
openBliSSART

User Manual

Felix Weninger1

TU München
Alexander Lehmann2

TU München
Björn Schuller3

TU München

Version 1.2, May 2010

1weninger@tum.de
2lehmanna@in.tum.de
3schuller@tum.de



2



Contents

1 Overview 5

2 Tutorial 7
2.1 Basic Source Separation . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Separation with the Browser . . . . . . . . . . . . . . 7
2.1.2 Manual Component Mixing . . . . . . . . . . . . . . . 10
2.1.3 Command Line Separation . . . . . . . . . . . . . . . 11

2.2 Supervised Component Classification . . . . . . . . . . . . . . 12
2.2.1 Importing Audio Files . . . . . . . . . . . . . . . . . . 12
2.2.2 Defining Classes . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Defining a Response . . . . . . . . . . . . . . . . . . . 17
2.2.5 Cross-Validation . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Using a Response for Blind Source Separation . . . . . 19

3 openBliSSART Internals 21
3.1 Data Organization . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Database entities . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Storage of binary files . . . . . . . . . . . . . . . . . . 25

3.2 Source separation by NMF . . . . . . . . . . . . . . . . . . . 25
3.2.1 Basic NMF Algorithms . . . . . . . . . . . . . . . . . 26
3.2.2 Initialization and Termination . . . . . . . . . . . . . 28
3.2.3 Supervised Component Classification . . . . . . . . . . 28
3.2.4 Source Separation by Supervised NMF . . . . . . . . . 29
3.2.5 Sparse NMF . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.6 Convolutive NMF . . . . . . . . . . . . . . . . . . . . 30

3.3 Source Separation by ICA . . . . . . . . . . . . . . . . . . . . 32

4 Toolbox 35
4.1 Separation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Audio Preprocessing . . . . . . . . . . . . . . . . . . . 36
4.1.3 Transformation . . . . . . . . . . . . . . . . . . . . . . 36

3



4 CONTENTS

4.1.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 Component Processing . . . . . . . . . . . . . . . . . . 38
4.1.6 Usage Examples . . . . . . . . . . . . . . . . . . . . . 38
4.1.7 Multithreading vs. Multiple Processes . . . . . . . . . 39

4.2 Feature Extraction Tool . . . . . . . . . . . . . . . . . . . . . 39
4.3 Cross-Validation Tool . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Usage Examples . . . . . . . . . . . . . . . . . . . . . 41
4.4 Export Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Usage Example . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Audio Export Tool . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Cleanup Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.1 Typical Workflow . . . . . . . . . . . . . . . . . . . . . 44
4.7.2 Import of Audio Files . . . . . . . . . . . . . . . . . . 44
4.7.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . 45
4.7.4 Label Creation . . . . . . . . . . . . . . . . . . . . . . 46
4.7.5 Assignment of Labels to Classification Objects . . . . 46
4.7.6 Response Creation . . . . . . . . . . . . . . . . . . . . 47
4.7.7 Adding Classification Objects to Responses . . . . . . 47
4.7.8 Exporting Selected Objects . . . . . . . . . . . . . . . 48
4.7.9 Browser Preferences . . . . . . . . . . . . . . . . . . . 49

4.8 ICA Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8.1 Usage Examples . . . . . . . . . . . . . . . . . . . . . 50

4.9 Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9.1 Global Options . . . . . . . . . . . . . . . . . . . . . . 51
4.9.2 Audio Preprocessing . . . . . . . . . . . . . . . . . . . 52
4.9.3 Transformation . . . . . . . . . . . . . . . . . . . . . . 52
4.9.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . 53
4.9.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . 54
4.9.6 Classification . . . . . . . . . . . . . . . . . . . . . . . 56
4.9.7 Browser . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Chapter 1

Overview

openBliSSART is a framework and toolbox for Blind Source Separation for
Audio Recognition Tasks. Main features include

• Component separation using non-negative matrix factorization (NMF)
[1, 2, 3] and non-negative matrix deconvolution (NMD) [4]

• Component classification:

– Feature extraction from components

– Creation of response variables assigning audio components to
classes

– Assembly of audio files for different classes, such as in drum beat
separation [5]

• Supervised and unsupervised NMF feature extraction

• Data export (ARFF [6] and HTK [7] formats)

In many places in this document and the applications, NMF and NMD
are used as synonyms. The reason is that mathematically NMF is a special
case of NMD.

The remainder of this manual is divided into three chapters. Chapter 2
provides a brief introductory tutorial on how to use openBliSSART for typi-
cal blind source separation tasks. Chapter 3 explains the data storage archi-
tecture and algorithmic concepts of openBliSSART in detail. The manual
is concluded by a detailed description of the openBliSSART toolbox, its
command line parameters and configuration options in Chapter 4.

For detailed information about how to use the classes in the
openBliSSART framework, please consult the HTML or LaTeX documen-
tation in the doc directory of the openBliSSART source distribution, which
can be created using the doxygen utility.
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Chapter 2

Tutorial

This tutorial provides a brief introduction to the main features of
openBliSSART. First, we will describe basic source separation that results
in an audio file for each component. Second, we will move towards super-
vised component classification using a data set, separating audio files into
signals corresponding to classes, like music and speech.

2.1 Basic Source Separation

In this section, we will explain the basic steps needed for non-negative matrix
factorization (NMF)-based source separation. You will need some music files,
preferably short segments (≈ 10 s) in WAV format. A good choice is to use
the WAV files from the demo/wav directory in the openBliSSART source
distribution, for example. Upon completion of this section, you will be able
to extract and listen to the components generated by NMF, and synthesize
WAV files for them.

In the first step, we will use the “Browser” GUI application which can
be found in the bin directory of the openBliSSART installation tree.

Upon starting the browser, you will notice a tree view on the left hand
side which at the first start contains only four entries (nodes), namely “Clas-
sification objects”, “Labels”, “Processes” and “Responses”. For the purpose
of this section, only the “Classification objects” will be relevant.

The right hand side of the browser window is used to display and edit
the objects you have selected in the tree view.

2.1.1 Separation with the Browser

Probably the easiest way to use NMF is via the “Import audio” dialog of
the Browser which can be accessed using the corresponding button on the
bottom of the left side panel.

7



8 CHAPTER 2. TUTORIAL

Figure 2.1: “Import audio” dialog

Click “Add files”, then select an audio file from the demo/wav folder of the
openBliSSART source distribution. For once, use the parameters as shown
in Figure 2.1. A progress window as shown in Figure 2.3 should appear. The
separation process can take several seconds, depending on your hardware.

Figure 2.2: Progress display when importing audio

Once the separation process has finished, several items under the “Classifi-
cation objects” node in the browser tree view should have been generated.
Click one of them, and it will be synthesized into an audio signal which you
can play back using the buttons in the right part of the window.
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Figure 2.3: Component playback in the browser

You can also export the components as audio signals in the WAV format.
To this end, select all of the components (click the first, then Shift-click the
last), right-click, and a context menu as in Figure 2.4 will appear.

Figure 2.4: Exporting components as WAV files

Select the “Export selected objects as WAV” item, and in the appearing
dialog choose a directory where you want to create the WAV files.
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The next step of this tutorial will show how you can mix these compo-
nents together using the free audio editor Audacity, and manually subtract
some components. You can skip this part if you do not have, and do not
want to install Audacity, and move to the “Command line separation” sec-
tion below.

2.1.2 Manual Component Mixing

Start Audacity, and select “Import audio” from the “Project” menu. Select
all of the WAV files that you exported from the Browser in the previous
step. The 20 components should appear as signals below each other in the
Audacity window, as shown in Figure 2.5.

Figure 2.5: Mixing components in Audacity

First, listen to the mix of all components. Depending on the type of
music, there are probably hearable artefacts, resulting from the information
reduction performed by NMF for separation.

By using the “Mute” and “Solo” buttons, you can mute some of the com-
ponents, or mute all other components, respectively. Try to identify com-
ponents which represent drum sounds using the “Solo” button. Normally,
this is quite easy as they show a high degree of periodicity. Now mute the
identified drum components, and listen to the result.
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2.1.3 Command Line Separation

An alternative to the browser is the septool (Separation Tool) command
line application, which is more flexible, and has more separation features
than the browser. The separation process that you performed using the
“Import audio” dialog can be realized with septool as follows. Open a com-
mand line window, change to the bin directory within the openBliSSART
installation directory, and type

septool <file.wav>

The default options correspond to the parameters shown in Figure 2.1.
After executing this command, open the browser again. There should now
be 40 Classification Objects listed (20 from the recent septool process, and
20 from the previous separation using the browser). Note that if you left the
browser open while running the septool, you have to refresh the view using
the F5 key.

The septool also has the feature to directly save the separated com-
ponents as WAV files. Open a command line window, change to the
openBliSSART installation directory, and type

septool -v -p <file.wav>

The -v option tells the tool not to write to the database (hence the
components will not be visible in the browser), and the -p option causes
the components to be exported as WAV files. Change to the directory where
your input WAV file resides. There should now be files named file 00.wav,
. . . , file 19.wav corresponding to the 20 components. You can use them
for the mixing process as described above.

