

An Introduction to
Z80 Microprocessor Applications

DT202 Curriculum Manual

 ©2009 LJ Create. This publication is copyright and no
part of it may be adapted or reproduced in any material
form except with the prior written permission of LJ Create.

Lesson Module: 8.22/1
Issue: MP612/A

An Introduction to Z80
Microprocessor Applications About this Module

About this Module

LJ Technical Systems i

For tomorrow's engineers and technicians, training in the use of microprocessor
systems and the design of control tasks will be very important.

We see microprocessors used in almost every area of modern life. They control
domestic appliances, automated Teller machines, VCRs, automobile engine
management and braking systems and so on - the applications are endless. In
addition to these less obvious uses, microprocessors dominate today's' working
environment in the shape of the PC (personal computer).

To gain a good working knowledge of microprocessor technology you will need to
follow this manual carefully. It will lead you in a step by step manner through the
following areas:

! Using the SAM microcomputer.
! Introduction to Z80 programming.
! Writing Machine Code Programs.
! Program Debugging.
! Using the Merlin Text Editor.
! Introduction to Development Systems.
! Addressing Modes.
! Negative Binary Numbers.
! Programs with Loops.
! Further Programs with Loops.
! Logical and Test Instructions.
! Input and Output Programming.
! Programming the Applications Module.
! Stack and Subroutines.
! Interrupts.

As you work through each chapter you will be guided by a series of student
objectives and your progress will be continually assessed by questions in the
Exercises, Practical Assignments and Student Assessments.

The Practical Assignments presented throughout the manual are graded in terms of
complexity, starting with simple machine code programs and ending with more
complex programming techniques in assembler code.

An Introduction to Z80
About this Module Microprocessor Applications

ii LJ Technical Systems

Your instructor has a copy of the Solutions book for this manual. It contains all the
solutions to the assessment questions together with suggested solutions to all the
programming tasks. Copies of these programs are provided on a disk supplied with
the Solutions book.

What do I need to work through this manual?

To work through this manual you will need the following items:

1. SAM Z80 microprocessor board.
2. Merlin Development System software pack (6502/Z80 version) and RS232

cable.
3. Microprocessor Applications board.
4. Personal computer (PC) running Windows 95 or later, and fitted with RS232

serial communications (COM) port.
5. Two 0.1" shorting leads (supplied).
6. SAM Z80 User Manual.
7. Z80 Programming Manual.
8. Note pad and pencil.

In addition, you will need a power supply and a keypad/display unit. The form
that these items take will depend on whether you are using a Digiac 2000 system
or a Digiac 3000 system:

Power supply required Keypad/display unit required
Digiac 2000 system DT60 Power Supply unit DT25 Keypad/display module
Digiac 3000 system D3000 Experiment Platform or

D3000 Virtual Instrument
Platform

D3000-8.0 Microprocessor
Master Board with built-in

keypad/display

For further information, please refer to the SAM Z80 User Manual.

An Introduction to Z80
Microprocessor Applications About this Module

LJ Technical Systems iii

Computerized Assessment of Student Performance

If your laboratory is equipped with the D3000 Computer Based Training System,
then the system may be used to automatically monitor your progress as you work
through this manual.

If your instructor has asked you to use this facility, then you should key in your
responses to the questions in this manual at your computer managed workstation.

To remind you to do this, a symbol is printed alongside questions that
require a keyed-in response.

The following D3000 Lesson Module is available for use with this manual:

D3000 Lesson Module 8.22

Additional Teachware

If you are encountering microprocessors for the first time, it is recommended that
you begin by reading the manual "An Introduction to Microprocessor
Technology", which is available from LJ Technical Systems.

Other manuals available in this range are:

An Introduction to 6502 Microprocessor Applications.
An Introduction to 6502 Microprocessor Troubleshooting.
An Introduction to Z80 Microprocessor Troubleshooting.
68000 Microprocessor Concepts and Applications.
An Introduction to 68000 Microprocessor Applications.

