) through 31 (highest). A capability level of 31 sets the superuser bit in the user
configuration file. A capability level of 0 to 30 clears the superuser bit in the user configuration
file. The default capability level is 10. You can only assign capability levels that are equal to or
lower than your own.

LU Access Table

The LU access table defines the LUs that can be accessed. The LU access table values are:

n adds LU n to LU access table.
-n removes LU »n from LU access table.
m:n adds LU m to LU n to LU access table.
—m:n removes LU m to LU n from LU access table.
/L lists LUs set in LU access table that group can access.
lE ends LU access table modification.
<cr> ends LU access table modifications if sole input at prompt.

3-24 GRUMP, SESLU, and KILLSES Utilities

Multiple inputs must be separated by a space or comma. GRUMP prompts for LU access table
alterations until a /E is entered in the input string or a <cr> is the only input entered at the
prompt. The default is access to all LUs. You remove those you do not wish the user to access.

Be sure the user has access to LU 0, used for program-to-program communication. Also make
sure the user can access the LUs containing directories such as /PROGRAMS and the default
directory needed.

Number and Depth of UDSPs

This defines the number and depth of the User-definable Directory Search Paths (UDSPs) for this
user. The number and depth of UDSPs must be separated by a colon with no spaces between the
numbers and the colon. The legal values are:

m:n both zero or both not zero (m = number, n = depth).
m: modify number only.

n modify depth only.

<cr> use default of 0:0.

Environment Variable Block

This is the size of the Environment Variable Block (EVB) in pages, which is allocated to the user’s
session at logon. The size can be set to any value from 0 pages to 32 pages, inclusive.

USER.GROUP Information

The information required after this point defines associated groups for the user. The information
you enter applies first to NOGROUP group and then to any other associated groups.

Default Working Directory

This defines the default working directory for the user when associated with the group. The
directory name must not exceed 63 characters including delimiters and must follow directory
naming conventions. GRUMP does not verify that the directory belongs to the user whose
account is being created.

If the directory specified does not exist, GRUMP prompts to ask whether it is to be created and on
which LU it should be created.

Create directory XXXXX (Yes/No) [N:
VWhat LU should the directory go on [O]:

The default of 0 creates the working directory on the same LU as your current working directory
or the lowest numbered disk LU on which directories can be created. The LU on which the
working directory resides must be in the user’s LU access table. The second prompt is issued only
if the directory should be created.

Startup Command

This defines the startup command (for the user in the group), which is the program to be executed
when the user logs on. The LU containing the directory on which the logoff program/command
file must be in the user’s LU access table. A <cr> leaves the value as it is. The command can
have a maximum of 80 characters.

Enter the startup command [RU Cl. RUN: : PROGRAMS] : ru ci.run::progranms | ogon.cnd

GRUMP, SESLU, and KILLSES Utilities 3-25

If the program to be run at logon is RPed with the D option in the Welcome file to increase system
performance, it must be specified without a path name at the startup command prompt to force
the system to use the proto-ID in XSAM instead of creating one from scratch. Thus, in the above
example, the command

ru ci.run | ogon.cnd
should be specified, not “ru ci . run:: prograns | ogon.cnd”.

Starting programs other than CI must be loaded and in the directory specified in the command. A
startup command string must be enclosed in back quotes (*) if it is a parameter in a multiple
parameter string. For example:

CGRUWMP> alter user jamala.lab , ‘ru ci.run::progranms |ogon.cmd* , , 100:0:0

Logoff Program/Command File

This defines the logoff program/command file to be scheduled or to which execution is transferred
when the user is associated with the group and exits CI. The logoff program must be loaded and
on the directory specified. The directory location of any logoff program/command file should also
be specified. The LU having the directory where the logoff program/command file is must be in
the user’s LU access table. If Security/1000 is OFF, the protection of /USERS and the
corresponding user configuration file must be RW/R (if groups are not being used) or RW/R/R (if
groups are being used) in order for this feature to work.

The program or command file must be enclosed in back quotes (* *) if it is a parameter in a
multiple parameter input string. A <cr> at the prompt gives no logoff program/command file.

CPU Usage Limit

This defines the CPU limit for user when associated with the group. The values for CPU limit are:

hh:mm:ss hh — hours (up to 5960).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits CPU use by group.
-1 group has unlimited use of CPU.
<cr> no change to value.

The user may not log on in this group after the CPU limit has been exceeded until the you rectify
the situation by recording the CPU usage and resetting it with the RESET USER command or by
altering the CPU limit for the group. Users logged on when the limit is exceeded are not affected.

Connect Time Limit

This defines the connect time limit for user when associated with the group. The values for
connect time limit are:

hh:mm:ss hh — hours (up to 596500).

or mm — minutes (up to 59).
hh:mm ss — seconds (up to 59).
0 inhibits group from logging on.
-1 gives group unlimited connect time.
<cr> no change to value.

3-26 GRUMP, SESLU, and KILLSES Utilities

The user may not log on in this group after the connect time limit has been exceeded until you
rectify the situation by recording the connect time and resetting it with the RESET USER
command or by altering the connect time limit for the group. Users logged on when the connect
time limit is exceeded are not affected.

Associated Groups

GRUMP prompts to see if the user should be included in groups other than NOGROUP. If other
groups are specified, GRUMP prompts for the same information required for USER.NOGROUP
(working directory, startup command, logoff program, CPU and connect time limits). GRUMP
prompts for additional group entries and information until a /E or <cr> is entered.

Password (PA)

Purpose: Changes a current user account password.
Syntax: PA [username]
username User account name that will have its password changed, default is

the user’s account.

Description:
You must know the present password to change it with this command.

Password modification steps:

Present password:
New passwor d:
Ret ype new password:

The password input is not echoed to the terminal.
After verification of the new password, GRUMP changes the password in the configuration file.

Purge Group (PU G)

Purpose: Removes a group from the multiuser account system. The group configuration file is
purged from the /USERS directory. The group record and information are removed
from the configuration file of all group members.

Caution Do not purge group configuration files from the /USERS directory with the PU
command in CI. The PURGE GROUP command in GRUMP purges the group
from the multiuser account system with all the necessary cleanup.

Syntax: PU G groupname [CK]
groupname Group whose account information is to be purged. “@” will purge
all groups with the exception of the NOGROUP and SYSTEM
groups.
X Optional parameter to override verification prompt.
Description:

A group account cannot be purged if any user associated with the group is logged on.
GRUMP issues a verification prompt if optional OK parameter is not used.

GRUMP, SESLU, and KILLSES Utilities 3-27

Purge User (PU U)

Purpose: Removes a user from the multiuser account system. The user configuration file is
removed from the /USERS directory. The user record is removed from the
members list in all groups in which user is a member.

Caution Do not use the PU command in CI to purge user configuration files from the
/USERS directory. The PURGE USER command in GRUMP purges the user
from the multiuser account system with all the necessary cleanup.

Syntax: PU U UserGroup [OK]

UserGroup User and group information. Can be specified as follows:
user].] User name to be removed from all groups in which
a member and user account are to be purged.
user.group User name to be removed from specified group.
@.group All members of a specified group to be removed,
group account not changed, not allowed for
NOGROUP group, MANAGER cannot be
removed from SYSTEM group.
user.(@ User to be removed from all groups with the
exception of NOGROUP, user account not
changed, MANAGER cannot be removed from
SYSTEM.
XK Optional parameter to override the verification prompt.
Description:

A user account cannot be purged if anyone is logged on (associated with any group) as that user.

USER.GROUP account information cannot be purged if the user is logged on associated with the
specified group.

GRUMP issues a verification prompt if optional OK parameter is not used.

3-28

GRUMP, SESLU, and KILLSES Utilities

Reset Group (RE G)

Purpose:

Syntax:

Description:

Clears the CPU usage and/or connect time total(s) for all groups or a specific group.

RE G group [CP| CQ

One or more groups whose totals will be reset, “@” means all group
totals are to be reset.

group

cP

60)

Optional parameter that resets only the CPU usage for the specified

group.

Optional parameter that resets only the connect time total for the

specified group.

Resetting a group’s totals does not affect the individual USER.GROUP totals for group members.
User totals can be reset with the RESET USER command.

If neither the CP nor CO parameter is specified, both totals are reset. CP and CO cannot be

specified at the same time.

Reset User (RE U)

Purpose:

Syntax:

Description:

Clears the CPU usage and connect time totals for a specific user (grand totals), a
single user within a group (USER.GROUP totals), all users within a group
(USER.GROUP totals), or a user within all groups where user is a member
(USER.GROUP totals).

RE U UserGroup [CP| CQ

UserGroup

cP
CO

User and group information. Can be specified as follows:

user

user.

user.group

@.group

user.@

Account totals unique to the user and appropriate
totals in user NOGROUP record for systems not
using groups. User.group totals are not affected.

Cumulative totals for user (sum of all user.group
totals).

User.group totals for user within specified group.

User.group totals of all the members of the group
when associated with the specified group at logon.
GRUMP loops through the member lists and resets
member totals one at a time. The cumulative totals
for the user or group are not affected.

User.group totals for the user in each group where
the user is a member. GRUMP loops through the
group list and resets total in the user.group records
one at a time. The cumulative totals for the user
are not affected.

Optional parameter to reset only CPU total for the specified user.

Optional parameter to reset only CONNECT total for specified user.

If neither the CP or CO parameter is specified, both are reset.

GRUMP, SESLU, and KILLSES Utilities 3-29

Run (RU)

Purpose: Clones and runs a program.

Syntax: RU program [ParmString]
program Name of the program to run.
ParmString Parameters for the listed program.

Transfer (TR)

Purpose: Allows the GRUMP user to alternate between interactive and non-interactive
command input modes.

Syntax: [/] TR InputSource| —n

InputSource Terminal LU or file name from which commands are read.

-n Negative integer that causes the control input to go back n levels.
Description:

TR and /TR are identical except that /TR can be issued from within GRUMP commands.

Transfer commands can be nested to a depth of 5 levels. For example, a TR command issued at a
terminal transfers control to a command file that contains a command transferring control to a
terminal LU. At this point, transfers are nested 2 deep.

The negative integer (—n) transfers control back n levels. If n is greater than the number of
nested levels, all previously nested input sources are closed and GRUMP goes into interactive
command input mode at the user’s terminal.

An end-of-file condition is interpreted as “/TR —1” and transfers control to the previous level.

If an irrecoverable error is encountered in a command file, GRUMP transfers control to the
terminal, flushes the input string, and reprompts the user. A subsequent “/TR —1” transfers
control back to the command file where the error occurred.

Hitting the BREAK key forces transfer to the terminal. A “/TR —1” transfers control back to the
command file that is in effect at break.

TRANSFER commands are written to the log file:

GRUWVP>

>> TR

Enter transfer file of —(# of |evels back)
>> filenane/ LU

GRUMP>

An asterisk in the first column changes the commands into comments that are not executed if
GRUMP is re-run using the log file as an input source.

* Ok Ok kX

The “>>” highlights the transfer command and the source of subsequent commands.

A command file exited with an implied return, EOF appears as:

* GRUWP>
p* GRUWP>

A transfer command used to exit a command file appears the same as shown in the preceding log
file example.

3-30 GRUMP, SESLU, and KILLSES Utilities

SESLU Utility

SESLU modifies and lists session LU access tables. It does not affect the user or group
configuration file associated with the session user. If a session user is given access to an LU, the
corresponding bit is set in the session LU access table. If a session user’s access to an LU is
removed, the corresponding bit in the session LU access table is cleared. You can never remove
access to the terminal LU of a session or to an LU in the UDSPs of a session.

Calling SESLU

To call SESLU, enter the following runstring:
Cl> [RU SESLU [+S:session] [[=]lu[:]] [[=]lul:l]] [[-]: k]

+S:session is the session number whose LU access table is to be modified or listed. If you do not
specify the number, SESLU defaults to the caller’s session.

You may enter a positive or negative [-]lu[:lu] parameter. A positive entry indicates the LU
number or range of LUs to set in the session LU access table. A negative entry specifies the LU
number or range of LUs to clear in the session LU access table. If you do not enter any LU
number or range, the session LU access table is listed.

Loading SESLU

To load SESLU, use the following LINK command:

Cl> link, seslu.lod

SESLU Protection

If Security/1000 is turned on, the system manager can assign the different capability levels
required to perform all the SESLU subfunctions. These include listing and modifying your
session’s and another session’s LU access tables.

If the Security/1000 system is not turned on, any user can list a session LU access table with
SESLU, but only superusers can modify a session LU access table.

Returned Values

SESLU returns the following values through a PRTN call:
Word 1 Status (0 = successful, -1 = unsuccessful).

Words 2-5 0, not used.

GRUMP, SESLU, and KILLSES Utilities 3-31

SESLU Examples

Example 1: List the LU access table for session 102.
Cl> seslu +s:102
Example 2: Add LU 1 to the LU access table for session 102.
Cl> seslu +s:102 1
Example 3: Add LUs 1-32 and 34-50 to the caller’s LU access table.
Cl> seslu 1:50 -33
Example 4: Remove LUs 44-60 and add LUs 20-30 to the caller’s LU access table.
Cl> seslu -44:60 20: 30
Example 5: Add LUs 20-90 to the LU access table for session 116.
Cl> seslu +s:116 20:90
Example 6: Add LUs 3 and 5 and remove LUs 2 and 4 from the caller’s LU access table.

Cl> seslu -2 3 -4 5

3-32 GRUMP, SESLU, and KILLSES Utilities

KILLSES Utility

KILLSES terminates a session immediately. The session is logged off, all programs associated
with that session are killed, associated spool files are closed and released, and the user ID entry in
the User Table for that session is released. The session can be any type: background, interactive,
or programmatic. The system session, session 0, cannot be killed. KILLSES cannot be used to kill
a session that is also running KILLSES.

Calling KILLSES

To call KILLSES, enter the following runstring:
Cl> [RU KILLSES [sessionnumber] [OK]

The sessionnumber parameter is the number of the session to be killed, if specified. If not
specified, you are prompted for the number of the session to be killed.

When you select the OK parameter, KILLSES is executed immediately, without prompting you for
verification.

Loading KILLSES

To load KILLSES, use the following LINK command:

Cl> link.killses.|od

KILLSES Protection

If Security/1000 is turned on, the system manager can assign the capability level required to run
KILLSES; otherwise, only a superuser can run KILLSES.

Returned Values

KILLSES returns the following values through a PRTN call:
Word 1 Status (0 = successful, -1 = unsuccessful).

Word 2 If word 1 = 0, the number of the session that was killed. If word 1 = -1, this is
not used and will be 0.

Words 3-5 0, not used.

GRUMP, SESLU, and KILLSES Utilities 3-33

KILLSES Examples
Example 1: Terminate session 160 immediately.
Cl> killses 160 ok
Example 2: Terminate session 150 after user verification.
Cl> killses 150
Example 3: Prompt the user for session humber and verification.

Cl> killses

3-34 GRUMP, SESLU, and KILLSES Utilities

File and System Security

Security in the RTE-A system consists of two separate but overlapping subsystems, File System
Security and Security/1000 (see Figure 4-1).

File System
Security

Security/1000

AN

Figure 4-1. RTE-A Resource Protection

Both subsystems are built into the multiuser environment, but Security/1000 need not be turned on
if you, the system manager, do not want this checking mechanism. File System Security, including
LU access tables, operates whether or not Security/1000 is turned on.

File system security and Security/1000 overlap in the area of file system access. For example, if a
user tries to run a program that is not RPed, the user must first have read access to the program
file in order to RP the program (file system read/write protection) and then have the capability to
run the program (Security/1000 program access protection). If either check fails, the request to
run the program is denied. Another example is with the CL (Cartridge List) command. A session
user may have the capability to execute the command, but the command does not list any LUs that
are not in the session LU access table (file system LU access protection).

The concept of superuser (CPLV 31) has a different effect on the file system RW (Read/Write)
access protection and the LU access protection. If a user is a superuser, the file system RW access

File and System Security 4-1

protection is overridden, but the LU access protection is not. In the first example, superusers are
able to run the program even if they do not have read access to the program file. In the second
example, only LUs that are in the LU access table are listed.

As system manager, you must decide whether or not Security/1000 is to be turned on, and if so,
which Security/1000 configuration will be most applicable to your system.

File System Security

File System Security provides file, directory, and volume, ownership and protection. Under File
System Security, users are divided into superusers and non-superusers. Superusers have a user
capability level of 31 and are not subject to file system protection checks. Non-superusers may be
assigned user capability levels from zero to 30, inclusive, and are subject to file system protection
checks. As the system manager, you are a superuser, and usually the only superuser. It is your
responsibility to assign user capability levels.

As system manager, or superuser, you have full system access including read/write access to any
file (program as well as text), directory, and volume on the system. You are the original owner of
all system directories but can re-assign this ownership and associated protection privileges.

Security Under CI

In the CI, or hierarchical file system, each directory has an owner and an associated group. All
files in a directory are owned by the directory owner and have the same associated group as the
directory. The owner can change the protection status (defined as read/write access allowed the
owner, members of the associated group, and general users) of the files in the directory.

The session user who creates a directory is the initial owner of that directory, and the directory has
the owner’s associated group. The owner can re-assign directory ownership and associated group.
The owner and associated group of a subdirectory can be different from the owner and associated
group of the directory containing the subdirectory.

File Ownership and Protection

File protection, a security measure in the CI file system, is defined when a file is created or copied
into a directory. It can be specified differently for the owner, for members of the associated
group, and for general users. The default protection is to allow the owner both read and write
access, and associated group members and general users only read access. Protection can be
specified on a file-by-file basis in any combination of read and write access for the owner, for
members of the associated group, and for general users.

Directory Ownership and Protection

Directories have protection information that is slightly different from that of files. The protection
status of a directory applies to any file, or subdirectory, created in that directory. Users cannot
use CI commands to change information in write-protected directories (read only access
specified). They cannot create, purge, or rename files or subdirectories in read only directories.
Users cannot look at the contents of directories that have read protection.

4-2 File and System Security

Volume Ownership and Protection

Like a directory, an entire CI volume can have an owner and associated group. The initial owner
of a volume is the session user initializing the volume. The associated group for the volume is the
associated group of the owner. Ownership and associated group may be reassigned. Volumes also
have protection information. The protection status of a volume regulates the reading, creating,
purging, or renaming of global directories on that volume. Note that the owner of a global
directory can be different from the owner of the volume on which it resides.

In CI, any directory may access remaining volume space. If you want to restrict disk space usage,
you can assign each CI volume an owner who will set volume-wide protection. Use the [uV
parameter in the CI OWNER and PROT commands to display and modify volume ownership and
protection. You can also use FMP routines (FmpOwner, FmpProtection, FmpSetOwner, and
FmpSetProtection) to retrieve and modify volume ownership and protection programmatically.

LU access tables provide another means of limiting access to CI volumes. If the disk LU
identifying a volume is in a user’s session LU access table, access to the volume is granted. If the
LU is not in the table, all access to the volume is denied.

Security under FMGR

In the FMGR (File Manager) file system, protection is defined by accessibility. FMGR cartridges
(a particular LU defined at system generation) have a single directory and a single set of files.

Security/1000 (VC+ Only)

Security/1000, part of VC+ (HP product number 92078A), is a set of building blocks for software
developers that enables them to create a secure application environment. It is NOT meant to set
up a secure system that has program development going on. It is designed to be compatible with
existing file system protection, have minimal impact on real-time processes, and be an integrated
part of resource management. It is:

e Switchable—can be turned on and off by the superuser with a single command.
e User configurable—can be tailored by the superuser by modifying the supplied template.
e User extensible—can be secured by the superuser to create a unified security environment.

e Table-driven—can be configured and modified by the superuser while the system is running.

