
The need to model memory is common in any
verification environment. The simplest way to
model memory is to employ static allocation

techniques using array data types. For example, to
model a width-times-depth-sized memory, you use
a construct similar to the one shown in Listing 1.

For small memories, static-allocation techniques
are the simplest to read, understand, and implement.
The static-allocation method allocates the required
memory before the program accesses memory—in
other words, when the simulator starts up (at zero
simulation time). This method has some inherent
drawbacks: Every bit of allocated memory corre-
sponds to several bits of physical memory; thus, sim-
ulator performance is limited for large memories.

Consider a processor with a 32-bit-wide address
bus. Theoretically, the processor can access 4 Gbytes
of memory. If you assume, while simulating the
model of this processor, that every bit of allocated
memory corresponds to 1 bit of physical memory,
then a static-allocation scheme that allocates all of
this memory requires about 4 Gbytes of RAM (In a
real case, every bit of allocated memory corresponds
to several times that
amount.) If the required
RAM is unavailable, the pro-
gram translates the memory
accesses into disk accesses, se-
verely slowing a simulation
run. On a statistical
note, no single typical
simulation run requires all 4

Gbytes of memory. Even if you allocate all 4 Gbytes,
each simulation run typically hits 10% or less of the
memory space, although these accesses can be ran-
dom. In other words, it is typical for a simulation to
toggle all the address bits but not access every byte
of memory. Because static-allocation techniques for
such deep memories greatly limit simulation per-
formance, you should use methods to model mem-
ory efficiently such that the program allocates it in
an “on-demand” basis using dynamic-allocation
techniques. With dynamic allocation, the program
allocates physical memory on demand on the host
machine as the model simulates new transactions.

The approach described in this article is one of the
classic methods that developers have used for com-

putational problems that use
data structures with statical-
ly nondeterministic depths.
You usually solve such prob-
lems by implementing linked
lists that a program creates
and builds dynamically on
demand. On-demand cre-
ation of a linked list of data

www.ednmag.com November 24, 1999 | edn 65

THE USE OF ADVANCED VHDL CONSTRUCTS CAN GREATLY

ENHANCE MODELING EFFICIENCY. LEARN HOW TO EFFEC-

TIVELY USE VHDL FOR DYNAMIC-MEMORY ALLOCATION,

HIERARCHICAL TESTBENCHES, AND CREATING FOREIGN-

LANGUAGE INTERFACES FOR BEHAVIORAL MODELING.

VHDL constructs and
methodologies for advanced-
design verification

ADDRESS

DATA

Nxt_Ptr

ADDRESS

DATA

Nxt_Ptr

ADDRESS

DATA

NULL

This flow chart demonstrates a
linked-list organization for a memory model.

F igure 1

designfeature By Subbu Meiyappan and James Steele, VLSI Technology

LISTING 1—SIMPLE MEMORY MODEL USING STATIC ALLOCATION

structures and allocation of new memo-
ry locations relies heavily on dynamic-
memory allocation and pointer-manip-
ulation techniques. VHDL, using access
data types, provides a mechanism to al-
locate new memory locations on demand
along with pointer arithmetic to manip-
ulate the pointers. References 1 and 2 de-
tail dynamic-memory allocation using
access data types and linked lists. De-
signers use an application of access data
types to dynamically create linked lists
for efficient memory modeling. Note that
the access data types are nonsynthesiz-
able VHDL constructs, so you can use
them only for simulations.

Listings 2 and 3 illustrate the imple-
mentation of a complete VHDL package
for sparsely allocat-
ed memories. This
method of model-
ing memory is
efficient in random-
simulation environ-
ments in which the
program randomly
acces se s
memory.
Listing 2 is the
VHDL description
of the package that
encompasses the
primitives and pro-
totypes for creating such a memory. List-
ing 3 is the VHDL description of the
package body that implements this
memory. The example is split between
two listings to simplify the underlying
details of the descriptions. To understand
these details, you should have a basic
knowledge of VHDL; the article explains
these details with references to line num-
bers in the code.

Figure 1 demonstrates how to organ-
ize the linked list for the memory. Every
node in the list contains an address, a
data item to store, and a pointer to the
next node in the linked list. From a
user’s perspective, this memory looks
like a contiguously located RAM (Fig-
ure 2).