An Introduction to Z80
About this Module Microprocessor Applications

iv LJ Technical Systems

An Introduction to Z80
Microprocessor Applications Contents

Contents

LJ Technical Systems

Curriculum Text Pages

Chapter 1 Using the SAM Microcomputer .. 1 - 20

Chapter 2 Introduction to Z80 Programming... 21 - 36

Chapter 3 Writing Machine Code Programs .. 37 - 56

Chapter 4 Program Debugging... 57 - 66

Chapter 5 Using the Merlin Text Editor .. 67 - 78

Chapter 6 Introduction to Development Systems .. 79 - 100

Chapter 7 Addressing Modes ... 101 - 114

Chapter 8 Negative Binary Numbers ... 115 - 124

Chapter 9 Programs with Loops... 125 - 150

Chapter 10 Further Programs with Loops .. 151 - 162

Chapter 11 Logical and Test Instructions .. 163 - 182

Chapter 12 Input and Output Programming... 183 - 200

Chapter 13 Programming the Applications Module .. 201 - 228

Chapter 14 Stack and Subroutines ... 229 - 250

Chapter 15 Interrupts.. 251 - 286

 Continued ...

 An Introduction to Z80
Contents Microprocessor Applications

LJ Technical Systems

Appendices Pages

Appendix 1 Standard Programming Sheet .. 287 - 288

Appendix 2 SAM System Calls .. 289 - 300

Appendix 3 ASCII Codes.. 301 - 302

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

Chapter 9 Programs with Loops

LJ Technical Systems 125

Objectives of
this Chapter

Having studied this chapter you will be able to:

� Describe the different types of program loop structure.

� Describe the use of the conditional and unconditional
instructions.

� Explain the mechanism and use of Z80 relative
addressing.

� Describe the function and operation of the following
Z80 flags:

 Carry Flag
 Zero Flag

� Write programs that use the Z80 assembly language
conditional and unconditional Jump instructions.

� Use the Z80 assembly language combined Decrement
and conditional Jump instructions.

Equipment
Required for
this Chapter

� SAM Z80 Microcomputer.
� Power supply.
� Keypad/display unit.
� Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
� SAM Z80 User Manual.

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

126 LJ Technical Systems

Introduction

Often it will be necessary to use a program loop to repeat a section of a program
a number of times. There are three main types of program loop:

1. Repeating a program section indefinitely.

 For example: Output a “1” on bit 2 of a data port indefinitely.

Enter

Output a "1" on
Bit 2 of Data Port

2. Repeating a program section until some predetermined condition becomes
true.

 For example: Waiting for a “1” to be input at bit 4 of a data port.

Enter

Is
Bit 4

=1
?

Exit

Yes

No

Read bit 4
of Data Port

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 127

3. Repeating a program section for a predetermined number of passes.

 For example: Output a “0” on bit 6 of a data port for the time it takes

to repeat a loop 5000 times.

Enter

Exit

Set Count to
5000

Reduce Count
by 1

NoIs
Count

Yes

Output a "0" on
Bit 6 of Data Port

=0?

If, in this example, each pass through the loop were to take 1µs, a "0" would be
output on bit 6 of the data port for 5ms.

In order to write assembly language programs with loops, it will be necessary to
use JUMP instructions.

 9.1 JUMP Instructions

These instructions cause program execution to be continued from some point
other than the next location in sequence.

There are two types of JUMP instruction:

Unconditional JUMP - “Always JUMP”
Conditional JUMP - “Only JUMP if some condition is true”

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

128 LJ Technical Systems

9.2 Relative Addressing

Some JUMP instructions can use Relative Addressing. In this mode of addressing,
the destination for the JUMP is not specified directly (for example, “location
4700H”) but is expressed in terms of the number of locations further on (or back)
in the program (for example, “8 locations further on"). The easiest means of
understanding this concept is to examine an example.