Security/1000 consists of capability levels to classify users, system security tables that contain the
rules that govern the user’s activities, and interfaces to the security system. Applications or
utilities must be written to implement Security/1000 so that security checks on a user’s
ability to execute a command can be made.

File and System Security 4-3

System Manager Responsibilities

If Security/1000 is used, your responsibilities as system manager include:

e Determining user, command, and program capability levels within the multiuser environment.
e Installing the subsystem at system generation or regeneration.

e Defining a default logon account for DS transparency software to use when a request comes
from another node without specifying an account name.

e Using the SECTL utility to initialize and turn on Security/1000.
e Maintaining the security tables online with SECTL.

e Altering security tables offline, running SECTL GT, and regenerating (to add more categories
and/or category functions).

e Maintaining the subsystem using the GRUMP utility to alter user capability levels, and using
SECTL and LINK to modify program capability levels.

Note If a default logon account is not defined when a DS transparency request
arrives, the default TREAS SESSION is used for all file accesses. Since TRFAS
SESSION has full access to a system with Security/1000 turned ON, it is VERY
IMPORTANT that the default logon account be defined.

The default logon account is created using GRUMP. It defines the environment in
which all file accesses for requests using the default DS account are performed.
The default account is defined in the DS system using the DS monitor DSRTR.
(See Chapter 9 in the System Generation and Installation Manual for details.)

Capability Levels

A capability level (CPLV) is an integer in the 0 through 31 (inclusive) range. You, the system
manager, can assign all users capability levels (USERCPLV), which are stored in the user
configuration file and copied to the user ID table entry when the user is logged on.

You also can assign a capability level to all CI and system level commands (CMDCPLV). The
CMDCPLVs for all commands are kept in security tables maintained by SECTL. If a command
does not appear in a security table, it has a default capability of zero where no restrictions apply to
the command. Note that a set of fully configured tables (SECURITY.TBL) is supplied with the
product and shown in Appendix D.

4-4 File and System Security

All programs have three capability levels; two are accessible via SECTL and the Security/1000
routines and the third is for Security/1000 internal use. All three capability levels are stored in the
program’s ID segment extension. These CPLVs are:

PROGCPLV Program capability level. PROGCPLYV is the limiting factor on what
functions a program can perform. PROGCPLV must be equal to or greater
than function CPLV. PROGCPLYV is accessible via SECTL and
Security/1000 routines.

RQUSCPLV Required user capability level. USERCPLV must be equal to or greater
than RQUSCPLYV in order to run the program. RQUSCPLYV is accessible
via SECTL and Security/1000 routines.

ORGCPLV Original capability level. ORGCPLYV is a copy of the original PROGCPLV
given to the program at link time or set with the SECTL utility. ORGCPLV
is for Security/1000 internal use; it is not directly accessible to users.

All fields of $CPLV have a default of zero.

You need to be aware of user, program, and system capability requirements as well as File System
Security when determining capability levels. If the functions that users need have been assigned
CPLVs higher than their own, users are not able to continue without some indirect means of
accessing those programs (see the “Program Access Protection” section).

When a program is run with Security/1000 turned on, PROGCPLYV is assigned the greater value
between the session user’s USERCPLV and the program’s original PROGCPLV. Programs
assigned a low CPLV can therefore perform tasks requiring a higher CPLV if the user requesting
them has that higher CPLV. In the example in Figure 4-2, a program is linked with an original
PROGCPLYV of 20 and a RQUSCPLYV of 15. When the program is scheduled by a user with a
USERCPLYV of 25, it is assigned a PROGCPLYV of 25 because the USERCPLYV is greater than the
original PROGCPLV. When the program is scheduled by a user with a USERCPLYV of 17, it is
assigned a PROGCPLYV of 20 because the original PROGCPLYV is greater than the USERCPLV.

If a program is scheduled by another program, the USERCPLYV of the session in which the parent
program is running is checked against the RQUSCPLYV of the child program to determine whether
the scheduling program can run the child program.

Security Tables

The security tables reside in the system and are used by Security/1000 to govern function and
resource accessibility. They consist of a system manager defined set of rules based on capability
levels, categories, and functions. The lables are created using STGEN or the SECTL GT
command with a security table source code module. The output of STGEN and SECTL GT
command is an OS module that is generated into the system. Appendix D provides a description
of the source format of the security tables and a sample of the source code of the
SECURITY.TBL module that is shipped with the VC+ software. Appendix E provides a listing of
the structure of the security tables, as well as a worksheet to aid in the creation of the security
tables. Appendix F provides an interpretation of the security errors. Security/1000 library
routines are listed in Appendix G.

File and System Security 4-5

4-6

Link PROGH1
with PC 20,15

Linked

Y

(PC is a LINK command:
“PC progeply [,rquscplv]”)

PROG1 type 6

ORGCPLV 20
RQUSCPLV 15
PROGCPLV 20

USERCPLV = 25

Scheduled

Y

PROG1 ID Segment
Extension

ORGCPLV 20
RQUSCPLV 15
PROGCPLV 25

USERCPLV = 17

Scheduled

|

PROG1 ID Segment
Extension

ORGCPLV 20
RQUSCPLV 15
PROGCPLV 20

Figure 4-2. Example of Program Security Assignment

File and System Security

Utilities with Security/1000 Implemented

The HP utilities that have an implemented Security/1000 internal security check are:

e (I (Command Interpreter): RTE-A hierarchical file system user interface.

e GRUMP (GRoup and User Management Program): Command-driven utility for managing a
multiuser account system.

e SECTL (SECurity TabLe): Utility for performing all Security/1000 control functions.
e LINK: Linkage editor for RTE-A operating system.
e KILLSES (KILL SESsion): Ultility that terminates a user session with RTE-A.

e SESLU (SESsion Logical Unit): Ultility that lists and modifies session LU access tables.

Other utilities may inherit security checking by calling routines that, within themselves, have
implemented security checks. As an example, LI does not perform security checking within itself
but it inherits it when calling lower level routines that have security checking implemented (for
example, FMPOPEN with the CREATE and OPEN options).

All utilities (HP and user-written) and sets of routines (for example, FMP) that implement some
level of internal security checking are listed as categories (described below) in the system security
tables (see Appendix D).

Forms of Security Implementation

There are a variety of forms in which security is implemented. For example, GRUMP has
multiple CPLV levels defined for each command. CI, on the other hand, defines a single CPLV
per command on a single-level basis. By examining the function definitions for CN and CD (in the
CI category) in the default security tables, you can see that users must have a CPLV of 10 or
greater to use CN, while a user having any CPLV can use CD. The rationale behind the absence of
a specific CPLV for CD is that CD is protected by security checks in lower level FMP routines and
the file system. The fact that both CD and CN have entries in the security table, and CI performs
security checks on a single level for all CI commands, gives the system manager the ability to
define the CPLVs as desired.

The LINK program is yet another example of differing forms of security implementation. It can
be seen, by examining the security tables, that only five of its commands (OS, PR, LC, SC, and
SH) have security implemented. This form of implementation provides the system manager with
the ability to change the CPLVs on these five commands as they have been defined. CPLVs,
however, cannot be assigned to other LINK commands by adding them to the security table.

File and System Security 4-7

Categories and Functions

A category is a group of functions such as the CI commands or the FMP routines. The category
designer selects the functions for each category.

A function is any activity carried out by the system on behalf of the user. An individual function
can be divided into four levels, the base function and up to three subfunctions. For example, the
CI command TM displays the system time as its primary or base function. It also has the
subfunction of setting the system clock. The function designer determines the base and
subfunctions of any function.

The Category Index Table (CIT) and the Category Function Tables (CFT) are the security tables
that determine access to system resources. See Figure 4-3 for the basic structure of these tables.
The size of the CIT and CFTs are limited by available memory.

The CIT contains an entry for each category including its name and address. The CIT determines
which CFT is searched for a given category. The CFT5s contain an entry for each function of a
particular category. There is one CFT for each entry in the CIT. A CFT entry holds up to four
integer values per function. These values are usually capability levels.

When Security/1000 checks to determine whether or not a function may be performed, it first
searches the CIT for the address of the category’s function table. Then it searches that particular
CFT for capability information about the function and allows or disallows the function accordingly.

Category Index
Table (CIT) Category Function
Table (CFT)
category | adr function| | | | . -i
| |
| I
| |
grump | adr
: base| sub | sub | sub
function fnc | fnc1 | fnc2 | fnc3
_____________________ .
algrin |
|
algrep | |
algrco I |
| |
algrin 31 | 31| o0 0

Figure 4-3. Security Table Structure

4-8 File and System Security

Searching the CIT and CFTs is done serially. If you have a category with a large number of
functions, you derive a performance advantage in having the functions divided between two
smaller categories rather than having them in one large category.

Security Table Format

The security tables are accessed via the §VCTR entry point SSEC.PNTR that points to the first
word of the CIT. The first word of the CIT is the number of entries in the CIT. Each entry of the
CIT has the following format:

Word Contents

1-3 The category identifier. This is an upshifted, left-justified, and blank-filled ASCII
string that uniquely identifies the category to Security/1000. The category name can
be any length but only the first six bytes are put in the entry. Therefore, the name
must be unique within the first six bytes.

4 The address of the CFT for the category identified in words 1 through 3.

The first word of the CFT is the number of entries in the CFT. Each entry of the CFT has the
following format:

Word Contents

1-3 A function, left-justified, upshifted, and blank-filled. The function can be any length
but only the first six bytes are put in the entry. Therefore, all functions for a given
category must be unique within the first six bytes.

4 The Base CPLV for the function in the range 0 through 31 inclusive.
5 Subfunction 1 CPLV in the range 0 through 31 inclusive.
6 Subfunction 2 CPLV in the range 0 through 31 inclusive.
7 Subfunction 3 CPLV in the range 0 through 31 inclusive.

The values in words 4 through 7 can be greater than 31 if the function holds non-security
information.

Modifying Security Tables

The two methods of modifying the security tables are:

1. Creating a new set of tables by:

a. Altering a copy of the security table source file (the original SECURITY.TBL file or your
already modified security table);

b. Using the SECTL GT command (or STGEN) to generate a new set of tables;
c. Regenerating the system; and

d. Rebooting.

File and System Security 4-9

2. Moditying online security tables while the system is running by:
a. Using SECTL commands to alter existing security tables, or

b. Using the SEC1000.LIB subroutines (the programmatic interface of Security/1000)
described in Appendix G to alter existing security tables.

This method modifies the tables in memory, but not the swap files, so any online modifications
are lost when the system is rebooted. Since you decide the definition of values, you can define
non-security information as values. You can, for example, design an application that sends
reports to different LUs.

Security Information in Security Tables

Security tables primarily hold security information. In the security table source file example
below, the function defined holds only security information.

Cat egory: GRUWP
ALGRLN 25 31 0 O

The category is the GRUMP utility for managing resources in the multiuser system. The function
is defined as altering a group logon name. The base function, altering the group logon name of a
group the caller belongs to, requires a capability of 25. Subfunction 1, altering the group logon
name for a group the caller does not belong to, requires a capability of 31. Subfunctions 2 and 3
are not defined.

The code in GRUMP to make use of the ALGRLN function in category GRUMP might look like
the following:

integer*2 CPLVt oCheck, Operat or CPLV, ProgCPLV, RqusCPLV, O gCPLV
integer*2 error,flags(4)

if (caller is a nmenber of group being altered) then
CPLVt oCheck =1
el se
CPLVt oCheck = 2
endi f
call SecGet CPLVs (OperatorCPLV, ProgCPLV, RqusCPLV, Or gCPLV)
call SecChkCPLVNam (6HALGRLN, 6HGRUMP |, Oper at or CPLV, f | ags, error)
if (error.lt.0) call ReportError (‘Error in performng CPLV check’)
if (flags (CPLVtoCheck) .I1t.0) call ReportEror (‘lInsufficient CPLV)

4-10 File and System Security

Non-Security Information in Security Tables

A CFT can also hold non-security information. The interpretation of values depends upon their
definition in the program that uses them.

Since you decide the definition of values, you can define non-security information as values. You
can, for example, design an application that sends reports to different LUSs.

Cat egory: REPORT
REPO1 8 0 0 O
REPO2 10 11 12 13

In this example, the integer 8 is defined as the LU to which REPOL1 is sent and integers 10, 11, 12,
and 13 are defined as LU numbers to which REP02 is sent. Also, zero is used as a place holder.
Note that the application processing the values is responsible for interpreting their meanings.

The code to retrieve the information for REP01 might look like the following:

integer entry(7),num addr,error

call SecCet Cft Nam (6HREPO1 , 6HREPORT, entry, num addr, error)
if (error .It.0)Call ReportError (error)
LUToSendReport To = entry (1)

If a function requires more than four values, a way to work around the limitation of four values
per function is to define two functions identically. Expanding on the previous example,

Cat egory: REPORT
REPO1 8 0 O O
REPO2 10 11 12 13
REP2a 14 0 0 O

If the application has defined REP2A as identical to REP02, the integer 14 is interpreted as a fifth
LU to which REP02 is sent.

Another example of the way in which function designers define values to accomplish their purpose
is using the rangeoff option when defining functions to specify values that are outside the 0 to 31
range. In the following example, the enable function of the application is set to 40, a value outside
the 0 to 31 (inclusive) range:

Category: APPLIC
ENABLE 40 0 0 O

The integer 40 is defined as the enabling value and any other value would disable the application.
The base function is set to 40 to enable, a number other than 40 to disable.

File and System Security 4-11

Security/1000 Interfaces

Security/1000 has two interfaces, the SECTL and STGEN utilities that are the user or interactive
interface, and the SEC1000.LIB subroutine library that is the programmatic interface. SECTL
and STGEN are described in Chapter 5, and SEC1000.LIB is in Appendix G.

See Appendix H for examples of two programs using security routines. The first program renames
or edits the security tables. The second program subjects a user to a series of security checks
based on the security tables before it creates directories. Programs such as CI, GRUMP, and
LINK perform similar security checks on their commands.

Program Access Protection

Because programs have three CPLVs, you can design applications whose capability is higher than
that of the user. Users can be denied direct access to potentially dangerous functions, but be
allowed access indirectly through the controlled environment of the application or utility.

There are two levels of checking before a user can run a program:

Level 1 File system security. A user must be able to access a program for it to be RPed. It
must be RPed in order to be run.

Level 2 Capability level. The USERCPLYV of the session that makes the scheduled request
must be greater than or equal to the RQUSCPLYV of the program being scheduled.
This check is made by the RTE-A scheduler.

If a program does not have an ID segment, both levels of security checking must be passed to run
the program. If the program has an ID segment and is RPed, only the second level must be passed
because file system security is not involved with the schedule request.

If a user passes the first level and RPs the program but fails the second level and cannot schedule
it, the operating system removes the ID segment and returns a message to the user’s terminal. It
is possible that a user able to run a program if it were RPed is prevented from running it because
of file system security.

Programs in the system session are handled in the same way as programs in a user session.
However, as the system session always has a USERCPLYV of 31, programs running in it behave as
though run by a superuser.

The two examples that follow illustrate program access within a secured environment.

Example of a Program Access Utility

Assume that a system has these user categories with these CPLVs:

General users 5
Operator 1 —MAX 10
Operator 2—JAMALA 12
Application programmers 20

System programmers/System managers 31

4-12 File and System Security

Also, assume that operator 1, MAX, has the job of removing old files from a data base that
receives new files daily (see Figure 4-4). MAX has a USERCPLV of 10. Because the Purge Data
File function has a CPLV of 26, Security/1000 prevents MAX from removing the old files.
Therefore, MAX’s system manager created a utility, UTIL1, that allows specific, limited access to
the Purge Data File function.

UTIL1 specifies that only files input at least two weeks prior to current system time may be
removed. It has a RQUSCPLYV of 10 so that MAX can access it, and a PROGCPLYV of 26 so that
the program can access the purge function. UTIL1 affects only users with CPLVs of 10 through
25. Users with CPLVs below 10 are still denied access and users with CPLVs greater than 26 have
full access to the purge function anyway. UTILI1 provides limited (CPLVs 10-25) and specific
(purge only selected dated files) access.

Security/1000
Purge Data File Function // Usell'Elnlir;l"able
Purge 26 /
%
IDS t Extension for UTIL1 é
egment Extension for é USEI?CCJDPLV
7
/

ORGCPLV RQUSCPLV | PROGCPLV

26 10 26
N e
N 7/
N s/
N e
N s
Limited access
No removal of Full
access SpeCifiC data access
files
user
capability 0-9 10-25 26-31

level

Figure 4-4. Example of Program Access Utility

File and System Security 4-13

Example of a CPLV Modification Program

Assume that it is the job of operator 2, JAMALA, to do backups and restores via BACKUP (see
Figure 4-5). JAMALA has a USERCPLYV of 12. This example assumes there is a user application,
BACKUP, that the system manager has used Security/1000 routines to modify so that it has
different capability levels defined to access different functions within the utility.

At installation, the section of the security tables relating to BACKUP would be as follows:

$f np:

crdir 20 20 20 20

$cat egory: babkup

*
* < Function cos is defined as storing files to tape
* < and the subfunctions define what copy options can be
* < used wth the base function.
* < pase fnc: who can store files to tape
* < subfnc01l: who can use the verify option
* < subfnc02: who can use the purge option
* < subfnc03: who can use the append option
*
cos 10 10 25 12
*
* < Function cor is defined as restoring files fromtape
* < and the subfunctions define what copy options can be
* < used with the base function.
* < pbase fnc: who can restore files from tape
* < subfnc0l: who can use the verify option
* < subfnc02: who can use the replace duplicate option
* < subfnc03: who can restore files to directories other
* < t hey ori gi nat ed
*
cor 12 10 12 31
*
$cat egory: bkupus
user01 1
user10 10
user11 11
user1l2 12
user31 31

4-14

File and System Security

t han where

BACKUP was linked with a PROGCPLYV of 20 and a RQUSCPLYV of 10.

When JAMALA runs BACKUP, the system sets PROGCPLYV to 20, which is the greater value of
PROGCPLYV (20) and USERCPLYV (12). This lets JAMALA restore files from a tape requiring
that BACKUP create directories even though the directory creation function has a CPLV of 20
(which is beyond JAMALAs CPLV).

BACKUP was linked with a PROGCPLYV of 20 but the security table listed above sets the CPLV of
subfunction 2 of the cos function to 25. As a result, only users with a USERCPLYV equal to or
greater than 25 can access the purge option.

When MAX runs BACKUP, the PROGCPLYV is 20, which is the greater value of PROGCPLV (20)
and USERCPLV (10). This is not a desired result because it gives MAX access to a function (cor)
and an option (append of the cos function) to which he should not have access. MAX has access
to the same base and options of these functions as JAMALA.

To avoid this situation, BACKUP has a dynamic PROGCPLV modification facility implemented
with Security/1000 routines and a security table category called BKUPUS. This PROGCPLV
modification facility causes BACKUP to raise or lower its PROGCPLYV during execution. It can
lower its PROGCPLYV to zero and raise it to the maximum of USERCPLV and ORGCPLW.

Now when MAX runs BACKUP, the modification facility detects the USERCPLYV of 10 and lowers
its PROGCPLV to 10. When JAMALA runs BACKUP, the modification facility changes the
PROGCPLYV to 12; therefore, MAX is not allowed to use the restore function but JAMALA is.
When JAMALA is performing a restore, BACKUP raises its PROGCPLYV to 20 prior to the
creation of the directory and lower it to 12 after the directory is created.

Category BKUPUS is created with SECTL or Security/1000 routines if there are extra categories
in the current security table (see the Installing Security/1000 section). If there are no extra
categories in the current security table, you must create a new table that includes BACKUPUSER
and generate the tables in your system. These values are easier to change if need arises because
they are in the security tables rather than coded into the program.