As an exercise, you can repeat the separation and mixing procedure
using different parameters. For once, try the “Squared Euclidean distance”
cost function that is available in the “Import audio dialog” (instead of the
default “Extended KL divergence”). You can also choose other values for
window size, overlap, window function, etc.

The above septool command can be adjusted to select squared Eu-
clidean distance as cost function, and to use a window size of 40 ms with the
following options:

septool --cost-function=ed -s40 -v -p <file.wav>

You can also try different numbers of components (in the “Input audio”
dialog of the browser as well using the -c<number> option of the septool).
Congratulations, you have finished the first part of
openBliSSART’s tutorial!
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2.2 Supervised Component Classification

In this section, we will consider supervised component classification. This
is basically the procedure you did above, but instead of manually mixing
the tracks, a classifier is used that assigns each component automatically.
This is exactly what the openBliSSART demonstrator for drum beat sepa-
ration does – check it out (in the demo subdirectory of the openBliSSART
distribution) if you have not yet done so!

In this tutorial, instead of drum beat separation, we will now use the sce-
nario of speech and music discrimination, assuming that you have recordings
available that correspond to each of these classes.

In the first step, we will create a data set containing components from
speech and music signals. For this purpose, we will again use the “Browser”
GUI. Upon completion of this section, you will know what the background
of the “Labels” and “Responses” is, and where “Classification objects” got
their name.

2.2.1 Importing Audio Files

To start with, we will now import audio files and separate them into com-
ponents using NMF.

Simply click the “Import audio” button in the lower left corner of the
browser window so that the corresponding “Import audio” dialog (figure
2.6) appears.
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Figure 2.6: “Import audio” dialog

Ensure that the parameters on the right hand side are set exactly as
in figure 2.6 and select some audio files (WAV or MP3) containing music,
preferably around 10-20 seconds long. Then click “Ok” and wait for the
process to finish. Depending on the number and length of your audio files,
this process may take several minutes as it is computationally intensive.
In order to increase performance on multicore systems, you can adapt the
“Number of threads” settings to reflect the number of available cores before
actually starting the process.

Once the process has completed, you can expand the “Classification
objects” node in the tree view so as to examine the entries reflecting
the separated components. The second column states that they are still
“Unlabeled” – we will take care of that in the next step.

However, at first please repeat the above procedure while this time select-
ing audio files containing speech. Make sure to remember how many audio
files of each class (speech and music) you have imported as this will simplify
the next step.
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2.2.2 Defining Classes

Having imported the neccessary audio files, we will now define the two classes
“Speech” and “Music” by creating two corresponding labels. Click the “Cre-
ate label” button in the lower left corner of the browser window. A new label
entry will be inserted under the “Labels” node of the tree view with its text
defaulting to the current date and time. Use the textfield on the right hand
side to change the text to something more meaningful (like “Music”), then
hit the “Save” button. Repeat this step for the “Speech” label. The “Labels”
node should now look like in figure 2.7.

Figure 2.7: Two defined labels

Next, we assign these labels to the separated components which we just
have created. Try and select a component in the tree view, and a preview as
well as a list of our labels will then appear on the right hand side (see figure
2.8).

Figure 2.8: View of a classification object (NMF component)
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Should you want to listen to the selected component, for example to
inspect the results of the NMF procedure, make sure that the “Preview”
checkbox is enabled. Once the preview is available, you can listen to the
component, move around, and zoom in and out within the respective signal
data by using the corresponding buttons inside the preview area.

While it is possible to assign labels to each component individually us-
ing the checkboxes on the right hand side, for our scenario it is much more
convenient to select all components that were created from music files (re-
member how many it were?), then right-click to open the context menu and
use the “Select label(s)” item (see figure 2.9).

Figure 2.9: Activating the context menu for components
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A dialog will appear that allows to add one or more labels to all
selected components at the same time. Select “Music” and click “Ok”,
then wait for the operation to finish. Upon completion, all selected
components should show the label “Music” instead of “Unlabeled” in the
second column. By the way, you can always refresh the tree view by either
pressing F5 or selecting “Refresh view” from the application’s “View” menu.

Repeat the above procedure for the remaining components, yet this time
assign the label “Speech”.

2.2.3 Feature Extraction

The next step towards creating a data set is to extract features from
the created components. Again, this is very simple: Just select “Extract
features from all data descriptors” from the application’s “Database”
menu. Another dialog will appear, prompting you for the number of
feature extraction tasks to start. Remember that if you have a multicore
system, you might want to set this number to the number of cores for max-
imum performance, but usually feature extraction is done quite fast anyway.

After the feature extraction has completed, expand one of the classifica-
tion object nodes and in turn also the “Data descriptors” node inside. Three
entries will appear: “Gains”, “Phase Matrix” and “Spectrum”. The phase
matrix is only used for conversion of components to wave files, features are
extracted from either one of the other two elements. Open the nodes “Gains”
or “Spectrum”. A list of features with values will be displayed (see figure
2.10). The numbers inside the parentheses are feature parameters (such as
the MFCC index). The meanings of the features are discussed in [8].
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Figure 2.10: Feature subtree of a classification object

2.2.4 Defining a Response

Eventually we will have to feed the extracted features to a support vector
machine (SVM). To this end, we create a response variable from all compo-
nents we have in the database.

Click the “Create response” button in the lower left corner of the browser
window. A response entry will be created under the “Responses” node of
the tree view. Like it was the case for labels, the name of the new response
defaults to the current date and time. Use the textfield on the right hand
side to change it into something more meaningful, like for example “Speech
vs. music” (see igure 2.11).

Then click the “Add CLOs by label” button and select both labels (“Mu-
sic” and “Speech”) in the corresponding dialog. After clicking “Ok”, your
response should look like in figure 2.11.
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Figure 2.11: Editing a response

2.2.5 Cross-Validation

To assess the quality of the response we have just defined, we might perform
a stratified 10-fold cross validation. Currently this function is not accessible
from the browser, but is available through a separate tool (cvtool).

Open a shell (or Windows command prompt), change to the bin direc-
tory of the openBliSSART installation tree and type

cvtool -r1
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assuming the response has the ID 1, which is the case if it is the first response
you created – otherwise, check the number appearing before the respective
response’s name in the tree view.
The cross-validation tool should output something like this:

Validated 320 samples with 10-fold cross validation.

Confusion matrix

predicted

real Music Speech

Music 179 1

Speech 0 140

Accuracy = 0.996875

Recalls:

Music 0.994444

Speech 1

Mean recall: 0.997222

2.2.6 Using a Response for Blind Source Separation

Finally, we are now able to separate audio files into their music and speech
parts by means of the response that we have created.

For this purpose, we also use a command-line tool (septool). We want
the separation tool to perform NMF into 20 components using a window size
of 60 ms, then classify the components by a support vector machine trained
on the response we have defined in the previous steps, and eventually create
audio files by summing up all components for each class and transforming
them back into the time domain, i.e. re-synthesizing the results into an
appropriate number of files depending on the number of distinct classes
that the given response uses. Thus the command line for an arbitrary input
file file.wav is as follows:

septool -c20 -s60 -l1 -v file.wav

Again, it is assumed that our response has ID 1. The -v (“volatile”)
option has been added here because we do not want to store additional
components from the given input file file.wav into the database.

The result of this procedure will be two wave files, namely
file Speech.wav and file Music.wav. Of course, you can replace
file.wav by any suitable WAV or MP3 file. Try mixing speech and music
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together and then separating them using the separation tool like described
above.

Congratulations, you have just finished openBliSSART’s introduc-
tory tutorial. For an in-depth discussion of openBliSSART’s fea-
tures and toolbox, move on to the next sections.



Chapter 3

openBliSSART Internals

3.1 Data Organization

openBliSSART’s data storage consists of a SQLite database [9] (in the db

directory of the installation tree) in conjunction with an archive of binary
files (in the storage directory). The database stores information about the
available objects (such as components generated by the NMF), their features
and class labels, while the object data itself is externalized to binary files.

Generally1, when processing audio files, e.g. by FFT and/or NMF,
openBliSSART saves information about the separation process, such as the
name of the input file, the number of components, the STFT parameters
etc. in a respective process entity. Furthermore, the computed objects (such
as NMF components) are saved as classification objects. Each classification
object consists of one or more data descriptors which describe data like
spectral vectors or phase matrices.

Classification Objects openBliSSART currently creates and handles the
following types of classification objects:

NMD component generated by applying STFT and NMD or
NMF to an audio file

Spectrogram generated by applying STFT to an audio file

Data Descriptors The following types of data descriptors are used:

1The separation process can also be run in a “volatile” mode that does not store
anything. This is useful for example if the result of a NMF separation should be output
as WAV files. See section 4.1 for details.

