
Snap-Master Data File Formats Page 1

Snap-Master Data File Formats

Data File Overview

Snap-Master reads both binary and exponential (also called ASCII or text) data files in a number
of formats. There are three native file formats: Standard Binary, Fast Binary (also called FBDF
for short), and Exponential. In addition, Snap-Master can import and export data in a number of
generic formats, including Plotter and Comma Separated Variable (or CSV) files. Each format
has its own advantages, and there are some general rules to follow when selecting the proper
format for your instrument.

The difference between the native Snap-Master data file formats and the generic file formats is
how the file is organized. Snap-Master native files use a format which contains a header and
separate data frames. The header provides information on the data file that is used by the Disk In
element to accurately recreate the data for post-processing. Generic data files do not contain this
header, and the data is presented as one large series without any frame divisions.

Text-based data files (including the Exponential, ASCII Plotter, and CSV formats) files store the
data as a standard ASCII text file that can be read by most programs. Also, the file can be read by
humans using the DOS TYPE command. The main advantage of this universal data type is that
the file can be read by most programs, including word processors, spreadsheets and databases.

There are two disadvantages when using an ASCII file format: the files require a large amount of
disk space (up to eight times more than a binary file), and the files take proportionally longer to
write to disk (up to ten times longer). Therefore, ASCII files should be used when the data is
acquired at low speeds, or when the data must be exported to an external program.

The most efficient method of storing data is by writing the file in one of Snap-Master's binary
formats. The binary files have a faster read and write time, but they may not be able to be read by
external programs. In general, binary files are used for large data files or for higher acquisition
rates.

Page 2 Snap-Master User’s Manual

Native Data Files
Format Data

Type
Frame
Based?

Display While
Storing?

Speed Frequency
Data?

Standard Binary .DAT Binary Yes Yes Med Yes

Fast Binary
(FBDF)

.DAT Binary Yes No High No

Exponential .DAT ASCII Yes Yes Low Yes

In Snap-Master, there are two native binary data file formats: Standard Binary and Fast Binary.
Standard Binary files are sufficient for applications where the aggregate sampling rate is less
than 10 KHz, or when performing post-process analysis on previously acquired data. (To find the
aggregate sampling rate, multiply the number of channels by the sampling rate per channel for
each input element. If you have more than one source of data, then add these values together.)
The main advantage of this format is the data is converted to floating point numbers (using
engineering units, if defined by the Sensor) for use by all of the Snap-Master elements, including
the Display which allows you to view the data while saving it to disk.

The Fast Binary data format is optimized for high speed data acquisition. The main difference
between it and the Standard Binary files is the Fast Binary does not convert the acquired data
into the floating point number before it is written to disk. This saves time during the write cycle
and allows for a higher throughput rate. In addition, all of the input channels are written to the
disk file in order to maximize the performance.

While the instrument is writing data using the Fast Binary format, data can not be viewed using
the Display element. This is because displaying data on the screen requires numerous
calculations, which in turn reduces the speed of writing the data directly to disk. Therefore, if you
attempt to start an instrument with an element that does not support the Fast Binary data format,
a message will appear on screen informing you that the instrument can not run in its current
configuration.

NOTE: If you are using the Fast Binary data format, DO NOT use any disk caching software
(such as SMARTDRV, which comes with Windows). Disk caching software will degrade the
performance of the Fast Binary format and your actual throughput rates will be lower than
without the cache.

Generic Data Files In addition to the native file formats, Snap-Master can also read and write data in generic
formats that can be used by other programs. These formats include:

Format Data
Type

Frame
Based?

Display While
Storing?

Speed Frequency
Data?

Binary Plotter .PLT Binary No Yes Med Yes

ASCII Plotter .PLT ASCII No Yes Low Yes

Comma Separated
Variable

.CSV ASCII No Yes Low Yes

Snap-Master Data File Formats Page 3

Data File Naming
Conventions

When creating a Snap-Master native data file using a .DAT extension, you are actually writing
data to more than one file. Each .DAT file acts as a reference to a number of .SM? files with the
same file prefix. The .SM? files contain the actual data from the elements, where the ? is replaced
by the element letter.

