
GAMOS 4.0.0 User’s Guide

GAMOS Collaboration

GAMOS 4.0.0 User’s Guide
by GAMOS Collaboration

Published July 6, 2012

Table of Contents
1. Introduction ...1

About this document ...1
Introduction to GAMOS..1
Structure of GAMOS..1
The plug-in concept ...2

2. Getting started...3
Getting the code and installing it...3

Tips for installation in Ubuntu ...3
Tips for installation in Fedora Core ...4

Running an example..4
Compiling GAMOS..5

Compiling your new code...5
3. Geometry ..9

Building your geometry with a text file..9
Description of geometry text file format ...9
Dumping your Geant4 geometry in text file format....................................33
Adding new tags to your input text file ..33
Parallel geometries ...35

Building simple geometries ..36
Building a simple geometry with one material ...36
Building your geometry with C++ code...36
Reading DICOM files...37

Converting a DICOM file to a simulation file ..37
DICOM file format ...37
Reading a DICOM file in a GAMOS job..38
Partial phantom geometries ..39
Simple phantom geometries ...40
Setting off visualization of phantom geometries ...40

Movements..40
Movement description from a file..41

Geometry utilities...42
Commands to print geometry objects ...42
C++ utilities ...43

Magnetic field ...44
Local magnetic field ...44

4. Generator..45
Using GAMOS generator ..45

Introduction...45
Particle sources..45
Distributions..47

Reading your generator particles from a text file..54
Reading your generator particles from a binary file ...55
Event generator changing energy and material ..55
Event generator histograms..56
Biasing generator distributions ..57
Building your generator with C++ ..57
Using ions..57

5. Physics...59
GAMOS electromagnetic physics list ..59

Multiple scattering model ...59
Bremsstrahlung angular distribution ..60

GAMOS electromagnetic extended physics list...60
GAMOS hadrontherapy physics list ...61
Other physics lists ..61
Building your physics list with C++ code ..62
Replacing process models ...62

iii

Production cuts...63
Production cuts by region ...63
Energy cuts to range cuts conversion ..64
Minimum and maximum production cuts ...64
Apply cuts for all processes ..64

User limits ...64
Automatic optimisation of cuts..65

Range rejection..66
Optical photons ..67

Using optical photons as primary generator ..70
X-ray refraction...70
Atomic deexcitation processes ...70
Decay process..71
Radioactive decay process ..71
Cerenkov process ...71
Removing a process from a physics list ..72

6. User Actions...73
Adding a filter...73
Adding a classifier..73
User action name..73
Creating your GAMOS user action ...74

7. Sensitive Detector and Hits ..75
Sensitive detectors..75

Attaching a sensitive detector to a volume...75
Building your sensitive detector with C++ code ...76

Hits ...77
Detector effects ...77

Energy resolution..77
Time resolution ...78
Detector measuring time ...78
Detector dead time ...79
Minimum hit energy ..80

Hits digitization and reconstruction..80
Hits digitization ..80
Hits and digits reconstruction ..81
Examples of reconstructed hit builders...81

Identifying each sensitive detector copy ..82
Storing and retrieving hits ..82

File format..83
Hits histograms...84

8. Scoring ..87
Creating a scorer...87
Scorer classes...88

Scoring in voxelised phantoms...92
Filter classes ..92
Scorer printers...92
Classifiers...94
Multiplying by data ...94
Multiplying by distribution ..94
Convergence testing...94
Point detector scorer ..96

Theoretical basis..96
GAMOS implementation...98
Variance reduction techniques..101

iv

9. Variance reduction techniques ...103
Introduction ..103
Importance sampling...103
Geometrical biasing ...104
Production of deexcitation secondary particles...104
Particle splitting techniques for radiotherapy ...104

10. Histogramming ...105
Histogram formats ...105
Histograms in CSV format..105
Changing histogram minimum, maximum and number of bins......................106
Output files name...106
Analysing your histograms with ROOT...107

Printing the histograms in graphics files ..107
Comparing histograms in two files..107

Creating your own histogram ..108
11. Analysis (extracting data)..109

Introduction: GAMOS data ..109
Data users ..110

Behaviour as a function of information object ...110
Behaviour as a function of output format...111
Selection of data list for a data user ...113
Saving GAMOS data in a ROOT TTree ...116
Filter from data ...117
Classifier by data ..117
Primitive scorer from data...118

List of available data ..118
Position...118
Momentum ..120
Direction...121
Energy ..121
Geometrical objects ..122
Material variables ...122
Particle and process..123
Secondary tracks ...126
Others ...126

Output file names...127
Merging results from different jobs ...127

Example of Analysing text output files ...129
12. Filters...131

Introduction ..131
Simple filters ...131
Volume filters ..132
Filters of filters ..134
Applying filters to a user action...135
Checking filters at a user action ...135
Filtering steps in the future...136

13. Classifiers ...137
Introduction ..137
Setting indices to classifiers ..138

14. Distributions..139
Introduction ..139
Creating a distribution ..139
Assigning a GAMOS data...139
Reading values from a file ..139
Numeric distributions ...140
String distributions ..141

Geometrical biasing distribution..141

v

15. Utility user actions..143
Counting the number of tracks and events ..143
Counting the processes..143
Shower shape studies ..144
Killing all tracks..146
Table of tracks and steps ...146
Material budget studies...146
Detailed report of where CPU time is spent ..147
Changing the weight using a distribution..148
Copying the weight to the secondary particles ...148
Stop run after a certain CPU time..148

16. Managing the verbosity...149
GAMOS verbosity managers..149

Controlling GAMOS verbosity by event...150
Using a GAMOS verbosity manager in your code..150
Creating your own verbosity manager ...151
Controlling the Geant4 verbosity by event and track...151
Dumping the standard output and error in log files ..151

17. Detector applications ...153
Identifying Compton interactions ...153

Compton studies histograms ..154
Histograms of data about the interactions and the reconstructed hits...155
Classification of good and bad identification histograms as a function of

variable ...156
Histograms of gammas at sensitive detectors..157
Automatic determination of production cuts for a detector..............................158
Automatic determination of user limits for a detector159

18. PET application ...161
PET geometry..161
PET event classification ...161
PET histograms: event classification ...163
PET output for reconstruction..163

List-mode binary file ..163
Projection data file ..164

PET histograms: positrons ..165
PET histograms: distance between two gammas ..165

19. SPECT application..167
SPECT event classification ..167
SPECT histograms: event classification ..168
SPECT output for reconstruction...169

20. Compton camera application..171
Compton camera geometry ..171
Compton camera Event Classification ..173
Compton camera histograms: event classification ..174
Compton camera output for reconstruction...175

21. Image reconstruction utilities...177
List-mode to projection data: lm2pd...177
Summing projection data files: sumProjdata ...177
Analytic image reconstruction: ssrb_fbp ..178
Visualization tools ..179
Stochastic Image Ensemble method ..179

Introduction...179
Getting Started ..180
Program Parameters and Flags...182
Analysis..184

vi

22. Radiotherapy application..187
Geometrical modules...187

JAWS module ..187
MLC module ...187

Using phase spaces ..195
Writing phase spaces..195
Phase space text file..197
Phase space histograms ...197
Reading phase spaces...198
Adding extra information to a phase space..199
Reusing a particle at a phase space without filling the phase space file 200

Optimisation of a linac simulation ..201
Cuts optimisation ...201
Electromagnetic parameters optimisation ..201
Particle splitting ..201
Killing particles at big X/Y ...202

Scoring dose in phantom...203
Saving scores and score errors in text file ...204
Saving scores and scores squared in binary file ...204
Saving scores in histograms ..205

Analysis utilities ...206
Summing phase space files ...206
Making histograms out of a phase space file..207
Merging ’sqdose’ files ..208
Merging ’3ddose’ files..208
Making histograms out of a ’sqdose’ file ..208
Automatic determination of production cuts for an accelerator

simulation...210
Automatic determination of production cuts for a dose in a phantom

simulation...211
Automatic determination of user limits for an accelerator simulation ..211
Automatic determination for a dose in phantom simulation212

23. DICOM utilities ..213
24. Magnetic field manager ...215
25. Optimising the CPU time of your application..217

Knowing where the time is spent ..217
Production cuts...217
Killing particles of small energy ..217
Killing particles...218
Optimising the particle generation..218
Limiting the number of user actions ...218
Using variance reduction techniques ..218

26. Appendix A..219
Using parameters ...219

Checking the usage of parameters ...219
Managing the input data files...219
Random number seeds..220

Changing the random engine ...220
Sending several jobs in the same machine ...221
Identifying touchables ...222
Using asterisks to get volume, particle and material names223
Using particle names ...223

27. Appendix B: C++ utilities ...227
Converting a Geant4 example into a GAMOS example.....................................227
Creating your plug-in ..228
Using a parameter in your C++ code ..229
Event classification by interaction types...230
Structure of GAMOS..231

vii

Bibliography ..233

viii

Chapter 1. Introduction

About this document
This manual refers to GAMOS version 3.0.0. It is written in DocBook and it is main-
tained at the following address

http://fismed.ciemat.es/GAMOS/GAMOS_doc/GAMOS.3.0.0/GamosUsersGuide_V3.0.0.pdf

We will use through this manual many terms common to the Monte Carlo simula-
tion terminology and specifically to the Geant4[1] terminology. If you are new to
it, please read before, for example, the Geant4 documentation [2]. We have tried
though to make this manual self-consistent, and we hope that, unless you need a
deep knowledge of the Geant4 software you will not need to refer to any further
documentation.

If you find that some of the instructions given here do not give the expected result,
please use the GAMOS bug report system

http://telemaco.ciemat.es/bugzilla

and detail the problem, the GAMOS version and providing as much information
as possible. We will also warmly welcome any kind of comment or suggestion you
would like to send us about this guide, or about the GAMOS functionalities or user
interface.

If you have some questions about something you do not understand or want to ask
for some new functionality in GAMOS, please use the GAMOS Discussion Forum

http://groups.google.com/group/gamos_users

Introduction to GAMOS
The acronym GAMOS stands for “Geant4-based Architecture for Medicine-Oriented Sim-
ulations”. It is therefore a Monte Carlo simulation software and it is based on the
Geant4 toolkit [1]. The objective of GAMOS is to provide a software framework that
serves the unexperienced user to simulate his/her project without having to code
in C++ and with a minimal knowledge of Geant4, and at the same time, let an ad-
vanced user add new functionalities and easily integrate it with the rest of GAMOS
functionality.

We have also tried to provide you with several tools that help you understand in de-
tail your simulation (controlling the verbosity, making histograms about many vari-
ables, scoring different quantities, etc.), as well as other tools to help you in optimis-
ing your simulation. GAMOS is composed of a core software that covers the main
functionality of a Geant4 simulation and a set of applications for specific domains.

Structure of GAMOS
If you loook into GAMOS.3.0.0 directory you can find several directories. The direc-
tories tmp, lib, bin and module are internal directories created at GAMOS compilation.
The other directories are the following:

• source: this is the directory where the GAMOS C++ code lies. You will probably not
have to care about this, unless you are an advanced user and need to develop new
code.

• examples: some first examples. We recommend you that after the GAMOS installa-
tion you run the example examples/test/test.in

1

Chapter 1. Introduction

• tutorials: you can find four step-by-step tutorials: Histogram and Scorers, PET, Radio-
therapy and plug-in’s. They include several exercises with increasing difficulty, and
the exercise outputs as well as the exercise solutions are provided. We recommend
you to follow one or several of these tutorials to become acquainted with GAMOS.

• analysis: some utilities that may serve you to analyse your output.

The plug-in concept
To provide the user with a big flexibility in choosing different simulation components
(geometry, physics, user actions, histograms, ...) and combining them to his/her will
in a simple way, GAMOS is based on the plug-in concept. This means that the “main”
program runs without predefined components and the user tells it which compo-
nents are being loaded at run time (without needing to recompile) by simply listing
them in a text input file. This mechanism also lets the user define a new component
that was not foreseen by GAMOS and easily tell GAMOS to use it together with any
other of his/her own components or GAMOS components.

A common example to better understand the plug-in concept is the plug-in’s that
are installed on your computer when you open some Internet page with your web
browser. Your web browser can use these plug-in’s to get an extra functionality (view-
ing videos, animated figures, ...) without your having to recompile it and even if the
web browser designers had never before heard of the new plug-in.

For each of the simulation component types we will describe in the corresponding
section which is the command to select it and how to transform a new user compo-
nent into a GAMOS plug-in.

For the implementation of plug-in’s GAMOS has chosen the CERN library SEAL [3
].

2

Chapter 2. Getting started

This chapter explains the practical details to obtain the GAMOS code, compile and
run it.

Getting the code and installing it
GAMOS has been tested in over ten Linux and MacOS distributions and compilers.
Each new release is tested with over sixty tests in three different operating systems.

You can download GAMOS from http://fismed.ciemat.es/GAMOS

GAMOS depends on Geant4 and also on CLHEP [4] and, optionally, ROOT[5]. To
download and install everything you can follow the instruction in the ’Code down-
load’ area. As explained there you need to get first the installation scripts and un-
compress them in the scripts directory (you may do it automatically by downloading
the scripts installation utility from the web page). After that you just need to type the
command

./installGamos.sh MY_INSTALLATION_DIR

where MY_INSTALLATION_DIR is the directory where you want to install GAMOS.

This command will download the GAMOS code as well as CLHEP, Geant4 and, op-
tionally, ROOT packages, and will compile them all. Be sure that you have installed in
your system the X11 libraries in the directory /usr/X11R6/lib or /usr/local/lib or /usr/lib
(check for the following libraries: libXmu.so , libXt.so, libXext.so, libX11.so, libICE.so. 1

as well as the OpenGL libraries (check for the following libraries: libGL.so, libGLU.so).
If the OpenGL libraries are not found, GAMOS will ask you if you want to con-
tinue without them. In case of positive answer, GAMOS will be installed without
OpenGLX visualisation (but still with VRML visualisation). If the X11 libraries are
not found, GAMOS will ask you if you want to continue without them. In case of
positive answer, GAMOS will be installed without OpenGLX visualisation (but still
with VRML visualisation) and without ROOT. ROOT has some extra checks for li-
braries, like libXpm.so. If you cannot install some of these libraries, you may decide
to install GAMOS without ROOT.

If you do not want to install ROOT, you may set the enviromental variable
GAMOS_NO_ROOT to 1 before typing the installation command.

After all the code is compiled, follow the instructions on how to run an example.

Tips for installation in Ubuntu
If you are using the Ubuntu Linux distribution you have to take into account that
the default installation does not include the software for C++ developement. There-
fore, if you do not have this software in your installation youd should download the
following packages:

• g++

• libcxxtools-dev

• libx11-dev

• libxmu-dev

• libxi-dev

• libxft-dev

• libxpm-dev

• libxext-dev

• freeglut-dev

3

Chapter 2. Getting started

• dpkg-dev

Tips for installation in Fedora Core
If you are using the Fedora Core Linux distribution you have to select the software
development tools at your installation. If you do not have this software in your in-
stallation youd should download the following packages:

• gcc-c++

• libX11-devel

• libXmu-devel

• libXi-devel

• libSM-devel

• libICE-devel

• freeglut-dev (this package has some dependency problems, so you should select
the option --skip-broken)

• libXft-devevl

• libXpm-devel

Running an example
If you have done a standard installation, you will have your code compiled and ready
to run.

Before running any example you have to set some configuration variables, mainly
where you have installed GAMOS and the depending libraries. This is all done in the
file

MY_GAMOS_DIR/config/confgamos.sh 2

or

MY_GAMOS_DIR/config/confgamos.csh

Therefore before running you have to source this file:

source MY_GAMOS_DIR/config/confgamos.sh

or

source MY_GAMOS_DIR/config/confgamos.csh

depending on your shell flavour. Remember to type this command every time you start a
new session to run GAMOS.

To run your application inside GAMOS you do not have to write a “main” program,
as GAMOS provides a unique “main” that serves to run any application.When you
run the GAMOS “main” it will load and call the components you want (geometry,
physics, generator, hits building, histograms, ...) by simply defining them in the input
command file. Therefore to run your application simply type

gamos MY_INPUT_FILE

where MY_INPUT_FILE is a typical Geant4 macro file that includes Geant4 and
GAMOS commands.

The minimum set of commands that you need are those to select a geometry, a
physics list and a generator, to initialize Geant4 and to run N events. In this case
your input file may look like this one:

4

Chapter 2. Getting started

/gamos/setParam GmGeometryFromText:FileName test.geom
/gamos/geometry GmGeometryFromText
/gamos/physicsList GmEMPhysics
/gamos/generator GmGenerator
/gamos/generator/addSingleParticleSource MY_SOURCE e- 1*MeV

/run/initialize

/run/beamOn 10

This will create a simple geometry, the one described in the file test.geom lying in the
current directory or in the MY_GAMOS_DIR/data directory, set the physics as the
low energy electromagnetic Geant4 physics and run 10 events with an electron of 1
MeV as primary particle.

You can then add any of the command described in this document, or any Geant4
command or any command you created yourself.

Beware that Geant4 is a state machine, and the list of available commands depends on
the current state. The main state change is triggered by the /run/initialize command,
which changes the state from G4State_PreInit to G4State_Idle. You may get a full list
of the available commands at any moment with the command /control/manual.

Compiling GAMOS
If you installed GAMOS as explained in the previous section, the compilation will be
done automatically. Then you may run your application in GAMOS by writing your
user commands without any need of compiling ever more, and therefore you do not
need to read this section.

Only if you want to extend the GAMOS functionality by providing new code, you
will have to follow the instructions in this section.

GAMOS uses the GNU make tool to manage the compilation and generation of ex-
ecutables. It uses a set of configuration files based on the Geant4 ones. Therefore, if
you are familiar to Geant4, you will find no difficulty in compiling GAMOS.

After untarring the installation file, you will have a directory called
MY_GAMOS_DIR (substitute it by whatever name you used). This is the directory
where the GAMOS code is, the rest are the external libraries used by GAMOS and
the configuration utilities.

Before compiling, you have to define a few variables, mainly the location of the dif-
ferent external packages. All this is done by sourcing the file

source MY_GAMOS_DIR/config/confgamos.sh

or

source MY_GAMOS_DIR/config/confgamos.csh

To compile any directory of GAMOS, and all the directories below, you just have
to go to that directory and type make. This will compile all the .cc files found in
the src directory, build the library and the plug-in’s, and in the case of the direc-
tory GamosCore/GamosApplication it will also create the gamos executable. You may
need to type the Linux command rehash to refresh your environmental variables in
case there was no executable file before starting the compilation.

Compiling your new code
If you have created a new directory with your C++ code you have to compile it
following the Geant4 way. The implementation files should have the suffix .cc and
should be in a subdirectory called src. For the declaration files, you have a greater

5

Chapter 2. Getting started

freedom; the Geant4 way is that they have the suffix .hh and lie in a subdirectory
called include, but you can do it your own way (and after that, you have to be consis-
tent in the GNUmakefile, as explained below).

You then have to build a GNUmakefile, that will steer the compilation and the buidling
of the libray and the plug-in’s, when you type the command make. For building it
you may follow the examples in the GamosCore/GamosXXX directories. We take as
example the file GamosCore/GamosGeometry/GNUmakefile:

name := GamosGeometry
G4TARGET := $(name)
G4EXLIB := true

.PHONY: all
all: lib plugin

include $(GAMOSINSTALL)/config/binmake.gmk
include $(GAMOSINSTALL)/config/general.gmk

EXTRALIBS += -lGamosBase_Base -lGamosUtils -lGamosUserActionMgr

Let’s go one by one through the lines: In the first one you define the name of your
library:

name := GamosGeometry

The following two lines are used internally by the GAMOS scripts and are manda-
tory:

G4TARGET := $(name)
G4EXLIB := true

Then you define what you want to do when you type make:

.PHONY: all
all: lib plugin

There are several possibilities:

• lib Compile and build the library.

• plugin Build the plug-in. Use it if and only if you are creating a new plug-in.

• plugin_check Check that you are linking with all the libraries that will be needed.
This check is not mandatory, but if you do not do it and you are missing some
library, when you run you will get an error message.

• bin Build the executable. You will probably never need this, as GAMOS is based
on dynamic loading and plug-in’s, so that there is only one GAMOS executable,
which is built at installation.

The following two lines are needed for configuration

include $(GAMOSINSTALL)/config/binmake.gmk
include $(GAMOSINSTALL)/config/general.gmk

6

Chapter 2. Getting started

If you edit the file general.gmk, you will see that it is just including a different file for
each package. Therefore, instead of using it, you may include all or only a subset of
them if you do not need them all.

Finally, you define the GAMOS libraries that will be linked to yours, i.e. the libraries
of each of the files that you have included in your code 3

EXTRALIBS += -lGamosBase -lGamosUtils
-lGamosFactories -lGamosUserActionMgr

If you have doubts about which GAMOS libraries to include, you may include them
all, by including include $(GAMOSINSTALL)/config/gamos_libraries.gmk.

If you have built several levels of directories you may want to have the possibility of
typing make at the top most directory to trigger the compilation of all the directories.
To do this you just have to add a GNUmakefile at the top level directory similar to the
one at $(GAMOSINSTALL)/source/GamosCore/GNUmakefile, that we reproduce here:

include $(GAMOSINSTALL)/config/architecture.gmk

SUBDIRS = GamosUtils GamosBase GamosUserActionMgr GamosData
GamosAnalysis GamosGeometry GamosMovement GamosPhysics
GamosGenerator GamosSD GamosUtilsUA GamosReadDICOM
GamosScoring GamosApplication

include $(GAMOSINSTALL)/config/globlib.gmk

You only have to change the line starting by SUBDIRS =, to list the name of your
subdirectories.

Notes
1. You may type for example ’locate libXmu.so’ to know where they are in they are

not in the mentioned directories

2. By MY_GAMOS_DIR we mean the installation directory you have chosen, i.e.
MY_INSTALLATION_DIR, plus the directory where the GAMOS version is in-
stalled, i.e.MY_INSTALLATION_DIR/GAMOS.3.0.0

3. For the external packages the set of libraries is fixed and defined in the configu-
ration files

7

Chapter 2. Getting started

8

Chapter 3. Geometry

You can describe your detector in three different ways: by defining your setup in a
text file, by using one of the geometry examples provided or in the standard Geant4
way, by writing your C++ class inheriting from G4VUserDetectorConstruction.

Building your geometry with a text file
You can define your geometry in a simple text file as described in the following sub-
section. 1

You can also use as example the one at

MY_GAMOS_DIR/data/test.geom

Once your file is ready, you have to tell GAMOS to use your geometry definition, first
telling the name of your file with the command

/gamos/setParam GmGeometryFromText:FileName MY_FILENAME 2

and then telling GAMOS to use the constructor of geometry from text file

/gamos/geometry GmGeometryFromText

Description of geometry text file format
The description of the geometry is based on tags. A tag is a word that appears at the
first one in a line and sets what the line means.

There are no constraints on the order of the tags in the file, except some logical restric-
tions, e.g. a volume cannot be positioned or given attributes if it has not been defined
(e.g. no ’:PLACE’, ’:VIS’, ’:COLOUR’, ’:CHECK_OVERLAPS’ tags before ’:VOLU’
tag).

We will explain in this section the tags used to describe the geometry, also explaining
the meaning of each of the words that follow the tag, and an example of each tag.
Tags can be given with any combination of upper case and lower case letters. Each
tag has a fixed number of arguments, known by the parser; therefore you may write
all arguments in a line or in several lines at your will.

Isotope
:ISOT

• Name

• Z

• N

• A

Example: :ISOT Cl35 17 18 35.

Element made of one unique isotope
:ELEM

• Name

• Symbol

• Z

9

Chapter 3. Geometry

• A

Example: :ELEM Hydrogen H 1. 1.

Element composed of several isotopes
:ELEM_FROM_ISOT

• Name

• Symbol

• Number of components

One line per isotope with

• isotope name

• fraction of number of atoms per volume

Example: :ELEM_FROM_ISOT Chlorine Cl 2 Cl35 0.4 Cl36 0.6

Material made of one element
:MATE

• Name

• Z

• A

• Density

Example: :MATE Iron 26. 55.85 7.87

Material made of a mixture of elements or materials
:MIXT

• Name

• Density

• Number of components

One line per material or element with

• material name

• proportion of material in the mixture

The components can be either all elements or all materials, but both types cannot
appear in the same mixture.

There are three mixture tags, depending of the way the proportions are defined:

• Proportions by weight fractions

:MIXT_BY_WEIGHT

This tag is equivalent to the ":MIXT" tag

• Proportions by number of atoms

:MIXT_BY_NATOMS
10

Chapter 3. Geometry

• Proportions by volume

:MIXT_BY_VOLUME

The first two tags can be used to build material mixtures out of elements or materials,
but the last tag can only be applied with material components (elements do not have
density).

Example:

:MIXT Fiber_Lead 9.29 2
Lead 0.9778
Polystyrene 0.0222

:MIXT_BY_NATOMS CO2 1.8182E-3 2
C 1
O 2

:MIXT_BY_VOLUME H-CO2 (1.214E-03+1.8182E-3)/2. 2
Hydrogen 0.5
CO2 0.5

Material properties
:MATE_MEE

• Material name

• Mean excitation energy

Example: :MATE_MEE G4_WATER 10.*eV

:MATE_STATE

• Material name

• State: Undefined / Solid / Liquid / Gas

If material is not set, it is Undefined.

Example: :MATE_STATE G4_WATER Solid

:MATE_TEMPERATURE

• Material name

• Temperature

If temperature is not set, it is STP, i.e. 273.15 kelvin. The default unit of temperature
is kelvin

Example: :MATE_TEMPERATURE G4_WATER 293.15*kelvin // 20 oC

:MATE_PRESSURE

• Material name

• Pressure

If pressure is not set, it is STP, i.e. 1 atmosphere. The default unit of temperature is
atmosphere

11

Chapter 3. Geometry

Example: :MATE_PRESSURE G4_WATER 1.5*bar

Geant4 internal database of materials and elements
Geant4 provides a list of predefined materials, whose compositions correspond to
the NIST definition [13]. Among them you can find all single elementary materials,
from Z = 1 (Hydrogen) to Z = 98 (Californium). You can use those materials when
building a volume without the need to redefine them on your ASCII (= text) file. It is
just enough that the material name you assign to a volume corresponds to the name
of one of these predefined materials (they all start with “G4_”). The Geant4 materi-
als have the mean excitation energy set explicitly, instead of allowing an automatic
calculation from its components. You may override those materials if you want, by
redefining them in your ASCII file.

Also Geant4 provides the definition of all elements from Z = 1 (Hydrogen) to Z = 107
(Bohrium). Their names are the usual symbol in the periodic table of elements (no
“G4_”). These elements take into account the isotope composition.

you can find the details of the NIST materials composition in the Geant4 file:

source/materials/src/G4NistMaterialBuilder.cc

The full list is the following:

G4_A-150_TISSUE,
G4_ACETONE,
G4_ACETYLENE,
G4_ADENINE,
G4_ADIPOSE_TISSUE_ICRP,
G4_AIR,
G4_ALANINE,
G4_ALUMINUM_OXIDE,
G4_AMBER,
G4_AMMONIA,
G4_ANILINE,
G4_ANTHRACENE,
G4_B-100_BONE,
G4_BAKELITE,
G4_BARIUM_FLUORIDE,
G4_BARIUM_SULFATE,
G4_BENZENE,
G4_BERYLLIUM_OXIDE,
G4_BGO,
G4_BLOOD_ICRP,
G4_BONE_COMPACT_ICRU,
G4_BONE_CORTICAL_ICRP,
G4_BORON_CARBIDE,
G4_BORON_OXIDE,
G4_BRAIN_ICRP,
G4_BUTANE,
G4_N-BUTYL_ALCOHOL,
G4_C-552,
G4_CADMIUM_TELLURIDE,
G4_CADMIUM_TUNGSTATE,
G4_CALCIUM_CARBONATE,
G4_CALCIUM_FLUORIDE,
G4_CALCIUM_OXIDE,
G4_CALCIUM_SULFATE,
G4_CALCIUM_TUNGSTATE,
G4_CARBON_DIOXIDE,
G4_CARBON_TETRACHLORIDE,
G4_CELLULOSE_CELLOPHANE,
G4_CELLULOSE_BUTYRATE,
G4_CELLULOSE_NITRATE,
G4_CERIC_SULFATE,

12

Chapter 3. Geometry

G4_CESIUM_FLUORIDE,
G4_CESIUM_IODIDE,
G4_CHLOROBENZENE,
G4_CHLOROFORM,
G4_CONCRETE,
G4_CYCLOHEXANE,
G4_1, 2-DICHLOROBENZENE,
G4_DICHLORODIETHYL_ETHER,
G4_1,2-DICHLOROETHANE,
G4_DIETHYL_ETHER,
G4_N, N-DIMETHYL_FORMAMIDE,
G4_DIMETHYL_SULFOXIDE,
G4_ETHANE,
G4_ETHYL_ALCOHOL,
G4_ETHYL_CELLULOSE,
G4_ETHYLENE,
G4_EYE_LENS_ICRP,
G4_FERRIC_OXIDE,
G4_FERROBORIDE,
G4_FERROUS_OXIDE,
G4_FERROUS_SULFATE,
G4_FREON-12,
G4_FREON-12B2,
G4_FREON-13,
G4_FREON-13B1,
G4_FREON-13I1,
G4_GADOLINIUM_OXYSULFIDE,
G4_GALLIUM_ARSENIDE,
G4_GEL_PHOTO_EMULSION,
G4_Pyrex_Glass,
G4_GLASS_LEAD,
G4_GLASS_PLATE,
G4_GLUCOSE,
G4_GLUTAMINE,
G4_GLYCEROL,
G4_GUANINE,
G4_GYPSUM,
G4_N-HEPTANE,
G4_N-HEXANE,
G4_KAPTON,
G4_LANTHANUM_OXYBROMIDE,
G4_LANTHANUM_OXYSULFIDE,
G4_LEAD_OXIDE,
G4_LITHIUM_AMIDE,
G4_LITHIUM_CARBONATE,
G4_LITHIUM_FLUORIDE,
G4_LITHIUM_HYDRIDE,
G4_LITHIUM_IODIDE,
G4_LITHIUM_OXIDE,
G4_LITHIUM_TETRABORATE,
G4_LUNG_ICRP,
G4_M3_WAX,
G4_MAGNESIUM_CARBONATE,
G4_MAGNESIUM_FLUORIDE,
G4_MAGNESIUM_OXIDE,
G4_MAGNESIUM_TETRABORATE,
G4_MERCURIC_IODIDE,
G4_METHANE,
G4_METHANOL,
G4_MIX_D_WAX,
G4_MS20_TISSUE,
G4_MUSCLE_SKELETAL_ICRP,
G4_MUSCLE_STRIATED_ICRU,
G4_MUSCLE_WITH_SUCROSE,
G4_MUSCLE_WITHOUT_SUCROSE,
G4_NAPHTHALENE,

13

Chapter 3. Geometry

G4_NITROBENZENE,
G4_NITROUS_OXIDE,
G4_NYLON-8062,
G4_NYLON-6/6,
G4_NYLON-6/10,
G4_NYLON-11_RILSAN,
G4_OCTANE,
G4_PARAFFIN,
G4_N-PENTANE,
G4_PHOTO_EMULSION,
G4_PLASTIC_SC_VINYLTOLUENE,
G4_PLUTONIUM_DIOXIDE,
G4_POLYACRYLONITRILE,
G4_POLYCARBONATE,
G4_POLYCHLOROSTYRENE,
G4_POLYETHYLENE,
G4_MYLAR,
G4_PLEXIGLASS,
G4_POLYOXYMETHYLENE,
G4_POLYPROPYLENE,
G4_POLYSTYRENE,
G4_TEFLON,
G4_POLYTRIFLUOROCHLOROETHYLENE,
G4_POLYVINYL_ACETATE,
G4_POLYVINYL_ALCOHOL,
G4_POLYVINYL_BUTYRAL,
G4_POLYVINYL_CHLORIDE,
G4_POLYVINYLIDENE_CHLORIDE,
G4_POLYVINYLIDENE_FLUORIDE,
G4_POLYVINYL_PYRROLIDONE,
G4_POTASSIUM_IODIDE,
G4_POTASSIUM_OXIDE,
G4_PROPANE,
G4_lPROPANE,
G4_N-PROPYL_ALCOHOL,
G4_PYRIDINE,
G4_RUBBER_BUTYL,
G4_RUBBER_NATURAL,
G4_RUBBER_NEOPRENE,
G4_SILICON_DIOXIDE,
G4_SILVER_BROMIDE,
G4_SILVER_CHLORIDE,
G4_SILVER_HALIDES,
G4_SILVER_IODIDE,
G4_SKIN_ICRP,
G4_SODIUM_CARBONATE,
G4_SODIUM_IODIDE,
G4_SODIUM_MONOXIDE,
G4_SODIUM_NITRATE,
G4_STILBENE,
G4_SUCROSE,
G4_TERPHENYL,
G4_TESTES_ICRP,
G4_TETRACHLOROETHYLENE,
G4_THALLIUM_CHLORIDE,
G4_TISSUE_SOFT_ICRP,
G4_TISSUE_SOFT_ICRU-4,
G4_TISSUE-METHANE,
G4_TISSUE-PROPANE,
G4_TITANIUM_DIOXIDE,
G4_TOLUENE,
G4_TRICHLOROETHYLENE,
G4_TRIETHYL_PHOSPHATE,
G4_TUNGSTEN_HEXAFLUORIDE,
G4_URANIUM_DICARBIDE,
G4_URANIUM_MONOCARBIDE,

14

Chapter 3. Geometry

G4_URANIUM_OXIDE,
G4_UREA,
G4_VALINE,
G4_VITON,
G4_WATER,
G4_WATER_VAPOR,
G4_XYLENE,
G4_GRAPHITE,
G4_lH2,
G4_lN2,
G4_lO2,
G4_lAr,
G4_lKr,
G4_lXe,
G4_PbWO4,
G4_Galactic

Other materials common in medical physics are also predefined
in the files MY_GAMOS_DIR/data/NIST_materials.txt and
MY_GAMOS_DIR/data/PET_materials.txt.

The full list is the following:

BaF2
BaI2
BGO
CdTe
CdWO4
CZT
CeBr3
CeCl3
CsI
GaAs
Gd2O2S
GSO
HgI2
LaBr3
LaCl3
LiF
Li2B4O7
LSO
LYSO
LuAG
LuAP
LuYAP
LuI3
NaI
PbWO4
SrI2
YAG
YAPNIST_Al2O3
NIST_Barite
NIST_BaSO4
NIST_CaO
NIST_Concrete
NIST_PMMA
NIST_PVC
NIST_Adipose Tissue (ICRU-44)
NIST_Blood, Whole (ICRU-44)
NIST_Bone, Cortical (ICRU-44)
NIST_Brain, Grey/White Matter (ICRU-44)
NIST_Breast Tissue (ICRU-44)
NIST_Cadmium Telluride
NIST_15 mmol L-1 Ceric Ammonium Sulfate Solution
NIST_Concrete, Ordinary
NIST_Concrete, Barite (TYPE BA)

15

Chapter 3. Geometry

NIST_Eye Lens (ICRU-44)
NIST_Ferrous Sulfate Standard Fricke
NIST_Gafchromic Sensor
NIST_Lung Tissue (ICRU-44)
NIST_Muscle, Skeletal (ICRU-44)
NIST_Ovary (ICRU-44)
NIST_Photographic Emulsion (Kodak Type AA)
NIST_Polyethylene Terephthalate, (Mylar)
NIST_Polymethyl Methacrylate
NIST_Polytetrafluoroethylene, (Teflon)
NIST_Radiochromic Dye Film, Nylon Base
NIST_Testis (ICRU-44)
NIST_Tissue, Soft (ICRU-44)

Solids
:SOLID

• solid name

• solid type name

• ... List of solid parameters

The meaning and order of the solid parameters is the same as in the corresponding
Geant4 solid constructor. All the Geant4 CSG and "specific" solids are implemented.
The list of solid types and the corresponding parameters is the following (for better
understanding of the solid parameters meaning we refer to the Geant4 user’s manual
[7]):

BOX: box

• X Half-length

• Y Half-length

• Z Half-length

TUBE: tube

• Inner radius

• Outer radius

• Half length in z

TUBS: tube section

• Inner radius

• Outer radius

• Half length in z

• Starting phi angle

• Delta angle of the segment

CONE: cone

• Inner radius at -fDz

• Inner radius at +fDz

• Outer radius at -fDz

• Outer radius at +fDz

16

Chapter 3. Geometry

• Half length in z (=fDz)

CONS: cone section

• Inner radius at -fDz

• Inner radius at +fDz

• Outer radius at -fDz

• Outer radius at +fDz

• Half length in z (=fDz)

• Starting angle of the segment

• Delta angle of the segment

TRD: trapezoid

• Half-length along x at the surface positioned at -dz

• Half-length along x at the surface positioned at +dz

• Half-length along y at the surface positioned at -dz

• Half-length along y at the surface positioned at +dz

• Half-length along z axis

PARA: parallelepiped

• Half-length in x

• Half-length in y

• Half-length in z

• Angle formed by the y axis and by the plane joining the centre of the faces
G4Parallel to the z-x plane at -dy and +dy

• Polar angle of the line joining the centres of the faces at -dz and +dz in z

• Azimuthal angle of the line joining the centres of the faces at -dz and +dz in z

TRAP: generic trapezoid

• Half-length along the z-axis (=pDz)

• Polar angle of the line joining the centres of the faces at -/+pDz

• Azimuthal angle of the line joining the centre of the face at -pDzto the centre of the
face at +pDz

• Half-length along y of the face at -pDz (=pDy1)

• Half-length along x of the side at y=-pDy1 of the face at -pDz

• Half-length along x of the side at y=+pDy1 of the face at -pDz

• Angle with respect to the y axis from the centre of the side at y=-pDy1 to the centre
at y=+pDy1 of the face at -pDz

• Half-length along y of the face at +pDz (=pDy2)

• Half-length along x of the side at y=-pDy2 of the face at +pDz

• Half-length along x of the side at y=+pDy2 of the face at +pDz

• Angle with respect to the y axis from the centre of the side at y=-pDy2 to the centre
at y=+pDy2 of the face at +pDz

or alternatively, if your trapezoid is a simpler one, you can use the parameters

17

Chapter 3. Geometry

• Length along z

• Length along y

• Length along x at the wider side

• Length along x at the narrower side

SPHERE: sphere

• Inner radius

• Outer radius

• Starting angle of the segment

• Delta angle of the segment

• Theta starting angle of the segment

• Theta delta angle of the segment

ORB: full solid sphere

• Outer radius

TORUS: torus

• Inside radius

• Outside radius

• Swept radius of torus

• Starting Phi angle (fSPhi+fDPhi <= 2PI, fSPhi > -2PI)

• Delta angle of the segment

POLYCONE: polycone

• Phi starting angle

• Total phi angle

• Number of z planes or Number of rz points

For each z plane:

• Position of z plane

• Tangent distance to inner surface

• Tangent distance to outer surface

For each rz corner:

• R coordinate of these corners

• Z coordinate of these corners

The software will know which if the numbers refer to plane or rz points by looking
at the number of parameters provided and comparing it with the number expected

Example:

:SOLID polyc POLYCONE 0 360 6
3 -2

3.5 -2
3.5 0.75
3.75 1
3.75 2

18

Chapter 3. Geometry

3 2

or equivalently

:SOLID polyc POLYCONE 0 360 4
-2 3 3.5
0.75 3 3.5
1. 3. 3.75
2. 3. 3.75

POLYHEDRA: polyhedra

• Phi starting angle

• Total phi angle

• Number of sides

• Number of z planes or Number of rz points

For each z plane:

• Position of z plane

• Tangent distance to inner surface

• Tangent distance to outer surface

For each rz corner:

• R coordinate of these corners

• Z coordinate of these corners

The software will know which if the numbers refer to plane or rz points by looking
at the number of parameters provided and comparing it with the number expected

Example:

:SOLID polyh POLYHEDRA 20. 180. 3 4
1900. 32.
1800. 30
1800. 0.
1900. 0.

or equivalently

:SOLID polyh POLYHEDRA 20. 180. 3 2
1800. 0. 30.
1900. 0. 32.

ELLIPTICALTUBE: elliptical tube

• Half length X
19

Chapter 3. Geometry

• Half length Y

• Half length Z

ELLIPSOID: ellipsoid

• Semiaxis in X

• Semiaxis in Y

• Semiaxis in Z

• Lower cut plane level, z

• Upper cut plane level, z

ELLIPTICALCONE: elliptical cone

• Semiaxis in X

• Semiaxis in Y

• Height of elliptical cone

• Upper cut plane level

HYPE: hyperbolic profile

• Inner radius

• Outer radius

• Inner stereo angle

• Outer stereo angle

• Half length in Z

TET: tetrahedron

• Anchor point

• Point 2

• Point 3

• Point 4

• Flag indicating degeneracy of points

TWISTEDBOX: box twisted along one axis

• Twist angle

• Half x length

• Half y length

• Half z length

TWISTEDTRAP: trapezoid twisted along one axis

• Twisted angle

• Half x length at y=-pDy

• Half x length at y=+pDy

• Half y length (=pDy1)

• Half z length (=pDz)

• Polar angle of the line joining the centres of the faces at -/+pDz

20

Chapter 3. Geometry

• Half y length at -pDz (=pDy2)

• Half x length at -pDz, y=-pDy1

• Half x length at -pDz, y=+pDy1

• Half y length at +pDz

• Half x length at +pDz, y=-pDy2

• Half x length at +pDz, y=+pDy2

• Angle with respect to the y axis from the centre of the side

TWISTEDTRD: twisted trapezoid with the x and y dimensions varying along z

• Half x length at the surface positioned at -pDz

• Half x length at the surface positioned at +pDz

• Half y length at the surface positioned at -pDz

• Half y length at the surface positioned at +pDz

• Half z length (=pDz)

• Twisted angle

TWISTEDTUBS: tube section twisted along its axis

• Twisted angle

• Inner radius at end-cap

• Outer radius at end-cap

• Half z length

• Phi angle of a segment

BREPBOX: Boundary REPresented box

• Point 1 X

• Point 1 Y

• Point 1 Z

• Point 2 X

• Point 2 Y

• Point 2 Z

• ...

• Point 8 X

• Point 8 Y

• Point 8 Z

BREPCYLINDER: Boundary REPresented cylinder

• Origin X

• Origin Y

• Origin Z

• Axis X

• Axis Y

• Axis Z

• Direction X
21

Chapter 3. Geometry

• Direction Y

• Direction Z

• Radius

• Length

BREPCYLINDER: Boundary REPresented cylinder

• Origin X

• Origin Y

• Origin Z

• Axis X

• Axis Y

• Axis Z

• Direction X

• Direction Y

• Direction Z

• Length

• Small radius

• Large radius

BREPSPHERE: Boundary REPresented sphere

• Origin X

• Origin Y

• Origin Z

• Xhat X

• Xhat Y

• Xhat Z

• ZHat X

• ZHat Y

• ZHat Z

• Radius

BREPTORUS: Boundary REPresented torus

• Origin X

• Origin Y

• Origin Z

• Axis X

• Axis Y

• Axis Z

• Direction X

• Direction Y

• Direction Z

• Length

22

Chapter 3. Geometry

• Minimum radius

• Maximum radius

BREPPCONE: Boundary REPresented polycone

• Phi starting angle

• Total phi angle

• Number of z planes

• Starting value of z

For each z plane:

• Position of z plane

• Tangent distance to inner surface

• Tangent distance to outer surface

BREPPOLYHEDRA : Boundary REPresented polyhedra

• Phi starting angle

• Total phi angle

• Number of sides

• Number of z planes

• Starting value of z

For each z plane:

• Position of z plane

• Tangent distance to inner surface

• Tangent distance to outer surface

TESSELATED : Boundary REPresented polyhedra

• Number of facets

For each facet:

• Number of points (must be 3 or 4)

• Point 1 X

• Point 1 Y

• Point 1 Z

• Point 2 X

• Point 2 Y

• Point 2 Z

• Point 3 X

• Point 3 Y

• Point 3 Z

If there are four points:

• Point 4 X

• Point 4 Y

23

Chapter 3. Geometry

• Point 4 Z

• Type of facet vertex (0 = ABSOULUTE, 1 = RELATIVE)

EXTRUDED : Boundary REPresented polyhedra

• Number of polygon vertices

For each vertex of the outlined polygon, defined in clock-wise order:

• X

• Y

• Number of Z sections

For each Z section, defined by z position in increasing order:

• Half length in Z

• Offset X

• Offset Y

• Scale

Boolean solids

The three types of Geant4 boolean solids are supported: union, subtraction and inter-
section. The same tag should be used as for normal solids, but putting as solid type
the type of boolean operation. The parameters are

• Solid name

• Solid boolean operation (UNION/SUBTRACTION/INTERSECTION)

• First component solid name

• Second component solid name

• Name of relative rotation matrix

• Relative X position

• Relative Y position

• Relative Z position

Example: :SOLID myunion UNION solid1 solid2 RM30 -11.8 12.5 0.

Volumes
There are two ways to define a logical volume. You can build if from a previously
declared solid associating a material to it

:VOLU

• Volume name

• Solid name

• Material name

Example: :VOLU HALL HALL Air

or you can skip the definition of the solid and in one unique line define the solid and
the material (valid also for boolean solids). You should then use the same format as
for the :SOLID tag, but adding as last word the material name

Example:
24

Chapter 3. Geometry

Instead of

:SOLID HALL BOX 5000. 5000. 20000.

:VOLU HALL HALL Air

use

:VOLU HALL BOX 5000. 5000. 20000. Air

Placement of a volume
All the possible ways to place a volume in Geant4 are supported: a single placement,
a parameterised one, a division, a replica and an assembly.

Single placement

:PLACE

• Volume name

• Copy number

• Parent volume name

• Name of rotation matrix

• X position

• Y position

• Z position

Example:

:VOLU yoke :TUBS Iron 3 620. 820. 1270.
:PLACE yoke 1 expHall R00 0.0 0.0 370.

Parameterisation

The parameterisations supported are the placement of several copies of a volume
along a line, in a circle and in a bidimensional grid (other types of parameterisation
may be added at user request).

:PLACE_PARAM

• Volume name

• Copy number

• Parent volume name

• Parameterisation type

• Name of rotation matrix

• Number of copies

• Step (separation between copies)

• Offset

• Extra arguments (optional, depend on parameterisation type)

There are three types of linear parameterisations, along the three axis X,Y,Z (types:
LINEAR_X, LINEAR_Y, LINEAR_Z) and a general one (type LINEAR) for which you

25

Chapter 3. Geometry

have to add as extra arguments the axis direction DIR_X DIR_Y DIR_Z. The offset
for linear parameterisations represents the distance from the centre of the first copy
to the point (0,0,0) along the line.

In the case of circle parameterisation, the circle is around the Z axis by default. If you
want a circle around another axis you can provide as extra arguments the axis and,
optionally, the position of the first copy.

There are three types of square parameterisation, in the planes XY,XZ,YZ (types:
SQUARE_XY, SQUARE_XZ, SQUARE_YZ) and a general one (type SQUARE). For

this bidimensional parameterisations you have to provide two copy numbers, two
steps and, optionally, two offsets. For the general case, SQUARE the offset is not
needed, but you have to add as extra arguments the two axis, that do not have to be
orthogonal, and, optionally, the position of the first copy. In the case of this parameri-
sation type, you have to provide two number of copies, one for each axis.

Example:

:PLACE_PARAM mytube 1 subworld2 LINEAR_X RM0 5 20. 0.

:PLACE_PARAM mytube 1 subworld1 LINEAR RM0 5 20. 0. 1. 1. 1. -50. 0. 0.

:PLACE_PARAM mybox 0 mother CIRCLE_XY RM0 30 6*deg 90*deg 15*cm

:PLACE_PARAM mybox 1 subworld2 SQUARE_XZ RM0 5 5 20. 20.

:PLACE_PARAM mybox 1 subworld1 SQUARE RM0 5 8 20. 10. 0. 1. 1. 0. 1. 0.

Be aware that putting offset = 0 means that the first copy is placed at (0,0,0). This
may be not what you want if, for example, you are filling a box with an square of
small boxes using an square parameterisation: offset 0 will mean that all the copies
are placed in the positive-positive quarter of the mother box.

Phantom parameterisation

This is a special case of parameterisation that serves to create a three dimensional grid
of equal voxels. The parameterisation is instantiated as a G4PhantomParameterisation,
so that the G4RegularNavigation algorithm is used for optimal efficiency in the navi-
gation.

The format of this parameterisation is the following

• Volume name

• Copy number

• Parent volume name

• Parameterisation type

• Name of rotation matrix

• Number of copies in X

• Number of copies in Y

• Number of copies in Z

• Step (separation between copies) in X

• Step (separation between copies) in Y

• Step (separation between copies) in Z

26

Chapter 3. Geometry

Following the rules of G4RegularNavigation the voxels must completely fill the mother
volume, therefore a container volume of appropiate dimensions should be defined as
mother volume, see the example below.

Example:

:VOLU phantom_container BOX 50. 100. 100. G4_WATER
:VOLU phantom BOX 10 10 10 G4_WATER
:PLACE_PARAM phantom 1 phantom_container PHANTOM 5 10 10 20. 20. 20.

Division

There are several ways to define a division in Geant4, by giving:

• the number of divisions (so that the width of each division will be automatically
calculated)

• the division width (so that the number of divisions will be automatically calculated
to fill as much of the mother as possible)

• both the number of divisions and the division width (this is especially designed
for the case where the copies do not fully fill the mother)

To each of these types correspond a different tag

:DIV_WIDTH

• Volume name

• Parent volume name

• Material name

• Axis of division

• Division width

• Offset (not mandatory)

:DIV_NDIV

• Volume name

• Parent volume name

• Material name

• Axis of division

• Number of divisions

• Offset (not mandatory)

:DIV_NDIV_WIDTH

• Volume name

• Parent volume name

• Material name

• Axis of division

• Number of divisions

• Division width

• Offset (not mandatory)

27

Chapter 3. Geometry

Example:

:DIV_WIDTH mybox mother AIR Z 10.

:DIV_NDIV_WIDTH mytube mother copper PHI 12 10.*deg

Replica

To define a replica the following tag must be used:

:REPL

• Volume name

• Parent volume name

• Axis of division

• Number of divisions

• Division width

• Offset (not mandatory)

Example: :REPL crystal Block X 10 5.*cm

Remember, that different to the divisions, where the solid type and dimensions are
calculated automatically be Geant4, in the case of replicas the volume name used
must be the name of a previously defined volume. This solid is not really used for
navigation but should have the correct type and dimensions for visualisation.

Assembly volumes

Assembly volumes are sets of logical volumes that are combined together, so that
they act as if there were in a real mother, but without creation of the mother.

To define assembly volumes you have to define the relative rotations and positions
of all the logical volumes

:VOLU_ASSEMBLY

• Volume name

• Number of logical volumes

• Axis of division

• Number of divisions

• Division width

• Offset (not mandatory)

One line per logical volume with

• Logical volume name

• Rotation matrix name

• position X

• position Y

• position Z

Then to place the assembly volume you can use:

:PLACE_ASSEMBLY

• Volume name
28

Chapter 3. Geometry

• Copy number

• Parent volume name

• Name of rotation matrix

• X position

• Y position

• Z position

Example:

:SOLID Crystal BOX 10 10 10
:SOLID Crystal2 BOX 5 5 5
:VOLU_ASSEMBLY CrystalSet 3
Crystal RM0 0. 0. 0.
Crystal RM1 0. 0. 20.
Crystal2 RM0 0. 20 -10

:PLACE_ASSEMBLY CrystalSet 1 expHall R00 100. 0. 0.

Rotation matrix
A rotation matrix is interpreted as the rotation that should be applied to the object in
the reference system of its mother. It can be defined in three ways:

• a) By giving the three rotation angles around the X, Y and Z axis (in this order of
rotations)

• b) By giving the polar and azimuthal angles of the X, Y and Z axis after the rotation
is applied

• c) By giving the nine matrix elements of the rotation matrix: XX, XY, XZ, YX, YY,
YZ, ZX, ZY, ZZ

The tag for the three cases is the same. The parser will know which case is meant by
the number of parameters.

a) :ROTM

• Name

• Angle of rotation around global X axis

• Angle of rotation around global X axis

• Angle of rotation around global X axis

Example: :ROTM R0 0. 0. 0.

b) :ROTM

• Name

• Polar angle for axis X

• Azimuthal angle for axis X

• Polar angle for axis Y

• Azimuthal angle for axis Y

• Polar angle for axis Z

29

Chapter 3. Geometry

• Azimuthal angle for axis Z

Example: :ROTM R0 90. 0. 90. 90. 0. 0.

c) :ROTM

• Name

• 9 parameters defining the rotation matrix

Example: :ROTM R0 1. 0. 0. 0. 1. 0. 0. 0. 1.

Module
A module is a new concept that simplifies the description of difficult pieces of a ge-
ometry. While these pieces could be built by adding several volumes and placing
them in the correct position, it is sometimes much easier to give a few parameters
that describe them and GAMOS will take care of making all the calculations to create
the volumes and place them. The current implementation has two modules defined:
JAWS and MLC (multileaf collimators). See section on RadioTherapy for a detailed
description of these modules.

Visibility
:VIS

• Volume name

• ON or TRUE, OFF or FALSE

Example: :VIS yoke OFF

By default the visibility of all volumes is set to ON

Colour and transparency
To define the colour of a volume

:COLOUR/:COLOR

• Volume name

• Red colour proportion

• Green colour proportion

• Blue colour proportion

• Transparency

The four parameters can take a value between 0 and 1. The transparency parameter
is not mandatory.

Example: :COLOUR NDC_chamber 0.2 0.4 0.1

By default, the three colour proportions will be set to -1.

Check overlaps
Geant4 offers the possibility to check if a volume overlaps with other volumes. By
default it is not set, but you can activate it with the commands

:CHECK_OVERLAPS

30

Chapter 3. Geometry

• Volume name

• ON or TRUE, OFF or FALSE

Example: :CHECK_OVERLAPS NDC_chamber 0.2 0.4 0.1

By default, the three colour proportions will be set to -1

Use of ’*’ in names
In the case of the :VIS, :COLOUR , :MATE_MEE, :MATE_PRESSURE,
:MATE_TEMPERATURE, :MATE_STATE and :CHECK_OVERLAPS tags, you may
use ’*’ to define the volume or material name. This ’*’ will be replaced by ’any
name’. For example Crys* means all the volume names starting by ’Crys’, * means
all volume names.

Use of parameters
You can also define a parameter to set a value for later use in any tag.

:P

• parameter name

• parameter value

You can then use the parameter as: ’$’ + parameter_name

Example:

:P InnerR 12.
:VOLU yoke :TUBS Iron 3 $InnerR 820. 1270.

Units
Any value in a tag has a default unit that depends on the dimension of the value
(automatically known by the parser). The default units are the following:

• length: mm

• angle: degrees

• density: g/cm3

• atomic mass: g/mole

• temperature: kelvin

• pressure: atmosphere

The user can override the default value of a unit by indicating the unit of each value.
This can be done adding at the end of the value the unit name (see CLHEP file
Units/SystemOfUnits.h) preceded by a ’*’ character; e.g. 3*mm, 1.4*rad,...

31

Chapter 3. Geometry

Arithmetic Expressions
For any value you want to define in a tag you can use the most common mathematical
expressions instead of directly writing the figures, e.g:

3-sin(8.2/3.5)

(3+4)*(7-log(3))

You can also use parameters and units in the expressions, e.g:

7.2*$RADIUS*mm-$X_LENGTH/1.5*cm

If you use a regular expression, remember that there can only be a unit in the whole
expression, and it must be at the end.

The regular expressions used include (their meaning is evident): +, -, *, /, sin, cos ,tan
,asin ,acos ,atan ,atan2 ,sinh ,cosh ,tanh ,sqrt ,exp ,log ,log10 ,pow.

Including other files
You can nest several files by using the #include’ directive anywhere in your geometry
files.

Example: #include mygeom2.txt

Combining C++ and ASCII files
If you want to define part of your geometry with C++ and another part with ASCII
files, you should follow these instructions.

Write a C++ class inheriting from G4VuserDetectorConstruction and in the Construct()
method build the geometry from a set of ASCII files

G4tgbVolumeMgr* volmgr = G4tgbVolumeMgr::GetInstance();

volmgr->AddTextFile(“mifile1.txt”);
volmgr->AddTextFile(“mifile2.txt”);

G4VPhysicalVolume* physiSubWorld =
volmgr->ReadAndConstructDetector();

You can then use the returned G4VPhysicalVolume as the world volume or get its
logical volume and place it inside any other logical volume.