21
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Magnitude matrix the magnitude spectrogram of an audio file
Phase matrix the phase spectrogram of an audio file
Spectrum a magnitude spectrum, generated by NMF or

NMD from an audio file; a vector in case of
NMF, or a matrix in case of NMD

Gains a gains vector, generated by NMF or NMD
from an audio file

Note that it is perfectly valid for a data descriptor to occur in relation to
more than one classification object. For example, each classification object
generated by a NMF process contains a reference to the phase matrix of the
original signal so as to be able to re-synthesize wave files from one or more
components. The phase matrix, however, is stored only once.

Each data descriptor is associated with a separation process with a
unique ID. These IDs can for instance be found out by looking at the pro-
cess listing in the browser application, and are needed for component feature
extraction as well as data export.

Features, Responses and Labels Data descriptors relate to features
which are used during classification. A response assigns classification objects
to labels. Classification is done using features from the data descriptors that
make up the classification objects in the response.

The browser (4.7) can be used to conveniently explore the database struc-
ture.

3.1.1 Database entities

A graphical overview over database entities and their relations (entity-
relationship diagram) is given by figure 3.1.
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Figure 3.1: Entity-relationship diagram of our database scheme

Processes A process creates objects by processing an audio file. It has the
following attributes:

• Process ID

• Name

• Input file name

• Sample frequency of the input file

• Time at which the process was started

Furthermore, each process can have an arbitrary number of named param-
eters, where the parameter value can be of any data type.

Data descriptors A data descriptor contains information (“meta-data”)
about a data object, such as a vector or a matrix, which is stored as a file.
The data descriptor entity has the following attributes:
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• Data descriptor ID

• ID of the process that created the data object

• Type annotation, in our system one of “Gains vector”, “Spectral vec-
tor” or “Phase matrix”

• Index (in our NMF case, the component index for gains and spectral
vectors, zero for phase matrices)

• Data availability flag. Functions that need the binary data ignore data
descriptors whose data availability flag is false. This makes it possible
to migrate the database to another computer without copying all the
externalized binary data, in a consistent way.

Besides the data descriptor ID, the triple (process ID, type annotation,
index) uniquely identifies a data descriptor.

Classification objects A classification object consists of several data ob-
jects described by data descriptors. For example, in our application, we want
to classify components generated by a NMF process, which consist of a gains
vector and a spectral vector.

A classification object has a unique ID and a type annotation (in our
case, the only possible annotation is “NMF component”); and furthermore,
a list of IDs of data descriptors that make up the classification object.

Finally, for each classification object a preselection of possible class labels
is stored. For example, a drum component could be labelled with “Drum”
or, more specifically, with “Snare drum”.

Classification objects are subject to the following constraints:

• All data descriptors that make up the object must be created by the
same process.

• Every type of data descriptor (determined by the “type annotation”
attribute) may occur at most once.

Features A feature is a named value assigned to a data object, for exam-
ple, a cepstral coefficient of a spectral vector. Thus, the following attributes
are required:

• ID of the data descriptor describing the data object

• Feature name (e.g. “MFCC”)

• Feature parameter (e.g. the coefficient index in the MFCC case)

• Feature value

Every feature of a data object can be uniquely identified by feature name
and parameter.
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Labels A label is a textual class label that can be assigned to classification
objects. In our case, we could define the labels “Drum”, “Harmonic” or more
specific labels like “Guitar” or “Snare drum”.

Responses A response is an assignment of classification objects to labels.
Additionally, every response has a response ID, a name (e.g. “Drum vs.
Harmonic”) and a textual description.

3.1.2 Storage of binary files

Binary files corresponding to data objects, i. e. vectors and matrices, are
stored in a directory layout such that the file name can be uniquely deter-
mined by the attributes of the corresponding data descriptor.

All multi-byte values are saved in little-endian order.
Our binary file format for vectors consists of the following elements:

• Orientation header (0 = row vector, 1 = column vector) (as 32 bit
unsigned int)

• Vector dimension (32 bit unsigned int)

• Array of components (64 bit double)

Our binary file format for matrices consists of the following elements:

• Matrix header = 2 (as 32 bit unsigned int)

• Number of rows (32 bit unsigned int)

• Number of columns (32 bit unsigned int)

• Array of matrix entries (64 bit double) in column-major order, i.e.
entry ai,j of a matrix with m rows is stored at position j ∗m+ i

3.2 Source separation by NMF

Non-Negative Matrix Factorization (NMF) is an algorithm originally pro-
posed for image decomposition [1]. As a method of information reduction,
its most promiment feature is the usage of non-negativity constraints: unlike
other methods such as Principal Components Analysis, it achieves a parts-
based representation where only additive – never subtractive – combinations
of the Given a matrix V ∈ Rm×n

+ and a constant r ∈ N, non-negative matrix
factorization (NMF) computes two matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ ,

such that
V ≈WH (3.1)
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openBliSSART applies NMF in the frequency domain, by factorizing
magnitude spectrogram matrices obtained by short-time Fourier transforma-
tion (STFT). Thereby the signal is split into overlapping frames of constant
size. In speech processing, it is common to use a frame size of 25 ms and an
overlap of 60 %, corresponding to a frame rate of 10 ms. Each frame is multi-
plied by a window function and transformed to the frequency domain using
Discrete Fourier Transformation (DFT), with transformation size equal to
the number of samples in each frame.

First, openBliSSART provides the Hamming function for windowing

h(k) = 0.54− 0.46 cos

(
2πk

T − 1

)
(3.2)

where T is the frame size and k ∈ {0, . . . , T}.
Other window functions are the Hann(ing) function:

h(k) = 0.5− 0.5 cos

(
2πk

T − 1

)
(3.3)

and its square root, which can be used for reducing artefacts resulting
from the transformation.

Only the magnitudes of the DFT coefficients are retained, and the frame
spectra are put in the columns of a matrix. Denoting the number of frames by
n and the frame size by T , and considering the symmetry of the coefficients,
this yields a (bT/2c+ 1)× n real matrix.

The crucial idea behind NMF-based blind source separation is to as-
sume a linear signal model. Note that Eq. 3.1 can be written as follows (the
subscripts :, t and :, j denotes the tth and jth matrix columns, respectively):

V:,t ≈
r∑

j=1

Hj,tW:,j , 1 ≤ t ≤ n (3.4)

Thus, if V is the magnitude spectrogram of a signal (with short-time
spectra in columns), the factorization from Eq. 3.1 represents each short-
time spectrum V:,t as a linear combination of spectral basis vectors W:,j

with non-negative coefficients Hj,t (1 ≤ j ≤ r).
When there is no prior knowledge about the number of spectra that can

describe the source signal, the number of components r has to be chosen
empirically, depending on the application.

3.2.1 Basic NMF Algorithms

A factorization according to Eq. 3.1 is usually achieved by iterative mini-
mization of a cost function c(W,H):

(W,H) = arg min
W,H

c(W,H) (3.5)
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In fact, many variants of NMF only differ by their choice of a particular
cost function. The core of these functions is a measurement of the reconstruc-
tion error between the original matrix and the product of the NMF factors.
Thus, a basic cost function is the squared Euclidean distance between V
and WH:

ce(W,H) = ||V −WH||F =

n∑
i=1

m∑
j=1

(V −WH)2i,j , (3.6)

where ||.||F denotes the Frobenius norm.
Another cost function consists of a modified version of Kullback-Leibler

(KL) divergence:

cd(W,H) =
m∑
i=1

n∑
t=1

(
Vi,t log

Vi,t

(WH)i,t
− (V −WH)i,t

)
(3.7)

For minimization of either cost function, openBliSSART implements the
two algorithms by Lee and Seung [3], which iteratively modify W and H
using ‘multiplicative update’ rules. It can be shown that ce is non-increasing
under the update rules

Hj,t ← Hj,t
(WTV)j,t

((WTW)H)j,t
j = 1, . . . , r; t = 1, . . . , n (3.8)

Wi,j ←Wi,j
(VHT )i,j

(W(HHT ))i,j
i = 1, . . . ,m; j = 1, . . . , r (3.9)

and that cd is non-increasing under the update rules

Hj,t ← Hj,t
(WT (V./WH))j,t

(WT1)j,t
j = 1, . . . , r; t = 1, . . . , n (3.10)

Wi,j ←Wi,j
((V./(WH))HT )i,j

(1HT )i,j
i = 1, . . . ,m; j = 1, . . . , r. (3.11)

where 1 is an all-unity matrix and ./ indicates elementwise division. The
above matrix formulation has been shown to yield better performance than
the scalar product formulations in [3] when using fast implementations of
matrix multiplication, as openBliSSART does.