Recall the source program PROG2.ASM from Chapter 6. Load this program into
Merlin and modify each “JP” instruction to “JR”. A “JR” is a relative jump
instruction. Having modified the program, save it as PROG4.ASM (using the
Save As option from the File menu) and then assemble the program generating
the object program and listing. The listing will have the form shown below:

ORG 4500H ;Object code start addr

VAL1: EQU 02H ;Defines ‘VAL1’ as 02H
VAL2: EQU 03H ;Defines ‘VAL2’ as 03H
MEM1: EQU 5000H ;Defines ‘MEM1’ as 5000H

4500 3E 02 BEGIN: LD A,VAL1 ;Loads accum with 02H
4502 18 04 JR NEXT ;Jumps to ‘NEXT:’
4504 32 00 50 LAST: LD (MEM1),A ;Saves accum in 5000H
4507 C9 RET ;Return
4508 C6 03 NEXT: ADD A,VAL2 ;Adds 03H to accum
450A 18 F8 JR LAST ;Jumps to ‘LAST:’

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 129

Consider the first relative jump JR NEXT.

The operand is 04H. This is often called the displacement or offset in relative
addressing. The offset indicates that the destination is 04H locations further on. It
is important to note that the program counter will already contain the address of
the next instruction (4504H). If 04H is added to this then the address of the
destination can be found:

 4504H + 04H = 4508H

This is indeed the case above where ‘NEXT’ is 4508H.

Consider now the second relative jump JR LAST.

The offset is F8H. This is a negative number in 2’s complement notation.

 F8H = + 1111 10002
 = - 0000 01112 (1’s complement)
 = - 0000 10002 (2’s complement)
 = - 08H

So this instruction will jump backwards 08H locations. Now, as before the
program counter will already hold the address of the next instruction (450CH in
this case):

 450CH - 08H = 4504H

So this instruction will jump to 4504H. Check the program listing to see that this
is indeed the case.

 Range of Relative Addressing

The largest positive offset will be 7FH (0111 11112), which is 12710. So it is not
possible to perform a relative jump more than 12710 locations in the forward
direction. The largest negative offset will be 80H (1000 00002).

 80H = + 1000 00002
 = - 0111 11112 (1’s complement)
 = - 1000 00002 (2’s complement)
 = - 80H
 = - 12810

So the limit of a backward relative jump is 12810 locations. The Z80 Cross
Assembler will produce an error message if a relative jump is out of range.

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

130 LJ Technical Systems

 9.2a Z80 instructions, which allow programs to continue from a point other
than the next location in sequence, are called:

 a continue instructions.

 b jump instructions.

 c sequence instructions.

 d skip instructions.

 9.2b In relative addressing, the destination for a jump is specified by:

 a a 2's complement displacement.

 b a direct address.

 c the contents of the flag register.

 d the contents of the BC register pair.

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 131

Carry out

9.3 Conditional Jump Instructions

A conditional jump is only taken if some predetermined condition is true.
Otherwise the next instruction in sequence is executed. These instructions are
very important since they allow the microprocessor to take decisions. Conditional
jumps may use direct or relative addressing. The conditions, which these
instructions test, are the states of the flags.

 Z80 Flags

Each flag is a single flip-flop, which can store a 0 or a 1. These flags indicate the
type of result from the last ALU operation. Many instructions will affect various
flags but a significant number do not (notably Load). The Z80 Programming
Manual explains which flags are affected by each instruction. The Z80 has 6 flags
but we shall only consider two for the time being: the Carry Flag and the
Zero Flag:

1. Carry Flag

This flag is set (that is = 1) if the last arithmetic operation produced a “carry out”.
For example:

If 3AH is added to 47H, the result is 81H and there is no carry out:

3AH 0011 10102
47H 0100 01112

81H 1000 00012

However, if 3AH is added to E7H, the result is 121H. Thus a carry out is generated:

3AH 0011 10102
E7H 1110 01112

121H 1 1010 00012

Now, the accumulator can only hold 8 bits but this result is 9 bits in length. The 8
least significant bits (that is 21H) will be placed in the accumulator and the “9th
bit” in the carry flag, so, C=1.

The carry flag is also used as a “borrow” flag when performing subtraction.

+ +

+ +

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

132 LJ Technical Systems

2. Zero Flag

This flag is set (that is = 1) if the result of the last operation was zero.

For example, if the microprocessor subtracts 34H from 34H the result is 00H and
the zero flag is set (Z=1).