Figure 1 Sample Data File Naming Instrument

For example, this instrument is writing data in Standard Binary format to a file named
TESTDATA. The first file that is created is TESTDATA.DAT. In addition, for each element you
are saving data from (such as the B and C elements), the files TESTDATA.SMB and
TESTDATA.SMC are created. TESTDATA.SMB will contain the raw data from the A/D Board
marked element B, and the raw data from element C is saved in TESTDATA.SMC. If the
Analysis element is creating new data channels such as R0, then a TESTDATA.SMR file is
created.

The generic file formats use the extension assigned by the format when writing the data file (such
as .PLT or .CSV). In addition, data from only one element letter can be stored in a generic file.
This is because it is possible for each element letter to have a different number of points to save,
so Snap-Master imposes this restriction when creating data files with the Disk Out element.

Page 4 Snap-Master User’s Manual

Data File Formats

This section of the manual documents the actual file formats used by Snap-Master’s native file
formats, as well as some of the generic file formats. This information will only be useful to users
who plan on creating their own programs to write or read Snap-Master data files (such as custom
file format converters or custom analysis programs).

Data File Structure Whenever data is saved in one of Snap-Master's standard file format, at least two files are
created: a .DAT file and one .SM* file for every element saving data. The actual data (including
headers) is stored in the .SM* files, and the .DAT file acts as a pointer to all .SM* files with the
same file prefix. The last letter in the file extension must correspond with the element letter in
the CHAN$ array for proper operation.

All .SM* files consist of two major sections: the file header, and the data frames. The file header
defines the parameters used in the data file, and the values for these parameters.

Each frame of data consists of two parts: the frame header and the raw data. The beginning of a
new frame header is specified by a "TR", followed by the frame number. The next line contains a
date and time stamp for the start of the frame.

Section Contains

File Header Introduction
Parameter Name and Value List

Data Frame Frame Header
Data

Data Frame Frame Header
Data

Data Frame Frame Header
Data

etc. for the remaining frames.

Some important items to note when writing a Snap-Master data file:

• Spaces are ignored when reading the data file, except after an equal sign (=) that defines
a numerical value where there must be no spaces.

• Snap-Master only understands its own internally declared parameters.

Header
Information

The file header contains information used by Snap-Master to determine the parameters applicable
to all data frames contained in the file. If the data file does not correspond to the settings in the
header, then the file will not be replayed correctly.

The file header for a Snap-Master data file consists of two parts: the introduction, and the
parameter list. The introduction contains an initialization line and the user-defined comments for
the data file. The parameter list gives the parameter variables used in the data file, and the values
for each parameter.

Snap-Master Data File Formats Page 5

Initialization Line The first line in the file header starts with "Snap-Master Data File",
a comma, and a number specifying the number of parameters
appearing in the data file, including the Comments line.

Comments The next line(s) contains the user defined comments which are
entered in the File Comments field of the Disk Out dialog box.
Comments are preceded by "COMMENT$", a comma, the number
of characters in the string, a comma and an equal sign, and the text
string enclosed in quotation marks.

The format for the available parameters for Snap-Master data files are listed in the following
table. All values of x specify the character length of the value or string to the right of the equal
sign.

"DATE$", 12, = String that specifies the date that the file was created. The
value is enclosed in quotes and follows the "mm-dd-yyyy"
format.

"TIME$", 10, = String that specifies the time that the data file was created.
The value is enclosed in quotes and follows the "hh:mm:ss"
format.

"ACT.FREQ", x, = Numeric value of the sampling frequency per channel.

"ACT.SWEEP", x, = Numeric value of the actual Frame Length used by Snap-
Master.

"NCHAN%", x, = Numeric value of the number of channels of data in the
data file.

"CHAN$[]", x, = List of strings specifying the element letter and channels in
the data file. Entries are separated by a comma. All element
letters must be the same and must correspond to the last
letter in the .SM* file extension.

"NUM.POINTS", x, = Numeric value of the number of points sampled per
channel for each frame of data.