Thereby the denominators are floored to a very small positive constant
(such as 10−10) to avoid divisions by zero. Note that these rules are applied
alternatingly, with each W update using the new value of H that was cal-
culated in the previous H update and vice versa. Note that the order of
calculation, indicated by the parentheses in Eq. 3.8 and Eq. 3.9 can have a
great effect on performance due to the different matrix dimensions.
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3.2.2 Initialization and Termination

For conventional, i. e. unsupervised NMF, W and H can be initialized with
the absolute values of random numbers drawn from a Gaussian distribution
with µ = 0 and σ = 1, or from a uniform distribution on the interval ]0, 1].

openBliSSART uses the following stopping criterion for NMF:

||Wq+1Hq+1 −WqHq||F
||WqHq||F

< ζ, (3.12)

with Wq and Hq denoting the values of W and H at iteration q, respectively,
and ζ being a small constant. However, evaluation of the criterion 3.12 is
costly, as the matrix product WH has to be computed, and the previous
values of W and H (or the previous value of their product) have to be
stored. Thus, to reduce computational cost, it is preferred to perform a
fixed number of iterations. Experience shows that 100–200 iterations ensure
a small reconstruction error which is not significantly reduced by further
iterations.

3.2.3 Supervised Component Classification

In scenarios like speaker separation or drum accompaniment reduction,
sources (speakers, drums) can often not be modelled by a single spectrum.
NMF-based approaches in this area thus have to use a number r of compo-
nents which is larger than the number of sources. Consequently, an assign-
ment of the components to sources has to be made.

For the following discussion, we formally define the jth component of
the signal to be the pair (wj ,hj) of a spectrum wj := W:,j along with its
time-varying gains hj := Hj,: (the subscript j, : denotes the jth matrix row).

openBliSSART uses the following approach to decide which components
belong to which source. First, a Support Vector Machine (SVM) classifier
is trained from the features in a response variable according to Section 3.1.
After classification, a magnitude spectrogram Vsi for each source si can be
computed: let

Jsi = {j : (wj ,hj) assigned to si} (3.13)

be the set of indices of components assigned to source si. Then,

Vsi =
∑
j∈Jsi

wjhj . (3.14)

Vsi is transferred back to the time domain using a column-wise inverse
IDFT, using the phase matrix from the original signal. Finally, time signals
for each source are obtained by adding up the time frames respecting their
overlap. Multiplication of the time frames with the square root of the Hann
function can reduce the artifacts resulting from the transformation [5].
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3.2.4 Source Separation by Supervised NMF

Supervised NMF means that Thereby W is set to a predefined matrix where
each column contains a spectrum corresponding to one of the sources. For ex-
ample, in speaker separation these spectra can be computed from phonemes
uttered by a certain speaker [10].

Then W is kept constant throughout the iteration whereas H is ini-
tialized randomly and updated iteratively. Time signals for each source can
be obtained using the procedure which was mentioned above, setting Jsi
(Eq. 3.13) to the indices of columns of W that were initialized with spectra
from source si. This paradigm has led to notable results in speech denoising
[11, 12] and speaker spearation [10, 13].

3.2.5 Sparse NMF

The aforementioned cost functions measure the reconstruction error cr. How-
ever, for overcomplete bases (i. e. r > m,n) sparse NMF [14, 15, 16, 10, 17]
can be valuable, whereby a term is added that increases the value of the cost
function for each non-zero entry in H, hence ‘dense’ matrices are penalized.
The resulting cost function c(W,H) is

c(W,H) = cr(W,H) + λcs(H) (3.15)

where cr(W,H) can – for example – be set to squared Euclidean distance
(Eq. 3.6) or modified KL divergence (Eq. 3.7).

First, openBliSSART supports a straightforward approach introduced
by [17]:

cs(H) =

r∑
j=1

1

σj

n∑
t=1

Hj,t (3.16)

To prevent the scaling from affecting the value of the cost function,
it normalizes the activations of each component j, e. g. by their standard
deviation estimates σj [17]. The multiplicative update rules for H minimizing
the cost function 3.15 are derived as follows.

The gradient of the cost function is written as a subtraction∇c(W,H) =
∇c+(W,H)−∇c−(W,H) of element-wise nonnegative terms∇c+(W,H) =
∇c+r (W,H) + λ∇c+s (H) and ∇c−(W,H) = ∇c−r (W,H) + λ∇c−s (H). For
Euclidean distance, we have

∇c+r (W,H) = WTWH (3.17)

and
∇c−r (W,H) = WTV (3.18)

For KL divergence, we have:

∇c+r (W,H) = WT1 (3.19)



30 CHAPTER 3. OPENBLISSART INTERNALS

and
∇c−r (W,H) = WT (V./.(WH)) (3.20)

For the sparseness term, we have:

[∇c+s (H)]j,t =
1/
√
n√∑n

k=1 H2
j,k

(3.21)

and

[∇c−s (H)]j,t = Hj,t

√
n
∑n

k=1 Hj,k

(
∑n

k=1 H2
j,k)3/2

(3.22)

The final multiplicative update rule is:

Hj,t ← Hj,t
∇−c (W,H)

∇+
c (W,H)

(3.23)

As a second approach to sparse NMF, openBliSSART implements the
algorithm from [16] which is based on a cost function resembling Euclidean
distance with a column-wise normalized W matrix. openBliSSART refor-
mulates the multiplicative update rules for enhanced performance:

Hj,t ← Hj,t
(WTV)j,t

((WTW)H)j,t + λ
(3.24)

where λ is the sparseness weight, and

Wi,j ←Wi,j
(VHT )i,j + ((HHT )(WTW))j,jŴi,j

(W(HHT ))i,j + (HVTW)j,jŴi,j

(3.25)

where Ŵ is the column-wise normalized matrix W (Euclidean norm).

3.2.6 Convolutive NMF

Convolutive variants of NMF consider spectra that evolve over time. In other
words, the acoustic events that build the signal are no longer instantaneous,
but rather sequences of observations. In speech processing, these sequences
can correspond to phonemes [18] or even whole words [4].

First, openBliSSART supports Non-Negative Matrix Deconvolution,
which is based on a convolutive signal model:

V ≈ Λ =

P−1∑
p=0

W(p)
→p

H (3.26)

where W(p), p ∈ {0, . . . , P − 1} is a set of P matrices and
→p

(·) is a matrix
operator that shifts the columns of its argument by p spots to the right, filling
the leftmost p columns with zeros. Analogously to Eq. 3.4, this equation can
be rewritten as
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V:,t ≈
r∑

j=1

min{P−1,t}∑
p=0

Hj,t−pW(p):,j , 1 ≤ t ≤ n (3.27)

where again r is the number of components and n is the number of columns
of V, n ≥ P . (Note that the inner sum now resembles a convolution.)

It is straightforward to extend the cost functions ce (Euclidean distance,
Eq. 3.6) and cd (modified KL divergence, Eq. 3.7) to the convolutive signal
model:

c′e = ||V −Λ||F =

n∑
i=1

m∑
j=1

(V −Λ)2i,j (3.28)

c′d =
m∑
i=1

n∑
t=1

(
Vi,t log

Vi,t

Λi,t
− (V −Λ)i,t

)
(3.29)

A multiplicative update algorithm can be derived for either cost function
[4, 19]. Note that there are now P +1 updates in each iteration: one for each
matrix W(p), p = 0, . . . , P − 1 and one for H. In detail, the update rules for
minimization of c′e (Eq. 3.28) are given by

W(p)i,j ←W(p)i,j
(V(

p→
H )T )i,j

(Λ(
p→
H )T )i,j

i = 1, . . . ,m; j = 1, . . . , r (3.30)

Hj,t ← Hj,t
1

P

P−1∑
p=0

(W(p)T
←p

V )j,t

(W(p)T
←p

Λ )j,t

j = 1, . . . , r; t = 1, . . . , n (3.31)

while c′d (Eq. 3.29) is minimized by

W(p)i,j ←W(p)i,j

∑n
t=1(

p→
H )j,tṼi,t∑n

t=1(
p→
H )j,t

i = 1, . . . ,m; j = 1, . . . , r (3.32)

Hj,t ← Hj,t
1

P

P−1∑
p=0

∑m
i=1 W(p)i,j(

←p

Ṽ )i,t∑m
i=1 W(p)i,j

j = 1, . . . , r; t = 1, . . . , n.

(3.33)

Thereby Ṽ is the element-wise division of V and Λ, and the
←p

(·) operator
shifts the columns of its argument by p spots to the left, introducing zeros
in the rightmost p columns. Furthermore the denominators are floored to a
very small positive constant (such as 10−10) to avoid divisions by zero.
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Notice that the update rules for H were both obtained by first deriving
an H update rule that takes into account only one W(p), then taking the
average of these updates for all p ∈ {0, . . . , P − 1}.

The value of the approximation Λ must be updated after execution of
each update rule, but openBliSSART reduces the computational cost for
this step by the formulation introduced in [19]:

Λ← Λ− Ŵ(p)
p→
H + W(p)

p→
H (3.34)

after update of each W(p), where Ŵ(p) denotes the value of W(p) before
the update.

NMF can be regarded as a special case of NMD: by setting P = 1, the
convolutive signal model as well as the NMD update rules reduce to the
linear signal model and NMF update rules, respectively.

Besides NMD, a ‘sliding window’ NMF variant [20] is supported by

openBliSSART. Here, simply a matrix V′ ∈ Rm×(Tn)
+ is created from V by

concatenating T subsequent columns of V into one column of the larger ma-
trix V′. Compared to NMD, this method has the advantage that no special
update rules are needed, hence any algorithm for NMF can be immediately
exploited.