Every time the program accesses a
new address during write operations, it
creates a new node with the address,
data, and a pointer to the next node
in the linked list. During read oper-
ations, the program traverses the list, try-
ing to match the corresponding read ad-

dress. If it finds an ad-
dress match, the pro-
gram returns the data
in the node correspon-
ding to that address.
The program stores
each node as a record
data type that it creates
dynamically on de-
mand. The Nxt_Ptr
must be of an access
type the program uses
to point to the next
node.A first attempt to
write the type declara-
tions for this structure
might look like the
code in Listing 4.

Listing 4 shows
that the definition of
mem_entry uses the
type entry_ptr as the
data type of one of its
elements but does not
declare entry_ptr un-
til after the definition
of mem_entry. To
solve this “chicken-or-
the-egg” problem,
Listing 2 shows the
incomplete-type dec-
laration in line 10; lines 11 through 16
create some type definitions for the
linked-list data structure. The Mem_en-
try record contains the location, the data,
and the pointer to the next node in the
list.

The idea behind linked lists is to keep
track of the pointers. You need to create
a pointer that keeps track of the top of
the linked list, so that you can traverse the
tree from that location. To do this task,
you create head_ptr in lines 19 through
22 (Figure 3). Head_ptr always points to
the topmost node in the list. The Nxt_Ptr
in the last node list is a null pointer that
indicates the end of the list.

The use of the num_entries in the head
pointer is to provide hooks for creating
a searchable linked list using an algo-
rithm, such as binary sort. The binary-
sort algorithm can benefit from knowing
the number of entries in a list. You
arrange the linked list as a linear-data
structure, in which the physical values of
the addresses in the linked list are in as-
cending order. For example, if you allo-
cate three locations in memory—
0x0011, 0x0F00, and 0xFFFF—the first
address in the list is 0x0011, and the last
address in the list is 0xFFFF. Throughout
this article, memory is organized to hold
16 bits of data for each address.

Listing 3 defines the mem_pkg pack-
age. The body of the package contains the
implementations for the wr_data and
rd_data procedures. The wr_data proce-
dure accepts the address (location), the
data to be stored in that address, and the
pointer to the head of the linked list. Five
scenarios exist in which a write to mem-
ory can occur. Assume that a memory
write to the following locations in the fol-
lowing order takes place:

designfeature Advanced VHDL constructs

66 edn | November 24, 1999 www.ednmag.com

From a
user’s per-

spective, the flow
chart in Figure 1
looks like a contigu-
ously located RAM.

Addr0

AddrN

Addr1

Addr2
.
.
.

Data0

DataN

Data1

Data2
.
.
.

F igure 2

LISTING 2—VHDL PACKAGE CONTAINING
MEMORY PROTOTYPES AND PRIMITIVES

List_Ptr

ADDRESS

DATA

Nxt_Ptr

ADDRESS

DATA

NULL

Num_entr

Head_ptr
Mem_entry Mem_entry

This two-node linked-data structure shows
how you keep track of pointers in a linked list.

F igure 3

Address Data
0x0F00 0xAAAA
0x0011 0xBBBB
0x0F00 0xCCCC
0x0200 0xDDDD
0x1FFF 0xEEEE
The first time the rou-

tine writes into memory,
the program sets the
pointer such that the pro-
gram allocates only one
memory location. The
nxt_pointer points to a null
location. The program al-
locates address 0x0F00
with data 0xAAAA. The
code in lines 15 through 21
illustrates this situation.
The next situation involves
a memory location that the
program accesses such that
the address of the request-
ed memory is less than the
value of the address in the
first node of the linked list.
In this case, the program
inserts this new requested
location at the top of the
list. For example, the ad-
dress 0x0011 is less than
the address 0x0F00, so the
program inserts it at the
topmost node in the list.
The code in lines 24
through 31 illustrates this
scenario. To write to a pre-
viously allocated memory
location, the program
overwrites previously writ-
ten memory. A write to lo-
cation 0x0F00 overwrites
the data 0xAAAA with
data 0xCCCC without any
further allocation. The
code in lines 35 through 38
performs this operation. A
fourth scenario is a write-
to-memory location

