
iiD v1.0 User Manual

All content © 2013 DigiPen (USA) Corporation all rights reserved.

Contents
Introduction .. 2

Features .. 2

Dependencies.. 2

Compiler Dependencies .. 2

Glossary ... 3

Feedback and Reporting Bugs ... 3

Distance Units ... 3

Creating a Scene.. 3

Rendering iiD ... 4

Simulating Rigid Bodies ... 4

Materials ... 4

Density and Mass .. 4

Static Bodies .. 4

Creating a Polygon .. 4

Creating a Circle .. 5

Creating an OBB .. 5

Demo ... 5

Shapes ... 6

Point to Shape Test ... 6

Scene Queries ... 6

Raycasting ... 6

AABB Query ... 6

Point Query ... 6

Know when Bodies Collide .. 7

Ghosts ... 7

Joints ... 7

Soft Joints .. 7

JointDef ... 7

Distance Joint .. 7

Ropes ... 8

Revolute Joint ... 8

Weld Joint ... 9

Angle Joint ... 9

Prismatic Joint ... 9

Mouse Joint ... 10

Limitations .. 10

Feature To-Do List ... 10

Contact .. 11

Introduction
iiD is a 2D rigid body simulation library written entirely in portable C++. All files are appended with iiD as

to make the library easy to integrate into existing projects. All of the library is within the iiD namespace.

Features
iiD has a few interesting features that are quite desirable for DigiPen game projects:

 LCP solver with Sequential Impulses

o Highly stable, efficient, and deterministic results

 Many types of joints for interesting rigid body interactions

 Very simple to use API

 Library is not thread-safe, but can easily be placed onto an isolated thread

 Simple communication of events and collisions with callbacks

 Islanding simulation and sleeping

 Warm starting

 Generic 2D polygon and sphere collision detection

 Efficient data oriented implementation

 Math is built-in

Dependencies
iiD itself has no dependencies. The test demo uses GLUT and Windows.h in order to run the demo.

Compiler Dependencies

iiD was written in a portable way, allowing it to compile on both G++ and Visual Studio. All other major

compilers should be supported as well. Support for any compiling issues will be provided to all game

teams interested in using the iiD library.

Glossary
LCP - Linear complementary problem. Solving constraints can be thought of as an LCP. See

LCP Wikipedia page for more details.

Joint - A constraint between 2 rigid bodies. Joints make 2 rigid bodies interact with each other

in interesting ways, and are very useful for gameplay mechanics.

Warm Starting - Optimization involving storing old LCP solutions and using them to kick start new

solutions.

Sleeping - When a rigid body is not moving around, it does not need to be solved. Sleeping

objects will never move until something awake comes into contact with it. This is an

optimization.

Constraint - A rule that forces a rigid body to behave in a certain way. Constraints are solved with

sequential impulses.

Sequential Impulses - A method of using impulses to solve constraints within a physics engine.

Originally proposed by Erin Catto.

Rigid Body - A physics object is referred to as a body, or rigid body. A rigid body contains a shape

(either Polygon or Circle), and never deforms.

Restitution - How bouncy a rigid body is.

OBB - Oriented bounding box. Pretty much just a box that can rotate.

AABB - Axis aligned bounding box. This means a box aligned with the x and y axes, and cannot

ever rotate.

Feedback and Reporting Bugs
I’m very interested in hearing feedback from any DigiPen team that uses the physics engine. I also need

to know about any potential bugs. Please contact me at: r dot gaul at digipen dot edu

Distance Units
The iiD engine works with an arbitrary distance unit. The standard distance of a medium sized object has

a width of one. I recommend zooming in if your simulation feels slow and floaty.

Creating a Scene
All rigid bodies in a simulation belong to a Scene. The Scene class is one of the only parts of the iiD

engine the user interacts with. To create a Scene simply create one like so:

Vec2 gravity(0, -9.8f);

const float dt = 1.0f / 60.0f;

Renderer renderer;

iiD::Scene scene(gravity, dt, &renderer, 10);

http://en.wikipedia.org/wiki/Linear_complementarity_problem

Rendering iiD
The Renderer is a small interface used for debug drawing. All rendering for iiD must be done

externally to iiD.

Simulating Rigid Bodies
Once a scene has been constructed, all that is left to do is to add some rigid bodies to it. To create a rigid

body the scene expects a BodyDef and Shape to be provided. Here is an example:

iiD::Polygon poly;

iiD::BodyDef def;

def.material.Set(iiD::Material::Wood);

poly.SetAsBox(1.0f, 1.0f);

iiD::Body *myBody = scene.CreateBody(poly, def);

The BodyDef is a small struct that contains information about how to create a rigid body. Things like

position, the material the body is made of (restitution and friction), orientation, and more are set here.