3.3 Source Separation by ICA

ICA approaches the problem of blind source separation based on the as-
sumption that observed signals can be regarded as linear combinations of
independent sources. Hence, the basic ICA model can be expressed in matrix
notation as

X = A · S (3.35)

where X denotes the observed signals, A is considered as the mixing-matrix
and the S contains the signal sources.
Since both A and S are unknown, ICA provides a solution by considering
the signals as independent random variables and, consequently, the values
of the signals at time t as random samples of these variables.

ICA makes use of the Central Limit Theorem in terms of assuming that
due to the fact that X is a linear combination of the sources, X eventually
has a more Gaussian distribution than the original random variables in S.
Vice versa, A−1 has to be determined such that it maximizes the non-
gaussianity of the original random variables in S in order to retrieve the
independent source signals.

The FastICA algorithm implemented by openBliSSART [21] constitutes
a good compromise between the properties of both kurtosis and negentropy.
It uses a fast fixed-point algorithm for the following cost function:

C(x) =
1

a
log cosh(a ·wTx)
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where a is a real constant within [1, 2] and w is the current weight-vector
which maximizes projected data’s non-gaussianity and hence is constantly
updated throughout the FastICA iterations.
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Chapter 4

Toolbox

4.1 Separation Tool

The separation tool (septool) is the central command-line application of
openBliSSART. It takes one or more audio files and separates them into
components by using non-negative matrix factorization. Components can
be stored and/or classified using an existing response variable.
In the former case, each component is saved to the database as classification
object. Also, the parameters of the separation process are saved.
In the case of classification, an audio file is generated for each class.

An arbitrary number of files to be processed (≥ 1) can be given as
arguments. WAV, OGG, and FLAC formats are supported.1 Furthermore,
the process can be controlled via a variety of parameters, are listed below.

4.1.1 General

• -h, --help – display information about command line parameters and
exit.

• -A, --echo – print the base name of the application binary and its
named command line options in long format, with their parameters if
given, before executing.

• -C, --config=<filename> – use the specified configuration file (prop-
erties format) instead of the default one. See section 4.9 for details.

• -n<number>, --num-threads=<number> – the number of concurrent
threads to use for separation and classification. Should be set to the
number of CPUs (cores) present in the computer for maximum per-
formance.

1Generally speaking, all audio file formats supported by the SDL sound library can be
read.

35
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• -S, --scripted – run in “scripted” mode, i.e. assume that the input
files contain file names of audio files separated by newlines. This op-
tion can be useful if lots of files should be processed, and to ensure
compatibility with systems that limit the number of command-line
options.

4.1.2 Audio Preprocessing

Transformation options given on the command line override the correspond-
ing configuration options (see 4.9.2).

• -r<function>, --reduce-mids – subtract right from left channel
when converting from a stereo to a mono signal.

• -k<k>, --preemphasis=<k> – preemphasizes the signal with a factor
of k such that for all t > 0, s′t = st − kst−1, where st and s′t are the
sample values at position t in the original and preemphasized signal,
respectively.

• -d, --remove-dc – subtracts the mean (DC component) from each
frame before transformation.

4.1.3 Transformation

Transformation options given on the command line override the correspond-
ing configuration options (see 4.9.3).

• -w<function>, --window-function=<function> – the window func-
tion to use in short-time Fourier transformation. Must be one of
“hann” (Hann function), “sqhann” (Square root of the Hann function),
“hamming” (Hamming function) or “rectangle” (rectangle function).
The default is “sqhann”.

• -o<overlap>, --overlap=<overlap> – overlap of windows, given as
a number from the interval [0,1). The default is 0.5.

• -s<size>, --windowSize=<size> – window size in milliseconds. De-
fault is 25.

• -z, --zero-padding – perform zero-padding before FFT, such that
the transformation size is a power of 2.

4.1.4 Separation

• -m<method>, --method=<method> – The method to be used for com-
ponent separation. As of the time of writing, this option exists only
for extensibility reasons and has no effect.
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• -c<number>, --components=<number> – The number of components
which should be separated. Default is 20.

• -T<number>, --spectra=<number> – The number of spectra which
should be computed per component. If the number of spectra is ¿ 1,
NMD is performed. Default is 1.

• -f<name>, --cost-function=<name> – The cost function for
NMF/NMD. The following strings are valid: “ed” (Euclidean dis-
tance), “kl” (Kullback-Leibler divergence) [3], “eds” (Euclidean dis-
tance with a sparsity constraint), “eds” (Euclidean distance with a
sparsity constraint), “kls” (KL divergence with a sparsity constraint)
[17] and finally “edsn” (Euclidean distance with a sparsity constraint,
measured using normalized basis vectors as in [16]). Default is “kl”.
Note that NMD (i. e. ¿ 1 spectrum per component) can only be per-
formed using the “ed” and “kl” cost functions.

• -y<number>, --sparsity=<number> – The sparsity parameter for the
NMF cost function. Only has an effect if either “eds”, “edsn” or “kls”
are selected as cost function.

• -N, --normalize-matrices – Normalize NMF/NMD matrices such
that the second factor has unity Frobenius norm.

• -g, --generator=<func> – Sets the generator function for initializa-
tion of the matrices (“gaussian” for absolute Gaussian noise, “uniform”
for values uniformly distributed on the interval [0.01, 0.02), or “unity”
for every value equal to 1). Default is “gaussian”. The “unity” genera-
tor makes the separation process deterministic and can hence be used
for debugging purposes.

• -e<number>, --precision=<number> – The desired precision (relative
error in terms of Frobenius norm) of the result. If set to zero, the
maximum number of iteration steps is performed in any case. Default
is 0.

• -i<number>, --max-iter=<number> – The maximum number of iter-
ation steps. Default is 100.

• -I<range>, --init=<range> – Pre-initializes the separation using the
spectra of several classification objects, specified as a range of classi-
fication object IDs. “range” is a string of the form “min..max” where
“min” and “max” are IDs of classification objects. This option can
be repeated to specify multiple ranges. If the number of initialization
objects is smaller than the number of components, randomized spec-
tra are added. The option can be repeated to give multiple ranges of
objects for initialization.
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• -P, --preserve – preserves the initialization, i.e. do not update it
during iteration. Nevertheless, if the number of initialization objects
is smaller than the number of components, the additional randomized
are updated in any case.

4.1.5 Component Processing

• -v, --volatile – run in “volatile” mode, i.e. components are thrown
away after the tool terminates. This only makes sense when either
the classify or one of the “export” options are activated. If the
--volatile option is not specified, components are stored for later
use.

• --export-prefix=<prefix> – sets the filename prefix for export of
components (as WAV files) or matrices.

• -p<prefix, --export-components – exports the separated compo-
nents as WAV files with the given prefix.

• --export-matrices=<name> – Export the separation matrices.
<name> can be one of “W” (spectra, first factor), “H” (gains, second
factor) or “WH” (both factors, not the product!) The export format
is controlled by the blissart.separation.export.format configu-
ration option (see Section 4.9).

• -l<response>, --classify=<response> – performs feature extrac-
tion on the separated components, classifies them using training data
from the given response, and generates audio files for each class which
are named like <input file name> <class name>.wav.

• -L<label>, --preset-label=<label> – during classification, assigns
the label with the given ID to the components which have been ini-
tialized by the -I option, instead of the class label predicted by the
classifier.

4.1.6 Usage Examples

• septool file.wav

Separates file.wav into 20 components using the default NMF set-
tings, and saves the components.

• septool -c30 -s60 -l7 test.wav

Separates test.wav into 30 components, using a window size of 60 ms,
saves the components and classifies them using the response with the
ID 7. Assuming this response contains classes “Class1” and “Class2”,
files named test Class1.wav and test Class2.wav are generated.
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• septool -v -c30 -s60 -l7 test.wav

Like the above, except that separated components are not stored.

• septool -n4 file1.wav file2.wav file3.wav file4.wav

file5.wav

Separates the files file1.wav to file5.wav using default settings
and saves the components, using at most 4 concurrent threads.

• septool -v -T5 -c40 -l7 -I11..30 -P -L3 test.wav

Separates test.wav by means of NMD into 40 components (-c 40),
each consisting of 5 spectra (-T5). Thereby the first 20 are initialized
using the classification objects with IDs 11 to 30, which must in turn
be NMD components (-I11..30). Spectra are not updated during
the iteration (-P). Classification is done using the response with ID 7
(-l7), where the first 20 components are assigned the label with ID 3
regardless of the classifier’s decision (-L3). Nothing is written to the
database (-v).

• septool -v -T20 -c10 -ptestcomp test.wav

Separates test.wav by means of NMD into 10 components, consisting
of 20 spectra each. The components are exported as WAV files with
the prefix testcomp.

• septool -v -I1..20 -P -c20 --export-matrices=H test.wav

Separates test.wav into 20 components whose spectra are all prede-
fined in the classification objects with IDs 1 to 20. The gains matrix
(H) is exported to a file.