You can also use the materials and volumes of the ASCII geometry in your C++ ge-
ometry retrieving them by name. To retrieve the pointer of a material:

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();
// one volume
G4LogicalVolume* world_logic =
(geomUtils->GetLogicalVolumes("world",true))[0];

// several volumes with same name
std::vector < G4LogicalVolume* > crystal_logic =
(geomUtils->GetLogicalVolumes("crystal",exists=true));

To retrieve a logical volume

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();

32

Chapter 3. Geometry

// one volume
G4LogicalVolume* world_logic =
(geomUtils->GetLogicalVolumes("world",true))[0];

// several volumes with same name
std::vector < G4LogicalVolume* > crystal_logic =
(geomUtils->GetLogicalVolumes("crystal",exists=true));

To retrieve the physical volumes

GmGeometryUtils* geomUtils = GmGeometryUtils::GetInstance();
std::vector < G4VPhysicalVolume* > crystal_phys =
(geomUtils->GetPhysicalVolumes("crystal",exists=true));

You can find an example in the Geant4 examples directory:

examples/extended/persistency/P03/src/
ExTGDetectorConstructionWithCpp.cc

Dumping your Geant4 geometry in text file format
If you have already a Geant4 geometry written with C++ code or any other method
you can get a geometry text file by simply adding a line in your code

G4tgbGeometryDumper::GetInstance()->DumpGeometry(theFileName);

This line should be executed once your geometry has been built, for example in a
BeginOfRunAction method, or at the end of the Construct method in your detector
constructor class.

You can do this in GAMOS by simply adding in your command file the user action
named GmGeomTextDumperUA:

/gamos/userAction GmGeomTextDumperUA

The name of the output file can be set by setting the parameter (before the user action)

/gamos/setParam GmGeomTextDumperAction:OutputName FILE_NAME

Adding new tags to your input text file
You may want to add new tags to your text file and give them any meaning you
like. For example you may use your text file to define your G4Region’s and assigning
different production cuts to each region, as it will be illustrated in the following lines.

The first step is to define a class inheriting from G4tgrLineProcessor (see for example
GamosCore/GamosGeometry/include/ GmGeomTextLineProcessor.hh). You should then
define a method

virtual G4bool GmGeomTextLineProcessor::
ProcessLine(const std::vector < G4String > & wl)}

This is the method that will be invoked each time a line in your file is read, passing
to it the line as a vector of strings. In this method you should first call the default line
processor to process the standard tags defined through this chapter.

33

Chapter 3. Geometry

G4bool iret = G4tgrLineProcessor::ProcessLine(wl);

iret will be set to 1 if the tag is found, else you should process the tag yourself. For
example

if(!iret) {
//------------------------------- parameter number
if(wl0 == ":REGION") {
GmRegionCutsMgr::GetInstance()->AddRegionData(wl);
iret = 1;

}

The second step is to define a class inheriting from

G4tgbDetectorBuilder (see GamosCore/GamosGeometry/include/
GmGeomTextDetectorBuilder.hh). You should then define a method

virtual const G4tgrVolume*
GmGeomTextDetectorBuilder::ReadDetector()

to set as line processor the one you have created, and to trigger the reading of the file

//------------------- construct g4 geometry
GmGeomTextLineProcessor* tlproc =
new GmGeomTextLineProcessor;
G4tgrFileReader* tfr = G4tgrFileReader::GetInstance();
tfr->SetLineProcessor(tlproc);
tfr->ReadFiles();
//---------- find top G4tgrVolume
G4tgrVolumeMgr* tgrVolmgr = G4tgrVolumeMgr::GetInstance();
const G4tgrVolume* tgrVoltop = tgrVolmgr->GetTopVolume();
return tgrVoltop;

You should also define another method

virtual G4VPhysicalVolume* GmGeomTextDetectorBuilder::
ConstructDetector(const G4tgrVolume* tgrVoltop)

You should first call the default detector builder to build the Geant4 geometry using
the standard tags defined through this chapter.

G4VPhysicalVolume* topPV =
G4tgbDetectorBuilder::ConstructDetector(tgrVoltop);

After that you can add your code that will process your new tags

//--- Create regions
GmRegionCutsMgr::GetInstance()->BuildRegions();

Finally, in your detector construction class, inheriting from
G4VUserDetectorConstruction, you have to set up your detector builder

//---- Construct your detector builder
GmGeomTextDetectorBuilder* gtb =
new GmGeomTextDetectorBuilder;

34

Chapter 3. Geometry

//---- Inform G4tgbVolumeMgr to use your detector builder,
// instead of the default one
G4tgbVolumeMgr* volmgr = G4tgbVolumeMgr::GetInstance();
volmgr->SetDetectorBuilder(gtb);

//----- Trigger the detector construction
G4VPhysicalVolume* physiWorld =
volmgr->ReadAndConstructDetector();

return physiWorld;

You can find an example in the Geant4 examples directory:
examples/extended/persistency/P03/src/ExTGDetectorConstructionWithCuts.cc

Parallel geometries
You can define a parallel geometry by including a second file for GmGeometryFrom-
Text, with the command

/gamos/setParam GmGeometryFromText:FileNameParallel FILE_NAME FILE_NUMB ER

where FILE_NAME is the name of a file similar to the one that describe your mass
geometry (you can indeed interchange them). FILE_NUMBER is the number you as-
sociate to the parallel geometry, as you may have several parallel geometries at the
same time. The only difference between a parallel geometry file and a mass geome-
try file is that in the case of parallel geometry, the volume at the top of the hierarchy
(world volume) should not appear in the file, as Geant4 creates it automatically copy-
ing the mass world volume. This means that you should place your geometry in the
same world as the volumes of the mass geometry.

The parallel geometry will not be seen by Geant4 unless a process is instatntiated
to take care of it. To do it you can create a G4ParallelWorldScoringProcess with the
following command

/gamos/physics/addParallelProcess

When it is a parallel geometry volume boundary the one that limits the step, the
process that defined the step will be called parallelWorldProcess_N, where N is the
number you gave to the parallel geometry that is acting.

The G4ParallelWorldScoringProcess process takes care of changing the touchable
so that it points to the parallel geometry, therefore if an scorer acts on a step, the
G4PreStepPoint and G4PostStetPoint will return a touchable corresponding to a
volume of the parallel geometry in case the track navigates in it, else a touchable of
the mass geometry. Nevertheless, the G4VPhysicalVolume is not cahnged and it will
always point to the mass geometry volumes. In this way the user can access at
the same time the volume of the parallel geometry and the volume of the mass
geometry (see an example in the Histograms and scorers tutorial). The user must be
aware that is the scorer mechanism that makes these changes, therefore the user
actions will not see the parallel geometry. Please ask for this functionality in case
you think you need it.

Simulating materials and interactions in parallel geometries
In any case, Geant4 can navigate in the parallel geometries, but the materials are
never taken into account. This means that a track never interacts on a parallel geome-
try volume. We have developed in GAMOS an utility that allows to have interactions
in both geometries at the same time, that is to have real overlapping geometries. This
maybe useful for example to simulate the real geometry of brachytherapy seeds or
ionisation chambers inside a phantom. This utility is based on making a copy of the
parallel geometry in the mass geometry. When a particle is going to enter the parallel

35

Chapter 3. Geometry

geometry volume its position is shifted to the border of its copy in the mass geome-
try and when a particle exits the parallel volume copy its position is shifted back to
the border of the parallel geometry. To activate this utility you just have to use the
command.

/gamos/geometry/copyParallelToMassGeom VOL_NAME_1 VOL_NAME_2 ...
VOL_NAME_N DISP_X DISP_Y DISP_Z

where VOL_NAME_1 VOL_NAME_2 ... VOL_NAME_N is the list of volumes in a
parallel geometry that will be copied and DISP_X DISP_Y DISP_Z are the values of
the displacement vector.

The user should check that the copy of the parallel geometry volumes in the mass ge-
ometry are inside the user-defined world volume, and also that they do not overlap
with any of the preexisting mass geometry volumes. GAMOS will check that these
two conditions are satisfied, but only a warning message will be sent. We also recom-
mend taht the copy is placed far from the rest of the mass geometry volumes. If this
is not done, it may happen taht some particles navigating in the mass geometry will
enter the copy, what is a non-physical situation. Alternatively, the user can take care
of killing the particles that approach the copy, for example by using the user action
GmKillAtSteppingActionUA with the corresponding filters.

Building simple geometries
There are several examples of geometries for common medical devices, for example
the ones you find in the PET directory and the one to build simple voxelised phan-
toms. They have been designed to be used for describing different devices by simply
changing the configuration data. For more details, please see the corresponding sec-
tions of this manual.

Building a simple geometry with one material
This geometry can serve for example when you want to get the cross section of a set
of materials, so you do not really need to define any geometry, but just a fake one
containing the materials you need so that you can use the Geant4 utilities to get the
cross sections.

To use this, you have to set the geometry to :

/gamos/geometry GmGeometryUseMaterials

The file name where you can define the materials (unless you want to use the Geant4
predefined ones) can be set with the parameter:

/gamos/setParam GmGeometryUseMaterials:FileName FILE_NAME

Then you have to set a list of maeterials with the parameter:

/gamos/setParam GmGeometryUseMaterials:Materials MATE_1 MATE_2 ..

The geometry to be built will be a list of volumes, on with each material.

You can see an example on the use of this utility at tutorials/ShieldingTutorial/exercise5.

Building your geometry with C++ code
You can build your geometry by writing your C++ class inheriting from
G4VUserDetectorConstruction (see example in [7]). After that you have to
transform it into a GAMOS plug-in. To learn how to do this, see the instructions in

36

Chapter 3. Geometry

the section Creating your plug-in, using the GmGeometryFactory, or see the example
examples/N02.

Reading DICOM files

Converting a DICOM file to a simulation file
GAMOS is able to read the patient data resulting from a CT scan in DICOM format.
The first step is to change the DICOM format into a format readable by GAMOS con-
verting the Hounsfield nubmers into material and density information. To do this
you can use the utility at analysis/DICOM, which is based from the Geant4 exam-
ple examples/extended/medical/DICOM.. We describe here the procedure you have to
follow.

The first step is to write a file named Data.dat. This file has the following information:

• A line with the compression value.

• A line with the number of files

• A line for each file name (to these names it will be added the suffix .dcm to read
the DICOM files in their original format)

• The number of materials you want to use

• - A line for each material describing its name and the upper bound of the density
interval. The materials should be described in increasing order of density. The vox-
els with a density between 0. and the first upper bound will be assigned to the first
material, those with a density between the first upper bound and the second upper
bound will be assigned to the second material , etc.

Each .dcm corresponds to a Z slice. For each file a .g4dcm will be written with the ma-
terial/density information. The Z slices may be merged at runtime to form a unique
patient volume (in this case the different slices have to be contiguous in Z) if you set
the enviromental variable DICOM_MERGE_ZSLICES to 1.

The DICOM images pixel values represent CT Hounsfield numbers (related to the
electronic density) and they should be converted, first, to a given density and then
to a material type. The relation between CT number and density is more or less lin-
ear. The file CT2Density.dat contains the calibration curve to convert CT (Hounsfield)
number to phy sical density. The example Data.dat provided with the GAMOS distri-
bution contains the assignment of material densities to materials as recommended by
the International Commission on Radiation Units and measurements (ICRU) report
46.

In the class DicomDetectorConstruction, it is defined a density interval:

G4double densityDiff = 0.1;

This means that the voxels of each material will be grouped in density intervals of
0.1 g/cm3 and a new material will be created for each group of voxels.

After filling your data files, you just have to run the executable:

buildG4Dicom

DICOM file format
The DICOM files are converted to a simple text format. You may create your own file
with the following format (see e.g. 1.g4dcm):

37

Chapter 3. Geometry

• A line with the number of materials

• A line for each material with its index and name (the same name of materials that
you constru ct as G4Material’s)

• A line with the number of voxels in X, Y and Z

• A line with the minimum and maximum extension in X (mm)

• A line with the minimum and maximum extension in Y (mm)

• A line with the minimum and maximum extension in Z (mm)

• A number of lines containing the nVoxelX*nVoxelY*nVoxelZ material indices (one
per voxel)

• A number of lines containing the nVoxelX*nVoxelY*nVoxelZ material densities
(one per voxel)

The same information is also used to fill a file in binary format, that contains the same
information as the text format. Its name ends in .g4dcmb, instead of .g4dcm.

Reading a DICOM file in a GAMOS job
To read the file produced by the DICOM utility you should define as your geometry
the class

/gamos/geometry GmReadPhantomG4Geometry

if you use the Geant4 text format, or

/gamos/geometry GmReadPhantomG4BinGeometry

if you use the Geant4 binary format

You should have then a file where your phantom is described, whose name is set
with the parameter

/gamos/setParam GmReadPhantomGeometry:Phantom:FileName MY_FILENAME

and another file where you describe the rest of your geometry (at least the world
volume where the phantom is placed). The name of this file is set with the parameter

/gamos/setParam GmReadPhantomGeometry:FileName MY_FILENAME

In a phantom file, the voxels of the same material may have a different density.
GAMOS allows you to group densities in intervals. You have to set true the parame-
ter

/gamos/setParam GmReadPhantomGeometry:RecalculateMaterialDensities 1

and choose the interval width with the parameter

/gamos/setParam GmReadPhantomGeometry:Phantom:DensityStep DENSITY_INTERVAL

so that that the voxels of each material will be grouped in density intervals of DEN-
SITY_INTERVAL and a new material will be created for each group of voxels.

The navigation in the voxels is done using the Geant4 algorithm,
G4RegularNavigation, that is the optimal one for regular geometries (see [8]). The
user may select if when a track navigates through contiguous voxels with the same
material the frontier between them will be skipped or not, with the parameter

/gamos/setParam GmReadPhantomGeometry:Phantom:SkipEqualMaterials VALUE

that by default takes a value of 1.

For testing purposes, other navigation algorithms may be selected, namely voxel nav-
igation with 1-dimensional optimization (that occupies similar memory as Regular-
Navigation but is very slow)

/gamos/setParam GmReadPhantomGeometry:Phantom:RegularStructureID 0

38

Chapter 3. Geometry

or 3-dimensional optimization (that occupies a lot of memory but it is almost as fast
as G4RegularNavigation when no equal materials skipping is used)

/gamos/setParam GmReadPhantomGeometry:Phantom:OptimAxis kUndefined

GAMOS is also able to read the EGSnrc/DOSXYZnrc format for DICOM files. Simply
use

/gamos/geometry GmReadPhantomEGSGeometry

and the rest of parameters are the same as for the Geant4 DICOM files.

By default every phantom is placed in the world volume. If you want to place it into
another physical volume, you can set the parameter

/gamos/setParam GmReadPhantomGeometry:MotherName PHYSVOL_NAME

By default the name of the voxels is phantom, and this is the name that you should
use in you commands. You may change it with the parameter

/gamos/setParam GmReadPhantomGeometry:VoxelName VOXEL_NAME

It is also possible to displace the phantom from its (0,0,0) position in the mother vol-
ume. To do it you have to set the parameter:

/gamos/setParam GmReadPhantomGeometry:InitialDisplacement DISP_X DISP_Y
DISP_Z

And to rotate it around the X axis, then Y axis and finally Z axis around the phantom
centre you can use the parameter:

/gamos/setParam GmReadPhantomGeometry:InitialRotAngles ANGLE_X ANGLE_Y AN-
GLE_Z

Partial phantom geometries
The DICOM files always describe a parallelepiped geometry, including air around
the real patient, animal or phantom. It may be that you have a CT DICOM file that
you want to simulated inside a PET scanner or a radiotherapy accelerator and it
does not fit becuase this air overlaps with the machine. In this case you may use
a part of your .g4dcm file , taking the parallelepipedal DICOM geometry and in-
tersecting it with some volume to create a new file. The volume can be one in the
Geant4 volume or a virtual one you create. To do this you can follow the example
in analysis/DICOM/buildPartialDICOM. You have to run a GAMOS job with an in-
put file similar to the one in that directory buildPartial_G4Volume.in. The physics and
primary generator can be anyone, but for the geometry you have to use GmReadPhan-
tomG4Geometry to read your .g4dcm file. Then you have to add a command:

/gamos/geometry/DICOM/intersectWithG4Volume VOLUME_NAME

where VOLUME_NAME is the name of a volume defined in your geometry.

Alternatively you may use a virtual volume you create for the accasion, in a similar
way as it is doen at buildPartial_userVolume.in. In this case you have to add a com-
mand:

/gamos/geometry/DICOM/intersectWithUserVolume POS_X POS_Y POS_Z ANG_X
ANG_Y ANG_Z SOLID_TYPE SOLID_PARAM_1 SOLID_PARAM_2 ...

where POS_X POS_Y POS_Z is the position of the centre of the volume, ANG_X
ANG_Y ANG_Z are the angles of rotation around X, Y and Z axis, and then it comes
the solid type and paramter with the same format as the one used to define a solid in
the geometry text file format.

The file format is slightly different than that of the .g4dcm files. The start is the same:
list of materials, number of voxels and phantom dimensions (as if it were the origi-
nal parallelepiped). Then it comes the information about which voxels are used and
which not: for each Z slice and for each Y slice there is a line indicating the X index

39

Chapter 3. Geometry

of the first voxel used and that of the last voxel used (-1 -1 if no voxel is used in that
X row). The rest of the file is also similar: the list of voxel material indices and the list
of voxel densities.

To read this file the geometry to be used is:

/gamos/geometry GmReadPhantomG4Geometry

Simple phantom geometries
The user may build simple regular phantom geometries without the need of writing
a DICOM file by using

/gamos/geometry GmSimplePhantomGeometry

The number of voxels is defined with the parameter

/gamos/setParam GmSimplePhantomGeometry:NVoxels NVOXEL_X NVOXEL_Y
NVOXEL_Z

The minimum and maximum extensions in the three axes are defined with the pa-
rameter

/gamos/setParam GmSimplePhantomGeometry:PhantomDims MIN_X MAX_X MIN_Y
MAX_Y MIN_Z MAX_Z

Then you can divide the phantom in different regions along the Z axis with the pa-
rameter

/gamos/setParam GmSimplePhantomGeometry:MaterialZVoxels NZ_1 NZ_2 ...

where NZ_i is the number of voxels along Z of the i region.

Then you can assign the material and material densities of each Z region with the
parameters

/gamos/setParam GmSimplePhantomGeometry:MaterialNames MATERIAL_1
MATERIAL_2 ...

/gamos/setParam GmSimplePhantomGeometry:MaterialDensities DENSITY_1
DENSITY_2 ...

Setting off visualization of phantom geometries
As the phantom geometry is not built with the text file format, the tag :VIS, that
serves to set off the visualization, cannot be used for the phantom and the phantom
container. Instead you may use the following parameters:

/gamos/setParam GmReadPhantomGeometry:Phantom:VisOff TRUE

/gamos/setParam GmReadPhantomGeometry:PhantomContainer:VisOff TRUE

Movements
Thanks to the functionality of Geant4, it is possible to displace or rotate a volume
during a run. To do this in GAMOS you have first to select the volume you want to
move and if you want to move it after a certain number of events or after a certain
time is elapsed (the time will be checked after each event, therefore the time interval
will only be approximated). You also have to choose how much you want to move it
and the axis (the axis of displacement or the axis around which happens the rotation).
You have then to set the interval of events or time between movements. After you
can define an offset so that the first interval does not start at 0. Finally you can choose
that your movement is done forever (i.e. until the number of events in the run are
exhausted) or it is only done N times.

40

Chapter 3. Geometry

The commands to tell GAMOS to make a movement are:

/gamos/movement/moveEachTime

if you want that the movement happens after a certain interval of time, and

/gamos/movement/moveEachNEvents

if you want that the movement happens after a certain number of events.

In both cases the command has to be followed by these arguments:

MOVEMENT_TYPE VOLUME_NAME VALUE AXIS_X AXIS_Y AXIS_Z
TIME_INTERVAL/NEVENT_INTERVAL

where MOVEMENT_TYPE can be displace or rotate

where the first word has to be either displace or rotate

VOLUME_NAME must be one of the Geant4 volumes of your geometry, VALUE
is the amount by which you want to displace or rotate (default Geant4 units
are assumed, i.e. ’mm’ and ’rad’; you can change them in the usual way, e.g.,
’*cm’, ’*deg’), AXIS_X AXIS_Y AXIS_Z are the three coordinates of the axes,
TIME_INTERVAL/NEVENTS_INTERAVL is the interval after which the movements
will happen. You may optionally use two extra parameters OFFSET (0 if not set) to
change the value for the first movement, and NUMBER_OF_INTERVALS(infinite by
default) to set the number of times the movement will happen..

If you want several movements in your run, you can use these commands as many
times as you want. Then after each event GAMOS will check which of the movements
must be done. If you want for example to move the same volume with different types
of movements one after the other, you can use the ’number_of_intervals’ and ’offset’
arguments to do it.

The movements are managed in GAMOS by a user event action, called GmMove-
mentEventAction, that checks at the beginning of event if the movement must be done.
Therefore you cannot forget to activate this action with the GAMOS command:

/gamos/userAction GmMovementEventAction

If you forget it, the above commands will not exist and you will get a Geant4 excep-
tion.

There is an example of GAMOS movements that you can run in the directory
MY_GAMOS_DIR/examples/test. Just run

gamos testMovement.in

and you will see an OpenGL view of a moving box.

Movement description from a file
You may implement any kind of movement in GAMOS by describing the movements
in a file. To do it you just have to use the command:

/gamos/movement/moveFromFile FILE_NAME

after instantiating the user action

GmMovementEventAction

This file must have the following format:

A first line with the following parameters:

• Name of the volume to be moved

• Type of movement. It can be Time or NEvents (see above)

• Interval of events or time between movements

• Ofsset (number of events before movement starts)

41

Chapter 3. Geometry

• Number of times movement is done

• Number of movements that are describe in the following lines

The offset and number of intervals is optional, as above

For each movement a line has to be written with the following parameters

• Displacement value

• Displacement axis X

• Displacement axis Y

• Displacement axis Z

• Rotation value

• Rotation axis X

• Rotation axis Y

• Rotation axis Z

The above format can be repeated as many times as desired, for the same volume or
other.

The following example file describes two movements: a first simple one, occurring
five times each ten events, that displaces the volume mybox 50 mm along the X axis
and rotates it 10 degrees around the Y axis, and a double movement, occurring 2
times each ten events starting form the event 50, that displaces the same volume 50
mm along the Y axis and 100 mm along the Z axis and rotates it 2 deg around the Z
axis.

mybox NEvents 10 0 5 1
50.*mm 1. 0. 0. 10.*deg 0. 1. 0.
mybox NEvents 10 50 2 2
50.*mm 0. 1. 0. 2*deg 0. 0. 1.
100.*mm 0. 0. 1. 0*deg 0. 0. 0.

Geometry utilities

Commands to print geometry objects
The command:

/gamos/geometry/printVolumeTree VERBOSE_LEVEL

serves to print the hierarchical tree of geometry volumes, starting from the world
volume. TheVERBOSE_LEVEL controls the amount of information given (each level
print also the information from previous level). It is a two digit number, each of the
two controls a different verbosity. The second digit (the one of the units) controls the
information about solids and materials:

• >=1 Prints logical volume name

• >=2 Prints solid name, material name, cubic volume and volume mass

• >=3 Prints solid parameters and visualisation attributes

The first digit (the one of the tenths) controls the information about physical volumes:

• >=1 Prints physical volume name, copy number and parent volume name

42

Chapter 3. Geometry

• >=2 Print physical volume position and rotation

• >=3 Print replica or parameterisation data if the physical volume is of this type

The command:

/gamos/geometry/printTouchables

Print the list of all touchables and for each one: touchable name, solid type, material
name, global position and rotation and local position and rotation

C++ utilities
There is a set of geometry utilities that are meant to help the user that is writing some
C++ code to for example debug the geometry, get a touchable or a volume by name,
etc. They are all in the GmGeometryUtils class, which is a singleton. To use them in
your C++ code you can do it like in the following example:

GmGeometryUtils::GetInstance()->DumpG4LVList();

We list here the available methods, with an explanation of their functionality:

• void DumpSummary(std::ostream& out = G4cout): Dumps a summary of the ge-
ometry, i.e. number of solids, logical volumes, physical volumes, touchables and
materials

• void DumpG4LVList(std::ostream& out = G4cout): Dumps list of logical volumes

• void DumpG4LVTree(std::ostream& out = G4cout): Dumps the hierarchy of logical
volumes

• void DumpG4PVLVTree(std::ostream& out = G4cout): Dumps in the following order:

1. a logical volume with details

2. list of physical volumes that are daughters of this logical volume with details

3. list of logical volumes daughters of this logical volume and for each go to 1

• void DumpMaterialList(std::ostream& out = G4cout): Dumps list of materials

• void DumpSolid(G4VSolid* sol, size_t leafDepth, std::ostream& out = G4cout): Dumps
a solid with its attributes

• void DumpLV(G4LogicalVolume* lv, size_t leafDepth, std::ostream& out = G4cout):
Dumps a logical volume with its attributes

• void DumpPV(G4VPhysicalVolume* pv, size_t leafDepth, std::ostream& out = G4cout):
Dumps a physical volume with its attributes

• G4LogicalVolume* GetTopLV(): Gets a pointer to the logical volume on top of the
geometry hierarchy

• G4VPhysicalVolume* GetTopPV(): Gets a pointer to the physical volume on top of
the geometry hierarchy

• G4Material* GetMaterial(const G4String& name, bool exists = 1): Gets the material
with the given name

• std::vector<G4LogicalVolume*> GetLogicalVolumes(const G4String& name, bool exists
= 1): Gets the list of logical volumes with the given name

• std::vector<G4VPhysicalVolume*> GetPhysicalVolumes(const G4String& name, bool ex-
ists = 1): Gets the list of physical volumes with the given name

43

Chapter 3. Geometry

• std::vector<GmTouchable*> GetTouchables(const G4String& name, bool exists = 1): Gets
the list of touchables with the given name.

• std::set<G4String> GetAllSDTypes(): Gets all distinct sensitive detector types

Magnetic field
You can set a uniform magnetic field with the command

/gamos/magneticField/setField FIELD_X FIELD_Y FIELD_Z

where FIELD_X FIELD_Y FIELD_Z are the field values along the three axes. Remem-
ber than in Geant4 internal units 1 Tesla is equal to 0.001; therefore if you do not use
any unit it will be understood as 1, that is 1000 Teslas.

Local magnetic field
You can set a uniform magnetic field uniquely to a list of volumes. To do it use the
command

/gamos/magneticField/setLocalField FIELD_X FIELD_Y FIELD_Z VOLUME_1
VOLUME_2 ... VOLUME_N

where FIELD_X FIELD_Y FIELD_Z are the field values along the three axes. And
VOLUME_1 VOLUME_2 ... VOLUME_N are the list of volumes to which the mag-
netic field is attached.

Notes
1. This format is in the official Geant4 release since geant4.9.1

2. The default path to look for this file is defined by the variable
GAMOS_SEARCH_PATH. For details see section on Managing the input data files

44

Chapter 4. Generator

GAMOS offers several primary generators: the general one, which allows you to se-
lect among many particles and generator distributions, one that reads the primary
particles from a text file and anothre one that reads them from a binary file. Alterna-
tively you may create your generator in the standard Geant4 way, by writing your
C++ class inheriting from G4VUserPrimaryGeneratorAction.

Using GAMOS generator

Introduction
The GAMOS generator provides several time, energy, position and direction distri-
butions that the user may combine to his/her will. The user can select to generate as
primary particles one or several single particles together with one or several isotopes
and set any of the available time, energy, position or direction distributions for each
one of the single particles or isotopes.

We describe below the commands to select the single particles, the commands to
select the isotopes and then the commands for selecting the time, energy, position
and direction distributions.

The first command you have to use is the one that tells GAMOS that you want to use
the GAMOS generator:

/gamos/generator GmGenerator

This command, apart from instantiating the GAMOS generator manager, also instan-
tiates the messenger. Therefore, if you forget to write this command first, the other
generator commands described below will not exist and Geant4 will throw an excep-
tion.

After this command you have to add one or several particle sources (there is no de-
fault primary particle source, therefore if you do not choose one, GAMOS will throw
an exception). You may combine several particle sources in each event by repeat-
edly using the commands described below. Each type of particle source has default
distributions of time, energy, position and direction, that you may change with the
commands described below.

An important point not to forget is that when you define a particle source you have
to give it a name. This name serves to distinguish it when you want later to change
its time, energy, position or direction distribution.

Particle sources

Single particle source
To add a single particle source you have to use the command

/gamos/generator/addSingleParticleSource SOURCE_NAME PARTICLE_NAME
ENERGY

SOURCE_NAME is the name of this source, that you have to use if you want later to
change its time, energy, position or direction distribution.

PARTICLE_NAME can be any of the Geant4 particles 1

ENERGY is the initial energy of the particle.

If you don’t change any property the particle will be generated at time 0., position
(0,0,0) and random direction.

45

Chapter 4. Generator

If you are using optical photons as primary generator particles, you may set the po-
larization using the parameter:

/gamos/setParam SOURCE_NAME:Polarization POLARIZ_X POLARIZ_Y POLARIZ_Z

Isotope source
GAMOS implements an isotope generator, that simulates the activity of different iso-
topes that decay in one or several photons, electrons or positrons. First a file is read
with the description of the isotope decays in a format as the one that can be found
at MY_GAMOS_DIR/src/GamosCore/GamosGenerator/test/isotopes.dat, part of which we
reproduce here

:ISOTOPE Na22
215.5 0.905 e+
1275.0 0.9995 gamma

:ISOTOPE F18
249.8 0.967 e+

For each isotope there must be a first line starting by :ISOTOPE and followed by the
isotope name. Then there is a line for each of the possible isotope decays with three
columns describing the decay particle energy, the probability of the decay and the
particle type. This file contains the most common isotopes in medical physics. If you
want to use another isotope you can add it following the format described above.

If you selected this generator, each event will be generated with one of several pri-
mary particles in the decay list of each of the selected isotopes. The presence of each
decay particle will occur following its corresponding probability.

To choose an isotope as particle source you have to use the command:

/gamos/generator/addIsotopeSource SOURCE_NAME ISOTOPE_NAME ACTIVITY

SOURCE_NAME is the name of this source, that you have to use if you want later to
change its time, energy, position or direction distribution.

ISOTOPE_NAME is one of the isotopes read from the input file,

ACTIVITY is the activity you want to set for that isotope2.

You may choose several isotopes by repeatedly writing this command.

This command triggers the reading of the file named “isotopes.dat” if it has not been
read yet. You may change the name of this file with the command

/gamos/setParam Generator:Isotope:FileName MY_FILENAME

To learn how to change the directory list where GAMOS looks for this file, please
read the section “Managing the input data files”.

If you don’t change any property the particle will be generated with a time distribu-
tion of type “decay”(see below), energy distribution of type “constant isotope decay”
(see below), position at (0,0,0) and random direction.

Double back to back particle source
This is a special source that generates two identical particles back to back, i.e. with
the same position, energy and time but opposite directions. To select it you have to
use the command

/gamos/generator/addDoubleBackToBackParticleSource SOURCE_NAME
PARTICLE_NAME ENERGY

46

Chapter 4. Generator

SOURCE_NAME is the name of this source, that you have to use if you want later to
change its time, energy, position or direction distribution.

PARTICLE_NAME can be any of the Geant4 particles 3

ENERGY is the initial energy of the particle.

If you don’t change any property the particle will be generated at time 0., position
(0,0,0) and random direction.

Distributions

Time distributions

• Constant time

/gamos/generator/timeDist SOURCE_NAME GmGenerDistTimeConstant TIME

All the primary particles will be generated at time 0. If you want to set it at a
different time, you can add the extra parameter TIME.

• Time changing at constant interval

/gamos/generator/timeDist SOURCE_NAME GmGenerDistTimeConstantChange
TIME_INTERVAL TIME_OFFSET

The time will increase for each event with a constant value. The interval is defined
as an extra parameter. If desired a second parameter can be added to set the offset
(the time of the first event); if the offset is not set, it is set to 0.

• Decay time

/gamos/generator/timeDist SOURCE_NAME GmGenerDistTimeDecay ACTIVITY
LIFETIME

The primary particles will be generated with a time following a typical decay dis-
tribution, with the activity of the particle source. To be concrete the time is sampled
with a Poisson distribution that is obtained as follows:

rnd_poiss = -(1.0/ (activity/second)) * log(RandFlat::shoot());

the activity is given by the parameter ACTIVITY.

If the second parameter is set (is is not mandatory) the activity is scaled witht the
lifetime chosen.

If the particle of the source is an ion, it uses its lifetime (unless set by the above
parameter.

A warning is due here: if a particle is an ion and suffers radioactive decay, Geant4
selects a time corresponding to the ion and changes the time of this ion, and of the
secondary particles to this time. This means that it will not use the time set by this
time distribution. To avoid this behaviour, you have to use the user action:

/gamos/userAction GmNoUseG4RadDecayTimeUA

This user action will not only keep the time sampled with the activity set in the
time distribution, but will also treat the time of secondary products in case there
a decay chain If an ion A decays to a secondary ion B, it will happen at the time
set by the time distribution; if ion B decays, it will calculate the activity that it has
at the this time. This activity will be proportional to the activity of ion A at time 0
(the activity set by the distribution parameter) corrected by the time (the activity
diminishes proportionally to exp(-time/lifetime_A), and multiplied by the inverse
of lifetime_B:

Activity_B(t) = Activity_A(t=0) exp(t/lifetime_A) / lifetime_B

47

Chapter 4. Generator

If a third or consecutive decay happens it will also calculate the corresponding
activities, with have a more complicated formula. If the lifetimes are big, it may
happen that the activities of become very small, giving precision problems. For
this reason the minimum activity is set to 1.E-30 seconds, so that if an smaller ac-
tivity results form the calculation, it it set to 0., i.e. the decay does not happen. This
parameter can be overloaded with the parameter.

/gamos/setParam USER_ACTION_NAME:MinimumActivity>

Energy distributions

• Constant energy

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyConstant
ENERGY

All the primary particles will be generated with energy given by the parameter
ENERGY.

• Constant decay energy

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyConstantIsotope-
Decay

All the primary particles will be generated with energy given by the energy of the
isotope decay selected by the isotope source, as read from the file "isotopes.dat".

• Random flat energy

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyRandomFlat
MIN_ENERGY MAX_ENERGY

The primary particles will be generated with an energy given by a random distri-
bution between the minimum and maximum energy.

• Beta decay energy

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyBetaDecay

The energy will be sampled following the energy distribution of the
decay of the isotope 4. The energy distribution will be read from
a file called "EnergyDist."+source_particle_name+"BetaMinus.dat" or
"EnergyDist."+source_particle_name+"BetaPlus.dat". The data is taken from the
http://ie.lbl.gov/toi.html; goto “LBNL/LUND Table of Radioactive Isotopes”, then
“Nuclide search” and save the table “Beta Spectrum”. There are several examples at
MY_GAMOS_DIR/data/EnergyDist.XXX.dat.

• Gaussian

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyGaussian MEAN
SIGMA

Primary particles will be generated with an energy given by the gaussian distribu-
tion of mean MEAN and sigma SIGMA.

• Energy probabilities from file

/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyFromFile
FILE_NAME CALCULATION_TYPE UNIT

This distribution permits to use an arbitrary energy distribution. The energies and
probabilities are read from the file named FILENAME. This file contains a list of
lines with two words each: ENERGY PROBABILITY The energies are given in
MeV (the default Geant4 unit), if no unit is provided. This data can be interpreted
in four different ways:

48

Chapter 4. Generator

• If the second parameter is fixed the energies used are only those listed. For ex-
ample if you want a quarter of your primary particles with energy 0.5 MeV and
three quarters with energy 1. MeV, you can write the following file:

0.5 0.5
1. 0.5

• If the second parameter is histogram (the default value if the second argument
is not provided) the data read will be interpreted as that of a constant-bin his-
togram: the energies are the values of the centre of each histogram bin and the
energies will be randomly distributed (with the corresponding probability) in
the histogram bin. In this case if the difference between data points is not con-
stant, an exception will be thrown. For example if you want a quarter of your
primary particles uniformly distributed between 0 and 1 MeV and three quar-
ters between 1 and 2 MeV, you can write the following file:

0.5 0.25
1.5 0.75

• If the second parameter is interpolate the data read will be interpreted as that of
an histogram, with constant or non-constant bin. As the bins may be not equal,
the behaviour has to be different than for the ’histogram’ case above: one cannot
use the bin centres and calculate the bin limits, but the bin limits have to be ex-
plicitly provided. In other words, the energies given will be the limits of the bins
and the probability read together with an energy is the probability between the
energy and the next energy. We recommend then that the last energy has proba-
bility 0. For example if you want a quarter of your primary particles uniformly
distributed between 0 and 1 MeV and three quarters between 1 and 2 MeV, you
can write the following file:

0. 0.25
1. 0.75
2. 0.

• If the second parameter is interpolate_log the data read will be interpreted as that
of an histogram, with constant or non-constant bin. The behaviour is the same
as for the ’interpolate’ case, but the energies are used logarithmically, i.e. the
energy will be constantly distributed inside an energy bin taking the logarithm
of the energies. For example if you want a quarter of your primary particles
logarithmically uniformly distributed between 0 and 1 MeV and three quarters
between 1 and 10 MeV, you can write the following file:

0. 0.25
1. 0.75
10. 0.

The third argument serves to define which is the unit of the energies in the file. If
not provided, it will be taken as MeV (= 1.).

Position distributions

• Position at a point

49

Chapter 4. Generator

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionPoint POS_X
POS_Y POS_Z

All primary particles are generated at the same position. If no extra argument is
given the point is (0.,0.,0.).

• Position in a Geant4 volume

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionInG4Volumes
LV_NAME1 LV_NAME2 ...

The position is distributed randomly inside one or several volumes of the Geant4
geometry. The user must add as extra parameters the list of volume names. The
volumes can be logical volumes, physical volumes or touchables 5.

This distribution can only be used if the volumes are G4Box, G4Orb, G4Sphere,
G4Ellipsoid, G4Tubs, G4Cons or G4Polycone6. If you want to use it for any other
volume shape, you have to use the distribution

By default the positions are distributed in the volumes selected without taking care
if they contain other volumes inside. If you want to consider only the space that is
not filled by daughter volumes you have to add the parameter:

/gamos/setParam GmVGenerDistPositionVolumesAndSurfaces:OnlyVolume 1

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPosition-
InG4VolumesGeneral LV_NAME1 LV_NAME2 ...

This distributions works with any solid shape, including boolean solids, but it is
in general quite slower than the previous one (it creates a random position in the
whole world volume and then looks if it is in one of the selected volumes, which
can be quite slow if the volume dimensions are small).

• Position in a user defined volume

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionInUserVolumes
POS_X POS_Y POS_Z ANG_X ANG_Y ANG_Z SOLID_TYPE
SOLID_DIMENSIONS

The particles are randomly distributed inside a volume defined by the user (it does
not need to be a real volume in the geometry). The user must provide the definition
of the volume as extra parameters. SOLID_TYPE can be Orb, Sphere, Ellipsoid, Tubs,
Box. SOLID_DIMENSIONS are the solid dimensions. For the order and meaning of
the solid dimensions, please look at the corresponding Geant4 solid.

By default the volume is placed at position (0.,0.,0). If you want it placed at a dif-
ferent position you have to add three optional extra parameters POS_X POS_Y
POS_Z.

By default the volume is not rotated. If you want it rotated you have to add three
optional extra parameters (and always add the three positions, even if they are
(0.,0.,0.)) ANG_X ANG_Y ANG_Z. Those angles are interpreted rotating the volume
first around the X axis, then around the Y axis and finally around the Z axis (around
the (0,0,0) point, after the displacement is done).

By default the positions are distributed in the volumes selected without taking care
if they contain other volumes inside. If you want to consider only the space that is
not filled by daughter volumes you have to add the parameter:

/gamos/setParam GmVGenerDistPositionVolumesAndSurfaces:OnlyVolume 1

• Position in a Geant4 volume surface

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionInG4Surfaces
LV_NAME1 LV_NAME2 ...

The position is distributed randomly in the surface of one or several volumes of
the Geant4 geometry. The user must add a number of extra parameters with the
list of volume names. The volumes can be physical volumes or touchables7.

50

Chapter 4. Generator

This distribution can only be used if the volumes are G4Box, G4Orb, G4Sphere,
G4Tubs or G4Cons 8.

• Position in a user defined volume surface

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionInUserSurfaces
POS_X POS_Y POS_Z ANG_X ANG_Y ANG_Z SOLID_TYPE
SOLID_DIMENSIONS

The particles are randomly distributed in a volume surface of a volume defined by
the user. The user must provide the definition of the volume as extra parameters.
SOLID_TYPE can be Box, Orb, Sphere, Tubs, Cons. SOLID_DIMENSIONS are the
solid dimensions. For the order and meaning of the solid dimensions, please look
at the corresponding Geant4 solid.

By default the volume is placed at position (0.,0.,0). If you want it placed at a dif-
ferent position you have to add three optional extra parameters POS_X POS_Y
POS_Z.

By default the volume is not rotated. If you want it rotated you have to add three
optional extra parameters (and always add the three positions, even if they are
(0.,0.,0.)) ANG_X ANG_Y ANG_Z. Those angles are interpreted rotating the volume
first around the X axis, then around the Y axis and finally around the Z axis (around
the (0,0,0) point, after the displacement is done).

• Adding an extra volume

If you have defined a distribution of type GmGenerDistPositionInG4Volumes,
GmGenerDistPositionInUserVolumes, GmGenerDistPositionInG4Surfaces or
GmGenerDistPositionInUserSurfaces you can add more volumes with the following
user command.

/gamos/generator/GmPositionVolumesAndSurfaces/addVolumeOrSurface
SOURCE_NAME LV_NAME1 LV_NAME2

for the Geant4 volumes or

/gamos/generator/GmPositionVolumesAndSurfaces/addVolumeOrSurface
SOURCE_NAME POS_X POS_Y POS_Z ANG_X ANG_Y ANG_Z SOLID_TYPE
SOLID_DIMENSIONS

for the user-defined volumes. The primary particles will be distributed equally in
the volumes proportionally to their volume or surface.

• Position in steps along a line

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionLineSteps
POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z STEP

The position is distributed uniformly along a line starting at position POS_X
POS_Y POS_Z and with direction given by the three director cosines DIR_X
DIR_Y DIR_Z. Each event is generated in a different point along the line, starting
at the initial position, and in steps given by STEP.

• Position in a square

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionSquare WIDTH
POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z

The position is randomly distributed in a 2D square in the XY plane of width
WIDTH at position (0.,0.,0.). If you want it placed at a different position you have to
add three optional extra parameters POS_X POS_Y POS_Z. By default the square
is not rotated. If you want it rotated you have to add three optional extra param-
eters (and always add the three positions, even if they are (0.,0.,0.)) DIR_X DIR_Y
DIR_Z. Those are the director cosines of the Z axis of the square (the axis perpen-
dicular to the 2D surface).

• Position in a rectangle

51

Chapter 4. Generator

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionRectangle
WIDTH_X WIDTH_Y POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z

The position is randomly distributed in a 2D rectangle in the XY plane of widths
WIDTH_X in X and WIDTH_Y in Y at position (0.,0.,0.). If you want it placed at a
different position you have to add three optional extra parameters POS_X POS_Y
POS_Z. By default the rectangle is not rotated. If you want it rotated you have to
add three optional extra parameters (and always add the three positions, even if
they are (0.,0.,0.)) . Those are the director cosines of the Z axis of the rectangle (the
axis perpendicular to the 2D surface).

• Position in a disc

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionDisc RADIUS
POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z

The position is randomly distributed in a disc in the XY plane of radius RADIUS
at position (0.,0.,0.). If you want it placed at a different position you have to add
three optional extra parameters POS_X POS_Y POS_Z. By default the cylinder is
not rotated. If you want it rotated you have to add three optional extra parameters
(and always add the three positions, even if they are (0.,0.,0.)) DIR_X DIR_Y DIR_Z.
Those are the director cosines of the Z axis of the cylinder (the axis perpendicular
to the 2D surface).

• Position in a disc with gaussian distribution

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionDiscGaussian
SIGMA POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z

The position is distributed in a disc in the XY plane with the radius in a gaussian
distribution of sigma SIGMA and random in phi, at position (0.,0.,0.). If you want
it placed at a different position you have to add three optional extra parameters
POS_X POS_Y POS_Z. By default the cylinder is not rotated. If you want it rotated
you have to add three optional extra parameters (and always add the three posi-
tions, even if they are (0.,0.,0.)) DIR_X DIR_Y DIR_Z. Those are the director cosines
of the Z axis of the cylinder (the axis perpendicular to the 2D surface).

• Position randomly in the voxels of a phantom

/gamos/generator/positionDist SOURCE_NAME GmGenerDist-
PositionVoxelPhantomMaterials MATERIAL1 MATERIAL2
...

The position is randomly distributed in the voxels of a phantom with material
equal to one of the materials in the list of parameters. There must be at least one
volume defined by a parameterisation of type G4PhantomParameterisation.

• Position in the voxels of a phantom file

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPosition-
InVoxelsFromFile FILE_NAME POS_X POS_Y POS_Z DIR_X DIR_Y
DIR_Z

The voxels are read from a file with a format similar to the Geant4 DICOM files
(the main difference being that there are no materials): the first line contains the
number of voxels in X, Y and Z; the second one the lower and upper limits in X,
then in Y and then in Z; then for each voxel it comes a number representing the
relative probability to contain the position. By adding three extra parameters you
may displace the phantom. By adding three more you may rotate it; the parameters
correspond to the new direction of the Z axis after the rotation.

Direction distributions

• Random distribution

52

Chapter 4. Generator

/gamos/generator/directionDist SOURCE_NAME GmGenerDistDirectionRand

The primary particles will be generated in a random distribution so that each solid
angle receives the same number of particles.

• Constant distribution

/gamos/generator/directionDist SOURCE_NAME GmGenerDistDirectionConst

The primary particles will be generated all in the same direction, given by the extra
parameters DIR_X DIR_Y DIR_Z.

• Cone distribution

/gamos/generator/directionDist SOURCE_NAME GmGenerDistDirectionCone

The primary particles will be generated in a random distribution around a cone,
given by the extra parameters DIR_X DIR_Y DIR_Z OPENING_ANGLE, so that
each solid angle receives the same number of particles.

• Gaussian along an axis

/gamos/generator/directionDist SOURCE_NAME GmGenerDistDirectionGaussian

The primary particles will be generated close a line, where the two perpendicular
directions are sampled with a Gaussian distribution. The parameters are DIR_X
DIR_Y DIR_Z SIGMA_Y SIGMA_Z. The direction is first selected along the X axis,
the Y and Z are them samples with two Gaussian distributions centered at 0. and
with widths given by SIGMA_Y SIGMA_Z and them the direction is rotated with
the angles given by DIR_X DIR_Y DIR_Z.

Position and direction distributions
It is also possible to create distributions where several of the four variables (time, en-
ergy, position and direction) are generated at the same time, so that they are related.
You have nevertheless to keep in mind that the order of calling will be time, position,
energy and direction distributions.

In case you need a different order, for example if the position is determined by the
value of the direction, you can calculate both the direction and the position in the
GeneratePosition method, return only the position and keep the direction in a class
data so that it can be returned in the GenerateDirection method.

• Position in volume surface, pointing towards centre

GmGenerDistPositionDirectionInVolumeSurface SOLID_TYPE
SOLID_DIMENSIONS POS_X POS_Y POS_Z ANG_X ANG_Y ANG_Z

The position is distributed in the surface of a volume defined by the user. The user
must provide the definition of the volume as extra parameters. SOLID_TYPE can
be of type Box. SOLID_DIMENSIONS are the solid dimensions.

By default the volume is placed at position (0.,0.,0). If you want it placed at a dif-
ferent position you have to add three optional extra parameters POS_X POS_Y
POS_Z

By default the volume is not rotated. If you want it rotated you have to add three
optional extra parameters (and always add the three positions, even if they are
(0.,0.,0.)) ANG_X ANG_Y ANG_Z. Those angles are interpreted as rotating the vol-
ume first around the X axis, then around the Y axis and finally around the Z axis
(around the (0,0,0) point, after the displacement is done).

The direction is taken as the line that goes from the position to the point (0.,0.,0.).

As this distribution is of position and direction types at the same time, you have to
use the two commands

/gamos/generator/positionDist

53

Chapter 4. Generator

/gamos/generator/directionDist

You can see editing the file

GamosCore/GamosGenerator/src/GmGenerDistPositionDirectionInVolumeSurface.cc that
internally the method GenerateDirection knows the position by interrogating the
source.

Creating your own distribution
If you want to use a time, energy, position or direction distribution that is not foreseen
in GAMOS, you can easily create your own one. Let’s see as example the creation of
a time distribution randomly distributed between two values.

You have to create your class inheriting from the class GmVGenerDistTime (see for
example the class GmGenerDistTimeConstant)

virtual G4double GenerateTime(const GmParticleSource* source);

that will return the time value for each event. If you want the user to be able to
input some parameters of your class from the command line, like the minimum and
maximum time, you have to implement the method

virtual void SetParams(const std::vector <
G4String > & params);

This method will be called automatically passing the extra parameters in the com-
mand line selecting your distribution.

Last, you have to transform your distribution into a plug-in. To learn how to do this,
see the instructions in the section Creating your plug-in, using the GmGenerDistTime-
Factory, or see the plug-in tutorial.

Then you can choose that any of the particle sources use your new distribution in any
GAMOS job by adding the command line

/gamos/generator/directionDist SOURCE_NAME MyTimeDist

where MyTimeDist is the name you chose when defining your plug-in (which could
be different from the name of the class itself).

Reading your generator particles from a text file
You can also define your event primary particles with a text file. The format of the
input file is the following:

Each line corresponds to a primary particle, with the following variables:

• EventID

• Particle

• PosX

• PosY

• PosZ

• MomX

• MomY

• MomZ

• Time
54

Chapter 4. Generator

• Weight

The lines will be read one by one and all the particles that have the same event ID
will be simulated together in an event.

To select this generator you have to use the command

/gamos/generator GmGeneratorFromTextFile

By default the file to be read is called “generator.txt”, you can see an example at
MY_GAMOS_DIR/data/generator.txt. You can change its name with the command

/gamos/setParam GmGeneratorFromTextFile:FileName MY_FILENAME

To change the search path please read the section “Managing the input data files”.

A file of this type may be created with the user action GmTrackDataTextFileUA using
the following list of data:

EventID Particle InitialPosX InitialPosY InitialPosZ InitialMomX InitialMomY
InitialMomZ InitialTime InitialWeight

Reading your generator particles from a binary file
You can also define your event primary particles with a binary file, with the following
data per particle:

• EventID

• Particle

• PosX

• PosY

• PosZ

• MomX

• MomY

• MomZ

• Time

• Weight

To select this generator you have to use the command

/gamos/generator GmGeneratorFromBinFile

By default the file to be read is called “generator.bin”. You can change its name with
the command

/gamos/setParam GmGeneratorFromBinFile:FileName MY_FILENAME

To change the search path please read the section “Managing the input data files”.

A file of this type may be created with the user action GmTrackDataBinFileUA using
the following list of data:

EventID Particle InitialPosX InitialPosY InitialPosZ InitialMomX InitialMomY
InitialMomZ InitialTime InitialWeight

Event generator changing energy and material
As you can find in some of the tutorial exercises this generator serves to scan different
energies and different materials and obtain for example the cross sections at each
point, the activation, or whatever quantity you want.

55

Chapter 4. Generator

To select it you have to use the command:

/gamos/generator GmGeneratorChangeEnergyAndMaterial

The first thing to choose is the energies. To do it a minimum a maximum energy have
to be defined as well as a number of steps:

/gamos/setParam GmGeneratorChangeEnergyAndMaterial:minE VALUE

/gamos/setParam GmGeneratorChangeEnergyAndMaterial:maxE VALUE

/gamos/setParam GmGeneratorChangeEnergyAndMaterial:nstepsE VALUE

Then it must be selected if the steps are done linearly or logarithmically (default)

/gamos/setParam GmGeneratorChangeEnergyAndMaterial:logE 1/0

The materials used will be those found from the geometry constructed. You may
define a dummy geometry, as it will not be used anyhow. For each material at a time
a world made of one single volume of the material will be used. You may nevertheless
select only a subgroup of the materials in the geometry with the parameter:

/gamos/setParam GmGeneratorChangeEnergyAndMaterial:VolumesToChange
VOLUME_1 VOLUME_2 ...

Event generator histograms
These are histograms of event generator particles that may serve to check that you
have actually generated what you meant.

The names of all these histograms start with GmGenerHistosUA: and they are all
dumped into the file gener.root/csv. The following histograms are produced:

• Kinetic energy of primary particles (" KinEnergy")

• X position (" Position X")

• Y position (" Position Y")

• Z position (" Position Z")

• Theta angle (" Angle theta")

• Phi angle (" Angle phi")

• Difference between consecutive event times (taken as time of the first primary par-
ticle) (" Time between source decays (ns)")

The user can control the minimum, maximum and number of steps of these his-
tograms, with the following parameters:

/gamos/setParam gener:hEMin VAL

/gamos/setParam gener:hEMax VAL

/gamos/setParam gener:hENbins VAL

/gamos/setParam gener:hPosMin VAL

/gamos/setParam gener:hPosMax VAL

/gamos/setParam gener:hPosNbins VAL

/gamos/setParam gener:hAngleMin VAL

/gamos/setParam gener:hAngleMax VAL

/gamos/setParam gener:hAngleNbins VAL

/gamos/setParam gener:hTimeMin VAL

/gamos/setParam gener:hTimeMax VAL

/gamos/setParam gener:hTimeNbins VAL

56

Chapter 4. Generator

To activate this user action use the command:

/gamos/userAction GmGenerHistosUA

Biasing generator distributions
If you are using the GAMOS generator, GmGenerator, it is possible to bias a primary
generator distribution multiplying each resulting value by a probability of occur-
rence. To do this you ahve first to define a numeric distribution (see section on Distri-
butions), where you assing the probabilities for each resulting value of the generator
distribution. These probabilities are normalized so that the highest is assigned a value
of 1. If the generator variable takes a value to which it corresponds a probability value
X that is less than 1, then Russian rouletter is played with a survival probability of X;
if the value is not accepted, a new value is sample from the generator distribution, if
it is accepted, the weight of the particle that is going to use this generator distribution
is multiplied by 1/X.

Several generator distribution variables can be biased, namely: PosX, PosY, PosZ,
PosPerp, PosR, PosPhi, PosTheta, DirTheta, DirPhi, Energy, Time. To bias a distribution
you have to use the command:

/gamos/generator/addBiasDistribution SOURCE_NAME GENERATOR_DIST_TYPE
BIAS_DIST_NAME

where SOURCE_NAME is the name of a source declared previously,
GENERATOR_DIST_TYPE is one of the generator distribution variables listed above
and BIAS_DIST_NAME is the name of the distribution you have previously created
(see section on Distributions).

A word of caution is due here: if you use low probabilities, the Russian roulette will
often fail and then the efficiency of your simulation may be sensibly decreased. In
this case you may think on using a generator distribution that includes the bias in
an efficient way or create a new one (there is an example on creating a new genera-
tor distribution in the Plugin tutorial; you may ask for help in the GAMOS Discussion
Forum if you do not feel confident on doing it). An example of this can be using Gm-
GenerDistPositionDiscGaussian instead of GmGenerDistPositionDisc and biasing with a
Gaussian distribution the PosPerp variable.

The word bias may be misleading, as indeed the result is not biased. Thanks to the
multiplication of the particle’s weight by 1/X mentioned above the result will not
change within statistical fluctuations if you are using some variable that takes into
account weights. This is not the case for example if you are using sensitive detectors
and hits, so we do not recommend its use for those applications.

It may happen that the distribution has some bins with very low probabilities, so that
the search for a valid value can be too long. In this case you will get a warning so that
you may reconsider if your biasing is indeed gaining CPU or not. The default value
for the number of loops in searching for a bias value is 10000, if you want to change
it, you may use the parameter:

/gamos/setParam SOURCE_NAME:MaxBiasIterations VALUE

Building your generator with C++
You can build your generator by writing your C++ class inheriting from
G4VUserPrimaryGeneratorAction (see example in [9]).

After that you have to transform it into a GAMOS plug-in. To learn how to do this, see
the instructions in the section Creating your plug-in, using the GmGeneratorFactory,
or see the example examples/N02.