If 34H is added to 34H the result is 68H which is non-zero so the zero flag is
cleared (Z=0).

The action of these flags can be summarized thus:

Z Zero Result (Z=1)
NZ Non-Zero Result (Z=0)
C Carry Generated (C=1)
NC No Carry Generated (C=0)

Examples:

JP Z,4820H ;Jump to location 4820H if the
;zero flag is set (that is if Z=1)
;- Zero Result

JR NZ,SCAN1 ;Jump to address specified by
;the label SCAN1 if the zero
;flag is clear(that is if Z=0)
;- Non-Zero Result

JR C,NEXT ;Jump to address specified by
;the label NEXT if the carry
;flag is set(that is if C=1)
;- Carry Generated

JP NC,LAST ;Jump to address specified by
;the label LAST if the carry
;flag is clear (that is if C=0)
;- No Carry Generated

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 133

Now refer to your Z80 programming manual. Note how the Zero and Carry Flags
are affected by each instruction:

Instructions Zero Flag Carry Flag

LD Not affected Not affected

ADD Set if result is zero; otherwise
cleared

Set if result exceeds 8 bits;
otherwise cleared

SUB Set if result is zero; otherwise
cleared

Set if there is a ‘borrow’;
otherwise cleared

RET Not affected Not affected

JP Not affected Not affected

INC Set if result is zero; otherwise
cleared

Not affected

DEC Set if result is zero; otherwise
cleared

Not affected

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

134 LJ Technical Systems

 9.3a After the Z80 has subtracted 4AH from 67H, the Zero (Z) and Carry (C)
flags will be:

 a Z = 0, C = 0

 b Z = 0, C = 1

 c Z = 1, C = 0

 d Z = 1, C = 1

 9.3b After the Z80 has added 52H to 67H, the Zero (Z) and Carry (C) flags
will be:

 a Z = 0, C = 0

 b Z = 0, C = 1

 c Z = 1, C = 0

 d Z = 1, C = 1

 9.3c After the Z80 has added 75H to 8EH, the Zero (Z) and Carry (C) flags
will be:

 a Z = 0, C = 0

 b Z = 0, C = 1

 c Z = 1, C = 0

 d Z = 1, C = 1

 9.3d After the Z80 has subtracted 72H from 72H, the Zero (Z) and Carry (C)
flags will be:

 a Z = 0, C = 0

 b Z = 0, C = 1

 c Z = 1, C = 0

 d Z = 1, C = 1

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 135

9.4 Worked Example

Write a program that will add the contents of locations 5000H and 5001H. The
value 80H should be placed in location 5002H if the result exceeds FFH, otherwise
01H should be placed in location 5002H.

Solution:

This problem requires the carry flag to be tested following the addition and then a
marker value to be saved to indicate the status of the result.

START

Load the accumulator
from location 5000H

Add the contents of
location 5001H

to the Accumulator

Is the
Carry Flag

set?

Load the accumulator
with 01H

Load the accumulator
with 80H

END

NO

YES

Save the accumulator
to location 5002H

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

136 LJ Technical Systems

The first part of this program will be quite simple:

LD A,(5000H) ;Loads accumulator from 5000H

Now, unfortunately direct addressing cannot be used with ADD. It is however
possible to ADD the contents of two registers so one way to overcome the
problem is to LOAD the B register from 5001H and then ADD the B register to
the accumulator.

A further problem now arises: It is not possible to load the B register using direct
addressing. This problem can be overcome thus:

LD A,(5000H) ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD B,A ;Loads the B reg from the accum
LD A,(5001H) ;Loads acc from 5001H
ADD A,B ;Adds B reg to accumulator

The addition has now taken place and so we can test the carry flag thus:

LD A,(5000H) ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD B,A ;Loads the B reg from the accum
LD A,(5001H) ;Loads accumulator from 5001H
ADD A,B ;Adds B reg to accumulator

;Test for carry flag set:

JR C,OVER ;If C=1, jump to label OVER

The state of the carry flag will now determine which branch is taken:

LD A,(5000H) ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD B,A ;Loads the B reg from the accum
LD A,(5001H) ;Loads accumulator from 5001H
ADD A,B ;Adds B reg to accumulator

;Test for carry flag set:

JR C,OVER ;If C=1, jump to label OVER

;Load accumulator with appropriate marker value:

LD A,01H ;C=0 so load marker for no carry
JR SAVE ;Jump to label SAVE(Save marker)

OVER: LD A,80H ;Load accumulator with
;marker for carry set

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 137

All that is required now is to save the marker in location 5002H:

LD A,(5000H) ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD B,A ;Loads the B reg from the accum
LD A,(5001H) ;Loads accumulator from 5001H
ADD A,B ;Adds B reg to accumulator

;Test for carry flag set:

JR C,OVER ;If C=1, jump to label OVER

;Load accumulator with appropriate marker value:

LD A,01H ;C=0 so load marker for no carry
JR SAVE ;Jump to label SAVE (Save marker)

OVER: LD A,80H ;Load accumulator with
;marker for carry set

;Save marker value in location 5002H:

SAVE: LD (5002H),A ;Save marker in 5002H
RET ;Return

Finally, it will be necessary to specify the start address for object code using
ORG:

ORG 4400H ;Start address for object code

LD A,(5000H) ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD B,A ;Loads the B reg from the accum
LD A,(5001H) ;Loads accumulator from 5001H
ADD A,B ;Adds B reg to accumulator

;Test for carry flag set:

JR C,OVER ;If C=1, jump to label OVER

;Load accumulator with appropriate marker value:

LD A,01H ;C=0 so load marker for no carry
JR SAVE ;Jump to label SAVE (Save marker)

OVER: LD A,80H ;Load accumulator with
;marker for carry set

;Save marker value in location 5002H:

SAVE: LD (5002H),A ;Save marker in 5002H
RET ;Return

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

138 LJ Technical Systems

 9.4a Load the program for Worked Example 9.4 into the SAM. Place the
value 67H in location 5000H and the value 7DH in location 5001H. Run
the program and examine the contents of location 5002H. Enter the
hexadecimal byte that you find.

Now, the first part of this program required a number of instructions to transfer
data from one register to another. This could have been avoided by using the HL
register pair to point to memory locations, since it is possible to ADD in this way.
Such a program is shown below:

ORG 4400H ;Start address for object code

LD HL,5000H ;HL points to 5000H

;Add contents of 5001H to accumulator:

LD A,(HL) ;Loads the accumulator from 5000H
INC HL ;HL now points to location 5001H
ADD A,(HL) ;Adds contents of 5001H to accum

;Test for carry flag set:

JR C,OVER ;If C=1, jump to label OVER

;Load accumulator with appropriate marker value:

LD A,01H ;C=0 so load marker for no carry
JR SAVE ;Jump to label SAVE (Save

;marker)
OVER: LD A,80H ;Load accumulator with marker

;for carry set.

;Save marker value in location 5002H:

SAVE: INC HL ;HL now points to 5002H
LD (HL),A ;Saves marker in 5002H
RET ;Return

 9.4b Load the program for Worked Example 9.4 into the SAM. Place the
value 82H in location 5000H and the value 9CH in location 5001H. Run
the program and examine the contents of location 5002H. Enter the
hexadecimal byte that you find.

Note: It is good practice to use the HL register pair to point to data wherever possible
since this technique often takes fewer bytes of object code and less time to
complete instructions.

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 139

9.5 Worked Example

Write a program that will add the contents of locations 5000H and 5001H. The
most significant byte of the result should be stored in location 5002H and the least
significant byte in location 5003H.

Solution:

START

Load the accumulator
from location 5000H

Add the contents of
location 5001H

to the Accumulator

Is the
Carry Flag

set?

Load the B register
with 01H

Load the B register
with 00H

END

Save the B register
to location 5002H

Save the Accumulator
to location 5003H

NO

YES

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

140 LJ Technical Systems

Now, consider the largest possible values:

 FFH + FFH = 01FEH

So the most significant byte can only be 00H or 01H.