• septool --cost-function=kls -y0.5 test.wav

Like the first example, but using sparse NMF, setting the sparsity
parameter to 0.5.

4.1.7 Multithreading vs. Multiple Processes

It is important to note that while there is an option to run mul-
tiple threads simultaneously from one single instance of the separation
tool (in this case, only one user process is created by the operating sys-
tem), starting multiple concurrent instances of the separation tool (and
hence multiple user processes) can lead to errors, as the integrated SQLite
database can only be written by one user process at a time.

4.2 Feature Extraction Tool

The feature extraction tool (fextool) extracts features from stored compo-
nents and saves them into the database.
It can be controlled via the following command line options:
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• -h, --help – only display information about command line parame-
ters.

• -A, --echo – print the base name of the application binary and its
named command line options in long format, with their parameters if
given, before executing.

• -C, --config=<filename> – use the specified configuration file (prop-
erties format) instead of the default one. See section 4.9 for details.

• -a, --all – performs feature extraction for all components whose data
is available.

• -p<id>, --process=<id> – performs feature extraction on the com-
ponents that have been generated by the separation process with the
given ID.

• -n<number>, --num-threads=<number> – the number of concurrent
threads to use for separation and classification. Should be set to the
number of CPUs (cores) present in the computer for maximum per-
formance.

The feature extraction process itself can be influenced by a great variety
of configuration options, which are all listed in section 4.9.5.

The same note about multithreading and multiple instances of the tool
applies as for the separation tool (4.1.7).

4.3 Cross-Validation Tool

The cross-validation tool (cvtool) performs stratified cross-validation of a
data set given by a response.
The following options can be specified on the command line:

• -h, --help – displays information about command line parameters.

• -A, --echo – print the base name of the application binary and its
named command line options in long format, with their parameters if
given, before executing.

• -C, --config=<filename> – use the specified configuration file (prop-
erties format) instead of the default one. See section 4.9 for details.

• -r<id>, --response=<id> – gives a response ID. All classification ob-
jects that are assigned a label in this response are validated.

• -f<n>, --fold=<n> – gives the number of folds. If 0 is given, leave-
one-out cross-validation is performed. The default value is 10.



4.3. CROSS-VALIDATION TOOL 41

• -t<id>, --train=<id> – gives a response ID for a training set instead
of performing n−fold cross-validation.

• -s, --shuffle – shuffles the data set before validation, i.e. randomly
reorders the classification objects within the data set. Of course, this
does not make sense for leave-one-out cross-validation.

• --fs=<algorithm> – enables automatic feature selection. If
algorithm is anova, features are rated by their t-test score (only
available for responses with two classes). Otherwise, if algorithm is
correlation, features are rated by their correlation with their class
label.

• -m<number>, --max-features=<number> – gives the maximum num-
ber of features that automatic feature selection should select. The de-
fault value is 10.

• -v, --verbose – enables verbose output (see below).

• -p, --prob – estimates probabilities for SVM classification. If this
option is given, verbose output is automatically enabled.

• --dump[=<prefix>] – for each fold, write the training and test data to
an ARFF data file with the given prefix (default prefix: fold). These
files can be used to manually reproduce the cross-validation result with
the Weka [6] software.

If a response ID was specified, the tool outputs the number of classifica-
tion objects that were validated, the recalls for each class, the mean recall,
as well as the overall accuracy. Finally, a confusion matrix for all classes in
the response is printed.

If verbose output is enabled, additionally a list of misclassified objects,
their ID, their class label, their predicted class label and, if the corresponding
option is given, their prediction probabilities is printed.

Unless automatic feature selection is enabled, the features to be used for
classification are read from the configuration file (see section 4.9.5).

4.3.1 Usage Examples

• cvtool -r7 -f3

Validates the response with ID 7 using stratified 3-fold cross validation
and the feature set given by the configuration file.

• cvtool -r7 -t8

Validates each object in the response with ID 7, using the response
with ID 8 as training set.
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• cvtool -r7 --fs=anova -m10 -p

Validates the response with ID 7 using stratified 10-fold cross valida-
tion, using the 10 features which score best in a t test, and outputs
all objects which have been misclassified along with the classification
probability.

4.4 Export Tool

The export tool (export) exports objects (usually NMF components) in the
storage to a file. HTK or Gnuplot output format can be selected.
The following options can be specified on the command line:

• -h, --help – displays usage information.

• -a, --all – exports the data from all data descriptors of the given
type (-t) in the database.

• -p<list>, --process=<list> – exports data descriptors associated
with the given process IDs. Single process IDs or ranges (x..y) can be
given and must be separated with commata.

• -f<format>, --format=<format> – selects an output format. Must be
one of “htk“ or “gnuplot”. Default is “htk”.

• -c, --concat – concatenates data descriptors of the same type, so that
only one output file per type is generated. The type of concatenation
(column- or row-wise) depends on the type of data descriptor: Spec-
tra are considered column vectors, hence concatenated column-wisely;
conversely, gains are considered row vectors, hence concatenated row-
wisely. Magnitude and phase matrices are concatenated column-wisely.

• -t<type>, --type=<type> – selects the type of data descriptor to ex-
port. Available types are: Spectrum (“spect”), Gains (“gains”), Mag-
nitude Matrix (“mmatr”), and Phase Matrix (“phase”).

• --strip-prefix=<path> – when selecting the output file name, the
default is to use the full path name of the corresponding input file is
used. This option can be used to strip a certain path prefix, to create
relative file names.

• --target-dir=<path> – sets the target directory for output. Output
files are placed in this directory, and relative path names are inter-
preted with respect to this directory.

• -T, --add-type – adds a string giving the type of data to the file
names, e. g. “spect”.
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4.4.1 Usage Example

export -p17 -fgnuplot -tgains -c

Exports the gains vectors created in process 17 and concatenates them. The
output (in this case a gains matrix) is written to a file in Gnuplot format.

4.5 Audio Export Tool

In contrast to the export tool, the audio export tool (exportaudio) exports
objects (usually NMF components) in the storage to an audio file. The
following options can be specified on the command line:

• -h, --help – displays usage information.

• -o<id1>[..<id2>], --object-id=<id1>[..<id2>] – selects the ob-
jects to export. Single IDs or ranges of IDs can be given. This option
can be repeated to export multiple objects or ranges.

4.6 Cleanup Tool

Because openBliSSART stores binary data in a filesystem directory which
is physically independent of the database, there exist some cases where ‘or-
phaned’ binary files remain in the storage directory, without a data descrip-
tor referencing them.

The purpose of the cleanup tool (cleanup) is to purge the storage direc-
tory of these files. After execution, it displays the number of files that have
been deleted.

The -s or --simulate option can be used if no deletions should be
performed, but just the number of “orphaned” files should be printed.

4.7 Browser

The main purpose of the browser application is to facilitate the creation of
data sets (responses) which can be used for classification of NMF compo-
nents in blind source separation. It also supports playback of components,
displays component features and allows export of selected data sets to Weka
[6] for a more detailed assessment of suitability.

The user interface has been designed with simplicity in mind, i.e. having
everything at hand where it might be needed or helpful. Thus, the database
entities are displayed in a tree-like view on the main window’s left-hand
side. Further information related to any entity can be displayed by simply
expanding the corresponding subtree. For an example, refer to figure 4.1.
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Also, when selecting a database entity, edit and/or preview facilities
will be provided on the user interface’s right-hand side, the so-called edit
area. Furthermore, almost every item provides a context-sensitive menu that
shows up when the user presses the right mouse button on an item.

Figure 4.1: Example subtree expansion

4.7.1 Typical Workflow

The typical workflow for supervised component classification in blind source
separation includes

• the import of audio files (separated into components),

• the extraction of the related features,

• the creation of various labels with arbitrary precision,

• the assignment of one or more labels to selected classification objects,

• the creation of one or more responses, and finally

• the assignment of classification objects to one or more responses.

4.7.2 Import of Audio Files

Figure 4.2 shows an example of the “Import audio” dialog. This dialog can
be displayed either by pressing the respective button or by selecting the
corresponding entry from the application’s main menu, or alternatively the
context menu of the tree view.
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Figure 4.2: Example audio import dialog

While an arbitrary number of input files can be specified on the left-hand
side, the right-hand side allows the selection of the intended parameters for
the separation process. Currently only a subset of the parameters (e. g. cost
functions) of the separation tool is offered by the browser. The user can
choose whether to perform a separation process, or whether to only load the
file’s spectrogram into the database.

Note that increasing the number of threads is only useful when working
with multiple files because they will be distributed individually among the
available worker-threads. Also, the number of threads should not exceed the
number of available processors as there are only few disk operations but
rather heavy computational costs involved in the separation process.

The components of the chosen audio files will appear in the “Classifica-
tion objects” tree on the left hand side of the Browser main window.

4.7.3 Feature Extraction

While it is possible to extract the features of individual classification ob-
ject (see figure 4.3) via their context menu, the features of all classification
objects can be extracted in one step as well by selecting the “Database” /
“Extract features from all data descriptors” item in the application’s menu.
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Again, the number of threads can be specified when extracting all fea-
tures at once and significantly reduces the processing time on multiprocessor
machines.