whose physical memory address is be-
tween the address in the element in the
top of the list and the address in the last
element in the list. For example, if the
program has allocated addresses 0x0011
and 0x0F00 and receives a request for an
allocation to address 0x0200, the pro-
gram should insert this node between the
0x0011 and 0x0F00 elements in the list
(lines 39 through 51). The last case is a
write to a memory location whose phys-
ical address is greater than the address in
the last element of the list. In this case,
the program appends the newly allocat-
ed location to the list, and it becomes the
last element of the list. If the program al-
locates addresses 0x0011, 0x0200, and
0x0F00 and you request a write to ad-
dress 0x1FFF, the node corresponding to
the address 0x01FFF is appended to the
list as the last element and its Nxt_Ptr is
set to null (lines 55 through 62).

The rd_data procedure is much sim-
pler because it returns only the data that
the program has already written in allo-
cated locations. The rd_data procedure
accepts the address (location) of the data
that the program needs to read, a stor-
age variable for the data (data) the pro-
gram will return, a flag (allocated) to in-
dicate whether the program allocated the
requested address by a previous write,
and the pointer to the head of the linked
list. Listing 3 shows the implementation
of the rd_data procedure.
The rd_data procedure walks through
the allocated pointers (until it reaches a
null pointer). The procedure compares
the address of the location with each ad-
dress in the linked list. If the program
finds a match, the program returns the
data corresponding to that address (List-
ing 3, lines 80 through 90). A null point-
er indicates the end of the list. If the pro-
gram has not allocated the location,it
returns an “unknown” value (std_logic
U) (lines 92 through 94). In line 88, a
copy of first.list_ptr, starting from the

designfeature Advanced VHDL constructs

68 edn | November 24, 1999 www.ednmag.com

LISTING 3—VHDL PACKAGE DESCRIPTION IMPLEMENTING
MEMORY OF LISTING 2

LISTING 4—DEFINING MEM_ENTRYWITH AN UNDECLARED DATA TYPE
ENTRY_PTR

www.ednmag.com November 24, 1999 | edn 71

current head_ptr, allows you to walk
through to the end of the list until you hit
a null pointer. If you do not copy the
first.list_ptr and make the assignment in
line 82 first.list_ptr = first.list_ptr.nxt,
you are modifying the head_ptr.

Listings 2 and 3 illustrate the use of
advanced VHDL constructs to allocate

memory on the fly. Listing 5 illustrates
the use of such a package for an applica-
tion that requires a large amount of
memory. This testbench verifies and il-
lustrates the operation of mem_pkg by al-
locating memory corresponding to ran-
dom locations in physical memory and
reading them back. The procedure dis-

play_read_data dis-
plays two parameters,
loc and data, to stdout
according to the fol-
lowing rule: If any
values other than 0 or
1 in dat correspond to
unknown values, the
program prints them
as binary values; oth-
erwise, it prints them
as hex values. This
rule is necessary be-
cause the hwrite func-
tion in line 31 defines
std_logic_misc and
converts std_logic_
vector to bit_vector,
losing all the Multi-
Valued Logic (MVL9)
information. Other
efficient procedures
that are internal to
VLSI Technology
print dat without
performing such
checks. For the sake
of completeness, List-
ing 5 shows the pro-
cedure display_read_
data. Listing 5 also
shows the test VLSI
uses to verify the
memory. Some pro-
cedure calls in Listing
5 illustrate the use of
the variables and
constants in the calls.
Lines 75 through 76
show a common way
to stop the simulator
after the test is com-
plete. Compiling the
previous model puts
the lowest memory
access at location 0
and the last memory
access at location
0x7FFFFFFF (=2
Gbytes). Static alloca-

designfeature Advanced VHDL constructs

LISTING 5—MEMORY-PACKAGE DESCRIPTION
FOR A LARGE-MEMORY APPLICATION

Circle 3 or visit www.ednmag.com/infoaccess.asp

www.ednmag.com November 24, 1999 | edn 73

tion needs 2 Gbytes of storage, which
causes a significant slowing of simula-
tion. The dynamic allocation in the ex-
ample requires you to allocate only two
locations on the fly. References 2 and 3
show other similar methods to do this
task. Of all the methods so far, the one
described in this article is the simplest
to understand and implement and the
most efficient method to use. You can
also extend these methods of creating
linked data structures to models that re-

quire such data structures. For example,
Universal Serial Bus (USB) and Firewire
require hardware to set up such data
structures. A parallel software approach
for such complicated data structures is
useful for verifying the hardware coun-
terparts of these structures.