BACKUP determines the correct value for its PROGCPLV by means of BKUPUS, which contains
the values to which PROGCPLYV is mapped for a given user. BACKUP concatenates USER and
the ASCII representation of the USERCPLYV to get the function name (USER10 for MAX and
USERI12 for JAMALA in this example). It then calls routine SecGetCftNam to get the value to
which its PROGCPLYV should be mapped. Note that while the function value is equal to that of
the USERCPLYV in this example, it does not have to be.

BACKUP calls routine SecChangeCplv to set its PROGCPLYV to the correct value. Once the
correct value for its PROGCPLYV has been set, no special internal filtering by the program is
required to restrict a low CPLV user to the desired functionality subset. The PROGCPLV
modification facility causes BACKUP to raise its PROGCPLYV to the required level before
attempting to create a directory for the restore operation. After the directory is created, it then
resets PROGCPLYV to the value obtained from BKUPUS. All filtering is done by the
Security/1000 routines.

File and System Security 4-15

WITHOUT
Program Modification Facility

JAMALA MAX
USERCPLV USERCPLV
12 10

l l

BACKUP

ORGCPLV | RQUSCPLV | PROGCPLV
20 10 20

WITH
Program Modification Facility

MAX
USERCPLV
10

l

BACKUPUSER

/. v /.
e () B |2 P

BACKUP

ORGCPLV | RQUSCPLV | PROGCPLV
20 10 10

cor / % ,/(sub3
function /) Y/ A 31

7
/ JAMALA and MAX can access

Vi

MAX can access

cos base| | sub1 || sub2|| sub3
function 10 10 25 12

cor base| | sub1 || sub2|| sub3
function 12 10 12 31

Figure 4-5. Example of a Program Modification Facility

4-16 File and System Security

Installing Security/1000

To install Security/1000, proceed as follows:

1. Load Security/1000 software (SECTL.LOD and STGEN.LOD) onto an RTE-A system with
Revision 5000 or later.

2. Generate a set of tables using the SECTL GT command. See the GT command in the SECTL
utility section in this chapter.

A sample SECURITY.TBL (source code module) and SECURITY.REL are shipped with the
product. If you do not want to alter the security tables and you do not want a
SECURITY.MAC module, you do not need to generate a new set of tables. You can use the
shipped SECURITY.REL in your system.

If you do not want to alter the tables, but you want a SECURITY.MAC module, use the
SECTL GT command (or STGEN) and SECURITY.TBL to create modules
SECURITY.MAC and SECURITY.REL.

If you want to alter the security tables to add categories or functions, you must alter a copy of
SECURITY.TBL or your current security table source file. Use the SECTL GT command (or
STGEN) and the modified security table source module to generate a new set of tables. Note
that the other SECTL commands are used to modify and list categories and functions that
have already been generated into a running system.

To avoid having to generate tables to add categories or functions in the future, include blank
modules in your initial table generation. These modules can later be modified with SECTL to
accommodate new categories or functions. See the SECURITY.TBL source module, in
Appendix D, for examples of reserving space for extra categories (HP000 and HP001),
functions (FMP), and features (SECTL).

3. Put SECURITY into the system generation answer file.

SECURITY.REL (or your equivalent) must be relocated in the System Message Block.
Relocate the modules SECOS.REL and CHECK.REL (shipped on tape) with the other
operating system module partitions. Both SECOS.REL and CHECK.REL are partitionable.

4. Reference the Security/1000 libraries in the Library List in your answer file.

The Security/1000 library SEC1000.LIB (see Appendix G) must be put at the top of the
non-CDS list. The non-CDS list should also have SEC1000.LIB at the end. SEC1000CDS.LIB
must be at the top of the CDS list, followed by the rest of the CDS libraries, SEC1000.LIB,
and ending with BIGLB.LIB. If you do not put the security libraries in the correct place, your
programs do not load correctly and undefined externals occur. This can be overcome by
referencing the libraries in your list command files.

5. Generate the system and relink all your programs using the new system snap file.

Be sure to relink SECTL and STGEN as directed in step 1 with the new system snap file.

File and System Security 4-17

6. Initialize and turn on Security/1000. This can be done one of two ways depending on your boot
procedure.

a. If your startup program is CI, add the following line as the first line in your Welcome file:
SECTL +i n: <snapfile> +on

b. If you have a startup program other than CI, you should add the following call to your
program:

call Seclnitialize(snapfile, 1, error)
where:

snapfile is the current system snap file.

1 signals to turn Security/1000 on.

error is an error code returned by the routine.

7. Boot the new system.

Initializing and Turning On Security/1000

Security/1000 should only be initialized and turned on once at system boot time. This should be
done in the welcome file by adding the following:

SECTL +i n: <snapfile> +on

or programmatically, by using subroutine Seclnitialize with the ON option before any users are
allowed on the system.

Caution The SECTL IN command, SECTL +IN runstring option, and Seclnitialize
subroutine should be used with caution. If they are used with a snap file
different from the current system snap file, they can corrupt your system and
security tables.

The SECTL SW command, SECTL +ON/+OFF runstring options, and
SecSwitch subroutine were designed for system engineer debugging and should

not be used to turn security on and off after users have been allowed on the
system. (System security cannot be guaranteed.)

If you turn on security at some time other than the Welcome file, you may encounter problems.
Figure 4-6, Figure 4-7, and the remainder of this section discuss situations of which you should be
aware.

In a system with security off, the $CPLV word of the ID segment extension is ignored. That is,
there is no check on the PROGCPLV, RQUSCPLYV, or ORGCPLYV when users wish to run a
particular program such as PROGI.

4-18 File and System Security

USERCPLV=10

LINK PROG1
program
capability

0,0

Security ON
RP
PROG1
RUN
0.0 PROGT

Operating system checks ORGCPLV
and USERCPLYV before assigning the
greater of the two values to PROGCPLV.

ID Segment Extension for PROG1

|
Security OFF

{

RP
PROGT
RUN
PROGH 0.0
‘—J

Operating system does not check

USERCPLV; PROGCPLV remains

set to zero.

ID Segment Extension for PROG1

CPLV
$ ORGCPLV | RauscPLv | PROGCPLY $CPLV| oraopiy | RauscrLy | ProaepLy
word 0 0 word 0 0 0
I
Security ON
PROG1 PROG1
PROGCPLV = 10 PROGCPLV = 0

Figure 4-6. Turning On Security/1000

File and System Security

4-19

When security is on, the CPLVs in word 47 are checked against the USERCPLYV of the user
session in which the request was made to determine whether or not a scheduling program may run
the child program.

In the example shown in Figure 4-6, the user has a CPLV of 10. When it was linked, PROG1
assumed the PROGCPLY, RQUSCPLY, and ORGCPLYV defaults of zero because the user
specified no other CPLVs. Because PROGCPLYV is set to the higher value of the program’s
original PROGCPLV and USERCPLYV, PROGCPLY is set to 10 when the user tries to run
PROGI1. USERCPLV must be equal to or greater than RQUSCPLY, as it is in the example. So
this user is allowed to run PROG1. PROGI, however, may not be able to do much because of its
low CPLV of 10. The user is limited to the capabilities provided in that environment, which may
be your intention.

A way to visualize what can happen when security is turned on at a time other than at bootup is to
imagine the DS subsystem linked and scheduled with a CPLV of zero before security is turned on.
Several users are using DS lines at their terminals. Their programs were linked with default
CPLVs of zero because no other CPLVs were specified. Because the programs were scheduled
before security was turned on, their PROGCPLVs were not set to the maximum of PROGCPLV
and USERCPLYV and still have PROGCPLVs of zero. Security is turned on at this point. The DS
program lacks the capability to function, programs abort, and users cannot do anything.

The point to remember is that programs in use before Security/1000 is turned on will probably not
be able to run if Security/1000 is turned on and they were not linked with a high enough capability
level. Of course, if they were linked with a CPLV of 31, there would not be the same problem.

You should be aware of another situation that can occur with programs linked before security is
turned on. Users can link programs with any RQUSCPLV and any PROGCPLYV when
Security/1000 is off. As shown in Figure 4-7, users with a USERCPLYV of 20 are linking a program,
PROGI, with a RQUSCPLYV of 10 and a PROGCPLYV of 31.

If security is on when these users link PROG]I, they receive the message that they have insufficient
capability to use the PC command. PROG1 gets an ORGCPLV and PROGCPLV of zero and a
RQUSCPLYV of 10.

If security is off when these users link PROGI, security checks are not performed and PROG1
gets an ORGCPLV and PROGCPLYV of 31 and a RQUSCPLYV of 10. When security is turned on
later, users running these programs have access to functions they should not. Users with
USERCPLV of 10 or more can use PROG1 with its PROGCPLYV of 31. If they have access to the
LINK PC command when security is off, you may want to purge users’ individual programs before
turning on security and have the users relink them after security is on.

4-20 File and System Security

Security ON

USERCPLV 20
Identical user and
Link PROG1 program link
with * when security is
PC 31,10 ON and OFF

Message: Insufficient

CPLV to use
PC command

|
I
I
I
I
I
¥

PROGH1 type 6

ORGCPLV 0
RQUSCPLV 10
PROGCPLV 0

Result: limited
«+—— access

Result: almost
unlimited access
when security is on —

Security OFF
USERCPLV 20

Link PROG1
with
PC 31,10

PROGH1 type 6

ORGCPLV 31
RQUSCPLV 10
PROGCPLV 31

[
Security ON

|
¥

PROGH1 type 6

ORGCPLV 31
RQUSCPLV 10
PROGCPLV 31

Figure 4-7. Linking Programs and Turning On Security/1000

File and System Security

4-21

SECTL and STGEN Utilities

SECTL Utility

The SECTL utility performs all the control functions of Security/1000:
e [Initialize Security/1000.

e Turn Security/1000 on or off.

e Set or modify the program capability levels.

e Generate a set of security tables.

e List the security tables to a device or file.

e [Edit the security tables.

e Display the Security/1000 help file.

Commands issued to SECTL are subject to security checking and only authorized users (those with
enough capability) can control Security/1000 operation.

Changes which are made with SECTL are not permanent. When you reboot, the values return to
what they were when the system was generated. You must modify the source module for the
security table, generate a new system, and reboot to make your changes permanent.

Running SECTL

The SECTL runstring has the following three forms:
Syntax: [RU] SECTL [infile [outfile]]

[RU SECTL [+ N[: snapfile]] [+ON]
[RU SECTL +OFF

infile File from which SECTL reads its commands; defaults to the terminal.
If it is a disk file, it must have a “SEC” extension.

outfile File to which SECTL sends its output; defaults to the terminal.

SECTL and STGEN Utilities 5-1

+I'N

snapfile

+ON

+OFF

Description:

Causes SECTL to initialize Security/1000. (Initialize only once!)

Name of current system snapshot file; default is /SYSTEM/SNAP.SNP.
(Any other snapshot file can corrupt your system and security tables!)

Turns on Security/1000; can be used only if Security/1000 has been
initialized. (Initialize only once!)

Turns off Security/1000; can be used only if Security/1000 has been
initialized. (Only used for system engineer debugging!)

If the plus options are used in the runstring, SECTL terminates as soon as they have been

processed.

SECTL Command Summary

SECTL commands are summarized in Table 5-1.

Table 5-1. SECTL Commands

Command Purpose Page #
EC Modify category function capability 5-3
EX Terminate SECTL 5-3
GT Generate security tables 5-4
HE Display Security/1000 help file 5-4
IN Initialize Security/1000 5-5
LT List Security tables 5-5
PC Set program capability 5-6
RN C Rename category ID 5-6
RN F Rename function ID 5-7
RQ Set required user capability 5-7
SwW Turn on/off Security/1000 5-8

5-2 SECTL and STGEN Utilities

SECTL Commands

Edit Capability Level (EC)

Purpose: Changes the CPLVs for a given category function.

Syntax: EC cat_name fnc_name base_cplv [sub_cplvl [sub_cplv2 [sub_cplv3]]]
cat_name Category defined in currently installed CIT of the security tables.
fnc_name Function defined in CFT belonging to the specified category.
base_cplv Base function capability level.
sub_cplvl Subfunction 1 capability level.

sub_cplv2 Subfunction 2 capability level.

sub_cplv3 Subfunction 3 capability level.

Description:

An example of an EC command is:
SEC > ec grunmp algrin 20 25

In this example, the ALGRLN function in the GRUMP category alters the group logon name.
The base function, which defines the CPLV required to change your own group logon name, has
been changed to 20. Subfunction 1, which defines the CPLV required to change the group logon
name for someone else, has been changed to 25. The values for the second and third subfunction
are not changed.

If you want to change the CPLV for the third subfunction and leave the other CPLVs as they are,
you can use commas as place holders. The other CPLVs default to their current value. An
example of this is:

SEC > ec link pr , , , 25

The CPLV of the base function and the first and second subfunctions have not been changed. The
CPLV of the third subfunction has been changed to 25.

Exit (EX)
Purpose: Terminates SECTL.

Syntax: EX

SECTL and STGEN Utilities 5-3

Generate Table (GT)

Purpose: Generates a set of security tables.
Syntax: GT source listfile relfile [keepmac]
source The name of the file containing the source definition of the security
tables.
listfile The name of the list file. source.LST will be the name of the list file if a

dash (=) is used. Use zero if you do not want a listing.

relfile The name of the file that will contain the compiled security tables.
source.REL will be the name of the relocatable file if a dash (—) is used.
Use zero if you do not want a relocatable file.

keepmac The name of the file where the Macro/1000 code that is generated will
be kept. source. MAC will be the name of the macro file if a dash (—) is
used. Use zero if you do not want a keep file.

Description:

Some examples of the GT command are:
SEC > gt security.tbl - — —

This example accepts default SECURITY.LST, SECURITY.REL and SECURITY.MAC files.
Dashes must be used as place holders.

SEC > gt security.tbl tomlst dick.rel

This example sends the listing to TOM.LST, the generated tables to DICK.REL, and does not
create a Macro file.

SEC > gt security.tbl 0 —

This example does not create a listfile, creates the default relfile, and does not create a Macro file.

Help (HE or ?)

Purpose: Displays the Security/1000 help file.

Syntax: HE[LP]
?[?]

5-4 SECTL and STGEN Utilities

Initialize (IN)

Purpose: Initializes Security/1000 using the specified snap file.
Syntax: I N [snapfile] [ON|
snapfile File used to initialize Security/1000. If not specified, the default is
/SYSTEM/SNAP.SNP.
ON Turns on Security/1000 after initialization. If not specified,

Security/1000 is initialized but not turned on.

Description:

Security/1000 must be initialized before it can be turned on. It should only be initialized once at
system boot time before any users are allowed on the system.

An example of the IN command is:

SEC > in /system snap.snp on

Caution If a snapfile different from the current system snapfile is specified, it can
corrupt your system and security tables.

To initialize and turn on the security each time the system is booted, the following line must be the
first command in the Welcome file:

RU SECTL +I N : <snap file name> +ON

List Table (LT)

Purpose: Lists the currently installed security tables.
Syntax: LT [lstfile]
listfile Destination file for the list of security tables. If the file exists, it is

overwritten. If the file does not exist, it is created. If not specified, the
default is LU 1.

Examples of the LT command are:

SEC > It tom]| st

SEC > |t jamal a.l st

SECTL and STGEN Utilities 5-5

Program Capability (PC)

Purpose: Sets the program capability level.
Syntax: PC program new_progcplv
program Progra.m whose capability level is to be reset in the ID segment
extension.
new_progeply New capability level.
Description:

The value of the PROGCPLYV cannot exceed that of the USERCPLYV for the person running
SECTL. The program must have an ID segment that will be updated. The program file is not
updated with the PC command. You must use LINK to update the program file.

An example of the PC command is:
SEC > pc setup 31

In this example, the PC command sets the PROGCPLYV for the SETUP program to 31. Since the
PROGCPLYV defined cannot be greater than the USERCPLYV of the person using SECTL, the user
in this example must have a USERCPLYV of 31.

Rename a Category (RN C)

Purpose: Renames a category in the category index table (CIT).

Syntax: RN C old_cat_name new_cat_name
old_cat_name Name of the category to be renamed in the CIT.
new_cat_name New category name.

Description:

The old category name must exist in the CIT and the new category name must not.

In the following example, category CAT1 in the CIT is renamed to CATA:

SEC > rn ¢ catl catA

Do not rename standard categories such as CI, or all security becomes ineffective.

5-6 SECTL and STGEN Utilities

Rename a Function (RN F)

Purpose: Renames a function in a Category Function Table (CFT).

Syntax: RN F cat_name old_fnc_name new_fnc_name
cat_name Name of the category containing the function to be renamed.
old_fnc_name Function in the CFT to be renamed.
new_fnc_name New function name.

Description:

The old function name must exist in the CFT and the new function name must not.

In the following example, the CMD1 function in the CAT1 category is renamed to CMDA:
SEC > rn f catl cndl cnda

You should not rename standard functions, or all security becomes ineffective.

Required User Capability (RQ)

Purpose: Sets the program’s required user capability level (RQUSCPLV).

Syntax: RQ program new_rquscply
program Program whose RQUSCPLYV is to be set.
new_rquscply New RQUSCPLW.

Description:

The value of RQUSCPLV cannot exceed the USERCPLYV of the user running SECTL. The
program must have an ID segment that will be updated. The program file is not updated with the
RQ command. You must use LINK if you want to update the program file.

In the example,
SEC > rq setup 28

the RQUSCPLYV of the SETUP program is set to 28. Because the RQUSCPLYV of a program
cannot be greater than the USERCPLV of the person running SECTL, the user must have a
USERCPLYV of at least 28.

SECTL and STGEN Utilities 5-7

Switch (SW)
Purpose: Switches Security/1000 on or off.
Syntax: SW ON| OFF

ON Switches on Security/1000.

OFF Switches off Security/1000.

Description:

This command can be used only after Security/1000 has been initialized. (Security should be
initialized and turned on at system boot up before any users are allowed on the system.) Use of
this command is governed by the required CPLV defined for the SW command in the SECTL
category whether security is on or off.

Caution This command was designed for system engineer debugging and should not be
used to turn security on or off after users have been allowed on the system.
System security cannot be guaranteed if this occurs.

Asterisk (*)

Purpose: An * in column one means the line is a comment. This is used after SECTL
commands are placed in a command file.

Description:

An example of the use of the asterisk (*) is as follows:

* The followi ng conmands create

* category CRDGP from extra category
EXTRA

rn ¢ EXTRA crdgp

rn f crdgp res00 nogroup

rn f crdgp resOl system

ec crdgp system0 1 2 3

ex

End of creation.

*

The above example assumes category EXTRA, with functions res00 and res01, already exists in the
system security tables.

5-8 SECTL and STGEN Utilities

STGEN Utility

When installing Security/1000, you can generate security tables directly by running the STGEN
program rather than using the SECTL GT command.

STGEN can be used if you want to generate tables from a CI command file and want to know if
there are any errors and what those errors are. STGEN returns all error codes to CI in the
$RETURNI1 through $SRETURNS variables.

The STGEN runstring is as follows:

Syntax: [RU] STGEN source listfile relfile keepmac
source The name of the file containing the source definition of the security
tables.
listfile The name of the list file. source.LST is the list file if a dash (—) is

specified. Use zero if you do not want a listing.

relfile The name of the file that will contain the compiled security tables.
source.REL will be the name of the relocatable file if a dash (—) is
used. Use zero if you do not want a relocatable file.

keepmac The name of the file where the Macro/1000 code that is generated will

be kept. source. MAC will be the name of the macro file if a dash (—)
is used. Use zero if you do not want a keep file.

SECTL and STGEN Utilities 5-9

Example of Security Table Source

This is a sample of the source definition of a security table.