If you change the configuration options for feature extraction (see
4.9.5), you have to restart the browser for changes to take effect.

Figure 4.3: Feature extraction

4.7.4 Label Creation

Labels can be created either by pressing the corresponding “Create label”
button located at the user interface’s lower left or by selecting the appropri-
ate item from the application’s or context menu. Creating a label automat-
ically inserts the new label into the tree view, selects it and allows editing
of the label’s properties inside the edit area.

4.7.5 Assignment of Labels to Classification Objects

After a suitable set of labels has been created, these labels have to be as-
signed to classification objects wherever appropriate. Selecting a classifica-
tion object shows a list of all available labels inside the edit area. One or
more labels can be assigend by checking the corresponding checkbox and
then saving this selection. Figure 4.4 shows the selection of multiple labels
for a particular classification object. In order to determine which of the
available labels satisfy the needs of a particular classification object, one
can use the application’s preview feature so as to visually explore the sam-
ples or else playing them back. Depending on the applications preferences,
the “Preview” checkbox is checked automatically. If not, either manually
check that box to be able to explore the samples or select the corresponding
option in the preferences dialog.
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Figure 4.4: Assignment of labels to classification objects

It is also possible to select one or more labels for multiple classification
objects at once by means of the “Select label” item in their context menu.
In this case, a dialog is shown which allows the selection of one or more
labels. The selected labels are assigned to each selected classification object.
Existing labels are not removed.

4.7.6 Response Creation

To create an empty response, either press the “Create response” button
located at the user interface’s lower left or select the corresponding item
from the main menu or the context menu of the tree view. The newly created
response is automatically inserted into the entities tree while the response’s
properties (name, description and assigned classification objects) can be
modified inside the edit area.

To create a response that contains a set of classification objects, simply
select the desired classification objects in the tree view and click “Create
response from these items” in the context menu.

4.7.7 Adding Classification Objects to Responses

Currently the only way to assign classification objects to an existing response
is via the “Add CLO’s by label” button located inside a response’s edit
area. Pressing this button pops up a dialog that allows the selection of the
desired label. Thereupon all classification objects related to this label will
be assigned to the current response.
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Since multiple labels can be assigned to a classification object, one might
wish to change the label in-use. In order to do that, simply select the cor-
responding classification object from the list inside the response’s edit area
and press “Select label”. Note that this button will be enabled as soon as
more than one label is linked to the selected classification object.

Classification objects can be removed from the assignment list by select-
ing them followed by pressing the “Remove selected” button.

As with all of the browser’s edit options, the newly made assignments
are not automatically stored. Instead, they have to be saved explicitly.

Figure 4.5 shows the described features.

Figure 4.5: Assignment of classification objects to a response

4.7.8 Exporting Selected Objects

If a selection of classification objects should be exported as audio files, one
can simply select the desired objects and choose “Export selected objects
as WAV” via the corresponding objects’ context menu item. When selecting
this item, a directory selection dialog shows up and allows selecting the
destination directory for the exported files.
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4.7.9 Browser Preferences

Figure 4.6: Browser Preferences Dialog

Figure 4.6 shows the preferences dialog of the Browser, which allows the user
to choose options for the audio preview, select the default parameters for
creating separation processes from the Browser, and set the default number
of threads to use for feature extraction.

4.8 ICA Tool

The ICA tool (icatool) performs blind source separation on multiple audio
input files by applying independent component analysis to the corresponding
time signals. Possible choices for the output of the results are either WAVE
audio files or Weka ARFF format.

The format of the input files may differ2, yet all of them must have the
same sampling rate and equal number of samples. Should the latter vary,
the corresponding signal can be expanded by using the expected value of its
time signal.

2Generally speaking, all audio file formats supported by the SDL sound library can be
read.
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Whenever an input file contains more than one channel, only the first
one will be used for computation.

If the number of sources to be separated is smaller than the number of
input files, the corresponding number of signals with the greatest variance
and thus most information will be selected from all available signals. Since
principal component analysis is a preprocessing step for ICA anyway, this
yields no particular further computational effort.

Readers should note that this is a stand-alone application that makes no
further use of the framework’s storage- and/or classification components.

General

• --help – display information about command line parameters and
exit.

• --as-wave – output the results as WAVE audio files, which is also the
default.

• --as-arff – output the results as Weka ARFF files.

• --prefix=<prefix> – the prefix to be used for the output files. The
filenames will be comprised of <prefix><nr>.<format>, where <nr>

equals the number of each separated source and format resembles the
chosen output file format.

Separation

• --nsources=<x> – the number of sources to be separated. Must be
greater one and less than or equal to the number of input files.

• --force – in case of varying lengths of the input signals, extends
shorter input signals by their expected values instead of aborting.

• --prec=<x> – the desired precision for the projection of the compo-
nents. Must be a real value greater than 10−20. Defaults to 10−10.

• --max-iter=<x> – the maximum number of iterations per component
for FastICA. Applies only if the desired precision has not been achieved
before reaching this limit.

4.8.1 Usage Examples

• icatool --prefix=foo mix31.wav mix32.wav mix33.wav

Performs ICA on the given input files and outputs the results as WAVE
audio files with the names foo1.wav, foo2.wav and foo3.wav.
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• icatool --as-arff --prefix=baz mix4[1-4].wav

Performs ICA on the four given input files mix41.wav to mix44.wav

and outputs the results in Weka ARFF format with the names
baz1.arff to baz4.arff.

• icatool --prefix=ext --force shorter.mp3 longer[1-2].mp3

Performs ICA on the three given input files, one of which has less sam-
ples than the others. The time signal of the “delinquent” is expanded
by its expected value. Output will be as WAVE audio files with the
names ext1.wav to ext3.wav.

• icatool --prefix=reduced --nsources=2 mix5[1-5].ogg

Performs ICA on the five given input files mix51.ogg to mix55.ogg and
output the results as WAVE audio files. Before the actual application
of ICA, however, the two principal signals, i.e. the signals with the
greatest variance and thus most information, are selected amongst all
available signals.

4.9 Configuration Files

Audio processing, feature extraction, classification and browser behavior
can be fine-tuned by means of configuration files in the Java properties file
format. Basically, files in this format may contain option lines of the form

<option-name>: <option-value>

as well as comment lines starting with #, which are ignored. Boolean
values can be notated as 0, false or 1, true, respectively.

The configuration files reside in the etc directory of the installation tree.

4.9.1 Global Options

• blissart.global.mfcc.count (positive integer): The number of Mel
frequency cepstral coefficients (MFCCs) to compute. Default is 13.

• blissart.global.mfcc.mfcc0 (boolean): Whether the first MFCC
should be computed. Default is true. If this option is set to false

and blissart.global.mfcc.count is set to N , MFCCs 1 through
N − 1 are computed.

• blissart.global.mfcc.lifter (double): The parameter for MFCC
liftering. Liftering with parameter L means that the ith coefficient is
multiplied with 1 + L/ sin(2πi/L), i.e. if L = 0 this procedure has no
effect. More information can be found in the HTK book [7].
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• blissart.global.mel filter.high freq (double): the upper limit
frequency of the Mel filter bank. If this is 0 (default), the Nyquist
frequency is assumed. If this is larger than the Nyquist frequency, an
error is raised.

• blissart.global.mel filter.low freq (double): the lower limit fre-
quency of the Mel filter bank. Default 0.

• blissart.global.mel bands (positive integer): the number of Mel
frequency bands to use for Mel filtering (e.g. in MFCC computation).

• blissart.global.deltaregression.theta (positive integer): The
parameter θ for the regression procedure which is used to compute
delta- and delta-delta MFCCs. More information can be found in the
HTK book [7].

4.9.2 Audio Preprocessing

Audio preprocessing options can be specified in the configuration file
blissart.properties. These are valid for the browser as well as the sepa-
ration tool, but can be overridden by passing the corresponding command
line parameters to the separation tool.

• blissart.audio.remove dc (boolean): See the --remove-dc option
of the separation tool.

• blissart.audio.preemphasis: See the --preemphasis option of the
separation tool.

• blissart.audio.reduce mids: See the --reduce-mids option of the
separation tool.

4.9.3 Transformation

Options for the short-time Fourier transformation can be specified in the
configuration file blissart.properties. Some of these can be overridden
in the “Import audio” dialog of the browser, as well as by passing the corre-
sponding command line parameters to the separation tool. In addition, the
short-time Fourier spectrograms can be transformed in various ways, as will
be explained below.

• blissart.fft.windowfunction (string): See the
--window-function option of the separation tool.

• blissart.fft.windowsize (positive integer): See the --window-size
option of the separation tool.
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• blissart.fft.overlap (double): See the --overlap option of the
separation tool.

• blissart.fft.zeropadding (boolean): See the --zero-padding op-
tion of the separation tool.

• blissart.fft.transformations.powerSpectrum: If set to true,
converts the spectrum to the power spectrum (default: square).