"CLOCK.UNITS$", x, = String specifying the units used for the x-axis variable. For
time-domain data, the value is the units used (such as Sec).
For frequency data, the value is given as Hz.

"FILE.TYPE$", x, = String specifying the file type. The settings for the different
formats are as follows:

Exponential x=30, Interleaved Analog Exponential

Standard Binary x=25, Interleaved Analog Binary

Fast Binary x=29, Interleaved Analog Binary Raw

"INTERLEAVE.FACTOR%", x, = Numeric value representing the interleave factor of the data
points, which is equal to the number of acquired channels.

"CONVERSION.POLY$[]", x, = List of strings specifying the conversion polynomial for
each channel in the CHAN[] array. In the Exponential file
format, the data has already been converted using these
equations. Each value is separated by a comma.

Page 6 Snap-Master User’s Manual

"UNITS$[]", x, = List of strings specifying the engineering units for each
channel in the CHAN[] array as specified by the Sensor
element. Each value is separated by a comma.

"DEFAULT.LABEL%[]", x, = List of integers which specifies the channel label. A 1
means the label from CHAN$ is used, and a 0 means the
user defined label in CHANNEL.LABEL$ is used. Each
value is separated by a comma.

"CHANNEL.LABEL$[]", x, = List of strings of the user defined labels for each channel in
the CHAN[] array. Each value is separated by a comma.

"CHANNEL.TYPES$[]", x, = List of strings specifying the type of channel for each
channel in the CHAN[] array. Each value is separated by a
comma. For time data, the channel type is yt. For frequency
data, the channel type is yfp (p is for polar frequency
format data).

"CHANNEL.RANGES[]", x, = Numerical range of values specifying the upper and lower
limits of the data for each channel in the CHAN[] array.
The values are usually determined by either the Sensor
element or the Input Range of an input element. The range
is enclosed in parentheses and separated by a comma (for
example (-10,10)). Each channel is also separated by a
comma.

"FFT.BLOCKSIZE%", x, = Integer specifying the interleave size for amplitude and
phase data. If no frequency data is in the file, this value is
2048. If frequency data is in the file and the value is 1, then
the magnitude value is followed immediately by the phase
value.

"CLUSTER.SIZE%", x, = Used only with FBDF files. Integer specifying the cluster
size of the disk that the file was written to.

"PRE.TRIGGER.PTS%", x, = Specifies the number of points in each frame before the
actual trigger event. Used for plots to place time “0” of the
frame at the trigger event.

"DATAINFO$[]", x, = List of strings that provides the user information about how
the data was acquired.

Exponential Data
File Format

Exponential data files are saved as text files, which can be read by other programs and by people
using the TYPE command or a word processor. While these files are the easiest to write, they
also require the most disk space of the file formats and require more time to replay into Snap-
Master.

If frequency data is contained in the file, the FFT.BLOCKSIZE% parameter is always 1 for
Exponential data files. This means that the magnitude part is always followed by the phase part
for each data point. The data is written as interleaved floating-point numbers.

After the header, the Frame Header is written with a "TR" (which indicates a new frame), the
frame number, a carriage return, the date the frame was started (in mm-dd-yyyy format, enclosed
in quotation marks), the time the frame was started (in 24-hour format of hh:mm:ss, enclosed in
quotation marks), and a carriage return. The data is written using ASCII text, and each data
value is separated by a comma.