An asterisk in the first column means the text in that line is a comment. Blank lines are allowed.

sel f.

a group

a group

N NN NN N NN NN NN NN NN N NN N
RPRPNNRRPRRPRRPRRPREPRPRRPRRPRRERERNNNN
N N N N N N N N N N N N N N N N N N N N

*————< The security category for GRUWP
*
*
*—————< Meanings of the base and subfunctions are:
<
¥*—————< (1) Base - Capability needed to perform function on
Fe—x< Sub0l1 — Capability needed to perform function on
Fe—x< soneone el se
o< Sub02 — Not defi ned
oo < Sub03 — Not defi ned
[<
oo < (2) Base — Capability needed to perform function on
oo < in which you are a nenber
oo < Sub01 — Capability needed to perform function on
oo < in which you are not a nenber
oo < Sub02 — Not defi ned
oo < Sub03 — Not defi ned
$cat egory: grunp
algrin 31 31 O 0 *alter group | ogon nane
algrcp 25 31 O 0 *alter group cpu limt
algrco 25 31 O 0 *alter group connect tinme limt
algrbm 25 31 O 0 *alter group bit map
alusln 31 31 O 0 *al ter | ogon user name
alusrn 10 31 O 0 *alter | ogon user real nanme
aluspw 10 31 O 0 *al ter user password
alusud 25 31 O 0 *alter user udsp depth and |evels
aluscl 31 31 O 0 *alter user cplv
alusbm 25 31 O 0 *alter user bit map
aluscp 31 31 O 0 *alter user cpu limt
alusco 31 31 O 0 *alter user connect limt
alusgr 25 31 O 0 *alter user group list (ie add groups)
aludlg 15 31 O 0 *alter user default |ogon group
alussu 15 31 O 0 *al ter user startup program
aluslf 15 31 O 0 *alter user |ogoff program
aluswd 31 31 O 0 *alter user | ogon working directory
ligrp 15 31 O 0 *list group definitions
l'i usr 15 31 O 0 *l'ist user definitions
passwd 0 25 O 0 *change user password
oo < The neani ngs of the base and subfunctions are now
[<
e < Base - Capability needed to issue the comrand.
oo < Sub0l1 - Not defined.
oo < Sub02 - Not defi ned.
o < Sub03 — Not defi ned.
&
negrp 31 0 0 0 *create new group

5-10 SECTL and STGEN Utilities

neusr
pugrp
puusr
regrp
r eusr
kil ses

31
31
31
31
31
31

oleololololel

eleolojojolal

*create new user

*purge a group

*purge a user

*reset a groups accounting info
*reset a users accounting info
*kill a session

CooO0OoOOo

Example of Generated Macro/1000 Code

This is the Macro/1000 code generated by STGEN or the SECTL GT command for the previous
sample of security table source code.

macro, |, c
hed SECURI TY/ 1000 Tabl e

*

* ————<Source file: SECURI TY. TBL

* _—<List file: SECURI TY. | st

* ————<Rel ocatable file: SECURI TY.rel:::5

*—————<keep file: SECURI TY. mac

*
nam sctbl 0 92078-1X102 Rev.5000 861016. 225844
ent Catlndex $sysct.adr $exect. adr

GRUMP. adr

ent
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec

$secct . adr $fnpct. adr

3 ALGRBM
25

31

0

0

3 ALUSLN
31

31

0

0

SECTL and STGEN Utilities

5-11

asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec

3 ALUSRN
10

31

0

0

3 ALUSPW
10

31

0

0

3 ALUSUD
25

31

0

0

3 ALUSCL
31

31

0

0

3 ALUSBM
25

31

0

0

3 ALUSCP
31

31

0

0

3 ALUSCO
31

31

0

0

3 ALUSSU
15

31

0

0

3 ALUSLF
15

31

0

0

3 ALUSWD
31

31

0

0

3 LIGRP
15

31

0

5-12 SECTL and STGEN Utilities

dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec
asc
dec
dec
dec
dec

0
3 LI USR
15
31
0
0
3 NEGRP
31
0
0
0
3 NEUSR
31

3 PUUSR
31

0

0

0

3 REGRP
31

0

0

0

3 REUSR
31

0

0

0

3 KILSES
31

0

0

0

SECTL and STGEN Utilities

5-13

Modifying Security/1000 Answer Files

To install Security/1000, you must modify your answer file. Add the information shown below in

boxes to your current answer file:

pa cdsfh,tine, class,spslg,alarm

ns $sysa: 92077
end

*

* OS partitions

*

, SECGOS, CHECK

re, SECCS. r el
en

*

re, CHECK. r el
en

kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkikkhkkhkhkhkhx

* System Messages *
IR IR 0 b I I b b I b b b I b
re, %sgthb

en

re, %nm000

en

re,security.rel
en

en

Modifying Answer Files

A-1

kkkkhkkhkkhkkhkkhkkhkkikkhkhkkikkhkkikkhkhkhk*k

* System Libraries *

kkkkhkkhkkhkkhkkhkkhkikkhkkhkkikkhkikkhkhkhk*k

lib bigds.lib

lib SEC1000.lib

end

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkhkkhkkhkhkhkhk*k

* CDS System Libraries *

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkkikhkikik*k

[ib SEC1000CDS.lib

lib bgcds.lib

lib SEC1000.lib

A-2

lib bigds.lib
lib fndlb.lib
lib biglb.lib
* end

Modifying Answer Files

Logon Files

khkhkkhkhkhhkhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhdhhhdhdhkhdhkrrhkrrhrkx*x

* % * %
** LOGON File for Janes Al abama **
* % * %
** last changed <870730.1752> *x
* % * %

khkhkkhkhkhkhkhhkhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhdhhhdhdhkhdhkhdhkrkhrkx*
*

* First set the logging to the screen to off
SET LOG = OF

* Logoff user after 12 tineouts (3 x 4)

SET AUTO LOGOFF = 3

*

* Set a variable called ’user_nane’ that can be used to identify user
*

SET USER_NAME = JAMES
*

* Make sure that the stack is saved
*

SET SAVE_STACK = TRUE
*

* Set the pronpt to be the user’s nane
*

SET PROVPT = $USER_NAME>
*

* Set UDSP first to working directory, then to system and then to
* user dir.

*

PATH 1 .,/ PROGRAMS, / $USER NAME/ PROGRANS

PATH 2 .,/ CNDFI LE, / $USER_NAME/ CVDFI LES

*

* Echo a friendly nmessage

ECHO ' Hel l o * $USER _NAME
RETURN

Logon Files B-1

Global Logon File

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrkkdrkkx*x*x

* % * %
** GLOBAL_LOGON file for all users **
* % * %
** lLast changed <870730.1753> *x
* % * %

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrkkdrkkx*x*x
*

A message that LUs are being verified or backed up may be witten
here and then an "EX can be put in to keep all users off the system

Show t he users the system nmessages.
| / SYSTEM SYSTEM MESSAGE

O her messages or conmands can be executed for all users to see

* 0% ok X R X X Xk %

Note that the next conmand | ooks into the user’s default working
directory for the personal |ogon file.
I|F DL LOGON. CMVD, , 0
THEN TR, LOGON. CMVD
Fl
*

B-2 Logon Files

GRUMP Command/Log Files

Example of GRUMP Command File

L I S B R . N N . S N R T R T R I T R

This is an exanple of a GRUWP conmand file.

It creates group MAX

Then user DEDRA is created and added to group MAX during
the creation of her user account.

Group CPE is created.

Then DEDRA is added to group CPE by altering her existing
user account.

DEDRA' s user account is given the password ”Dbl uejay”
during creation and that password is changed to no
password during the alteration of her user account.

The user and group accounts created are then purged from
the multiuser system

Al lines beginning with an asterisk are coments
i ncluded to explain what is happening.

Assunptions made for this file to work:
1. User DEDRA does not exist.
2. Groups MAX and CPE do not exi st.

3. Directories /DEDRA and / DEDRA/ MAX do not exi st.
4. The command file nane is TREX

Usage: RU, GRUMP, TREX

If you want to see the corresponding log file, the usage
string would be:

RU, GRUMP, TREX, LOGTREX
Make sure that file LOGIREX does not exist before
specifying it as the log file.

>> Create group MAX and provide group information.

NEW GRCOUP, MAX, 4: 30: 0, 500: 0, —100: 255,/ e
*

*
*

>> Create user DEDRA.

NEW USER, DEDRA
*

GRUMP Command/Log Files

* >> Provide uni que user information
*

‘Dedra Jackson‘, BLUEJAY, 25, —200: 250, 220, 225,/ E, 4: 4, 2

*

>> Provi de DEDRA. NOGROUP i nformation. Directory ::DEDRA
>> does not exist and we want to create it on LU 17 (which
>> expl ains the "YES, 17" response).

>> | f directory ::DEDRA already exists, the input line
>> nmust be
>> "::DEDRA, ‘ RU Cl . RUN: : PROGRAMS LOGON. CVD: : USERS' .

>> | f directory ::DEDRA does not exist and you do not want
>> to create it, the beginning of the input |ine nmust be
>> ":: DEDRA, NO, ‘ RU CI . RUN: : PROGRAMS LOGON. CMD: : USERS' ”.

>> Note that ::DEDRA is the default for the working directory
>> so ", YES, 17, RU Cl . RUN: : PROGRAMS LOGON. CMVD: : USERS'’
>> gives the sane result as the |ine bel ow

>> | f a command extends beyond one |line, GRUW w |l parse
>> a paraneter—separating conma at the end of a line as an
>> undefi ned paraneter and result in error. Onit end of

>> |line commas if they are separators rather than place

>> hol ders. Continue the command in colum one of the next
>> |ine.

E o I R R S SR R T I N T R N N N N N N

: DEDRA, YES, 17, * RU Cl . RUN: : PROGRAMS LOGON. CMD: : USERS
LOGOF. CMVD: : DEDRA' , 0: 20: 0, 50: 0

*

* >> YES we want to add DEDRA to an existing group other

* >> t han NOGROUP

*

YES

*

* >> Provide the group name, MAX, and the DEDRA. MAX i nformation
*

MAX, / DEDRA/ MAX, YES, , * RU Cl . RUN: : PROGRAMS LOGON. CVD' , , -1, -1
*

* >> YES MAX should be the default | ogon group

*

YES
* >> [E says we do not want to add DEDRA to any ot her

* >> existing groups.

*

=

*

* >> Create group CPE and provide group infornmation

*

NEW GROUP, CPE, 0: 45: 0, 400: 0, —-100: 255,/ E

*

* >> Alter unique user information for DEDRA so we can add
* >> her to the existing group CPE

*

* >> Leave all the unique user attributes the sane except
* >> change the password which was previously defined, to
* >> no password (this explains the YES)

*

ALTER, USER, DEDRA. , , ,, YES,, , ,,
*

C-2 GRUMP Command/Log Files

* >> YES we want to add DEDRA to an existing group.

>> :: DEDRA al ready exists at this point so GRUVWP does not
>> ask whether we want to create it and which LU it should

Yl
*
* >> Provide group name and DEDRA. CPE information. Directory
*
*
* >> go on.

*

CPE, : : DEDRA, * RU Cl . RUN: : PROGRAMS LOGON. CMVD: : DEDRA' , “ LOGCOF. C\VD: : CPE'
-1,-1
*

* >> No we do not want to add DEDRA to any ot her existing
* >> groups (this explains the /E).
*

/E

*

* >> CPE should be the default |ogon group
*

CPE

*

* >> Purge user DEDRA

*

f’U, USER, DEDRA, OK

: >> Purge group MAX
f’U, GROUP, MAX, OK

: >> Purge group CPE
f’U, GROUP, CPE, OK

* >> Exit GRUWP

*

EX

Example of Log File

This is an example of a log file. This log file would be created if specified in the RUN command
with GRUMP command file immediately preceding.

* GRUWP>

NEW

* Enter (Qroup or (U sers :
GROUP

* Enter group |ogon nane :

MAX

* Creating group MAX

* Enter CPUlimt (hh:nmmss or =1 for No Limit) [No Limt]:

4:30:0

* Enter connect tinme limt (hh:mmss or -1 for No Limit) [No Limt]:
500: 0

* LU access table nodifications ([—]LU#[:LU#2])

—100: 255

* LU access table nodifications ([—]LU#[:LU#2])

GRUMP Command/Log Files C-3

/E

* GRUMP>

NEW

* Enter (Qroup or (U sers :
USER

* Enter user |ogon name :
DEDRA

* Creating user DEDRA

* Enter users real name [??7]
Dedra Jackson

* Enter password (a <cr> gives no password)

BLUEJAY

* Enter capability level (31=SU) [10]

25

* LU access table nodifications ([—]LU#[:LU#2])
—200: 250

* LU access table nodifications ([—]LU#[:LU#2])
220

* LU access table nodifications ([—]LU#[:LU#2])
225

* LU access table nodifications ([—]LU#[:LU#2])
/E

* Enter #UDSPs:depth [0:0]

4: 4

Enter the size of the Environment Variable Block in pages [O0]:

*
2
*
* All users must be in the group NOGROUP.
*
*
: Enter information for DEDRA NOGROUP

*

Enter working directory nane [:: DEDRA]

. . DEDRA

* Create directory ::DEDRA (Yes/No) [N
YES

* What LU should the directory go on [0]
17

* Enter the startup conmand [RU Cl. RUN: : PROGRAMS]

RU Cl . RUN: : PROGRAMS LOGON. CMVD: : USERS

* Enter the | ogoff program command file [NOT DEFI NED]
LOGOF. CVD: : DEDRA

* Enter CPU limt (hh:mmss or =1 for No Limt) [No Limt]
0:20:0

* Enter connect time limt (hh:mmss or -1 for No Limit) [No Limt]
50: 0

*

* Do you wish to include the user in any existing

* group other than NOGROUP (Yes/No) [N :

YES

*

* Enter group name (/E or <cr> to end)

*
* Enter informati on for DEDRA. MAX.
*
*

Enter working directory nane [:: DEDRA]
/ DEDRA/ MAX
* Create directory (Yes/No) [N
YES

C-4 GRUMP Command/Log Files

* What LU should the directory go on [O0]

* Enter the startup conmand [RU Cl. RUN: : PROGRAMS]
RU Cl . RUN: : PROGRAMS LOGON. CMD: : USERS
* Enter the | ogoff program command file [NOT DEFI NED]

* Enter CPU limt (hh:mmss or =1 for No Limt) [No Limt]

-1

* Enter connect time limt (hh:mmss or -1 for No Limit) [No Limt]
-1

* Should this be the default |ogon group (Yes/No) [N

YES

*

* Enter group name (/E or <cr> to end)
=

* Group MAX is the default |ogon group.
* GRUWP>

NEW

* Enter (Qroup or (U sers :

GROUP

* Enter group |ogon nane :

CPE

* Creating Goup CPE.

* Enter CPU limt (hh:mmss or =1 for No Limt) [No Limt]
0:45:0

* Enter connect time limt (hh:mmss or -1 for No Limit) [No Limt]
400: 0

* LU access table nodifications ([—]LU#[:LU#2])

—100: 255

* LU access table nodifications ([—]LU#[:LU#2])

/E

* GRUMP>

ALTER

* Enter (Qroup or (U sers :

USER

* Enter user.group paraneter:

DEDRA.

* Enter new user | ogon nane [DEDRA]

* Enter users real name [Dedra Jackson]

* Enter password (a <cr> gives no password)

* Change password to no password (Yes/No) [N
ZEgnter capability level (31=SU) [25]

* LU access table nodifications ([—]LU#[:LU#2])
* Enter #UDSPs: depth [4:4]

* Enter the size of the Environment Variable Block in pages [2]:

* Modi fied uni que user information.

*

* Do you wish to include the user in any existing
* group other than NOGROUP (Yes/No) [N :

YES

* Enter group name (/E or <cr> to end)

CPE

GRUMP Command/Log Files

Enter informati on for DEDRA. CPE.

E I S

Enter working directory nane [:: DEDRA]

. . DEDRA

* Enter the startup conmand [RU Cl. RUN: : PROGRAMS]

RU Cl . RUN: : PROGRAMS LOGON. CMVD: : DEDRA

* Enter the | ogoff program command file [NOT DEFI NED]
LOGCF. CMVD: : CPE

* Enter CPU linmt (hh:mmss or =1 for No Limt) []

1
* Enter connect time limt (hh:mmss or -1 for No Limit) [No Limt]
-1
*
* Enter group name (/E or <cr> to end)
=
*

* ich group should be the default |ogon group [MAX]
CPE
* Group CPE is the default |ogon group.
* GRUMP>
PU
*Enter (Qroup or (Users :
USER
* Enter user[.[group][, K]
DEDRA
XK
DEDRA. NOGROUP record purged
DEDRA. MAX record purged
DEDRA. CPE record purged
User DEDRA successful |y purged.
GRUMP>
U
Enter (GQroup or (U)sers :
P

* Enter group[, K]
MAX

(014

* Purged group MAX

* GRUWP>

PU

* Enter (Qroup or (U sers :
GROUP

* Enter group[, K]
CPE

(014

* Purged group CPE
* GRUWP>

EX

[v B

C-6 GRUMP Command/Log Files

SECURITY.TBL

SECURITY.TBL is the security source code shipped with the software. It is used with the SECTL
GT command to generate a set of tables at installation.

Security Table Source Format

The general format is free form, with exceptions only where noted. Input is NOT case sensitive; it
is all upshifted internally.

The NAME fields are all up to six bytes long. They may consist of any ASCII characters except
carriage return and line feed.

Any line with an asterisk (*) in column one is considered a comment. Comments may appear at
the end of any source line, provided that ALL fields of the source line were specified.

Categories

Categories are defined with the SCATEGORY keyword. The format is:
$cat egory: <category name> [rangeof f]

$category can start anywhere on the line. There must be at least one space between the colon (:)
and the start of the category name. The rangeoff option instructs the table generator to allow
values outside the 0 to 31 range. This option is used when the functions in the category are used to
hold information other than CPLVs. Rangeoff cannot be used on special categories.

Special Categories

There are four special categories, each indicated by a keyword. Note that the colon (:) is part of
the keyword. The rangeoff option cannot be specified with the following categories:

$system OS commands and signal security
$exec: Exec call security
$f np: File system security

$security: Security/ 1000 internal security checking

Special categories can appear in any order in the source file and the functions within the category
can appear in any order. However, the table generator reorders the special categories and the
functions within them to an order that is known to the system software (for performance reasons).

SECURITY.TBL D-1

Only certain functions (predefined) can appear within a special category. These are known to the
table generator. If any other function appears in a special category it generates an error condition.
The predefined functions for each special category are listed below.

Some of the special categories have reserved functions in them. Currently, no software makes use
of them. They exist for possible future expansion of the functions in the special categories. The
reserved functions appear in the list file produced by SECTL LT command or the SecLisTable
subroutine.

$system Each function corresponds to an OS command except sigkil, which is used by
signals to determine who can send a kill signal.

br, cd, dt, go, of, pr, ss, sz, ul,
up, vs, ws, as, dn, ds, ps, tm ru,
Xq, ex, sigki

$exec: Each function corresponds to an EXEC code. Note that even if an EXEC
code is currently undefined, it is still given an entry within this category.
Note also that $exec is currently an inactive category, which means that it is
not presently used by HP software.

exec0l1l, exec02, exec03,
...... , exec44

$f np: Each function corresponds to an FMP function. See the following
SECURITY.TBL section for the definitions of the FMP functions.

f mp00, fnp0l, fnp02,
..... , frmp35

$security: Because the functions in this category represent a variety of things, each
function and its meaning is listed:

Function Meaning

edtfnc subroutine SecEditFunction

rncat subroutine SecRenameCat

rnfnc subroutine SecRenameFnc

putprg subroutine SecPutProgCplv

putrq subroutine SecPutRqusCplv

putcit subroutines SecPutCitNam, SecPutCitNum
putcft subroutines SecPutCftNam, SecPutCftNum
ckeplv subroutines SecChkCplvNam, SecChkCplvNum
inital subroutine Seclnitialize

switch subroutine SecSwitch

vifnam subroutine VfNam

clgon subroutine Clgon

clgof subroutine Clgof

D-2 SECURITY.TBL

Functions

Each category contains a series of functions. There must be at least one function per category.
The functions follow the category definition. All functions are linked to the last seen category
definition. The syntax of the function statement is as follows:

fncname <base> subl sub2 sub3

fncname The name of the function; must be unique within the current category.

base The cplv of the base function; must be in the range 0-31, unless rangeoff was
specified.

subl The cplv of subfunctionl; must be in the range 0-31, unless rangeoff was
specified.

sub2 The cplv of subfunction2; must be in the range 0-31, unless rangeoff was
specified.

sub3 The cplv of subfunction3; must be in the range 0-31, unless rangeoff was
specified.