The example code above will default the position (0, 0), and create a rigid body with a polygon shape as

an oriented bounding box (OBB).

After bodies have been created, the scene needs to update them. To update the scene call the Step

function:

 scene.Step();

Materials
A rigid body has a friction coefficient, density, and a restitution coefficient. Both of these together

determine how bouncy and sticky (when sliding) a rigid body behaves. It can be annoying to come up

with arbitrary coefficients, so a naming convention was put together. iiD comes packaged with some

types of materials, like Wood, Metal and Pillow. To set a material type, see the code example from the

previous section.

Alternatively, the friction and restitution can be manually set to custom values.

Density and Mass
Mass is calculated on a per-shape basis. Mass can be manually set, but does not need to be. Instead it is

recommended to set the density of shapes through the material within the BodyDef.

 Static Bodies
A rigid body can be static. Static bodies never move, ever. Static bodies usually represent level

geometry, and are much more inexpensive to simulate than dynamic bodies. To create a static body, set

the material type to Static, or set the is_static Boolean in the BodyDef to true. Static bodies

have a density of zero.

Creating a Polygon
Creating a polygon is easy. A polygon requires a list of vertices in world coordinates. Here is an example

of creating a triangle:

iiD::Polygon poly;

iiD::BodyDef def;

Vec2 v[] = {

 Vec2(-1.0f, 0.0f),

 Vec2(1.0f, 0.0f),

 Vec2(0.0f, 1.0f),

};

poly.Set(v, 3);

def.tx.Set(5.0f, 0.5f, 0);

iiD::Body *triangle = scene.CreateBody(poly, def);

The vertices do not need to be dynamically allocated.

Creating a Circle
Creating a circle is very simple:

iiD::BodyDef def;

iiD::Circle circle(5);

iiD::Body *myCircle = scene.CreateBody(circle, def);

Creating an OBB
An easy to use function called SetAsBox was created to aid in setting up OBBs. Call this function from

the Polygon itself before creating a rigid body. SetAsBox excepts half width and height values.

Demo
The iiD demo has many demo simulations. These simulations provide examples on how to use the iiD

engine, and I suggest everyone to refer to the demos regularly as you learn to use the iiD library.

Here is a short video of the demo on youtube.

http://www.youtube.com/watch?v=8wTRw6X4XUU

Shapes
There are two types of shapes in iiD: polygons and circles. All polygons MUST be convex. Please see the

Simulating Rigid Bodies section on how to create these shapes.

Each rigid body must contain one shape in order to be simulated. A future version of the iiD library will

allow rigid bodies to contain more than one shape, in order to support convex and interesting

compositions.

Point to Shape Test
All shapes implement an interface that allows the user to see if a point collides with a certain shape.

shape->TestPoint(Vec2(1.0f, 2.0f));

Scene Queries

Raycasting
Currently no form of raycasting is implemented in iiD. Raycasting is essential for lots of gameplay types,

and so raycasting will be implemented in the near future.

 AABB Query
It is often times useful to test an AABB with a scene to see if any rigid bodies lay within its boundaries.

To do this, examine the following code:

bool myCallBack(iiD::Body *body)

{

 // Do something with body

 // ...

 // Return true to search for more hits

 // Return false to end query

 return false;

}

scene.QueryAABB(myCallBack, myAABB);

As you can see your callback should be very efficient, as it will be called for each object that is found to

be intersecting with the provided AABB. Returning true from a callback will continue the query within

the scene and look for more intersections. Returning false will end the query right then and there. This

allows the user to fine-tune and optimize their own queries.

 Point Query
Checking to see if any rigid bodies in a scene overlap a point in world space can be quite useful. To do so

is similar to querying an AABB, except instead of providing an AABB a single point is provided. Here is a

code example:

bool myCallBack(iiD::Body *body)

{

 // Do something with body

 // ...

 // Return true to search for more hits

 // Return false to end query

 return false;

}

Vec2 myPoint(0.0f, 0.0f);

scene.QueryPoint(myCallBack, myPoint);

Know when Bodies Collide
A certain callback is provided to the scene, and will be called whenever two rigid bodies collide with one

another. Use the SetContactCallback function on the scene class in order to set this callback.

Ghosts
Sometimes it is useful to have a rigid body that does not resolve collisions, but only reports them. To

create a body like this, simply set the is_ghost bool within the BodyDef.

Joints
A joint creates some rules on how two specific bodies will interact with one another. Joints are useful for

creating interesting levels and game mechanics. Joints can be used to create rag dolls, bridges,

breakable compositions of bodies, motors, and more.

By default bodies connected by two joints do not collide, however this can be changed by setting a bool

within the JointDef of a joint type.