The previous example shows other
features that improve memory model-
ing. You can use a binary search in place
of a linear search. Listing 5, during both
reads and writes, uses a linear-search
method that starts at head_ptr and
searches through the list until it hits a
null pointer. This method can be ineffi-
cient if the program has allocated a large
number of locations, and accesses are
usually toward the end of the list. To
speed the operation, software engineers
have developed other search methods for
linked lists, some of which the material
in Reference 4 details . One method is a
binary-search method that searches only
half the list at a time. This method uses
the num_entries field in the head_ptr to
divide the list into two parts. In Listing
5, the program does not use the allocat-
ed flag to make any decisions. You can
use this flag to return a known data val-
ue or the address of the unallocated lo-
cation itself, or you can sometimes allo-
cate a new location. Deleting an allocated
address is another way to improve pro-
gram efficiency. Although not common
in a real system test, it is not unusual in
a corner-case test to delete an allocated
address to verify that the test did not
“memorize” the data and to verify that a
read to nonexistent memories is incon-

designfeature VHDL

LISTING 6—USING A SIGNAL RAM_DATA
TO CREATE A MEMORY ELEMENT

Circle 4 or visit www.ednmag.com/infoaccess.asp

www.ednmag.com November 24, 1999 | edn 75

sistent. One last technique is to dump the
entire memory. After you do a test, you
can do a memory dump of all the allo-
cated addresses and data. You can ac-
complish the dump by walking through
the list and using the display_read_data
procedure to print location and data for
verification by another program or
script.

SHARED VARIABLES MODEL MEMORIES

Designers usually use signals to com-
municate between parts of a design, but
signals require more simulation time
and system resources than VHDL vari-
ables require. VHDL 93 introduced
shared variables to replace signals in cer-
tain situations. A few possible scenarios
exist in which you can use shared vari-
ables to model efficient testbenches

through an illustrative example.
You can declare variables in process-

es, subprograms, or both, and the scope
of the variables lies within the process or
subprogram in which you’ve declared
them. More often than not, situations ex-
ist in which another process would like
to monitor the variable for its value. Be-
cause you can’t do this monitoring with
variables, you must use signals. The over-
head in using signals to communicate be-
tween processes is enormous. Signals re-
quire more physical memory on the host
machine than variables. As the number
of signals grows, simulator speed and
simulation efficiency decrease. For ex-
ample, consider a simple case of a dual-
port, synchronously driven asynchro-
nous RAM. This memory has additional
requirements: You initialize the memo-

ry during reset such
that all memory loca-
tions have the value
loaded in data_in dur-
ing the reset time. In a
synchronously driven
asynchronous RAM,
the read port is asyn-
chronous to the write
port, although both
the read and write
ports are synchronous
to their respective
clock domains. Tradi-
tional design ap-
proaches use signals to
create a memory ele-
ment that is accessible
from different clock
domains (Listing 6).

This ram_data sig-
nal is DEPTH3
WIDTH bits and oc-
cupies a lot of physical
memory on the host
system. You can re-
duce the physical-
memory requirement
by 50% or more by us-
ing the shared vari-
ables in the VHDL
1993 standard (Refer-
ence 5). Shared vari-
ables are a subclass of
the variable class of
objects. Listing 7
shows how you can
use shared variables
for the application de-

designfeature Advanced VHDL constructs

LISTING 7—USING SHARED VARIABLES
FOR CREATING THE MEMORY OF LISTING 6

Circle 5 or visit www.ednmag.com/infoaccess.asp

www.ednmag.com November 24, 1999 | edn 77

scribed in Listing 6. In Listing 7, lines 1
through 20 declare the entity. The re-
set_n signal is the asynchronous reset to
the memory. The wr_n, wr_addr, and
data_in signals are synchronous to the
wr_clk clock domain. The rd_n, rd_adr,
and data_out signals are synchronous to
the rd_clk clock domain. Line 22 defines
a type to model a 2-D memory element;
the rows point to each word, and the
columns point to each bit in a word. Line
23 declares a shared variable of type
MEM defined in line 22. Note that you
declare the shared variable in the same
declarative section that you would de-
clare a signal. You can declare a shared
variable in the declarative parts of an en-
tity, architecture body, package, and
package body of VHDL. Lines 25