Snap-Master Data File Formats Page 7

Sample Exponential
Data File

"Snap-Master Data File",17 Introduction
"COMMENT$",9,=A comment Comment Line
"DATE$",12,="04-21-1992" Parameter Variables and Values
"TIME$", 10, ="15:38:45"
"ACT.FREQ", 2, =10
"ACT.SWEEP", 1, =2
"NCHAN%", 1, =4
"CHAN$[]", 14, =A0, A1, A2, A3
"NUM.POINTS", 3, =20,
"CLOCK.UNITS$", 3, =Sec
"FILE.TYPE$", 30, =Interleaved Analog Exponential
"INTERLEAVE.FACTOR%", 2, =4,
"CONVERSION.POLY$[]", 30, =0 + 1x, 0 + 1x, 0 + 1x, 0 + 1x
"UNITS$[]", 26, =Volts, Volts, Volts, Volts
"DEFAULT.LABEL%[]", 10, =1, 1, 1, 1
"CHANNEL.LABEL$[]", 34, =Voltage, Voltage, Voltage, Voltage
"CHANNEL.TYPE$[]", 14, =yt, yt, yt, yt
"CHANNEL.RANGES[]", 38, =(-10,10), (-10,10), (-10,10), (-10,10)
"DATAINFO$[]",126,=Board Type: DAS-16
Clock Type: Internal
Trigger Type: Free-Running
Resolution: 12-Bit
"TR", 1 Frame Header
"04-21-1992","15:38:45",
0, -2.5, -1.25, -5 Data
0.0195312, -2.48047, -1.23047, -4.98047
0.0390625, -2.460938, -1.210938, -4.960938
0.0585938, -2.441406, -1.191406, -4.941406
0.078125, -2.421875, -1.171875, -4.921875
0.0976562, -2.402344, -1.152344, -4.902344
0.117188, -2.382812, -1.132812, -4.882812
0.13672, -2.363281, -1.113281, -4.863281
0.15625, -2.34375, -1.09375, -4.84375
0.175781, -2.32422, -1.07422, -4.82422
0.195312, -2.304688, -1.054688, -4.804688
0.214844, -2.285156, -1.035156, -4.785156
0.234375, -2.265625, -1.015625, -4.765625
0.253906, -2.246094, -0.9960938, -4.746094
0.273438, -2.226562, -0.9765625, -4.726562
0.29297, -2.207031, -0.9570312, -4.707031
0.3125, -2.1875, -0.9375, -4.6875
0.332031, -2.16797, -0.9179688, -4.66797
0.351562, -2.148438, -0.8984375, -4.648438
0.371094, -2.128906, -0.8789062, -4.628906
"TR", 2 Frame Header
"04-21-1992","15:38:46",
0, -2.5, -1.25, -5 Data
0.0195312, -2.48047, -1.23047, -4.98047
0.0390625, -2.460938, -1.210938, -4.960938
0.0585938, -2.441406, -1.191406, -4.941406
0.078125, -2.421875, -1.171875, -4.921875
0.0976562, -2.402344, -1.152344, -4.902344
0.117188, -2.382812, -1.132812, -4.882812
0.13672, -2.363281, -1.113281, -4.863281
0.15625, -2.34375, -1.09375, -4.84375
0.175781, -2.32422, -1.07422, -4.82422
0.195312, -2.304688, -1.054688, -4.804688
0.214844, -2.285156, -1.035156, -4.785156
0.234375, -2.265625, -1.015625, -4.765625
0.253906, -2.246094, -0.9960938, -4.746094
0.273438, -2.226562, -0.9765625, -4.726562
0.29297, -2.207031, -0.9570312, -4.707031
0.3125, -2.1875, -0.9375, -4.6875
0.332031, -2.16797, -0.9179688, -4.66797
0.351562, -2.148438, -0.8984375, -4.648438
0.371094, -2.128906, -0.8789062, -4.628906

Page 8 Snap-Master User’s Manual

Standard Binary
Data File Format

Standard Binary data files use the same header as the Exponential format, but the data is stored
as interleaved, floating point binary numbers. Generally, this type of data file will replay about
four times faster than the Exponential file.

After the header, the Frame Header is written with a "TR" (which indicates a new frame), the
frame number, a carriage return, the date the frame was started (in mm-dd-yyyy format, enclosed
in quotation marks), the time the frame was started (in 24-hour format of hh:mm:ss, enclosed in
quotation marks), and a carriage return. Immediately before the first data point in each frame, a
Sync Byte (Hex value: AA) is written. Each data point is then written as a four-byte single-
precision floating point value (Intel 80x87 format, IEEE 754-1985). Each Sample Group
contains one data point per each channel, and the channels are written in ascending order.