For example,

putcit 12 1 2 0

SECURITY.TBL D-3

SECURITY.TBL

This is a sample of the security source code shipped with the software. Use it to generate a set of
tables at installation.

*

[— < Security definition for programmmatic access to the file
e < systemvia the FMP library.

| < The foll ow ng nmeani ngs have been applied to the base function
L < and or subfunctions.

L J— <

 JE— < (1) Base — caller can either call the routine or not.
L < Subl — action can be performed in the current WD
F o < Sub2 — action can be performed on the same LU as
L < the current WD

[— < Sub3 — action can be perforned on any LU

L J—— <

 JE— < (2) Base — caller can either call the routine or not.
e < Subl — action can be perfornmed by the owner

e < Sub2 — action can be performed by anot her nenber of
e < t he owner’s group.

| < Sub3 — action can be performed by any other user on
e < t he system

L J— <

 JE— < (3) Base — caller can either call the routine or not.
L < Subl — not defined

L < Sub2 — not defined

L < Sub3 — not defined

*

$f np:

create 10 10 11 13 * FnpOpen — create node (1)
open 1 1 2 4 * FnpOpen — open node (1)
f np02 0O 0 0 O * reserved for future use

pur ge 10 10 11 13 * FnpPur ge (1)
unprg 10 10 11 13 * FnpUnPur ge (1)
init 20 20 25 30 * FnpMount — initialize node (2)
nount 5 0 0 O * FnpMount — nmount only node (2)
di stmt 5 0 0 O * FnpDi snount (2)
crdir 10 10 11 13 * FnpCreateDir (1)
wd 5 0 0 O * FnpWor ki ngDi r (3)
acctim 5 0 0 O * FnpAccessTi ne (3)
updtim 5 0 0 O * FnpUpdat eti ne (3)
cretim 5 0 0 O * FnpCreatetine (3)
set own 100 0 O * FnpSet Oawner (3)
eof 5 0 0 O * FnpEof (3)
si ze 5 0 0 O * FnpSi ze (3)
setwd 15 15 16 18 * FnpSet Wor ki ngDi r (1)
info 5 0 0 O * Fnpl nfo (3)
setdir 100 0 O * FnpSetDirlnfo (3)
reccnt 5 0 0 O * FnpRecor dCount (3)
filenm 5 0 0 O * FnpFi | eNane (3)
fnp21 0O 0 0 O * reserved for future use

renane 10 10 11 13 * FnpRenane (1)
f np23 0O 0 0 O * reserved for future use

trunct 100 0 O * FnpTruncate (3)

D-4 SECURITY.TBL

E o T S B I . S B N B I

future use
future use
future use

future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use
future use

pr ot 5 0 0 O * FnpProtection
setprt 100 0 O * FnpSet Protection
opfile 5 0 0 O * FnpQOpenFil es
reclen 5 0 0 O * FnpRecordLen
f np29 0O 0 0 O * reserved for
f np30 0O 0 0 O * reserved for
f np31 0O 0 0 O * reserved for
dirnam 5 0 0 O * FnpDi r AddToNam
f np33 0O 0 0 O * reserved for
f np34 0O 0 0 O * reserved for
f np35 0O 0 0 O * reserved for
f np36 0O 0 0 O * reserved for
f np37 0O 0 0 O * reserved for
f np38 0O 0 0 O * reserved for
f np39 0O 0 0 O * reserved for
f np40 0O 0 0 O * reserved for
f np4l 0O 0 0 O * reserved for
f np42 0O 0 0 O * reserved for
f np43 0O 0 0 O * reserved for
f np44 0O 0 0 O * reserved for
f np45 0O 0 0 O * reserved for
f np46 0O 0 0 O * reserved for
f np47 0O 0 0 O * reserved for
f np48 0O 0 0 O * reserved for
f np49 0O 0 0 O * reserved for
f np50 0O 0 0 O * reserved for
f np51 0O 0 0 O * reserved for
f np52 0O 0 0 O * reserved for
f np53 0O 0 0 O * reserved for
f np54 0O 0 0 O * reserved for
f np55 0O 0 0 O * reserved for
f np56 0O 0 0 O * reserved for
f np57 0O 0 0 O * reserved for
f np58 0O 0 0 O * reserved for
f np59 0O 0 0 O * reserved for
f np60 0O 0 0 O * reserved for
f np61 0O 0 0 O * reserved for
f np62 0O 0 0 O * reserved for
dsrtr 150 0 O * ds/ 1000 file

(3)
(3)

(3)

(3)

t ranspar ency (3)

The System comands security category. These are the commands

i mpl enen
is calle
is calle

ted in the kernel. The programt hat

i ssues the OS conmmand

d the "sender” and the programthat the command will affect

d the "receiver”.

The foll owi ng neani ngs have been applied to the base function
ubfunctions. The sender’s PROGCPLV is al ways checked agai nst
, 1 f that check passes the check is against one of the

i ons. Wi ch subfunction is used depends on the paraneters.

and or s

t he Base

subf unct
Base
Sub01

Sub02

— The sender can either issue the command or

— The sender and the receiver

— The sender and the receiver

not .

are in the sane session.

are in different sessions but
they are both in the same group.

SECURITY.TBL

D-5

[— <
[— < Sub03 — The sender and the receiver are in different sessions and
pf— < di fferent groups.
*
$syst em
as 15 15 20 25
br 5 5 20 25
cd 6 6 11 16
dt 10 10 20 25
go 5 5 10 15
of 10 10 20 25
pr 20 20 20 25
SS 10 10 20 25
sz 6 6 11 16
ul 20 0 0 O
up 5 0 0 0
Vs 7 7 20 25
ws 12 12 20 25
dn 15 0 0 O
ds 5 0O 0 O
ps 0 0 0 0
tm 1 31. 0 O
ru 8 8 0 0 * sub02 and sub03 undefined for this cnd.
Xq 8 8 0 0 * sub02 and sub03 undefined for this cnd.
ex 0 0 0 0
sglkil 10 10 20 20 * Signal kill function
*
e < The first of two categories for SECURI TY/ 1000
e < This category defines who can use the SECURI TY/ 1000 routines and
e < what they can do with them
*
$security:
edtfnc 31 O 0 0 * SeckEdi t Functi on
rncat 31 0 0 0 * SecRenaneCat
rnfnc 31 0 0 0 * SecRenaneFnc
*
e < SecPut ProgCpl v and SecPut RqusCpl v have t he base function and
e < the subfunction defined. Their neanings are as foll ows.
[— <
e < Base — The request applies to the calling program
[— <
e < Sub01 — The request applies to another programin the
[— < sane session as the caller
[— <
e < Sub02 — The request applies to a programin anot her
e < session but the same group as the caller
[— <
e < Sub03 — The request applies to a programin anot her
e < session and group fromthe caller
*
D-6 SECURITY.TBL

putprg 5 15 31 O * SecPut ProgCpl v
putrq 5 15 31 O * SecPut RqusCpl v
putcit 31 O 0 0 * SecPut Gt Nam and SecPut C t Nam
putcft 31 O 0 0 * SecPut Cf t Nam and SecPut Cf t Nam
ckcplv O 0 0 0 * SecChkCpl vNam and SecChkCpl vNum
inital 31 O 0 0 * Secinitial
switch 31 O 0 0 * SecSwitch
*
e < VfNam d gon, d gof.
* <
pf— < Base — Yes/ No
* <
e < Sub01 — Log directive. If non-zero then any security check that
e < fails will be logged to the spool log file
o <
e < Sub02 — Abort Directive. If 0 nothing will be aborted. If 1 the
e < programthat failed the security check will be aborted.
o <
*
vinam 20 1 1 0 * Vf Nam
cl gon 20 1 1 0 * Clgon
cl gof 20 1 1 0 * Cl gof
*
[— < The second SECURI TY/ 1000, it is used to determ ne who can
e < use the Sectl commands and what they can do with them
*

$cat egory: sectl

in 31 0 0 0 * | N command
Sw 31 0 0 0 * SW command
ec 31 0 0 0 * EC command
he 0 0 0 0 * HE command
ot 5 0 0 0 * GI' command
It 5 0 0 0 * LT command
pc 31 0 0 0 * PC command
rn 31 0 0 0 * Rn command
rq 31 0 0 0 * RQ command
res000 0O 0 0 0 * Spares for future features
res0ol 0 0 0 0 * Spares for future features
res002 0 0 0 0 * Spares for future features
res003 0 0 0 0 * Spares for future features
res0o4 0 0 0 0 * Spares for future features
res005 0 0 0 0 * Spares for future features
res006 0 0 0 0 * Spares for future features
res007 0 0 0 0 * Spares for future features
res008 0 0 0 0 * Spares for future features
res009 0 0 0 0 * Spares for future features

SECURITY.TBL D-7

$cat eg

E I T R L T B

E o S R R T . N R N N N I O R T R T R R

< Link s

ory: lin

< PR co

< Base

< sub01

< sub02

< sub03

< Cl sec
< Ther ef

< Interd
<routin

ecurity table

k

0S 5 0 0 0 * operator suspend |ink

nmmand functi ons have the foll ow ng meanings.

— The user can either issue this command or not. I|If so,
then the user is subject to the subfunction meanings.

The user can only decrease the default priority
(99 —> 32k).

The user can increase the priority to 51

The user can set any priority.

pr 15 15 20 28 * set priority of program

I c 20 0 0 0 * | abell ed system comon
sc 20 0 0 0 * bl ank system conmon
sh 20 O 0 0 * Use Sharabl e EMA

urity tables. All C conmands only use the base function
ore for each command it is a sinple YES/ NO decision

ependenci es. A nunber of CI conmmands map directly onto FMP
es or the OS kernel. For exanple, PU (purge file) maps

< onto FnpPurge and BR maps directly onto the OS kernel command BR

<It is

therfore possible to pass the CI conmand security check but

< fail at a deeper level (FMP or the kernel). For a list of the

< interdependenci es see the RTE-A System Manager’s Manual

<

< C conmands fall into one of the five follow ng interdependencies.

<

< (1) The conmand is really a program There could be up to 3 levels
< of security that have to be passed in order for the conmand

< to be allowed. The 3 levels are,

<

< — Cl security check (can the user issue the conmand
< fromd).

<

< — Program security (does the user have enough

< capability to run the programthat inplenents

< t he command).

<

< — FWP or OS kernel conmand (does the user have

< enough capability to call the FMP routine or issue
< the kernel comand that the CI command maps onto).
<

< (2) The C conmand maps onto an FMP routine, therefore there are

D-8 SECURITY.TBL

e < two | evels of security invol ed.

* <

e < — Cl security check (can the user issue the conmand
e < fromd).

* <

e < — FWP routines (does the user have the capability
e < to call the FMP routine that Cl is about to use).
o <

o <

e < (3) The Cl conmand maps onto an OS kernel conmand, therefore there
e < are two |levels of security invol ed.

o <

e < — Cl security check (can the user issue the conmand
e < fromdC).

* <

e < — OS kernel command (does the user have the capability
[— < to use the OS kernel command that Cl is about

*e < to use).

* <

*e < (4) The C conmand is handled internally. In this case there is only
e < one | evel of security involved, that of C's.

o <

e < (5) The C conmand calls a docunented utility routine (as found
e < in the Relocatable Library Reference Manual or the Progranmer’s
pf— < Ref erence Manual . To find out which routines have security

R < features in them see the $security: category above.

* <

* <

$cat egory: ci

alias 0 0 0 0 * alias commands (4)
as 0 0 0 0 * assign partition (3)
ask 0 0 0 0 * display promt/read response(l)
at 10 O 0 0 * time schedul e (4)
br 0 0 0 0 * Set break flag (3)
cd 0 0 0 0 * change directory (2)
cl 0 0 0 0 * |list mounted disks (4)
cn 10 O 0 0 * device control (4)
co 0 0 0 0 * copy files (2)
cr 0 0 0 0 * create file (2)
crdir O 0 0 0 * create directory (2)
cz 0 0 0 0 * code partition size (3)
dc 0 0 0 0 * di smount di sk (2)
dl 0 0 0 0 * directory I|ist (1)
dt 0 0 0 0 * data partition size (3)
echo 0 0 0 0 * echo paraneters (4)
ex 0 0 0 0 * termnate Cl (4)
fnctn O 0 0 0 * create a function (4)
fnctns O 0 0 0 * display functions (4)
go 0 0 0 0 * resune suspended program (3)
i f 0 0 0 0 * control structure (4)
in 20 0 0 0 * initialize disk (2)
io 0 0 0 0 * display 1/0O config (1)
is 0 0 0 0 * control compare (1)
[i 0O 0O O o0 *list files (1)
nc 0 0 0 0 * mount di sk (2)

SECURITY.TBL D-9

eleolololojlololololojojlololoNoojolololoNolojlolololoololololololoNeNe]

_____ < The security category for GRUWP

no 0
of 0
owner O
pat h 0
pol | 0
pr 0
pr ot 0
ps 0
pu 0
pwd 0
return O
rn 0
rp 1
rs 0
ru 0
set 8
sp 0
Ss 0
sz 0
tm 0
to 1
tr 0
ul 0
unalia O
unpu 0
unset 8
up 0
VS 0
wd 0
wh 0
while O
whosd O
S 0
Xq 0
? 0

*

*

*

*

pf— < Meani ngs of the

e < two categories.

[— <

[of— < (1) Base

[— <

o — < Sub01

[— <

e < Sub02

e < Sub03

[— <

[— < (2) Base

[— <

e < Sub01

[— <

e < Sub02

e < Sub03

*

D-10 SECURITY.TBL

0 0 * move files (4)
0 0 * stop prog (3)
0 0 * file ownership (2)
0 0 * UDSP control (1)
0 0 * async. Cl cmd execution (4)
0 0 * programpriority (3)
0 0 * file protection (2)
0 0 * program status (3)
0 0 * purge files (2)
0 0 * display working directory (4)
0 0 * control return (4)
0 0 * renane files (2)
0 0 * create id segment (2)
0 0 * restart Cl (1)
0 0 * run prog (2)
0 0 * set user Cl variable (4)
0 0 * spool operation (1)
0 0 * suspend program (3)
0 0 * modi fy program size (3)
0 0 * gystemtine (3)
0 0 * device tine out (4)
0 0 * transfere to cnd file (4)
0 0 * unl ock shareable EMA part. (3)
0 0 * clear an alias (4)
0 0 * unpurge file (2)
0 0 * clear user Cl variable (4)
0 0 * up a device (3)
0 0 * ema/vima size (3)
0 0 * working directory (2)
0 0 * system status (1)
0 0 * control structure (4)
0 0 * vol une users (1)
0 0 * vma wor ki ng set (3)
0 0 * nowait prog run (2)
0 0 * help (4)

base and subfunctions fall into one of these

Capability needed to performthe function
your sel f.

Capability needed to performthe function
soneone el se

Not defi ned.

Not defi ned.

Capability needed to performthe function
t he group of which you are a nenber.
Capability needed to performthe function
the group of which you are not a nenber.
Not defi ned.

Not defi ned.

on

on

on

on

$cat egory: grunp

E I . T B

algrln
al grecp
al grco
al grbm
al usl n
al usrn
al uspw
al usud
al uscl
al usbm
al uscp
al usco
al usgr
al udl g
al ussu
al usl f
al uswd
ligrp

liusr

passwd
al usen

< The neani ngs

31
25
25
25
31
10
10
25
31
25
31
31
25
15
15
15
31
15
15
0

25

of the base and

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
25
31

*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter
*al ter

*| st

cleolololololololololololNolololololoNe oo
cleolololololololololololNolololololoNo oo

*al ter

group
group
group
group
| ogon
| ogon
user
user
user
user
user
user
user
user
user
user
user

*[ist group
user d
*change user

user

| ogon nane (2)
cpu limt (2)
connect time limt (2)
bit map (2)
user nane (1)
user real nane (1)
passwor d (1)
udsp depth and | evel s(1)
cplv (1)
bit map (1)
cpu limt (1)
connect limt (1)
group list (add groups) (1)

default | ogon group (1)

startup program (1)
| ogof f program (1)
| ogon working dir. (1)
definitions (2)
efinitions (1)

passwor d (1)
EVB si ze (1)

subfunctions are now,

< Base — Capability needed to issue the comrand.

< Sub01 — Not defi ned.

< Sub02 — Not defi ned.

< Sub03 — Not defi ned.
negrp 31 0 0 0 *create new group
neusr 31 0 0 0 *create new user
pugr p 31 0 0 0 *purge a group
puusr 31 0 0 0 *purge a user
regrp 31 0 0 0 *reset a groups accounting info
reusr 31 0 0 0 *reset a users accounting info
kilses 31 O 0 0 *Kill a session

< The utils category.

$category: utils

kilses 31 O 0 0 *Kill a session, yes or on

< Meani ngs of functions for seslu.

<

< Base — List your sessions’s bit map

< Sub01 — List another session’'s bit nmap

< Sub02 — Modi fy your session’s bit map

< Sub03 — Modi fy another session’s bit map

E I N I B .

SECURITY.TBL

D-11

seslu 5 10 15 31 *SESLU utility

————— < The followi ng two categories (HPOOO and HPOOl1l) are reserved
————— < for use by HP

E o R

$cat egory: hp000

resbO 0 0 O O
resOl1 0 O O O
resb2 0 0 O O
resb3 0 0 O O
resO4 0 O O O
resO5 0 0 0 O
resb6 0 0 O O
resO7 0 0 O O
resb8 0 0 O O
resO9 0 0O O O
resl0 0 0 O O
resl1 0 O O O
resl2 0 0 O O
resl3 0 0 O O
resl4 0 O O O
resl5 0 0 O O
reslé 0 0 O O
resly 0 0 O O
resl8 0 0 O O
resl9 0 0 0 O

$cat egory: hp001

resbO 0 0 O O
resOl1 0 O O O
resb2 0 0 O O
resb3 0 0 O O
resO4 0 O O O
resO5 0 0 0 O
resO6 0 0 O O
resO7 0 0 O O
resb8 0 0 O O
resO9 0 0O O O
resl0 0 0 O O
resli1 0 0O O O
resl2 0 0 O O
resl3 0 0 O O
resl4 0 O O O
resl5 0 0 O O
reslé 0 0 O O
resly 0 0 O O
resl8 0 0 O O
resl9 0 0 0 O

D-12 SECURITY.TBL

Security Table Worksheet

This appendix contains tables that show the relationship of the $system and $fmp security
functions to the CI commands, and the relationship of the $fmp security functions to FMP
routines. There is also a worksheet (Table E-3) designed to aid in the creation and modification of
your security table. This information can be used to track down the source of a security violation
error for CI commands, by determining at which level (CI, OS, or FMP) the error occurred. The
table also indicates if the command is subject to program security and file system checking.