Thus, the program must perform the addition, save the least significant byte and
then test the carry flag to determine whether the most significant byte is 00H or
01H.

ORG 4400H ;Start address for object code

LD HL,5000H ;Loads accumulator from 5000H

;Add contents of 5001H to accumulator:

LD A,(HL) ;Loads the accumulator from 5000H
INC HL ;HL now points to location 5001H
ADD A,(HL) ;Adds contents of 5001H to accum

;Test for carry flag set:

JR NC,ZERO ;If C=0, jump to label ZERO

;Load accumulator with most significant byte:

LD B,01H ;C=1 so most significant byte is 01H
JR SAVE ;Jump to label SAVE (Save most

;significant byte)
ZERO: LD B,00H ;C=0 so most significant byte is 00H

;Save most significant byte in location 5002H:

SAVE: INC HL ;HL now points to 5002H
LD (HL),B ;Saves most significant byte in 5002H
INC HL ;HL now points to 5003H
LD (HL),A ;Saves least significant byte in

;5003H
RET ;Return

 9.5a Load the program for Worked Example 9.5 into the SAM. Place the
value 3EH in location 5000H and the value E5H in location 5001H. Run
the program and examine the contents of locations 5002H and 5003H.
Enter the 2-byte hexadecimal result that these locations represent.

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 141

 9.6 Practical Assignment

Write a program that will examine the contents of location 5000H. If the contents are 00H, location
5FFFH should be loaded with 80H. If the contents are non-zero then 5FFFH should be loaded with
7FH.

[Hint: LOAD does not condition the flags. Use the instruction “OR 00H” to condition the flags
prior to testing.]

 9.6a Load the program for Practical Assignment 9.6 into the SAM. Place the
value 2AH in location 5000H. Run the program and examine the
contents of location 5FFFH. Enter the hexadecimal byte that you find.

So far the programs you have entered have been decision-making rather than
loops. Consider now the problem of repeating a section of a program a given
number of times. These types of programs often use a register or memory location
as a loop counter. The loop counter is decremented (decreased by 01H) on each
pass through the loop and tested for zero. When the counter reaches zero the
program exits from the loop and continues.

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

142 LJ Technical Systems

9.7 Worked Example

Write a program, which will add together, the contents of locations 5000H, 5001H,
5002H, 5003H and 5004H, saving the result in location 5005H.

Solution:

START

Load the B register
with count

Load the accumulator
from location 5000H

Add contents of location
pointed to by HL pair

to Accumulator

Increment the
HL register

Decrement the
B register

Is the Zero
Flag set?

Save the Accumulator
in location pointed

to by HL pair

END

NO

YES

Use the HL register
to point to 5000H

Increment the
HL register pair

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 143

A source program for this is shown below. Note that the B-register can be used as
a convenient loop counter:

ORG 4400H ;Start address for object code
LD B,04H ;Load the B register with count
LD HL,5000H ;HL register points to location 5000H
LD A,(HL) ;Loads the accumulator from location

;5000H
INC HL ;Increase the HL register by 01H

NEXT: ADD A,(HL) ;Adds contents of location
;pointed to by HL register pair to
;the accumulator

INC HL ;Increase the HL register by 01H
DEC B ;Decrease the count by 01H
JR NZ,NEXT ;Jump to the label NEXT if the zero

;flag is NOT SET (that is Z=0). This
;indicates that count has not yet
;reached zero

LD (HL),A ;Save accumulator in location pointed
;to by HL pair

RET ;Return

 9.7a If the program in Worked Example 9.7 is to be modified to add the
contents of locations 5000H, 5001H and 5002H, saving the result in
location 5003H, the instruction that must be changed is:

 a LD B,04H

b LD HL,5000H

 c LD A,(HL)

d DEC B

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

144 LJ Technical Systems

Now, the Z80 has a special instruction which combines decrementing of the
B register with testing whether the result is zero - DJNZ (Decrement the B
register and jump if result is non-zero). The previous program could be easily
modified to take advantage of this instruction thus:

ORG 4400H ;Start address for object code
LD B,04H ;Load the B register with count
LD HL,5000H ;HL register points to location 5000H
LD A,(HL) ;Loads the accumulator from

;location 5000H
INC HL ;Increase the HL register by 01H

NEXT: ADD A,(HL) ;Adds contents of pointed to by HL
;register
;pair to the accumulator

INC HL ;Increase the HL register by 01H
DJNZ NEXT ;Decrement the B register and

;jump to the
;label NEXT if the result is non-zero

LD (HL),A ;Save accumulator in location
;pointed to by HL pair

RET ;Return

 9.7b Place the values shown below in the memory locations indicated.