57

Chapter 4. Generator

Using ions
Geant4 uses any kind of ion, whether in its ground stante or in an excited state. Ions
are named with the element symbol, followed by the atomic mass number and the
excitation energy between brackets, e.g. Fe56[0.0], Na22[0.0], Co57[136.5] (note that
the ground state is named as 0.0).

There two ways two use ions as primary particles in GAMOS generator. The first one
is defining an isotope source, as described above. In this case the isotope itself willnot
be created, but only its decay products, as defined in the isotopes.lis file. In this way
you have a direct access to the position, direction, energy or time distributions of
these particles, what may increase your simulation efficiency. The alternative way is
to define a single particle source and use an ion name as particle. Geant4 will create
this ion and will use its readioactive decay utitlity to decay it (and follow the decay
chain until stable ions are produced).

Do not forget that if you want to use ions, you have to define a physics list that creates
the physics for them. This means that you cannot use for example GmEMPhysics,
but you may use GmExtendedEMPhysics or any other physics where this physics is
created.

Notes
1. For a list of the names of the available particles use the Geant4 command

/run/particle/dumpList or see Appendix.

2. The available units in Geant4 are becquerel and curie

3. For a list of the names of the available particles use the Geant4 command
/run/particle/dumpList or see Appendix.

4. This distribution can not be used for single particle sources

5. For understanding the notation to identify touchables in GAMOS, see Identifying
touchables section.

6. Other volume types may be added at user request

7. For understanding the notation to identify touchables in GAMOS, see Identifying
touchables section.

8. Other volume types may be added at user request

58

Chapter 5. Physics

You can use the GAMOS physics list, use one of the Geant4 physics lists or write
your own one, following the standard Geant4 way, i.e. by writing your C++ class
inheriting from G4VUserPhysicsList.

GAMOS electromagnetic physics list
The GAMOS electromagnetic physics list defines electromagnetic particles: photons,
electrons, positrons and optical photons. This physics list lets the user choose among
the standard, low energy or Penelope models.

The following physics models are available:

• gammas

• gamma-lowener: low energy Evaluated Particle Data Library

• gamma-standard: standard electromagnetic processes (no low energy)

• gamma-penelope: processes a’ la Penelope [6]

• electrons

• electron-lowener: low energy Evaluated Particle Data Library. The bremsstrahlung
angular cross section can be selected among tsai, 2bn or 2bs (see GEANT4 Physics
Reference Manual), with the parameter

/gamos/setParam GmPhysicsElectronLowEner:AngularGenerator
GENERATOR_NAME

• electron-standard: standard electromagnetic processes (no low energy)

• electron-penelope: processes a’ la Penelope [6]

• positrons

• positron-standard: standard electromagnetic processes (no low energy)

• positron-penelope: processes a’ la Penelope [6]

To tell your job to use one of the possible combinations of physics models just de-
scribed, you have first to select the GAMOS electromagnetic physics list, using the
command:

/gamos/physicsList GmEMPhysics

and then you can select one of the physics models for each particle with the command

/gamos/GmPhysics/addPhysics PHYSICS_MODEL_NAME

where PHYSICS_MODEL_NAME is one of the above names. If you do not select
anyone for a given particle, the first one in each list is taken as default.

For details on the physics implemented in each of these physics models, please read
the Geant4 physics manual [10].

This physics list also sets on the atomic deexcitation, see section below.

59

Chapter 5. Physics

Multiple scattering model
There are several multiple scattering models available in the current version of
Geant4. If you have selected the GAMOS physics list, you may select a different one
for different particles with the following parameter:

/gamos/setParam GmMultipleScattering:Model:PARTICLE_NAME MODEL

where PARTICLE_NAME can be Electron, Positron or Hadron and MODEL can be
Urban90 , Urban92 , Urban93 , WentzelVI or GoudsmitSaunderson (see the GEANT4
User’s Guide for an explanation of each model). The default model for all particles is
Urban93 . If your problem is in the micrometer or nanometer range this model may

give incorrect results and we recommend you to use the GoudsmitSaunderson one.

Bremsstrahlung angular distribution
The Geant4 low energy electromagnetic model of bremsstrahlung offers three differ-
ent angular distributions, namely Tsai, 2BN and 2BS (see Geant4 Physics Reference
Manual for an explanation of the difference between the three models). If you have
selected the low energy extension in the GAMOS physics list you may select among
one of the three with the following parameter:

/gamos/setParam GmPhysicsElectron:Bremsstrahlung:AngularDistribution MODEL

where MODEL can be tsai (which is the default model), 2bn or 2bs . The recom-
mended behaviour is that below 1 keV and above 1 MeV the distribution is always
tsai , while for the energies in between it can be changed. If you want to override this
limits you may do it with the parameters:

/gamos/setParam GmPhysicsElectron:Bremsstrahlung:EnergyToForceTsaiMin ENERGY

/gamos/setParam GmPhysicsElectron:Bremsstrahlung:EnergyToForceTsaiMax ENERGY

You should nevertheless take into account that the 2bn distribution has an intrinsic
kinematical limit of 1 MeV, so you should not set the upper limit to a higher value if
you want to use it.

In the latest Geant4 release, it is also possible to change the bremsstrahlung angular
distributions for standard processes. To do it use the same parameter as above. In this
case the model is applied for all energies.

GAMOS electromagnetic extended physics list
This physics list can be selected with the command

/gamos/physicsList GmEMExtendedPhysics

It creates all GEANT4 particles, using the constructors G4BosonConstructor,
G4LeptonConstructor, G4MesonConstructor, G4BaryonConstructor, G4IonConstructor,
G4ShortLivedConstructor. For these particles the physics implemented is the
following (see GEANT4 Physics Reference manual for a detailed explanation of the
physics options).

• mu+, mu- G4MuMultipleScattering, with G4WentzelVIModel, G4MuIonisation
with SetStepFunction(0.2, 50*um), G4MuBremsstrahlung, G4MuPairProduction
and G4CoulombScattering

• alpha, He3 G4hMultipleScattering, G4ionIonisation with SetStepFunction(0.2,
50*um) and G4NuclearStopping

• GenericIon G4hMultipleScattering, G4ionIonisation with model
G4IonParametrisedLossModel and SetStepFunction(0.1, 10*um)m, and
G4NuclearStopping

60

Chapter 5. Physics

• pi+, pi-, kaon+, kaon-G4hMultipleScattering, G4hIonisation with
SetStepFunction(0.2, 50*um), G4hBremsstrahlung and G4hPairProduction

• Other charged particlesG4hMultipleScattering and G4hIonisation

This physics lists inherits from GmEMPhysics, so that the command
/gamos/GmEMPhysics/addPhysics can be used to change the physics models of the
electromagnetic particles.

GAMOS hadrontherapy physics list
The GAMOS hadrontherapy physics list is based on the hadron-therapy Geant4 ad-
vanced example.

This physics list can be selected with the command

/gamos/physicsList HadronTherapyPhysics

The default physics options are those include in the GEANT4 physics lists
G4EmStandardPhysics_option3, G4DecayPhysics and G4RadioactiveDecayPhysics.

This default physics can be changed with the command

/HT/Physics/addPhysics PHYSICS_LIST

where PHYSICS_LIST can be

• standard_opt3 : G4EmStandardPhysics_option3(

• LowE_Livermore : G4EmLivermorePhysics

• LowE_Penelope :G4EmPenelopePhysics

• local_ion_ion_inelastic: LocalIonIonInelasticPhysics

• QGSP_BIC_EMY: QGSP_BIC_EMY

This list has several commands to select cuts:

/HT/Physics/setCuts VALUE UNIT : set the cuts for all volumes and particles

/HT/Physics/setGCut VALUE UNIT : set the cuts for gammas for all volumes

/HT/Physics/setECut VALUE UNIT : set the cuts for electrons for all volumes

/HT/Physics/setPCut VALUE UNIT : set the cuts for positrons for all volumes

Other physics lists
You can use easily in GAMOS any of the Geant4 physics lists [12].
All you have to do to use a Geant4 physics list is to add in the file
GAMOS_DIR/source/GamosCore/GamosPhysics/GamosOtherPhysicsList/src/module.cc
(or in any other in GAMOS code or created by you, see Appendix on Creating your
plug-in) two lines like these ones:

#include "QGSP.hh"
DEFINE_GAMOS_PHYSICS(QGSP);

Compile it and then you can use it in your command file with the line

/gamos/physicsList QGSP

As you can see looking at this file, all the physics list in the GEANT4 source code are
already included and therefore can be selected with a user command

There is also in GAMOS a GmDummyPhysicsList that defines all the particles, but only
the process G4Transportation.

61

Chapter 5. Physics

All the GEANT4 physics list that can be found in the directory source/physics_lists.
These are:

• CHIPS

• FTF_BIC

• FTFP_BERT

• FTFP_BERT_EMV

• FTFP_BERT_EMX

• FTFP_BERT_TRV

• LBE

• LHEP

• LHEP_EMV

• QBBC

• QGS_BIC

• QGSC_BERT

• QGSC_CHIPS

• QGSP

• QGSP_BERT

• QGSP_BERT_CHIPS

• QGSP_BERT_EMV

• QGSP_BERT_EMX

• QGSP_BERT_HP

• QGSP_BERT_NOLEP

• QGSP_BERT_TRV

• QGSP_BIC

• QGSP_BIC_EMY

• QGSP_BIC_HP

• QGSP_FTFP_BERT

• QGSP_INCL_ABLA

• QGSP_QEL

There is an extra physics list that for the simulation of neutron below 20 MeV uses
the neutron XS physics, a faster neutron HP physics: GmQGSP_BIC_HPXS

Building your physics list with C++ code
To build your physics list, first write it in the usual Geant4 way, that is, inheriting
from G4VUserPhysicsList (see example in [10]). After that you have to transform it
into a plug-in. To learn how to do this, see the instructions in the section above.

Replacing process models
Whatever physics list you have chosen, you can replace part of the electromagnetic
models of one of more particles by one of the three models (standard, low energy or
Penelope) with the command:

62

Chapter 5. Physics

/gamos/physics/replaceProcessModels MODELS_1 MODELS_2 ...

where MODEL_i ... may be: gamma-standard gamma-lowener gamma-penelope electron-
standard electron-lowener electron-penelope .

Production cuts
Several physics processes, namely bremsstrahlung, ionisation and e+e- pair produc-
tion from muons have very high cross sections at low energies. It is therefore neces-
sary to implement a production cut so that all particles below it are not generated, but
their energy is accounted as energy deposited. Geant4 uses production cuts in range,
instead of in energy as used previously by GEANT3 and most Monte Carlo codes. A
cut of for example 1. mm for photons means that no photon will be produced if the
expected range in the current material is less than 1. mm.

If you use the GAMOS electromagnetic physics list, the default production cut value
is 0.1 mm for all processes in all materials. The Geant4 command /run/particle/setCut
’value’ ’unit’ set the cuts for all process to the desired value. But do not forget to use
the command /run/initialize after setting the cuts, if you want that your change is ef-
fective. The Geant4 command /run/particle/dumpCutValues dumps the list of materials
and for each one the list of cuts for each particle (in GAMOS it is printed by default).

One word of caution is due here: internally Geant4 converts the cuts for range in
each material to cuts for energy and uses these for their computations. There is a low
energy limit so that if the range cut you use is very small it will be converted to this
energy value. The default value in Geant4 is 990 eV. You may change this value with
the Geant4 user command:

Production cuts by region
A region in Geant4 is a set of G4LogicalVolume’s that share common properties. You
can define a region in the text file where you defined your geometry, by using the tag

:REGION REGION_NAME LOGICAL_VOLUME_NAME(s)

where REGION_NAME is the name that identifies the region and
LOGICAL_VOLUME_NAME(s) is the list of G4LogicalVolume’s that belong to the
region. For example:

:REGION myRegion Crystal Wall

Alternatively you can define a new region in your user script through a user com-
mand:

/gamos/geometry/createRegion REGION_NAME LOGICAL_VOLUME_NAME

Do not forget that in Geant4 when a logical volume belongs to a region automatically
all its daughters belong to the same region, unless there is another region explicitly
defined for some of the daughters.

Also do not forget that regions in Geant4 have to be set in a hierarchical way: if you
place a volume A in the world and inside it you place a volume B, you cannot create
a new region for B unless you have explicitly created a region for A.

Once you have defined a region, you may set a cut for the particles that traverse that
region with the tag

:CUTS REGION_NAME gamma_CUT e-_CUT e+_CUT

where REGION_NAME is the name of a previously defined region, gamma_CUT e-
_CUT e+_CUT are the cuts for gamma, electrons and positrons (the cut for positron
is optional; if not set it will take the one for electrons).

63

Chapter 5. Physics

Alternatively you can set the cuts in your user script through a user command:

/gamos/physics/setCuts REGION_NAME gamma_CUT e-_CUT e+_CUT

Energy cuts to range cuts conversion
If you want to know the traslation from an energy cut value to a range cut value for
a given particle in a given material, you can do with the following instructions. First
you have to instantiate the user action

/gamos/userAction GmCutsEnergy2RangeUA

and then you can use the command

/gamos/physics/ECuts2RangeCuts MATERIAL_NAME CUT_VALUE PARTICLE_NAME

You may use in the material name an ’*’ if you want to name several materials at the
same time. For the particle name only the following names have a meaning: gamma, e-
, e+, e*, *. This will produce a table with the conversion for each material and particle
similar to the following one:

GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: gamma
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 286588
GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: e-
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 129.155
GmCutsEnergy2RangeUA: MATERIAL: G4_AIR PART: e+
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 131.938
GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: gamma
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 334.152
GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: e-
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 0.134781
GmCutsEnergy2RangeUA: MATERIAL: G4_WATER PART: e+
ENERGY CUT: 0.1 (MeV) = RANGE CUT: 0.137686

Minimum and maximum production cuts
GEANT4 has internal limits in the minimum and maximum energy of a production
cuts. These values are by default 990 eV and 100 TeV. You may change these values
with the command:

/gamos/physics/prodCutsEnergyLimits MIN_ENERGY MAX_ENERGY

Apply cuts for all processes
By default the production cuts are only applied to ionisatio, bremsstrahlung and
electron-positron production by muons, but they may be applied to any process by
using the command:

/gamos/physics/applyCutsForAllProcesses

User limits
The user limits is a mechanism that Geant4 offers to limit the tracking of a particle.
There are five types of user limits:

• Limit the step size

• Limit the track length

64

Chapter 5. Physics

• Limit the time of flight

• Stop the particle when the kinetic energy is below a limit (and deposit its energy
locally)

• Stop the particle when the expected range is below a limit (and deposit its energy
locally)

In GAMOS a user can set the user limits through simple user commands and user
limits can be set independently for different particle types in the same or different
logical volumes. The set of commands to set user limits are

• /gamos/physics/userLimits/setUserLimits USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MAX_STEP
MAX_TRK_LENGTH MAX_TOF MIN_KIN_E MIN_RANGE

where USER_LIMITS_NAME is the name of the user limits (every user limits must
have a name, so that new logical volumes and particles can be added with user
commands later), MAX_STEP MAX_TRK_LENGTH MAX_TOF MIN_KIN_E and
MIN_RANGE are the values of the five user limit types described above. If you
want to set only one user limit type you can use one of the following commands:

• /gamos/physics/userLimits/setMaxStep USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MAX_STEP

• /gamos/physics/userLimits/setMaxTrkLen USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MAX_TRK_LENGTH

• /gamos/physics/userLimits/setMaxTOF USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MAX_TOF

• /gamos/physics/userLimits/setMinEKin USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MIN_KIN_E

• /gamos/physics/userLimits/setMinRange USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MIN_RANGE

There is another command in GAMOS that serves to set the minimum range user
limit using a distance value, but internally it is applied as a minimum kinetic energy
limit. This permits to use range values but avoids the lengthy process of converting
the kinetic energy at each step into range. For this you can use the command:

• /gamos/physics/userLimits/setMinEKinByRange USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MIN_RANGE

Once a user limit is set, you may apply it to a new pair of logical volume and particle
type with the following command:

• /gamos/physics/userLimits/addLVAndParticle USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME

for the list of particle names in GAMOS, see section Particle names .

A last command serves to print the active user limits for each volume and each par-
ticle:

/gamos/physics/userLimits/print

Automatic optimisation of cuts
The production cuts and user limits are powerful methods to tune your simulation
so that you can save a lot of CPU time by not tracking the particles that are not going
to contribute to your results. Nevertheless the tuning of cuts is usually a long and
difficult task. We have developed in GAMOS a method to help the user to obtain the

65

Chapter 5. Physics

optimal value of the production cuts and user limits for her/his application in a sin-
gle job. We describe here the basic idea of the method and then in the corresponding
sections the details of its implementation for different cases.

To use this utility you have to define in a clear way which are the results you don’t
want to change when cuts change, for example

• Number of particles reaching a region

• Dose distribution

• Number/energy/spatial distribution of hits

• Shower shape in a volume

•

For each track that contributes to your result GAMOS stores all its history: for the
track itself and each of its ancestors stores energy, range, region, process and particle
type. In the case of production cuts this information is stored at particle creation. In
the case of user limits this information is stored at each step (for parents only the
steps before the creation of the interesting track).

At the end of run you can can get for each region/process/particle a list of all the
ranges or energies of all the particles created. Then you can easily know if you apply
a cut how many particles are below it.

This is valid if you are only interested in counting how many particles you lose. For
other cases another approach should be used. For example if you want to check how
your dose distribution changes, you can build a set of filters, each one with a set of
cut values. These filters do not really cut the particles but only serve to tag a particle
if it would have been killed by the set of cuts in the filter. Therefore, for each track
that contributes to your results, GAMOS can check if it (or any of its ancestors) would
have been killed by each of these sets of cut values. If you build your results N times
in a job, each one using only those tracks that pass one filter, you can compare each
result to see how it changes with each set of cuts.

Although as mentioned above, the production cuts are only necessary for ionization
and bremsstrahlung processes, this method allows to extend the production cuts to
other processes. To do this we provide the abovementioned numbers and plots sepa-
rately for each process so that the cuts can be automatically set in an easy way. If you
want to apply the same cuts to all processes you can use the GAMOS command

/gamos/GMphysics/applyCutsToAllProcesses

that will instantiate an object of type G4EmProcessOptions and invoke the method
SetApplyCuts(true).

In the PET and Radiotherapy applications chapters you can see the details of how to
apply this technique in these fields.

Range rejection
The range rejection technique consists on killing a particle at creation and deposit-
ing all its energy locally if it is not going to leave the current volume. To do this in
practical terms, the particle is killed if the range is smaller than the distance to the
volume boundary (although it would have a chance to exit the volume, this chance
is considered negligible).

You can analyze which would be the effect of applying this technique by using the
same user action as for the production cuts, e.g.:

/gamos/userAction GmProdCutsStudyUA RTCutsStudyFilter

It will produce a table with the number of tracks that would be killed by the range re-
jection and would not reach the target (the tracks themselves or any of their children).

66

Chapter 5. Physics

As for the production cuts, they are printed by region, by particle and by creator pro-
cess type. To get a closer inside on this technique several plots are produced (one
per each region, each particle and each creator process) representing the logarithm
of the difference safety-range vs the logarithm of the range. To distinguish the cases
where the range is bigger than the safety (no range rejection) those cases are plotted
in the bins -15 to -5, while the cases where the range is smaller than the safety occupy
the bins -5 to 5 (if there is a case, not likely for a radiotherapy simulation) where the
log10(fabs(safety-range)) is smaller than -5 (of course before the -10 substraction), it
is set to -5 and if is bigger than 5 it is set to 5.

Optical photons
You may add the physics of optical photons to any physics list including the com-
mand:

/gamos/physics/addPhysics opticalPhoton

This will activate the scintillation process for all the particles and the
G4OpAbsorption, G4OpRayleigh and G4OpBoundaryProcess processes for optical
photons. To avoid blowing up the memory by the thousands of optical photons that
may be created at one step, by default the secondary optical photons are tracked at
the moment they are created; this means that the primary particle is stopped and
later it is restarted. You may deactivate this option with the parameter

/gamos/setParam GmPhysicsOpticalPhoton:TrackSecondariesFirst 0

The yield factor, i..e the number of optical photons created per MeV, is set by default
to 1, you may change it with the parameter

/gamos/setParam GmPhysicsOpticalPhoton:YieldFactor FACTOR

To define the optical properties of the medium, you must create a
G4MaterialPropertiesTable which is linked to the G4Material in question. All the
properties can be managed in the geometry text file, using tags similar to those of
the geometry text file utility. For details on the meaning of these paramters please
refer to the Geant4 documentation. We describe here these tags with the parameters
that should accompany them.

To define a new G4MaterialPropertiesTable you have to use the tag:

:MATE_PROPERTIES_TABLE

• Table name

Then you can add different properties to the table. There are two kinds of proper-
ties: those that are defined by a single number (called constant properties in Geant4
notation) and those that are defined by a list of numbers, one associated to an energy.

To define a constant property the following tag must be used:

:MATEPT_ADD_CONST_PROPERTY

• Material properties table name

• Property name

• Property value

To define non constant properties, you have to define first the list of energies that you
will use to assign the different properties to the table:

:MATEPT_ADD_ENERGIES

• Material properties table name

67

Chapter 5. Physics

• Energy 1

• Energy 2

• ...

• Energy N

Then to define a property:

:MATEPT_ADD_PROPERTY

• Material properties table name

• Property name

• Value 1

• Value 2

• ...

• Value N

The material properties table can be attached to a material with the tag (use it several
times to attach it to several materials:

:MATEPT_ATTACH_TO_MATERIAL

• Material properties table name

• Material name

You can create an optical surface with the tag:

:OPTICAL SURFACE

• Name

• Boundary process model. It can be

• UNIFIED

• GLISUR

• LUT

• Boundary process model. It can be

• UNIFIED

• GLISUR

• LUT

• Surface finish type. It can be

• polishedfrontpainted

• polishedbackpainted

• ground

• groundfrontpainted

• groundbackpainted

• polishedlumirrorair

• polishedlumirrorglue

• polishedair

• polishedteflonair
68

Chapter 5. Physics

• polishedtioair

• polishedtyvekair

• polishedvm2000air

• polishedvm2000glue

• etchedlumirrorair

• etchedlumirrorglue

• etchedair

• etchedteflonair

• etchedtioair

• etchedtyvekair

• etchedvm2000air

• etchedvm2000glue

• groundlumirrorair

• groundlumirrorglue

• groundair

• groundteflonair

• groundtioair

• groundtyvekair

• groundvm2000air

• groundvm2000glue

• Surface type. It can be

• dielectric_metal

• dielectric_dielectric

• dielectric_LUT

• firsov

• x_ray

• Polish value

• Sigma alpha value

The material properties table can be attached to a optical surface with the tag (use it
several times to attach it to several optical surfaces:

:MATEPT_ATTACH_TO_OPTICAL SURFACE

• Material properties table name

• Optical surface name

You can create a logical border surface with the tag:

:LOGICAL_BORDER SURFACE

• Material properties table name

• First physical volume name

• Second physical volume name

69

Chapter 5. Physics

• Optical surface name

You can create a logical skin surface with the tag:

:LOGICAL_SKIN SURFACE

• Material properties table name

• Logical volume name

• Optical surface name

Using optical photons as primary generator
If you are using optical photons as primary generator particles, you may set the po-
larization using the parameter (see chapter on Generator):

/gamos/setParam SOURCE_NAME:Polarization POLARIZ_X POLARIZ_Y POLARIZ_Z

X-ray refraction
GAMOS offers the novelty of an X-ray refraction process, which implements a Snell’s
law refraction and is based on the GEANT4 refraction process for optical photons.
You may instantiate it with the command:

/gamos/physics/addPhysics xray-refraction

always after the /run/initialize command. Is it also necessary to set the refraction in-
dices for each material and for each energy. This can be done by using the command
(you may use one command per material)

/gamos/geometry/setRefractionIndex MATERIAL_NAME ENERGY_1
REFRACTION_INDEX_1 ENERGY_2 REFRACTION_INDEX_2 ...

the value for a given energy of a given material will be interpolated among these set
of values. It is important that you give a refraction index for all possible energies in
your problem, if not you will get a warning that the error is out of range.

If you use this code you should quote the following reference in your results:

Zhentian Wang,Zhifeng Huang,Li Zhang,Zhiqiang Chen,Kejun Kang. Implement X-ray re-
fraction effect in Geant4 for phase contrast imaging. IEEE Nuclear Science Symposium Con-
ference Record,2009,1082-3654.

Atomic deexcitation processes
The atomic deexcitation, i.e. the production of characteristic X-rays and Auger elec-
trons, when the atoms are excited after an ionisation or photo electric process, is ac-
tivated by default if one of the two GAMOS electromagnetic physics list is selected.
To deactivate it you can use the parameter:

/gamos/setParam GmEMPhysicsList:AtomicDeexcitation 0

The default behaviour activates atomic deexcitation only for the default GEANT4
region, DefaultRegionForTheWorld, which is created for volumes not associated to
any region (see section on Production cuts by region). To activate it for list of regions
you can use the parameter:

/gamos/setParam AtomicDeexcitation:Regions REGION_1 REGION_2 ...

You may also want to change the production cuts, that is the minimum value of the
energy of the characterisic X-rays or Auger electrons. This can be done independently
for the secondary particles generated by ionisation and photo electric effect. The pa-
rameters to do it for ionisation are:

70

Chapter 5. Physics

By default production of characteristic X-rays by fluorescence and Auger electrons is
on, whil PIXE is off. You can also select which process to activate with the parameters

/gamos/setParam AtomicDeexcitation:Fluorescence 1

/gamos/setParam AtomicDeexcitation:Auger 1

/gamos/setParam AtomicDeexcitation:PIXE 1

It is important to note, that the production of secondary gammas or electrons is af-
fected by the same cuts than the production of bremmstrahlung gammas and ion-
isation electrons. This means that if these cuts are high, those particles will not be
produced; although the atomic deexcitation processes will be active the energy of the
secondary particles will be added to the energy deposited. We remind you that the
production cuts are set by range in GEANT4, but you can find the range to energy
threshold conversion for each matrial at the beginning of your job.

Decay process
You can activate the decay process for all particles for which it is applicable with the
user command:

/gamos/physics/addPhysics decay

Radioactive decay process
Each time an ion is created by a GAMOS command (to use is as primary particle, to
create a filter to select it, ...), the radioactive decay process is activated for it. You can
avoid this by using the parameter

/gamos/setParam Physics:RadioactiveDecay 0

But if the ion is created by Geant4 and you want to activate the radioactive decay
process to have to use command:

/gamos/physics/addPhysics radioactiveDecay

This command has to be used after the /run/initialize command, and activates auto-
matically this process for all ions.

Cerenkov process
You can activate the Cerenkov processes for all charged particles with the user com-
mand:

/gamos/physics/addPhysics cerenkov

Several parameters can be set before this command to control the Cerenkov process:

/gamos/setParam GmPhysicsCerenkov:MaxNumPhotonsPerStep NPHOT

limits the step size by specifying a maximum (average) number of Cerenkov photons
created during the step. The default value is 0, i.e. no limit.

/gamos/setParam GmPhysicsCerenkov:MaxBetaChange 1

limits the maximum change of beta (velocity/velocity of light).

/gamos/setParam GmPhysicsCerenkov:TrackSecondariesFirst 1

serves to avoid blowing up the memory by the thousands of photons that may be cre-
ated at one step. by tracking the secondary photons at the moment they are created;
this means that the primary particle is stopped and later it is restarted.

/gamos/setParam GmPhysicsCerenkov:MaxNumPhotons NPHOT

71

Chapter 5. Physics

sets the maximum allowed change in beta = v/c in % (perCent). The default value is
0, i.e. no limit.

Removing a process from a physics list
Several commands can be used to remove a process that is instantiated by a physics
list without having to modify the C++ code and recompile

The process to be removed can be selected by name

/gamos/physics/removeProcessesByName PROCESS_NAME_1 PROCESS_NAME_2 ...

To find the name that GEANT4 gives to a process, you may use the user action

/gamos/userAction GmCountProcessesUA

which will give yo a list of the process names attached to each particle in your physics
list.

If you do not want to select all the processes give a given name, but only if they are
attached to a particle, you can use the command

/gamos/physics/removeProcessesByParticleAndName PARTICLE_NAME_1
PROCESS_NAME_1 PARTICLE_NAME_2 PROCESS_NAME_2 ...

Alternatively you may select all process of a given type

/gamos/physics/removeProcessesByType PROCESS_TYPE_1 PROCESS_TYPE_2 ...

where the types are those defined by GEANT4: Transportation,Electromagnetic, Opti-
cal, Hadronic, Photolepton_hadron, Decay, General, Parameterisation, UserDefined or Not-
Defined

72

Chapter 6. User Actions

Geant4 user actions are the way the user can interact with a job at the beginning/end
of each run, beginning/end of each event, beginning/end of each track or at each
step. The user can write a class, inheriting from one of the Geant4 user action abstract
classes, and Geant4 will take care of calling the user code.

The GAMOS user actions classes provide all the functionality of the Geant4 classes,
and also allow the user to define several user actions of the same type in the same
job and to define a class that inherits from several user action types at the same time.
Moreover, as they are plug-in’s, the user can activate them by means of a user com-
mand.

User actions can be associated to filters or classifiers, as explained below.

Several functionalities are already implemented in GAMOS as user actions (like his-
tograms, event classifiers, ...) and you may use them as examples for creating your
own one.

All user actions are instantiated with the same user command:

/gamos/userAction USER_ACTION_NAME

Adding a filter
One or several filters can be added to a user action by simply adding their names in
the user command where an action is selected. See section on Filters to get a list of the
available filters in GAMOS and how to add parameters to a filter.

If the filter you are using is a step filter and your user action is a stepping user ac-
tion, the method SteppingAction will only be called if all the filters accept the step. If
the filter you are using is a track filter it affects the callings to the PreUserTrackingAc-
tion and PostUserTrackingAction for tracking actions and ClassifyNewTrack for stacking
actions.

For example

/gamos/userAction GmTrackDataHistosUA GmGammaFilter

will only produce histograms for tracks whose particle is a gamma.

Adding a classifier
One classifier can be added to a user action by simply adding their names in the user
command where an action is selected. See section on Classifiers to get a list of the
available classifiers in GAMOS and how to add parameters to a classifier.

It is up to the concrete user action to use the classifiers or not. See examples in this
User’s Guide. For example

/gamos/userAction GmTrackDataHistosUA GmClassifierByParticle

will produce a different set of histograms for each particle type.

User action name
The name of the user action is the name of the class itself plus the name of the fil-
ters (in the order which they are given in the user command) plus the name of the
classifier, all separated by underscore characters. For example if you typed:

/gamos/userAction GmTrackHistosUA GmGammaFilter GmPrimaryFilter GmClassifierBy-
Particle

73

Chapter 6. User Actions

the name of the user action will be GmTrackHisto-
sUA_GmGammaFilter_GmPrimaryFilter_GmClassifierByParticle. Unless explicitly
mentioned in this guide, this name will be the name of the histogram or data file in
case the user action is writing a file (plus the corresponding file suffix), unless the
file name is changed with a parameter. It is also the name that has to be used for any
parameter corresponding to the user action.

Creating your GAMOS user action
If you need a new user action you have to create a class inheriting from one or
several of the GAMOS user actions: GmUserRunAction, GmUserEventAction, GmUser-
TrackingAction, GmUserSteppingAction, GmUserStackingAction.

Then you implement the same methods as for the Geant4 user actions:

• GmUserRunAction:

• virtual void BeginOfRunAction(const G4Run* aRun);

• virtual void EndOfRunAction(const G4Run* aRun);

• GmUserEventAction:

• virtual void BeginOfEventAction(const G4Event* anEvent);

• virtual void EndOfEventAction(const G4Event* anEvent);

• GmUserTrackingAction:

• virtual void PreUserTrackingAction(const G4Track* aTrack);

• virtual void PostUserTrackingAction(const G4Track* aTrack);

• GmUserSteppingAction:

• virtual void UserSteppingAction(const G4Step* aStep);

• GmUserStackingAction:

• virtual G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track* aTrack,
G4ClassificationOfNewTrack oldClassificationx);

• virtual void NewStage();

• virtual void PrepareNewEvent();

Finally you have to transform your class into a plug-in. To learn how to do this, see
the instructions in the section Creating your plug-in, using the GmUserActionFactory,
or see the PlugIn tutorial.

If you define twice the same user action in your command file, you will get a warning
message, but it will be executed twice.

74

Chapter 7. Sensitive Detector and Hits

Sensitive detectors

Attaching a sensitive detector to a volume
The sensitive detector class in Geant4 has the task of creating hits (deposits of en-
ergy) each time a track traverses a sensitive volume and loses some energy. You can
write your own sensitive detector class, inheriting from G4VSensitiveDetector, that
produces your own hits, and attach it to any volume in your geometry. However
GAMOS provides some utilities to make this easier and without the need of C++
programming or a detailed knowledge of how the sensitive detector and hits work
in Geant4.

GAMOS provides several predefined sensitive detectors, that you can find in
GamosCore/GamosSD:

• GmSDSimple. It is a general-purpose class, that produces hits with the position
at the centre of the detector. The identification of each detector unit is done as
explained in the sub-chapter Identifying each sensitive detector copy.

• GmSDSimpleExactPos. It is similar to GmSDSimple but the hits position is the cen-
troid of the energy depositions of the different tracks that produced it (weighted
by their energy).

• GmSDOpticalPhoton. This class inherits from GmSDSimple, but only produces hits
if the process that defined the step is "OpAbsorption".

• GmSDSimple. This class separates in different hits not only those energy deposi-
tions in different detector units, but also if they differ by more than the measuring
time (see below). If no measuring time is set it takes a value given by the parameter:

/gamos/setParam GmSDSeparateByTime:MinimalMeasuringTime:SDTYPE VALUE

which has a default value of 100 nanoseconds. In fact the grouping of times is
done using the logic of the triggering (see below). For example if a trigger hap-
pens at time t the energy depositions willbe separated by times intervals t + N *
measuringTime.

This sensitive detector type is meant for particle with radioactive decay, where in
the same event you may have very different times. Each hit with big times will be
kept in memory until an event happens with times close to it, so that the hits of
the event may be merged with it. To avoid keeping hits whose time will never be
reached by any event in the simulation, a maximum job time is calculated in the
following way: 100 event times are sampled and with them the average time per
event is calculated; this time is multiplied by the number of event s to be processed
in the job, and to avoid error by a safety number, set by the parameter:

/gamos/setParam GmSDSeparateByTime:BigTimeFactor:SDTYPE VALUE

which has a default value of 1000; hits with time higher than this number will be
deleted. You may decide to always keep all hits, by setting the parameter

/gamos/setParam GmSDSeparateByTime:DiscardBigTime:SDTYPE 0

There are other classes that serve to make a virtual segmentation, when you have a
big sensitive volume that you want to segment in different pieces, although you have
not segmented it in your geometry. The only class currently implemented is:

• GmSDVirtSegmBox. It divides a box into voxels of equal size in X, Y and Z. Several
parameters control its use: Number of divisions in X, Y and Z:

/gamos/setParam SD:VirtSegmBox:NDiv:SDTYPE NDIV_X NDIV_Y NDIV_Z

75

Chapter 7. Sensitive Detector and Hits

where SDTYPE is the type of the sensitive detector.

Widths of the voxels in X, Y and Z:

/gamos/setParam SD:VirtSegmBox:Width:SDTYPE WIDTH_X WIDRH_Y WIDTH_Z

It must be taken into account that the product NDIV * WIDTH has to be equal to
the total length of the mother box, in each of the three coordinates. If this is not the
case when a step happens near the positive border it will be assinged a division
number bigger that NDIV and an exception will be thrown.

For efficiency, a maximum number of voxels in each direction is allowed, you may
change it with the parameter:

/gamos/setParam SD:VirtSegmBox:MaxNVoxels:SDTYPE VALUE

The divisions start at the negative wall of the box that is selected as sensitive vol-
ume, that is the offsets are the half lenghts of the box. You may change these offsets
with the parameter:

/gamos/setParam SD:VirtSegmBox:Offset:SDTYPE OFFSET_X OFSET_Y OFFSET_Z

If the offsets are not set, thay are calcualted at each track step, as it may happen
that different volumes are assigned to the same sensitive detector type. If the all
the volumes assigned to a sensitive detector type have the same solid dimensions,
we recommend you that the offsets are only calculated once, what can be done
with the parameter:

/gamos/setParam SD:VirtSegmBox:OffsetOnce:SDTYPE TRUE

The detector unit ID is built from the volume IDs of the ancestor volumes (see
section on Identifying each sensitive detector copy). The number of ancestors and the
NShift used to buld the ID number are controlled by the parameters

/gamos/setParam SD:VirtSegmBox:NAncestor VALUE

/gamos/setParam SD:VirtSegmBox:NShift VALUE

which by default take a value of 2 and 100 respectively.

To attach a GAMOS sensitive detector to a logical volume in your geometry, you have
to use the command

/gamos/SD/assocSD2LogVol SD_CLASS SD_TYPE LOGICAL_VOLUME_NAME

The SD_CLASS has to be one of the sensitive detector types described above (or
any other that you create). The SD_TYPE serves to differentiate your different sen-
sitive detectors, so that you can later apply different properties to them (e.g. dif-
ferent energy resolutions) 1. The LOGICAL_VOLUME_NAME is the name of the
G4LogicalVolume in your geometry that you want to make sensitive. You may re-
peat this command with different logical volumes.

Building your sensitive detector with C++ code
To build a new sensitive detector you can do it the usual Geant4 way, that is, in-
heriting from G4VSensitiveDetector (see example in [10]). After that you have to
transform it into a plug-in. To learn how to do this, see the instructions in the section
Creating your plug-in, using the GmSensDetFactory.

You may also choose to inherit your sensitive detector from the GAMOS class
GmVSD, so that you can profit easily from its extra functionality. Namely, it will take
care of applying the energy and time resolutions by detector type, accumulating the
energy of different energy depositions if they happen in the same detector unit,
taking into account the measuring time and the dead time and invoking the
digitization and reconstruction of hits at the end of the event. There are at least two
methods that you have to define in your class:

virtual long int GetDetUnitID(G4Step* aStep);

76

Chapter 7. Sensitive Detector and Hits

Serves to define the logic you want to apply to give a different number to each detec-
tor unit (for example to each individual crystal)

virtual void CalculateAndSetPosition(GmHit* hit, G4Step* aStep) = 0;

Serves to define the way you want to define the position of the hit.

Hits
If you have activated any of the GAMOS sensitive detectors, each time a track de-
posits some energy in any copy of the selected logical volume (you can indeed select
several volumes by repeating the command) a GmHit will be created. If the energy
deposition happens in the same volume copy (a real one, or a virtual one in case of
a virtually segmented sensitive detector) than a previous one in the same event, a
new hit is not created, but the existing hit is updated, adding to it the new energy
deposition.

The GmHit stores the following variables:

• long int theDetUnitID: Identification of the touchable

• G4int theEventID: Event number

• G4double theEnergy: Total energy

• G4double theTimeMin: Minimum time of energy depositions 2

• G4double theTimeMax: Maximum time of energy depositions

• G4ThreeVector thePosition: Position (it is defined in the Sensitive detector class; it
can be the centre of gravity of the energy depositions, the centre of the volume, ...)

• std::set< G4int > theTrackIDs: The list of track numbers

• std::set < G4int > theOriginalTrackIDs: The list of original track numbers (a track is
called original if it is a gamma, electron or positron and it is a primary particle, or
if it is a gamma created in an original positron annihilation)

• std::vector < GmEDepo* > theEDepos: The list of energy depositions. A GmEDepo
contains the energy and position of each step.

• G4String theSDType: The type of sensitive detector

Detector effects

Energy resolution
If you use one of the GAMOS sensitive detectors or you inherit your own one from
GmVSD you can smear automatically the energy of the hits for each detector type
with a gaussian given by the value of the parameter

/gamos/setParam SD:EnergyResol:SDTYPE VALUE

where SDTYPE is the type of the sensitive detector.

A more complicated energy resolution can be implemented, corresponding to a more
realistic calorimeter resolution. Apart from the constant term described above, en-
ergy independent, that may be due to calibration errors, non-uniformities and non-
linearities in photomultipliers, proportional counters, ADC’s, etc, two other terms
can be defined.

77

Chapter 7. Sensitive Detector and Hits

The first one is a term where the relative gaussian error is inversely proportional to
the square root of the energy, a term that can be attributed to the statistical fluctua-
tions in the energy loss and multiple scattering during the shower development:

sigma/E = K * / sqrt(E)

where K can be set with the parameter

/gamos/setParam SD:EnergyResolFluct:SDTYPE VALUE

where SDTYPE is the type of the sensitive detector.

In the second term the relative gaussian error is inversely proportional to the en-
ergy, and it can be attributed to instrumental effects, being rather energy-independent
(noise, pedestal):

sigma/E = K * / E

where K can be set with the parameter

/gamos/setParam SD:EnergyResolInstr:SDTYPE VALUE

where SDTYPE is the type of the sensitive detector.

Time resolution
The time of the hits can also be smeared for each detector type with a gaussian given
by the value of the parameter

/gamos/setParam SD:TimeResol:SDTYPE VALUE3

If you have a resolution function that is different, you may implement it by creating
a new sensitive detector class inheriting from GmVSD (or GmSDSimple if you don’t
want to change the logic to define the detector unit IDs) and overwrite the methods:

virtual G4double SmearEnergy(G4double energy, G4double enerResol);
virtual G4double SmearTimeMin(G4double time, G4double timeResol);

Detector measuring time
A detector has a finite time resolution, so that it is not able to distinguish hits that
come from different events when their time is close.

You can define the value of the measuring time for each detector type with the pa-
rameter

/gamos/setParam SD:MeasuringTime:SDTYPE VALUE

where SDTYPE is the type of the sensitive detector.

that takes a default value of 0 ns.

GAMOS offers several treatments of the masuring time, so that the user can choose
the one that best fits the detector under study. To select the treatment type you have
to use the parameter

/gamos/setParam SD:MeasuringType:SDTYPE VALUE

The following measurement types are currently available:

• Trigger. When hits is produced in one event, the hit with smallest time triggers, so
that all hits of all events with a time later than this hit time and shorter than this
hit time + measuring time are considered together. This is the default behaviour.

If your detector is a PET or Compton camera it is likely that it waits for a time
at least as long as the measuring time to start the coincidence sorting. But it may

78

Chapter 7. Sensitive Detector and Hits

happen that this time is even bigger that the measuring time. If you think you
should simulate this effect, you can do it by adding an extra parameter:

/gamos/setParam SD:Trigger:CoincidenceDelayTime:SDTYPE VALUE

Several independent triggers are defined: it may be that each detector volume is
associated a trigger or that detectors that have a common ancestor in the geometry
hierarchy are associated the same trigger. By default the trigger detetor units are
the same units defined as explained in the section on Identifying each sensitive de-
tector copy. But you may change this behaviour by changing how many ancestors
levels are used with the following parameter:

/gamos/setParam SD:Trigger:NAncestors:SDTYPE VALUE

This may serve you for example to define a unique global trigger, but setting the
number of ancestors equal to the maximum number of volumes in the geometrical
hierarchy of the detectors.

• Interval. The triggers happen at a constant interval. Starting at time 0, the hits are
merged if their time are between N*measuringTime and (N+1)*measuringTime.

• Backwards. Hits are accumulated if they have a time after the event time minus the
measuring time. The event time is computed as the time of creation of the first
particle in the event.

Detector dead time
A detector takes a finite time to transform an energy deposit into an electronic signal,
and during that time it is dead and cannot account for any other energy deposition.
The dead time is considered to start after the hit time plus the measuring time; in the
case that you set the tpe of measuring to Interval, the dead time starts also at the end
of the measuring, but in this case it is the current triggering time plsu hte measuring
time.

GAMOS holds a list of the dead sensitive detectors, i.e. those that have produced a hit
in a time prior than the current time minus the dead time. You can define the value
of the dead time for each detector type with the parameter

/gamos/setParam SD:DeadTime:SDTYPE VALUE

that takes a default value of 0 ns.

The dead time affects by default all detectors in a block. This means that if a detector
is dead it considers that all detectors that are placed in the same mother are also dead
(the usual behaviour for example in a PET or SPECT detector, where all crystals in a
block share the readout). You may change the number of ancestors that become dead
by setting the paramter

/gamos/setParam SD:DeadTimeDUListByBlock:NAncestors N_ANCESTORS

which as just mention takes a default equal to the value of the parameter
SD:DetUnitID:NAncestors. Take into account that the number of ancestors include
the detector itself, so that you can tell GAMOS to consider dead only the crystal
itself by setting this parameter to 1. The parameter

/gamos/setParam SD:DeadTimeDUListByBlock:NShift N_SHIFT

controls the number that each multiplied by each ancestor level, which should be
bigger than the number of volume copies (see section on Identifying each sensitive
detector copy).

A warning is due here: the hits that belong to the same block are identified by the
detector unit ID, so if you are using a bigger number of ancestors you should take
care that the hit detector unit ID takes into account a number of ancestors as least as
big as the number used here (see section on Hits).

79

Chapter 7. Sensitive Detector and Hits

You also have the option to define your detector as paralizable (default) or non-
paralizable by setting the parameter

/gamos/setParam SD:DeadTimeParalizable:SDTYPE TRUE/FALSE

In a non-paralizable detector, an event happening during the dead time since the
previous event is simply lost, while in a paralizable detector, an event happening
during the dead time since the previous one will not just be missed, but will restart
the dead time.

Minimum hit energy
You may set a threshold to the minimum hit energy, so that hits with smaller energy
will be deleted. This can be done at the lvevel of hits . or at the level or reconstructed
hits.

If you want to do it at the level of hits, you have to use the parameter:

/gamos/setParam SD:Minimum1HitEnergy:SDTYPE VALUE

and all the hits with energy value (sum of all the energy depositions of all tracks
contributing to it) less than VALUE will not be considered.

If you want to do it at the level of reconstructed hits, you have firsr to set the param-
eter:

/gamos/setParam SD:RecHit:MinimumEnergy:SDTYPE VALUE

Then you have to select among four different possible behaviours to delete the hits
that form the reconstructed hit (hits are not really deleted, but they are not taken into
account to form the reconstructed hit)

/gamos/setParam SD:RecHit:MinimumEnergyBehaviour:"+sdtypeSDTYPE
BEHAV_TYPE

where BEHAV_TYPE can be:

• DeleteSmall: if a hit has small energy it is not considered

• DeleteIf1Small if one of the hits in the reconstructed hits has small energy all are
deleted

• AcceptIf1Big if one of the hits in the reconstructed hits does not have small energy
all are accepted

• AcceptAll all hits are accepted, i.e. minimum hit energy is not taken into account

Hits digitization and reconstruction

Hits digitization
The conversion of the hits into digital signals is very dependent on the detector.
Therefore GAMOS just provides a general class, GmVDigitizer. The user may inherit
her/his own digitizer from it and implement the two methods:

virtual std::vector < GmDigit* > DigitizeHits(const
std::vector < GmHit* > &);

virtual void CleanDigits();

80

Chapter 7. Sensitive Detector and Hits

These two methods will be called automatically. The first one at the end of each event,
to convert the hits in digits, and the second one at the beginning of each event, to clear
the digits of the previous event.

You can then convert your digitizer into a GAMOS plug-in. To learn how to do this,
see the instructions in the section Creating your plug-in, using the GmDigitizerFactory.
After this, you select it with the command

/gamos/digitizer MY_DIGITIZER

Hits and digits reconstruction
The digital signals are usually treated so that they become “reconstructed hits”,
which contain sensible variables, like energy, time, This conversion is also very
dependent on the detector, and therefore GAMOS just provides a general class,
GmVRecHitBuilderFromDigits. There is also another class GmVRecHitBuilderFromHits,
which serves in case the user wants to transform the hits into reconstructed hits
directly.

The user may inherit her/his own reconstructed hit builder from it and implement
the two methods:

virtual std::vector < GmRecHit* > ReconstructDigits(const
std::vector < GmDigit* > &) = 0;

virtual void CleanRecHits();

in the case of GmVRecHitBuilderFromDigits, or

virtual std::vector < GmRecHit* > ReconstructHits(const
std::vector < GmHit* > &) = 0;

virtual void CleanRecHits();

in the case of GmVRecHitBuilderFromHits.

These two methods will be called automatically. The first one at the end of each event,
to convert the digits or hits into reconstructed hits, and the second one at the begin-
ning of each event, to clear the reconstructed hits of the previous event.

You can then convert your reconstructed hit builder into a GAMOS plug-in. To learn
how to do this, see the instructions in the section Creating your plug-in, using the
GmRecHitBuilderFactory. After this, you select it with the command

/gamos/recHitBuilder MY_RECHITBUILDER

Examples of reconstructed hit builders
If you do not need to simulate in detail the electronics of your detectore, you may use
one of the simple reconstructed hit builders implemented in GAMOS, which serve to
merge hits that are close to each other. The energy of the reconstructed hit is the sum
of the hit energies, while the position is the position of the biggest enrgy hit. The
position can be set as the weighted sum of the hit positions (weighted by the energy
of each hit) if the following parameter is set

/gamos/setParam SD:RecHit:PosAtBarycentre 1

This can be useful, for example, for recovering the total energy of a photon when
it has suffered a Compton scattering near the photoelectric interaction (the user has
always the freedom to choose how near the other hits are); or for clustering together

81

Chapter 7. Sensitive Detector and Hits

all the energy depositions of the particle shower produced by the electron following
a photoelectric interaction.

The merging of this is always started by the hit that has bigger energy in each detector
type (only hits in the same detector type are merged). Then the hits are looked one
by one to check if they are close. Each time a hit is added, the centre is recalculated.

The reconstructed hit builders implemented are:

• GmRecHitBuilderByDistance.Two hits are merged if they are separated by a distance
closer than the parameter

/gamos/setParam SD:GmRecHitBuilderByDistance:HitsDistInRecHit

that by default takes a value of 10 mm.

• GmRecHitBuilderByBlock. Two hits are merged if they are in sensitive detectors
that belong to the same block, i.e. a volume whose parent volume is the same.
To check if two hits belong to the same block, the detector unit ID (i.e. the iden-
tification of the touchable where the hits is located) , is used. Usually the detec-
tor unit ID is built from the volume copy numbers of the volume ancestors (e.g.
volume_copy_number + 100 * parent_volume_copy_number + 100*100*grandpar-
ent_volume_copy_number), and therefore two detector unit IDs are considered to
belong to the same block if their division by a number given by the parameter

/gamos/setParam SD:GmRecHitBuilderByBlock:NShift VALUE

gives the same results. This parameter takes a default value of 100.

The number of ancestors to be used is given by the parameter:

/gamos/setParam SD:GmRecHitBuilderByBlock:NAncestors VALUE

• GmRecHitBuilder1to1. Two hits are never merged, so that a reconstructed hit is built
for each hit.

If you want any of these reconstructed hit builders to be active you can select one of
them with the command

/gamos/recHitBuilder RHITBUILDER_NAME

where RHITBUILDER_NAME is one of the classes described above.

Identifying each sensitive detector copy
To identify each detector unit individually you have to give a different detector unit
ID to each copy of your sensitive detectors (each G4VTouchable in Geant4 terminol-
ogy). GAMOS does this automatically for you. If you use the GmSDSimple class, it
will give each SD copy a detector unit ID that will be the

copy number of physical volume + 100 * copy number of parent physical volume + 100*100*
copy number of grandparent physical volume

You can change the number of ancestor volumes to build the detector unit ID with
the parameter

/gamos/setParam SD:DetUnitID:NAncestors

that takes a default value of 3. These ancestors include the detector itself, i.e. if set to
1 it is only the detector, without looking at the geometry hierarchy.

You can also change the value of the “shift” that multiplies each ancestor copy num-
ber using the parameter

/gamos/setParam SD:DetUnitID:NShift

that takes a default value of 100.

82

Chapter 7. Sensitive Detector and Hits

Storing and retrieving hits
GAMOS provides you with the option of storing in a file the hits produced during a
run, and reading them back in another run. Creating hits from track in the sensitive
detector or reading them from a file will produce the same in-memory representa-
tion, therefore you can apply any of the above described effects and produce any
histogram in the same way independently on how the hits are produced.

This can serve you for example for doing a study on how much your results change
with different energy resolutions: you produce the hits (with zero resolution) and
store them, and in another run you can read applying a certain energy resolution; this
way you spare the time to recreate them (what usually is several orders of magnitude
slower than reading them).

To use this utility you just have to activate the user action

/gamos/userAction GmHitsWriteUA

The name of the file can be controlled with the parameter

/gamos/setParam hits:FileName MY_FILENAME

If this parameter is not found the name will be hits.out

You can read back the hits by activating the user action

/gamos/userAction GmHitsReadUA

The name of the file can be controlled with the parameter

/gamos/setParam hits:FileName MY_FILENAME

If this parameter is not found the name will be hits.out

As commented above, you can use all the other options in your script and just read
the hits instead of generating them. But probably you do not want that new hits are
created when you are reading them from a file; in this case, you should also activate
the user action

/gamos/userAction GmKillAllUA

File format
The file to be written can be a text file or a binary file. The format depends on the
value of the parameter

/gamos/setParam SD:GmHitsWriteUA:BinFile TRUE/FALSE

The text file contains a line for each hit with the following information:

• Event ID

• Sensitive detector type

• Detector unit ID

• Energy (MeV)

• Minimum time (ns)

• Maximum time (ns)

• Position X (mm)

• Position Y (mm)

• Position Z (mm)

• Number of original tracks

One line per original track with track ID

• Number of tracks

83

Chapter 7. Sensitive Detector and Hits

One line per track with track ID

The binary file contains the same information in the following format

• Event ID : float

• Sensitive detector type : char[10] (only first 10 characters are stored, if type has less
than 10 characters blank spaces will be added at the end)

• Detector unit ID : unsigned long long

• Energy (MeV) : float

• Minimum time (ns) : unsigned long long

• Maximum time (ns) : unsigned long long

• Position X (mm) : float

• Position Y (mm) : float

• Position Z (mm) : float

• Number of original tracks : unsigned int

One line per original track with track ID : unsigned int

• Number of tracks : unsigned int

One line per track with track ID : unsigned int

Hits histograms
There are two user actions that provide a number of hits histograms. GmHitsHistosUA
provides statistics about simulated hits, while GmRecHitsHistosUA provides statistics
about reconstructed hits.

The class GmHitsHistosUA produces a file named hits.root with the following his-
tograms:

• Number of hits ("Nhits")

• Number of hits compatible in time ("Nhits good")

• Kinetic energy ("Energy (keV)")

• Width (maximum separation between energy deposits) ("Width R3 (mm)")

• Width Z ("Width Z (mm)")

• Width phi ("Width phi (deg)")

• Number of energy deposits ("N E depos")

• Maximum difference in time between energy deposits ("Time span (ns)")

• Maximum distance between a hit and the rest ("Distance between hits (mm)")

• Position X ("X hit (mm)")

• Position Y ("Y hit (mm)")

• Position Z ("Z hit (mm)")

• Position R2 (=sqrt(X*X+Y*Y)) ("R2 hit (mm)")

• Position phi ("PHI hit (deg)")

• Position theta ("THETA hit (deg)")

• Position R3 (=sqrt(X*X+Y*Y+Z*Z)) ("R3 hit (mm)")

84

Chapter 7. Sensitive Detector and Hits

The class GmRecHitsHistosUA produces a file named recHits.root with the following
histograms:

• Number of hits ("N rec hits")

• Kinetic energy ("Energy (keV)")

• Width (maximum separation between hits) ("Width R3 (mm)")

• Width Z ("Width Z (mm)")

• Width phi ("Width phi (deg)")

• Number of simulated simulated hits ("N sim hits")

• Maximum difference in time between simulated hits ("Time span (ns)")

• Maximum distance between a hit and the rest ("Distance between hits (mm)")

• Position X ("X hit (mm)")

• Position Y ("Y hit (mm)")

• Position Z ("Z hit (mm)")

• Position R2 (=sqrt(X*X+Y*Y)) ("R2 hit (mm)")

• Position phi ("PHI hit (deg)")

• Position theta ("THETA hit (deg)")

• Position R3 (=sqrt(X*X+Y*Y+Z*Z)) ("R3 hit (mm)")

Notes
1. You may see the PET application for an illustration of this

2. This is the time considered when you call the method GetTime(). You may also
invoke explicitly GetTimeMin() or GetTimeMax()

3. The time smeared is theTimeMin

85

Chapter 7. Sensitive Detector and Hits

86

Chapter 8. Scoring

Creating a scorer
Geant4 provides several classes to score different quantities in the selected volumes.
GAMOS provides all the Geant4 functionality through user commands and also
some extra functionality that we describe in this section.