The worksheet contains blanks where you can record the capability levels for each command and
routine. For example, the AT command in CI has one level, the base (B). If you are using the
security table supplied by Hewlett-Packard (SECURITY.TBL), the default capability level is
already determined, and you would put a 10 there. The system DT command has four levels, the
base and three subfunctions (B, 1, 2, 3). The default capability levels are 10 10 20 25. The
definition of the levels of the commands and routines is contained in SECURITY.TBL (see
Appendix D).

The worksheet is completed in the following manner. The CI AS command is used as an example.
When assigning capability levels, you must be aware that the AS command is also checked at the
OS command level. If your capability level is 11, the required capability for the CI AS command is
set to 10, and the OS AS command level definition is 12 15 20 30, you will not be able to execute
any of the functions of the AS command because you will fail the security check in the OS on all
function levels. Thus, even though you passed the check at the CI level, you could not execute the
command because you failed at the system level. If your cabability level is 16, you will be able to
perform the base and first subfunction of the AS command, but not the second or third
subfunction.

A different example is the CI IN command. The IN command calls the three FMP commands that
correspond to the $fmp security functions listed in the worksheet. If the values are defined below,
and your capability level is 20, you will get a security violation detected when the IN command
attempts to do the FmpMount(init) because your level is not high enough. The following is an
example of this condition:

Cl $system $fmp
Command Security Function Security Function

IN init

B _20 B _25
nount
B _20
di stmt
B _20

Security Table Worksheet E-1

The following table shows the relationship of the OS commands, and the FMP routines, to the CI
commands, as well as indicating if the command is subject to program security and file system
checking. The checks for the listed FMP routines are only performed if the CI command is issued
in a manner that exercises the routine. For example, the LI command only uses FmpOpen(create)
if you say to divert the listing to a file that does not exist.

Table E-1. Security Table Structure for CI Commands

$system $fmp File
Cl Command Security Function | Security Function Required Program | System
ALI AS None None None No
AS as None None No
ASK None None ASK Yes
AT None None Cl X, D.RTR Yes
Speci fi ed
Program

BR br None None No
CcD None wd None Yes

setwd
CL None None None No
CN None None None No
CO None crdir Cl X, D RTR Yes

open

create

info

setdir

pur ge
CR None create Cl X, D RTR Yes
CRDI R None crdir Cl X, D. RTR Yes
cz cd None None No
DC None di smmt Cl X, D. RTR Yes
DL None open DL Yes

create

wd

opfile
DT dt None None No

E-2 Security Table Worksheet

$system $fmp File
Cl Command Security Function | Security Function Required Program | System
ECHO None None None No
EX of open Cl ALOGOF Yes
Logof Prog.
LI

FUNCTI ON None None None No
(fnctn)
FUNCTI ONS None None None No
(fnctns)
&0 go None None No
| F—~THEN-EL SE-FI None None None No
(if)
IN None init Cl X, D.RTR Yes

nount

di snmt
10 None Create 10 Yes
IS None None IS No
LI None open LI Yes

create

reccnt

pur ge
MC None init Cl X, D.RTR Yes

nount
MO None renane C X, D.RTR Yes
OF of None None No
OMNNER None set own C X, D.RTR Yes
PATH None open PATH, D. RTR No

di rnam
POLL None None None No
PR pr None None No
PROT None pr ot DL, AX Yes

Security Table Worksheet E-3

$system $fmp File
Cl Command Security Function | Security Function Required Program | System
PS ps None None No
PU None pur ge C X, D RTR Yes
PWD None wd None Yes
RETURN None None None No
RN None renane C X, D.RTR Yes
RP None None C X, D.RTR Yes
RS of None RS Yes
RU None None Specific Yes
Program

SET None None None No
SP None open SP Yes

create

pur ge

setprt

crdir
SS SS None None No
SZ sz None None No
™ tm None a X No
TO None None None No
TOUCH None open TOUCH Yes

create

opfiles

acctim

cretim

updtim

setdir

wd
TR None open None Yes
UL ul None None No
UNALI AS None None None No
(unali a)

E-4 Security Table Worksheet

$system $fmp File
Cl Command Security Function | Security Function | Required Program | System

UNPU None unprg C X, D RTR Yes
UNSET None None None No
uP up None None No
VS VS None None No
WC None info WC Yes

open

create

opfile

wd
WD None wd None Yes

setwd

open
VH None None VH No
VHI LE-DO-DONE None None None No
(whi |l e)
VHOSD None di r nam VWHOSD Yes

info

open

create

opfile

wd
W5 S None None No
XQ None None Specific Yes

Program

? None None LI Yes

Security Table Worksheet E-5

Table E-2. Security Table Structure for FMP Routines

FMP Routine $fmp Security Routine
Cal c_Dest _Name None
DcbOpen None
Fat t enMask None
FrpAccessTi me acctim
FrpAppend info
FrpBi t Bucket None
FrpBui | dHi er ar ch None
FrpBui | dNane None
FrpBui | dPat h None
FrmpCl oneNane None
Frmpd ose None
FrmpCont r ol None
FrpCopy open
create
pur ge
info
setdir
filenm
renane
trunct
FrnpCreateDir crdir
FrpCr eat eTi me cretim
FrmpDcbPur ge None
FrpDevi ce None
FrmpDi srmount di stmt
FrmpEndMask None
FrpEof eof
FrpEr r or None
FrnpExpandSi ze None
FrpFi | eName filenm
FrnpFPos None
FrpHi er ar chNane None

E-6 Security Table Worksheet

FMP Routine $fmp Security Routine
Frpl nf o info
Frpl ni t Mask open
wd
Frpl nteracti ve None
Frpl oOpt i ons None
Frpl oSt at us None
FrpLast Fi | eNane None
FrplLi st open
create
FrpLi st X open
create
FrpLu None
FrmpMakeSLi nk open
create
FrmpMaskNare None
FrrpMount nmount
FrrpNext Mask open
opfile
FrmpOpen open
create
FrmpQpenFi | es opfile
FrmpQpenScr at ch open
create
filenm
FrmpOpenTenp None
FrmpOaner open
FrpPackSi ze None
FrpPagedDevWi t e None
FrpPagedWite None
FrpPagi nat or None
FrpPar seNane None
FrpPar sePat h None
FrpPosi ti on None
FrpPost None

Security Table Worksheet

E-7

FMP Routine $fmp Security Routine
FrpPost Eof None
FrpPr ot ect i on pr ot
FrpPur ge pur ge
FrmpRawMbve None
FrmpRead None
FrpReadLi nk open
FrnpReadSt ri ng None
FrpRecor dCount reccnt
FrpRecor dLen recl en
FnpRenanme r ename
FrpReport Error None
FrmpRewi nd None
FrpRpPr ogr am open

wd
FrmpRunPr ogr am open

wd
FrmpRwBI t s None
FrpSet Dcbl nf o None
FrmpSet Dirl nf o setdir
FrpSet Eof None
FrnpSet FPos None
FrpSet | oOpt i ons None
FrpSet Owner open

set own
FrpSet Posi ti on None
FrpSet Pr ot ect i on setprt
FrpSet Wor d None
FrpSet Wor ki ngDi r setwd
FrmpShor t Nane filenm
FrpSi ze si ze
FrpSt andar dNane None
FrnpTruncat e trunct

E-8 Security Table Worksheet

FMP Routine $fmp Security Routine
FrmpUdspEnt ry di r nam
FrmpUdspl nf o None
FrmpUni queNare None
FrpUnPur ge unprg
FrmpUpdat eTi e updtim
FrmpWor ki ngDi r wd
FrmpWite None
FrmpWiteString None
MaskDi scLu None
Maskl sDS None
MaskMat chLevel None
Maskd dFi | e None
MaskOpenl d opfile
MaskOaner | ds None
MaskSecurity None
W | dCar dMask None
DsCl oseCon None
DsDcbWor d None
DsDi scl nfo None
DsDi scRead None
DsFst at None
DsNodeNunber None
DsOpenCon None
DsSet DcbWor d None

Security Table Worksheet

E-9

The following worksheet can aid you in customizing your security table. Write the desired
capability level in the blanks under each command or routine. A capability of 0 can be specified.
For example, subfunctions 1, 2, 3 of FmpMount and FmpDismount are 0 in the Hewlett-Packard
supplied SECURITY.TBL.

Table E-3. Security Table Worksheet

Ci $system $fmp
Command Security Function Security Function

ALI AS
B

AS as

BR br

[vs}

[os}

E-10 Security Table Worksheet

Cl $system $fmp

Command Security Function Security Function
CO crdir
B __ B 1 2 3
open
B 1 2 3
create
B 1 2 3
info
B___
setdir
B___
pur ge
B 1 2 3
CR Create
B __ B 1 2 3
CRDI R crdir
B __ B 1 2 3
cz cd
B __ B 1 2 3
DC di stmt
B __ B 1 2 3
DL open
B __ B 1 2 3
create
B 1 2 3
wd
B___
opfile
B

Security Table Worksheet E-11

Ci $system $fmp

Command Security Function Security Function

DT dt

B B 1 2

ECHO

B

EX of open

B B 1 2 B 1 2

FUNCTI ON

B___

FUNCTI ONS

B___

&0 go

B B 1 2

| F~-THEN-ELSE-FI

B___

IN init

B B 1 2
nmount
B 1 2
di stmt
B 1 2

IO Ccreate

B B 1 2

E-12 Security Table Worksheet

Cl $system $fmp
Command Security Function Security Function
IS
B___
LI open
B B 1 2
create
B 1 2
reccnt
B___
pur ge
B 1 2
MC init
B B 1 2
nount
B 1 2
MO rename
B B 1 2
OF of
B B 1 2
OMNNER set own
B B 1 2
PATH open
B B 1 2
di r nam
B

Security Table Worksheet

E-13

Ci $system $fmp

Command Security Function Security Function
POLL

B___

PR pr

B B 1 2

PROT pr ot

B B 1 2
PS ps

B B 1 2

PU pur ge

B B 1 2
PWD wd

B B

RETURN

B

RN rename

B B 1 2
RP

B

RS of

B B 1 2

E-14 Security Table Worksheet

Cl $system $fmp

Command Security Function Security Function

RU

B

SET

B

SP open

B B 1 2 3
create
B 1 2 3
pur ge
B 1 2 3
setprt
B___
crdir
B 1 2 3

SS Ss

B B 1 2 3

Sz sz

B B 1 2 3

™ tm

B B 1

TO

B

Security Table Worksheet E-15

Ci $system $fmp
Command Security Function Security Function
TOUCH open
B __ B 1 2
create
B 1 2
opfiles
B___
acctim
B___
cretim
B___
updtim
B___
setdir
B___
wd
B
TR open
B __ B 1 2
UL ul
B_ B___
UNALI AS
B___
UNPU unprg
B __ B 1 2
UNSET
B___
uP up
B B

E-16 Security Table Worksheet

Cl $system $fmp
Command Security Function Security Function

VS VS
B B 1 2 3

WC info

B

open

B 1 2 3
create

B 1 2 3
opfile

B___

wd

B___

[os}

[os}
[vs}

[vs}

VH LE-DO-DONE
B

Security Table Worksheet E-17

Cl $system $fmp

Command Security Function Security Function
VWHOSD di r nam
B B
info
B___
open
B 1 2
create
B 1 2
opfile
B___
wd
B___
W5 S
B B 1 2 3
xQ
B___
?
B

E-18 Security Table Worksheet

Security/1000 Error Codes

-1700

—-1701

-1702

-1703

—-1704

—-1705

Stgen’s symbol table overflowed.

This is an internal error; contact Hewlett-Packard.

Security/1000 not generated into your system.

The OS modules SECOS.REL and CHECK.REL must be generated into your
system in order to use Security/1000.

No such category or function.

The category or function specified cannot be found in the Security/1000 tables.
Check your listing of the installed tables. (See the LT command in the SECTL
utility.)

Security/1000 NOT turned on.

Certain Security/1000 functions can only be performed if Security/1000 is turned on.
(See the IN and ON commands in the SECTL utility.)

Security/1000 has not been initialized.

Security/1000 must be initialized in order to turn on or use Security/1000. (See the
IN command in the SECTL utility.)

lllegal value for CPLV, must be in the range 0-31.

If you are using the Security/1000 tables to store your application’s configuration
information requiring values outside the 0-31 range, use the routines SecPutCitNam,
SecPutCftNam, SecPutCitNum, and SecPutCftNum found in the SEC1000.LIB

library.

Security/1000 Error Codes F-1

-1706

-1707

-1708

-1709

-1710

-1711

-1712

-1713

Duplicate category name.

The category name already exists in the Security/1000 tables.

Duplicate function name.

The function name already exists within the specified category.

Specified program NOT found.

An ID segment belonging to the specified program cannot be found.

Specified file not a SNAP file or corrupt SNAP file.

The supplied file name was not a snap file. If it was a snap file, it was corrupt.

STGEN found errors.

The table generator, STGEN, found errors. See the list file produced by STGEN for
the details.

Renaming a category or function to <blank> not allowed.

The category and function names cannot be blank in the Security/1000 tables.

Reserved.

Security violation.

The requested action cannot be allowed because you do not have the required
capability level.

F-2 Security/1000 Error Codes

Security/1000 Library Routines

The Security/1000 Library Routines (SEC1000.LIB) are the programmatic interface of the
Security/1000 subsystem. The user level subroutines are listed in Table G-1, and are described in
this appendix in alphabetical order. Category and function name parameters are not modified by
the programmatic security routines. Thus, you can define category and function names to be any
3-word value. However, any category or function name that is not upshifted, blank-filled, and
left-justified cannot be accessed with SECTL. Thus, category and function names that are not
upshifted, blank-filled, and left-justified must be defined, accessed, and altered with these
routines.

Note that when a parameter is an entry number, it is always zero relative.

Security/1000 Library Routines G-1

Table G-1. SEC1000.LIB Commands

Command Purpose Page #
SecChangeCplv Changes PROGCPLV G-3
SecChkCplvNam Checks CPLV by name G-3
SecChkCplvNum Checks CPLV by number G-4
SecEditFunction Changes function’s CPLV G-4
SecGenTables Generates security tables G-5
SecGetCitNam Gets CIT entry by name G-5
SecGetCftNam Gets CFT entry by name G-6
SecGetCitNum Gets CIT entry by number G-6
SecGetCftNum Gets CFT entry by number G-7
SecGetCplvs Gets CPLVs related to calling program G-7
SecGetMyCplv Gets calling program’s CPLV word G-7
SecGetRqusCplv Gets RQUSCPLYV of a program G-8
SecGetProgCplv Gets PROGCPLV of a program G-8
Seclnitialize Initializes Security/1000 G-9
SeclListTables Lists security tables G-9
SecOnOff Determines if security is on/off G-9
SecProgCplv Gets program’s CPLVs G-10
SecPutCitNam Updates CIT entry by name G-10
SecPutCftNam Updates CFT entry by name G-11
SecPutCitNum Updates CIT entry by number G-11
SecPutCftNum Updates CFT entry by number G-12
SecPutRqusCplv Sets RQUSCPLYV of a program G-12
SecPutProgCplv Sets PROGCPLV of a program G-13
SecRenameCat Renames a category G-13
SecRenameFnc Renames a function G-14
SecSwitch Turns security on/off G-14
SecUserCplv Gets USERCPLV G-15

Security/1000 Library Routines

SecChangeCplv
SecChangeCplv allows the calling program to change its PROGCPLV during execution.

call SecChangeCpl v(newcplv, error)
error=SecChangeCpl v(newcplv, error)
i nt eger newcply, error

newcply An integer specifying the new PROGCPLV. It ranges from zero to the maximum of
USERCPLV and ORGCPLV. If newcplv is negative, PROGCPLV is set to
ORGCPLW.

error An integer that returns a negative value if there is an error.

SecChkCplvNam

SecChkCplvNam checks a given CPLV against the four capability levels of a function to determine
whether the CPLV equals or exceeds each level of the function (via function and category names).

call SecChkCpl vNam(fncnam, catnam, chkcplv, flagarray, error)
error=Sec ChkCpl vNan{(fncnam, catnam, chkcply, flagarray, error)
i nteger funcnam(3), catnam(3) , flagarray(4)

i nt eger chkceply, error

frncnam A 3-word integer array containing the function name whose CPLVs are checked
against the supplied CPLV. The function name must be left-justified, blank-filled,
and upshifted as needed.

catnam A 3-word integer array containing the name of the category owning the function in
the fncnam parameter. The category name must be left-justified, blank-filled, and
upshifted as needed.

chkceply An integer checked against the function’s capability levels.

flagarray A 4-word integer array containing the CPLV flags. Each flag indicates whether the
chkcply was less than the CPLV in the security tables. If a flag is <0, chkcplv was less
than the corresponding CPLV in the security table; if the flag is >0, chkcply was
equal to or greater than the corresponding security table CPLV. Word 1 = base
CPLYV, Word 2 = subl CPLV, Word 3 = sub2 CPLV, Word 4 = sub3 CPLV.

If the function cannot be found, flagarray is set to positive values. ERROR is then
set to positive 1702. This indicates that the test passed because the function could
not be found. This is not considered an error condition, but enables a programmer
to detect the situation.

error An integer that returns a negative value if there is an error. Note that if a positive
1702 is returned, then the function could not be found. This is not considered an
error condition.

If the function has less than 3 subfunctions, the flags of the missing subfunctions are set to a
positive value.

SecChkCplvNam differs from SecChkCplvNum in that SecChkCplvNam searches the tables for a
particular name while SecChkCplvNum searches for a particular number.

Security/1000 Library Routines G-3

SecChkCplvNum

SecChkCplvNum checks a given CPLV against the four capability levels of a given function to
determine whether it equals or exceeds each level of that function (via function and category
numbers).

call SecChkCpl vNum(fncnum, catnum, chkcplv, flagarray, error)
error=Sec ChkCpl vNunt(fncnum, catnum, chkeply, flagarray, error)
i nt eger fucnum, catnum, flagarray(4)

i nt eger chkceply, error

frncnum An integer that specifies the number of the CFT entry to be used in the CPLV check.

catnum An integer that specifies the numbner of the CIT entry that points to the CFT to be
used with the fncnum parameter.

chkceply An integer that specifies the CPLV to be checked against the function’s capability
levels.

flagarray A 4-word integer array that returns the CPLV flags. Each flag indicates whether
chkcply was less than the CPLV in the security tables. If the flag is <0, chkcplv is less
than corresponding security table CPLYV; if the flag is >0, chkcply is equal to or
greater than security table CPLV. Word 1 = base CPLV, Word 2 = sub1 CPLV, Word
3 = sub2 CPLYV, Word 4 = sub3 CPLV.

If the function cannot be found, flagarray is set to positive values. ERROR is then
set to positive 1702. This indicates that the test passed because the function could
not be found. This is not considered an error condition, but enables a programmer
to detect the situation.

error An integer that returns a negative value if there is an error. Note that if a positive
1702 is returned, then the function could not be found. This is not considered an
error condition.

If the function has less than 3 subfunctions, the flags of the undefined subfunctions are set to a
positive value.

SecEditFunction

SecEditFunction changes the CPLVs for a specified function.

call SecEdit Functi on(fancnam, catnam, cplvarray, error)
i nt eger catnam(3), fncnam(3) , cplvarray(4)
i nt eger error

catnam A 3-word integer array containing the category name of the specified function. The
contents of the array must be left-justified, blank-filled, and upshifted as needed.

fncnam A 3-word integer array containing the function name in the specified category whose
CPLV will be changed. The array must be left-justified, blank-filled, and upshifted
as needed.

G-4 Security/1000 Library Routines

cplvarray A 4-word integer array containing the new CPLV values. Word 1 = new base CPLV,
Word 2 = new subl CPLV, Word 3 = new sub2 CPLV, Word 4 = new sub3 CPLV.
All CPLVs are in the 0-31 range. If a CPLV is —1, the corresponding CPLV in the
CFT entry will not be updated.

error An integer that returns a negative value if there is an error.