 Memory locations Contents
 5000H 12H
 5001H 0CH
 5002H 39H
 5003H 0FH
 5004H 2BH

 Load the modified program for Worked Example 9.7 into the SAM and

run. Enter the hexadecimal byte that you find in location 5005H.

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 145

 9.8 Practical Assignment

A simple means of achieving multiplication is to add a value to itself a given number of times.
Location 5000H contains a value between 00H and 33H. Use this method to multiply the contents
of location 5000H by 05H, saving the result in location 5001H.

 9.8a Use your program for Practical Assignment 9.8 to calculate
28H x 05H. Enter the result that you find.

 9.8b Modify your program for Practical Assignment 9.8 to calculate
1EH x 07H. Enter the result that you find.

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

146 LJ Technical Systems

 Student Assessment 9

 1. The type of structure used to repeat a section of program several times is called:

 a an Echo.

 b a Go To.

 c a Loop.

 d a Repeat.

 2. The program section described by the flowchart below will:
 a repeat indefinitely.

 b repeat until a condition becomes true.

 c repeat for a given number of passes.

 d not repeat.

ENTER

Is
Bit 2
=1?

EXIT

No

Yes

Read Data
Port

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 147

 Student Assessment 9 Continued ...

3. The type of JUMP that is always taken is called a:
 a Conditional Jump.

 b Direct Jump.

 c Indirect Jump.

 d Unconditional Jump.

 4. The type of JUMP that allows the microprocessor to make decisions is called a:
 a Conditional Jump.

 b Direct Jump.

 c Indirect Jump.

 d Unconditional Jump.

 5. The type of addressing where the destination is expressed in terms of the number of
 bytes forward or backward from the present location is called:
 a Conditional.

 b Direct.

 c Indirect.

 d Relative.

 6. The largest positive 8-bit offset for relative addressing is:
 a 12510

 b 12610

 c 12710

 d 12810

Continued ...

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

148 LJ Technical Systems

 Student Assessment 9 Continued ...

 7. The assembly language instruction at location 4418H is 'JR NZ,WRIPT'. If the
 location identified by the label 'WRIPT' is 441EH, the 2's complement displacement for
 the branch instruction will be:
 a F8H

 b 04H

 c FAH

 d 06H

 8. The Carry Flag is set when the result of the last arithmetic operation is:
 a zero.

 b non-zero.

 c less than 8 bits.

 d greater than 8 bits.

 9. The Flag that is set when the result of the last arithmetic operation is zero is the:
 a Carry Flag.

 b Negative Flag.

 c Overflow Flag.

 d Zero Flag.

An Introduction to Z80 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 149

 Student Assessment 9 Continued ...

10. The program section, which will repeatedly (and indefinitely) add 02H to the
 Accumulator, is:
 a HERE: ADD A,02H

JR HERE

 b HERE: ADD A,02H

JR NC,HERE

 c HERE: ADD A,02H

JR C,HERE

 d HERE: ADD A,02H

JR NZ,HERE

 11. The program section below

NEXT: ADD A,B
JR C,DONE
JR NEXT

will add the contents of the B-Register to the Accumulator:
 a indefinitely.

 b until the result is greater than 8 bits.

 c until the result is less than 8 bits.

 d until the result is equal to contents of the B-Register.

 12. The Z80 instruction, which decrements the B-Register and tests whether the result is
 zero, is:
 a DAA

 b DEC

 c DI

 d DJNZ

Programs with Loops An Introduction to Z80
Chapter 9 Microprocessor Applications

150 LJ Technical Systems