Soft Joints
Some joints can be soft. A soft joint will not be completely rigid, and will give way to strong forces. Soft

joints are great for creating springs or squishy things.

A soft joint has two parameters that need to be placed into the JointDef of the joint type. One

parameter is called the frequency. The frequencyHz of a joint represents how soft or squishy the

joint is.

The other parameter is the damping ratio. The damping ratio lowers the velocity of the bodies involved

in the joint. This is useful for controlling the stability and behavior of the joint.

 JointDef
All joints, just as rigid bodies, require a definition to be created. To create a joint a JointDef must be first

provided. Each different type of joint has a different JointDef.

 Distance Joint
The distance joint ensures that two points on two rigid bodies maintain a constant distance from

another. You can imagine a massless, rigid rod connecting the two points together.

Example of a soft distance joint.

To create a distance joint, examine the following example code:

iiD::DistanceJointDef jointDef;

jointDef.Initialize(body1, body2, anchorWorldA, anchorWorldB);

jointDef.frequencyHz = 1.5f;

jointDef.dampingRatio = 0.05f;

scene.CreateJoint(jointDef);

See the DistanceJoints function in main.cpp of the demo for more example code.

Ropes

The distance joint can be configured to act as a rope. Ropes will not be solved unless the distance

between the two bodies is large enough. Setting up a distance joint as a rope is simple:

iiD::DistanceJointDef jointDef;

jointDef.Initialize(bodyA, bodyB, anchorWorldA, anchorWorldB);

jointDef.rope = true;

jointDef.length = 15.0f;

jointDef.frequencyHz = 0.5f;

jointDef.dampingRatio = 0.1f;

scene.CreateJoint(jointDef);

Revolute Joint
The revolute joint attaches two points, one on each body, together. The bodies can only rotate around

the point together, but the point does not separate.

Revolute joint connecting two rods together.

Creating a revolute joint involves setting an anchor point specified in world space:

iiD::RevoluteJointDef rdef;

rdef.Initialize(chassis, frontWheel, Vec2(1.5f, 1.0f));

rdef.enableMotor = true;

rdef.motorSpeed = 5.0f;

rdef.maxTorque = 2.0f;

scene.CreateJoint(rdef);

The revolute joint can also limit the angles in which the bodies can rotate. Additionally, the revolute

joint can be setup to simulate a rotational motor.

Weld Joint
The weld joint connects two rigid bodies together by a single point. The two connected bodies must

move with constant relative position and orientation. Weld joints are cool, but be warned: constraints

are not 100% rigid, and weld joints will bend under high stress.

Weld joint connecting two rectangles together.

Here is an example of creating a weld joint:

iiD::WeldJointDef wdef;

wdef.Initialize(b1, b2, Vec2(1.0f, 6.5f));

scene.CreateJoint(wdef);

Angle Joint
The angle joint constraints the angle to a constant between two rigid bodies. This joint was created

mostly for debugging purposes, though can be useful on occasion:

Prismatic Joint
The prismatic joint constraints two rigid bodies so their relative motion must be along an axis, of which

is relative to the two bodies. You can think of this as the bodies must travel along a line. This is create for

creating sliding doors and other mechanical systems.

Prismatic joint constraining a box along a line. Revolute motors power a crankshaft.

Here is example code for setting up a prismatic joint:

iiD::PrismaticJointDef pdef;

pdef.collisionEnabled = true;

pdef.Initialize(b1, plat, Vec2(0.0f, 0.0f), Vec2(0.0f, 1.0f));

scene.CreateJoint(pdef);

Mouse Joint
The mouse joint is actually a soft revolute joint, made specifically to be used with the mouse for

grabbing and moving rigid bodies around. The mouse joint is harder to setup than the rest of the joint

types, so I recommend carefully examining the mouse-related code in main.cpp of the demo to learn

more about this joint.

Mouse joint pulling a rigid body to the left.

Limitations
There are a few limitations to be aware of when using iiD in order to have a stable simulation:

 Fast moving objects can tunnel (teleport) through each other. Limit the maximum velocity of all

objects, or create level geometry with thicker walls to prevent this. Also try to avoid tiny or very

skinny rigid bodies.

 Very heavy objects on top of very light objects can cause sinking.

 N^2 broadphase (currently).

 No raycasting (currently).

Feature To-Do List
Here is a short list of features to be added in the near future to the iiD library (listed in arbitrary order):

 Body compositing. Bodies can hold multiple shapes. Shapes within a single body do not collide

with one another. Useful for creating compositions of shapes.

 Raycast queries upon the world.

 Dynamic AABB tree Broadphase.

 Prismatic motor and limit.

 Soft revolute joint.

 Post projection positional correction.

 Object slicing and fracturing.

 Buoyancy physics for water simulation.

Contact
r dot gaul at digipen dot edu