through 33 define a process that executes
during the assertion of reset_n to ini-
tialize all the rows of the memory with
the value loaded in data_in. This process
is one of two that writes to the shared
variable ram_data. Lines 34 through 44
describe another process that writes to
the shared variable upon the assertion of
wr_n. If wr_n is active with wr_clk run-
ning during reset, you have unpre-
dictable data that the program stores in
the ram_data. Lines 45 through 56 de-
scribe the read process that reads data
from this shared variable ram_data
when rd_n is active. Again, the output
data_out is nondeterministic on the as-
sertion of rd_n and wr_n for the same
addresses in rd_addr and wr_addr.

Use shared variables with caution.
Nondeterministic outputs result when
two processes try to write to the shared
variable concurrently (resetP and
writeP) or when the program concur-
rently does read and write accesses to the
same location. It is best to guarantee by

designfeature VHDL

LISTING 8—TOP-LEVEL CONFIGURATION
OF AN SDRAM TESTBENCH

Circle 6 or visit www.ednmag.com/infoaccess.asp

design that no two processes will access
the same shared variable during the same
simulation cycle. One way to fulfill this
requirement is to use a semaphore ap-
proach. Reference 3 describes a method
that implements a semaphore approach
using requests, grants, and a central re-
source that monitors the access to the
shared variable.

Introducing shared variables opens
many applications for efficient model-
ing. Designers often use shared variables
in applications in which the status of a
responder may depend on the last oper-
ation performed by one of several de-
vices plugged into a bus. You don’t need
a resolution function, because only one
device at a time can perform an opera-
tion. Use shared variables in this case to
help assign status to the responder. A
real-life example of such a model is a
USB hub that contains the information
about the latest USB DEV attached to it.
Another example is a multichannel asyn-
chronous-transfer-mode switch. Many
telecommunications models can effi-
ciently use the behavior of shared vari-
ables.

CONFIGURATIONS AND DESIGN HIERARCHY

You can use VHDL’s configuration
constructs to eliminate the need for mul-
tiple unique testbenches in environments
in which many people are simulating a
design.You use a common configuration

template at the top
level of the testbench
that calls out other
configurations for
each component in
the template. These
second and succeed-
ing configuration
levels determine the
structure and behav-
ior of the compo-
nents in the system.
Generally, most of
these second-level
components are the
same for each test.
The only second-
level (or subse-
quent) components
that differ from the
standard compo-
nent are those that
accommodate the
function you are
testing. This meth-
odology greatly eas-
es maintaining mul-
tiple testbenches. It
also facilitates ran-
dom simulations,
because the creation
of “variant” testbenches is already built
into the architecture.

To illustrate this testbench methodol-
ogy, consider a scenario in which you

need to test a synchronous-
DRAM (SDRAM) controller.
In this SDRAM, we tested a
large system controller of
which the SDRAM controller
was a small part. During simu-
lation tests, you must use many
types of SDRAMs, varying in
both size and performance.
VHDL provides many ways to
organize a hierarchy to support
these tests. Because several peo-

ple may be simulating
the design, you must

provide one basic configura-
tion as an initial starting point,
with each person generating
his own individual test varia-
tions. Some problems, howev-
er, exist with team VHDL-de-
sign projects.

One problem is that unnec-
essary code duplication may

occur when several people generate the
same variations in architectures. Each
person may not know about other peo-
ple’s work, because each may locally
maintain the code or place it in files that
they predominantly control. Another
problem arises when you need to pass
large numbers of generics to the model.
Identical generics may exist in many of
the architectures at a single level, in-
creasing the chance for modification er-
rors.A third problem occurs when a large
number of port and generic maps clutter
the reference files. Figure 4 shows a hi-
erarchy you can use to minimize these
problems.