The first thing you should do to use GAMOS scoring is to create a multifunctional
detector [15] and associate it with a list of logical volumes, with the user command

/gamos/scoring/createMFDetector MFD_NAME LOGICAL_VOLUME_NAME(s)

where MFD_NAME is the detector name that will be used later. and
LOGICAL_VOLUME_NAME(s) is a list of logical volumes that you associate to this
detector.

Then you should add to the detector one of the GAMOS scorers, or your own ones,
with the user command

/gamos/scoring/addScorer2MFD SCORER_NAME SCORER_CLASS MFD_NAME
SCORER_PARAMETERS

SCORER_NAME is a name you give to the scorer to be used later, SCORER_CLASS is
one of the available scorer classes, MFD_NAME is one of the multifunctional detec-
tors created above and SCORER_PARAMETERS are the optional parameters a scorer
may need (see below for the description of the scorers). You may repeat this com-
mand to associate several scorers to the same detector.

To each of the defined scorers you can add a filter, to select for which track conditions
the scoring will be done:

/gamos/scoring/addFilter2Scorer FILTER_NAME/CLASS SCORER_NAME

FILTER_NAME/CLASS is the name of a GmVFilter class or the name you gave to a
filter built from a filter class by using the command /gamos/filter (see section on Filters)
and SCORER_NAME is one of the scorers defined above.

You may repeat this command to associate several filters to the same scorer. See sec-
tion on Filters for a description of the available filters and how to create your own
one.

By default a different count is scored for each of the copies of the selected volumes
with different copy number. This is managed by the scorer classifier GmScorerClassi-
fierBy1Ancestor. The user can attach different classifiers to the different scorers so that
the counts are done in different ways:

/gamos/scoring/assignClassifier2Scorer CLASSIFIER_NAME/CLASS SCORER_NAME

CLASSIFIER_NAME/CLASS is the name of a GmVClassifier class or the name you
gave to a classifier built from a classifier class by using the command /gamos/classifier
(see section on Classifiers) and SCORER_NAME is one of the scorers defined above.

Finally you may select the format of the scoring results by associating one of the
available scorer printers for each scorer,

/gamos/scoring/addPrinter2Scorer PRINTER_NAME SCORER_NAME

PRINTER_NAME is the name of a GmVPSPrinter class or the name you gave to a
printer built from a printer class by using the command /gamos/printer (see section on
Scorer printers below) and SCORER_NAME is one of the scorers defined above.

If no printer is attached to a scorer, it will use the printer type GmG4PSPrinterG4cout.

The scoring is done by default taking into account the track weight, except for the
scorers when it is explicitly mentioned (see scorers description). If you do not want
to take weights into account you can switch them off with the command

/gamos/scoring/useTrackWeight SCORER_NAME FALSE
87

Chapter 8. Scoring

The quantities scored are given per event by default. If you want the score without
dividing by the number of events, use the command

/gamos/scoring/printByEvent PRINTER_NAME FALSE

The error in the scored quantity per voxel is also calculated by default, using the
following formula:

sqrt{ (SumW2*nEvents - SumW*SumW) / (nEvents-1)} / nEvents

where nEvents is the total number of events in the run, SumW is the sum of the scored
quantity value times its weight (i.e. the scored quantity itself) and SumW2 is the sum
of squares of scored quantity value times its weight.

When the scoring is done per event, this sum of squares is done summing first all the
values times its weight belonging to all the particles of the same event and then squar-
ing this quantity. In this way the correlations between particles of the same event is
properly taken into account. If the scoring is not by event, the error calculation uses
the same formula, but the sum of squares is not done summing the contribution of
the particles of the same event, but squaring each contribution individually.

Calculating the errors makes it necessary to store the square of the weights, increasing
substantially the memory usage and CPU time. If you want to deactivate this option
for a scorer, use the command

/gamos/scoring/scoreErrors SCORER_NAME FALSE

SCORER_NAME is one of the scorers defined above.

As mentioned above the errors that are calculated taking into account the number of
events. You have to be careful then if you set to off the option of scoring by event and
keep on the option of calculating the errors. In the default GAMOS scorer printers,
the errors are printed are relative, i.e. the error divided by the value, so no caution is
necessary, but be careful if you define a printer yourself.

Each scorer has a default unit (see section below), but it can be overridden with the
command:

/gamos/scoring/scorerUnit SCORER_NAME UNIT_NAME UNIT_VALUE

Scorer classes
All the available scorers in Geant4 are also available in GAMOS. The classes have
been slightly changed to provide the extra functionality.

The scorers can be classified in the following types:

• Track length scorers

• GmG4PSTrackLength: The track length is defined by the sum of step lengths of the
particles inside the cell (i.e., the volume where the scoring happens). A particle
weight is not applied by default. There are two extra parameters, that are FALSE
by default and can be set TRUE or FALSE: to multiply by the kinetic energy and
to divide by the velocity. If the energy track flux is required then you should set
them to TRUE FALSE. Alternatively to measure the flux per unit velocity then
you should set them to FALSE TRUE. Finally to measure the flux energy per unit
velocity then you should set them to TRUE TRUE.

• GmG4PSPassageTrackLength: The passage track length is the same as the track
length in GmG4PSTrackLength, except that only tracks which pass through the
volume are taken into account. This means that newly-generated or stopped
tracks inside the cell are excluded from the calculation. A particle weight is not
applied by default.

• Deposited energy scorers
88

Chapter 8. Scoring

• GmG4PSEnergyDeposit: This scorer stores a sum of particles’ energy deposits at
each step in the cell.

• GmG4PSDoseDeposit: In some cases, dose is a more convenient way to evaluate
the effect of energy deposit in a cell than simple deposited energy. The dose
deposit is defined by the sum of energy deposits at each step in a cell divided by
the mass of the cell. The mass is calculated from the density and volume of the
cell taken from the methods of G4VSolid and G4LogicalVolume.

• GmPSSphericalDoseDeposit: This is a special case of emphasis
GmG4PSDoseDeposit, where the scoring volume is virtually divided in
concentric spherical shells, so that one score is given for each. The user should
give several extra parameters when defining the score to set the number of
shells, minimum and maximum radius. Optionally three more parameters can
be defined to set the sphere centre, if not set the centre will be (0,0,0).

• GmPSCylindricalDoseDeposit: This is a special case of emphasis
GmG4PSDoseDeposit, where the scoring volume is virtually divided in
concentric cylindrical shells, and each one in phi slices, so that one score is
given for each slice in each shell. The user should give several extra parameters
when defining the score to set the number of shells, minimum and maximum
radius and the number of phi slices, minimum and maximum phi. Optionally
three more parameters can be defined to set the sphere centre, if not set the
centre will be (0,0,0). And three more optional parameters can be given to
define the clinder axis, which if not set will be (0,0,1).

• GmG4PSKerma: This scorer stores a sum of particles’ kerma each step in the cell,
that is the energies of the charged secondary particles produced by non-charged
particles, divided by the mass of the cell.

• Current and flux scorers

There are two different definitions of a particles flow for a given geometry. One
is a current and the other is a flux. In our scorers, the current is simply defined
as the number of particle’s (with the particle’s weight) passing through a certain
surface or volume, while the flux takes the particle’s injection angle to the geometry
into account (dividing the area of the surface that is traversed and the cosine of the
angle between the track direction and the surface normal). The current and flux are
usually defined at a surface, but volume current and volume flux are also provided.

• GmPSSurfaceCurrent: This is a surface based scorer. The quantity is defined by
the number of tracks that reach the surface. It serves to score the current in the
surfaces of a box, tube or sphere. The user can choose the direction of the particle
to be scored with the parameter

/gamos/setParam SCORER_NAME:Direction DIRECTION

The choices are In, Out or InOut. In scores incoming particles to the volume,
while Out scores only outgoing particles from the volume. InOut scores both
directions.

The user should also define the list of volume surfaces in which the scoring will
be done. These surfaces depend on the volume solid:

Box

• X+: YZ plane at positive X

• X-: YZ plane at positive X

• Y+: XZ plane at positive Y

• Y-: XZ plane at positive Y

• Z+: XY plane at positive Z

• Z-: XY plane at positive Z

89

Chapter 8. Scoring

Tube

• INNER: inner radius surface

• OUTER: outer radius surface

• PHI: if the full phi (360 degrees) is not defined, it is the two surfaces composed
of the points of same phi that limit the tube volume

• TOP: the top surface

• BOTTOM: the bottom surface

Sphere

• INNER: inner radius surface

• OUTER: outer radius surface

• THETA: if the full theta (180 degrees) is not defined, it is the two surfaces
composed of the points of same theta that limit the sphere volume

• PHI: if the full phi (360 degrees) is not defined, it is the two surfaces composed
of the points of same phi that limit the sphere volume

The current may be divided by the area of the surface being traversed if the
following parameter is set to 1:

/gamos/setParam SCORER_NAME:DivideByArea 1

The current may be divided by the cosine of the angle between the track direction
and the surface normal).

/gamos/setParam SCORER_NAME:DivideByAngle 1

• GmPSSurfaceFlux: This scorer is similar to GmPSSurfaceCurrent, but flux is calcu-
lated instead of current, that is the current is always divided by area and angle.

• GmG4PSFlatSurfaceCurrent: Flat surface current is a surface based scorer. The
present implementation is limited to scoring only at the -Z surface of a G4Box
solid. The quantity is defined by the number of tracks that reach the surface. The
user must choose a direction of the particle to be scored (as extra argument in
/gamos/scoring/addScorer2MFD). The choices are In, Out or InOut. Here, In scores
incoming particles to the volume, while Out scores only outgoing particles from
the volume. InOut scores both directions. The current is normalized for a unit
area if an extra second parameter is set to TRUE.

• GmG4PSCylinderSurfaceCurrent: Cylinder surface current is a surface based
scorer, and similar to the GmG4PSFlatSurfaceCurrent. The only difference is that
the surface is defined at the inner surface of a G4Tubs solid.

• GmG4PSSphereSurfaceCurrent: Sphere surface current is a surface based scorer,
and similar to the GmG4PSFlatSurfaceCurrent. The only difference is that the sur-
face is defined at the inner surface of a G4Sphere solid.

• GmG4PSPassageCellCurrent: Passage current is a volume-based scorer. The cur-
rent is defined by the number of tracks that pass through the volume.

• GmG4PSFlatSurfaceFlux: Flat surface flux is a surface based flux scorer. The sur-
face flux is defined by the number of tracks that reach the surface. The expression
of surface flux is given by the sum of W/cos(t)/A, where W, t and A represent
particle weight, injection angle of particle with respect to the surface normal,
and area of the surface. The user must enter one of the particle directions, as in
GmG4PSFlatSurfaceCurrent.

• GmG4PSCylinderSurfaceFlux: Cylinder surface flux is a surface based flux scorer,
and similar to the GmG4PSFlatSurfaceFlux. The only difference is that the surface
is defined at the inner surface of a G4Tubs solid.

• GmG4PSSphereSurfaceFlux: Sphere surface flux is a surface based flux scorer, and
similar to the GmG4PSFlatSurfaceFlux. The only difference is that the surface is
defined at the inner surface of a G4Sphere solid.

90

Chapter 8. Scoring

• GmG4PSCellFlux: Cell flux is a volume based flux scorer. The cell flux is defined
by a track length (L) of the particle inside a volume divided by the volume (V)
of this cell. The track length is calculated by a sum of the step lengths in the
volume. The expression for cell flux is given by the sum of (W*L)/V, where W is
a particle weight, and is multiplied by the track length at each step.

• GmG4PSPassageCellFlux: Passage cell flux is a volume based scorer similar to
G4PSCellFlux. The only difference is that tracks which pass through a cell are
taken into account. It means that tracks generated or stopped inside the volume
are excluded from the calculation.

• In/Out behaviour For the following scorers GmG4PSCylinderSurfaceCurrent,
GmG4PSCylinderSurfaceFlux, GmG4PSFlatSurfaceCurrent, GmG4PSFlatSurfaceFlux,
GmG4PSSphereSurfaceCurrent, GmG4PSSphereSurfaceFlux, GmG4PSTrackCounter
you can make the scoring only for tracks that are entering, only for tracks that are
exiting or both for tracks that are entering or exiting (default behaviour). To select
among these three options you can add an extra parameter when defining the
scorer that can be In, Out or InOut

• Other scorers

• GmG4PSMinKinEAtGeneration: This scorer records the minimum kinetic energy
of secondary particles at their production point in the volume in an event. This
primitive scorer does not integrate the quantity, but records the minimum quan-
tity.

• GmG4PSNofSecondary: This class scores the number of secondary particles gen-
erated in the volume. A particle weight is not applied by default. The user can
choose if the scoring is done for all types of particles (default) or only for a set of
particles, by naming them as extra parameters.

• GmG4PSNofStep: This class scores the number of steps in the cell. A particle
weight is not applied by default. If an extra parameter is set to TRUE those steps
with step length zero will not be taken into account.

• GmG4PSCellCharge: This class scores the total charge of particles which have
stopped or have been created in the volume, i.e. the tracks that enter count as
+1 and the tracks that exit count as -1.

• GmG4PSTrackCounter: This class scores the number of tracks in a cell.

• For Event Biasing

Scoring for event biasing is a very specific use case whereby particle weights and
fluxes through importance cells are required. The goals of the scoring technique
are to:

• appraise particle quantities related to special regions or surfaces,

• be applicable to all "cells" (physical volumes or replicas) of a given geometry,

• be customizable.

A number of scorers have been created for this specific application:

• GmG4PSNofCollision: This scorer records the number of collisions that occur
within a scored volume/cell.

• GmG4PSPopulation: This scores the number of tracks within in a given cell per
event. A particle weight is not applied by default.

• GmG4PSTermination: This scores the number of tracks that are terminated in a
given cell per event. A particle weight is not applied by default.

• From data

91

Chapter 8. Scoring

• GmG4PSData: This score uses a GAMOS data as quantity to score. See section on
GAMOS data.

Scoring in voxelised phantoms
When you are navigating in a voxelised pantom geometry and you are using the
regular navigation you have the option of skipping voxel frontiers when the ma-
terial does not change (see section on Reading DICOM files). In this case the scorer
GmG4PSDoseDeposit will automatically distribute in the voxels traversed the dose
corresponding to the energy deposited along each step. A correction is neverthe-
less needed: when the particle travels it loses energy, and therefore it is not right
to distribute the dose proportionally to the length traversed inside each voxel. The
needed corrections to the multiple scattering and energy loss when the particle loses
energy are done in an iterative way: the increase of multiple scattering increases the
path length, what increases the energ losty, what makes the multiple scattering even
bigger, what increases the path length and therefore the energy lost. By default the
number of iterations is two, but you may change it with the parameter:

/gamos/setParam GmEnergySplitter:NIterations NITER

Other scorers need the same corrections, namely GmG4PSEnergyDeposit,
GmG4PSEnergyLost, GmG4PSKerma and GmG4PSTrackLength. In this case the index
used is the copy number of the voxels traversed, what means that the classifier
index is not used at all. You may nevertheless force the use of the classifier index
with the parameter:

/gamos/scoring/printer SCORER_NAME:UseClassifierIndex 1

but you have to be conscient that if you do so the score will not be distributed in the
voxels traversed, even if the classifier is GmClassifierBy1Ancestor:

Other scorers are also affected by the feature of skipping voxel boundaries:

• GmG4PSNofSecondary: the score is done at the last voxel traversed, while using the
default classifier GmClassifierBy1Ancestor would assign it to the one corresponding
to the origin of the step, that is the first voxel.

• GmG4PSNofCollision: the same as GmG4PSNofSecondary.

• GmG4PSNofStep: a score is assigned to each one of the voxels traversed.

• GmG4PSTrackCounter: for the first step it is always that the track exited; for inter-
mediate voxels it is always that the track entered and exited; for the last voxel it is
always that the track entered.

The flux and current scorers are not corrected, as it likely has no sense to calcualte
the flux entering and exiting voxels. Please contact the GAMOS team if ou think you
need this feature.

Filter classes
See section on Filters.

Scorer printers
A scorer printers serves to select the format of the output of a scorer. These classes
are unique to GAMOS, as Geant4 does not provide this functionality. As mentioned
above, several printers can be associated to the same scorer.

92

Chapter 8. Scoring

To associate a printer to an scorer, you can use the command mentioned above:

/gamos/scoring/addPrinter2Scorer PRINTER_NAME SCORER_NAME

The name of the printer is the name of the printer class (see list below). If you want to
change the printer name, or you want to add some parameters to a printer, you can
use the command

/gamos/scoring/printer PRINTER_NAME PRINTER_CLASS PARAMETERS

where PRINTER_NAME is the new name you want to give to the printer and
PRINTER_CLASS is the name of the printer class (see list below).

The general-use scorer printers currently in GAMOS are the following:

• GmPSPrinterG4cout: Prints in the standard output the summary of scoring in the
following format:

MultiFunctionalDet: MFD_NAME
PrimitiveScorer: SCORER_NAME
Number of entries= 5
index: 0 = 2.6625344e-18 +-(REL) 0.031622777 Gy
index: 1 = 8.6617421e-17 +-(REL) 0.011622713 Gy
index: 2 = 2.1034987e-17 +-(REL) 0.021166675 Gy
index: 6 = 5.9651155e-17 +-(REL) 0.01418326 Gy
index: 7 = 8.2850179e-17 +-(REL) 0.013747866 Gy

....
SCORER_NAME SUM ALL: 2.683331e-13 +/- 7.9512158e-15 Gy

where MFD_NAME is the name of multifunctional detector and SCORER_NAME
is the name of the scorer. The columns after index have the following meaning:

Index, scorer value, scorer error (relative, i.e. error/value), unit name.

At the end it is printer the sum of all scores, with error (non relative).

• GmPSPrinterTextFile: Prints in a binary file the same information than the GmP-
SPrinterG4cout printer. The name of the file is

PRINTER_NAME.out. It can be changed with the parameter

/gamos/setParam PRINTER_NAME:FileName FILE_NAME

• GmPSPrinterBinFile: Prints in a text file almost the same information than the GmP-
SPrinterG4cout printer. The format of the data is the following:

• Detector name (char[30])

• Scorer name (char[20])

• Unit name (char[10])

• Unit value (float)

• Number of entries (unsigned int)

For each classifier index:

• Index name (char[20])

• Score value (float)

• Square of score value (float). This value is needed instead of the error for prop-
erly taking into account the correlations when the errors of several files are
summed

The name of the file is

PRINTER_NAME.out

It can be changed with the parameter

/gamos/setParam PRINTER_NAME:FileName FILE_NAME

93

Chapter 8. Scoring

• GmPSPrinterHistos: Prints scoring dat in histograms. The name of the file is

PRINTER_NAME.root. It can be changed with the parameter

/gamos/setParam PRINTER_NAME:FileName FILE_NAME

The user must define the histogram name, number of bins and axis minimum and
maximum, giving them as arguments of the /gamos/scoring/printer command (this
means that the class GmPSPrinterHistos cannot be used directly). The scoring data
corresponding to index IDX will be used to set the content of the histogram bin
IDX. It should be noted that the first histogram bin is number 1, while it may hap-
pen that the first index is not 1. If this is the case, a number (positive or negative)
can be added to the index by defining an offset as a parameter:

/gamos/setParam PRINTER_NAME:OffsetX OFFSET

If and only if you are using a GmCompoundClassifier built from two classifiers, you
may want to produce a 2-dimensional histogram. In this case you should give
eight instead of four parameters to the /gamos/scoring/printer command: the first
four should correspond to the data of the first classifier and the second four to the
second one. Then three histogram will be filled: the compound index will be split
in the two indices (as defined with the NShift of the GmCompoundClassifier); then
an histogram will be filled for the first index, another for the second one and a 2-
dimensional histogram combining the two indices. A second offset may be defined
for the second index:

/gamos/setParam PRINTER_NAME:OffsetY OFFSET

The three above scorer printers may also print the sum of squared scores which will
be useful to sum up scores from different jobs. To do it you have to set the parameter:

/gamos/setParam PRINTER_NAME:PrintSumW2 1

Other scorer printers are provided for specific applications. See corresponding sec-
tions in this guide.

Classifiers
See section on Filters.

Multiplying by data
You can multiply the quantity you are scoring by any of the GAMOS data (see section
on GAMOS data), so that before scoring the quantity value it will be multiplied by the
value of that the GAMOS data has in that step. To do it you have to use the parameter:

/gamos/setParam SCORER_NAME:MultiplyByData DATA_NAME

where DATA_NAME is the name of the data you want to use.

Multiplying by distribution
You can multiply the quantity you are scoring by a GAMOS distribution (see section
on GAMOS distributions), so that before scoring the quantity value it will be multi-
plied by the value of that the GAMOS distribution has in that step. To do it you have
to use the parameter:

/gamos/setParam SCORER_NAME:MultiplyByDistribution DISTRIBUTION_NAME

where DISTRIBUTION_NAME is the name of a distribution you have previously
created.

94

Chapter 8. Scoring

Convergence testing
The fact of having a small relative erro in a score does not always guarantee that it has
converged to a good result. This may be specially true when there are contributions
of very different weights to the scorer, and the high weight scores have not been
properly sampling with your statistics. If you suspect of a wrong behaviour you can
activate the convergence test with the parameter (as these tests consume some CPU
time and memorey, bu default they are deactivated):

/gamos/setParam SCORER_NAME:ConvergenceTester CONVERGENCE_NAME

where SCORER_NAME is the name of the scorer and CONVERGENCE_NAME is the
name you want to give to the convergence tester, which will be used in the report.
If you are using a point detector scorer, you should substitute SCORER_NAME by
GmPDS.

The convergence tests are taken from the Geant4 code, and are inspired in the MCNP
tests. The tests are based in the analysis of the sum of scores at the end of each event.
The following variables are printed about the sum of scors :

• EFFICIENCY =Proportion of events that have a non zero value.

• MEAN = Average value

• VAR = variance of values

• SD = standard deviation

• R = The estimated relative erro = SD / MEAN / sqrt(number of values)

• SHIFT = Shift in the midpoint of the confidence interval to a
higher value = (SUM(Xi-MEAN)*(Xi-MEAN)*(Xi-MEAN) -
(N-Number_of_non_zero_values)*MEAN*MEAN*MEAN) / (2*VAR*N)

• VOV = Variance of variance = (SUM(Xi-MEAN)*(Xi-MEAN)*(Xi-MEAN)*(Xi-
MEAN) + (N-Number_of_non_zero_values)*MEAN*MEAN*MEAN*MEAN) /
(VAR*VAR) -1./N

• FOM = Figure of merit = 1 / (R*R) / CPU_time_of_last_event

• THE LARGEST VALUE and where in which event it happened

To get a feeling of how big are the fluctuations the same variables, i.e. mean, variance,
R, shift and FOM, are printed again but adding to the values a new one equal to the
largest value (so that this value is counted twice). And also the ratio of thies affected
to the original ones.

Then the results of eight convergence tests are shown:

• MEAN distribution is RANDOM

• r follows 1/std::sqrt(N)

• r is monotonically decrease

• r is less than 0.1. r = 0.0153184

• VOV follows 1/std::sqrt(N)

• VOV is monotonically decrease

• FOM distribution is RANDOM

• SLOPE is large enough

Finalyy it prints the evolution of several variables, i.e. the cahnge of these variables
when more events are added. The variables are printed each N/16 events, where N
is the total number of events. The variables printed are the following:

• mean

95

Chapter 8. Scoring

• var

• sd

• r

• vov

• shift

• e

• r2eff

• r2int

Point detector scorer
The point detector scorer covers the problems where the quantity to be calculated is
the flux or the dose of neutral particles (neutrons or gammas) in a very small detector
(small with respect to the setup dimensions) situated far from the primary particles
source. In this kind of problems the fraction of particles that reach the detector is
very reduced, and threfore if one wants to calculate the flux or dose by conventional
methods the statistics needed would be prohibitive.

The technique implemented in GAMOS is similar to the F5 tally implemented in
MCNP. It is based on the following idea: normal tracks are propagated and for each
neutron or gamma interaction is calculated the probability that it would be deviated
in the direction of the point detector (instead of the real direction towards which it
is deviated) and the probability that it reaches the point detector without any further
interaction. The first probability is based on a precalculated table of angle probabili-
ties for each interaction type, each material and each energy, multiplied by the solid
angle covered by the point detector. The second probability is based of the number
of mean free paths that the neutron or gamma would have to traverse along the path
to reach the point detector. A similar calculation is done for each neutron or gamma
initial step, except that the angle probability it is based on is simplified as a constant
distribution in the local reference system of the parent particle (i.e. probability equal
to 0.5). Summing up these probabilities for a number of events, usuallly several or-
ders of magnitude less than with conventional methods, one can get the flux and
the energy spectrum at the point detector, and with these magnitude the equivalent
doses (H*, Hp(0,15,...)) can be obtained.

In this chapter we describe first the theoretical basis of the method. Then we explain
how it is implemented in GAMOS, how to select the different available options, and
which are the possible outputs (tables or histograms). In the third part we describe
the several variance reduction techniques that can be used to readuce the CPU time,
and give some recommendations on how to use the output table and histograms to
help in determining the best variance reduction techniques for a given problem.

Theoretical basis
The point detector scorer calculates the fulx at a point based on the probability that
particles reach it. Suppose we call p(µ,φ) the probability that at a source or neu-
tron/gamma interaction the the particle produced or scattered goes into the solid
angle dΩ about the direction (µ , φ), where µ = cos(θ). if R is the distance to the
detector from the source or interaction point

96

Chapter 8. Scoring

Figure 8-1.

yields the probability that the particle reaches the detector point with no further col-
lisions, where

Figure 8-2.

is the attenuation of a beam of monoenergetic particles passing through a material
medium, where s is measured along the direction from the source or interaction point
to the detector and Σ(s) is the macroscopic total cross section at s. If dA is an element
of area normal to the line of flight to the detector, dΩ = dA/ R2. As the flux is the
number of particles passing through a unit area normal to the line of flight direction,
we can write the flux as

Figure 8-3.

If there is azimuthal geometry, then p(µ,φ) = p(µ) / 2 π , and we can finally write

Figure 8-4.

The attenaution term, exp(-λ) is calculated summing up the number of interaction
lengths from the source or interaction point until the detector; this calculation de-
pends on the neutron/gamma energy and the materials traversed, and it is computed
in GAMOS through the use of geantino 1.

The R2 term in the denominator causes a singularity: when a source or interaction
event occurs near the detector point, R approaches zero and the flux approaches in-
finity. The technique is still valid and unbiased, but convergence is slower and often
impractical. To avoid this singularity, a fictitious sphere of radius R0 surrounding the
detector point is defined (which we call the exclusion sphere). If we can assume that
the flux is uniformly distributed inside this sphere, then it can be demonstrated that
the average flux in the sphere is

97

Chapter 8. Scoring

Figure 8-5.

The exclusion sphere radius has a default value of 1 mm, which can be changed with
the parameter

/gamos/setParam GmPDS:ExclusionRadius RADIUS

GAMOS implementation
The point detector scorer is selected as other GAMOS scorers, although, as explained
below, it does not really behave as the other scorers. To activate you have to select the
user action:

/gamos/userAction GmPDSUA

But before this command you have to set the parameters that drive the behaviour
of the point detector scoring. You may first decide if you want to score the flux for
neutrons, gammas or for both with the two parameters

/gamos/setParam GmPDS:ScoreNeutrons 1/0

/gamos/setParam GmPDS:ScoreGammas 1/0

There are several parameters that you may change distinctly for neutrons or gammas,
or that you may want to set the same value for both. All the parameters start with
GmPDS and then they are followed by neutron: or gamma:; if the second word is not
one of these two, then the parameter serves for both. We will then omit this word in
the explanation of the parameters in this section, but remember you can always add
it, except in the cases where it is explicitly mentioned that there is a unique parameter
for both particles.

Creating angle deviation probability densities
The first thing you should do before running your point detector scoring job, is to
create a file that contains the probability density functions of the emission angles for
each energy, process and material. Else GAMOS will assume flat probabilities for all
angles (waht may be enough in your case).

To do this you can run a job that writes in a ROOT file the probability of emission
angle for all the materials that constitute your setup. You may follow the example
found in tutorials/ShieldingTutorial/exercise3/exercise3.angle.gg.in, that we explain here.
The class that makes the work is called GmPDSCreateAngleTablesUA, but remember
that the parameters have to go before the class that uses them, so you should add this
line at the end of your script

/gamos/userAction GmPDSCreateAngleTablesUA

To create the tables for different materials and tables you may use the generator Gm-
GeneratorChangeEnergyAndMaterials (see section on Event generator changing energy
and material).

If you have in your setup several particles that produce neutrons (or gammas) you
should repeat the process with different primary particle types. Then you may add
all histograms in a file by using the ROOT command

hadd MERGED_FILE.root FILE1.root FILE2.root ...

The file created in this way should be passed to the point detector scorer.

/gamos/setParam GmPDS:AngleDeviationFileName FILE_NAME

98

Chapter 8. Scoring

the default name is angleDeviation.neutron.root for neutrons and
angleDeviation.gamma.root for gammas.

When this file is read it will be checked if the number of events in each histograms
is big enough, else the histogram will not be used. You may control the minimum
number of events in the histogram with the parameter:

/gamos/setParam GmPDS:InteractionAngleManager::MinimumNumberOfEntries VALUE

Point detector volume
The detector where the flux will be scored has to be a real volume in your geometry. It
should be an small volume, as small as you want, although you may decide to make
it the size of the real detector in your experiment. It is important to take into account
that despite the flux is calculated as the probability that tracks reach the detector, if a
track actually reaches it, it will also be counted. The name of the detector volume is
given with the parameter

/gamos/setParam GmPDS:DetectorName VOLUME_NAME

If you want to score the flux in several points you may place the detector volume at
several places.

Energy and dose equivalent bins
The flux will be scored in different energy bins. These energy bins should be defined
in a file whose name is

/gamos/setParam GmPDS:EnergyBinsFileName FILE_NAME

The format of this file is a set of one-column lines with the energy values.

There are several dose equivalent magnitudes that can be calculated, namely the am-
bient dose and the personal dose at several angles: 0, 15, 30, 45, 60, 76. To select them
you have to set the following parameters (not a different one for neutrons and gam-
mas)

/gamos/setParam GmPDS:PrintHstar 1

/gamos/setParam GmPDS:PrintHp0 1

/gamos/setParam GmPDS:PrintHp15 1

/gamos/setParam GmPDS:PrintHp30 1

/gamos/setParam GmPDS:PrintHp45 1

/gamos/setParam GmPDS:PrintHp60 1

/gamos/setParam GmPDS:PrintHp75 1

For each magnitude you have to define the conversion factor for each energy bin.
These are defined in a file whose name is given by the parameter

/gamos/setParam GmPDS:Flux2DoseFileName FILE_NAME

This file must contain in each line the energy and the conversion factors in pSv
cm2 for the magnitudes: H*(10) H_pslab(10,0) H_pslab(10,15) H_pslab(10,30)
H_pslab(10,45) H_pslab(10,60) H_pslab(10,75). The default name of this file is
Flux2Dose.neutron.ICRU57.lis for neutrons and Flux2Dose.gamma.ICRU57.lis for
gammas. These two files contain the conversion factor given by the ICRU57 report,
and can be found in the data directory of the GAMOS release. By default these files
will also be used to read the list of energy bins to be used for the flux results.

99

Chapter 8. Scoring

Scoring with filters
As for any user action, you may add one or more filters so that only track steps that
pass them will be scored. The filter is applied to the neutron or gamma that creates
the geantino, not to the geantino that reaches the detector.

Scoring per category
The scoring of flux and equivalent dose can be split following different criteria.

The first possibility is to score separately the contributions from the real particles that
reach the point detector and the indirect contributions calculated with the geantinos.
The first one will have in the score name the word Neutron or Gamma, while the sec-
ond one will have the word Geantino. To activate this option the following parameter
should be used

/gamos/setParam GmPDS:ScoreSeparatelyTrueAndGeantino 1

The second possibility is use a classifier and get a different score for each classifier
index. You can add a classifier to GmPDSUAas you do for any other user action.

Output format
At the end of the run the results are written in the standard output or in a file given
by the parameter

/gamos/setParam GmPDS:ResultsFileName FILE_NAME

The following table is written for each score or neutrons or gammas (one per point
detector copy, one per category as describe above). First a line with the filter names,
classifier name, particle type, detector name and copy, score type (named ALL if it is
not a sub category), the detector position and the number of events in the job. Then
follows a line for each energy with the filter names, classifier name, particle type,
detector name and copy, score type, energy value, flux value, relative flux error (er-
ror divided by value), number of particles contributing to the flux and then, for later
statistical processing, sum of flux values squared, and to the third and fourth power.
After all energies comes a line with the total sum of flux in all energies, which has the
filter names, classifier name, particle type, detector name and copy, score type, the
words FLUX_TOTAL/particle followed by the total flux value and relative error and
the total number of particles contributing to the flux. If the dose equivalent magni-
tudes are required, they come at the end in a line starting also with the filter names,
classifier name, particle type, detector name and copy and score type followed by the
magnitude name (Hstar, Hp(10,0), Hp(10,15), ...). An example output is the following

%%%%%% SCORE IN POINT DETECTOR FOR set ALL: NeutronInelastic: gamma: PD1: ALL: at (4800,0,0) NEVENTS= 1000
ALL: NeutronInelastic: gamma: PD1: ALL: ENERGY= 0.01 FLUX= 0 +-(REL) 0 N 6 Fwei2 0 Fwei3 0 Fwei4 0
ALL: NeutronInelastic: gamma: PD1: ALL: ENERGY= 0.015 FLUX= 0 +-(REL) 0 N 0 Fwei2 0 Fwei3 0 Fwei4 0
...
ALL: NeutronInelastic: gamma: PD1: ALL: FLUX_TOTAL/particle= 1.33272e-13 +-(REL) 0.97118 N 12
ALL: NeutronInelastic: gamma: PD1: ALL: Hstar= 1.49381e-13 pSv/particle

Control Histograms
There are several optional histograms that may help you in better understanding the
behaviour of your point detector scoring. By default they are created, but you can
switch them off with the parameter

/gamos/setParam GmPDS:ControlHistograms 0

100

Chapter 8. Scoring

All histograms start with the filter names, classifier name and particle type. There is
an histogram about the particle interaction.

• interaction log Energy (MeV): Kinetic energy of neutrons/gamma at each step initial
position.

A set histograms are about the distance to each detector, so they also have the detector
name and copy:

• interaction dist to detector (mm): Distance from each neutron interaction or origin to
the detector.

• interaction dist to detector (mm) weighted by Hstar: Distance from each neutron inter-
action or origin to the detector, weighted by Hstar.

• interaction dist to detector (mm) vs weight: Distance from each neutron interaction or
origin to the detector versus weight when detector is reached.

The rest of histograms are for each detector copy and score type. The variables are
calculated when the geantino or neutron/gamma reaches the detector, so they have
the name At detector, and they also have the score type. There is a set for the geantinos
and another set for the neutron/gamma particles. They are the following:

• log10(energy) (MeV): log10 of track kinetic energy times the weight.

• log10(energy) no weighted (MeV): log10 of track kinetic energy.

• log10(energy) weighted by Hstar: log10 of track kinetic energy times the weight and
Hstar value.

• log10(weight): log10 of track weight.

• log10(weight) weighted by Hstar: log10 of track weight times the weight and Hstar
value.

• log10(energy) vs log10(weight): log10 of track kinetic energy versus track weight.

Variance reduction techniques
There are three variance reduction techniques available, that will provide a better
efficiency, i.e. less CPU time for the same error.

Kill contributions of low weight
The first technique consist on not taking into account the contributions of low weight.
It works checking the weight of the geantinos at each step of their propagation (each
time they change volume) and playing Russian roulette with them if their way is
smaller than the value given by the parameter

/gamos/setParam GmPDS:UseMinimumGeantinoWeight MIN_WEIGHT

which by default takes a value of 1.E-30. The Russian roulette factor is given by the
parameter

/gamos/setParam GmPDS:MinimumGeantinoWeightRRFactor VALUE

which by default takes a value of 100. To activate this technique you have to set the
parameter

/gamos/setParam GmPDS:UseVRMinimumGeantinoWeight 1

You may use the control histograms, specially the histogram log10 of geantino kinetic
energy versus geantino weight to determine which are the minimum weight and Rus-
sian roulette factor that best match your application.

101

Chapter 8. Scoring

Kill contributions too far from detector
A more efficient technique consists on not taking into account the contributions of
interactions or sources that are too far from the detector, without the need to send a
geantino to calculate the probability to reach it. But this technique assumes that the
probability is smaller if the point is farther from the detector, what is not always the
case, as it may be that a point closer to the detector traverses denser materials. Indeed
the contributions are not eliminated, but, to avoid biasing Russian roulette is played.
The maximum distance is set with the parameter

/gamos/setParam GmPDS:MaximumDistance DISTANCE

which by default takes a value of 1000 mm. The Russian roulette factor is given by
the parameter

/gamos/setParam GmPDS:MaximumDistanceRRFactor VALUE

which by default takes a value of 100. To activate this technique you have to set the
parameter

/gamos/setParam GmPDS:UseVRMaximumDistance 1

You may use the control histograms, specially the histogram Neutron: PD N: interac-
tion dist to detector (mm) vs weight to determine which are the maximum distance and
Russian roulette factor that best match your application.

Split particles of big weight
The idea of this technique is to sample more those cases which bigger probabilities. It
may be very useful also to eliminate the seldomly occurring big weight contributions
that will make your error big. The user defines a minimum and maximum weight for
the particles to be split:

/gamos/setParam GmPDS:MinimumWeightForSplitting MIN_VALUE

which by default takes a value of 1.E-30

/gamos/setParam GmPDS:MaximumWeightForSplitting MAX_VALUE

which by default takes a value of 1.E-5; and the maximum splitting number:

/gamos/setParam GmPDS:MaximumSplitting MAX_SPLIT

which by default takes a value of 100.

Each time a geantino reaches the detector, its weight will be checked. If it is between
the minimum and maximum, the splitting number will be calculated making a log-
arithmic interpolation using 0 at the minimum weight and the maximum splitting
number at the maximum weight. If this number, nSplit, is bigger than one, nSplit-1
particles will be created at the position, direction, energy and time of the neutron or
gamma that created the geantino.

To activate this technique you have to set the parameter

/gamos/setParam GmPDS:UseVRSplitting 1

You may use the control histograms, specially the histogram SCORE_NAME At de-
tector : geantino : log10(energy) vs log10(weight) to determine which are the minimum
and maximum weight and splitting number that best match your application.

Notes
1. A geantino is a pseudoparticle that has only transportation, but no physical pro-

cess.

102

Chapter 9. Variance reduction techniques

Introduction
Variance reduction are the techniques that allow to get the same precision of the
estimates of a Monte Carlo simulation reducing the CPU time without introducing a
bias in the result. The usual criteria to measure the gain of a variance reduction is the
efficiency, defined as the CPU time divided by the square of the error or the variable
of interest.

Importance sampling
Importance sampling is a variance reduction techniques that consists in estimating
the properties of a particular distribution, while using a different sampling than the
distribution of interest. It may help you saving CPU time if you choose to sample
more times when the contribution to the distribution is bigger. An example can be a
case when you want to estimate the dose of particles that reach a volume and you
sample more particles when the distance to reach that volume is smaller; you may do
this by duplicating a particle N times (of courser reducing its weight 1/N) when the
particle comes closer to the volume, calculating N as an inverse of the distance to the
volume.

In GAMOS you may do importance sampling using many different criteria: any of
the GAMOS data can be used, as the importance sampling process uses a GAMOS
distribution, taking the output value of the distribution as the splitting value that
corresponds to each input value. If the splitting value (SPLIT_VALUE) is bigger
than 1 it will duplicate the current particle SPLIT_VALUE-1 times (producing
SPLIT_VALUE equal particles, with a weight reduced by 1/(SPLIT_VALUE). If
the splitting value is smaller than 1, Russian roulette will be played with the
particle with a surviving probability SPLIT_VALUE; if it survives its weight will be
incremented by 1/(SPLIT_VALUE).

You may activate the importance sampling for a list of particles with the command:

/gamos/physics/VR/importanceSampling NAME DISTRIBUTION_NAME
PARTICLE_NAME_1 PARTICLE_NAME_2 ...

where the NAME you give to the importance sampling will be later used to set the
parameters.

As the number of particle duplications will be set by the classifier index, you may
want to set a different index than the default of the classifier. See section on Classifiers
to learn how to do this.

Several options can be controlled with GAMOS parameters. First you may decide to
deactivate the splitting, leaving only Russian roulette, or viceversa, with the param-
eters:

/gamos/setParam IMPORTANCE_SAMPLING_NAME:ApplySplitting 0

/gamos/setParam IMPORTANCE_SAMPLING_NAME:ApplyRussianRoulette 0

If you do not want that a particle already split is split again, you may control how
many times a particle is split with the parameter:

/gamos/setParam IMPORTANCE_SAMPLING_NAME:MaxSplitTimes VALUE

You may also set that the same particle is not split several times, by setting the pa-
rameter:

/gamos/setParam IMPORTANCE_SAMPLING_NAME:SplitAtSeveralSteps

Finally you may add one of more filters, so that particles have to pass them before
being split:

103

Chapter 9. Variance reduction techniques

/gamos/setParam IMPORTANCE_SAMPLING_NAME:Filters FILTER_1 FILTER_2 ...

Geometrical biasing
Many types of geometrical biasing can be done with GAMOS using the importance
sampling and assigning different distributions with different data. For example you
may use adifferent weight for each physical volume, logical volume or touchable or
you can divide your space in bins along X, Y or Z or combinations of these variables.
You may also consider the special distribution GmGeometricalBiasingDistribution (see
chapter on Distributions), that calculates the weight as the division of the weights of
the entering and exiting volumes.

Production of deexcitation secondary particles
As the production of secondary particles by deexcitation processes (i.e. characteristic
X-rays and auger electrons) is often quite a rare process, it is possible to increment the
statistics of these particles by using a variance reduction technique. Each time a deex-
citation secondary particles is going to be produced, GAMOS invokes the production
method N times instead of 1, and reduces the weight of any produced particles by
1./N.

To use this technique the following procedure should be followed. First the physics
list GmPSEMPhysics has to be selected:

/gamos/physicsList GmPSEMPhysics

Then the deexcitation splitting processes for gammas and electrons has to be selected
:

/gamos/GmPhysics/addPhysics electron-lowener-DeexSplit

/gamos/GmPhysics/addPhysics gamma-lowener-DeexSplit

Before this several parameters can be selected, namely:

• The regions for which deexcitation is active:

/gamos/setParam GmPhysicsElectronDeexSplit:Deexcitation REGION_1
REGION_2 ...

/gamos/setParam GmPhysicsGammaDeexSplit:Deexcitation REGION_1 REGION_2 ...

(remember that you can use ’*’ to name several regions (e.g. only * mean all re-
gions).

• The number of splittings (times secondary particle production method will be in-
voked per step) for the ionisation and the photo electric processes

/gamos/setParam GmDeexSplitLivermoreIonisationModel:NSplit N_SPLIT

/gamos/setParam GmDeexSplitLivermorePhotoElectricModel:NSplit N_SPLIT

which by default take a value of 1 (no splitting).

• The production cuts for the characteristic X-rays and Auger electrons produced
(see section on Deexcitation processes above).

Particle splitting techniques for radiotherapy
Several particle splitting techniques are available to increase the efficiency of radio-
therapy accelerators simulations. See the chapter on Radiotherapy

104

Chapter 10. Histogramming

Histogram formats
GAMOS supports several data analysis formats. The format is selected at run time
by the user, so that the same C++ code can be used to write any format. In this
GAMOS version there are two formats implemented, ROOT and CSV (Comma Sep-
arated Value). For the ROOT format, we refer you to the ROOT documentation [5].
The CSV format is explained below.

You can choose which format to use with the command

/gamos/analysis/fileFormat FORMAT

where FORMAT can be ROOT, root, CSV, csv

You can also use several formats at the same file, using the command

/gamos/analysis/addFileFormat FORMAT

Whatever format you choose, you can also get a print out in the screen of the main
parameters of each histogram using the command

/gamos/analysis/printHisto VERBOSITY_LEVEL

where VERBOSITY_LEVEL is the level of verbosity:

• 0: Prints number of entries, mean, RMS, underflow and overflow

• 1: Prints number of entries, mean with error, RMS with error, underflow and over-
flow<

• 2: Prints number of entries, mean with error, RMS with error, underflow and over-
flow<. Also number of bins, axis lower and upper edges

Histograms in CSV format
The CSV (Comma Separated Value) format is a simple text file where the values are
separated by commas. The utility of this format is that it can be easily read by any
analysis package (Excel, Origin, Matlab, ..) and converted to its own format.

The information written in GAMOS is the following:

• Histograms 1D: The first word is "HISTO1D", then the following
info is dumped: his_name,number_of_bins,Xaxis_minimum,
Xaxis_maximum,bin_contents,number_of_entries,mean,RMS. The bin_contents is
the list of entries in each bin. It has indeed number_of_binsX+2 numbers, as the
first one is the underflow (entries below axis_minimum) and the last one is the
overflow (entries above axis maximum).

• Histograms 2D: The first word is "HISTO2D", then the following
info is dumped: his_name,number_of_binsX, Xaxis_minimum,
Xaxis_maximum,number_of_binsY,Yaxis_minimum,Yaxis_maximum,
bin_contents,number_of_entries,mean,RMS. The bin_contents
is the bi-dimensional list of entries in each bin. It has indeed
(number_of_binsX+2)*(number_of_binsY+2) numbers, as the first row/column is
the underflow (entries below axis_minimum) and the last row/column is the
overflow (entries above axis maximum).

• Histograms profile 1D: The first word is "HISTO_PROFILE1D", the rest is the same
as the histograms 1D.

• Histograms profile 2D: The first word is "HISTO_PROFILE2D", the rest is the same
as the histograms 2D.

105

Chapter 10. Histogramming

You can see an example of 1D histogram here:

"1D","example",10,0,1000,0,3,3,1,3,5,6,12,15,16,2,66,0,460.2,353.81

Changing histogram minimum, maximum and number of bins
You may change minimum, maximum and number of bins of any histogram with the
following user commands.

• 1D or 1D profile histograms

/gamos/analysis/histo1NBins HISTO_NAME VALUE

/gamos/analysis/histo1Min HISTO_NAME VALUE

/gamos/analysis/histo1Max HISTO_NAME VALUE

• 2D or 2D profile histograms

/gamos/analysis/histo2NBinsX HISTO_NAME VALUE

/gamos/analysis/histo2MinX HISTO_NAME VALUE

/gamos/analysis/histo2MaxX HISTO_NAME VALUE

/gamos/analysis/histo2NBinsY HISTO_NAME VALUE

/gamos/analysis/histo2MinY HISTO_NAME VALUE

/gamos/analysis/histo2MaxY HISTO_NAME VALUE

HISTO_NAME may contain asterisks to include several histograms at the same time.
For example:

/gamos/analysis/histo1NBins *Energy 300

will set to 300 the number of bins of all histograms ending with "Energy".

The name of each histogram is documented in this guide. If you are not sure about
an histogram name, you may run the job with limited statistics and open the file.

Output files name
The name of the histogram file for each of the GAMOS histogram classes is explained
in the corresponding section of this guide. As these classes are user actions, to this
file name it is added the name of the filters and classifier, as explained in the section
on Using a common histogram class. Also there it is explained how to change the name
with the parameter

/gamos/setParam FILE_NAME:FileName NEW_FILE_NAME

If you are running a job and you want to identify all your histogram files with a
characteristic prefix or suffix (for example to differentiate them from the files from
another job), you may do it by defining the parameters:

/gamos/setParam GmAnalysisMgr:FileNamePrefix PREFIX

The name PREFIX will be added at the beggining of all histogram names.

/gamos/setParam GmAnalysisMgr:FileNameSuffix SUFFIX

The name SUFFIX will be added at the end of all histogram names, before the file
type (.root or .csv).

In the case of other output files (or input), like the text or binary files with several
kinds of data that are explained in different sections of this guide, you can also add a
prefix or suffix with the above commands to all of them, as all the input and output
of these classes is controlled in GAMOS through a common base class.

106

Chapter 10. Histogramming

Analysing your histograms with ROOT
You may open a ROOT file by typing in the command line root and then open a
browser by typing in the ROOT prompt new TBrowser. This will open a window
where you can see at the left a sub-window with tje set of folders. Under the folder
titled PROOF Sessions you can see a folder with the name of the directory you are
in. By clicking on it you may navigate on your folders and open your ROOT file.
By double-clicking on your ROOT file when it appears in the right sub-window you
will see the list of your histograms. If you do double-click in an histogram, ROOT
will visualise it.

Alternatively you may directly open your file when you start a ROOT session by
typing root MYFILE.root. Then by double-clicking in ROOT Files you will see your
file and you can open your histograms as below

You may get more instructions on using ROOT in the web page http://root.cern.ch

We provide a few utilities to help you in analysing ROOT files. They can be found in
the directory analysis/ROOTUtilities.

Printing the histograms in graphics files
For a faster visualisation of the histograms in a ROOT file, you may print each of
the histogram in a graphics file of type gif . Open a ROOT session and then type the
command .x printAll.C++("MYFILE.root"). There are two optional extra arguments,
that can be given after the file name separated by a comma:

• A boolean (0 or 1) to indicate if the Y axis is in logarithmic scale or not

• An string (in between quotes) indicating the type of histogram represention
("lego","cont",...)

For each histogram a graphics file will be written with the name of the histogram
preceded by his and followed by .gif . If you want another format different than gif ,
you may edit the printAll.C file and change the histogram name

You may also run the file without opening a ROOT session by typing

root -b -p -q .x printAll.C++\(\"MYFILE.root\"\)

Comparing histograms in two files
This utilitiy serves to compare the histograms of two files that contain the smae his-
tograms, for example, to compare the results of two jobs you have run with different
options. To do the comparison open a ROOT session and then type the command .x
compareAll.C++("MYFILE1.root","MYFILE2.root"). There are two optional extra argu-
ments, that can be given after the file names separated by a comma:

• A boolean (0 or 1) to indicate if the histograms are compared normalising one to
the other or not

• A boolean (0 or 1) to indicate if the Y axis is in logarithmic scale or not

For each histogram two graphics file will be written: the first one contains the his-
tograms the histogram of the first file on the top left quadrant, the histogram fo the
second file on the top right one and in the lower half the histogram of the first file in
red and, superimposed, the histogram of the second file in blue; in the second graph-
ics file there is the division of the histogram of the first file and that of the second
file. The first file name is built with the name of the histogram preceded by his and
followed by .gif . The second file name is the same as the first plus _div before .gif .
If you want another format different than gif , you may edit the compareAll.C file and
change the histogram name

107

Chapter 10. Histogramming

You may also run the file without opening a ROOT session by typing (beware the
inverted slashes)

root -b -p -q .x compareAll.C++\(\"MYFILE.root\"\)

Creating your own histogram
When you write your histogram in C++ you just have to take care of creating and
filling it. The class GmAnalysisMgr will take care of automatically writing it in the
file format you chose.

To use GmAnalysisMgr you have to instantiate it in your histogram class, passing to
it the name of your file (you may use the same name for several of your histogram
classes or different ones):

GmAnalysisMgr* myAnaMgr = GmAnalysisMgr::GetInstance(“MY_FILE_NAME”)

There are four types of histograms currently supported by GAMOS: 1-dimensional,
2-dimensional, profile 1-dimensional and profile 2-dimensional 1. To create your his-
togram and register it to GAMOS you have to create it with a line like:

myAnaMgr-> CreateHisto1D(HNAM,NBINS,MAXBIN,MINBIN,HIS_NUMBER);

myAnaMgr-> CreateHisto2D(HNAM,NBINSX,MAXBINX,MINBINX,
NBINSY,MAXBINY,MINBINY,HIS_NUMBER);

myAnaMgr-> CreateHistoProfile1D(HNAM,NBINS,MAXBIN,MINBIN,HIS_NUMBER);

myAnaMgr-> CreateHistoProfile2D(HNAM,NBINSX,MAXBINX,MINBINX,
NBINSY,MAXBINY,MINBINY,HIS_NUMBER);

The last argument is the histogram number, that can be later used to retrieve this
histogram from any method in any class. If you don’t set it, GAMOS will assign it
automatically starting from 1.

Once a histogram is registered you can get a pointer to it by asking GmAnalysisMgr
for a histogram by its number or its name:

myAnaMgr-> GetHisto1(HIS_NUMBER)-> Fill(value)

myAnaMgr-> GetHisto2(HIS_NUMBER)-> Fill(value)

myAnaMgr-> GetHistoProfile1(HIS_NUMBER)-> Fill(value)

myAnaMgr-> GetHistoProfile2(HIS_NUMBER)-> Fill(value)

or similarly if you want to retrieve it by the histogram name.

Notes
1. A profile histogram sets the value of a bin as the average of all entries in that bin,

and the error as the RMS of these entries

108

Chapter 11. Analysis (extracting data)

Introduction: GAMOS data
There is a big variety of data that can be extracted out of a simulation (position,
energy lost, event ID, particle name, angle between primary and secondary, ...). We
have transformed each of these data into a plug-in, so that it can be used iwth a
user command to fill an histogram, be dumped into a text or binary file, filter on an
interval of its values, make a clssification as a function of the data value intervals or
use them for importance sampling.

A GAMOS data plug-in may return a different value depending on when it is called.
The following options are possible:

• At each track step

• At the beginning of a track

• At the end of a track

• At the beginning of a event

• At the end of a event

• At the beginning of a run

• At the end of a run

• When a secondary track is created (this case is used for relating the variables of an
initial track and the secondary tracks it creates)

Each of the GAMOS data does not have to implement the methods to return a value
in all cases, as in some cases it has no meaning. Examples can be the position for a
run, the final energy for a secondary track (which has not been started to be tracked)
or the track ID for an event. If a data is used when the case has no meaning, it will
return an exception.

For many types of data one can make a distinction between the Initial and the Final
values. This again has a different meaning depending on when it is called:

• Track step: Initial refers to the data at PreStepPoint (i.e. at the first point of the step).
Final refers to the data at PostStepPoint (i.e. at the second point of the step)

• Track: Initial refers to the data at vertex. Final refers to the data at the current point

• Event: Initial refers to the data of the first particle in the event. Final has no meaning

• Run: Initial has no meaning. Final has no meaning

• Secondary tracks: Initial refers to the data when the particle is created (not being
tracked yet). Final has no meaning

The data of these type have in their name the word Initial or Final.

Other data are of type Change, because they return the data at the Final point minus
the data at the Initial point. Of course, these data can only have sense for Step and
Track . The data of these type have in their name the word Change.

Still other data are of type Accumulated, because they return the data accumulated
along the steps. The data of these type have in their name the word Accumulated.
Their behaviour depends on when they are called:

• Track step: the value of the step itself.

• Track: the value summed up of all the step of the track.

• Event: the value summed up of all the tracks of the event.

109

Chapter 11. Analysis (extracting data)

• Run: the value summed up of all the events of the run.

• Secondary tracks: it has no meaning.

Be aware of the behaviour of the filters when you use data of type Accumulated with
a user action. If an step does not pass a filter, the data will not be accumulated, and
when the value is printed at the end of the track, event or run it may give a wrong
result. You may want to use the option to switch off the filters at stepping with the
parameter:

/gamos/setParam USER_ACTION_NAME:ApplyFiltersToStepping false

See section on Filters for more details on this option.

Another source of classification of data is their C++ type: double, int or string. The
behaviour of double and integer data is very similar, the main difference being that
in a binary file they are written in different format, and occupy a different number
of bytes. Each string data has a variable that defines the number of characters that
will be used when writing a binary file. The string data cannot be used to fill an
histogram.

It is possible to use at the same time several data to fill 2D, 1D profile or 2D profile
histograms. To do it the data has to be separated by .vs. if it is for a 2D histogram,
.prof. if it is for a 1D profile histogram and both .vs. and .prof. if it is for a 2D profile
histogram. See section on Data users for examples on this.

Data can also be used in mathematical expressions, for example
log10(InitialKineticEnergy), sqrt(2*FinalPositionX*FinalPositionY), ...

Each data has as a property the histogram number of bins (that for all is 100), the
minimum and maximum. These values can be changed as for any histogram (see
section on Histograms).

Data users
The data users are user actions that use the data to fill histograms or to dump them
in text or binary files or dump them in the screen. There is one user action for each
of the five types of information objects (step, track, event, run and secondary tracks),
and one user action for each of the four actions, making in total twenty user actions.
There is also a user action to dump data in a ROOT Tree; its behaviour is explained
in a dedicated section below. We will describe in this section the available data users
and how they behave with the different data types mentioned above.

The data can also be used to filter on an interval of values, in classifiers to give a
different classification index in different user-defined intervals and in scorers to score
the data values. These three usages are explained in the corresponding sections.