Length = (4*(# Channels) * (# Sample Points per Channel)) bytes

Sample Group (SG) = (4 * (# Channels)) bytes0

Byte Bit Range Description Assignment

0 to 4 (all) first channel's value Range: -1.7e38 to +1.7e38 with
minimum precision of 1.7e-38

24-bit floating precision

5 to 8 (all) second channel's value (same)

(etc) (all) subsequent channels up to last
channel minus one

(same)

(SG-5) to
(SG-1)

(all) last channel's value (same)

If the data file contains frequency domain data, then the data file contains both the magnitude
and phase values for each data point. For an FFT.BLOCKSIZE% of 1, the magnitude part is
always followed by the phase part for each data point. When Snap-Master writes the data file, the
FFT.BLOCKSIZE is equal to the number of data points in the frame. The data in the file is
written according to the following format:

Section Contains

File Header Introduction
Parameter Name and Value List

Data Frame Frame Header
Magnitude Part
Phase Part

Data Frame Frame Header
Magnitude Part
Phase Part

Data Frame Frame Header
Magnitude Part
Phase Part

Snap-Master Data File Formats Page 9

Sample Standard
Binary Data File

"Snap-Master Data File",17 Introduction
"COMMENT$",9,=A comment Comment Line
"DATE$",12,="04-21-1992" Parameter Variables and Values
"TIME$", 10, ="15:38:45"
"ACT.FREQ", 2, =10
"ACT.SWEEP", 1, =2
"NCHAN%", 1, =4
"CHAN$[]", 14, =A0, A1, A2, A3
"NUM.POINTS", 3, =20,
"CLOCK.UNITS$", 3, =Sec
"FILE.TYPE$", 25, =Interleaved Analog Binary
"INTERLEAVE.FACTOR%", 2, =4,
"CONVERSION.POLY$[]", 30, =0 + 1x, 0 + 1x, 0 + 1x, 0 + 1x
"UNITS$[]", 26, =Volts, Volts, Volts, Volts
"DEFAULT.LABEL%[]", 10, =1, 1, 1, 1
"CHANNEL.LABEL$[]", 34, =Voltage, Voltage, Voltage, Voltage
"CHANNEL.TYPE$[]", 14, =yt, yt, yt, yt
"CHANNEL.RANGES[]", 38, =(-10,10), (-10,10), (-10,10), (-10,10)
"DATAINFO$[]",126,=Board Type: DAS-16
Clock Type: Internal
Trigger Type: Free-Running
Resolution: 12-Bit
"TR", 1 Frame Header
"04-21-1992","15:38:45",
. Binary Data
.
"TR", 2 Frame Header
"04-21-1992","15:38:46",
. Binary Data
.

Fast Binary Data
File Format

Fast Binary Data Format (FBDF) files have two main differences from the Standard Binary data
files: the data is not scaled and the data in each frame starts at a cluster boundary (which is a
property of the disk's format, and is specified by the CLUSTER.SIZE% variable). FBDF files also
have an additional CAL.BLOCK parameter in the File Header. This is a binary block of data
dependent on the source of the data stored in the file, and is required for rescaling the raw data
on playback in Snap-Master.

FBDF files have the same structure as the Standard Binary data files, except that the data in each
frame begins at a cluster boundary. The remaining cluster space between the file header and the
actual data is filled with zero values. Also, if a data frame does not fill an complete cluster, then
the remaining space is also filled with zeros. These zero values do not affect the actual data
stored in the file.

The organization of an FBDF file is as follows:

File Header
Frame Header for Frame 1
...zeroes until the cluster boundary
Raw Data
Frame Header for Frame 2
...zeroes until the cluster boundary
Raw Data
(etc)

Page 10 Snap-Master User’s Manual

Comma Separated
Variable Data File
Format

Comma Separated Variable, or CSV, files are very popular for importing and exporting data
between programs. Each of the variables, or channels, is separated by a comma. Each collection
of data points is separated by a CRLF (Carriage Return Line Feed).

In most cases, the first line in the file is the header, which consists of the channel names for each
of the channels stored in the file. Each channel name is contained in quotation marks. The
remaining rows contain floating point data from the instrument, separated by a space.