The hierarchy consists of a top-level
configuration, second-tier configura-
tions with an entity and architectures, a
third-tier entity with architectures and a
fourth-tier basic functional entity. List-
ing 8 represents the top-level configura-
tion in the testbench. Line 6 in Listing 8
contains the architecture, which the ex-
ample does not show. The architecture
contains a chip containing the SDRAM
controller, an SDRAM module contain-

designfeature Advanced VHDL constructs

78 edn | November 24, 1999 www.ednmag.com

Using a VHDL design hierarchy, such as the one shown
here, you can minimize the problems you might encounter
when multiple designers work on design testbenches.

SDRAM MODULE
ENTITY (SECOND TIER)

ROW/COLUMN
ARCHITECTURES

CONFIGURATIONS

arch10x8
arch10x9

cfg_10x8_10ns
cfg_10x8_9ns

TOP-LEVEL-TESTBENCH
CONFIGURATION

SPECIFIES SECOND-TIER
CONFIGURATION

BASIC SDRAM
FUNCTIONAL MODEL
ENTITY (FOURTH TIER)

BOUND BY DEFAULT

BINDS SPEED-GRADE
ARCHITECTURE TO
SELECTED ROW/COLUMN
ARCHITECTURE

SDRAM
ENTITY (THIRD TIER)

SPEED-GRADE
ARCHITECTURES

arch10ns
arch19ns

F igure 4

LISTING 9—SECOND-TIER CONFIGURATION
OF AN SDRAM TESTBENCH

ing the SDRAM, a test stimulus, and oth-
er components you need for testing. Line
7 is the second-tier configuration speci-
fication that references an SDRAM con-
figuration containing the necessary bind-
ing information to completely specify the
SDRAM characteristics. You can use this
top-level configuration as a template for
other tests requiring different compo-
nents simply by modifying the configu-
ration specifications and other parame-
ters. This modification capability lets you
copy and modify the template for each
new test. Using a template, all the people
simulating the design have common
code styles and a common way of cus-
tomizing the testbench to suit their
needs. Because this configuration con-
veys the characteristics of the overall test-
bench, reference as few generics as prac-
tical to keep the file clean and easy to
read. Listing 9 shows the second-tier
SDRAM configuration from Figure 4

along with the ac-
companying entity
and architecture
that it configures.
This configuration
shows which entity
or architecture pair
you should use for
the sdram_mod in-
stances in Line 7 of
Listing 8. Line 23
also binds the com-
ponent called
SDRAM in Line 29
to its own entity or
architecture pair.
The component
name need not
match the entity
name to which it is
bound. Many more
architectures may
exist for the entity
sdram_mod, along
with other configu-
rations; each may
specify different
sizes, arrangements,
and SDRAM chara-
cteristics. Lines 31
and 32 show one
such specification.
Keeping all of the
architectures and
configurations in

one file or location helps reduce unnec-
essary duplication; you don’t need local
or isolated code blocks.

The basic SDRAM functional model in
the fourth tier requires externally sup-
plied speed information in addition to
size and function information. You also
pass this information to the model as
generics. Because so many timing-relat-
ed generics exist for a given speed, pass-
ing all of them through each instance of
the SDRAM component (line 29) makes
this file unreasonably large and difficult
to use. Another level of hierarchy ac-
commodates this problem. You don’t as-
sign any speed generics at the second tier
of the hierarchy, keeping the architec-
tures in Listing 9 relatively small and
specialized to indicate SDRAM size and
function (line 31).

The third-tier architectures contain
components with timing information as-
signed to the generics. The generic val-

ues for size and function pass from the
second-tier architectural components.
You develop the third-tier architectures
(Listing 10, lines 76 through 77 and 91
through 92) for the timing and speed in-
formation. Then, the second-tier config-
urations bind the third-tier timing enti-
ty and architectures to the components
in the second-tier size and function ar-
chitectures. The binding of the fourth-
tier entity (and architecture) to the third-
tier components occurs by default.
Listing 11 shows the fourth-tier entity.
By using the flexible-binding capabilities
of VHDL configurations and specializing
the architectures this way, you can easily
organize the code, making it easy to read,
understand, modify, and enhance. When
you configure all of the top-level com-
ponents this way, it is easy to add varia-
tions to the testbench by introducing, for
example, a new architecture at one level,
along with an accompanying second-tier
configuration that you can then reference
from the top-level configuration. Note
that if you can modify the basic func-
tional models, you may not need addi-
tional hierarchies. Instead, you can de-
sign the basic model to automatically set
up many of the otherwise generic pa-
rameters, hard-coding them into the
model with selections that you can do
with a single generic.