SecGenTables

SecGenTables generates a set of security tables.

cal | SecGenTabl es(inputfile, listfile, outputfile, keepmac, error)
char act er *64 inputfile, listfile, outputfile, keepmac
i nt eger error

inputfile A character string that specifies the name of the file containing the source of the
security tables.

listfile A character string that specifies the file to which the listing will be written. The file
will be created if it does not exist, overwritten if it does. If it is blank or ASCII 0, the
listing is not saved.

outputfile A character string that specifies the file to which the generated security tables will
be returned. The file will be created if it does not exist, overwritten if it does.

keepmac A character string that specifies the name of the file to which the generated
MACRO/1000 code will be written. The file will be created if it does not exist,
overwritten if it does. If it is a blank or ASCII 0, the generated Macro/1000 code is
not saved.

error An integer that returns a negative if there is an error. All FMP error codes have
been biased so you can determine the file to which the error code relates. The bias
factors are: SOURCE —2000, LIST —3000, OUTPUT —4000, KEEPMAC —5000.
To get original error code: FmpError = error + abs(bias).

SecGetCitNam

SecGetCitNam retrieves an entry from the CIT via a category name.

cal |l SecGet G t Nan{ catnam, entry, number, address, error)
error=SecCet Ci t Nan(catnam, entry, number, address, error)
i nt eger catnam(3), entry(4)

i nt eger number, address, error

catnam A 3-word integer array containing the name of the CIT entry to be retrieved. The
category name must be left-justified, blank-filled, and upshifted as needed.

entry A 4-word integer array that returns the CIT entry.

number An integer that returns the number of the entry within the CIT (zero relative).

address An integer that returns the the address of the CIT entry.

error An integer that returns a negative value if there is an error.

Security/1000 Library Routines G-5

SecGetCftNam

SecGetCftNam retrieves an entry from a CFT via a function and category name.

cal |l SecGet Cf t Nan(fucnam, catnam, entry, number, address, error)
error =SecCet Cf t Nam(fucnam, catnam, entry, number, address, error)
i nteger fucnam(3), catnam(3) , entry(7)

i nt eger number, address, error

frncnam A 3-word integer array containing the function name of the CFT entry to be
returned. The function name must be left-justified, blank-filled, and upshifted as
needed.

catnam A 3-word integer array containing the name of the category owning the CFT from

which the entry will be returned. The category name must be left-justified,
blank-filled, and upshifted as needed.

entry A 7-word integer array that returns the CFT entry.

number An integer that returns the number of the entry within the CFT (zero relative).
address An integer that returns the address of the CFT entry.

error An integer that returns a negative value if there is an error.
SecGetCitNum

SecGetCitNum retrieves an entry from the CIT via an entry number.

call SecGet G t Nun{(catnum, entry, addr, error)
error=SecCet Ci t Nun(catnum, entry, addr, error)
i nt eger catnum, address, error, entry(4)

catnum An integer that specifies the number of the CIT entry to be retrieved. Entries start
numbering at zero.

entry A 4-word integer array that returns the CIT entry.
address An integer that returns the address of the CIT entry.
error An integer that returns a negative value if there is an error.

G-6 Security/1000 Library Routines

SecGetCftNum

SecGetCftNum retrieves an entry from a CFT via CIT and CFT entry numbers.

cal |l SecGet Cf t Nun(fucnum, catnum, entry, address, error)
error=SecCet Cf t Nun(funcnum, catnum, entry, address, error)
i nt eger fncnum, catnum, address, error, entry(7)

frncnum An integer that specifies the number of the CFT entry to be retrieved. CFT entries
number starting from zero.

catnum An integer that specifies the number of the CIT entry that points to the CFT to be
used with the fncnum parameter.

entry A 7-word integer array that returns the CFT entry.

address An integer that returns the address of the CFT entry.

error An integer that returns a negative value if there is an error.
SecGetCplvs

SecGetCplvs retrieves the CPLVs of the calling program.

cal |l SecGet Cpl vs(usercplv, progeplv, rquscplv, orgeplv)
i nt eger usercplv, progeplv, rquscplv, orgeplv

usercply An integer that returns the USERCPLYV of the calling program.
progeply An integer that returns the PROGCPLYV of the calling program.
rquscply An integer that returns the RQUSCPLYV of the calling program.

orgeply An integer that returns the ORGCPLYV of the calling program.

SecGetMyCplv

SecGetMyCplv retrieves the CPLV word from the caller’s ID segment extension.

cplv=SecGet MyCpl v()
i nteger cplv

cplv An integer that returns the CPLV word from the caller’s ID segment extension.
Note that this is the CPLV word and not the cplv field within the CPLV word.

Security/1000 Library Routines G-7

SecGetRqusCplv

SecGetRqusCplv retrieves the RQUSCPLYV of the specified program.

cal |l SecGet RqusCpl v(progname, session, rquscplv)
error=SecCet RqQUs Cpl v(progname, session, rquscplv)
i nt eger progname(3)

i nt eger session, rquscply

progname A 3-word integer array containing the program name, left-justified, blank-filled, and
upshifted, of the ID segment whose RQUSCPLYV field is to be retrieved. If the first
word of progname is 0, the calling program is assumed to be the program specified.

session An integer that specifies the session number in which the program resides. There
are 2 special values for session: —1 = calling program’s session, 0 = system session.

rquscply An integer that returns the RQUSCPLYV field from the ID segment extension. Itis a
negative value if there is an error.

error An integer that returns a negative value if there is an error.

SecGetProgCplv

SecGetProgCplv retrieves the PROGCPLYV of the specified program.

call SecGet ProgCpl v(progname, session, rquscplv)
error= SecGet Pr ogCpl v(progname, session, progcplv)
i nt eger progname(3)

i nt eger session, progcplv, error

progname A 3-word integer array containing the program name whose RQUSCPLYV field is to
be retrieved. The program name must be left-justified, blank-filled, and upshifted as
needed. If the first word of progname is 0, the calling program is assumed to be the
program specified.

session An integer that specifies the session number in which the program resides. There
are 2 special values for session: —1 = calling program’s session, 0 = system session.

progcplv An integer that returns the PROGCPLYV field from the ID segment extension. It is a
negative value if there is an error.

If there was no error, a non-negative value was returned, and the B-Register contains the address
of the CPLV in the ID segment.

G-8 Security/1000 Library Routines

Seclnitialize

Seclnitialize initializes Security/1000, and turns it on as an option.

call Seclnitialize(snapfile, onoff, error)
character*(*) snapfile
i nt eger onoff, error

snapfile A character string that specifies the name of the snapfile created at generation time
and used by the current system.

onoff An integer flag that specifies ON (non-zero) or OFF (zero).

error An integer that returns a negative value if there is an error.

Security/1000 should be initialized and turned on only once. This should be done at system boot
time before any users are allowed on the system.

Caution If a snapfile different from the current system snapfile is specified, your system
and security tables can be corrupted.

SeclListTables

SecListTables produces a listing of current installed security tables.

cal |l SeclLi st Tabl es(/istfile, error)
character*(*) Iistfile
i nt eger error

listfile A character string that specifies the file to which the listing will be written. The file
is created if it does not exist, overwritten if it does.

error An integer that returns a negative value if there is an error.

SecOnOf

SecOnOf determines whether Security/1000 is on or off.

flag=SecOnX (flag) or
flag=SecOnX f (flag) or
flag=SecOnOX () or
flag=SecOnOX f ()

flag An integer that returns a value indicating whether Security/1000 is on or off.
Flag = 0 (OFF) or flag = non-zero (ON).

Security/1000 Library Routines G-9

SecProgCplv

SecProgCplv retrieves the 3 fields from the CPLV word in the calling program’s ID segment
extension. If idsegadr is supplied, the information is retrieved from the specified ID segment’s
extension.

cal |l SecProgCpl v(orgeplv, rquscply, curcplv] , idsegadr])
i nt eger orgeplv, rquscply, curcply, idsegadr

orgeply An integer that returns the original program CPLV.

rquscply An integer that returns the required user CPLV for the program.

curcply An integer that returns the program’s current CPLV.

idsegadr An integer that specifies the ID segment address of the program whose CPLV word

values are to be retrived. If it is not specified, the values are retrieved from the
calling program’s ID segment extension.

No error checking is done on the ID segment address, which is assumed to be correct.

SecPutCitNam

SecPutCitName updates an entry in the CIT via a category name.

Caution This routine does not check whether or not the updated entry causes duplicate
categories. Incorrect use of this routine corrupts the CIT.

cal |l SecPut G t Nan(catnam, entry, number, address, error)
error=SecPut Ci t Nan{(catnam, entry, number, address, error)
i nt eger catnam(3), entry(4)

i nt eger number, address, error

catnam A 3-word integer array containing the category name, left-justified, blank-filled, and
upshifted as needed, of the category whose entry is to be updated.

entry A 4-word integer array containing the updated version of the entry.

number An integer that returns the number of the entry within the CIT (zero relative).
address An integer that returns the address of the entry within the CIT.

error An integer that returns a negative value if there is an error.

G-10 Security/1000 Library Routines

SecPutCftNam
SecPutCftNam updates an entry in a CFT.

Caution This routine does not check whether or not the updated entry causes duplicate
functions. Incorrect use of this routine corrupts the CFT.

cal |l SecPut Cf t Nan(fucnam, catnam, entry, number, address, error)
error=SecPut Cf t Nan(fncnam, catnam, entry, number, address, error)
i nteger fncnam(3), catnam(3) , entry(7)

i nt eger number, address, error

frncnam A 3-word integer array containing the function name, left-justified, blank-filled, and
upshifted as needed, whose entry is to be updated.

catnam A 3-word integer array containing the name of the category, left-justified,
blank-filled, and upshifted as needed, of the category owning the CFT to which the
entry will be written.

entry A 7-word integer array containing the updated version of the entry.

number An integer that returns the number of the entry within the CFT (zero relative).
address An integer that returns the address of the entry within the CFT.

error An integer that returns a negative value if there is an error.

Note that this routine does not check whether or not the updated entry causes duplicate categories
or functions.

SecPutCitNum

SecPutCitNum puts an updated entry back in the CIT via an entry number.

Caution This routine does not check whether or not the updated entry causes duplicate
categories. Incorrect use of this routine corrupts the CIT.

cal |l SecPut G t Nun(catnum, entry, address, error)
error=SecPut Ci t Num(catnum, entry, address, error)
i nt eger catnum, address, error, entry(4)

catnum An integer that specifies the number of the CIT entry to be updated. CIT entries
number starting from zero.

entry A 4-word integer array for the buffer containing the updated version of the entry.

address An integer that returns the address of the entry within the CIT.

error An integer that returns a negative value if there is an error.

Security/1000 Library Routines G-11

SecPutCftNum

SecPutCftNum updates and returns the CFT entry to its relevant CFT via the CIT and CFT entry
numbers.

Caution This routine does not check whether or not the updated entry causes duplicate
functions. Incorrect use of this routine corrupts the CFT.

cal |l SecPut Cf t Nun(fucnum, catnum, entry, address, error)
error=SecPut Cf t Nun{(fncnum, catnum, entry, address, error)
i nt eger fncnum, catnum, address, error, entry(7)

fncnum An integer that specifies the number of the CFT entry to be updated. CFT entries
number starting from zero.

catnum An integer that specifies the number of the CIT entry that points to the CFT to be
indexed by fncnum. CIT entries numbers start from zero.

entry A 7-word integer array for the buffer containing the updated entry version.

address An integer that returns the address of the entry within the CFT.

error An integer that returns a negative value if there is an error.

SecPutRqusCplv

SecPutRqusCplv sets the RQUSCPLYV of a program.

error=SecPut RqQusCpl v(progname, session, newrquscplv, error)
i nt eger progname(3)
i nt eger session, newrquscply, error

progname A 3-word integer array containing the program name, left-justified, blank-filled. The
program must have an ID segment set up. If the first word of progname is zero, the
calling program’s name is used.

session An integer that specifies the session number in which the program resides. If the
number is negative, use the calling program’s session; if 0, use the system session.

newrquscplv An integer that specifies the new RQUSCPLYV value. This value cannot exceed the
PROGCPLYV of the program from which SecRqusCplv was called. Note that only
the 5 least significant bits are looked at.

error An integer that returns a negative value if there is an error.

G-12 Security/1000 Library Routines

SecPutProgCplv

SecPutProgCplv sets the PROGCPLYV of a program.

error=SecPut Pr ogCpl v(progname, session, newprogcplv, error)
i nt eger progname(3)
i nt eger session, newprogcplv, error

progname A 3-word integer array containing the program name, left-justified, blank-filled. The
program must have an ID segment set up. If the first word of progname is zero, the
calling program’s name is used.

session An integer that specifies the session number in which the program resides. If the
number is negative, use the calling program’s session, if 0, the system session.

newprogeply An integer that specifies is the new PROGCPLYV value. This value cannot exceed
the PROGCPLYV of the program from which SecProgCplv was called. Note that only
the 5 least significant bits are looked at.

error An integer that returns a negative value if there is an error.

SecRenameCat

SecRenameCat renames a category name in the CIT. The old category must exist and the new one
must not. Note that this routine does not modify the case (upper or lower) of the parameters. It
is the caller’s responsibility to ensure that the data passed to this routine is in the correct case.

Caution This routine does not check whether or not the updated entry causes duplicate
categories. Incorrect use of this routine corrupts the CIT.

cal |l SecRenaneCat (oldcat, newcat, error)
i nt eger oldcat(3), newcat(3)
i nt eger error

oldcat A 3-word integer array containing the old category name, left-justified, blank-filled,
and upshifted as needed, which MUST exist in the CIT.

newcat A 3-word integer array containing the new category name, left-justified, blank-filled,
and upshifted as needed which, MUST NOT exist in the CIT.

error An integer that returns a negative value if there is an error.

Security/1000 Library Routines G-13

SecRenameFnc

SecRenameFnc renames a specified function in a specified category. Note that this routine does
not modify the case (upper or lower) of the parameter. It is the caller’s responsibility to ensure
that the data passed to this routine is in the correct case.

Caution This routine does not check whether or not the updated entry causes duplicate
functions. Incorrect use of this routine corrupts the CFT.

cal |l SecRenaneFnc(oldfnc, newfnc, cat, error)
i nt eger oldfnc(3), newfnc(3), catnam
i nt eger error

oldfnc A 3-word integer array containing the old function name, left-justified blank-filled,
and upshifted as needed, which MUST exist in the CFT.

newfnc An integer array containing the new function name, left-justified, blank-filled, and
upshifted as needed, which MUST NOT exist in the CFT.

catnam A 3-word integer array containing the category name owning the function about to
be renamed. The catnam parameter must be defined in the CIT, left-justified,
blank-filled, and upshifted as needed.

error An integer that returns a negative value if there is an error.

SecSwitch

SecSwitch switches Security/1000 on or off.

call SecSw t ch(switch, error)
i nt eger switch, error

switch An integer that specifies the switch directive: 0 = off, non—zero = on.

error An integer that returns a negative value if there is an error.

This routine can only be used after Security/1000 has been initialized. Security/1000 should be
initialized and turned on only once at system boot up before any users are allowed on the system.
Use of this routine is governed by the required CPLV defined for the switch function in the
$SECURITY category in the security table whether Security/1000 is on or off.

Caution This routine was designed for system engineer debugging and should not be
used to turn security on and off after users have been allowed on the system.
Otherwise, system security cannot be guaranteed.

G-14 Security/1000 Library Routines

SecUserCplv

SecUserCplv retrieves the USERCPLYV of the session in which the calling program resides.

UserCplv=SecUser Cpl v()
I nt eger UserCplv

UserCply An integer that is the USERCPLV.

Security/1000 Library Routines G-15

Setup and Directory Create Programs

Example of a Setup Program

program set up
implicit none

EE R S I R T T R S A N T R .

This programrenanes or edits entries in the security tables.
It receives command input froma file whose nane is supplied
in the runstring.

An exanpl e of the command input to this programis given bel ow

rn, c, hp00O, crdgp
rn,f,crdgp, res00, nogroup
rn,f,crdgp, res0l, system
ec, crdgp, system0,1,2,3
ex

The conmand i nput format is the same as that accepted by the
SECTL utility.

This programwill work only if it has a high enough capability
| evel . The SECURI TY/ 1000 routines will check the capability

| evel of this programto determ ne whether the requested action
can be all owed.

nt eger indcb(144),runarray(40), x|l og

nt eger FnpQpen, error, Deci mal Tol nt, | ength

nteger inarray(40),]

nt eger CatArray(3), A dCat Array(3), NewCat Array(3)
nt eger A dFncArray(3), NewFncArray(3), FncArray(3)
nt eger Cpl vArray(4), f npread

character runstring*80,instring*80, cormand*6, cpl vval ue*6
character CategoryNane*6, A dCat egor yNane* 6, NewCat egor yNanme* 6
character d dFuncti onNanme*6, NewFuncti onName* 6, Functi onNanme* 6

equi val ence (runstring, runarray)
equi val ence (instring,inarray)

equi val ence (A dFuncti onNanme, O dFncArray),

(Newfuncti onNarme, NewkFncArray),
(A dCat egoryNanme, O dCat Array),

Setup and Directory Create Programs

H-1

+ (NewCat egor yNarme, NewCat Array),

+ (Cat egor yNane, Cat Arr ay),
+ (Functi onNane, FncArray)
instring=" "
e < Pick up the runstring to find the nane of the input file.
*

call getst(runarray, —-80, x| og)
i f(xlog.lt.80)runstring(xlog+l:)=

pf— < Open the input file.
*

error =f npopen(i ndcb, error, runstring,’or’,1)
if(error.lt.0)go to 9000

e < Start processing the commands.

*

10 | engt h=Fnpr ead(i ndcb, error,inarray, 80)
if(length.eqg.-1)go to 10000 I EOF condition

if(error.lt.0)go to 9000

: ————— < Ensure that everything is in uppercase.
call casefol d(instring)

: ————— < Get the conmand fromthe input string.

call SplitString(instring,conmand,instring)

*

L < Find out what command was i ssued.

e < Conmands are: RN — renane a category or function
 — < EC — edit a function within a category
__ < EX — exit

*

*

* < RN command. It has two subcommands.

f JE— < F — Renanme a function

[of— < C — Renane a category

*

i f(conmand(1l:2).eq.’ RN)then
call SplitString(instring,conmand,instring)
i f(conmand(1:1).eq.’ C)then

H-2 Setup and Directory Create Programs

E B E o I E I I E o I E I S

E o I

E I S

W will renanme a category. Get the current nane and the
new nare.

call Splitstring(instring,d dCategoryNane,instring)
call Splitstring(instring, NewCat egoryNane, i nstri ng)

Use the SECURI TY/ 1000 routine SecRenameCat to performthe
renamne.

call SecRenaneCat (A dCat Array, NewCat Array, error)
if(error.lt.0)go to 8000

go to 10 Igo get next command
endi f
Check whether or not we are to renane a function. |If not, give

up and get the next command fromthe input file.

i f(conmand(1:1).eq.’ F)then

We are to rename a function. Get the nane of the category
that contains the function to be renaned.

call SplitString(instring, CategoryNane,instring)

< Get the current function nanme and the new nane for the
< function.

call Splitstring(instring,ddFunctionNane,instring)
call Splitstring(instring, NewFuncti onNane, i nstri ng)

< Use the SECURITY/ 1000 routine SecRenameFnc to performthe
< function renane.

call SecRenaneFnc(A dFncArray, NewFncArr ay,
Cat Array, error)
if(error.lt.0)go to 8000
endi f
go to 10 Igo get next command

endi f

i f(conmand(1l:2).eq.’ EC)then

< W wll edit a function. Get the category containing the
< function and the function to be edited.