If the Time (or Frequency) channel is saved, then it will be the first column in the data file.
Whether or not the Time Channel is included in the data file is specified by the Save Time
Channel checkbox in the Disk Out dialog box.

For frequency domain data, each data point is a set of two floating point numbers separated by a
space: the magnitude part and the phase part. If the Time channel is saved, then the frequencies
(in Hertz) are written to the file.

Sample CSV Data File TIME (Sec),CH0,CH1,CH2,CH3
0.0000,5.0000,0.0000,0.0000,0.0000
0.0200,4.9900,0.0197,0.0000,0.0000
0.0400,4.9610,0.0785,0.0000,0.0000
0.0600,4.9120,0.1754,0.0000,0.0000
0.0800,4.8430,0.3089,0.0000,0.0000
0.1000,4.7560,0.4770,0.0000,0.0000
0.1200,4.6490,0.6769,0.0000,0.0000
0.1400,4.5250,0.9056,0.0000,0.0000
etc.

ASCII Plotter Data
File Format

ASCII Plotter files are similar to CSV files, except that the data is separated by spaces. In
addition, the number of spaces usually tries to make the data look columnar when printed out.
Also, if the Plotter file contains a header line to provide names for the channels, the names must
be enclosed in quotation marks.

If the Time (or Frequency) channel is saved, then it will be the first column in the data file.
Whether or not the Time Channel is included in the data file is specified by the Save Time
Channel checkbox in the Disk Out dialog box.

For frequency domain data, each data point is a set of two floating point numbers separated by a
space: the magnitude part and the phase part. If the Time channel is saved, then the frequencies
(in Hertz) are written to the file.

Sample ASCII Plotter
Data File

"TIME (Sec)" "CH0" "CH1" "CH2" "CH3"
0.000000 5.000 0.0000 0.0000 0.0000
0.02000 4.990 0.0197 0.0000 0.0000
0.04000 4.961 0.0785 0.0000 0.0000
0.06000 4.912 0.1754 0.0000 0.0000
0.08000 4.843 0.3089 0.0000 0.0000
0.10000 4.756 0.4770 0.0000 0.0000
0.12000 4.649 0.6769 0.0000 0.0000
0.14000 4.525 0.9056 0.0000 0.0000
etc.

Snap-Master Data File Formats Page 11

Binary Plotter Data
File Format

Binary Plotter data files are similar to the ASCII Plotter format, except that the data values are
stored as interleaved binary floating-point numbers. As with the ASCII Plotter format, the first
line contains header information and raw data begins on the second line.

HEADER

File Offset = 0 bytes
Length = (4 * (# Channels)) bytes
Header End (HE) = 4 * (# Channels) - 1

Note: If only one channel is contained in the data file, then the header ends after byte 3.

Byte Bit Range Description Assignment

0 b7 - b0 File Type 0xCC

1 b7 - b5
b4

b3 - b0

Reserved
Time Channel

Data Type

X
0 = Present

1 = Not Present
0 = Y vs. T data

1 = Y vs. F rectangular data
2 = Y vs. F polar data

2 & 3 b15 - b0 # Channels Integer 0 - 65535

4 to
HE

(all) Not used contains 0-value bytes

If the data file contains frequency domain data, then each data point consists of two consecutive
four byte values, resulting in eight bytes. The first value is the magnitude data, and the second
value is the phase data.

DATA

File Offset = (4 * (# Channels)) bytes
Length = (4*(# Channels) * (# Sample Points per Channel)) bytes
Sample Group (SG) = (4 * (# Channels)) bytes

Notes: Each data point is a four-byte single-precision floating point value (Intel 80x87
format, IEEE 754-1985).

Each sample group repeats once for each data point of every channel of every frame.
No frame markers are inserted.

Time channel values (if written) are accumulated across frame boundaries.

Byte Bit Range Description Assignment

0 to 4 (all) first channel's floating point
value

Range: -1.7e38 to +1.7e38 with
minimum precision of 1.7e-38

24-bit floating precision

(SG-5) to
(SG-1)

(all) last channel's floating point
value

Range: -1.7e38 to +1.7e38 with
minimum precision of 1.7e-38

24-bit floating precision