• blissart.fft.transformations.powerSpectrum.gamma: The expo-
nent for the power spectrum (default 2.0).

• blissart.fft.transformations.melFilter: If set to true, applies
a Mel filterbank to the spectrogram. The number of Mel bands is
controlled by the blissart.global.mel bands global option.

• blissart.fft.transformations.slidingWindow: If set to true, ap-
plies a ‘sliding window’ to the spectrogram, i. e. multiple columns
(frames) are concatenated into a single column.

• blissart.fft.transformations.slidingWindow.frameSize: The
‘frame size’ for the sliding window transformation, i. e. the number of
columns to concatenate for each output column. Default is 10.

• blissart.fft.transformations.slidingWindow.frameRate: The
‘frame rate’ for the sliding window transformation, i. e. the number of
columns to skip between subsequent concatenations.

4.9.4 Separation

Options for the separation process can be specified in the configuration file
blissart.properties.

• blissart.separation.notificationSteps: The number of iteration
steps after which a notification is generated, i. e. the progress bar is up-
dated in the septool and Browser applications. Default ist 25. Setting
this number to a low value may result in performance loss for small
input files, whereas raising it to a high value prevents any progress
begin seen over long periods of time.

• blissart.separation.export.format: One of “bin”, “htk” or “gnu”
for BliSSART binary matrix format, HTK format or Gnuplot format,
respectively. This option has an effect on the separation tool with the
--export-matrices option enabled.

• blissart.separation.storage.phasematrix: true (default) if the
separation tool should store the phase matrix of the original signal,
false otherwise.



54 CHAPTER 4. TOOLBOX

• blissart.separation.storage.magnitudematrix: true if the sepa-
ration tool should store the magnitude matrix of the original signal,
false otherwise (default). Usually this option should be disabled.

4.9.5 Feature Extraction

Feature extraction options can be found in the configuration file
blissart.properties. Unless stated otherwise, these options are boolean
values which include/exclude certain features in the feature set. The avail-
able features, and the default set by data descriptor type, is shown in Ta-
ble 4.1.

Data descriptor
type

Feature Default

Magnitude matrix
(Sampled) MFCCs x
δ + δδ coefficients x
Mean and standard deviation of δ
+ δδ coefficients

x

Spectrum

(Mean) MFCCs 0-12 x
(Sampled) MFCCs
δ + δδ coefficients
Mean and standard deviation of δ
+ δδ coefficients
Standard deviation
Spectral centroid
Spectral rolloff
Noise-likeness
Dissonance
Flatness

Gains

Standard deviation
Skewness
Kurtosis
Periodicity
Peak length
Peak fluctuation
Percussiveness

Table 4.1: Available Audio Features

Note that for NMD, “spectra” are actually spectrograms, hence func-
tionals of MFCCs and the other features are computed (mean, standard
deviation), and sampled values of MFCCs can be computed.

The following options control feature extraction from magnitude matri-
ces:
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• blissart.features.magnitudematrix.mfcc: Whether to
compute MFCCs. MFCCs are sampled at a given num-
ber of equidistant frames which can be modified by the
blissart.features.magnitudematrix.mfcc.frame count option
(default 5).

• blissart.features.magnitudematrix.mfccD: Whether to compute
delta coefficients (using the regression procedure described in the HTK
book [7]).

• blissart.features.magnitudematrix.mfccA: Whether to compute
delta-delta (Acceleration) coefficients (using the regression procedure
described in the HTK book [7]).

• blissart.features.magnitudematrix.mean mfcc: Whether to com-
pute the mean of each MFCC (and possibly its regression coefficients)
over the whole signal.

• blissart.features.magnitudematrix.stddev mfcc: Whether to
compute the standard deviation of each MFCC (and possibly its re-
gression coefficients) over the whole signal.

The following options control feature extraction from spectra:

• blissart.features.spectrum.mean mfcc: For NMF, these are sim-
ply the MFCCs. For NMD, this option indicates whether to compute
the mean of each MFCC (and possibly its regression coefficients) over
the whole signal.

• blissart.features.spectrum.stddev: Whether to compute stan-
dard deviation.

• blissart.features.spectrum.centroid: Whether to compute the
spectral centroid.

• blissart.features.spectrum.rolloff: Whether to compute spec-
tral rolloff.

• blissart.features.spectrum.noiselikeness: Whether to compute
noise-likeness ([22]).

• blissart.features.spectrum.noiselikeness.sigma: The sigma
(standard deviation) parameter for the calculation of noise-likeness
([22]).

• blissart.features.spectrum.dissonance: Whether to compute
spectral dissonance ([22]). Be aware that this operation can be time-
consuming, as its time complexity is quadratic in the length of the
spectra.
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• blissart.features.spectrum.flatness: Whether to compute spec-
tral flatness [22].

Furthermore, the blissart.features.spectrum.mfcc,
blissart.features.spectrum.mfccD, blissart.features.spectrum.mfccA,
and blissart.features.spectrum.stddev mfcc configuration options are
available for spectra, but make only sense for NMD where each component
is described by a spectrogram.
The default is to only compute the (mean) MFCCs.

The following options control feature extraction from gains vectors:

• blissart.features.gains.stddev: Whether to compute standard
deviation.

• blissart.features.gains.pl: Whether to compute peak length [5].

• blissart.features.gains.pf: Whether to compute peak fluctuation
[5].

• blissart.features.gains.percussiveness: Whether to compute
percussiveness [22].

• blissart.features.gains.percussivness.length (double): The
length (in seconds) of the percussive impulse to use for computation
of percussiveness.

• blissart.features.gains.periodicity: Whether to compute peri-
odicity of gains [5].

• blissart.features.gains.periodicity.bpm min (positive integer):
The minimum bpm (beats per minute) value to consider for periodicity.

• blissart.features.gains.periodicity.bpm max (positive integer):
The maximum bpm (beats per minute) value to consider for periodic-
ity.

• blissart.features.gains.periodicity.bpm step (positive inte-
ger): The distance between the bpm values to consider for periodicity.

4.9.6 Classification

Classification options control SVM parameters and scaling. They can be
specified in the configuration file blissart.properties.
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The type of kernel function that is used to build the SVM is
given by the blissart.classification.svm.kernel option. Possible val-
ues include linear for linear functions, poly for polynomials of higher
degree, rbf for radial basis functions and sigmoid for sigmoid func-
tions. Default is linear. The polynomial degree can be given by the
blissart.classification.svm.degree option, which defaults to 3.

The precision of the training procedure is controlled by the
blissart.classification.svm.epsilon option (default: 1e− 3).

“Bias” components (i.e. one component that is always 1) can be added
by settings the blissart.classification.addBias to true.

Scaling is controlled by the blissart.classification.scaling family
of options:

• blissart.classification.scaling.method

– minmax for linear scaling such that all values of one feature are
in a given interval (by default [−1, 1]),

– musigma for linear scaling such that all values of one feature have
the given mean µ and standard deviation σ (by default µ = 0, σ =
1),

– none for no scaling.

• blissart.classification.scaling.lower – lower bound of the
scaling interval if blissart.classification.scaling.method is set
to minmax.

• blissart.classification.scaling.upper – upper bound of the
scaling interval if blissart.classification.scaling.method is set
to minmax.

• blissart.classification.scaling.mu – desired mean of the fea-
ture values if blissart.classification.scaling.method is set to
musigma.

• blissart.classification.scaling.sigma – de-
sired standard deviation of the feature values if
blissart.classification.scaling.method is set to musigma.

4.9.7 Browser

The browser configuration file browser.properties contains options for
the audio file preview, and the default settings for importing audio files.
The options are listed below:

• browser.featureExtraction.numThreads – the default number of
threads to use for feature extraction. Default 1.
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• browser.mainwindow.height – stores the size of the browser window.
Default 768.

• browser.mainwindow.isMaximized – stores whether the browser win-
dow is maximized. Default false.

• browser.mainwindow.width – stores the width of the browser win-
dow. Default 1024.

• browser.preview.alwaysEnabled – indicates whether the audio pre-
view should be enabled by default. Default true.

• browser.preview.normalizeAudio – indicates whether the audio
preview should be normalized in amplitude. Default true.

• browser.processCreation.costFunction – the default NMF cost
function (0 for KL divergence, 1 for squared Euclidean distance). De-
fault 0.

• browser.processCreation.maxIterations – the default number of
NMF iterations. Default 100.

• browser.processCreation.numComponents – the default number of
NMF components. Default 20.

• browser.processCreation.numThreads – the default number of
NMF separation threads. Default 1.

• browser.processCreation.overlap – the default overlap to use for
Fourier Transformation and NMD/NMF processes. Default 0.5.

• browser.processCreation.windowFunction – the default window
function to use for Fourier Transformation and NMD/NMF processes
(0 = Square root of Hann function, 1 = Hann function, 2 = Hamming
function, 3 = Rectangle function). Default 0.

• browser.processCreation.windowSizeMS – the default window size
in milliseconds to use for Fourier Transformation and NMD/NMF pro-
cesses. Default 25
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