The behaviour of each of the data users depends on one side on the type of informa-
tion object they manage and on the other side on the type of output provided.

Behaviour as a function of information object
The behaviour of each of the data users for each of the information objects is the
following:

• The Track step data users implement a UserSteppingAction method, which extracts
the data at each track step, from the G4Step object.

• The Track data users implement a PostUserTrackingAction method, which extracts
the data at the end of the current track step, from the G4Track object (equal to the
current track status). For the data of type Initial the data is extracted from the
vertex information of the G4Track object. For the data of type Accumulated these
data users implement a UserSteppingAction method, which accumulates the data
at each track step, and a PreUserTrackingAction, which initializes the data to 0; the

110

Chapter 11. Analysis (extracting data)

PostUserTrackingAction uses the accumulated data, instead of extracting the data
from the G4Track object.

• The Event data users implement a EndOfEventAction method, which extracts the
data at the end of the event, from the G4Event object. For the data of type Initial
the data is extracted from the information of the first primary particle of the first
primary vertex. For the data of type Accumulated these data users implement a
UserSteppingAction method, which accumulates the data at each track step, and a
BeginOfEventAction, which initializes the data to 0; the EndOfEventAction uses the
accumulated data, instead of extracting the data from the G4Event object.

• The Run data users implement a EndOfRunAction method, which extracts the
data at the end of the run, from the G4Run object. For the data of type Accumulated
these data users implement a UserSteppingAction method, which accumulates the
data at each track step, and a BeginOfRunAction, which initializes the data to 0; the
EndOfRunAction uses the accumulated data, instead of extracting the data from the
G4Run object.

Behaviour as a function of output format
The behaviour of each of the data users for each of the output type provided is the
following:

• Histograms: the histogram data users (i.e. GmStepDataHistosUA, GmTrackDataHis-
tosUA, GmEventDataHistosUA, GmRunDataHistosUA, GmSecondaryTrackDataHisto-
sUA) fill histograms with the data values. By default 1-dimensional histograms are
filled but if several data are used at the same type other histogram types are pos-
sible: if a 2-dimensional histogram is required the names of the two data have to
be separated by .vs.; if a 1-dimensional profile histogram is required the names of
the two data have to be separated by .prof.; if a 2-dimensional profile histogram is
required the names of the three data have to be separated by .vs. and .prof..

For example:

FinalKineticEnergy.vs.InitialKineticEnergy will fill a 2D histogram.

FinalKineticEnergy.prof.InitialKineticEnergy will fill a 1D profile histogram.

FinalKineticEnergy.vs.InitialKineticEnergy.prof.InitialPositionZ will fill a 2D profile
histogram.

The name of the histogram file is given by the name of the data user plus the filters
and classifiers plus the histogram type (i.e. .root or .csv. It can be changed with the
parameter:

/gamos/setParam DATA_USER_NAME:FileName NEW_FILE_NAME

For example:

/gamos/userAction GmStepDataHistosUA GmGammaFilter

will produce a file named GmStepDataHistosUA_GmGammaFilter.root, whose name
can be changed with the command:

/gamos/setParam GmStepDataHistosUA_GmGammaFilter:FileName
NEW_FILE_NAME

to produce a file named NEW_FILE_NAME.root

• Text files: These data users (i.e. GmStepDataTextFileUA,
GmTrackDataTextFileUA, GmEventDataTextFileUA, GmRunDataTextFileUA,
GmSecondaryTrackDataTextFileUA) dump the data values into text files. A line is
written for each call to the data user object (i.e. each G4Step, G4Track, ...). The text
file is indeed a CSV (Comma Separated Value) file; this means that values are
separated by commas and string values are surrounded by double quotes.

111

Chapter 11. Analysis (extracting data)

Optionally a header line can be written containing the names and order of the data
to be written. With the aim of clearly distinguishing it, the first word of the header
is always HEADER:. The second word is the number of words, and then the data
names. To select this option the following parameter has to be used:

/gamos/setParam FILE_NAME:WriteHeaderData 1

The name of the text file is given by the name of the data user plus the filters and
classifiers plus (i.e. .out. It can be changed with the parameter:

/gamos/setParam DATA_USER_NAME:FileName NEW_FILE_NAME

For example:

/gamos/userAction GmStepDataTextFileUA GmGammaFilter

will produce a file named GmStepDataTextFileUA_GmGammaFilter.out, whose name
can be changed with the command:

/gamos/setParam GmStepDataTextFileUA_GmGammaFilter:FileName
NEW_FILE_NAME

to produce a file named NEW_FILE_NAME.out

• Binary files: These data users (i.e. GmStepDataBinFileUA, GmTrackDataBinFileUA,
GmEventDataBinFileUA, GmRunDataBinFileUA, GmSecondaryTrackDataBinFileUA)
dump the data values into binary files. Data of integer type are written as int,
occupying four bytes. Data of double type are written as float (for space savings),
occupying four bytes (NOTE: in case you want to write all your data as double,
you just have to replace float by double in the four WriteBin(...) methods in the file

GamosCore/GamosData/Data/src/GmVData.cc, and recompile GAMOS). Data of
string type are written as a list of char; each string data has a default number of
characters, that can be overridden with the parameter:

/gamos/setParam DATA_NAME:NumberOfChars NCHARS

To allow checking the format when the file is read back, specially useful if the
file is read in a different computer system than the one where it was written, or by
another program than GAMOS, a check line is read. This check line consists on first
an L or B character, depending on whether the computer system uses little endian
or big endian; second the integer 1234567890 is written, occupying four bytes; third
the float 3.40282e+38 is written, occupying four bytes, last the double 1.79769e+308
is written, occupying eight bytes.

Optionally four other headers can be written after the first check line. If any header
is being written before then four integer numbers are always written, whose values
are 0 or 1 depending if the corresponding header is written.

The first optional header serves to check that your software system is able to read
the file, which you may have written using another system. It writes first a char
equal to L or B depending if the system uses little endian or big endian convention.
Then it writes as an int the nubmer 1234567890, as a float the number 3.40282e+38
and as a double the number 1.79769e+308. You should check that you read back
those numbers when reading your file. To write this header the following parame-
ter has to be used:

/gamos/setParam FILE_NAME:WriteHeaderCheck 1

The second optional header contains the names and order of the data to be written;
the first word is an integer with the number of data; then for each data it is written
an integer with the number of characters of the data name, the data name itself
with this number of characters, the number of characters of the data C++ type, and
finally the C++ type itself with this number of characters (which can be int, float or
char). To write this header the following parameter has to be used:

/gamos/setParam FILE_NAME:WriteHeaderData 1

The third optional header is a float containing the number of events used in the
job (see for example the section on Radiotherapy phase space reading or using files as

112

Chapter 11. Analysis (extracting data)

generator for the exact meaning of the number of events in these cases). To write
this header the following parameter has to be used:

/gamos/setParam FILE_NAME:WriteHeaderNEvents 1

The fourth optional header is an integer containing the number of calls to the data
user object. To write this header the following parameter has to be used:

/gamos/setParam FILE_NAME:WriteHeaderNCalls 1

The name of the binary file is given by the name of the data user plus the filters
and classifiers plus (i.e. .out. It can be changed with the parameter:

/gamos/setParam DATA_USER_NAME:FileName NEW_FILE_NAME

For example:

/gamos/userAction GmStepDataBinFileUA GmGammaFilter

will produce a file named GmStepDataBinFileUA_GmGammaFilter.out, whose name
can be changed with the command:

/gamos/setParam GmStepDataBinFileUA_GmGammaFilter:FileName
NEW_FILE_NAME

to produce a file named NEW_FILE_NAME.out

• Cout: These data users (i.e. GmStepDataCoutUA, GmTrackDataCoutUA, GmEvent-
DataCoutUA, GmRunDataCoutUA, GmSecondaryTrackDataCoutUA) dump the data
values into the standard output (they may be helpful to debug an application, to-
gether with the command /tracking/verbose 1 . Similarly to the text file data users,
a line is written for each call to the data user object (i.e. each G4Step, G4Track, ...).
The text file is indeed a CSV (Comma Separated Value) file; this means that values
are separated by commas and string values are surrounded by double quotes.

Selection of data list for a data user
Each data user has a default list of data, that we will enumerate below. This list can
be changed with the parameter:

/gamos/setParam DATA_USER_NAME:DataList DATA_1 DATA_2 ...

For example, if we use:

/gamos/userAction GmStepDataBinFileUA GmGammaFilter

the data list may be changed with the parameter:

/gamos/setParam GmStepDataBinFileUA_GmGammaFilter:DataList TrackID FinalPosX
sqrt(2*FinalPosX*FinalPosY) InitialKineticEnergy

Default data list for each data user
The default data list of each of the fifteen data users are:

GmStepDataHistosUA:

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulatedEnergyLost

113

Chapter 11. Analysis (extracting data)

• AccumulatedEnergyDeposited

GmStepDataTextFileUA:

• EventID

• TrackID

• Particle

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulateEnergyLost

• AccumulateEnergyDeposited

GmStepDataBinFileUA:

• EventID

• TrackID

• Particle

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulateEnergyLost

• AccumulateEnergyDeposited

GmTrackDataHistosUA:

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulatedEnergyLost

• AccumulatedEnergyDeposited

GmTrackDataTextFileUA:

• EventID

• TrackID

• Particle

• FinalPosX

• FinalPosY

114

Chapter 11. Analysis (extracting data)

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulateEnergyLost

• AccumulateEnergyDeposited

GmTrackDataBinFileUA:

• EventID

• TrackID

• Particle

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalMomX

• FinalMomY

• FinalMomZ

• AccumulateEnergyLost

• AccumulateEnergyDeposited

GmEventDataHistosUA:

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

GmEventDataTextFileUA:

• EventID

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

GmEventDataBinFileUA:

• EventID

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

GmRunDataHistosUA:

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

GmRunDataTextFileUA:

• RunID

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

GmRunDataBinFileUA:

• RunID

• AccumulateEnergyLost

115

Chapter 11. Analysis (extracting data)

• AccumulatedEnergyDeposited

GmSecondaryTrackDataHistosUA:

• TrackID

• InitialPrimMinusSecoKineticEnergy

• FinalPrimMinusSecoKineticEnergy

• SecoDividedInitialPrimKineticEnergy

• SecoKineticEnergy

• PrimSecoAngleChange

• InitialPrimKineticEnergy

• FinalPrimKineticEnergy

GmSecondaryTrackDataTextFileUA:

• EventID

• TrackID

• InitialPrimMinusSecoKineticEnergy

• FinalPrimMinusSecoKineticEnergy

• SecoDividedInitialPrimKineticEnergy

• SecoKineticEnergy

• PrimSecoAngleChange

• InitialPrimKineticEnergy

• FinalPrimKineticEnergy

GmSecondaryTrackDataBinFileUA:

• TrackID

• InitialPrimMinusSecoKineticEnergy

• FinalPrimMinusSecoKineticEnergy

• SecoDividedInitialPrimKineticEnergy

• SecoKineticEnergy

• PrimSecoAngleChange

• InitialPrimKineticEnergy

• FinalPrimKineticEnergy

If you use for example GmTrackDataTextFileUA, and select a data list that contains
Initial and Final data, they will be written at the end of the track, so that they can
be written in the order you set. If you want a different behaviour you may use the
parameter

/gamos/setParam DATA_USER_NAME:UseAtInitial 1

Saving GAMOS data in a ROOT TTree
The GmDataTTreeUA data user sorts GAMOS data in a ROOT TTree structure and
save the new TTree in a ROOT TFile. The GmDataTTreeUA is invoked with the usual
command:

/gamos/userAction GmDataTTreeUA

116

Chapter 11. Analysis (extracting data)

By default the TTree is created with the GmDataTTree name and saved in the GmDat
aTTree.root file. The following command can be used to modify both both TFile and
TTree names:

/gamos/setParam GmDataTTreeUA:TreeFileName NEW_NAME

Four categories of GAMOS data can be saved in the TTree: Event data, Track data,
Secondary Track data, and Step data. GAMOS users can s elect one list of data for
each one of the four categories. If data with no meaning for a given category are
included in the correspondent list (e.g. adding trackID data to the Event data list),
an exception will be returned. By default, the four data lists are empty and nothi ng
is saved in the TTree unless otherwise specified. The four data lists are selected as
follows:

/gamos/setParam DATA_USER_NAME:EventDataList EVENT_DATA_1
EVENT_DATA_2 ...

/gamos/setParam DATA_USER_NAME:TrackDataList TRACK_DATA_1
TRACK_DATA_2 ...

/gamos/setParam DATA_USER_NAME:SecondaryTrackDataList SECO_DATA_1
SECO_DATA_2 ...

/gamos/setParam DATA_USER_NAME:StepDataList STEP_DATA_1 STEP_DATA_2 ...

DATA_USER_NAME is the name of the user action, i.e. the word GmDataTreeUA plus
the name of filters and classifier

The TTree is filled at the end of each GAMOS event and contains a number of entries
equal to the number of simulated events. Each of the selected GAMOS data is stored
in an independent TBranch inside the TTree.

Data are saved as integers, doubles, or strings. For each TTree entry, each of the se-
lected GAMOS data is stored in a std::vector, apart from Event data that correspond
to single values. The size of a std::vector varies in accordance with the corresponding
category: track data vectors contain a number of elements equal to the number of
tracks for a given event; step and secondary track data vectors equal to the number
of steps for the same event.

Filter from data
It is possible to use any GAMOS data to filter on its value (see chapter on Filters). To
use it you have to use the command to define a filter, using the filter named GmNu-
mericDataFilter if the data is of numeric type (int or float) and GmStringDataFilter if
the data is of string type and passing the following arguments:

GmNumericDataFilter: In this case after the filter name you have to give the the mini-
mum and maximum value of the data. For example:

/gamos/filter dataF GmNumericDataFilter InitialKineticEnergy 0. 0.3

GmStringDataFilter: In this case after the filter name, you have to give the list of ac-
cepted values. For example:

/gamos/filter dataF GmStringDataFilter InitialLogicalVolume detector world

Classifier by data
It is possible to use any GAMOS data to classify on its value (see chapter on Classi-
fiers). To use it you have to use the command to define a classiifier, using the clas-
sifier named GmClassifierByNumericData if the data is of numeric type (int or float)
and GmClassifierByStringData if the data is of string type and passing the following
arguments:

117

Chapter 11. Analysis (extracting data)

Data is integer or float: In this case after the classifier name you have to give the min-
imum data limit, the maximum data limit and the step (or interval). For example to
define 0.5 MeV energy intervals between 0 and 10 :

/gamos/classifier dataC GmClassifierByData InitialKineticEnergy 0. 10. 0.5

If the data value is outside the limits you have given, a warning will be thrown. This
warning can be an exception if you set the parameter

/gamos/setParam CLASSIFIER_NAME:AllowOutOfLimits 0

Data is string: In this case no argument is needed after the classifier name. For exam-
ple:

/gamos/classifier dataC GmClassifierByData InitialLogicalVolume

If you want to assign different indices than 0 to N, you may use the command :

/gamos/classifier/setIndices VALUE_1 INDEX_1 VALUE_2 INDEX_2

See section on Setting indices to classifiers for further details on this feature.

Primitive scorer from data
It is possible to use any GAMOS data, if its type is interger of float, to build an scorer
on its value (see chapter on Scorers). To use it you have to use the command to define
a scorer, using the scorer named GmG4PSData and passing to it the data name and
the minimum and maximum value of the data. For example:

/gamos/scoring/createMFDetector contDet container

/gamos/scoring/addScorer2MFD dataScorer GmG4PSData contDet InitialKineticEnergy

List of available data
There are over one hundred types of data currently available in GAMOS. We list here
them all, mentioning for each one if it is of type double (default, not needed to be
indicated), int of string, if it is of type Accumulated (Initial, Final or Change is in the
data name), the minimum and maximum values if an histogram is filled with it, and
if it is not available for Step, Track, Event , Run, or Secondary track.

For each data we explain how its value is obtained for each of these five cases, if the
value is not evident (i.e. the behaviour of FinalKineticEnergy should be evident for
what we have explained above if called for a Step or a Track).

We may also get a list of available data for a GAMOS release by typing in your ter-
minal window (after GAMOS has been configured)

SealPluginDump | grep GmData

For a better description of the available data we have classified them in several
groups

Position
The position is a 3-dimensional vector, so the following data can be obtained from it:

• X: projection on X axis

• Y: projection on Y axis

• Z: projection on Z axis

• Mag: magnitude

118

Chapter 11. Analysis (extracting data)

• Perp: perpendicular projection (i.e. sqrt(X*X+Y*Y))

• Phi: phi angle (in degrees)

• Theta: theta angle (in degrees)

All these data can be of type Initial, Final or Change. The Initial data are available for
all information objects except Run, while the Final and Change data are available only
for Step and Track. There are other data that calcualte the local position, that is the
global position transformed into the local frame of the volume the particle is in. The
InitialLocalPos data for a Step object calculate the transformation in the volume the
track step has just traversed, while for a Track object calculates the transformation
in the volume where the track was initiated. The FinalLocalPos data for a Step object
calculate the transformation in the volume the track step is going to enter, the same as
for a Track object. You may be interested in getting the transformation in the volume
the track step has just traversed, but using the position and the end of the step. In this
case you can use another set of data, called LocalInPre. For a Track object these data
use the current position of the track, but the volume where the track was initiated.

The histogram limits for X, Y and Z are -1000 (mm) to 1000 (mm), for Mag and Perp
are 0 to 1000 (mm), for Phi are 0 to 360 (deg) and for Theta are 0 to 180 (deg). The
position data are:

• InitialPosX

• InitialPosY

• InitialPosZ

• InitialPosMag

• InitialPosPerp

• InitialPosPhi

• InitialPosTheta

• FinalPosX

• FinalPosY

• FinalPosZ

• FinalPosMag

• FinalPosPerp

• FinalPosPhi

• FinalPosTheta

• PosChangeX

• PosChangeY

• PosChangeZ

• PosChangeMag

• PosChangePerp

• PosChangePhi

• PosChangeTheta

• InitialLocalPosX

• InitialLocalPosY

• InitialLocalPosZ

• InitialLocalPosMag

• InitialLocalPosPerp

• InitialLocalPosPhi
119

Chapter 11. Analysis (extracting data)

• InitialLocalPosTheta

• FinalLocalPosX

• FinalLocalPosY

• FinalLocalPosZ

• FinalLocalPosMag

• FinalLocalPosPerp

• FinalLocalPosPhi

• FinalLocalPosTheta

• FinalLocalInPrePosX

• FinalLocalInPrePosY

• FinalLocalInPrePosZ

• FinalLocalInPrePosMag

• FinalLocalInPrePosPerp

• FinalLocalInPrePosPhi

• FinalLocalInPrePosTheta

Momentum
The momentum data are very similar to the position data, so that all what was said
for position data is also valid for them. The main different is the histogram limits,
which are for X, Y and Z are 0 to 1 (MeV), for Mag and Perp are 0 to 1 (MeV), for Phi
are 0 to 360 (deg) and for Theta are 0 to 180 (deg). The momentum data are:

• InitialMomX

• InitialMomY

• InitialMomZ

• InitialMomMag

• InitialMomPerp

• InitialMomPhi

• InitialMomTheta

• FinalMomX

• FinalMomY

• FinalMomZ

• FinalMomMag

• FinalMomPerp

• FinalMomPhi

• FinalMomTheta

• MomChangeX

• MomChangeY

• MomChangeZ

• MomChangeMag

• MomChangePerp

• MomChangePhi

120

Chapter 11. Analysis (extracting data)

• MomChangeTheta

Direction
The direction data are very similar to the position data, so that all what was said
for position data is also valid for them. The main different is the histogram limits,
which are for X, Y and Z are -1 (MeV) to 1 (MeV), for Mag and Perp are 0 (MeV) to 1
(MeV), for Phi are 0 (deg) to 360 (deg) and for Theta are 0 (MeV) to 180 (deg). Another
difference is that the InitialDirMag and FinalDirMag do not exists, because their value
would always be one. The direction data are:

• InitialDirX

• InitialDirY

• InitialDirZ

• InitialDirPerp

• InitialDirPhi

• InitialDirTheta

• FinalDirX

• FinalDirY

• FinalDirZ

• FinalDirPerp

• FinalDirPhi

• FinalDirTheta

• DirChangeX

• DirChangeY

• DirChangeZ

• DirChangeMag

• DirChangePerp

• DirChangePhi

• DirChangeTheta

• AngleChange This data represents the angle between the initial and the final direc-
tions (i.e. acos(InitialDir*FinalDir)). In contrast, the DirChangeXXX are calculated
substraction the final minus the initial direction, what gives a 3-dimensional vector,
from which the X, Y, Z, Mag, ... magnitudes are obtained

Energy
The energy data are a miscellaneous set of data that extract some information about
energy. They have in common that the histogram limits are 0 (MeV) to 1 (MeV). They
are the following:

• InitialKineticEnergy

• FinalKineticEnergy

• KineticEnergyChange

• InitialTotalEnergy

• FinalTotalEnergy

121

Chapter 11. Analysis (extracting data)

Plus some data of type Accumulated:

• AccumulateEnergyLost

• AccumulatedEnergyDeposited

• AccumulatedDose: This is the energy deposited divided by the volume mass

• AccumulatedKerma: This is the sum of energies of the charged secondary particles
produced by non-charged particles, divided by the volume mass

Geometrical objects
These are string data that extract the name of different geometrical objects, and also
the type of solids (Box, Tubs, Polycone, ...). All of them have 25 characters when
written in a binary file. There is also an integer data for the copy number of physical
volumes. They are the following:

• InitialSolid

• FinalSolid

• InitialLogicalVolume

• FinalLogicalVolume

• InitialPhysicalVolume

• FinalPhysicalVolume

• InitialTouchable

• FinalTouchable

• InitialRegion

• FinalRegion

• InitialMaterial

• FinalMaterial

• InitialSolidType

• FinalSolidType

• InitialPVCopyNumber

• FinalPVCopyNumber

Material variables
These are numeric data that are related to the material. They are the following:

• InitialDensity

• FinalDensity

• InitialPressure

• FinalPressure

• InitialTemperature

• FinalTemperature

• InitialRadLength

• FinalRadLength

• InitialNuclearIntLength
122

Chapter 11. Analysis (extracting data)

• FinalNuclearIntLength

• InitialEletronDensity

• FinalElectronDensity

Particle and process
These are string data that extract the name of the particle and the processes, and
also data about the particle properties. They are only available for Step, Track and
Secondary Track. All of them have 25 characters when written in a binary file. They
are the following:

• Particle

• InitialProcess. Name of process that defined the point PreStepPoint. Only available
for Step

• FinalProcess. Name of process that defined the point PostStepPoint. Only available
for Step

• CreatorProcess. Name of process that created the particle track. Not available for
Event nor Run

• ParticlePDGEncoding. Particle code following the Particle Data Group numbering.

• ParticleCharge.

• ParticleMass.

• ParticleLifetime.

• ParticleWidth.

• ParticleStable. 1 if stable, 0 if unstable.

• ParticleType.

• ParticleSubType. The particles types and subtypes are listed below:

Table 11-1. GEANT4 particle types and subtypes

G4Particle Type Subtype

gamma gamma photon

e+ lepton e

e- lepton e

proton baryon nucleon

neutron baryon nucleon

deuteron nucleus static

triton nucleus static

He3 nucleus static

alpha nucleus static

GenericIon nucleus generic

mu+ lepton mu

mu- lepton mu

tau+ lepton tau

tau- lepton tau

nu_e lepton e

123

Chapter 11. Analysis (extracting data)

G4Particle Type Subtype
nu_mu lepton mu

nu_tau lepton tau

anti_nu_e lepton e

anti_nu_mu lepton mu

anti_nu_tau lepton tau

anti_neutron baryon nucleon

anti_proton baryon nucleon

pi+ meson pi

pi- meson pi

pi0 meson pi

B+ meson B

B- meson B

B0 meson B

Bs0 meson Bs

D+ meson D

D- meson D

D0 meson D

Ds+ meson Ds

Ds- meson Ds

J/psi meson J/psi

anti_B0 meson B

anti_Bs0 meson Bs

anti_D0 meson D

anti_kaon0 meson kaon

eta meson eta

eta_prime meson eta_prime

kaon+ meson kaon

kaon- meson kaon

kaon0 meson kaon

kaon0L meson kaon

kaon0S meson kaon

B+ meson B

B- meson B

B0 meson B

Bs0 meson Bs

D+ meson D

D- meson D

D0 meson D

Ds+ meson Ds

Ds- meson Ds

124

Chapter 11. Analysis (extracting data)

G4Particle Type Subtype
J/psi meson J/psi

anti_B0 meson B

anti_Bs0 meson Bs

anti_D0 meson D

anti_kaon0 meson kaon

eta meson eta

eta_prime meson eta_prime

kaon+ meson kaon

kaon- meson kaon

kaon0 meson kaon

kaon0L meson kaon

kaon0S meson kaon

anti_lambda baryon lambda

anti_lambda_c+ baryon lambda_c

anti_omega- baryon omega

anti_omega_c0 baryon omega_c

anti_sigma+ baryon sigma

anti_sigma- baryon sigma

anti_sigma0 baryon sigma

anti_sigma_c+ baryon sigma_c

anti_sigma_c++ baryon sigma_c

anti_sigma_c0 baryon sigma_c

anti_xi- baryon xi

anti_xi0 baryon xi

anti_xi_c+ baryon xi_c

anti_xi_c0 baryon xi_c

lambda baryon lambda

lambda_c+ baryon lambda_c

omega- baryon omega

omega_c0 baryon omega_c

opticalphoton opticalphoton photon

sigma+ baryon sigma

sigma- baryon sigma

sigma0 baryon sigma

sigma_c+ baryon sigma_c

sigma_c++ baryon sigma_c

sigma_c0 baryon sigma_c

xi- baryon xi

xi0 baryon xi

xi_c+ baryon xi_c

125

Chapter 11. Analysis (extracting data)

G4Particle Type Subtype
xi_c0 baryon xi_c

geantino geantino geantino

chargedgeantino geantino geantino

Secondary tracks
These are data that give information about the secondary particles or the primary
particle when secondary particles are created. They are only available for Secondary
Track. They are the following:

• PrimParticle. Primary particle name

• FinalPrimMinusSecoKineticEnergy. Primary particle PostStepPoint minus secondary
kinetic energies

• SecoDividedInitialPrimKineticEnergy. Fraction of kinetic energy of primary at
PreStepPoint taken by a secondary particle

• SecoKineticEnergy. Secondary particle kinetic energy

• PrimSecoAngleChange. Angle between secondary particle and Primary particle at
PreStepPoint

• InitialPrimKineticEnergy. Primary particle PreStepPoint kinetic energy when a sec-
ondary particle is emitted

• FinalPrimKineticEnergy. Primary particle PostStepPoint kinetic energy when a sec-
ondary particle is emitted

Others
These are miscellaneous data:

• TrackID: ID of track. It is of integer type. Only available for Step, Track and Secondary
Track

• ParentTrackID: ID of parent track. It is of integer type. Only available for Step, Track
and Secondary Track

• EventID: ID of event. It is of integer type. Only available for Step, Track and Event.

• RunID: ID of run. It is of integer type. Not available for Secondary Track.

• StepNumber: number of step. It is of integer type. Only available for Step and Track

• InitialWeight: initial track weight. Not available for Event nor Run

• FinalWeight: final track weight. Not available for Secondary Track nor Event nor Run

• AccumulatedLength: Accumulated step length. Not available for Secondary Track.

• TrackLength: step length for Step and track length for Track. Gives same result than
AccumulatedLength but is faster.

• NofSecondaries: number of secondary tracks produced. Only available for Step and
Track

• SumSecoKineticEnergy: sum of the kinetic energies of all secondary particles pro-
duced. Only available for Step and Track

• InitialTime: initial global time

• FinalTime: final global time

126

Chapter 11. Analysis (extracting data)

• InitialLocalTime: initial local time

• FinalLocalTime: initial local time

• InitialProperTime: initial proper time

• FinalProperTime: final proper time

• TimeChange: Global time change. Only available for Step.

Output file names
Each user action has a default name for the output file it produces (histogram, text
or binary file), as it is explained in the corresponding section of this guide. As these
classes are user actions, they can be used with filters and classifiers and in this cases,
to the default file name it is added the name of the filters and classifier. This default
file name can be changed with the parameter

/gamos/setParam FILE_NAME:FileName NEW_FILE_NAME

If you are running a job and you want to identify all your output files with a charac-
teristic prefix or suffix (for example to differentiate them from the files from another
job), you may do it by defining the parameters:

/gamos/setParam GmAnalysisMgr:FileNamePrefix PREFIX

the name PREFIX will be added at the beggining of all output file names.

/gamos/setParam GmAnalysisMgr:FileNameSuffix SUFFIX

the name SUFFIX will be added at the end of all output file names, before the file
type (.root or .csv).

In the case of other output files (or input), like the text or binary files with several
kinds of data that are explained in different sections of this guide, you can also add a
prefix or suffix with the above commands to all of them, as all the input and output
of these classes is controlled in GAMOS through a common base class.

Merging results from different jobs
When running an application you may get a table of the different types of results.
It is usual that you run different jobs with the same setup to accumulate statistics
or with different setups to study the dependency of your results with some pa-
rameters. In the analysis directory of your GAMOS distribution there are specific
utilities for specific outputs, for example, RTPhaseSpace/sumPS, RTDose/sumSqdose,
RTDose/sum3ddose, Shielding/sumScores, Shielding/sumPDS, NuclMed/PET/sumProjdata;
they are described in the corresponding section of this manual. In this section we will
describe an utility to analyse the output tables produced from various runs (extract,
sum or compare results) and also how to merge and analyse the output files of good
events

If you have run one or several jobs and produced a table with the statistics of good
events, we describe here an utility that allows to process these results and present
them in a more convenient way. This utiltiy analyses the files containing the output
tables and allows you to extract the desired numbers out of them and present them
together in a single table, with the possibility to add the numbers from different ta-
bles. We will describe the steps you should follow to do this and illustrate them with
an example.

The first thing you should do is to write a file that describe what you want to do with
the output files. In the first section of this file you should list the names of the files to
be used. For each file there should be a line containing two words: the first must be

127

Chapter 11. Analysis (extracting data)

:FILE_TXT and the second the file name. For example if you have run three jobs with
three different energy resolution values, you may put in your file

:FILE_TXT out.pet.5
:FILE_TXT out.pet.10
:FILE_TXT out.pet.15

After this you should describe the actions to be taken. Several actions can be done,
for each one you have to write a line in which you describe which lines are going to
be processed, which words in these lines and which action is done (print value, sum
values from different files, ..)

In this action line you should first describe the criteria to identify which lines in each
file are to be processed. This can be done by setting which words in the line are going
to be looked for. Instead of setting the full word one can set the starting characters
(prefix) or the ending characters (suffix). To set the list of prefixes you add the words:

:PRE or :PREFIX followed by a list of pairs: word position numbers and word char-
acters. For example

:PRE 1 Events 2 PET

will look for the lines in which the first word starts by Events and the second word
starts by PET.

In a similar way it can be done with the suffixes:

:SUF or :SUFFIX followed by a list of pairs: word position numbers and word char-
acters.

If there are several lines in a file satisfying the prefix and suffix conditions, you may
set that only one line or a few of them are processed, by using the word :L or :LINE
followed by the list of numbers corresponding to the time order the line appears. For
example:

:PRE 1 Events 2 PET :L 1

will only process the first line found.

Then you have to define which are the words in the line that are going to be processed
by using the word :W or :WORD followed by the list of numbers of the words in the
lines. For example:

:PRE 1 Events 2 PET :L 1 :W 3 4

will process the third and fourth words of the lines selected.

After you have to define the kind of treatment to be done to the words, by using the
word :T or :TREATMENT followed by the treatment type. For example:

:PRE 1 Events 2 PET :L 1 :W 3 4 :T PT

The treatment type can be one of the following ones:

• P or PRINT: print the words found at each line of each file, each one in a line

• PT or PRINT_TOGETHER: print the words found at each line of each file, putting in
one line the words extracted from each file (i.e. all the words found corresponding
to the same instruction line together)

128

Chapter 11. Analysis (extracting data)

• S or SUM: print the sum of the values of the words found in any line of any file

• M or MEAN: print the mean of the values of the words found in any line of any file

Finally you may write a message that will be printed together with the results, that
may serve you to identify the output. For example:

:PRE 1 Events 2 PET :L 1 :W 3 4 :T PT :M PET_EVENTS

Example of Analysing text output files
As an example of this utility, we will analyse three PET output files and extract some
information from the table of PET events classification. Let’s take an output file with
a table similar to this one:

Events PET : 862 8.62 %
--------------- Good PET -------------
ALL : 93 0.93 %
(1) PET 2 recHits close to vtx : 0 0 %
(2) PET 2 recHits far from vtx : 93 0.93 %
(11) PET 3->2 recHit close to vtx : 0 0 %
(12) PET 3->2 recHit far from vtx : 0 0 %
--------------- Random Coincidences -------------
ALL : 769 7.69 %
(101) PET 2 recHits close to vtx : 0 0 %
(102) PET 2 recHits far from vtx : 769 7.69 %
(111) PET 3->2 recHit close to vtx : 0 0 %
(112) PET 3->2 recHit far from vtx : 0 0 %
...

We have three files that we have run with different random seeds and we want to
extract the following information:

• Sum of total number of PET events in the three files

• Mean number of good PET events in each of the three files

• List of numbers of random coincidences PET events in each of the three files

The file to obtain these results, that we name anaout.is: may look like this:

:FILE_TXT out.exercise3c.1
:FILE_TXT out.exercise3c.2
:FILE_TXT out.exercise3c.3
:PRE 1 Events 2 PET :W 4 :T S :M "Events"
:PRE 1 ALL :L 1 :W 3 :T M :M "Good PET Events"
:PRE 1 ALL :L 2 :W 3 :T PT :M "Mean Random coincidences PET Events"

And if you run the command:

analysOutput anaout.lis

Then you may get a result like this:

Events 2596
Good PET Events 92.6667
Mean Random coincidences PET Events 769 765 763

129

Chapter 11. Analysis (extracting data)

130

Chapter 12. Filters

Introduction
A filter is a class that receives a G4Step or a G4Track and accepts it or not depending
on some given criteria. A GAMOS filter has therefore two main methods

• AcceptStep(const G4Step*): receives a G4Step pointer and decides to return true or
false

• AcceptTrack(const G4Track*): receives a G4Track pointer and decides to return true
or false

A filter may implement the two methods or only one of them. If the AcceptStep
method is not implemented by a filter, the AcceptStep method from the base class
is invoked and it calls the AcceptTrack method passing to it the G4Track correspond-
ing to the G4Step. If the AcceptTrack method is not implemented by a filter, the method
from the base class returns true.

Filters can act on user actions or scorers. If one or several filters are set to act on a
user action, the PreUserTrackingAction, PostUserTrackingAction and ClassifyNewTrack
methods will only be invoked if the AccepTrack method of every filter returns true,
and UserSteppingAction method will only be invoked if the AccepStep method of every
filter returns true. In the case of filters applied to scorers, they only act if the scorer is
called, i.e. if the step happens in the selected volume. For details on filters acting on
scorers see the section on Scorers.

The use of user actions and scorers together with filters is a powerful means to obtain
very detailed information on the simulation through simple user commands. See the
tutorial on Histograms and scorers for examples on this.

Several filters need some extra parameters (see list of filters below) that control their
behaviour. To use these filters they have to be declared first with the following com-
mand

/gamos/filter FILTER_NAME FILTER_CLASS PARAMETER_1 PARAMETER_2 ...

where FILTER_NAME is the new name you want to give to a filter to attach it to a user
action of a scorer, FILTER_CLASS is the name of the filter class, and PARAMETER_1
PARAMETER_2 ... are the values of the parameters that the filter needs. Those filters
that do not need any parameter, can be assigned directly to a user action or a scorer
without giving them a new name: the name will be the one of the filter class.

To attach one or more filters to a user action you put them after the user action name
in the command line that selects it

/gamos/userAction USER_ACTION FILTER_NAME

or you can use filters to act on a scorer with the command

/gamos/scoring/addFilter2Scorer FILTER_NAME SCORER_NAME

Filter are plug-in’s, so that a user can create her/his own filter and select it with a
user command. To learn how to do this, see the instructions in the section Creating
your plug-in, using the GmFilterFactory, or the Histograms and scorers tutorial.

Simple filters
The list of available filters can be obtained by typing SealPluginDump on your termi-
nal window and look for the list of classes after Category GmFilterFactory: (they all
contain the word Filter). The list of simple filters in the current GAMOS version is the
following:

131

Chapter 12. Filters

• GmGammaFilter: accepts a track if the particle is a gamma

• GmElectronFilter: accepts a track if the particle is an electron

• GmPositronFilter: accepts a track if the particle is a positron

• GmElectronOrPositronFilter: accepts a track if the particle is an electron or positron

• GmEMParticleFilter: accepts a track if the particle is of electromagnetic type
(gamma, electron or positron)

• GmProtonFilter: accepts a track if the particle is a proton

• GmNeutronFilter: accepts a track if the particle is a neutron

• GmParticleFilter: accepts a track if the particle is in the list of particles given as extra
parameters (see the list of particle names in the section Using particle names).

• GmChargedFilter: accepts a track if the particle is charged.

• GmNeutralFilter: accepts a track if the particle is neutral

• GmPrimaryFilter: accepts a track if it is a primary (it does not come from another
track)

• GmSecondaryFilter: accepts a track if it is a secondary (it comes from another track)

• GmKineticEnergyFilter: accepts a track if its kinetic energy is between the two values
given as extra parameters (including the two values). For steps it considers the
energy at the beginning, that is the G4PreStepPoint energy

• GmPostKineticEnergyFilter: accepts a track if its kinetic energy is between the two
values given as extra parameters(including the two values). For steps it considers
the energy at the end, that is the G4PostStepPoint energy

• GmVertexKineticEnergyFilter: accepts a track if its vertex kinetic energy (the energy
at creation) is between the two values given as extra parameters(including the two
values)

• GmDepositedEnergyFilter: accepts a track if the deposited energy is between the val-
ues given by the two extra parameters (including the two values). It does not im-
plement the AcceptTrack method

• GmInitialRangeFilter: accepts a track if its range at creation is between the two val-
ues given as extra parameters (including the two values)

• GmRangeFilter: accepts a track if the range is between the values given by the two
extra parameters (including the two values)

• GmStepNumberFilter: accepts a track if the step number is between the values given
by the two extra parameters. It does not implement the AcceptTrack method

• GmNumberOfSecondaries: accepts a track if the number of secondaries created is
between the values given by the two extra parameters. It does not implement the
AcceptTrack method

• GmProcessFilter: accepts a track if the process name that defined it is in the list given
as extra parameters. It does not implement the AcceptTrack method

• GmParticleProcessFilter: accepts a track if the particle and the process that defined
the step are in the list given as extra parameters. The parameters must be provided
as a list of pairs particle name - process name. It does not implement the Accept-
Track method

• GmCreatorProcessFilter: accepts a track if the process that defined it is in the list
given as extra parameters. It does not implement the AcceptTrack method

• GmFilterFromClassifier: accepts a track if the classifier given as first parameter re-
turns a value equal to the second parameter. It does not implement the AcceptTrack
method

132

Chapter 12. Filters

Volume filters
These are a set of filters that accept tracks under one of the following conditions

• In: particle is in a volume

• Enter: particle is entering a volume. AcceptTrack method returns always false

• Exit: particle is exiting a volume. AcceptTrack method returns always false, except
in the case where one of the selected volumes is the world and track is exiting it

• Traverse: particle traverses a volume, it does neither enter nor exits it

• Start: particle is starting in a volume. AcceptTrack method may only return true if it
is the first step

• End: particle is ending in a volume. AcceptTrack method may only return true if the
track is ending

The volume names are given as extra parameters to the filter. The types of volume
are the following ones

• LogicalVolume: a G4LogicalVolume object

• PhysicalVolume: a G4VPhysicalVolume object. The volume name and copy number
are set separated with a ’:’ character, e.g. volA:1 (see section on Identifying touchables)

• PhysicalVolumeReplicated: for optimisation reasons the PhysicalVolume filters use the
pointers to the physical volumes to find them. But in the case of replicated physi-
cal volumes (i.e. divisions, replicas and parameterisations), there is a unique Phys-
icalVolume pointer, while the different copies are managed internally by Geant4.
Therefore you cannot select only a few of the copies of a physical volume with the
above filters. For these cases you should use the PhysicalVolumeReplicated filters.

• Touchable: a G4VTouchable object. The volume name and copy number are set
separated with a ’:’ character, the ancestors are separated by a ’/’ character, e.g.
volB:3/volA:1 (see section on Identifying touchables)

• Region: a G4Region object

• LogicalVolumeChildren: a G4LogicalVolume object or any of the G4LogicalVolume chil-
dren of it

• PhysicalVolumeChildren: a G4VPhysicalVolume object or any of the
G4VPhysicalVolume children of it

• PhysicalVolumeReplicatedChildren: please read the discussion about
PhysicalVolumeReplicated

• RegionChildren: a G4VTouchable object or any of the G4VTouchable children of it

• TouchableChildren: a G4Region object or any of the G4Region children of it

The name of these filters is constructed combining the geometry condition and the
volume type, e.g. GmInPhysicalVolumeFilter, GmTraverseTouchableFilter, GmEndRegion-
Filter, GmTraverseLogicalVolumeChildrenFilter, GmExitRegionChildrenFilter.

There is a special case when parallel worlds are used: the scorers see the parallel
world volumes, but the user actions do not. This means that you cannot use the above
filters on a parallel world volume if you are using the filter for a user action, while
you can if you use it for a scorer. If you want to do it you have to use the special
parallel filters, namely

• EndParallelLogicalVolumeFilter

• EndParallelPhysicalVolumeFilter

• EndParallelPhysicalVolumeReplicatedFilter

• EndParallelRegionFilter

133

Chapter 12. Filters

• EnterParallelLogicalVolumeFilter

• EnterParallelPhysicalVolumeFilter

• EnterParallelPhysicalVolumeReplicatedFilter

• EnterParallelRegionFilter

• ExitParallelLogicalVolumeFilter

• ExitParallelPhysicalVolumeFilter

• ExitParallelPhysicalVolumeReplicatedFilter

• ExitParallelRegionFilter

• InParallelLogicalVolumeFilter

• InParallelPhysicalVolumeFilter

• InParallelPhysicalVolumeReplicatedFilter

• InParallelRegionFilter

• StartParallelLogicalVolumeFilter

• StartParallelPhysicalVolumeFilter

• StartParallelPhysicalVolumeReplicatedFilter

• StartParallelRegionFilter

• TraverseParallelLogicalVolumeFilter

• TraverseParallelPhysicalVolumeFilter

• TraverseParallelPhysicalVolumeReplicatedFilter

• TraverseParallelRegionFilter

And it also means that you cannot use the above filters to act on a mass world
whose position coincides with the one of a parallel world in the case of scorers, be-
cause the scorer filter will see the parallel world volume instead of the mass one.
If you need to filter on mass volumes for a scorer a few volume filters are imple-
mented, namely GmInMassLogicalVolumeFilter, GmInMassPhysicalVolumeFilter, GmIn-
MassPhysicalVolumeReplicatedFilter and GmInMassRegionFilter.

When you use for example GmExitLogicalVolumeFilter the step is accepted when it
exits the selected volume, without looking if the next volume it is entering is another
copy of the selected volume. If what you want is that the steps are only accepted
when they exit the selected volume and enter a different one, you may use the a
filter that checks that if the PreStepPoint and the PostStepPoint are in different logical
volumes:

• GmDifferentLogicalVolumeFilter

Although you may use the inverse of this filter to check if the two volumes are the
same, GAMOS provides explicitly this filter:

• GmSameLogicalVolumeFilter

Filters of filters
There are another set of filters that receive as parameter one or several filters and act
on them. The list of composed filters in the current GAMOS version is the following:

• GmORFilter: returns true if one of the filters returns true

• GmXORFilter: returns true if one and only one of the filters returns true

134

Chapter 12. Filters

• GmANDFilter: returns true if every filter returns true

• GmParentFilter: apply a filter to the parent track instead of the current track

• GmHistoryFilter: returns true if all the filters in one of the previous steps, or the
beginning of track, have returned true (i.e. it does not check again the current step
if it was accepted in a previous one or begin of track)

• GmHistoryAllFilter: returns true if all the filters in all previous steps, and the begin-
ning of track have returned true (i.e. it does not check again the current step if it
was rejected in a previous one or begin of track)

• GmHistoryOrAncestorsFilter: behaves similarly as the GmHistoryFilter but also re-
turns true if the condition is fulfilled by any step or track of the ancestors of the
current track

• GmHistoryOrAncestorsAllFilter: behaves similarly as the GmHistoryAllFilter but also
returns false if the condition is not fulfilled by any step or track of the ancestors of
the current track

• GmAncestorsFilter: behaves similarly as the GmHistoryOrAncestorsFilter but it does
not check if a previous step has passed the filter

• GmOnSecondaryFilter: makes the list of filters act of the secondary tracks created in
the step; returns true if one of the secondary tracks created accepts all the filters. It
does not implement the AcceptTrack method

• GmOnAllSecondariesFilter: makes the list of filters act of the secondary tracks cre-
ated in the step; returns true if all secondary tracks created accept all the filters. It
does not implement the AcceptTrack method

• GmInverseFilter: returns the opposite that the filter it receives as only parameter

Applying filters to a user action
It may happen that you do not want that a filter is applied to a user action in all cir-
cunstances (i.e. each begin of track, each track step and each end of track). An exam-
ple can be a user action that is using a "accumulating" data (see section onGAMOS
data): at PreUserTrackingAction the variable, for example energy deposited, is ini-
tialized to 0, at SteppingAction the new energy deposit is added and at PostUser-
TrackingAction the variable is printed; but if you use in this case a filter that checks
that the track is in a certain volume, it may happen that the PreUserTrackingAction
is not invoked because the track at that moment was not in the volume and then the
variable will be wrong. To prevent these cases there is the option of not applying the
filters in a given circunstance by setting the parameters:

/gamos/setParam USER_ACTION_NAME:ApplyFiltersToStepping false

/gamos/setParam USER_ACTION_NAME:ApplyFiltersToPreTracking false

/gamos/setParam USER_ACTION_NAME:ApplyFiltersToPostTracking false

/gamos/setParam USER_ACTION_NAME:ApplyFiltersToStacking false

where USER_ACTION_NAME is the name of the user action where you want the
filter to take effect, which includes the name of the filters and classifiers (see section
onUser action names).

Checking filters at a user action
The default behaviour of a user action is that their filters are invoked one after the
other and all of them have to return OK before the user action method is invoked. For
efficiency reasons if a filter is not passed, the other filters will not even be asked. This
behaviour may represent a problem in some cases. For example if you implement
two history filters and the first one is not accepted for a step, the second one will not

135

Chapter 12. Filters

be invoked; but history filters need to be invoked at each step, because they have to
check if any of the steps in a track history passed the filter. To prevent these cases
there is the option of not applying the filters in a given circunstance by setting the
parameters:

/gamos/setParam USER_ACTION_NAME:CheckAllFiltersAtStepping false

/gamos/setParam USER_ACTION_NAME:CheckAllFiltersAtPreTracking false

/gamos/setParam USER_ACTION_NAME:CheckAllFiltersAtPostTracking false

/gamos/setParam USER_ACTION_NAME:CheckAllFiltersAtStacking false

where USER_ACTION_NAME is the name of the user action where you want this to
take effect, which includes the name of the filters and classifiers (see section onUser
action names).

Filtering steps in the future
It is possible to filter an step with a future condition. For example you may want to
score the energy of the steps that are in a volume only if the track in a future step
reaches another volume. This feature needs a special mechanism, as the steps cannot
be saved until knowing if a future step will fulfill the second consition, and when
this happens the steps to be saved have been deleted (Geant4 only saves one step at
a time).

To use this mechanism a GmFutureFilter has to be defined, giving as arguments two
filters: first the one that should fulfill the steps to be used (for scoring, for saving their
information, filling histograms, ...) and second the one that shuld fulfill the steps that
trigger the use of the first steps.

/gamos/filter myFutureFilter GmFutureFilter FILTER_PAST FILTER_FUTURE

If a future filter is used with a user action, it must be the only filter. If you want to
add more normal filter together with the future filter you should combine them with
GmANDFilter and put them as FILTER_PAST of the future filter.

GmFutureFilter only acts in one track, this means that the steps to be used as well as
the future steps belong to the same track. If you want to set a condition in the future
also to the children tracks of the steps to be used (e.g. score the energy of the steps
that are in a volume only if the track or any of the secondary tracks created at this
step or any future step of this track, including the children of these secondary tracks,
reach another given volume, you have to use GmFutureWithChildrenFilter.

Future filters only act on steps, so if you use them for example together with a Gm-
TrackDataHistosUA they will always return true, i.e. they will have no effect.

In the case of scorers the use of future filters has to take into account the fact that scor-
ers are only invoked when a step happens in the detector volume that has attached
the scorer. This could create a problem if the FILTER_FUTURE implies a geometrical
condition, like for example if steps happens in a given volume. In this case the scorer
will not be invoked and this filter will never be checked. The solution for this is that
you attach a detector to the volume of the FILTER_FUTURE and then add in the
FILTER_PAST filter asking for steps to be only in the volume(s) where you want to
score.

136

Chapter 13. Classifiers

Introduction
A classifier is a class that contains a method that receives a G4Step or a G4Track and re-
turns a different index (an integer) depending on some given criteria. In other words
it classifies the step or track and returns the index of its classification. These classes
are unique to GAMOS, as Geant4 does not provide this functionality.

Classifiers can act on user actions or scorers. If one or several classifiers are set to act
on a user action, it is up to the concrete user action to determine which use it makes
of them, or to ignore them. The most common use of classifiers by user actions is
to produce a different histogram or table for each classification index. For details on
classifiers acting on scorers see the section on Scorers.

The use of user actions and scorers together with classifiers is a powerful means to
obtain very detailed information on the simulation through simple user commands.
See the tutorial in section Histograms and scorers for more details on this.

Several classifiers need some extra parameters (see list of classifiers below) that con-
trol their behaviour. To use these classifiers they have to be declared first with the
following command

/gamos/classifier CLASSIFIER_NAME CLASSIFIER_CLASS PARAMETER_1 PARAM-
ETER_2 ...

where CLASSIFIER_NAME is the new name you want to give to a classifier to attach
it to a user action or to a scorer, CLASSIFIER_CLASS is the name of the classifier
class, and PARAMETER_1 PARAMETER_2 ... are the values of the parameters that
the classifier needs. Those classifiers that do not need any parameter, can be assigned
directly to a user action or a scorer without giving them a new name: the name will
be the one of the classifier class.

To attach one classifier to a user action you put its name after the user action name in
the command line that selects it

/gamos/userAction USER_ACTION CLASSIFIER_NAME

or you can use a classifier to act on a scorer with the command

/gamos/scoring/assignClassifier2Scorer CLASSIFIER_NAME SCORER_NAME

If you want to use more than one classifier for a user action or a scorer, you have to
use the classifer GmCompoundClassifier (see below).

Each classifier has a method, GetIndexName(G4int index), that returns a different name
for each index value. If a classifier does not implement this method, the one in the
base class returns the index number converted to a string. This method is used by
user actions and scorers to add the index number to the name of the histograms,
tables or scores.

Classifiers are plug-in’s, so that a user an create her/his own classifier and select it
with a user command. To learn how to do this, see the instructions in the section
Creating your plug-in, using the GmClassifierFactory, or the Histograms and scorers tu-
torial.

The following classifiers are currently implemented in GAMOS:

• GmPSClassifierBy1Ancestor: It assigns a different index to different copy numbers
of a volume. It has an extra parameter that sets the level of the ancestor; if it is N =
0, it will use the copy numbers of the volume itself, if it is N > 0, it will look for the
copy numbers of the N-th ancestor

• GmPSClassifierByAncestors: It assigns a different index to different copy numbers of
the sensitive volume. It has two extra parameters that set the number of ancestor

137

Chapter 13. Classifiers

levels (NAncestor) and the maximum number of copies in a level (NShift). The index
is built as a sum of NShiftN * copyNumber_of_Nancestor from N=0 to N=NAncestor-1

• GmClassifierByLogicalVolume: It assigns a different index to different logical vol-
umes

• GmClassifierByPhysicalVolume: It assigns a different index to different physical vol-
umes

• GmClassifierByPhysicalVolumeReplicated: See discussion about PhysicalVolumeRepli-
cated filters

• GmClassifierByRegion: It assigns a different index to different regions

• GmClassifierByKineticEnergy: The user must define a minimum, a maximum and a
width of the energy intervals. It creates kinetic energy (at PreStepPoint) intervals
with these values and assigns a different index to different intervals

• GmClassifierByProcess: It assigns a different index to different process names that
define the G4Step

• GmClassifierByParticleProcess: It assigns a different index to different
particle-process name pairs that define the G4Step. This means that the ionisation
for electrons and positrons will produce a different index, despite the process
being called the same for both particles

• GmClassifierByCreatorProcess: It assigns a different index to different track creator
process names

• GmClassifierByParticle: It assigns a different index to different particle types

• GmClassifierByPrimaryParticle: It assigns a different index following the particle
type for the primary that originated the current particle, or the particle itself if
it is a primary

• GmCompoundClassifier: This classifier receives a list of classifiers and builds an in-
dex as Classifier_1*NShift+Classifier_2*NShift*NShift+... Where NShift is defined
by the parameter /gamos/setParam GmCompoundClassifier:NShift NSHIFT, that by
default takes a value of 100. Be aware that the classifier index is stored as a 32-
bit integer, so be careful that the index is not too big (bigger than 232).

Filters are plug-in’s, so that a user can create her/his own filter and select it with a
user command. To learn how to do this, see the instructions in the section Creating
your plug-in, using the GmClassifierFactory.

Setting indices to classifiers
In most classifiers by default the indices are built automatically as the objects of clas-
sification appear and they start with 0 and grow one by one. You may want to change
this behaviour (it may be specially useful if you are using importance sampling). To
do it you should use the command:

/gamos/classifier/setIndices VALUE_1 INDEX_1 VALUE_2 INDEX_2

where VALUE_ii are the names of the objects of classifications (logical volumes, pro-
cess names, ...), and INDEX_ii are the new indices. In the case of classifier GmClassi-
fierByParticleProcess you need two values for each index: particle name and process
name.

You should be careful to list all the values that may appear in the classifier. If not,
GAMOS will automatically assign an index to the new values, starting with the num-
ber following the maximum index defined with the user command. The exceptions
are the classifiers GmClassifierBy1Ancestor and GmClassifierByAncestors , for which all
values should be given.

138

Chapter 14. Distributions

Introduction
The GAMOS distribution classes represent one-dimensional functions, which assing
an output value for each input variable of the a given variable. In other words, they
represent one-dimensional functions:

y = f(x)

In fact the correspondence between x and y values is read from a file, so that any
arbitrary function shape can be easily defined.

There are currently three users of GAMOS distributions. We briefly decribe them here
and give further details in the corresponding section:

• To bias a primary generator distribution. In this case the output values represent
the probabilities of occurrence of the variables (e.g. position coordinate X, direction
angle theta, energy, time).

• To define the weights in importance sampling. A GAMOS data should be defined
so that the input values are those of the data at each track step.

• To define the index corresponding to each value for the classifier GmClassifierBy-
Distribution. A GAMOS data should be defined so that the input values are those
of the data at each track or track step.

Creating a distribution
A distribution has to be created with the command

/gamos/distribution DISTRIBUTION_NAME DISTRIBUTION_CLASS

where DISTRIBUTION_NAME is the name you give to the distribution,
which will be used to assign it to an object and to define its parameters; and
DISTRIBUTION_CLASS is the class name (see below for the list available
distribution classes).

Assigning a GAMOS data
Except in the use of a GAMOS distribution is for primary generator biasing, you
have to assign a GAMOS data. This data is the variable of the distribution, i.e. it will
be used to extract the input value for each track or track step. To assign a data the
following parameter should be used:

/gamos/setParam DISTRIBUTION_NAME:Data DATA_NAME

Reading values from a file
Many of the distributions described below need to read the data from a file. The
parameter

/gamos/setParam DISTRIBUTION_NAME:FileName FILE_NAME

defines the name of the file that contains the distribution data. This file is a two col-
umn set of values, where the first column gives the input values (x) and the second
the output values (y). After being read the input values are ordered in increasing or-
der. To calculate the output value corresponding to an input value, each distribution
uses its own algorithm, see below. If the input value is smaller than the minimum

139

Chapter 14. Distributions

value in the file or bigger than the maximum value, an exception will be thrown, as
the value cannot be calculated.