FOREIGN-LANGUAGE INTERFACE

VHDL has powerful language con-
structs that you can use to model the be-
havior or structure of any hardware de-
vice. In the past, when VHDL and other
hardware-modeling languages were un-
popular, you wrote models in general-
purpose-programming languages, such
as C. In addition, you have advanced C
libraries available to perform complex

designfeature Advanced VHDL constructs

80 edn | November 24, 1999 www.ednmag.com

LISTING 10—THIRD-TIER ARCHITECTURE
OF AN SDRAM TESTBENCH

LISTING 11—FOURTH-TIER ENTITY
FOR AN SDRAM TESTBENCH

designfeature Advanced VHDL constructs

82 edn | November 24, 1999 www.ednmag.com

computations on the fly, which is difficult
to do in VHDL. In such instances, VHDL
provides a way to use foreign elements to
help modeling with its foreign-language
interface. To use the foreign-language in-
terface, you must adopt the following
procedures. This section shows the use of
the foreign-language interface through an

example that is specific to the ModelSim
simulator from Model Technology
(www.model.com). First, create the C
model, including simulator-specific calls.
Next, compile the model and create a
shared object. (Note that this shared ob-
ject may not be portable from system to
system, for example, from a machine run-
ning Solaris to one running HPUX.) Fi-
nally, create an entity and architecture
with the foreign attribute to bind the
model.You can substantiate this entity in
any other design, as required.

Our foreign-language interface uses a
simple C model of a D flip-flop, the
VHDL interface shown in Listing 12, and
the C-code in Listing 13. The D-type flip-
flop model is positive-edge-triggered and
asynchronously reset. It is useful to ex-
amine the C code before discussing the
architecture of the entity dflop. This C
model mimics the behavior of a D-type
flip-flop. The function calls that begin
with mti_ are ModelSim-specific. At a
minimum, the C model needs the initial-
ization function and a function modeling
the required behavior. A little knowledge
of C is useful for understanding the code
in Listing 13. You can find detailed ex-
planations on ModelSim-specific func-
tion calls in the ModelSim user manual.
You compile this C file using any ANSI-
standard-compliant C-compiler link to
create a shared-object file. For the D flip-
flop example, compile the C model for a
Solaris platform using the following com-

mands: cc -c -DI$MODELTECH/include
dflop.c and ld -G -o dflop.so dflop.o The
architecture arch of entity dflop binds the
compiled C code via the VHDL foreign
attribute. The VHDL statement: attribute
foreign of arch : architecture is “reg_init
dflop.so”; indicates that you need a for-
eign architecture in the file dflop.so, which
has an initialization function reg_init, for
arch. Note that the initialization function
is key to all C models. This function typ-
ically allocates memory to hold variables
for the instance, registers a
call-back function to free
the memory upon simula-
tor start-up, saves the han-
dles to the signals in the port
list, creates drivers on ports
that it will drive, creates one
or more processes (a C
function that you can call
when a signal changes), and
sensitizes each process to a
list of signals (Reference 6).
You can pass generics to C
models. Some C models are
simulator-specific; you
should refer to the simula-
tor’s user manual for further
information.

RECORDS IN PROCEDURES

VHDL procedures are
constructs that VHDL pro-
vides to hide unnecessary
complexity and detail from
the main body of code. In
doing so, these procedures
often become extremely
complex or have to handle
large numbers of signals.
Passing information to the
procedure through individ-
ual elements quickly be-
comes impractical if many
signals are involved. As an
example, consider a proce-
dure call to initiate a PCI
master to begin a transac-
tion. The procedure body
takes input information
and toggles outputs in a
specific sequence. The pro-
cedure then passes these
outputs outside itself.
When the PCI-master
functional model, located
elsewhere in the design,

sees the outputs, the model initiates the
PCI transaction.