Setup and Directory Create Programs

H-3

call SplitString(instring,CategoryNane,instring)
call SplitString(instring, Functi onNane, i nstring)

————— < Get the 4 CPLVs and convert themto binary. If an error
————— < results during the conversion, the corresponding CPLV wi ||l
————— < default to -1. A cplv value of -1 tells SECURI TY/ 1000 not to
————— < update the corresponding CPLV already in the tables.

* ok X X F

do j=1,4
call SplitString(instring, CplvVal ue,instring)
cpl varray(j)=Deci mal Tol nt (Cpl vVal ue, error)
if(error.ne.0)CplvArray(j)=-1

enddo

————— < Use the SECURI TY/ 1000 routine SecEditFunction to perform
————— < the actual editing operation

I S

call SecEditFunction(FncArray, Cat Array,
+ cplvarray, error)
if(error.lt.0)go to 8000
go to 10
endi f

 JE— < See if an Exit command was i ssued.
*

i f(conmand(1:2).eq.’ EX)go to 10000

pf— < W receive this nmessage if an unrecogni zed command was seen
*

wite(l, 1000) comand
1000 format(” Unrecognized comand seen ", a6)

go to 10
*
e < W have a SECURI TY/ 1000 error. Report it and term nate.
*
8000 wite(1,8001)error
8001 format(” Security/1000 error: ”,i6.6)
go to 10000
e < W have an Fnp error. Report it and term nate.
*

9000 call FnpreportError(error,runstring)

10000 call Fnpd ose(indchb, error)
end

H-4 Setup and Directory Create Programs

Example of a Directory Create Program

progra
implic

EE I B I A T B S N R N N S I

100

m nkdi r

it none

< This programcreates FMP directories. The program subjects the
< user to a series of security checks before it will create

< directories.

<

< The first check. Can the group with which the user |ogged on

< create directories? The user’s logon group is checked to see

< whether it is in the category "CRDG> . If it is, this test

< is passed and test tw is applied.

<

< The second check. Does the user have enough capability to create
< a directory? The base function of the function whose nane

< matches that of the |ogon group is checked.

<

< If both tests are passed, control is passed to FnmpCreateDir to
< performthe actual directory creation. Note that FnpCreateDir
<wll performits own security check as defined in the security
< tables. See the SECURITY.TBL file for the security definition
< of FmpCreateDir.

i nteger runarray(40), xl og, G oupArray(5)
i nteger SecGet MyCpl v, ProgCpl v, Fl agArray(4), error
i nteger Deci mal Tol nt, | u, FnpCreat eDi r

character runstring*80, G oupNane* 10, Di r ect or yNanme* 64
character LuString*4

equi val ence (runstring, runarray)
equi val ence (G oupNane, grouparr ay)

< Collect the run string to find out what the user wants to do.

call getst(runarray, —-80, x| og)
i f(xlog.lt.80)runstring(xlog+l:)=

< CGet the directory nane and LU, if suppil ed.
call SplitString(runstring, DirectoryNane, runstring)

< See if a directory was supplied. If not, issue a little help.

if(DirectoryName(1:1).eq.’ ’')then
wite(l, 100)
format (" MkDir Usage: MDir directory[,lu]”)
call exec(6,0)

endi f

Setup and Directory Create Programs

H-5

*
L J— < CGet the LU, if supplied
*

call SplitString(runstring, LuString, runstring)
i f(LuString(1:1).ne.’ ’')then
| u=Deci mal Tol nt (LuStri ng, error)
if(error.ne.0)then

wite(l, 100)
call exec(6,0)
endi f
el se
[u=0
endi f
*
o — < Get ny capability level. It will be needed for the security
[— < check.
*
Pr ogCpl v=SecGet MyCpl v ()
*
e < Get the nane of the group with which the user |ogged on
e < Use the group name as a function name within category "CRDG®" to
pf— < deternmine what (if anything) the user can do with this utility.
*
call GoNan{ G oupNarne)
*
[— < Now find out what the user can do with us.
pf— < Note that all errors are treated as security violations.
pf— < Also, if SecChkCplvNamis supplied with a category or function
pf— < that is not defined, it will return with the FlagArray set to
pf— < indicate that the check passed all functions (base and the three
pf— < subfunctions). It will also set error to POSITIVE 1702. This
pf— < indicates that the category or function could not be found, so
[— < a default result, successful, was returned. Failure to find the
pf— < category or function is NOT considered an error condition by
pf— < SecChkCpl vNam
*
call SecChkCpl vNam(Gr oupArray, 6hCRDGP , ProgCpl v, Fl agArray, error)
if(error.lt.0)then
wite(l,1)
1 format (" SECURI TY VI OLATI ON detected.”)
call exec(6,0)
el se
if(error.eq.1702)t hen
wite(l,2)
2 format (" MkDir: No access for your group”)
call exec(6,0)
endi f
endi f
*
pf— < W know now that the user’s group can create directories. But
e < whether the user can create directories can be deterni ned by
*

————— < looking at the flag corresponding to the base function

H-6 Setup and Directory Create Programs

b

i f(FlagArray(1l).1t.0)then

wite(l,1)

call Exec(6,0)
endi f
< The type of directory the user can create will be determn ned
< by the CRDIR function of the $FMP category. The FMP subsystem

< wll do this checking for us when we call the FnmpCreateDr
< routine.

error=FnpCreat eDi r (Di rect or yNane, | u)
if(error.lt.0)then

call FnpreportError(error, DirectoryNane)
endi f

end

Setup and Directory Create Programs

H-7

RINFO and SINFO Utilities

Reset Multiuser Accounting Information (RINFO)

RINFO resets the multiuser accounting information found in the user configuration file for the
specified users. It resets the multiuser accounting information to zero for cumulative connect time
(words 95-96 in record one and words 11-12 in the USER.NOGROUP record) and cumulative
CPU usage (words 97-98 in record one and words 9-10 in the USER.NOGROUP record).

Note RINFO was replaced by the RE (Reset) command in GRUMP. For situations
where groups are not used, RINFO was updated to use the new multiuser data
structures and function as it did before.

Calling RINFO

To call RINFO, enter the following runstring:
Cl> [RU RINFO [UserMaskl [UserMask2[...]]]

The UserMask parameter is the name or file mask for users whose accounting information you
want to set to 0. The default is the current user.

Loading RINFO

To load RINFO, use the following LINK command:

Cl> link,#rinfo

RINFO and SINFO Utilities I-1

RINFO Protection

If SECURITY/1000 is turned on, the system manager can assign a required capability level to run
RINFO; otherwise, only superusers can run RINFO.

Returned Values

RINFO returns the following 5 values through a PRTN call:
Word 1 Status (O=successful, -1=unsuccessful).

Words 2,3 Connect time in seconds for last user. Word 2 is the more significant word of
the double integer value.

Words 4,5 CPU usage in tens of milliseconds for the last user. Word 4 is the more
significant word of the double integer value.

12 RINFO and SINFO Utilities

Show Multiuser Accounting Information (SINFO)

SINFO displays the multiuser accounting information found in the user configuration file for the
specified user. The information includes the last logoff time, cumulative connect time, and
cumulative CPU usage.

Note SINFO was replaced by the LI (List) command in GRUMP. In situations where
groups are not being used, or if you want the unique user information, SINFO
retrieves information from record one of the user configuration file.

Calling SINFO
To call SINFO, enter the following runstring:

Cl> [RU SINFO [UserMaskl [UserMask2 [...]1]]

The UserMask parameter is the name or file mask for the users whose accounting information you
want displayed. The default is the current user.

Loading SINFO

To load SINFO, use the following LINK command:

Cl> link, #sinfo

Returned Values

SINFO returns the following 5 values through a PRTN call:
Word 1 Status (0 = successful, -1 = unsuccessful).

Words 2,3 Connect time in seconds for last user. Word 2 is the more significant word of
the double integer value.

Words 4,5 CPU usage in tens of milliseconds for the last user. Word 4 is the more
significant word of the double integer value.

RINFO and SINFO Utilities 1-3

Glossary

capability level
An integer of 0 through 31 that determines a user’s access to programs and commands. A
superuser has a capability level of 31.

category

A group of functions such as CI commands or FMP routines.

CFT

Category Function Table contains the capability levels for each function.

CIT
Category Index Table contains the address which points to the CFT for all functions in the
category.

CRN
Cartridge Reference Number is an integer from 0 through 32767, or two ASCII characters,
used to identify a FMGR cartridge.

Default Logon Group
NOGROUP is the default for all system users. Its purpose is to allow systems to operate
without setting up groups.

function

An activity carried out by the system on behalf of the user.

group

Several users sharing common resources.

group information

consists of the group identification number, group totals and limits for CPU usage and
connect time, group LU access table, number of records in its members list, and list of
member records.

LU

Logical Unit is a number used to identify I/O devices.

NOGROUP

The default for all system users. Its purpose is to allow systems to operate without setting
up groups.

Glossary-1

ORGCPLV

Original Capability Level is the original PROGCPLYV given to the program at link time or
set with the SECTL utility.

PROGCPLV
Program Capability Level is the limiting factor on what functions a program can perform.

RQUSCPLV
Required User Capability Level is the minimum capability level required to run a program.

security table
Contains the system manager defined set of rules based on capability levels, categories, and
functions.

session

The process of logging on, interacting with the system, and logging off.

Session LU Access Table
A 16-word table that provides a means of limiting access to LUs.

UDSP
User-Definable Directory Search Path is a list specifying which directories to search when
opening a file, and the order in which they are to be searched.

unique user information

Information associated with an individual user within a group that is used by the system to
check the user’s limits, initialize the program and directory, and update the user resource
information.

USERCPLV
User Capability Level is the capability level of an individual user.

user.group information

Defines associated groups for a user and the resource limitations placed on the user.

VC+

Virtual Code Plus is an HP product that provides multiuser capability to the RTE-A
operating system.

Glossary-2

Index

Symbols

? command
GRUMP utility. See Help (HE) command
SECTL utility. See Help (HE) command
* (comment) command, SECTL, 5-8
/TR command, 3-30
/USERS directory, 2-8

A

Abort (/A) command, 3-7
account structure
group account planning, 2-7
overview, 2-5
user account planning, 2-7
adding, user to a group, 3-13
Alter Group (AL G) command, 3-7
Alter User (AL U) command, 3-9, 3-14

B

backing up, system
logical backup, 1-18
overview, 1-15
physical backup, 1-17
recommendations, 1-19
strategy, 1-16

Cc

capability levels, 4-4
checking, 4-12
ORGCPLY, 4-5
PROGCPLY, 4-5
protecting access to programs, 4-12
range, 4-4
RQUSCPLY, 4-5
categories (Security/1000), 4-8
Category Function Table (CFT)
definition, 4-8
format, 4-9
Category Index Table (CIT)
definition, 4-8
format, 4-9

CI (Command Interpreter), directory organization,

1-11
connect time limit, 3-13

D

default, logon group, 2-12, 3-14
determining, user requirements, 1-4
directory

/USERS, 2-8
organization, 1-11
directory create program, example, H-5
disk, management
CI interface, 1-8
considerations, 1-8
directory organization, 1-11
file volumes (LUs), 1-9
FMGR interface, 1-8
displaying, multiuser accounting information, I-3
DS file transparency, default logon account, 4-4

E

Edit Capability Level (EC) command, 5-3
Environment Variable Block (EVB), 2-3
modifying its size, 3-11
Exit (EX) command
GRUMP utility, 3-15
SECTL utility, 5-3

F

file system security, 4-1, 4-2
Cl, 4-2
directory ownership, 4-2
directory protection, 4-2
file ownership, 4-2
file protection, 4-2
FMGR, 4-3
volume ownership, 4-3
volume protection, 4-3

G

Generate Table (GT) command, 5-4
generating
a system, 1-11, 1-12
security tables, 5-4, 5-9
group, configuration file, 2-11
GRUMP commands
Abort (/A), 3-7
Alter Group (AL G), 3-7
Alter User (AL U), 3-9
Exit (EX), 3-15
Help (HE or ?), 3-16
Kill Session (KI), 3-16
List Group (LI G), 3-16
List User (LI U), 3-17
New Group (NE G), 3-21
New User (NE U), 3-23
Password (PA), 3-27
Purge Group (PU G), 3-27
Purge User (PU U), 3-28

Index-1

Reset Group (RE G), 3-29
Reset User (RE U), 3-29
Run (RU), 3-30
Transfer (TR), 3-30

GRUMP utility
command conventions, 3-5
command file example, C-1
command summary, 3-4
log file example, C-3
overview, 3-1
running GRUMP interactively, 3-2
running GRUMP with command file, 3-3
runstring, 3-2

H

Help (HE) command
GRUMP utility, 3-16
SECTL utility, 5-4

Initialize (IN) command, 5-5
initializing
multiuser account system, 2-13
Security/1000, 4-18, 5-5
installing
a system, 1-11, 1-13
Security/1000, 4-17

K

Kill Session (KI) command, 3-16
KILLSES utility, 2-5, 3-33
calling KILLSES, 3-33
examples, 3-34
loading, 3-33
protection, 3-33
return values, 3-33

L

List Group (LI G) command, 3-16
List Table (LT) command, 5-5
List User (LI U) command, 3-17
listing

session LU access table, 3-31

session LU access tables, 2-5
logical, backup, 1-18
logon, file

examples, B-1

global, B-2
LU, access table, 3-31

maintaining a system
accounting system, 1-14
backing up, 1-15

Index-2

fine tuning, 1-14

increasing usability, 1-15, 1-20

overview, 1-13
MASTERACCOUNT file, 2-11
MASTERGROUP file, 2-12
modifying

session LU access table, 3-31

session LU access tables, 2-5

size of the EVB, 3-11

multiuser account structure. See Account structure

multiuser accounting utilities
modify or list session bit maps (SESLU), 3-31
reset multiuser accounting information (RIN-
FO), I-1
show multiuser accounting information (SIN-
FO), I-3
terminate a session (KILLSES), 3-33

N

New Group (NE G) command, 3-21
New User (NE U) command, 3-23
NOGROUP group, 2-12

P

password, logon, 3-10
Password (PA) command, 3-27
PC (set program capability) command, SECTL
utility, 5-6
peripheral, resource usage, 1-7
physical, backup, 1-17
planning
group accounts, 2-7
user accounts, 2-7
planning the system
determining user requirements, 1-4
overview, 1-4
peripheral resource usage, 1-7
system applications, 1-6
user categories, 1-6
program capability, setting, using SECTL, 5-6
protecting, access to programs, 4-12
PRTN call, 3-31, 3-33, I-2, I-3
Purge Group (PU G) command, 3-27
Purge User (PU U) command, 3-28

R

re-initializing the multiuser account system, 2-14
Rename Category (RN,C) command, 5-6
Rename Function (RN,F) command, 5-7
Required User Capability (RQ) command, 5-7
Reset Group (RE G) command, 3-29
Reset User (RE U) command, 3-29
resetting, multiuser accounting information, I-1
RINFO

calling RINFO, I-1

loading RINFO, I-1

protection, I-2

return values, 1-2

Run (RU) command, 3-30

SAM

recovery, 1-20
running out, 1-20

SEC1000.LIB subroutines, G-1

SecChangeCplv, G-3
SecChkCplvName, G-3
SecChkCplvNum, G-4
SecEditFunction, G-4
SecGenTables, G-5
SecGetCftNam, G-6
SecGetCftNum, G-7
SecGetCitNam, G-5
SecGetCitNum, G-6
SecGetCplvs, G-7
SecGetMyCplv, G-7
SecGetProgCplv, G-8
SecGetRqUsCplv, G-8
Seclnitialize, G-9
SecListTables, G-9
SecOnOf, G-9
SecProgCplv, G-10
SecPutCftNam, G-11
SecPutCftNum, G-12
SecPutCitNam, G-10
SecPutCitNum, G-11
SecPutProgCplv, G-13
SecPutRqusCplv, G-12
SecRenameCat, G-13
SecRenameFnc, G-14
SecSwitch, G-14
SecUserCplv, G-15

SECTL commands

* 5-8

Edit Capability (EC), 5-3
Exit (EX), 5-3

Generate Table (GT), 5-4
Help (HE or ?), 5-4
Initialize (IN), 5-5

List Table (LT), 5-5

Program Capability (PC), 5-6

Rename Category (RN,C), 5-6
Rename Function (RN,F), 5-7
Required User Capability (RQ), 5-7

Switch (SW), 5-8

SECTL utility

command summary, 5-2
overview, 5-1
runstring, 5-1

security subroutines. See SEC1000.LIB subroutines
security tables (Security/1000)

format, 4-9
generating, 5-4, 5-9

non-security information, 4-11
security information example, 4-10

SECURITY.TBL source, D-1

categories, D-1
format, D-1
functions, D-3
special categories, D-1
SECURITY.TBL source, D-1
Security/1000, 4-3
categories, 4-8
code examples, 4-12, H-1
error messages, F-1

forms of implementation, 4-7
initializing and turning on, 4-18

interfaces, 4-12

library routines, G-1
overview, 4-1, 4-3
sample answer file, A-1

SEC1000.LIB. See SEC1000.LIB subroutines

security tables, 4-5
CFT, 4-8
CIT, 4-8
format, 4-9
SECURITY.TBL, D-1

system manager responsibilities, 4-4
utilities with security implemented, 4-7

SESLU utility, 2-5, 3-31
calling SESLU, 3-31
examples, 3-32
loading, 3-31
protection, 3-31
return values, 3-31

session, utilities, 2-5

session environment, 2-1
CPU usage limit, 3-13

default working directory, 3-12

logoff process, 2-2, 2-4
logoff program, 3-12
LU access table, 2-4, 3-11

number and depth of UDSPs, 3-11

session utilities
KILLSES, 2-5
SESLU, 2-5

startup command, 3-12

UDSPs, 2-3

setting, program capability level, using SECTL, 5-6

setup program, example, H-1
SINFO, I-3
calling SINFO, I-3
loading, 1-3
return values, 1-3

spool file, closing and releasing with KILLSES,

3-33
STGEN utility, 5-9
Switch (SW) command, 5-8
system
backup, 1-15
recovery, 1-20
shutdown, 1-20

System Available Memory (SAM). See SAM

system maintenance, 1-13
system management

Index-3

design and planning, 1-4
disk management, 1-8
maintenance, 1-13
process, 1-1
recovery, 1-20
shutdown, 1-20
system manager responsibilities, 4-4

T

terminating, a session

using GRUMP, 3-16

using KILLSES, 2-5, 3-33
Transfer (TR) command, 3-30
turning on Security/1000, 4-18

Index-4

U

unique user information, 2-10, 3-10, 3-24
capability level, 3-11
logon name, 3-10
password, 3-10
real name, 3-10
user
account, definition, 2-5
configuration file, 2-9, 3-31, I-1, I-3
USER.GROUP information, 2-5, 2-10, 3-12, 3-25
users directory, 2-8
utilities, with security implemented, 4-7

\'}

variables, environment variable block, 2-3

	Title page
	Preface
	Table of Contents
	Chapter 1 - System Management Overview
	Chapter 2 - Multiuser Account System
	Chapter 3 - GRUMP, SESLU, and KILLSES Utilities
	Chapter 4 - File and System Security
	Chapter 5 - SECTL and STGEN Utilities
	Appendix A - Modifying Security/1000 Answer Files
	Appendix B - Logon Files
	Appendix C - GRUMP Command/Log Files
	Appendix D - SECURITY.TBL
	Appendix E - Security Table Worksheet
	Appendix F - Security/1000 Error Codes
	Appendix G - Security/1000 Library Routines
	Appendix H - Setup and Directory Create Programs
	Appendix I - RINFO and SINFO Utilities
	Glossary
	Index