It is also possible to read the data from a histogram in ROOT or CSV format. In this
case an extra parameter has to be provided to set the name of the histogram:

/gamos/setParam DISTRIBUTION_NAME:HistoName HISTO_NAME

The input values are taken as the centres of the histogram bins. The minimum and
maximum values read are extended to the lower and upper edge of the histogram
axis, i.e. minux and plus half a bin. If the input value is between this minimum and
the lowest bin centre, the output is interpolated using the lowest and second lowest
bins. Similarly for values between the maximum and the highest bin centre.

The type of the file will be automatically determined from the file name: if it ends by
.csv it will be taken as a CSV format histogram file, if it ends by .root it will be taken
as a ROOT format histogram file, else it will be taken as a text file. If you do not want
to follow this convention then you have to set the file type explicitly by using the
parameters:

/gamos/setParam DISTRIBUTION_NAME:FileNameCSV FILE_NAME

/gamos/setParam DISTRIBUTION_NAME:FileNameROOT FILE_NAME

Numeric distributions
A numeric distribution is a distribution where the input and output values are num-
bers. There are several classes of numeric distributions:

• GmGaussianDistribution. The sigma and constant value of the Gaussian distribution
has to be given as two extra parameters when the distribution is created. By default
the Gaussian distribution is centred at 0, if you want to centre it at other value, you
have to give a third parameter when the distribution is created.

• GmPolynomialDistribution. It can serve to define any polynomial distribution: f(x) =
a_0 + a_1 * x + a_2 * pow(x,2) + The parameters a_i are given as extra parame-
terswhen the distribution is created. The number of extra parameters defines the
order of the polynomial: POLYNOMIAL_ORDER = NUMBER_OF_PARAMETERS
- 1.

The other numeric distributions are general ones: they read the input - output re-
lationship from a file, so that any distribution shape can be defined. The distribu-
tion finds among the list of read input values (after ordering them) the two that are
closest (i.e. one bigger and one smaller); then it interpolates the two output values
corresponding to these two input values. The difference between the distributions
described below lies in the way this interpolation is done.

• GmNumericDistributionLinLin. Interpolates linearly in the input and linearly in the
output: f(x) = f(x_S) + (x-x_S)/(x_B-x_S)*(f(x_B)-f(x_S)) (where x_S and x_B are the
closest smaller and bigger values of x read from the file).

• GmNumericDistributionLogLin. Interpolates logarigthmicaly in the input and lin-
early in the output: f(x) = f(x_S) + (log(x)-log(x_S))/(log(x_B)-log(x_S))*(f(x_B)-f(x_S))
(where x_S and x_B are the closest smaller and bigger values of x read from the
file).

• GmNumericDistributionLinLog. Interpolates linearly in the input and logarithmi-
cally in the output: f(x) = f(x_S) + exp((x-x_S)/(x_B-x_S)*(log(f(x_B))-log(f(x_S))))
(where x_S and x_B are the closest smaller and bigger values of x read from the
file).

• GmNumericDistributionLogLog. Interpolates logarigthmicaly in
the input and logarithmicaly in the output: f(x) = f(x_S) + exp(

140

Chapter 14. Distributions

(log(x)-log(x_S))/(log(x_B)-log(x_S))*(log(f(x_B))-log(f(x_S)))) (where x_S and x_B
are the closest smaller and bigger values of x read from the file).

• GmNumericDistributionLower. Takes the value corresponding to the closest smaller
value: f(x) = f(x_S) .

• GmNumericDistributionUpper. Takes the value corresponding to the closest bigger
value: f(x) = f(x_B) .

String distributions
A string distribution is a distribution where the input values are strings (e.g. parti-
cle names, process names, volume names) and the output valeus are numbers. The
values must be defined in a text file similar to the one for numeric distributions: two
columns where the first column is a list of names and the second column the values
that correspond to each name.

If you are using a string distribution, for example to assign a value to each particle,
you should list in your file all particle names. If a name is not found, an exception
will be thrown. If you do not that this exception is thrown, but only a warning, and
that the value returned is -1, you have to set the parameter

/gamos/setParam GmVStringDistribution::GetStringValueFromIndex 1

Geometrical biasing distribution
Thi GmGeometricalBiasingDistribution is a special distribution that serves to do geo-
metrical biasing. For each track step it checks if the step is at a volume boundary and
if so it calculates the output value as the division between the value at the end and
the value at the beginning of the step (the PostStepPoint and PreStepPoint), else it re-
turns 1. The file is supposed to contain in the first colummn the list of volume names
and in the second the list of weights. Two data has to be assinged to it, what can be
done with the parameter:

/gamos/setParam DISTRIBUTION_NAME:Data DATA_1_NAME DATA_2_NAME

These data should be one of the volume data: FinalLogicalVolume and InitialLogicalVol-
ume FinalPhysicalVolume and InitialPhysicalVolume, FinalTouchable and InitialTouchable,
etc. But this is not enforced, so that you may find another use for this distribution.

To avoid that the biasing value becomes too high, for example if a track traverses
several times the border between two volumes with very different weights, you can
avoid that a weight is repeated twice by settting the parameter

/gamos/setParam DISTRIBUTION_NAME:NoRepeatWeight 1

Alternatively you can set a maximum value of the weight with the parameter

/gamos/setParam DISTRIBUTION_NAME:MaxValue VALUE

141

Chapter 14. Distributions

142

Chapter 15. Utility user actions

These are a miscellaneous set of user actions that add some functionality. As for any
user action, filters can be assigned to them to select for which type of tracks they will
be activated and in some cases classifiers may be used to classify the output tables.

Counting the number of tracks and events
This utility prints a line every N events with the event number, the number of tracks
in this event and the accumulated number of tracks in all events:

%%% EVENT 0 NTRACKS 4 TOTAL NTRACKS 4
%%% EVENT 1000 NTRACKS 6 TOTAL NTRACKS 4663
%%% EVENT 2000 NTRACKS 4 TOTAL NTRACKS 9440

Its main use is to inform the user of the progress of the job in interactive running. To
activate this utility use the command:

/gamos/userAction GmCountTracksUA

The user can control the interval of events as well as the first event to start printing
with the parameters:

/gamos/setParam USER_ACTION_NAME:EachNEvent NEV (10)

/gamos/setParam USER_ACTION_NAME:FirstEvent NEV (0)

where USER_ACTION_NAME is GmCountTracksUA plus the filters and classifier
name (see section on User action names).

This utility distinguishes for the ionisation and bremsstrahlung processes those cases
when a secondary particle is emitted and those when the step is limited to assure a
correct energy loss and multiple scattering but no secondary particle is emitted (it
adds _NoSeco at the end of the process name).

Counting the processes
This utility prints four tables:

• At the beginning of run all the active processes for each particle type:
PROC_LIST e+ : Transportation
PROC_LIST e+ : annihil
PROC_LIST e+ : eBrem
PROC_LIST e+ : eBrem_NoSeco
PROC_LIST e+ : eIoni
PROC_LIST e+ : eIoni_NoSeco
PROC_LIST e+ : msc
PROC_LIST e- : Transportation
PROC_LIST e- : eBrem
PROC_LIST e- : eBrem_NoSeco
PROC_LIST e- : eIoni
PROC_LIST e- : eIoni_NoSeco
PROC_LIST e- : msc
PROC_LIST gamma : Rayl
PROC_LIST gamma : Transportation
PROC_LIST gamma : compt
PROC_LIST gamma : conv
PROC_LIST gamma : phot

• At the end of run how many times a process determined the step for each particle
type:

143

Chapter 15. Utility user actions

PROC_COUNT e+ : Transportation = 1870
PROC_COUNT e+ : annihil = 728
PROC_COUNT e+ : eBrem = 86
PROC_COUNT e+ : eBrem_NoSeco = 5
PROC_COUNT e+ : eIoni = 861
PROC_COUNT e+ : eIoni_NoSeco = 864
PROC_COUNT e+ : msc = 5531
PROC_COUNT e+ : ALL = 9945
PROC_COUNT e- : Transportation = 1977
PROC_COUNT e- : eBrem = 142
PROC_COUNT e- : eBrem_NoSeco = 10
PROC_COUNT e- : eIoni = 1736
PROC_COUNT e- : eIoni_NoSeco = 9812
PROC_COUNT e- : msc = 25744
PROC_COUNT e- : ALL = 39421
PROC_COUNT gamma : Rayl = 4
PROC_COUNT gamma : Transportation = 4657
PROC_COUNT gamma : compt = 53
PROC_COUNT gamma : phot = 125
PROC_COUNT gamma : ALL = 4839

• At the end of run how many times a process was the creator of a particle for each
particle type:

PROC_CREATOR_COUNT e+ : Primary = 1000
PROC_CREATOR_COUNT e- : Primary = 1000
PROC_CREATOR_COUNT e- : compt = 53
PROC_CREATOR_COUNT e- : eIoni = 2597
PROC_CREATOR_COUNT e- : phot = 125
PROC_CREATOR_COUNT gamma : annihil = 1456
PROC_CREATOR_COUNT gamma : eBrem = 228

• At the end of run how many particles of each type were created:
PART_LIST: e+ = 1000
PART_LIST: e- = 1485
PART_LIST: gamma = 2285

To activate this utility use the command:

/gamos/userAction GmCountProcessesUA

The eIoni_NoSeco and eBrem_NoSeco refer to the cases when ionisation or
bremsstrahlung processes limit the step but no secondary particle is produced.
The reason for this limitation is to guarantee that the step are not too big so
that physics precision may be spoiled. You may have a look for example at
http://fismed.ciemat.es/GAMOS/RToptim/ParameterHelp.html for a description of the
Geant4 electromagnetic physics parameters.

Shower shape studies
GAMOS offers an utility to help in doing shower shape studies. To use is it is enough
to active the user action

/gamos/userAction GmShowerShapeUA

Each time a new track step satisfies the conditions of the filters associated to this ac-
tion a new shower is started, and the user action accumulates all the energy deposits
of all the children created from this track step. This means taht each track step that
passes the filter initiates a new shower, unless the track is a children of a track which
has already initiated a shower. But you should not forget the logic of the user actions
and filters: the user action GmShowerShapeUA will only be invoked for the steps that
pass the associated filters; i.e. if one of the children track steps does not pass the filter,
it will not be included in the shower. If this behaviour does not provide you with the

144

Chapter 15. Utility user actions

expected results, you may consider using the filter GmAncestorsFilter (see section of
Filters).

As we just mentioned each step of a track may initiate a new shower, but if you want
to include all the steps of the same track (and their children) in a unique shower, you
have to set the parameter:

/gamos/setParam USER_ACTION_NAME:IncludeOtherStepsOfFirstTrack TRUE

where USER_ACTION_NAME is GmShowerShapeUA plus the filters and classifier
name (see section on User action names).

At the end of each event, the showers are analysed and several variables are calcu-
lated for each of them:

• Total energy: sum of the deposited energies of all steps belonging to the shower

• Shower direction: two options are provided to define the shower direction. The first
one (default) is to take the direction of the particle that initiated the shower; this
is the direction of th PreStepPoint of the first track step. The second option is to
calculate a shower ’average’ direction, formed joining the point where the track is
initiated and an ’average’ shower point. This ’average’ point is calculating as the
sum of all the shower step points weighted with the energy deposited at each step.
To use this second definition instead of the first one, you have to set the parameter:

/gamos/setParam USER_ACTION_NAME:ShowerDirection Shower

• Step point longitudinal length: distance from an step position to the initial shower
point along the shower direction

• Step point transversal length: minimum distance from an step position to the line
built from the initial shower point and the shower direction

From the above two definitions several shower variables are calculated:

• Maximum longitudinal length: maximum of the step point longitudinal lengths

• Maximum transversal length: maximum of the step point transversal lengths

• Average longitudinal length: average of the step point longitudinal lengths, weighted
with the energy deposits

• Average transversal length: average of the step point transversal lengths, weighted
with the energy deposits

The deposition of energy in the step is actually done in small quantities approxi-
mately uniformly distributed along the step. As it would be too CPU tiem consuming
to simulate eacho of these interactions, we just consider a deposition point, making
a linear interpolation between the two steps edges; in other words, we use as energy
deposit point the average of the pre and post step points. If you want to use instead
the PreStepPoint or PostStepPoint, you have to use the parameter:

/gamos/setParam USER_ACTION_NAME:StepPointToUse TYPE

where TYPE can be Pre, Post or Linear (the default choice). Other algorithms may be
implemented in the future at user request.

With the above-mentioned histograms variables a file named shower.root / csv is writ-
ten with the following histograms (the second name is the type of histogram for his-
togram limits setting (see section on Using a common histogram class):

• Total energy (" Total Energy")("E")

• Maximum longitudinal length (" Maximum R transv")("Pos")

• Maximum transversal length (" Maximum R transv")("Pos")

• Average longitudinal length (" Maximum R transv")("Pos")

145

Chapter 15. Utility user actions

• Average transversal length (" Maximum R transv")("Pos")

• Shower direction theta angle (" Shower direction theta")("Angle")

• Shower direction phi angle (" Shower direction phi")("Angle")

The sum of energy deposits inside a certain transversal distance (a radius) is calcu-
lated and an histogram is filled. By default the list of radii is: 0.1, 0.3, 0.5, 1., 5. mm
and infinite (DBL_MAX). You may change this list with the parameter:

/gamos/setParam USER_ACTION_NAME:Radii RADIUS_1 RADIUS_2 ...

With these variables two sets of histograms are filled:

• Energy inside radius ("Energy inside radius")("E")

• Energy inside radius divided by total shower energy (" Relative energy inside ra-
dius")("E")

Killing all tracks
The action

/gamos/userAction GmKillAtStackingActionUA

serves to kill all particles at the stacking action G4ClassificationOfNewTrack method,
i.e. before they start being tracked. You may use it in combination with one or several
filters to kill only the particles that are accepted by them. For example,

/gamos/userAction GmKillAtStackingActionUA GmEletronFilter

will only kill electrons.

If you want to apply the killing at stepping action, probably because you want to
apply some step filter, you can use the user actions:

/gamos/userAction GmKillAtSteppingActionUA

Table of tracks and steps
You may get a table of the number of tracks and steps by instantiating the user action

/gamos/userAction GmCountTracksAndStepsUA

It will produce a table with the number of tracks and steps in the whole run. You may
get more details by using it with filters and classifiers. For example the command:

/gamos/userAction GmCountTracksAndStepsUA GmClassifierByParticle

will produce a table similar to this one

%%% COUNT_TRACKS_AND_STEPS: GmClassifierByParticle
%%% COUNT_TRACKS: gamma = 100
%%% COUNT_TRACKS: e- = 8
%%% COUNT_TRACKS: e+ = 1
%%% COUNT_TRACKS: ALL = 109
%%% COUNT_NSTEPS: gamma = 399
%%% COUNT_NSTEPS: e- = 29
%%% COUNT_NSTEPS: e+ = 4
%%% COUNT_STEPS: ALL = 432

146

Chapter 15. Utility user actions

Material budget studies
The action

/gamos/userAction GmMaterialBudgetUA

serves to make an study of the material budget of your geometry. We compute the
material budget of a geometry along a line by integrating the radiation length of each
volume traversed multiplied by the length of the line segment in that volume. This
user action may be useful for checking your geometry.

The usual way to use this user action is to send parallel geantinos (the Geant4 particle
that does not interact, only traverses the geometry) starting in a plane perpendicular
to the geantino direction and computing the material budget for each of them

The user action GmMaterialBudgetUA computes the material budget along each track
and writes in the file matbud.root / csv the following histograms:

• 1D Profile histogram of material budget in position X (" Position X")

• 1D Profile histogram of material budget in position Y (" Position Y")

• 1D Profile histogram of material budget in position Z (" Position Z")

• 2D Profile histogram of material budget in positions X and Y (" Position XY")

• 2D Profile histogram of material budget in positions X and Z(" Position XZ")

• 2D Profile histogram of material budget in positions Y and Z(" Position YZ")

Detailed report of where CPU time is spent
You may get a detailed report of where the CPU time is spent by instantiating the
user action

/gamos/userAction GmTimeStudyUA CLASSIFIER_1 CLASSIFIER_2 ...

By selecting different classifiers you can get a report of the time spent by each particle,
in each logical volume, in each energy bin, etc. (see section on Classifiers).

The table will have a format similar to the following one:

%%%%% TIMING RESULTS for timer GmTimeStudyUA_ClassifierByParticleAndKinE
GmTimeStudyUA_GmClassifierByParticle_GmClassifierByKineticEnergy
e+/0.0001-0.001: User=0 Real=0 Sys=0.01
e+/0.001-0.01: User=0.07 Real=0.16 Sys=0
e+/0.01-0.1: User=1.3 Real=1.48 Sys=0.04
e+/0.1-1: User=74.66 Real=78.74 Sys=1.17
e+/1e-05-0.0001: User=0 Real=0 Sys=0
e+/1e-06-1e-05: User=0 Real=0 Sys=0
e-/0.0001-0.001: User=0.53 Real=0.37 Sys=0.02
e-/0.001-0.01: User=12.42 Real=13.58 Sys=0.29
e-/0.01-0.1: User=5.98 Real=6.42 Sys=0.16
e-/0.1-1: User=7.78 Real=8.8 Sys=0.22
e-/1-10: User=0 Real=0 Sys=0
e-/1e-05-0.0001: User=0 Real=0 Sys=0
e-/1e-06-1e-05: User=0 Real=0 Sys=0
gamma/0.001-0.01: User=1.29 Real=1.49 Sys=0.02
gamma/0.01-0.1: User=0.63 Real=0.58 Sys=0.01
gamma/0.1-1: User=27.95 Real=29.7 Sys=0.48
gamma/1-10: User=0.38 Real=0.36 Sys=0

which can be obtained with the commands

/gamos/classifier ClassifierByParticleAndKinE GmCompoundClassifier GmClassifierByPar-
ticle GmClassifierByKineticEnergy

147

Chapter 15. Utility user actions

/gamos/userAction GmTimeStudyUA ClassifierByParticleAndKinE

The time in each category is the time counted at each step. Exactly it is the counting
from the beginning to the end of the method G4SteppingManager::Stepping(). To do
this without modifying the Geant4 class, the class GmTimeStudyMgr inherits from
G4VSteppingVerbose and it is set as the stepping verbose class, substituting the class
G4SteppingVerbose class, that is the one that controls the verbosity of the command
/tracking/verbose. This means that this command will have no effect and if you want
to use it you should do with the parameter

/gamos/setParam GmTimeStudyUA:G4VerboseLevel VERB

You may observe that the time summed over all the categories is smaller than the
run time given by the command /run/verbose 1. This is because the time is only the
time spent at the method mentioned above, which does not take into account the
initialisation and termination times of each track, event and run.

Changing the weight using a distribution
The user action GmChangeWeightUA changes the weight at each step or track follow-
ing a GAMOS distribution. You have to set the distribtution with the parameter:

/gamos/setParam USER_ACTION_NAME:Distribution DIST_NAME

Copying the weight to the secondary particles
Geant4 usually copies the weight of a track to the secondary tracks that it creates.
But in the process is RadioactiveDecay, this does not work. Therefore if you are using
readioactive decay and need this feature you have to activate the user action :

GmCopyWeightToSecondaryUA

Stop run after a certain CPU time
There may be some times when you want to limit the CPU time so that the job stops
even if all the events demanded have not run. To do it you can use the user action
GmCopyStopRunAfterTimeUA. The time is limited with the paremeter:

GmStopRunAfterTimeUA:Time TIME

In fact, the time is only checked after each event, so you may find that the time it
actually stops is bigger than what you demanded.

148

Chapter 16. Managing the verbosity

GAMOS verbosity managers
While GAMOS is running you can control the amount of information you get on the
screen (and in the log files) with the GAMOS verbosity management. There are six
levels of verbosity (each level includes the verbosity of the previous levels):

• Silent (= -1): no output is printed (only when there is an exception and the job stops,
you will get the details of why it happened)

• Error (= 0): only error messages are printed

• Warning (= 1): only error and warning messages are printed

• Info (= 2): you get some detailed information of what is happening. Mainly mes-
sages at each run and each event

• Debug (= 3): you get a quite detailed information of what is happening. Mainly
messages at each track and each step

• Test (= 4): this level is only meant for testing your code the first time you write it

On top of this, the verbosity in GAMOS is classified in different types, so that you
can set different verbosity options for different parts of the code. The list of parts of
the code that have its independent verbosity in the current GAMOS version is the
following:

• GmBase: controls the verbosity of the base classes (filters, classifiers, input/output
management, ...)

• GmGeometry: controls the verbosity of the geometry classes

• GmGeneration: controls the verbosity of the GAMOS generator

• GmPhysics: controls the verbosity of the physics classes

• GmSD: controls the verbosity of the sensitive detectors, hits, digits and recon-
structed hits

• GmUA: controls the verbosity of the classes for user action management

• GmScoring: controls the verbosity of the scoring classes

• GmReadDICOM: controls the verbosity of the classes to read DICOM files

• GmData: controls the verbosity of the GAMOS data

• GmAnalysis: controls the verbosity of the analysis classes

• GmUA: controls the verbosity of the utility user actions

• NM: controls the verbosity of the Nuclear Medicine packages (the base classes for
PET, SPECT and Compton Camera applications)

• PET: controls the verbosity of the classes in the PET package. If set, if sets automat-
ically the NMVerbosity

• SPECT: controls the verbosity of the classes in the SPECT package. If set, if sets
automatically the NMVerbosity

• CC: controls the verbosity of the classes in the Compton Camera. If set, if sets au-
tomatically the NMVerbosity

• RT: controls the verbosity of the classes in the RadioTherapy package

• SH: controls the verbosity of the classes in the RadioTherapy package

You can set the verbosity of each of the GAMOS verbosity types with a simple com-
mand on your command input file, for example:

149

Chapter 16. Managing the verbosity

/gamos/verbosity VERB_CLASS VERB_LEVEL

where VERB_CLASS is one of the verbosity name in the list above, and VERB_LEVEL
can be any of the six values described above (in non-capital letters). Instead of the
names, you may use the numbers that appear besides them.

By default the values of all GAMOS verbosities are warning.

Controlling GAMOS verbosity by event
You may control the verbosity of each of the GAMOS verbosity managers event by
event, that is, activate it for a certain interval of events and deactivate for another
interval. To do this you have first to activate the user action:

/gamos/userAction GmGamosVerboseByEventUA

Then you have to set the event intervals with the command:

/gamos/verbosity/byEvent VERB_CLASS VERB_LEVEL FIRST_EVENT
LAST_EVENT

where VERB_CLASS is one of the verbosity name in the previous section,
VERB_LEVEL can be any of the six values described in the previous section, and
FIRST_EVENT LAST_EVENT are the first and last event affected by the verbosity
level.

You may use as many times as desired this command, so that any number of event
intervals may be defined for any of the GAMOS verbosities.

The use of this command overwrite the command /gamos/verbosity so that all the
events not included in an interval (including the LAST_EVENT) have verbosity silent.

Using a GAMOS verbosity manager in your code
If you write some new code, for example a new generator distribution, you may use
one of the GAMOS verbosity managers following the instructions below.

Each of the GAMOS verbosity managers instantiates an object of the type GmVer-
bosity. If you want that your code is only printed when the corresponding verbosity
level is set, you have to write this verbosity with the value of the level in parenthe-
sis. For example, if you write one new generator position distribution and you want
that a message is printed when somebody chooses it in the input file, you can write
a message like the following one in the constructor of your class:

G4cout << GenerVerb(infoVerb)
<< “MyPositionGeneratorDistribution created” << G4endl;

This message will only be printed if the generator verbosity is set to info or a level
above (debug or test).

If you want for example that your distribution prints a message with the calculated
position at each event, you may write

G4cout << GenerVerb(debugVerb)
<< “MyPositionGeneratorDistribution position = ”
<< position << G4endl;

This message will only be printed if the generator verbosity is set to debug or a level
above (test).

As you may have deduced the rules for using each of the GAMOS verbosity man-
agers are that the name of the verbosity is the same as the name of the verbosity
manager simplified: no Gm at the beginning and Verb instead of Verbosity (e.g. from
GmAnaVerbosity, you use AnaVerb). And the name of the level in C++ code is the

150

Chapter 16. Managing the verbosity

same as the one in the input command file adding Verb (e.g. for warning, you use
warningVerb).

Creating your own verbosity manager
You can create your own verbosity manager for the code you use taking as example
one of the GAMOS verbosity managers (for example the class GmGenerVerbostityMgr
in the package GamosCore/GamosGenerator).

First create a class inheriting from GmVerbosityMgr and fill it as follows:

• In the include file (i.e. the one with suffix .hh) of this class define an object of type
GmVerbosity as extern

extern GmVerbosity MyVerb;

• In the method void SetFilterLevel(int fl) call the same method of your GmVerbosity
object

MyVerb.SetFilterLevel(fl);

• In the method void GetFilterLevel(int fl) call the same method of your GmVerbosity
object

MyVerb.GetFilterLevel(fl);

Finally you have to transform your class into a plug-in:

DEFINE_GAMOS_VERBOSITY(MyVerbosityMgr);

Controlling the Geant4 verbosity by event and track
If you want to print the detailed step information provided by Geant4 for a given
interval of events or tracks, but you do not want that it is printed for all, you can use
the user action

/gamos/userAction GmTrackingVerboseUA

You have to define the minimum and maximum events for which you want the ver-
bosity on, and you can also set it ON only each N events:

/gamos/setParam GmTrackingVerboseUA:EventMin VALUE

/gamos/setParam GmTrackingVerboseUA:EventMax VALUE

/gamos/setParam GmTrackingVerboseUA:EventStep VALUE

If these parameters are not set, the verbosity will be ON for all events.

You can also define for which tracks interval in the selected events the verbosity will
be ON, and set it ON only each N tracks:

/gamos/setParam GmTrackingVerboseUA:TrackMin VALUE

/gamos/setParam GmTrackingVerboseUA:TrackMax VALUE

/gamos/setParam GmTrackingVerboseUA:TrackStep VALUE

If these parameters are not set, the verbosity will be ON for all tracks.

Finally you may select the Geant4 verbosity level (by default 1) with the parameter

/gamos/setParam GmTrackingVerboseUA:VerboseLevel VALUE

151

Chapter 16. Managing the verbosity

Dumping the standard output and error in log files
By default the standard output (what is printed by G4cout or std::cout) is saved in a
file called gamos.log, while the standard error (what is printer by G4cerr or std::cerr)
is saved in a file called gamos_error.log.

The user may change the name of the output file with the command:

/gamos/log/setCoutFile FILE_NAME

and the name of the error file can be changed with the command:

/gamos/log/setCerrFile FILE_NAME

To avoid filling any log file the following user command must be used:

/gamos/log/writeFiles FALSE

152

Chapter 17. Detector applications

There are three detector applications in GAMOS, two related to Nuclear Medicine,
i.e. PET, SPECT and another one that, while also used in Nuclear Medicine, it has
also an extensive use in other fields, Compton camera. We describe in this chapter the
utilities that are common to all detector applications, while we leave those that are
specific to each of the in the corresponding chapter.

Identifying Compton interactions
It is frequent that a gamma that enters a detector suffers one or more Compton in-
teractions before the photoelectric one, and then it may leave several hits in different
detector elements. GAMOS offers several algorithms to identify which of the hits cor-
responds to the first gamma interaction, so that the line to the origin of the positron
annihilation can be properly reconstructed. This is specially useful for detectors that
have 3D identification capabilities, like solid state or liquid xenon detectors. For those
without these capabilities the only algorithm of choice is likelÃ±y the one that is
based on the energy of the hits.

The following algorithms are currently available

• Det1stHitByEnergy: Classifies the reconstructed hits in order of decreasing energy
and selects the first one as the one corresponding to the 1st Compton interaction.
A parameter can be used to select instead the second, third, ..., highest energy hit:

/gamos/setParam Det1stHitByEnergy:Order ORDER

• Det1stHitByXYPos: If the detector has cylindrical symmetry and the gamma travels
preferentiallly increasing the position in the XY plane (i.e. the cylinder radius) you
may use this algorithm, which classifies the reconstructed hits in order of increas-
ing position in the XY plane (i.e. sqrt(x*x+y*y) and selects the first one as the one
corresponding to the 1st Compton interaction. A parameter can be used to select
instead the second, third, ..., highest energy hit:

/gamos/setParam Det1stHitByXYPos:Order ORDER

• Det1stHitByXPos: If the detector is a block and the gamma travels preferentiallly
increasing the position along the positive or negative X axis you may use this algo-
rithm, which classifies the reconstructed hits in order of increasing absolute value
of X position and selects the first one as the one corresponding to the 1st Compton
interaction. A parameter can be used to select instead the second, third, ..., highest
energy hit:

/gamos/setParam Det1stHitByXPos:Order ORDER

• Det1stHitByXYZPos: Even if the detector has somoe symmetry, it may happen that
the best variable is the 3D position (i.e. the spherical radius). You may then use this
algorithm, which classifies the reconstructed hits in order of increasing 3D position
(i.e. sqrt(x*x+y*y+z*z) and selects the first one as the one corresponding to the 1st
Compton interaction. A parameter can be used to select instead the second, third,
..., highest energy hit:

/gamos/setParam Det1stHitByXYZPos:Order ORDER

• Det1stHitByDistanceToOther: This algorithm is a generalization of the two above:
it calculate the minimun distance from each reconstructed hit to any of the recon-
structed hit that belongs to the other sets (a PET event has two sets, corresponding
to the two gammas from positron annihilation) and classifies the reconstructed hits
in order of increasing value of this minimum distance. It then the first one as the
one corresponding to the 1st Compton interaction. A parameter can be used to
select instead the second, third, ..., highest energy hit:

/gamos/setParam Det1stHitByDistanceToOther:Order ORDER

153

Chapter 17. Detector applications

This algorithm cannot be used for SPECT detectors

• Det1stHitByComptonCone:

The idea of this algorithm is to profit from the fixed relationship between the initial
and final energy and the deviation anble in Compton interactions. It selects a pair
of reconstructed hits and between the two chooses one as corresponding to the first
interaction. Assuming that the gamma suffered the first interaction with energy
equal to the electron mass; for SPECT detectors you may change this value with
the parameter:

/gamos/setParam DetRecHitCone:InitialHitEnergy ENERGY

It then calculates the deviation angle using the initial energy and final energy (=
initial - hit energy). Using the line joining the two reconstructed hits and this angle
it can build the cone of possible directions of the gamma before the first interac-
tion. If the hit selected as first is indeed the one corresponding to the first gamma
interaction, this cone points ideally to the origin of the gamma; as the origin of the
gamma cannot be determined in a real detector, it is assumed that there is another
gamma from the positron annihilation with the same direction and opposite sense
and that if has left a hit in the opposite side of the detector before any other inter-
action. As it cannot be known which of the hits in the other side of the detector
corresponds to the first interaction, the algorithm computes the distance from the
cone surface to each of these reconstructed hits (only those that do not belong to
the hit set being analysed are considered); the hit with smallest distance is selected,
and this minimal distance is stored. The whole algorithm is repeated selecting as
first the other hit of the pair of reconstructed hits, and then making other pairs of
hits with the rest of hits in the set. By looking at all the minimal distances stored, it
selects as good combination the one with the smallest distance. For PET detectors
when the algorithms is applied to the second set of hits, the position of the first set
is used, instead of looking at the position of all hits in the other side of the detector.

These algorithms act only on those event that have been accepted by the
PET/SPECT/ComptonCamera classifier. To use them the first step is to merge the
reconstructed hits that are supposed to correspond to the interaction of the same
gamma into a single one. This is done by setting the distance between hits to be
merged with the parameter (substitute PET by SPECT or ComptonCamera):

/gamos/setParam PET:EvtClass:ComptonRecHitDist DISTANCE

which by default takes a value of 0. By default the position of the set of hits is the one
of the hit with highest energy (i.e. the Det1stHitByEnergy algorithm is used). Other
algorithms may be selected instead with the parameter:

/gamos/setParam PET:EvtClass:1stHitAlgorithm ALGORITHM

where ALGORITHM is one of those enumerated above.

For the case of PET events it is possible to use a different algorithm for the first and
second set of hits, what may be specially useful if the Compton cone algorithm is
used, but also in other cases. To do it two different parameters should be set:

/gamos/setParam PET:EvtClass:1stHitAlgorithmFirst ALGORITHM

/gamos/setParam PET:EvtClass:1stHitAlgorithmSecond ALGORITHM

Compton studies histograms
Several histograms can be filled to help you in determining which is the most efficient
algorithm to identify the hit corresponding to the first gamma interaction. To produce
them you have to set the parameter (substitute PET by SPECT or ComptonCamera):

/gamos/setParam PET:EvtClass:ComptonStudyHistos 1

which by default takes a value of 0.

154

Chapter 17. Detector applications

The histograms count the proportion of times that the algorithm used selected cor-
rectly the hit closest to the first gamma interaction and how are the hits are from the
gamma interactions (what can serve you to have an estimate of the precision you
may reach).

The logic of this class is the following: the interactions of the orignial gammas are
stored (we understand by an original gamma the one that is created as primary par-
ticle, comes from the annihilation of a positron that is a primary particle or, if a radi-
active ion was the primary particle, the gamma originated by the ion decay or by the
annihilation of the positron that was created by the ion decay). Each gamma interac-
tion is associated to the closest reconstructed hit. If the first interaction identificaion
algorithm chooses as first hit the one that is associated to the first gamma interaction,
it is considered that the choice is correct.

The following histograms are filled:

• N gamma interactions: Number of original gamma interactions in one event

• N rec hits: Number of reconstructed hits in one event

• N gamma interactions - N rec hits: Number of original gamma interactions minus
number of reconstructed hits in one event

Histograms of data about the interactions and the reconstructed
hits
Another set of histograms may help to evaluate if the energy is a good criteria to iden-
tify the reconstructed hit that corresponds to the first gamma interaction. The energy
lost at each first interaction of an "original gamma" is plotted, and also the energy of
the second one, the third one, To avoid reserving space for an unlimited number
of interactions, the third and later interactions are grouped in a unique histogram.
You may change the interaction number to start this grouping with the parameter:

/gamos/setParam DetCAlgoEnergy:HistoGroupingNumber NUMBER

Also histograms of the difference between the first interaction and each of the other
ones, the second and each of the other ones, etc. are done. And two-dimensional
histograms of the energy of the first vs the rest, the second vs the rest, etc. The name
of the histograms are (assuming the grouping number is three):

• DetCompton:Algo:Interaction: Energy Energy of gamma interactions

• DetCompton:Algo:Interaction: Energy: 1st Energy of first gamma interaction

• DetCompton:Algo:Interaction: Energy: 2nd Energy of second gamma interaction

• DetCompton:Algo:Interaction: Energy: 3rd+ Energy of third and higher gamma inter-
actions

• DetCompton:Algo:Interaction: Energy: 1st - others Energy of first gamma interaction
minus energy of other interaction

• DetCompton:Algo:Interaction: Energy: 2nd - others Energy of second gamma interac-
tion minus energy of other interaction

• DetCompton:Algo:Interaction: Energy: 3rd+ - others Energy of third and higher
gamma interactions minus energy of other interaction

• DetCompton:Algo:Interaction: Energy: 1st - others Energy of first gamma interaction
vs energy of other interaction

• DetCompton:Algo:Interaction: Energy: 2nd - others Energy of second gamma interac-
tion vs energy of other interaction

• DetCompton:Algo:Interaction: Energy: 3rd+ - others Energy of third and higher
gamma interactions vs energy of other interaction

155

Chapter 17. Detector applications

By default all these histograms have 100 bins betwen 0. and 1.

The same set of histograms can done for the position instead of energy. Several posi-
tion variables can be selected: X, Y, Z, XY (sqrt(X*X+Y*Y)), XZ, YZ, XYZ.

To fill these histograms the following parameter should be used:

/gamos/setParam DetComptonStudyHistosUA:AlgorithmVariables VAR1 VAR2 ... VARN

where the variables can be Energy, , XPos, YPos, ZPos, XYPos, XZPos, YZPos or XYZ-
Pos.

At the same time that the histograms about gamma interaction data, they are filled
also histograms about the reconstructed hits that are associated to each interaction are
filled (so the first hit is the one closest to the first interaction, etc.) The only difference
is that insted of the word Interaction in their name, they have the word RecHit.

The classes that manage this histograms are plug-ins, so that other variables could
easily be created.

Classification of good and bad identification histograms as a
function of variable
It may happen that different algorithms to identify the first gamma interaction may
be optimal for different types of reconstructed hit set. For example for sets with only
two hits the Compton cone algorithm may be optimal, while for sets with more hits it
may give worse resutls; or the minimal position algorithm may be optimal when hits
have small energy, but if there is one with high energy (and therefore high deviation
angle) it may give worse resutls. To help you in doing this optimization several his-
tograms about the number of good and bad first gamma interaction identification can
be done for different variables, e.g. for different number of reconstructed hits in the
set, for different maximum hit energy bins, for different position variables. The his-
tograms are about the distance between the reconstructed hit sets (using the position
of the hit identified as corresponding to the first interaction) and the interactions. For
example, for the "number of reconstructed hits" variable the following histograms are
filled:

• DetCompton:Classif: NRecHit: INTERVAL_LOWER_EDGE-
INTERVAL_UPPER_EDGE: Dist RecHitSet - Associated Interaction Distance
between a reconstructed hit set and the interaction to which it is associated

• DetCompton:Classif: NRecHit: INTERVAL_LOWER_EDGE-
INTERVAL_UPPER_EDGE: Dist RecHitSet - 1st Interaction Distance between a
reconstructed hit set and the first interaction

• DetCompton:Classif: NRecHit: INTERVAL_LOWER_EDGE-
INTERVAL_UPPER_EDGE: Dist RecHitSet - 1st Interaction, Wrong assoc. Distance
between a reconstructed hit set and the first interaction, only for those sets with
wrong association (other hit is closest to the first interaction than the one identifed
by the algorithm)

• DetCompton:Classif: NRecHit: INTERVAL_LOWER_EDGE-
INTERVAL_UPPER_EDGE: Dist RecHitSet - 1st Interaction, Good assoc. Distance
between a reconstructed hit set and the first interaction, only for those sets with
good association

These four histograms are filled for each interval of the variable,
being INTERVAL_LOWER_EDGE the lower edge of each interval and
INTERVAL_UPPER_EDGE the upper edge of each interval. The intervals are set by
the parameters:

/gamos/setParam DetCClassifEnergy:Min MIN_VALUE

/gamos/setParam DetCClassifEnergy:Max MAX_VALUE

156

Chapter 17. Detector applications

/gamos/setParam DetCClassifEnergy:Step STEP_VALUE

The intervals will be built between MIN_VALUE and MAX_VALUE each
STEP_VALUE. Alternatively you can define the N+1 limits of the N intervals with
the parameter:

/gamos/setParam DetCClassifEnergy:IntervalLimits VALUE_1 VALUE_2 ... VALUE_N+1

The same set of histograms can done for the maximum, minimum or average recon-
structed hit energy, and minimum position X, Y, Z, XY (sqrt(X*X+Y*Y)), XZ, YZ,
XYZ.

To fill these histograms the following parameter should be used:

/gamos/setParam DetComptonStudyHistosUA:ClassificationVariables VAR1 VAR2 ...
VARN

where the variables can be EnergyMin, EnergyMax, EnergyAverage, XPosMin, YPos-
Min, ZPosMin, XYPosMin, XZPosMin, YZPosMin or XYZPosMin.

Another variable, but in this case it is always filled is the variable ALL, which indeed
is not a variable and it makes no classification, but fill all reconstructed hit in a unique
set of histograms.

The classes that manage this histograms are plug-ins, so that other variables could
easily be created.

Histograms of gammas at sensitive detectors
We describe here the GmHistosGammaAtSD, an utility that prints information about
the interaction of ’original’ gammas in the sensitive detector. It is a user action and
therefore it can be activated with the command

/gamos/userAction GmHistosGammaAtSD

At the end of run a table like the following one is printed:

$$$$$$$$$$ Classification of Gamma Interactions in SD $$$$$$$$
$$GC: nEvents : 1000000
$$GC: n gamma in SD : 516170 : 25.8085 %
$$GC: n PE : 321588 : 62.30273 %
$$GC: PE 0 COMP : 157614 : 49.011157 %
$$GC: PE 1 COMP : 111304 : 34.610744 %
$$GC: PE >1 COMP : 52670 : 16.378099 %
$$GC: n COMP : 222590 : 43.12339 %
$$GC: 1 COMP : 159193 : 71.518487 %
$$GC: >1 COMP : 63397 : 28.481513 %
$$GC: nGamma_COMP/event: 0.585931

• nEvents : total number of events.

• n gamma in SD : number of ’original’ gammas reaching one sensitive detector.

• n PE : number of ’original’ gammas with photoelectric interaction in SD

• PE 0 COMP : number of ’original’ gammas with photoelectric interaction and no
Compton interactions in SD (percentage relates to “n PE”).

• PE 1 COMP : number of ’original’ gammas with photoelectric interaction and one
Compton interaction in SD (percentage relates to “n PE”).

• PE >1 COMP : number of ’original’ gammas with photoelectric interaction and
more than one Compton interaction in SD (percentage relates to “n PE”).

• n COMP : number of ’original’ gammas with Compton interactions in SD.

157

Chapter 17. Detector applications

• 1 COMP : number of ’original’ gammas with only one Compton interaction in SD
(percentage relates to “n COMP”).

• >1 COMP : number of ’original’ gammas with more than one Compton interactions
in SD (percentage relates to “n COMP”).

• nCOMP/event : number of Compton interactions in SD per ’original’ gamma.

This class also makes several histograms, all of them have the words Gamma At SD:
included in their names. And all are written to the file gammaSD.root/csv. The fol-
lowing histograms are defined:

• Event Type / 100, i.e. no Rayleigh counting ("Event Type")

• Number of photoelectric interactions per ’original’ gamma ("N PhotoElec")

• Number of Compton interactions per ’original’ gamma ("N Compton")

• Number of Rayleigh interactions per ’original’ gamma ("N Rayleigh")

• Number of photoelectric interactions vs Number of Compton+Rayleigh interac-
tions per ’original’ gamma ("N PhotoElec vs Compton+Rayleigh")

• Energy of gamma upon entering SD("Energy at entering SD (keV)")

• Energy lost in the photoelectric interactions ("Energy lost PhotoElec (keV)");

• Difference in position from the gamma entering SD to the point where a photoelec-
tric interaction happened ("Diff pos when PhotoElec (mm)")

• Difference in direction from the gamma entering SD to the point where a photo-
electric interaction happened ("Diff dir when PhotoElec (mm)")

• Difference in kinetic energy from the gamma entering SD to the point where a
photoelectric interaction happened ("Diff energy when PhotoElec (mm)")

• Energy lost in the Compton interactions ("Energy lost Compton (keV)");

• Angle variation in the Compton interactions ("Angle variation Compton (mrad)")

• Energy lost in the Rayleigh interactions (must be 0.)("Energy lost Rayleigh (eV)")

• Angle variation in the Rayleigh interactions ("Angle variation Rayleigh (mrad)")

All these histograms are repeated for the different types of events (a prefix in the
name marks the event type the histogram refers to):

• "ALL: ": every event

• "No PE: " events where no photoelectric interaction occurred

• "Only PE: " events where only photoelectric interaction occurred

• "PE + 1 Compt: " events where one photoelectric interaction plus only one Comp-
ton interaction occurred

• "PE + >1 Compt: " events where one photoelectric interaction plus more than one
Compton interaction occurred

Automatic determination of production cuts for a detector
The method used in GAMOS to determine the best production cuts is based on what
we can call an ’inverse reasoning’. We count each particle that reaches the sensitive
detector and we calculate first the range of the particle in the region where it is cre-
ated. Then we can know that if we put a range cut in that region smaller than the
calculated range, that particle would not reach our target plane. We also compute the
range of the mother particle in the region where it was created and the same consec-
utively for all the ancestors. We know then that if we set in any of the regions where
each of the ancestor particles are created a cut smaller than the corresponding range,

158

Chapter 17. Detector applications

we would stop the chain of particles and therefore we would have no particle in the
target plane. After running a good number of tracks we can know for each particle
type and for each region which is the biggest range we can put if we do not want
to lose any particle. Indeed we may allow to lose a small amount of particles if this
speeds up our simulation. To know easily which is the biggest cut you can use to lose
less than a given percentage of particles, GAMOS provides a set of plots (one per
each particle type and per each region) and a simple script to get automatically the
cut values.

One warning is due here: as mentioned above when a track reaches the target, its
range fills a histogram, but also the range of all the ancestors of this track. It may
happen then that when you set a certain cut and the abovementioned script gives
you how many tracks would be killed, more than one killed track correspond to the
same track reaching the target (i.e., with a cut you kill the track that reaches the target
and the parent track). Therefore you might have an overcounting of the number of
tracks killed by a cut. To avoid this the total number of tracks (the last lines of output)
is not computed as the sum of tracks in the region. This number uses a histogram that
contains only one entry per track reaching the target, the one corresponding to the
track with the smallest range. If you want to set a different cut for each region and
are worried for this double counting, you may have a look at the histogram named
"trackInfos per Track in target", that plots per each track reaching the target how
many track informations are kept in the histograms. Another useful histogram for
this case may be the 2D histogram "trackInfo Region vs trackInfo Region", that plots
all the region number of all the pairs of track informations that correspond to the
same track reaching the target (you can get a list of which region number corresponds
to which region at the end of the standard output file).

To use this utility in GAMOS it is only needed to add this command in your script:

/gamos/userAction GmProdCutsStudyUA DetCutsStudyFilter

that will use as target condition that a track enters a sensitive detector

This command will produce at the end of run a table and a histogram file with the
needed information. The table will contain the minimum range that can be applied
for each region/particle/process not to lose any track reaching the target, and it will
look like this

%%%%% PRODUCTION CUTS STUDY RESULTS
GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=
gamma PROCESS= ALL MIN RANGE= 353161.38
GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=
gamma PROCESS= eBrem MIN RANGE= 353161.38

To get the cuts values for not losing a given percentage of particles in
the target plane you can execute the ROOT script that can be found at
GamosCore/GamosPhysics/Cuts/getProdCutsEffect.C :

root -b -p -q .x getProdCutsEffect.C++\(\"prodcuts.root\",percentage\)

and look at the last lines of output, those that contain the word ’FINAL’, like the
following ones

PARTICLE= e+ FINAL= 17 / 19
PARTICLE= e- FINAL= 72 / 34185
PARTICLE= gamma FINAL= 72 / 34184

Automatic determination of user limits for a detector
The method used in GAMOS to determine the minimum range user limits is similar
to the one used to determine the best production cuts. The main difference is that
when a track reaches the target we do not have to look at the range it had when

159

Chapter 17. Detector applications

created, but at the range it had in every step. This is because even if we want the
minimum step, the track may have crossed several regions and the smallest range
may not correspond to the last step. What we do nevertheless is to consider only the
last step when there are a set of contiguous steps in the same region. Also for the
ancestor tracks we have to store the information of each step, starting of course with
the one when the track that reached the target (or its n-th ancestor if we are looking
at the (n+1)-th ancestor) was created.

The same warning as for the production cuts should be mentioned here, but in this
case it is more than a mere warning: when a track reaches the target, we accumulate
one-track information of the last step in each region, for each of the ancestor tracks.
Therefore it is very likely that there are more than one track information per track
reaching the target, and therefore there will be overcounting of the number of tracks
killed by a cut. As for the production cuts you should keep an eye on this.

To use this utility in GAMOS it is only needed to add the command in your script:

/gamos/userAction GmMinRangeLimitsStudyUA DetCutsStudyFilter

what will produce at the end of run a table and a histogram file with the needed
information.

root -b -p -q .x getMinRangeCutsEffect.C++\(\"prodcuts.root\",percentage\) |& tee out

and look at the last lines of output, those that contain the word ’FINAL’, like the
following ones

PARTICLE= e+ FINAL= 17 / 19
PARTICLE= e- FINAL= 72 / 34185
PARTICLE= gamma FINAL= 72 / 34184

160

Chapter 18. PET application

Before reading this chapter we recommend you to read the chapter on nuclear
medicine, that contains the utilities that are common to all nuclear medicine
applications.

The PET application contains two directories. The first one, PetGeometry, contains
an utility to build a simple PET ring detector by just defining a few parameters. The
second one contains the PET event classifier, the Compton identification algorithms
and a few histogram classes.

Many of the utilities for PET detectors are related to the sensitive detectors that they
contain, so please read the Sensitive Detectors chapter if you have not done it yet.

PET geometry
The directory PET/GeometryData contains several examples of building simple PET
ring detectors with text geometry files by just defining the following parameters:

• :P NCRYSTAL_transaxial: Number of crystals per block in the transaxial direction

• :P NCRYSTAL_axial: Number of crystals per block in the axial direction

• :P NBLOCKS: Number of blocks of crystals per ring

• :P NRINGS: Number of rings of blocks

• CRYS_transaxial: Crystal size, trans-axial

• CRYS_axial: Crystal size, axial

• CRYS_radial: Crystal size, radial

• :P DIAMETER: Detector ring diameter

• :PS CRYS_MATE: Name of crystal material

• :P WORLD_Z: World Z dimension (the X and Y are calculated as slightly bigger
than the detector

There are several examples of simplified commercial PET detectors in the files with
suffix .geom in that directory. To use this utility you just have to choose as your geom-
etry the GmGeometryFromText one:

/gamos/geometry GmGeometryFromText

NOTE: This module is just thought for simple PET geometries. If you want to do
more complicated geometries, we recommend you to describe them with a text file
(see section Building your geometry with a text file).

PET event classification
The class PETEventClassifierUA in the directory NuclearMedicine/PET classifies the
events as PET by looking at the reconstructed hits. It is a GAMOS user action, so you
can activate it with the command

/gamos/userAction PETEventClassifierUA

First it counts how many reconstructed hits have 511 keV 1 within a precision given
by the parameter

/gamos/setParam PET:EvtClass:511EPrec ENERGY_FRACTION

That is the energies accepted will be those between 511*(1-ENERGY_FRACTION)
and 511*(1+ENERGY_FRACTION). Alternatively you may use the following two pa-
rameters

161

Chapter 18. PET application

/gamos/setParam PET:EvtClass:511EPrecMin ENERGY_MIN

/gamos/setParam PET:EvtClass:511EPrecMax ENERGY_MAX

where ENERGY_MIN is the minimum energy, that by default takes a value of 0.7*511
keV, and ENERGY_MAX is the maximum energy, that by default takes a value of
1.3*511 keV.

To recover hits when one of several Compton interactions have occurred you may
switch the merging of hits that are close into a single one. You may set the distance
to merge hits with the parameter

/gamos/setParam PET:EvtClass:ComptonRecHitDist DIST

DIST takes by default a value of 0, what means that no Compton hits merging will be
done. The merging of hits first identifies the hit with biggest energy and merges with
it those hits that are closer than the given distance. The same algorithm is repeated
with the hits not associated until no hit is left. If hits merging is chosen you may
choose among several algorithms to try to identify the hit that corresponds to the
first gamma interaction (and this will be the position of the whole set). See section
Identifying Compton interactions to learn how to do it. If no algorithm is selectedm the
position will be the one of biggest energy, or second biggest, or n-th biggest, where
the order is given by the parameter

/gamos/setParam PET1stHitByEnergy:Order ORDER

ORDER takes by default a value of 1, that is, the position is that of the hit with biggest
energy (see section on Identifying Compton interactions).

If two hits are found it will be checked that their relative time difference is less than
the value given by the parameter

/gamos/setParam PET:EvtClass:CoincidenceTime COINCIDENCE_TIME

which by default takes a value almost infinite (it is assumed that one of the two
started the trigger and the other must be in the coincidence time opened at that mo-
ment).

If two 511-keV hits are finally found, the event is classified as a good PET event. Then
the sub-classification code enters in the game:

• More than two 511-keV hits: If more than two hits are found, the two that are closer
to 511 keV will be taken and the event will receive a subclassification type of 3->2.

• Random coincidence: It is checked that each of the two 511-keV hits is built only from
tracks from the same ’original’ gamma2, and that the two hits come from the same
event

• Scattered: The event is classified as scattered if any of the 511-keV gammas has
suffered an interaction in the list of volumes defined by the parameter

/gamos/setParam DetCountScatteringUA:VolumeNames VOLUME_1 VOLUME_2 ...

and this interaction is of one of the process types defined by the parameter

/gamos/setParam DetCountScatteringUA:ProcessNames PROCESS_1 PROCESS_2 ...

(by default Compton are Rayleigh interactions are counted); and it has lost in the
volumes more energy than the parameter

/gamos/setParam DetCountScatteringUA:EnergyMin ENER_MIN

(by default the minimal energy is 0.)

• Check PET line distance: a line joining the position of the two reconstructed hits is
built and the distance of closest approach (DCA) to the origin of the positron is
calculated; the events are classified as ’near’ of ’far’ if the DCA is smaller or bigger
than the parameter

/gamos/setParam PET:EvtClass:LineDistToVtx DISTANCE

162

Chapter 18. PET application

where DISTANCE has a default value of 10*mm.

The ClassifyPET method returns an integer with several digits containing the event
classification:

• 0 if it is not PET, 1 if it is PET and PET line is close to the event vertex, 2 if it is PET
and PET line is far from event vertex

• 10*1 if the search for 511-keV reconstructed hits found more than 2

• 100*1 if the event is a random coincidence event

• 1000*1 if the event is a scattered event

At the end of the run a table is printed with the number of events in each of the
combinations of the sub-classification types.

PET histograms: event classification
These histograms are related to the event classification explained above. They are
produced if the event classification user action is selected. The name of all these his-
tograms starts with "PETEvtClass: " and all are written in the file pet.root/csv.

The following histograms are written:

• Classification index of event ("PET classification"). This index is the one described
in the precedent section.

• Number of 511-keV reconstructed hits before cleaning if there are more than two
and searching for Compton hits, i.e., hits produced merging two crystals (see
above) ("N 511 recHits initial")

• The energy of the 511-keV reconstructed hits ("PET RecHit energy (keV)")

• The energy of the 511-keV reconstructed hits that are rejected because there are
more than two ("PETEvtClass: Extra PET RecHit energy (keV)")

• Distance of closest approach between vertex and the line joining the two 511-keV
reconstructed hits (=DCA) ("PET dist line - vertex (mm)")

• Z coordinate if distance of closest approach between vertex and the line joining the
two 511-keV reconstructed hits (=DCA) ("PET dist line - vertex Z (mm)")

• Phi coordinate if distance of closest approach between vertex and the line joining
the two 511-keV reconstructed hits (=DCA) ("PET dist line - vertex PHI (mm)")

• Radial position in the XY plane of the primary positrons ("e+ position (X,Y) (mm)")

• Radial position in the XY plane of the primary positrons, only for those events that
are good PET events ("e+ position (X,Y)_PET Events (mm)")

There are also a histogram of the DCA and the reconstructed hit energies for each of
the sixteen subclassification types (combinations of the 4 subindices) and also for the
all the events that are far from vertex, all the events where there were more than two
hits, all the events with random coincidences and all the scttered events.

PET output for reconstruction

List-mode binary file
If the event is classified as a PET one, it is dumped in a binary file given by the name

/gamos/setParam pet:FileName MY_FILENAME

that takes the name pet.out by default. The variables written are given by the structure

163

Chapter 18. PET application

struct PetOutput
{
char name[8];
float xVtx,yVtx,zVtx,x1,y1,z1,x2,y2,z2;

}

where name is PET, xVtx, yVtx, zVtx are the coordinates of the event vertex, x1, y1, z1
are the coordinates of the first reconstructed hit, x2, y2, z2 are the coordinates of the
second vertex.