Listing 14 defines a package with the
signals that you typically need to com-
municate with and control a PCI master.
In this simple case, the program individ-
ually defines each signal. Listing 15 shows
a process for initiating a PCI memory
write followed by a PCI memory read.
The procedures take the cyc, addr, and tc
information and then drive or examine
the remaining PCI-master-specific sig-

LISTING 12—VHDL D FLIP-FLOP MODEL
WITH A C INTERFACE

LISTING 13—C MODEL OF A D FLIP-FLOP

designfeature Advanced VHDL constructs

84 edn | November 24, 1999 www.ednmag.com

nals so that the PCI master in another
part of the design can begin the transac-
tion on the PCI bus. For the most part, the
process does not need to directly refer-

ence any of the signals
going to the PCI master;
they are all driven or ex-
amined solely in the
procedure the program
calls. With an increasing
number of PCI reads
and writes, the code be-
comes more difficult to
read. This situation
worsens as you expand
as the functionality of
the read and write pro-
cedures. The easiest way
to avoid this problem is
to define a record with
elements corresponding
to each of the required
PCI-master signals and
then create a signal of
that record type. Listing
16 is a package that de-
fines such a signal. The
record statements in
lines 4 through 20 define

a template; line 21 shows the actual sig-
nal.You need not specify the subelements
of the signal when passing the whole sig-
nal to the package.

Once you declare the PCI read and
write procedures, you can write them
(Listing 17). You must pass four argu-
ments during the procedure call (lines 20
and 21). You sometimes can’t modify a
model (in this case, the PCI model); in
such a case, you should put the signals
coming from the model intoa record. In
this situation, map the individual signals
to the record using concurrent signal as-
signments at a place at which both the
composite and scalar signals are visible
(in the appropriate direction). Be careful
with records having components driving
data both in and out. The signal of the
record type must be a resolved signal. Dri-
ve the record elements that you should-
n’t drive in the calling process to an ap-
propriate value commensurate with the
element’s type, so you do not affect the
signal value (Z in std_logic, for example).
By using records in this way, you can use
more highly complicated procedures
without being burdened by lots of un-
necessary code. k

References
1. Ashenen, PJ, The Designers Guide to

VHDL, Morgan Kaufman Publishers

LISTING 16—VHDL PACKAGE PCI-MASTER SIGNALS LISTING 15—VHDL PROCESS FOR INITIATING
A PCI MEMORY WRITE FOLLOWED BY A MEMORY READ

LISTING 14—VHDL PACKAGE WITH THE SIGNALS
TO CONTROL A PCI-MASTER MODEL

continued on pg 86

designfeature Advanced VHDL constructs

86 edn | November 24, 1999 www.ednmag.com

Inc, San Francisco, CA, 1996.
2. Bilik, S,“Modeling Sparsely Utilized

Memories in VHDL,” VIUF Fall Confer-
ence, 1996.

3. Cohen, B, VHDL An-
swers to Frequently Asked
Questions, Second Edition,
Kluwer Academic Publishers,
Boston, MA, 1997.

4. Headington, Mark, and
David Riley, Data Abstraction
and Structures Using C++,
DC Heath and Co, 1994.

5. IEEE Standard VHDL
Language Reference Manual
1076-1993, IEEE Press, New
York, NY, 1994.

6. ModelSim EE/PLUS Ref-
erence Manual, Version 5.1,
Model Technology Inc,
Beaverton, OR, 1998.

Authors’ biographies
Subbu Meiyappan is a senior
design engineer at VLSI Tech-

nology, a subsidiary of Philips Semicon-
ductors. He has worked for the company for
nearly three years, designing, developing,

synthesizing, simulating, and validating
high-performance intellectual-property
blocks for PCI, ARM-ASB-based devices,

and high-performance ASICs. He
has a BE from Annamalai Uni-
versity (Annamalai Nagar, India)
and an MS from Tennessee Tech-
nological University (Cookeville,
TN). His interests include com-
puter architecture, design au-
tomation, volleyball, and travel.
You can reach him at Subbu.
Meiyappan@vlsi.com.

James Steele is a staff design engi-
neer at VLSI Technology, where he
as worked for 12 years. He designs
ICs and has developed wireless ap-
plications and PC/notebook chip
sets. He has a BSEE from Arizona
State University (Tempe, AZ). You
can reach him at James.Steele@
vlsi.com.

Circle 7 or visit www.ednmag.com/infoaccess.asp

LISTING 17—PCI READ AND WRITE PROCEDURES