The same data that is written to the file can be written in the standard output if the
parameter

/gamos/setParam PET:EvtClass:DumpEventListMode TRUE

is set to true. The positions in the standard output (not in the file) will be written
in cylindrical coordinates by default. If you want them in cartesian coordinates you
should set to true the parameter

/gamos/setParam pet:DumpCartesian TRUE

Projection data file
PET events can also be stored as projection data (sinograms) by selecting the follow-
ing parameter

/gamos/setParam PET:EvtClass:DumpProjData 1

Projection data or sinogram is a common way to organize PET events and represents
the standard input for image reconstruction algorithms. By default, GAMOS gener-
ates a file compatible with its own image reconstructor (see "Image reconstruction
utilities" section), data are written in pairs, including a header text file (.hv) and a
binary data file (.v). Nevertheless, the user can also select an output file compatible
with the STIR package 23 , a Open Source software for use in tomographic imaging.
In this case, data files are also written in pairs: a header text file (.hs) and a binary
data file (.s); but following the STIR Interfile format. The type of output format (0 for
GAMOS ad-hoc or 1 for STIR Interfile) is controlled by the "OutFormat" parameter:

/gamos/setParam PET:ProjData:OutFormat OUT_TYPE

In order to generate the sinograms, the user must specify the dimensions of image
axial and transaxial field of view (FOV). These values are given in milimetres by

/gamos/setParam PET:ProjData:DistAxial D_AXIAL

/gamos/setParam PET:ProjData:DiameterTranFOV D_TRANSAXIAL

In addition, projection data are discretized in axial, tangential and angular dimen-
sions. The user must indicate the number of axial planes (N_PLANES, by default
40), tangential bins (N_BINS, by default 81) and angular views (N_ANGULAR, by
default 80) using these parameters:

/gamos/setParam PET:ProjData:Nplanes N_PLANES

/gamos/setParam PET:ProjData:Nbin N_BINS

/gamos/setParam PET:ProjData:NangViews N_ANGULAR

Note that once axial FOV is fixed, the plane width is given by
D_AXIAL/(N_PLANES-1); which represents the double of the slice thickness in the
reconstructed image, by default. In the same way, the image transaxial pixel size
will have a value of D_TRANSAXIAL/(N_BINS-1).

In 3-dimensional PET acquisition the "maximum ring difference" is another funda-
mental parameter which limits the axial distance between the two planes (rings) of a
detected PET coincidence. It is used to discard lines of response which are too axially
tilted, since these events can deteriorate the image quality with some reconstruction

164

Chapter 18. PET application

methods. By default (value -1) all axial planes are included; the number of planes
which defines the "maximum ring difference" can be changed with

/gamos/setParam PET:ProjData:MaxRingDiff MY_MRD

The projection data file name (without extension) is given by

/gamos/setParam PET:ProjData:Filename MY_PROJDATA_FILE

that takes the name default_sino3D by default.

PET histograms: positrons
These histograms are related to the original positron and the two secondary gammas
created at its annihilation. They are produced if the user action PETHistosPositron is
activated with the command

/gamos/userAction PETHistosPositron

The name of all these histograms starts with “PETPositron” and all are written in the
file pet.root/csv.

The histograms are the following:

• Positron energy at creation ("e+ initial energy (keV)")

• Positron range ("e+ range (mm)")

• Positron energy at annihilation ("e+ energy at annihilation (keV)")

• Positron energy at creation vs range ("e+ initial energy (keV) vs range (mm)")

• Positron energy at annihilation vs secondary gammas energy ("e+e- gammas vs e+
energy (keV)")

• Positron energy at annihilation vs sum of secondary gammas energy - 1.022 MeV -
positron energy at annihilation ("total gamma energy vs e+ energy (keV)"). This is
the energy deposited locally at annihilation.

PET histograms: distance between two gammas
These histograms are related to the distance between the line joining two gammas
originated at the positron annihilation and the vertex position, at the moment of
the gamma creation and when they hit the sensitive detector. Also other histograms
about these two gammas are provided for further information. They are produced if
the user action PETHistosGammaDist is activated with the command

/gamos/userAction PETHistosGammaDist.

The name of all these histograms starts with "PETGammaDist: " and all are written in
the file pet.root/csv.

The histograms are the following:

• Angle between the direction of the two gammas when they are created ("angle
between gammas at vertex (deg)")

• Angle between the direction of the two gammas when they enter the sensitive
detector ("angle between gammas at entering SD (deg)")

• Distance of closest approach between vertex and the line joining the vertices of the
two gammas ("DCA orig from Gamma vertex (mm)")

165

Chapter 18. PET application

• Distance of closest approach between vertex and the line joining the points where
the gammas enter the sensitive detectors ("DCA orig from Gamma entering SD
(mm)")

• Z position of vertex of gamma if it reaches the sensitive detector ("Orig Pos Z if
Gamma reaches SD (mm)")

• R position of vertex of gamma if it reaches the sensitive detector ("Orig Pos R if
Gamma reaches SD (mm)")

Notes
1. Indeed the exact mass of the electron is always used

2. ’original’ gammas are gammas that are primary particles or that are directly cre-
ated by the annihilation of positron that is a primary particle

166

Chapter 19. SPECT application

Before reading this chapter we recommend you to read the chapter on nuclear
medicine, that contains the utilities that are common to all nuclear medicine
applications.

The SPECT example is quite similar to the PET one; we will describe here the main
characteristics that differentiate it and refer to the PET example for those characteris-
tics they share.

Many of the utilities for SPECT detectors are related to the sensitive detectors that
they contain, so please read the Sensitive Detectors chapter if you have not done it
yet.

SPECT event classification
The class SPECTEventClassifierUA in the directory SPECT classifies the events as
SPECT by looking at the reconstructed hits. It is a GAMOS user action, so you can
activate it with the command

/gamos/userAction SPECTEventClassifierUA

The first thing you have to define is the original gamma energy, what you can do
with the parameter:

/gamos/setParam SPECT:EvtClass:GammaEnergy ENERGY

Another thing you have to define is where is your collimator. You can define it by
giving the collimator volume name:

/gamos/setParam SPECT:EvtClass:CollimatorVolume VOLUME_NAME

Then the user action counts how many reconstructed hits have this energy within a
precision given by the two parameters

/gamos/setParam SPECT:EvtClass:EPrecMin ENERGY_MIN

/gamos/setParam SPECT:EvtClass:EPrecMax ENERGY_MAX

where ENERGY_MIN is the minimum energy, that by default takes a value of
0.7*GammaEnergy, and ENERGY_MAX is the maximum energy, that by default
takes a value of 1.3*GammaEnergy.

To recover hits when one of several Compton interactions have occurred you may
switch the merging of hits that are close into one. You may set the distance to merge
hits with the parameter

/gamos/setParam SPECT:EvtClass:ComptonRecHitDist DIST

DIST takes by default a value of 0, what means that no Compton hits merging will be
done. If you want hits merging you may select as position of the combined hits the
one of the biggest energy, or the second biggest, or the n-th biggest, where the order
is given by the parameter

/gamos/setParam SPECT:EvtClass:SelectPosOrder ORDER

ORDER takes by default a value of 1, that is, the position is that of the hit with biggest
energy.

If one good hit is finally found, the event is classified as a good SPECT event. Then
the sub-classification code enters in the game:

• More than one hit: If more than one hit is found, the one that is closer to the Gam-
maEnergy will be taken and the event will receive a subclassification type of 2->1.

• Random coincidence: It is checked that the hit is built only from tracks from the same
’original’ gamma1

167

Chapter 19. SPECT application

• Scattered: The event is classified as scattered if any of the original gamma has suf-
fered an interaction in the list of volumes defined by the parameter

/gamos/setParam DetCountScatteringUA:VolumeNames VOLUME_1 VOLUME_2 ...

and this interaction is of one of the process types defined by the parameter

/gamos/setParam DetCountScatteringUA:ProcessNames PROCESS_1 PROCESS_2 ...

(by default Compton are Rayleigh interactions are counted); and it has lost in the
volumes more energy than the parameter

/gamos/setParam DetCountScatteringUA:EnergyMin ENER_MIN

(by default the minimal energy is 0.)

• Check SPECT line distance: a line joining the position of the hit with the centre of the
collimator volume is built and the distance of closest approach (DCA) to the origin
of the positron is calculated; the events are classified as ’near’ of ’far’ if the DCA is
smaller or bigger than the parameter

/gamos/setParam SPECT:EvtClass:LineDistToVtx DISTANCE

where DISTANCE has a default value of 10*mm.

• Gamma traversed collimator: it checks if the original gamma (or one of them if there
are several) that left the hits traversed the volume(s) defined as collimator with the
parameter:

/gamos/setParam SPECT:EvtClass:CollimatorVolume VOLUME_1 VOLUME_2 ...

where DISTANCE has a default value of 10*mm.

The event will be rejected if the number of hits found is bigger than the value given
by the parameter

/gamos/setParam SPECT:EvtClass:RejectIfNRecHits VALUE

The ClassifySPECT method returns an integer with several digits containing the
event classification:

• 0 if it is not SPECT, 1 if it is SPECT and SPECT line is close to the event vertex, 2 if
it is SPECT and SPECT line is far from event vertex

• 10*1 if the search for 511-keV reconstructed hits found more than 2

• 100*1 if the event is a random coincidence event

• 1000*1 if the event is a scattered event

• 10000*1 if there are several collimators and the collimator traversed by the original
gamma is the wrong one, i.e. not the one closest to the hit

• 20000*1 if the original gamma did not traverse a collimator

At the end of the run a table is printed with the number of events in each of the
combinations of the sub-classification types. You may

SPECT histograms: event classification
These histograms are related to the event classification explained above. They are
produced if the event classification user action is selected. The name of all these his-
tograms starts with "SPECTEvtClass: " and all are written in the file spect.root/csv.

The following histograms are written:

• Classification index of event ("SPECT classification"). This index is the one de-
scribed in the precedent section.

168

Chapter 19. SPECT application

• Number of 511-keV reconstructed hits before cleaning if there are more than two
and searching for Compton hits, i.e., hits produced merging two crystals (see
above) ("N 511 recHits initial")

• The energy of the 511-keV reconstructed hits ("RecHit energy (keV)")

• Distance of closest approach between vertex and the line joining the two 511-keV
reconstructed hits (=DCA) ("SPECT dist line - vertex (mm)")

• Distance of closest approach between vertex and the line joining the two 511-keV
reconstructed hits in Z axis (=DCA) ("SPECT dist line - vertex Z (mm)")

• Distance of closest approach between vertex and the line joining the two 511-keV
reconstructed hits in R-phi plane (=DCA) ("SPECT dist line - vertex RPHI (mm)")

There are also a histogram of the DCA and the reconstructed hit energies for each of
the sixteen subclassification types (combinations of the 4 subindices) and also for the
all the events that are far from vertex, all the events where there were more than two
hits, all the events with random coincidences and all the scttered events.

SPECT output for reconstruction
If the event is classified as a SPECT one, it may be dumped in a binary file, if the
following parameter is set to 1

/gamos/setParam SPECT:DumpEvent MY_FILENAME

The file name is given by the parameter

/gamos/setParam SPECT:FileName MY_FILENAME

that takes the name spect.out by default. The variables written are given by the struc-
ture

struct SPECTOutput
{
char name[8];
float xVtx,yVtx,zVtx,x1,y1,z1,x2,y2,z2,ener,class;

}

where name is SPECT, xVtx, yVtx, zVtx are the coordinates of the event vertex, x1, y1,
z1 are the coordinates of the reconstructed hit, x2, y2, z2 are the coordinates of the
collimator centre, ener is the hit energy and class is the SPECT classification.

The same data that is written to the file can be written in the standard output if the
parameter

/gamos/setParam SPECT:DumpToCout TRUE

is set to true. The positions in the standard output (not in the file) will be written
in cylindrical coordinates by default. If you want them in cartesian coordinates you
should set to true the parameter

/gamos/setParam SPECT:DumpCartesian TRUE

Notes
1. ’original’ gammas are gammas that are primary particles or that are directly cre-

ated by the annihilation of positron that is a primary particle

169

Chapter 19. SPECT application

170

Chapter 20. Compton camera application

The Compton camera application is a new addition to the GAMOS framework. The
application has been developed for researchers investigating the potential of Comp-
ton cameras in nuclear medicine but can be used for a wide variety of fields outside
of medicine.

The Compton camera example has a structure very similar to the SPECT applica-
tion. The example contains a utility to build a Compton camera which is composed
of either rings of detectors, or a stack of parallel detectors, through the user defined
geometrical parameters. Information relevant to Compton camera applications is ac-
cessed using the Compton camera event classifier.

Many of the utilities for Compton camera detectors are related to the sensitive detec-
tors that they contain, so please read the Sensitive Detectors chapter if you have not
done so yet.

Compton camera geometry
No standard geometry for Compton cameras exists, and as such, it is impossible to
provide the user with a single standard geometry file to model all systems. A typical
Compton camera is defined using scatterer detectors (where Compton scattering is
the ideal interaction of incident gamma rays) and absorber detectors (where Photo-
electric absorption is the ideal gamma ray interaction). It is necessary to define the
sensitive detectors as either a scatterer or absorber using the parameter:

/gamos/SD/assocSD2LogVol GmSDSimple Scatterer DETECTOR_LOGICAL_ NAME

/gamos/SD/assocSD2LogVol GmSDSimple Absorber DETECTOR_LOGICAL_ NAME

The Compton camera directory contains a utility to build a Compton camera system
in either (i) a dual ring configuration or as (ii) a stack of detectors. Although it is
expected that these two examples will cover most users needs, it is still possible for
the user to define their system via the GAMOS geometry text file input.

i. The ring system is composed of an inner ring of scatterer detectors and outer
ring of absorber detectors. The rings can be replicated along the axial direction,
so that a full body system can be simulated. The following parameters are used
to define the RING system:

• Scatterer Ring:

• NSCATRINGS: Number of rings of blocks

• NSCATBLOCKS: Number of blocks of crystals per ring

• NSCATCRYSTALS_transaxial: Number of crystals in each block, transaxial

• NSCATCRYSTALS_axial: Number of crystals in each block, axial

• SCATCRYS_transaxial: Crystal size, transaxial

• SCATCRYS_axial: Crystal size, axial

• SCATDIAMETER: Detector ring diameter

• SCATCRYS_MATE: Scatterer detector material

• Absorber Ring:

• NABSRINGS: Number of rings of blocks

• NABSBLOCKS: Number of blocks of crystals per ring

• NABSCRYSTALS_transaxial: Number of crystals in each block, transaxial

• NABSCRYSTALS_axial: Number of crystals in each block, axial

171

Chapter 20. Compton camera application

• ABSCRYS_transaxial: Crystal size, transaxial

• ABSCRYS_axial: Crystal size, axial

• ABSDIAMETER: Detector ring diameter

• ABSCRYS_MATE: Absorber detector material

ii. The stack system is composed of a number of scatterer and absorber detectors
parallel to each other. The stack is produced through the axial (z) direction and
is defined using the following parameters:

• Scatterer layers:

• NSCATLAYERS: Number of scatterer detector layers

• NSCATCRYSTALS_X: Number of crystals in each layer, X direction

• NSCATCRYSTALS_Y: Number of crystals in each layer, Y direction

• NSCATCRYSTALS_Z: Number of crystals in each layer, Z direction

• SCATCRYS_X: Crystal size, X direction

• SCATCRYS_Y: Crystal size, Y direction

• SCATCRYS_Z: Crystal size, Z direction

• SCATDIST: Distance in Z from centre of first scatterer detector to world
origin

• SCATSEP: Separation distance in Z between the centres of neighbouring
scatterer detectors

• SCATCRYS_MATE: Scatterer detector material

• Absorber layers:

• NABSLAYERS: Number of absorber detector layers

• NABSCRYSTALS_X: Number of crystals in each layer, X direction

• NABSCRYSTALS_Y: Number of crystals in each layer, Y direction

• NABSCRYSTALS_Z: Number of crystals in each layer, Z direction

• ABSCRYS_X: Crystal size, X direction

• ABSCRYS_Y: Crystal size, Y direction

• ABSCRYS_Z: Crystal size, Z direction

• ABSDIST: Distance in Z from centre of first absorber detector to world
origin

• ABSSEP: Separation distance in Z between the centres of neighbouring
absorber detectors

• ABSCRYS_MATE: Absorber detector material

To use this utility the user must choose to read the geometry from a text file:

/gamos/geometry GmGeometryFromText

The user must also provide the FILE_NAME which contains the parameters used to
define Compton camera geometry

/gamos/setParam GmGeometryFromText:FileName FILE_NAME

172

Chapter 20. Compton camera application

A few example files are included of simple Compton camera systems, with suffix
.geom in the Compton camera tutorial, for example CCGeometryRingEx1.geom. Within
this text file, the user must then choose whether to read the Ring or Stack geometry
text file by typing

#include CCGeometryRing.geom

for a ring geometry or

#include CCGeometryStack.geom

or a stack geometry. Note that different user parameters are required to define a stack
and ring geometry.

Compton camera Event Classification
The class CCEventClassifierUA classifies the events as useful events for Compton
imaging by looking at the reconstructed hits. It is a GAMOS user action and can be
activated with the command

/gamos/userAction CCEventClassifierUA

It is currently possible to output data for single/single type Compton imaging events,
where there is one reconstructed scatterer detector hit and one reconstructed absorber
detector hit.

The event classifier counts how many of these single/single reconstructed hits have
deposited the total incident gamma-ray energy within a precision given by the pa-
rameter:

/gamos/setParam CC:EvtClass:PhotopeakEPrec GATE

The total gamma-ray energy is set with the parameter

/gamos/setParam CC:EvtClass:GammaEnergy ENERGY

which by default takes a value of 141 keV

where the minimum energy will be (1-GATE)*photopeak energy, that by default
takes a value of 0.9*photopeak energy and the maximum energy will be
(1+GATE)*photopeak energy, that by default takes a value of 1.1*photopeak energy.
You can set independently the minimum and maximum interval values with

/gamos/setParam CC:EvtClass:PhotopeakEPrecMin VALUE

/gamos/setParam CC:EvtClass:PhotopeakEPrecMax VALUE

Only hits whose relative time difference is less than the value given by the parameter

/gamos/setParam CC:EvtClass:CoincidenceTime COINCIDENCE_TIME

will be taken into account to make a Compton imaging event, (it is assumed that one
of the two started the trigger and the other must be in the coincidence time open at
that moment).

To utilise events in which multiple interactions occur within a detector, it is necessary
to identify the appropriate interactions to reconstruct. The most simple example is if
a gamma ray Compton scatters in the scatterer detector and then in the absorber de-
tector it Compton scatters and undergoes Photoelectric absorption. This event can be
reconstructed if the 1st hit (ie the Compton scattering interaction) is correctly identi-
fied in the absorber detector. It is possible to recover these hits when one of several
Compton interactions have occurred by examining those that are close. You may set
the distance to examine multiple hits within the scatterer and absorber detectors, re-
spectively with the parameters

/gamos/setParam CC:EvtClass:ComptonRecHitDistScat DIST

/gamos/setParam CC:EvtClass:ComptonRecHitDistAbs DIST

173

Chapter 20. Compton camera application

DIST takes by default a value of 0, what means that no identification of multiple
Compton hits will be done. If DIST is > 0 you may select the position and energy of
the 1st hits identified through the algorithms described in the Identifying Compton
Interactions section of the PET chapter. By default, the algorithm used is the one
which identifies the 1st hit as the one with biggest energy, however other algorithms
may be selected with the parameter

gamos/setParam CC:EvtClass:1stHitAlgorithm ALGORITHM

If two reconstructed hits have a summed energy which is calculated to lie within the
photopeak gates, the event is classified as a good Compton imaging event. Then sub
classification is carried out:

• More than two reconstructed hits: These events are maximum when no identification
of 1st hit multiple interactions is carried out.

• Random coincidence:It is checked that each of the two reconstructed hits is built only
from tracks from the same ’original’ gamma, and that the hits come from the same
event.

• Scattered: The event is classified as scattered (outside the detector volumes) if the
gamma has suffered an interaction in the list of volumes defined by the parameter

/gamos/setParam DetCountScatteringUA:VolumeNames VOLUME_1 VOLUME_2 ...

and this interaction is of one of the process types defined by the parameter

/gamos/setParam DetCountScatteringUA:ProcessNames PROCESS_1 PROCESS_2 ...

(by default Compton are Rayleigh interactions are counted); and it has lost in the
volumes more energy than the parameter

/gamos/setParam DetCountScatteringUA:EnergyMin ENER_MIN

(by default the minimal energy is 0.)

The ClassifyCC method returns an integer with several digits containing the event
classification:

• 0 if it is not a useful Compton imaging event, 1 if it is a coincident event but not
fully absorbed, 2 if it is a fully absorbed coincident event and 3 if it is a fully ab-
sorbed Compton imaging event with a single interaction in the scatter detector and
in the absorber detector. The imaging events are equal to the absorbed events, ie if
no multiples examination is carried out, the absorbed events are the singles. If mul-
tiples are carried out then the number of absorbed events increases by the number
of useable multiple events which can now be used for imaging.

• 10*1 if the search for reconstructed hits found more than 2

• 100*1 if the event is a random coincidence event

• 1000*1 if the event is a scattered event

At the end of the run a table is printed with the number of events in each of the
combinations of the sub-classification types.

Compton camera histograms: event classification
These histograms are related to the event classification explained above. They are
produced if the event classification user action is selected. The name of all these his-
tograms starts with "CCEvtClass: " and all are written in the file comptoncamera.root.

The following histograms are written:

• Classification index of event ("Compton camera classification"). This index is the
one described in the precedent section.

174

Chapter 20. Compton camera application

• The scatterer addback energy for the classified events

• The absorber addback energy for the classified events

• Number of reconstructed hits in the scatterer detector

• Number of reconstructed hits in absorber detector

• Sum energy for the classified events

Compton camera output for reconstruction
To write data to a file, the following parameter must be set to 1

/gamos/setParam CC:EvtClass:DumpEvent 1

If the event is classified as a Compton imaging one, it is dumped in a file, given by
the name

/gamos/setParam compcam:FileName MY_FILENAME

You can select the file format to be a binary file or a text file by setting to 1 or 0 the
parameter

/gamos/setParam compcam:BinFile 1/0

that takes the name compcam.out by default. It is necessary to define whether the out-
put file should contain only data for single/single Compton imaging events (2 recon-
structed hits) or those events which contain the multiple reconstructed hits, through
the parameter

/gamos/setParam CC:EvtClass:DumpSingles TRUE/FALSE

/gamos/setParam CC:EvtClass:DumpMultiples TRUE/FALSE

where TRUE writes the data to the file compcam.out. The variables written are given
by the structure

struct CCOutput
{
char name[9];
float x1, y1, z1, e1, x2, y2, z2, e2

}

where name is COMPCAM, x1, y1, z1, e1 are the coordinates and energy of the recon-
structed hit in the scatterer detector and x2, y2, z2, e2 are the coordinates and energy
of the reconstructed hit in the absorber detector. The same data that is written to the
file can be written in the standard output if the parameter

/gamos/setParam compcam:DumpToCout TRUE

is set to true. The positions in the standard output (not in the file) will be written
in cylindrical coordinates by default. If you want them in cartesian coordinates you
should set to true the parameter

/gamos/setParam compcam:DumpCartesian TRUE

175

Chapter 20. Compton camera application

176

Chapter 21. Image reconstruction utilities

Several utilities are provided for helping the user to process projection data and re-
construct PET images. These utilities are installed along with the rest of GAMOS code
and their source code included in the ${GAMOSINSTALL}/analysis/NuclMed/PET/ di-
rectory. They are available as executables as mentioned in the following subsections.

List-mode to projection data: lm2pd
This program is devised to convert previously stored PET list-mode output files (.out)
in projection data (.hs/.s or .hv/.v). Its functionality is similar to the ProjDataMgr
class (see "Projection data file" section), using the following arguments:

• -a: axial field of view in millimeters (by default 100.0).

• -d: diameter of the transaxial field of view, in millimeters (by default 300.0).

• -m: maximum ring difference (by default -1 = number of planes).

• -n: name of the output file (without extension).

• -o: output format, 0 for GAMOS ad-hoc format (by default, extension .hv/.v com-
patible with GAMOS analytic image reconstructor) or 1 for STIR projection data
(extension .hs/.s).

• -p: number of axial planes (by default 40).

• -r: number of tangential bins (by default 81).

• -t: theta, number of angular views (by default 80).

• -v: verbosity (by default 0=silent, 3=debug).

• -x: maximum number of coincidences to process (by default -1 = no limit).

For example, the following line describes how to convert a list-mode file "pet.out"
in projection data (file "MY_PROJDATA") covering a 100-mm axial and 250-mm
transaxial field of view; using 48 axial planes (rings), 160 angular views and 151
tangential bins. Output projection data is written in STIR format, with a maximum
ring difference of 12.

lm2pd pet.out -a 100.0 -d 250.0 -p 48 -t 160 -r 151 -m 12
-n MY_PROJDATA -o 1

Summing projection data files: sumProjdata
Merging output files is necessary after simulating different jobs under the same
setup. This is straightforward when dealing with list-mode PET files, that can be
concatenated with a command like cat in Linux; but projection data files must be
summed position-by-position (every position of each file contains the coincidences
stored by the same PET line of response), this can be done thanks to the utility
sumProjdata.

To use it you have to write a file containing the list of projection data file (without
extension, it searches for files *.hs/*.s or *.hv/*.v), one per line, for example:

projdata_000
projdata_001
projdata_002

177

Chapter 21. Image reconstruction utilities

Then you just have to run the executable

sumProjdata INPUT_FILE_LIST OUTPUT_FILE

where INPUT_FILE_LIST is the name of the file containing the list of files to add and
OUTPUT_FILE is the name of the output file that will contain the sum of all the files.
Two files will be generated: the header, OUTPUT_FILE.hs (or .hv) and the binary data
OUTPUT_FILE.s (or .v).

Analytic image reconstruction: ssrb_fbp
This program applies a SSRB-FBP2D 20 method to reconstruct PET images. First, a
Single Slice rebinning algorithm (SSRB converts 3-dimensional projection data in a
set of 2-dimensional sinograms, one per each axial image slice; next, a Filtered Back
Projection (image reconstruction algorithm that makes use of the Radon transform
21) is performed in each slice.

As input data, the program requires the name of the GAMOS projection data file
without extension (.hv/.v). These files can be generated by GAMOS (see "PET output
for reconstruction" section) or converted from list-mode files using the lm2pd utility.
The command-line options are the following:

• -m: SSRB Maximum ring difference (by default: n_planes-1). The user can discard
too axially tilted lines of response by selecting a lower value .

• -r: SSRB Normalization (by default: 1=yes, 0=no).

• -i: Image size, number of X and Y pixels (by default: number of sinogram bins).

• -x: Transaxial pixel size (by default: sinogram bin size).

• -f : Type of apodization window for filtering 21 (low frequency pass):

• 1, Generalized Hamming (value by default, it includes Hann window and ram-
plak).

• 2, Butterworth.

• 3, Shepp-Logan.

• -a: Alpha parameter for generalized Hamming window (by default: 1, ramplak
filter).

• -b: Order for Butterworth window (by default 4).

• -c: Cutoff frequency, relative to Nyquist freq: bin_size/2 (by default: 0.75).

• -n: Name of the output image file ("MY_NAME", without extension). The pro-
gram will write a "MY_NAME.img" data file and two associated header text files:
"MY_NAME.hv" and "MY_NAME.hdr". The .hv file has a STIR-like Interfile format
24 , whereas the .hdr file uses Interfile 3.3 conventions; it is done to make possible
opening the image by different programs (see "Visualization tools" section).

• -h: Help, printing arguments list.

• -v: Verbosity (by default:0 for silent, 3 for debugging).

The following example will apply a SSRB-FBP2D reconstruction to a projection data
file named "MY_PROJDATA_ALL.hv" using a Butterworth filter of order=6 and cut-
off frequency=0.5 Nyquist units, image and pixel sizes take values from the projection
data (tangential bins):

ssrb_fbp MY_PROJDATA_ALL -f 2 -b 6 -c 0.5 -n MY_IMAGE

178

Chapter 21. Image reconstruction utilities

To use this utility, you have to install the FFTW library at the path where the vari-
able FFTW_BASE_DIR points (type echo $FFTW_BASE_DIR. You can download this
library at http://www.fftw.org

Visualization tools
Currently GAMOS does not include any utility to visualize the reconstructed images
(or projection data), instead of it, we recommend the installation of one of the follow-
ing free programs to visualize or analyze images: AMIDE and ImageJ.

AMIDE 22 is a free tool for viewing, analyzing, and registering volumetric medical
imaging data sets. It has been written on top of GTK+, and runs on any system that
supports this toolkit, including Linux. Both *.hv and *.hdr image header files can be
opened by AMIDE, using the option: File -> Import File (guess). AMIDE also is also
recommended to visualize STIR images.

ImageJ 23 is an image processing tool written in Java, which allows it to run on
Linux, Mac OS X and Windows. ImageJ and its Java source code are freely available
and in the public domain. To open *.hv images the program needs a plug-in to read
Interfile formats; next it is described how to install its version 1.44 (bundled with
32-bit Java), with the Interfile decoder plug-in, in Linux:

Installing ImageJ
cd ${HOME}
wget http://rsb.info.nih.gov/ij/download/linux/ij144-x86.tar.gz
gunzip ij144-x86.tar.gz
tar xvf ij144-x86.tar
Installing plug-in (.jar file) to read Interfile images
cd ImageJ/plugins
wget http://www.med.harvard.edu/JPNM/ij/plugins/download/Interfile_TP.jar
cd ..

To run ImageJ execute the ’./run’ script. Images with extension .hv can be opened by
the "NucMed Open" command (in menu Plugins->NucMed), alternatively the user
can open it ("MY_IMAGE.hv") from the command line using the following expres-
sion:

${HOME}/ImageJ/jre/bin/java -Xmx512m -jar ${HOME}/ImageJ/ij.jar
-ijpath ${HOME}/ImageJ -eval "run(’NucMed Open’, ’open=MY_IMAGE.hv’);

Stochastic Image Ensemble method

Introduction

About this Document
This manual refers to the SOE_ImageRecon program, version 0.0.0 of February 2012.

Complaints or questions about installation, compilation and use of this program can
be sent to < mkolstein@ifae.es >.

Introduction to SOE
The SOE (Stochastic Origin Ensemble) method, is based on the article: Stochastic
Image Reconstruction Method for Compton Camera , by Andriy Andreyev, Arkadiusz Sitek,

179

Chapter 21. Image reconstruction utilities

and Anna Celler published in IEEE Nuclear Science Symposium Conference Record, 2009.
21

The SOE algorithm works on data files that contain coincidences of two hits. The
exact format of these files is described in the Getting Started section. The data can be
from a Compton Camera detector or from a PET detector.

In the case of Compton Camera data, one hit should be from the "Scatter detector" and
one hit from the "Absorber" detector. Combining the information of these hits (both
the positions and the deposited energies), Compton cones can be constructed. The
original gamma source for an event lies somewhere on the corresponding Compton
cone.

In the case of PET data, the two hits should be on opposing sides of the PET detec-
tor, corresponding to the two back-to-back gamma particles caused by an electron
positron annihilation. Combining the position information of these hits, a "Line of
Response" (LOR) can be reconstructed. The original gamma source for an event lies
somewhere on the LOR.

Both for Compton camera data as for PET data, the SOE algorithm starts with a ran-
dom ensemble of states. This means that at initialization, for each event a random
position on the corresponding Compton cone or LOR is assigned. A 3D density ma-
trix is defined, where the solution space is divided in voxels and the density per voxel
depends on the number of initial event positions in that voxel.

Subsequently, the SOE algorithm performs a number of iterations. At each iteration,
for each event a new position on the corresponding Compton cone or LOR is cal-
culated. The new position is accepted according to the density value of the voxel
corresponding to the new position, compared to the density at the old position. The
density matrix is updated accordingly.

The iterations are repeated until the algorithm has converged.

By switching on particular parameters as explained later, the Resolution Recovery
method can be used. This method tries to recover for possible deviations in the hit-
positions, the hit-energies, and the Compton cone angle (due to the spatial resolution,
the energy resolution and the Doppler broadening effect). By randomly smearing
these variables, for each event, the method tries to find their optimum values.

Getting Started

Running SOE
SOE is installed in GAMOS at the directory analysis/Detector/SOE .

The SOE algorithm works on data files that contain coincidences of two hits. The
exact format of these files is described below in the section called "Input files". The
data can be either from a Compton camera detector or from a PET detector.

To run the code for Compton Camera data, type:

SOE_ImageRecon -Compton

or, for PET data:

SOE_ImageRecon -PET

The complete list of possible flags is:

SOE_ImageRecon
SOE_ImageRecon

180

Chapter 21. Image reconstruction utilities

SOE_ImageRecon -PET (for PET data)
SOE_ImageRecon -Compton (for Compton data)
SOE_ImageRecon -PETGauss (for PET data, using a Gauss distribution for guessing points on the LORs)
SOE_ImageRecon -seed < seedNumber > (selecting specific seed)
SOE_ImageRecon -extraIterInfo (additional output files for intermediate iterations)
SOE_ImageRecon -averageStatesOut (additional output each 100 iterations before final iterations)
SOE_ImageRecon -readDensityMatrix (read density matrix ’density_matrix.img’ at initialisation of program)
SOE_ImageRecon -readCurrentState (read current state file ’currentstate.dat’ at initialisation of program)
SOE_ImageRecon -help (for this help output)

Input files

In the directory in which you run the code, you need the following input files:

ir_soe_userparameters.conf (parameters file)
CC_img.out (data file with any kind of name, as given in the parameters file).

In the data file, every line should contain the following:

Hit1.Z(mm) Hit1.Y(mm) Hit1.X(mm) Hit1.Energy(keV) Hit2.Z(mm) Hit2.Y(mm) Hit2.X(mm) Hit2.Energy(keV)

In the case of Compton camera data, "Hit1" corresponds to the hit in the Scatter de-
tector and "Hit2" corresponds to the hit in the Absorber. In the case of PET data, the
hits correspond to the two back-to-back hits in opposite regions of the detector.

Note 1: Note that the order of the coordinates in the files is: Z, Y, X, Energy!

Note 2: The geometry used in the SOE algorithm is as follows. The z-axis is the axis that
separates the Scatter detector from the Absorber detector. The front of the Scatter detector is
located at z = 0 mm. The gamma source must be at a location with a negative value for the z
coordinate. The Absorber detector is at positive z with respect to the Scatter detector.

The parameter file ir_soe_userparameters.conf has the following contents:

m_iterations 100000 //
m_bins_z 100 //
zPosition1 -95.0 //
zPosition2 -105.0 //
m_bins_x 100 //
m_xmin -5.0 //
m_xmax 5.0 //
m_bins_y 100 //
m_ymin -5.0 //
m_ymax 5.0 //
m_sourceEnergy 511 //
DataFileName 0 ../../../../../CCs_Machiel/CC_img.out_Gamma511_AllOFF
EventSetSize 0 //
m_maxNumberOfEvents 1000 //
UseEnergyResolutionFactorFWHM 0.0 //percentage
UseSpatialDeltaX 0.0 //mm
UseSpatialDeltaY 0.0 //mm
UseSpatialDeltaZ 0.0 //mm
UseDopplerEffectSigmaTheta 0.0 //sigma

Each line should contain three fields:

• the first field is the name of the parameter

• the second field is the value (except in the case of DataFileName, where the value
is a dummy)

181

Chapter 21. Image reconstruction utilities

• the third field is a dummy string (except in the case of DataFileName, where it
gives the name of the input file). It should NOT contain any blanks (empty spaces).

Output Files

The output files are:

• data_beginstate_xy.dat This file contains a list (for all events) with the initial posi-
tions assigned to each cone. (Each position represents a guess of the real location
of the gamma source). It has the following format:
xposition yposition zposition

e.g.:
260.788 142.073 -97.8255
-0.722199 -18.968 -96.3066
2.74312 -43.1098 -95.7843
...

• data_endstate_xy.dat This file contains a list (for all events) with the final positions
associated with each cone, after < N > iterations. (Each position represents a guess
of the real location of the gamma source). In the perfect case, all positions in the list
would be identical to the real position of the gamma source. It has the following
format:
xposition yposition zposition

e.g.:
0.44799 0.412472 -100.032
0.491477 0.46389 -100.056
0.459591 0.449933 -99.9168
...

• density_matrix.hdr This is a header file for the AMIDE program.

• density_matrix.img This is the binary image file for the AMIDE program.

Program Parameters and Flags

PET or Compton camera
In order to run on PET data, run the program with either one of the following flags:

SOE_ImageRecon -PET

or:

SOE_ImageRecon -PETGauss

With the -PET flag the possible locations are taking uniformly from the entire LOR.

With the -PETGauss flag the possible locations are taking from a Gauss distribution
on the entire LOR, where the sigma corresponds to 16% of the LOR length and the

182

Chapter 21. Image reconstruction utilities

mean is in the middle of the LOR. (Note: this actually only makes sense in the case
of a single source located at the centre of the PET detector and is mainly meant for
testing purposes.)

Input Data
The input parameters are set in the parameter file ir_soe_userparameters.conf .

DataFileName 0 ../../../../../CCs_Machiel/CC_img.out_Gamma511_AllOFF
EventSetSize 0 //

With DataFileName only the third field is important, the second field should be an
integer that is ignored by the code.

The EventSetSize parameters sets the size of the number of events that are main-
tained in memory at the same time. The remaining number of events are stored on
disk. What is lost in time because of the I/O is won in time (and memory capacity)
because of smaller data set handling. For data sets smaller than a few million events,
it should be set to 0 (i.e., all events are kept in memory).

Iterations
The number of iterations is set in the parameter file ir_soe_userparameters.conf .

m_iterations 100000 //

Geometry
The geometry parameters are set in the parameter file ir_soe_userparameters.conf .

m_bins_z 100 //
zPosition1 -95.0 //
zPosition2 -105.0 //
m_bins_x 100 //
m_xmin -5.0 //
m_xmax 5.0 //
m_bins_y 100 //
m_ymin -5.0 //
m_ymax 5.0 //

m_sourceEnergy 511 //

These parameters set the number of bins and the Field Of View (FOV) of the image
solution space.

Resolution Recovery
The resolution recovery parameters are set in the parameter file
ir_soe_userparameters.conf .

UseEnergyResolutionFactorFWHM 0.0 //percentage

UseSpatialDeltaX 0.0 //mm
UseSpatialDeltaY 0.0 //mm
UseSpatialDeltaZ 0.0 //mm

183

Chapter 21. Image reconstruction utilities

UseDopplerEffectSigmaTheta 0.0 //sigma

The UseEnergyResolutionFactorFWHM parameter sets the Gaussian variation in En-
ergy used to recover for resolution loss due to energy resolution.

The UseSpatialDeltaX, SpatialDeltaY, and SpatialDeltaZ parameters set the Uniformly
distributed variation in x,y and z coordinates of the detector hits, used to recover for
resolution loss due to spatial resolution.

The UseDopplerEffectSigmaTheta parameter sets the Gaussian distributed variation in
the Compton angle, used to recover for resolution loss due to Doppler broadening.

Special running flags
Flags to run with the code:

SOE_ImageRecon -seed <seedNumber> (selecting specific seed)

SOE_ImageRecon -extraIterInfo (additional output files for intermediate iterations)
SOE_ImageRecon -averageStatesOut (additional output each 100 iterations before final iterations)

SOE_ImageRecon -readDensityMatrix (read density matrix ’in_density_matrix.img’ at initialisation of program)
SOE_ImageRecon -readCurrentState (read current state file ’currentstate.dat’ at initialisation of program)

SOE_ImageRecon -help (for this help output)

The seed flag sets the seed for the SOE algorithm. This way, a SOE run can be repeated
with exactly the same random numbers.

With the extraIterInfo and the averageStatesOut flags there will be additional output
(for debugging purposes).

With the readDensityMatrix and readCurrentState flags the "densitymatrix.img" and
"currentstate.dat" (of the format as the standard output file "data_endstate.dat"), are
read in at initialisation (for debugging purposes).

With the help flag, the list of all flags is printed to screen.

Analysis
In the root/ directory, there are various ROOT programs that can be used for the
analysis. One of the most important ones is SOE_img3D.C . This ROOT program
visualises the output of a SOE 3D image reconstruction.

At start-up will ask the user whether the real location of the gamma source is known.
If it is not, just type 0. If it is, type 1, and, subsequently give the x, y, and z coordinates
of the source location.

Each plot is drawn in its own separate canvas:

• m_c1: 3dcontour plot . Shows a 3D contour plot.

• m_c2: X profile plot . Shows the density along the X axis, with Y = y_max, and Z
= z_max, the y and z coordinates of the voxel with maximum density (unless the
real source location is given, in which case this is used).

• m_c3: Y profile plot Shows the density along the Y axis, with X = x_max, and Z =
z_max, the x and z coordinates of the voxel with maximum density (unless the real
source location is given, in which case this is used).

184

Chapter 21. Image reconstruction utilities

• m_c4 Z profile plot Shows the density along the Z axis, with X = x_max, and Y =
y_max, the x and y coordinates of the voxel with maximum density (unless the real
source location is given, in which case this is used).

• m_c5 R profile plot . The density as a function of the radius is calculated. The ra-
dius is taken from the voxel with the maximum density (unless the real source
location is given, in which case this is used). The bin-contents in this histogram are
normalised with the 3D volume corresponding to each bin. (I.e, for R = [0,bin1],
the volume is 4/3 * pi * R_bin1^2, for R = [bin1, bin2], the volume is 4/3 * pi *
(R_bin2^2 - R_bin1^2)).

• m_c6 Accumulative R plot . The same as m_c5, but without normalising with the
corresponding volume of the solution space. This way, it can be clearly seen how
many events reach the center bin, and how many events are outside it.

185

Chapter 21. Image reconstruction utilities

186

Chapter 22. Radiotherapy application

The Radiotherapy example contains some utilities for the simulation of a teletherapy
linear accelerator and dose calculations in the patient. Many of the utilities can also
be useful in the simulation of brachytherapy treatments.

Geometrical modules
Two geometrical modules are defined related to Radiotherapy: JAWS and MLC (mul-
tileaf collimators). They can be defined in the usual geometry text file (see chapter on
Geometry) with the format described below.

JAWS module
This module serves to describe the jaws of a radiotherapy accelerator. The jaws are
described by their dimensions and its rotation is calculated with the parameters of its
projection in into a plane

The following parameters have to be provided

:MODULE JAWS

Module name

parent volume name

Module type, giving the direciton of the jaws. It has to be X or Y

X half dimension

Y half dimension

Z half dimension

Z position of the focus

Z position of the plane where the projections are calculated

Z position of the field

Field X projection

Field Y projection

Material

MLC module

Introduction
A MLC (Multi Leave Collimator) is a collimator system composed of a set of pairs of
leaves a few millimeters thick that serves to conform a hole in the field of view of an
irradiation treatment beam. These systems are used to shape irregulars volumes or
to generate intensity modulate beams.

This module can describe a high variety of MLC models, whether focused to a point
in the Z axis or to an off-axis point. Any shape of leave profile can be described
by enumerating the list of 2-dimensional points that describe it, and two endleaves
type are supported: rounded or straight focused to a point in the z axis. The endleave
straight implicates a circular shape, as in the Siemens PRIMUS MLC. Each leave cross
profile is described by its projection onto a reference plane. The endleave position is
described by its projection at the isocenter plane.

187

Chapter 22. Radiotherapy application

Geometrical module definition and variables list
The MLC module description has to start with the two words (words have to be sep-
arated by blank spaces, and follow the order described here, but there is no constraint
on the number of lines they may occupy):

:MODULE MLC

Then the following parameters have to be filled

Module name

Mother volume name

The type of MLC has to be

FOCUSED

what means that all leaves profiles in the cross place are focused to a point. UNFO-
CUSED will be supported in future releases.

Orientation of the leaves, i.e. the axis of movement, can be

x, y, X or Y

End leaf type, must be

ROUND or STRAIGHT

Z position of the focus

z_focus

Transversal position (X or Y depends on the orientation) of the focus

cross_focus

Z position of the plane onto which the leaves are projected to describe the interleave
gaps

z_ref

Z position of the isocentre, which is used to calculate the profile in the inline plane

z_isocentre

Leave half dimension in the inline plane (X or Y direction depending on the orien-
tation; if the endleaf is curved this length varies, and it is defined at the Z of the
reference plane. If the endleaf is straight, so i.e. it has a circular shape, the length also
varies, and it is defined at the Z value which when the arc is extrapolated to the Z
line passing by the focus, it intersects it at the Z of the reference plane

leaf_length

If the leafend is round, it is the leafend radius. If the leafend is straight, it is Z position
where the projection of the leafend interesect the Z line passing by the focus

endleaf_radius/endleaf_focus

Z distance of the plane where the interleave separation are defined and z_ref

z_gap

Separation of leaves in the cross plane, defined in the projection onto the z_gap plane

interleaves_gap

Separation of projection of first leave on the z_gap plane and on the reference plane

cross_start_point

Number of different types of leaf cross profiles.

n_leaves_cross_profiles

For each cross profile the following data has to be defined:

188

Chapter 22. Radiotherapy application

• Leave type. It will be a LEAF or BLOCK, but this options is not implemented yet,
so it must be

LEAF

• Number of 2-dimensional points taht define the cross profile

n_leaves_cross_points

• For each point the Z and cross coordinates must be defined

Z_coordinate

cross_coordinate

Number of leave pairs.

total_leaves_number

For each leave pair the following data has to be defined:

• Leave type number (1,2,3, ...; following the order of leave types defined)

leave_type

• Opening distance of positive leave, when leave is projected on the isocenter plane

open_leave_a_at_isocenter

• Opening distance of negative leave, when leave is projected on the isocenter plane

open_leave_a_at_isocenter

Finally the material of the leaves have to be defined

material

Module MLC example
On the next lines we include a simplified geometrical description, that you can use
as example to build your own. On the figure 1 and 2 we can see the corresponding
representation dimensions.

:MODULE MLC // MLC // Realistic_CASE
myMLC_x world // Module_name and Mother_volume_name
FOCUSED x STRAIGHT // Type, Orientation, End_leave_type
-5 2.5 // Z_focus, Cross Leave Focus
100 200 // Z_ref, Z_isocenter
297.024 80 // Leaf_length, Endleaf_length/Endleaf_radius
75.8/8 1.25 // Interleaves Gap, Z_gap (relative to Z_ref)
-18.7*2/3-2.78*2.50-1.25/2 // Cross Leave Start Point
5 // N Leaves Cross Profiles
LEAF 14 // N Leaves Cross Points and type
-2 -5.0/3 // Z and C coordinate
1 -5.0/3
1 -5.0/3
75.8 -5.1/3
75.8 5.0/3
75.8-1 5.0/3
75.8-1 18.7/3
22.24+25+0.05 18.7/3
20.24+25+0.05 18.7/3-0.65
22.24-0.05 18.7/3-0.65
20.24-0.05 18.7/3
1 18.7/3
1 5.0/3
-2 5.0/3

189

Chapter 22. Radiotherapy application

LEAF 32 // N Leaves Cross Points and type
-2 -2/3 // Z and C coordinate
1 -2/3
2 -2.78/2
6 -2.78/2
6+1 -2.78/2+1
6+2 -2.78/2
20.24 -2.78/2
22.24 -2.78/2-0.65
20.24+25 -2.78/2-0.65
22.24+25 -2.78/2
22.24+25+6 -2.78/2
22.24+25+7 -2.78/2+1
22.24+25+8 -2.78/2
75.8-1 -2.78/2
75.8-1 -1/2
75.8 -1/2
75.8 4/5
75.8-1 6/5
75.8-1 2.78/2
75.8-6 2.78/2
75.8-7 2.78/2-1
75.8-8 2.78/2
22.24+25+0.05 2.78/2
20.24+25+0.05 2.78/2-0.65
22.24-0.05 2.78/2-0.65
20.24-0.05 2.78/2
20.24-0.05-6 2.78/2
20.24-0.05-7 2.78/2-1
20.24-0.05-8 2.78/2
2 2.78/2
1 2.78/2-1/2
-2 2.78/2-2/3
LEAF 32 // N Leaves Cross Points and type
-2 -1/2 // Z and C coordinate
1 -1/2
2 -2.78/2
20.24-6-2 -2.78/2
20.24-6-1 -2.78/2+1
20.24-6 -2.78/2
20.24 -2.78/2
22.24 -2.78/2-0.65
20.24+25 -2.78/2-0.65
22.24+25 -2.78/2
75.8-8 -2.78/2
75.8-7 -2.78/2+1
75.8-6 -2.78/2
75.8-1 -2.78/2
75.8-1 -6/5
75.8 -4/5
75.8 1/2
75.8-1 1/2
75.8-1 2.78/2
22.24+25+8 2.78/2
22.24+25+7 2.78/2-1
22.24+25+6 2.78/2
22.24+25+0.05 2.78/2
20.24+25+0.05 2.78/2-0.65
22.24-0.05 2.78/2-0.65
20.24-0.05 2.78/2

190

Chapter 22. Radiotherapy application

8 2.78/2
7 2.78/2-1
6 2.78/2
2 2.78/2
1 2.78/2-1/2
-2 2.78/2-2/3
LEAF 15 // N Leaves Cross Points and type
-2 -5.0/3 // Z and C coordinate
1 -5.0/3
1 -18.7/3
20.24 -18.7/3
22.24 -18.7/3-0.65
20.24+25 -18.7/3-0.65
22.24+25 -18.7/3
75.8-1 -18.7/3
75.8-1 -18.7/3
75.8-1 -5.0/3
75.8 -5.0/3
75.8 5.0/3
1 5.0/3
1 5.0/3
-2 5.0/3
7 // Total Leave Number
1 -1.0 1 // Leave_type, Left and Right at isocenter
3 -1.0 2
2 -1.0 3
3 -1.0 4
2 -1.0 5
3 -1.0 6
4 -10.0 29
G4_W // Material

191

Chapter 22. Radiotherapy application

Figure 22-1. Cross leaves representation.

192

Chapter 22. Radiotherapy application

Figure 22-2. Inline leaves representation for endleaf type ROUND.

If we change the END_LEAF_TYPE for STRAIGHT type, the variable RDIM repre-
sents a new value named END_LEAF_FOCUS. If we set it to -10 mm, the leaf profile
changes as it is described in the figure 3.

193

Chapter 22. Radiotherapy application

Figure 22-3. Inline leaves representation for endleaf type STRAIGHT.

The example uses four leaf cross profiles types, the data written are relative to the Z
ref (Z_TOP) plane. In the figure 4 we can see a representation of each profile referred
to the Z_TOP plane, and the result after the corresponding projection in the final
geometry representation.

194

Chapter 22. Radiotherapy application

Figure 22-4. Cross leaves types representation relative to the Z_TOP plane for four
leaf cross profiles and its representation in the final geometry.

Using phase spaces
A very common utility in teletherapy simulation is the writing of a phase space, i.e.
the set of particles that reach a certain plane in Z, and the later starting of the next
simulation from this set of particles. This technique can save a lot of time in cases
several calculations share some accelerator parts and in the case where the accelerator
simulation is very slow compared to the dose calculation.

Writing phase spaces
The writing of phase space can be done automatically in GAMOS by selecting the
user action

/gamos/userAction RTPhaseSpaceUA

When a particle crosses any of the planes defined by the parameter

/gamos/setParam RTPhaseSpaceUA:ZStops Z_1 Z_2 Z_3 ...

its information is stored in a file whose named is given by the parameter

/gamos/setParam RTPhaseSpaceUA:FileName MY_FILENAME

plus a suffix .IAEAphsp. The default value of this parameter is test. If there are several
Z planes, the Z value of each plane will be added to the name, with a “_” in front, so

195

Chapter 22. Radiotherapy application

that each phase space will go to a different file. If there is only one Z defined, the Z
value may be written in the file name if the following parameter is set

/gamos/setParam RTPhaseSpaceUA:ZStopInFileName TRUE

If the plane crossed is the one with maximum Z, the particle may be stopped, if the
following parameter is set

/gamos/setParam RTPhaseSpaceUA:KillAfterLastZStop TRUE

The format of the phase space files is the one defined by the IAEA[17], generated
using the official C files from IAEA. First there is a header file, that will have the same
name, but with the suffix .IAEAheader. It is generated by the IAEA code and you can
find the description of it at [17].

The variables stored for each particle are the following

• X coordinate (cm)

• Y coordinate (cm)

• X direction cosine

• Y direction cosine

• Kinetic energy (MeV)

• Particle statistical weight

• Type of the particle (1 = gamma, 2 = electron, 3 = positron, 4 = neutron, 5 = proton)

• Z direction cosine * particle charge

• Is new history

• Extra integers (0, 1 or 2 values)

• Extra floats (0, 1 or 2 values)

The Z value may optionally be stored if the following parameter is set

/gamos/setParam RTPhaseSpaceUA:StoreZ TRUE

The header file may be written each N events, so that if the job ends abnormally the
first N events may be recovered in the phase space. The number of events ellapsed
between header writing is controlled with the parameter

/gamos/setParam RTPhaseSpaceUA:NEventsToSave TRUE/FALSE

By default this parameter takes a value of -1 and no header is saved until the end of
the run.

It is also possible to limit the number of particles in a file. This can be useful if you
want to store a phase space at different Z values and you do not want too many
particles at the smallest Z planes. To do this you can set the parameter:

/gamos/setParam RTPhaseSpaceUA:MaxNTracksInFile NTRACKS

The number of tracks stored in each file will be stopped at NTRACKS, but it may
continue in other files.

As the Z plane is probably not a physical plane in the geometry, particle steps will
start before the plane and end after the plane. Therefore, the position and energy
are rescaled as if the particle would have stopped at the Z plane (by a simple linear
interpolation).

By default particles that travel towards the negative Z direction are not stored, as it is
assumed that the original directio was towards positive Z and therefore this particles
(or their ancestors) should already have been stored. You may nevertheless eliminate
this check and store all particles by setting the parameter:

/gamos/setParam RTPhaseSpaceUA:NotStoreBackwards FALSE

196

Chapter 22. Radiotherapy application

You can limit the number of particles stored in each phase space (what may be useful
when you are filling several phase spaces in a job and do not want that the first phase
spaces end occupying too much disk space. To do this you have to set the parameter:

/gamos/setParam RTPhaseSpaceUA:MaxNTracksRecorded NTRACKS

Phase space text file
You can also write the phase space in a simple text format. The following variables
will be written for each track that reaches the phase space plane: particle_code
kinetic_energy(MeV) x(cm) y(cm) z(cm) direction_x direction_y direction_z weight
extra_information_word_1 extra_information_word_2 ... extra_information_word_n. The
name of the file is set with the parameter:

/gamos/setParam RTPhaseSpaceUA:TextFileName FILE_NAME

Phase space histograms
When a phase space is generated, a set of histograms are produced to give you some
information about the particles in the phase space. The name of all these histograms
start with PhaseSpace: and they are all dumped into the file phaseSpace.root/csv. For
each of the following particle types a different set of histograms are produced (con-
taining the particle type in the histogram name:) "gamma", "e-", "e+", plus a set of
histograms for all particles, named "ALL". Also histograms for "neutron" and "pro-
ton", will be produce if the following parameter is set

/gamos/setParam RTPhaseSpaceHistos:Hadrons TRUE

A full set of histograms is produced for each Z plane, with the Z value on its name.

The following histograms are produced:

• Position X (cm) ("X at Zstop")

• Position Y (cm) ("Y at Zstop")

• Position X and Y (cm) ("XY at Zstop")

• Radial position in the XY plane (cm) ("R at Zstop")

• Theta angle of direction (degrees) ("Direction Theta at Zstop")

• Phi angle of direction (degrees) "Direction Phi at Zstop")

• Energy (MeV) ("Energy at Zstop")

• X direction cosine ("Vx at Zstop")

• Y direction cosine ("Vy at Zstop")

• Z direction cosine ("Vz at Zstop")

• Radial position in the XY plane (cm) vs theta angle of direction (degrees) ("R vs
Direction Theta at Zstop");

• Radial position in the XY plane (cm) vs energy (MeV) ("R vs Energy at Zstop");

• Theta angle of direction (degrees) vs energy (MeV) ("Direction Theta vs Energy at
Zstop");

The user can choose not to produce any of these histograms by setting the following
parameter

/gamos/setParam RTPhaseSpaceUA:Histos FALSE

The name of the histogram file can be controlled with the parameter

/gamos/setParam RTPhaseSpaceHistos:FileName MY_FILENAME

197

Chapter 22. Radiotherapy application

that by default is "phaseSpace".

Several parameters serve to control the number of histogram bins:

/gamos/setParam RTPhaseSpaceHistos:Nbins NBINS

that takes by default a value of 100; and the maximum (absolute) value for histograms
of position

/gamos/setParam RTPhaseSpaceHistos:HisRMax MAX

that takes by default a value of 100., histograms of angle

/gamos/setParam RTPhaseSpaceHistos:HisAngMax MAX

that takes by default a value of 180., and histograms of energy

/gamos/setParam RTPhaseSpaceHistos:HisEMax MAX

that takes by default a value of 10.*MeV.

Reading phase spaces
To use the generated phase space you have to define as your primary generator

/gamos/generator RTGeneratorPhaseSpace

You can change the filename (by default test) with the parameter

/gamos/setParam RTGeneratorPhaseSpace:FileName MY_FILENAME

The particles in the phase space can be translated or rotated by using the parameters

/gamos/setParam RTGeneratorPhaseSpace:InitialDisplacement POS_X POS_Y POS_Z

/gamos/setParam RTGeneratorPhaseSpace:InitialRotAngles ANG_X ANG_Y ANG_Z

the position of the particles is first changed by the initial displacement, then the mo-
mentum vector is rotated around the X axis by ANG_X, around the Y axis by ANG_Y
and around the Z axis by ANG_Z; and finally the position vector is rotated around
the X axis by ANG_X, around the Y axis by ANG_Y and around the Z axis by ANG_Z.

An alternative way to provide the initial rotation and displacement is by setting the
transformation. The transformations are set with the parameter:

/gamos/setParam RTGeneratorPhaseSpace:Transformations TYPE_1 VAL1_1 VAL2_1
VAL3_1 TYPE_2 VAL1_2 VAL2_2 VAL3_2

Several transformations can be set at the same type with this parameter, and they will
be executed in the order provided. For each transformation four parameters have to
be supplied: transformation type, first value, second value, third value.

Three types of transformation are supported:

• Displacement (D): the three values are the displacement in X, Y and Z

• Rotations around XYZ (RXYZ):: the three values are the angles of rotation around
the X, Y and Z axis (always executed in this order)

• Rotation around accelerator axis (RTPS):: the three values correspond to the angles
of rotation in theta, phi and around the accelerator axis itself (in other words, a
rotation around the Z axis is done with angle VAL3, then a rotation around Y with
angle VAL1 and finally a rotation around Z with anlge VAL2

If the number of phase space particles is not enough to calculate the dose in the phan-
tom with enough precision you may reuse the particles several times by setting the
parameter

/gamos/setParam RTGeneratorPhaseSpace:MaxNReuse N

198

Chapter 22. Radiotherapy application

to a value bigger than 1. In fact, if this parameter is not explicitly set to 1, GAMOS
calculates it automatically by dividing the number of events asked for by the number
of events in the input phase space.

Alternatively you may recycle the full phase space several times (i.e. when all parti-
cles in the phase space are read, the file is closed and restarted again). The number of
times a phase space is recycled is controlled by the parameter

/gamos/setParam RTGeneratorPhaseSpace:MaxNRecycle N

which must take a value bigger than 1. If no reusing is explicitly set, the number
of reuses will be automatically calculated as mentioned above and the number of
recyclings will be set to 1, so that no recycling is done.

Caution should be taken when recycling phase spaces, as the error correlations due
to the reusing of the same particles is not taken account. Therefore you should first
consider reusing instead of recycling.

If you think your phase space has X/Y symmetry you may reduce the correlations
due to reusing the same particle several times by mirroring your particles each time
they are reused, by setting the parameter

/gamos/setParam RTGeneratorPhaseSpace:MirrorWhenReuse OPT

where OPT can be X or Y or XY. If it is X it means that when a particle is used an
even time the X original value of position and momentum direction will be changed
sign, while when it is an uneven time it will not be changed. If it is Y the same but
mirroring in Y. And if it XY the second time a particle is used the X values will be
changed sign, the third time the Y values will be changed sign, the fourth time both
X and Y values will be changed sign, the fifth time it will be no change, and the cycles
restarts.

When reading a phase space file you may skip the first N events by using the param-
eter

/gamos/setParam RTGeneratorPhaseSpace:NEventsSkip N

You can produce the same histograms that were produced when writing the phase
space file by setting the following parameter

/gamos/setParam RTGeneratorPhaseSpace:Histos TRUE

Adding extra information to a phase space
The IAEA format allows to store two long integers and two floats in the phase
space file as extra information. In GAMOS we have extended this functionality by
putting the 32+32 bits of the two integers in a continuous stream, that the user
can divide in groups of bits of the desired length to store several informations.
The user can even add more sets of 32 bits by changing the the following line at
source/RadioTherapy/include/iaeaRecord.hh:

#define NUM_EXTRA_LONG 2

and recompiling (cd source/RadioTherapy; make).

To store some information in this format the user has to instantiate one of the follow-
ing user actions

• RTExtraInfoProviderCrossings: fills a bit if the track has crossed the corresponding
region before reaching the phase space

• RTExtraInfoProviderInteractions: fills a bit if the track has intereacted in the corre-
sponding region before reaching the phase space

• RTExtraInfoProviderOrigin: fills a bit if the track has been created in the correspond-
ing region before reaching the phase space

199

Chapter 22. Radiotherapy application

The user may select how many bits each information must occupy by using the
GAMOS parameter :

/gamos/setParam EXTRA_INFO_NAME:NBits NBITS

where EXTRA_INFO_NAME is the name of the extra information class (see above).
GAMOS will check that the index to be filled by a class is not bigger than the number
of bits reserved for it. And it will also check that the total number of bits is not bigger
than the available quantity (32*NUM_EXTRA_LONG).

The order of declaration of the extra information user actions sets the order of bits
occupancy. At the end of the job each of these extra information uer actions fills a
file explainning the information contained in each bit. By default this file is called
RTExtraInfoProvider.summ, but the user may change the name of it with the parameter

/gamos/setParam RTExtraInfoProviderLong:FileName FILE_NAME

An example of a file is the following one:

RTExtraInfoProviderOrigin INDEX/REGION 0 DefaultRegionForTheWorld
RTExtraInfoProviderOrigin INDEX/REGION 1 targetReg
RTExtraInfoProviderOrigin INDEX/REGION 2 collimatorReg
RTExtraInfoProviderOrigin INDEX/REGION 3 filterReg
RTExtraInfoProviderOrigin INDEX/REGION 4 monitorReg
RTExtraInfoProviderOrigin INDEX/REGION 5 shieldingReg
RTExtraInfoProviderOrigin INDEX/REGION 6 jawsReg

The float extra information providers fill one of the two available words in the order
they have been defined.

The user can add more float words by changing the the following line at
source/RadioTherapy/include/iaeaRecord.hh:

#define NUM_EXTRA_FLOAT 2

and recompile the GAMOS code after that.

To store some information as float the user has to instantiate one of the following user
actions

• RTExtraInfoProviderZOrigin: stores the Z position of the origin of the track

• RTExtraInfoProviderZLast: stores the Z position of the last interaction before reach-
ing the phase space

At the end of the job each of these extra information user actions fills a file explain-
ning the information contained in each float. By default this file is called RTExtraIn-
foProvider.summ, but the user may change the name of it with the parameter

/gamos/setParam RTExtraInfoProviderFloat:FileName FILE_NAME

If you have written a phase space file in a 32-bit machine and try to read it in a 64-bit
one, you will not be able to recover the numbers properly. You may avoid it with the
parameterr

/gamos/setParam IAEArecord:ExtraLongSize 32

Similarly if you wrote the file in a 64-bit machine and try to read it in a 32-bit one.

Reusing a particle at a phase space without filling the phase
space file
It is commmon in radiotherapy treatment simulations that in a first job a phase space
file is created and in a second job the particles therein are read and reused several
times to calculate the dose in the patient. GAMOS provides the possibility of reusing

200

Chapter 22. Radiotherapy application

particles in a phase space file without having to divide the jobs in two. To use this
utility the user has to instantiate the user action

/gamos/userAction RTReuseAtZPlaneUA

and then use the command

/gamos/RT/ReuseAtZPlane

and before the user has to define the z value of the plane where particles will be
replicated, with the parameter

/gamos/setParam RTReuseAtZPlane:ZReusePlane Z_POS

and the number of times particles will be reused (indeed the particles is copied
NREUSE-1 times)

/gamos/setParam RTReuseAtZPlane:NReuse NREUSE

The user may independently create the phase space file or not at the smae Z position
or at others.

An important thing to take into account is that the particle is copied from the position
of the PreStepPoint. A possbile option would be to extrapolate it to the Z plane and
copied it at that position, but if the extrapolation is done with a straight line, it would
not take into account the straggling of charged particles.

Optimisation of a linac simulation
To optimise your simulation in GEANT4 you may tune the physics parameters (pro-
duction cuts, special cuts, multiple scattering options, ...) as well as try some reduc-
tion variance techniques.

Cuts optimisation
Please read the sections on automatic optimisation of production cuts and user limits
for accelerator and dose calculation simulations.

Electromagnetic parameters optimisation
There are many parameters that control the speed of the electromagnetic physics vs
its precision. Please see the web page http://fismed.ciemat.es/GAMOS/RToptim to get a
list of the best electromagnetic physics parameters that can optimise your simulation.

Particle splitting
Particle splitting is a non-biased variance reduction technique that may reduce the
CPU time of your accelerator simulation by a big factor. It basically consists on
splitting the secondary particles (in radiotherapy mainly gammas generated by
bremsstrahlung) N times, so that each time a bremsstrahlung gamma is created,
another N-1 gammas are created at the same position, with weight 1/N, re-sampling
the energy and/or angle distribution. As most of the particles that reach a patient in
a radiotherapy accelerator are bremsstrahlung gammas, by using this technique we
can spare the time simulating the original electron (usually even close to 50\%) and
we can the time tracking gammas that have small possibility of reaching the patient.

There are two splitting techniques implemented in GAMOS.

201

Chapter 22. Radiotherapy application

Uniform bremsstrahlung splitting
This technique is the simplest one. When a gamma suffers a bremsstrahlung interac-
tion, the resulting gamma is split N times producing N equal particles, each of weight
1/N.

To apply it you should select the following physics list

/gamos/physics GmEMPSPhysics

and the physics options:

/gamos/GmPhysics/addPhysics electron-lowener-UBS

/gamos/GmPhysics/addPhysics positron-standard-UBS

(remember that there is no low energy physics for positrons).

The splitting number should be set with the parameter

/gamos/setParam GmParticleSplittingProcess:NSplit NSPLIT

that by default takes a value of 10. Another parameter controls how many times a
particles will be split

Z-plane directional bremsstrahlung splitting
In this technique the user must define first a plane perpendicular to the Z axis at
a given Z position and limit its dimensions in X and Y. This can be done with the
parameters

/gamos/setParam GmPSZPlaneDirChecker:ZPos ZPOS

/gamos/setParam GmPSZPlaneDirChecker:XDim XDIM

/gamos/setParam GmPSZPlaneDirChecker:YDim XDIM

When a bremmstrahlung interaction occurs, it will be checked if the direction of each
of the split gamma points towards the user-defined square. If it does, the gamma is
kept, if it does not, Russian roulette is played with a probability 1/N so that if the
gamma survives its weight will be set back to 1.

It is recommended that the square is placed close to the phantom upper plane and
has dimensions a few centimeteres wider than the phantom.

To apply it you should select the following physics list

/gamos/physics GmEMPSPhysics

and the physics options:

/gamos/GmPhysics/addPhysics electron-lowener-ZBS

/gamos/GmPhysics/addPhysics positron-standard-ZBS

(remember that there is no low energy physics for positrons).

The splitting number should be set with the parameter

/gamos/setParam GmParticleSplittingProcess:NSplit NSPLIT

This bremsstrahlung splitting technique is more efficient than the uniform
bremsstrahlung splitting, because only a few gammas that are not aimed to the
region of interest are tracked, but it has the inconvenient that tracks with different
weights (1/N and 1) reach the patient, spoiling the efficiency gain. To take profit
of the definition of a region of interest while keeping the same weight for all the
particles that reach the phantom, a third splitting technique has been developed,
that is described below.

202

Chapter 22. Radiotherapy application

Killing particles at big X/Y
This utility serves to kill the particles that would probably not reach your detector
because they have too big X and Y positions (it is assumed that that your detector is
described along Z and that your initial particles move in this direction in the positive
sense).

It makes a list of the volumes that are placed directly on the world volume and
computes the minimum and maximum extension in X and Y (using the method
G4VSolid::GetExtent()). This rectangular area extends from the minimum Z value of
this volume until the minimum Z value of the next volume, so that all tracks that are
outside it will be killed. This utility is activated by selecting the user action

/gamos/userAction RTZRLimitsAutoUA

You may argue that too many particles (or too few) are killed with this automatic
definition of limits. You may simply changed the dimensions of the volumes placed
at world (adding container volumes made of air will not change your physics). or
you can define the limits your self by selecting the user action

/gamos/userAction RTZRLimitsUA

Then you have to write a file named rtzrlimits.lis with the list of values you want to
use. The format of that file should be the following: a set of lines with three numbers
representing the Z value of the plane and then the X and Y limits. The planes will be
extended in Z until the previously defined Z (for the minimum Z defined the world
negative Z limit will be used).

If you want to change the name of the limits file, you can do it with the command
(remember to define a parameter always before selecting the user action)

/gamos/setParam RTZRLimitsUA:FileName MY_FILENAME

The user has also the option that particles rejected are not killed, but Russian Roulette
is played with them and only if they are rejected they are killed. If they are accepted
their weight will be increased by the corresponding value. To use this option the
following parameter must be set:

/gamos/setParam RTVZRLimitsUA:UseRussianRoulette TRUE

The value of the Russian rouleet threshold is set with the parameter

/gamos/setParam RTVZRLimitsUA:RussianRouletteValue VALUE

which by default takes a value of 100.

Scoring dose in phantom
To use a phantom geometry you can use the GAMOS utilities to read phantom ge-
ometries in EGS or GEANT4 formats or build simple phantoms with a few user com-
mands. The scoring of the dose in the phantom volumes can be done using the scorer
GmG4PSDoseDeposit and selecting as detector the voxels, that are named patient. For
example you can use the following commands:

/gamos/scoring/createMFDetector DoseDet patient

/gamos/scoring/addScorer2MFD DoseScorer GmG4PSDoseDeposit DoseDet

This is all you need to get on the standard output the dose by event deposited in each
voxel. When you use a phase space as input the number of events is not the number
of events run in your job (what would equal be the number of particles in the phase
space multiplied by the number of times each particles is reused), but GAMOS uses
as number of events the original number of events that were used to generate the
phase space. In fact, GAMOS gets the ratio of particles written in the phase space per
original event transported through the accelerator and multiplies this ratio by the
number of phase space particles used. This allows to get the best approximation to

203

Chapter 22. Radiotherapy application

the correct number of events when the phase space is not used fully, or when particles
are reused (it is indeed not the exact number if for example you use only the 10 first
particles in the phase space: the number of events that generated those 10 particles
may be bigger or smaller than the number of events that generated the following 10
particles, due to statistical fluctuations).

If you are using the option of skipping voxel frontiers when the material does not
change (see section on Reading DICOM files) you may take into account the possibility
of tuning the distributions of dose deposited in the voxels traversed by one step (see
section on Scoring in voxelised phantoms).

Saving scores and score errors in text file
You can also store the dose in each voxel in a file, what allows to calculate the average
dose calculated with several jobs (see dose analysis section).

The first file is a text file where it is written the dose and dose error in each voxel. To
obtain it you just have to add the scorer printer GmPSPrinter3ddose to your scorer, for
example

/gamos/scoring/addPrinter2Scorer GmPSPrinter3ddose DoseScorer

The output file is named by default 3ddose.out. You may change it with the parameter

/gamos/setParam PRINTERNAME_SCORERNAME:FileName MY_FILENAME

wherePRINTERNAME is the name of the printer, by default GmPSPrinter3ddose, and
SCORERNAME is the name you have given to the scorer.

The format is the same as the one 3ddose format used in DOSXYZnrc, except that the
first line contains the number of events:

• Number of voxels in the X, Y and Z directions (e.g. n_x, n_y, n_z)

• Array of voxel boundaries (cm) in the X direction (n_x+1 values)

• Array of voxel boundaries (cm) in the Y direction (n_y+1 values)

• Array of voxel boundaries (cm) in the Z direction (n_z+1 values)

• Array of dose values (Gy/cm^3) (n_x n_y n_z values)

• Array of dose relative error values (n_x n_y n_z values)

Saving scores and scores squared in binary file
The second available file is a binary file where it is written the dose and dose squared
in each voxel. The binary format allows for a faster writing and reading and the fact
of writing the dose squared instead of the error serves to calculate in a proper way
the error correlations when the doses from several jobs are added. To obtain it you
just have to add the scorer printer GmPSPrinterSqdose to your scorer, for example

/gamos/scoring/addPrinter2Scorer GmPSPrinterSqdose DoseScorer

The output file is named by default sqdose.out. You may change it with the parameter

/gamos/setParam PRINTERNAME_SCORERNAME:FileName MY_FILENAME

wherePRINTERNAME is the name of the printer, by default GmPSPrinterSqdose, and
SCORERNAME is the name you have given to the scorer.

All variables are of type float and the format is the following:

• Number of events (original number of events used to generate a phase space file is
phase space file is used as primary generator)

• Number of voxels in the X, Y and Z directions (e.g. n_x, n_y, n_z)

204

Chapter 22. Radiotherapy application

• Array of voxel boundaries (cm) in the X direction (n_x+1 values)

• Array of voxel boundaries (cm) in the Y direction (n_y+1 values)

• Array of voxel boundaries (cm) in the Z direction (n_z+1 values)

• Array of dose values (Gy/cm^3) (n_x n_y n_z values)

• Array of dose squared values ((Gy/cm^3)^2) (n_x n_y n_z values)

To optimise the disk space and the memory needed to read the file back, it is possible
to only store the dose and dose squares of those voxels that are filled. This can be
done by setting the parameter:

/gamos/setParam GmSqdose:FileType FILLED

The default value of this parameter is ALL .

Saving scores in histograms
If you want to store the scores in the phantom in an histogram file, you can use the
scorer printer RTPSPDoseHistos

/gamos/scoring/addPrinter2Scorer RTPSPDoseHistos DoseScorer

The number of bins in the histograms will be equal to the number of voxels in the
phantom (nVoxel) and the histogram limits are the -nVoxel/2 +to nVoxel/2.

The name of all these histograms start with RTPSPDoseHistos: and they are all
dumped into the file dose.root/csv.

The following histograms are produced by default:

• Dose in X direction ("Dose Profile X_merged")

• Dose in Y direction ("Dose Profile Y_merged")

• Dose in Z direction ("Dose Profile Z_merged")

• Dose in XY direction ("Dose XY_merged")

• Dose in XZ direction ("Dose XZ_merged")

• Dose in YZ direction ("Dose YZ_merged")

• Dose of each voxel ("Dose")

• Integrated dose of each voxel, i.e. all the voxels that have dose equal or greater that
a given bin fill that bin ("Dose-volume")

The word merged refers to the fact that this histograms count the dose in one direction
(or two) integrating the dose in all the voxels in the ohter two (or one) direction.

If you want to obtain other histograms out of the dose in the voxels, you may list
what you want in a file in the following way: first give the name of your file with the
parameter:

/gamos/setParam RTPSPDoseHistos:HistosFileName FILE_NAME

In this file you have to fill a line for each histogram you want with the following
information:

• Histogram type: it must be 1X, 1Y, 1Z, 2XY, 2XZ or 2YZ

• Histogram name

• Minimum voxel in X

• Maximum voxel in X

• Minimum voxel in Y

• Maximum voxel in Y
205

Chapter 22. Radiotherapy application

• Minimum voxel in Z

• Maximum voxel in Z

For the minimum and maximum voxel value you may use the total number of voxels
by writing one of the words NVoxelX, NVoxelY or NVoxelZ. Also arithmetic expres-
sions are comment (starting the line with // are allowed. One example file can be the
following (for a phantom with number of voxels 101 101 100):

// recovering the 1D merged histograms
1X "RTPSPDoseHistos:Dose Profile X_merged" 0 NVoxelX-1 0 NVoxelY-1 0 NVoxelZ-1
1Y "RTPSPDoseHistos:Dose Profile Y_merged" 0 NVoxelX-1 0 NVoxelY-1 0 NVoxelZ-1
1Z "RTPSPDoseHistos:Dose Profile Z_merged" 0 NVoxelX-1 0 NVoxelY-1 0 NVoxelZ-1
// Y profiles at several depths
1Y "RTPSPDoseHistos:Dose Profile Y 1.400 cm" 50 50 0 NVoxelY-1 6 6
1Y "RTPSPDoseHistos:Dose Profile Y 10.000 cm" 50 50 0 NVoxelY-1 49 49
// PDDs merging voxels
1Z "RTPSPDoseHistos:Dose Profile Z 1x1" 50 50 50 50 0 NVoxelZ-1
1Z "RTPSPDoseHistos:Dose Profile Z 3x3" 49 51 49 51 0 NVoxelZ-1

It is also possible to produce in a simple way a full set of 2-dimensional plots covering
a whole phantom in any of the three dimensions. To do one must use the following
parameter:

/gamos/setParam RTPSPDoseHistos:AllHistos2D 2DIM_2 2DIM_2 ..

The 2DIM_i values can be XY, XZ or YZ (you can use one of several of these three in
your command). To visualise them in a simple way you may use the printAll.C (see
Appendix) ROOT utility to convert all the histograms in graphics files.

Analysis utilities
This is a set of utilities that may serve in the analysis of phase space and dose files, for
example to sum phase space or dose files from different jobs, to get basic information
of the file contents, to fill histograms out of the files or to compare files from two jobs.

All these utilities are under the directory analysis. They are compiled by default with
the rest of GAMOS code and after that they are available as executables as mentioned
in the following subsections.

Summing phase space files
This utility serves to sum phase space files corresponding to different jobs with the
same setup. To use it you have to write a file containing the list of header phase space
files, one file per line, for example

ps.20000.IAEAheader
ps.20001.IAEAheader
ps.20002.IAEAheader

Then you just have to run the executable

sumPS INPUT_FILE_LIST_NAME OUTPUT_FILE_NAME

where INPUT_FILE_LIST_NAME is the name of the file containing the list of files
to add and OUTPUT_FILE_NAME is the name of the output file that will contain
the sum of all the files (two files indeed as usual for IAEA phase space files: OUT-
PUT_FILE_NAME.IAEAheader and OUTPUT_FILE_NAME.IAEAphsp).

When running you will see on the screen something similar to this:

Opening phase space contained in ps.20000.IAEAheader of type IAEA

206

Chapter 22. Radiotherapy application

PARTICLES 225437 NPART_TOT 225437 NPARTORIG_TOT 5000000
RATIO 0.0450874 +- 0.000101661 RATIO_TOT 0.0450874

Opening phase space contained in ps.20001.IAEAheader of type IAEA
PARTICLES 224635 NPART_TOT 450072 NPARTORIG_TOT 10000000

RATIO 0.044927 +- 0.000101455 RATIO_TOT 0.0450072
Opening phase space contained in ps.20002.IAEAheader of type IAEA
PARTICLES 224813 NPART_TOT 674885 NPARTORIG_TOT 15000000

RATIO 0.0449626 +- 0.000101501 RATIO_TOT 0.0449923
* * * * N Particles = 674885
* * * * N Photons = 673804
* * * * N Electrons = 1057
* * * * N Positrons = 24
* * * * N Original Histories = 1.5e+07

For each phase space files after the name of the file comes a line with the file statistics:
number of particles, accumulated number of particles of all files, accumulated num-
ber of original histories, ratio particles/original histories +- ratio error, accumulated
ratio particles/original histories. And at the end the statistics on the total number of
particles in total, photons, electron and positrons, and the total number of original
histories in all summed files.

Making histograms out of a phase space file
You can make histograms out of the particles contained in a phase
space file by running gamos with the input script that you can file in
RadioTherapy/analysis/phaseSpace/analysePS/rt.analysePS.in. If you edit it
and change the name of the input phase space file, at /gamos/setParam
RTGeneratorPhaseSpace:FileName, and run

gamos rt.analysePS.in

You will get a file named phaseSpace.root, that contains the same histograms that you
get when you run the job to write the phase space file (see section on Phase space
histograms).

Alternatively you can directly analyse a phase space file with the executable analy-
sePS. You just have to type in your shell:

analysePS FILE_NAME

where FILE_NAME is the name of the phase space header file (the one that ends with
.IAEAheader; you may indeed omit the suffix .IAEAheader if you want).

When running you will see on the screen something similar to this:

READING FILE ps.ubs.10x10.6

ORIGINAL HISTORIES= 2000000
N PARTICLES= 5.13303e+07 PER ORIG_HIST= 25.6651 +- 0.0184982
N GAMMAS= 5.11882e+07 PER ORIG_HIST= 25.5941 +- 0.0184479
N ELECTRONS= 137257 PER ORIG_HIST 0.0686285 +- 0.000191492
N POSITRONS= 4839 PER ORIG_HIST= 0.0024195 +- 3.48235e-05
Reading PHSP track 0

...
Reading PHSP track 51000000
=== saving histograms in file === phaseSpace.root

The output contains the total number of original histories and after the number of
particles, gammas, electrons and positrons in the phase space file, and these numbers
divided by the number of original histories, with the error. Also an histogram file
equal to the file that was created when producing the phase space file will be created.

207

Chapter 22. Radiotherapy application

Several arguments can be supplied to the executable in the standard Unix format:

• -f phase space file name (in this case do not use the file name alone as first argument
as before)

• -NRead number of particles to be read from the phase space file

• -fOut output file name

• -EMax maximum limit of the energy histograms

• -RMax maximum limit of the position histograms

• -NBins number of bins of histograms

• -verb verbosity: it sets the RTVerbosity. Default is warning, that will print the above
lines; debug, that will print each particle read form the phase space file

• -help prints the set of arguments

Merging ’sqdose’ files
This utility serves to merge dose files in the format sqdose corresponding to different
jobs with the same setup, and getting the average dose of them. To use it you have to
write a file containing the list of header phase space files, one file per line, for example

sqddose.water.20000.out
sqdose.water.20001.out
sqdose.water.20002.out

Then you just have to run the executable

mergeSqdose INPUT_FILE_LIST_NAME OUTPUT_FILE_NAME

where INPUT_FILE_LIST_NAME is the name of the file containing the list of files to
merge and OUTPUT_FILE_NAME is the name of the output file that will contain the
merging of all the files.

When merging files it will be checked that they correspond to the same phantom by
checking the number of voxels and voxel limits.

Merging ’3ddose’ files
This utility serves to merge dose files in the format 3ddose corresponding to different
jobs with the same setup, and getting the average dose of them. To use it you have to
write a file containing the list of header phase space files, one file per line, for example

3ddose.water.20000.out
3ddose.water.20001.out
3ddose.water.20002.out

Then you just have to run the executable

merge3ddose INPUT_FILE_LIST_NAME OUTPUT_FILE_NAME

where INPUT_FILE_LIST_NAME is the name of the file containing the list of files to
merge and OUTPUT_FILE_NAME is the name of the output file that will contain the
merging of all the files.

When merging files it will be checked that they correspond to the same phantom by
checking the number of voxels and voxel limits.

208

Chapter 22. Radiotherapy application

Making histograms out of a ’sqdose’ file
You can make histograms out of dose information contained in a sqdose file by run-
ning

analyseSqdose SQDOSE_FILE_NAME

When running you will see on the screen something similar to this:

READING FILE sqdose.ubs.10x10.6.out
GmSqdoseHeader::Read NEvent 2.5e+08
GmSqdoseHeader::Read NVoxels 21 112 150
GmSqdose::Read type 1
USING std::map to store doses
Number of voxels= 352800
RTPSPDoseHistos nvoxel 21 112 150
RTPSPDoseHistos dim 1 1 1
RTPSPDoseHistos translation (0,0,-4)
RTPSPDoseHistos rotation
[(1 0 0)
(0 1 0)
(0 0 1)]
MINIMUM DOSE 2.352e-15
MAXIMUM DOSE 4.76001e-13
RTPSPDoseHistos AVERAGE ERROR 20% = 0.0139839
RTPSPDoseHistos AVERAGE ERROR 50% = 0.0111726
RTPSPDoseHistos AVERAGE ERROR 90% = 0.00996564
=== saving histograms in file === dose_analyseSqdose.root
N EVENTS IN SOURCE 2.5e+08

First it is printer the sqdose file header information: number of events (original events
run) and number of voxels in X, Y and Z. Then the type of the sqdose (see above).
Then the STL container that will be used to store the doses and dose errors (see ar-
gument descriptions below). Then the total number of voxels to be read and the in-
formation from the class RTPSPDoseHistos: number of voxels in X, Y and Z, voxel
dimensions in X, Y and Z, translation and rotation applied to phantom when dose
file was written and the statistics, i.e. minimum and maximum voxel dose, and aver-
age dose error in 20%, 50% and 90% highest dose voxels.

You will also get a file named dose_analyseSqdose.root, that contains the same his-
tograms that you get when you run the job to write the dose file using the scorer
printer RTPSPDoseHistos.

Several arguments can be supplied to the executable in the standard Unix format:

• -f phase space file name (in this case do not use the file name alone as first argument
as before)

• -NRead number of particles to be read from the phase space file

• -fOut output file name

• -fHistos name of file with list of histograms

• -DoseMin minimum limit of dose histograms

• -DoseMax maximum limit of the dose histograms

• -cont type of the STL container that will be used to store the doses and dose errors.
It can be MAP or map, that uses a std::map; it is the default one, the one used
by the Geant4 scorers. It can also be VECTOR or vector, that uses a std::vector; it
occupies about ten times less than the std::map. The std::map container occupies
a big amount of space, about 500 Mb for 10 million voxels, so we recommend you
that you use std::vector if your phantom is big

• -NVoxels total number of voxels in phantom (argument needed if sqdose file is of
type FILLED

209

Chapter 22. Radiotherapy application

• -verb verbosity: it sets the RTVerbosity. Default is warning, that will print the above
lines; debug, that will print each particle read form the phase space file

• -help prints the set of arguments

Automatic determination of production cuts for an accelerator
simulation
The method used in GAMOS to determine the best production cuts is based on what
we can call an ’inverse reasoning’. We count each particle that reaches a given Z
plane (corresponding to the phantom surface) and we calculate first the range of the
particle in the region where it is created. Then we can know that if we put a range
cut in that region smaller than the calculated range, that particle would not reach our
target plane. We also compute the range of the mother particle in the region where it
was created and the same consecutively for all the ancestors. We know then that if we
set in any of the regions where each of the ancestor particles are created a cut smaller
than the corresponding range, we would stop the chain of particles and therefore we
would have no particle in the target plane. After running a good number of tracks
we can know for each particle type and for each region which is the biggest range
we can put if we do not want to lose any particle. Indeed we may allow to lose a
small amount of particles if this speeds up our simulation. To know easily which is
the biggest cut you can use to lose less than a given percentage of particles, GAMOS
provides a set of plots (one per each particle type and per each region) and a simple
script to get automatically the cut values.

One warning is due here: as mentioned above when a track reaches the target, its
range fills a histogram, but also the range of all the ancestors of this track. It may
happen then that when you set a certain cut and the abovementioned script gives
you how many tracks would be killed, more than one killed track correspond to the
same track reaching the target (i.e., with a cut you kill the track that reaches the target
and the parent track). Therefore you might have an overcounting of the number of
tracks killed by a cut. To avoid this the total number of tracks (the last lines of output)
is not computed as the sum of tracks in the region. This number uses a histogram that
contains only one entry per track reaching the target, the one corresponding to the
track with the smallest range. If you want to set a different cut for each region and
are worried for this double counting, you may have a look at the histogram named
"trackInfos per Track in target", that plots per each track reaching the target how
many track informations are kept in the histograms. Another useful histogram for
this case may be the 2D histogram "trackInfo Region vs trackInfo Region", that plots
all the region number of all the pairs of track informations that correspond to the
same track reaching the target (you can get a list of which region number corresponds
to which region at the end of the standard output file).

To use this utility in GAMOS it is only needed to add this command in your script:

/gamos/userAction GmProdCutsStudyUA RTCutsStudyFilter

or that will use as target condition that a track reaches a plane perpendicualr to the
Z axis defined with the parameters

/gamos/setParam RTCutsStudyFilter:PlaneZ ZPOS

/gamos/setParam RTCutsStudyFilter:PlaneXDim XDIM

/gamos/setParam RTCutsStudyFilter:PlaneYDim YDIM

This command will produce at the end of run a table and a histogram file with the
needed information. The table will contain the minimum range that can be applied
for each region/particle/process not to lose any track reaching the target, and it will
look like this

%%%%% PRODUCTION CUTS STUDY RESULTS
GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=

210

Chapter 22. Radiotherapy application

gamma PROCESS= ALL MIN RANGE= 353161.38
GmProdCutsStudyUA: REGION= DefaultRegionForTheWorld PARTICLE=
gamma PROCESS= eBrem MIN RANGE= 353161.38

To get the cuts values for not losing a given percentage of particles in
the target plane you can execute the ROOT script that can be found at
GamosCore/GamosPhysics/GamosCuts/getProdCutsEffect.C :

root -b -p -q .x getProdCutsEffect.C++\(\"prodcuts.root\",percentage\)

and look at the last lines of output, those that contain the word ’FINAL’, like the
following ones

PARTICLE= e+ FINAL= 17 / 19
PARTICLE= e- FINAL= 72 / 34185
PARTICLE= gamma FINAL= 72 / 34184

Automatic determination of production cuts for a dose in a
phantom simulation
The use of production cuts in a dose computation may introduce a bias when a par-
ticle is killed (and then its energy is deposited locally) and it has enough energy to
reach the next phantom voxel, or enough energy to create a particle that reaches the
next phantom voxel (this happens mainly for electrons creating gammas, which have
a much higher range).

To calculate automatically the best production cut, that is the one that gives the small-
est CPU while biasing the dose computation a minimal amount, GAMOS uses an
inverse reasoning. For a given set of cuts for electron and gamma it does not apply
them but tags the particles that would have been killed by them. It also tags the voxel
in which the particle is produced and then it computes all the dose deposited by the
tagged particle or any of its children in a voxel that is not the same as the tagged
voxel.

To use this utility in GAMOS you just have to associate to your dose scorer a filter of
type GmProdCutOutsideVoxelFilter, passing to it as arguments the gamma cut and
the electron cut, like in the following example

/gamos/scoring/addFilter2Scorer ProdCutFilter GmProdCutOutsideVoxelFilter
PDDscorerPC10.1. 10.*mm 1.*mm

You should add another scorer without filter to get the total dose. After running your
job with as many scorer-filter combinations as you like, you can look at the total
dose deposited by each scorer and compare it with the total dose. It may happen that
the dose lost with certain cuts, despite being a small proportion of the total dose, is
distributed in a different manner than the total dose, introducing some bias in some
region that you consider not acceptable. To check in detail the dose produced with a
certain filter you can add a scorer printer of type RTPSPDoseHistos, that will produce
several histograms of the dose (PDD, X & Y profiles, dose, dose-volume):

/gamos/scoring/addPrinter2Scorer RTPSPDoseHistos DoseScorerPC10.1.

The name of the printer will be passed to the name of the file containing the his-
tograms.

Automatic determination of user limits for an accelerator
simulation
The method used in GAMOS to determine the minimum range user limits is similar
to the one used to determine the best production cuts. The main difference is that
when a track reaches the target we do not have to look at the range it had when

211

Chapter 22. Radiotherapy application

created, but at the range it had in every step. This is because even if we want the
minimum step, the track may have crossed several regions and the smallest range
may not correspond to the last step. What we do nevertheless is only consider the
last step when there are a set of contiguous steps in the same region. Also for the
ancestor tracks we have to store the information of each step, starting of course with
the one when the track that reached the target (or its n-th ancestor if we are looking
at the (n+1)-th ancestor) was created.

The same warning as for the production cuts should be mentioned here, but in this
case it is more than a mere warning: when a track reaches the target, we accumulate
one-track information of the last step in each region, for each of the ancestor tracks.
Therefore it is very likely that there are more than one track information per track
reaching the target, and therefore there will be overcounting of the number of tracks
killed by a cut. As for the production cuts you should keep an eye on this.

To use this utility in GAMOS it is only needed to add the command in your script:

/gamos/userAction GmMinRangeLimitsStudyUA RTCutsStudyFilter

what will produce at the end of run a table and a histogram file with the needed
information.

root -b -p -q .x getMinRangeCutsEffect.C++\(\"prodcuts.root\",percentage\) |& tee out

and look at the last lines of output, those that contain the word ’FINAL’, like the
following ones

PARTICLE= e+ FINAL= 17 / 19
PARTICLE= e- FINAL= 72 / 34185
PARTICLE= gamma FINAL= 72 / 34184

Automatic determination for a dose in phantom simulation
The method used in GAMOS to determine the minimum range user limits is similar
to the one used to determine the best production cut.

To use this utility in GAMOS you just have to associate to your dose scorer a filter of
type GmProdCutOutsideVoxelFilter, passing to it as arguments the gamma cut and
the electron cut, like in the following example

/gamos/filter ProdCutFilter GmMinRangeCutOutsideVoxelFilter 10.*mm 1.*mm

/gamos/scoring/addFilter2Scorer ProdCutFilter DoseScorerPC10.1.

After running your job with as many scorer-filter combinations as desired, you can
look at the total dose deposited and compare it with the dose with very small cuts.
It may happen that the dose with certain cuts, despite being a small number, is dis-
tributed in a different manner than with very small cuts, introducing some bias that
you consider not acceptable. To check in detail the dose produced with a certain fil-
ter you can add a scorer printer of type RTPSPDoseHistos, that will produce several
histograms of the dose (PDD, X & Y profiles, dose, dose-volume):

/gamos/scoring/addPrinter2Scorer RTPSPDoseHistos DoseScorerPC10.1.

The name of the printer will be passed to the name of the file containing the his-
tograms.

212

Chapter 23. DICOM utilities

This is an utility that allows to define arbitrary magnetic fields and control their track-
ing precision paramters and also calculates the magnetic fields for different structures
(circular coil, solenoid, ...) and stores them in a file for later used.

You can find all the relevant documentation in the file:

GAMOS.3.0.0/source/MagFieldManager/doc/user_manual_bfield_manager.pdf

In GAMOS it is already installed, so you may skip the installation instructions.

213

Chapter 23. DICOM utilities

214

Chapter 24. Magnetic field manager

This is an utility that allows to define arbitrary magnetic fields and control their track-
ing precision paramters and also calculates the magnetic fields for different structures
(circular coil, solenoid, ...) and stores them in a file for later used.

You can find all the relevant documentation in the file:

GAMOS.3.0.0/source/MagFieldManager/doc/user_manual_bfield_manager.pdf

In GAMOS it is already installed, so you may skip the installation instructions.

215

Chapter 24. Magnetic field manager

216

Chapter 25. Optimising the CPU time of your application

We recommend you to spend some time in optimising the CPU time spent by your
application, as you may save a big amount of CPU time with not too much effort.

Knowing where the time is spent
Before starting your optimisation it may be very useful to understand wher the time
is spent. For example if most of the time is spent tracking some typr of particle, some
volumes, or particles created by some process. To get a report of where the time is
spent GAMOS provides the user action GmTimeStudyUA, that you can combine with
one or more classifiers to get a detailed report.

Production cuts
The production cuts are the minimum energy of the electrons produced by ionisation
and of gammas produced by bremsstrahlung (and also of the positrons produced by
pair production process of muons if you are using these particles). If the cut values
are very big, it means that ou are not creating electrons or gammas of high energ
but instead you count all their energy as energ deposited at the last step position..
so you should check that your value is not too high. On the other side, the number
of these particles produces grows exponentially as ou diminish these cuts, so you
should check that your value is not too low.

The cut is given in Genat4 as a distance value, meaning that ou are not creating an
electron or gamma if (in average) it is not going to travel a distance longer thatn
the cut value. A rule of thumb may be that you set a cut value of the order of 1/10
of the resolution you have, so that your results are not affected much (of course if
you want to have a very high precision the effect of the cut should be reduced even
further). The default cut value in GAMOS is 0.1 mm. You may change it with the
Geant4 command:

/run/particle/setCuts VALUE mm

You should also take into account the possibilit of using different cut for different
parts of your geometry (regions). For example a bigger cut in regions where you
do not measure anything and a lower cut in your sensitive regions; or a big cut if
the particles created in a region are far from you detectors so that they have a very
small probability of reaching them. To set cuts per region see section production cuts
by region.

To understand if the changing of cuts may have an important effect in your CPU
time, you may do first a time study checking if the particles created by ionisation or
bremsstrahlung are taking a big proportion of the time, by adding the command:

/gamos/userAction GmTimeStudyUA GmClassifierByCreatorProcess

If your application is a nuclear medicine detector or a radiotherapy tratment, we
recommend you to read the sections of autmatic optimisation of production cuts,
which may help you in getting the best cut values.

By default the production cuts only affect ionisation and bremsstrahlung, but you
may force that they are also used in all processes by using the command:

/gamos/physics/applyCutsForAllProcesses 1

Killing particles of small energy
An alternative or complementary approach ot the optimisation of production cuts is
the optimisation of the user limits that kill the particles when their energy becomes
small (see section on User limits). It is likely logic that if you put a production cut to

217

Chapter 25. Optimising the CPU time of your application

kill particles of small range, you kill the particles when their energy becomes small
so that they will not travel more than that range value. For efficiency reasons we
recommend that you use the user limit:

/gamos/physics/userLimits/setMinEKinByRange USER_LIMITS_NAME
LOGICAL_VOLUME_NAME PARTICLE_NAME MIN_RANGE

If your application is a nuclear medicine detector or a radiotherapy tratment, we
recommend you to read the sections of autmatic optimisation of user limits, which
may help you in getting the best values.

Killing particles
The two user actions GmKillAtStackingUA and GmKillAtSteppingUA combined with
the filtering mechanism can help you to kill those particles that you know are not
affecting your result by a sensible amount. For example you may kill the neutrinos
produced in a radioactive decay, or the electrons in an application where you are
scoring neutrons.

Optimising the particle generation
GAMOS provides a wide variety of primary generator distributions with which to
simulate in detail the primary particles that correspond to your application. But you
may consider that some particles will not reach your detector (or will reach it with
a very small probability) and modify your distributions so that those particles are
never produced. Another alternative is to use a biasing distribution (see section on
Biasing generator distributions.

Limiting the number of user actions
Some of the user actions (for example those that fill lots of histograms) may consume
a non negligible amount of CPU time. Therefore a simple recommendation is to check
that you deactivate all the user actions you do not need when you are making a big
production of events.

Using variance reduction techniques
Several variance reduction techniques are provided by GAMOS to optimise the CPU
time for specific applications. See the section on Variance reduction techniques or the
corresponding application.

218

Chapter 26. Appendix A

Using parameters
As you can see through this guide, many algorithms in GAMOS use parameters to let
the user change their behaviour. All the parameters in GAMOS have a default value
and the user may change it in the user command file with the command:

Checking the usage of parameters
Many of the GAMOS classes or your own classes have a different behaviour depend-
ing on the value of some parameters. You can see many example of this throughout
this guide.

You have to remember always to set a parameter before you invoke any code that
may use it (we recommend you to set all the parameters at the beginning of your
command file). The parameters are read usually in the class constructors; therefore,
if you set a parameter after the class has been constructed, it will take no effect and
the default value will be used.

To guarantee that you have done it this way, you will get at the end of a GAMOS job
the information on the usage of parameters. You will always get a list of the parame-
ters that have not been used in the code. This is probably an indication that you have
mistyped a parameter name. This list appears at the end of your output and looks
similar to this one:

%%%%% PARAMETERS NOT USED (DEFINED IN SCRIPT BUT
NOT USED BY C++ CODE)

%%% MAYBE YOU HAVE MISPELLED THEM?
PARAMETER: GmGeometryText:FileNam

Other lists are available at user request to get a more detailed information. You may
get them anywhere in your simulation by using the command

/gamos/base/printParametersUsage LEVEL

If LEVEL takes a value >= 0 you will get the same list as above. If LEVEL takes a value
>= 1 you will get a list of parameters that are using the default value (you may then
check if this list contains one of the parameters whose value you thought you have
changed). This list looks similar to this one:

%%%%% PARAMETERS USING DEFAULT VALUE (DEFINED IN C++
CODE BUT VALUE NOT DEFINED IN SCRIPT)
PARAMETER: Generator:Isotope:FileName
PARAMETER: GmCountTracksUA:FirstEvent

If LEVEL takes a value >= 2 you will get a list of how many times each parameter
have been used. This list looks similar to this one:

%%%%% NUMBER OF TIMES EACH PARAMETER IS USED IN C++ CODE
PARAMETER GmCountTracksUA:EachNEvent TIMES USED= 1
PARAMETER GmGeometryFromText:FileName TIMES USED= 1

219

Chapter 26. Appendix A

Managing the input data files
To run an example you will probably need some input data, like for example the file
describing the geometry, the list of isotopes, etc.

You can set the name of your file in your script, but you do not need to tell the path
where to look for it. An environmental variable, called GAMOS_SEARCH_PATH con-
tains the list of directories where GAMOS will look for your file. The directories are
separated by a colon, and their order in this variable reflects the order in which they
will be searched. This variable is set up when you configure GAMOS, and takes a
default value of

.:MY_GAMOS_DIR/data

You may change this value at your will, but remember not to reset the GAMOS con-
figuration after that, because it will reset it to its original value.

/gamos/setParam PARAMETER_NAME PARAMETER_VALUE(S)

There are four types of parameters in GAMOS:

• One number

• A list of numbers

• One string

• A list of strings

The above command can be used for any kind of parameters, and GAMOS will detect
which of the four types it is by analysing the parameter values. There may be though
some peculiar cases where this automatic identification may fail. For example if you
want to set a parameter for a list of volume names like VOL_A1, VOL_B1, VOL_C1
and you use a parameter to set its value equal to the three like:

/gamos/setParam PARAMETER_NAME *1

GAMOS will mistakenly think that is a parameter of type number number. For this
cases it is possible to use a command specific for each of the four types:

/gamos/setParamN PARAMETER_NAME NUMBER

/gamos/setParamLN PARAMETER_NAME NUMBER_1 NUMBER_2 ...

/gamos/setParamS PARAMETER_NAME STRING

/gamos/setParamLS PARAMETER_NAME STRING_1 STRING_2 ...

Random number seeds
If you want to run several jobs with the same configuration but different random
seeds each, you can use the GEANT4 random number management, or do it the
GAMOS way. GAMOS offers a single command with which you can give a different
initial random seed to your job, so that the results are statisticaly independent:

/gamos/random/setSeeds SEED_1 SEED_2

where two numbers are given to better guarantee the independence of the results.
SEED_1 is the initial random seed and SEED_2 is the number of times a random seed
is sampled before starting the simulation. You may use different or equal numbers
for these two, and use continuous numbers (e.g. 1001, 1002, 1003, ...) if you want.

Changing the random engine
The random engine (the algorithm that gets the random numbers) may be changed
with the command:

/gamos/random/setEngine ENGINE_NAME
220

Chapter 26. Appendix A

Any of the engines available in CLHEP can be chosen, i.e. DRand48Engine DualRand
Hurd160Engine Hurd288Engine HepJamesRandom MTwistEngine NonRandomEngine
RandEngine RanecuEngine Ranlux64Engine RanluxEngine RanshiEngine TripleRand.

Sending several jobs in the same machine
It may often happen that you have a multi-core machine and you want to run several
jobs at the same time on it to accumulate statistics. The approach that is explained
here is to send the same job several times with different random seeds. Another pos-
sible approach, which will be available in future GAMOS releases, is to use multi-
threading, what will spare the initialisation time and reduce the memory by sharing
it among the different jobs.

There are many ways of sending many jobs together in a machine. Here we propose
a simple but flexible script that may facilitate this task. This script is written in the
Unix command language bash, and it just needs the utility awk, a data extraction and
reporting tool which is available on any Unix or MacOS operative system.

The example has four input parameters that the user has to give: energy, random
seed, number of events, number of jobs. The four parameters will be converted to
internal variables:

set the variables read from the command line
ENERGY=$1
SEED=$2
NEV=$3
NJOBS=$4

Then the loop to the number of jobs is started:

start the loop of jobs
nj=0
while
test $nj -lt $NJOBS
do

A different suffix for each job is created, which will be added to the new name of the
input file, as well as to the output file name defined inside the input file:

set the suffix of the output files
SUFFIX=$1"."$2"."$3"."$nj
echo " SUFFIX = $SUFFIX "

The input file is copied into a new one, so that you can keep a track of the different
files that are run:

copy the input file into a new one (so that you can keep a track of the different files that are run)
new_inputfile="exercise2."$SUFFIX
log_inputfile=zz"_"$new_inputfile
echo " The new input file = " $new_inputfile

The awk tool is used to substitute the scrip input variables in the GAMOS input file:

substitute in the input file the variables from the command line

221

Chapter 26. Appendix A

awk -v ENERGY=$ENERGY -v SEED=$SEED -v NEV=$NEV -v nj=$nj -v SUFFIX=$SUFFIX ’{
if($1=="/run/beamOn") {printf("%s %s \n",$1, NEV) }

else if ($1=="/gamos/random/setSeeds") {printf("%s %s %s\n",$1, SEED, SEED+nj) }
else if($2=="RTPhaseSpaceUA:FileName") {printf("%s %s %s\n",$1, $2, "test."SUFFIX) }
else if($1=="/gamos/generator/addSingleParticleSource") {printf("%s %s %s %s\n",$1,$2,$3,ENERGY"*MeV") }
else { print $0 }
}’ "exercise2b.in" > $new_inputfile".inn"

You can observe that each of the variables that are going to be used by awk have to
be passed with the -v option. The awk will loop through the lines in the input file
and will make the substitutions. For example the line

else if($2=="RTPhaseSpaceUA:FileName") {printf("%s %s %s\n",$1, $2, "test."SUFFIX) }

means that it looks for a line whose second word is RTPhaseSpaceUA:FileName and
then substitutes this line by three words (three %s), the first two are left intact, and
the third one is substituted by the value of the SUFFIX, preceded by test..

Finally the job is sent in background. You may run it in foreground, what means that
you have to wait until a job finish to start the next one:

run job in background
gamos $new_inputfile".inn" 2>&1 | tee $log_inputfile &
run job in foreground
gamos $new_inputfile".inn" 2>&1 | tee $log_inputfile

If, for example, you want to run 40 jobs in your 4-core machine, you should not
run them all in background at the same time, as they will have to share the CPU
and memory, wasting your computer resources, or even saturating your memory. A
smarter approach would be to type four times a sendjobs command running jobs in
foreground:

sh sendjobs 6. 1111 10000 10 &

sh sendjobs 6. 2111 10000 10 &

sh sendjobs 6. 3111 10000 10 &

sh sendjobs 6. 4111 10000 10 &

The full sendjobs file can be found in your GAMOS distribution, under the directory
tutorials/RTTytorial/exercise2.

Identifying touchables
As explained in several points through this guide, you can use the concept of touch-
able available in GAMOS. We will explain first in a few lines the concept of touchable
in Geant4 and GAMOS:

In Geant4 there are several geometrical objects [7]:

• G4VSolid: A solid is a geometrical object that has a shape and specific values for
each of the shape dimensions

• G4LogicalVolume: A logical volume contains the volume’s full properties. It in-
cludes the geometrical properties of the solid, and adds physical characteristics:
the material of the volume, whether it contains any sensitive detector elements,
the magnetic field, etc.

222

Chapter 26. Appendix A

• G4VPhysicalVolume: A physical volume is a volume placed already in another vol-
ume, that is a volume with position and rotation matrix

• G4VTouchable: A touchable is each copy of a volume. To understand the difference
with a physical volume, we put an example: If you place a volume A in 5 places
and a volume B in 12 places, you will have 5 + 12 physical volumes, each one with
a distinct position and rotation matrix. But you will have 5 X 12 = 60 individual
copies, that is 60 touchables

To save memory the G4VTouchable are instantiated in Geant4 only when a
track traverses the corresponding volume in space, and they are immediately
deleted when the track leaves. In GAMOS you have the possibility of accessing
any individual touchable whenever you like. When you need it you can ask
GAMOS to create a GmTouchable, which will have the same characteristics as the
corresponding G4VTouchable that would be created when a track reaches it.

To identify the touchable you want to use, you have to use the following notation:

For example the name CRYSTAL identifies all individual crystals of your detector that
have name “CRYSTAL”, while BLOCK:2/CRYSTAL:1 refers only to the crystal(s) with
copy number 1 in block(s) with copy number 2. RING:3/BLOCK/CRYSTAL:1 refers to
all the crystal(s) with copy number 1 in all the block(s) whatever copy number they
have in the ring(s) that have copy number 3.

If you are writing some new C++ code for GAMOS you can have easy access to the
list of touchables with a given name with the line

GmGeometryUtils::GetInstance()->GetTouchables(touch_name, itExists)

If the touchables do not exist in your geometry you will get a warning in case itExists
is false and an exception if itExists is true.

There is a limitation on the use of touchables: they cannot be used for assembly vol-
umes, as Geant4 creates internally the physical volumes.

Using asterisks to get volume, particle and material names
In many commands described in this guide, you give the name of a logical volume,
physical volume, touchable, particle or material, so that GAMOS finds the corre-
sponding Geant4 object. In case you want to apply your command to several vol-
umes with similar names, you can use an asterisk that would mean ’any character’.
For example if you have the volumes named CRYSTAL_BGO_1, CRYSTAL_BGO_2,
CRYSTAL_LUYAP_1 and CRYSTAL_LUYAP_2

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL*

will associate a sensitive detector to the four volumes, while

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL_BGO_*

will associate a sensitive detector to the two volumes CRYSTAL_BGO_1 and CRYS-
TAL_BGO_2, and

/gamos/SD/assocSD2LogVol GmSDSimple Calor CRYSTAL_*1

will associate a sensitive detector to the two volumes CRYSTAL_BGO_1 and CRYS-
TAL_LUYAP_1.

Using particle names
Each particle type in Geant4 is identified by a unique name. No particle is created by
Geant4 unless the user code does it explicitly. At any time in your command file you
can ask for a list of created particles with the command /run/particle/dumpList. If you

223

Chapter 26. Appendix A

do this after instantiating the GAMOS electromagnetic physics list, you will get the
following list:

anti_nu_e, chargedgeantino, e+, e-,
gamma, geantino, nu_e, opticalphoton

If you use the GAMOS hadronic physics list, you will get the following list:

GenericIon, He3, alpha, anti_neutron
anti_nu_e, anti_nu_mu, anti_nu_tau, anti_proton
chargedgeantino, deuteron, e+, e-
eta, eta_prime, gamma, geantino
mu+, mu-, neutron, nu_e
nu_mu, nu_tau, opticalphoton, pi+
pi-, pi0, proton, tau+
tau-, triton,

These are the names that should be used in the commands that need a particle name.
If you want to use hadrons, GAMOS also provides the possibility of grouping them,
so that with a single name you can identify the whole group. The groups defined are
the following:

• lightMeson: Mesons that only contain up and down quarks
pi+, pi-, pi0, eta, eta_prime, kaon+, kaon-, kaon0, kaon0L,
kaon0S, a0(*), a1(*), a2(*), k(*), k1(*), k2(*), k_star(*),
k0_star(*), k2_star(*), k3_star(*), anti_k(*), anti_k0(*),
anti_k1(*), anti_k2(*), anti_k_star(*), anti_k2_star(*),
anti_k3_star(*), b1(*), f0(*), f1(*), f2(*), f2_prime(*),
h1(*), eta(*), eta2(*), phi(*), phi3(*), pi(*), pi2(*),
rho(*), rho3(*)

• charmMeson: Mesons that contain a charm quark
D+, D-, D0, anit_D0, Ds+, Ds-, J/psi

• bottomMeson: Mesons that contain a bottom quark
B+, B-, B0, anti_B0, Bs0, anti_Bs0

• meson: All mesons

• lightBaryon: Baryons that only contain up and down quarks
proton, anti_proton, neutron, anti_neutron, N(*), anti_N(*),
delta(*), anti_delta(*)

• strangeBaryon: Baryons that contain a strange quark
lambda, anti_lambda, sigma0, anti_sigma0, sigma+,
anti_sigma+, sigma-, anti_sigma-, xi0, anto_xi0, xi-,
anti_xi-, omega-, anti_omega-, lambda(*), anti_lambda(*),
sigma(*), anti_sigma(*), xi(*), anti_xi(*), omega(*),
omega3(*)

• charmBaryon: Baryons that contain a charm quark
lambda_c+, anti_lambda_c+, sigma_c0, anti_sigma_c0,
sigma_c+, anti_sigma_c+ sigma_c++, anti_sigma_c++, xi_c+,
anti_xi_c+, xi_c0, anti_xi_c0, omeca_c0, anti_omega_c0

• baryon: All baryons

224

Chapter 26. Appendix A

• ion: ions
GenericIon, alpha, He3, deuteron, triton

• ALL: All particles

225

Chapter 26. Appendix A

226

Chapter 27. Appendix B: C++ utilities

Converting a Geant4 example into a GAMOS example
Converting a Geant4 example into a GAMOS examples usually requires only adding
a few lines to transform the different simulation components into plug-in’s. In ex-
amples/N02 you can see the official Geant4 example novice/N02 transformed into a
GAMOS example. We will use it to illustrate the procedure to follow.

The first thing to do is to substitute the Geant4 GNUmakefile by a GAMOS GNUmake-
file. You can use the file in this example for any other example you want to transform,
just substitute the line

name := exampleN02

by the name of your example (indeed you can use any name you want, it will be
automatically detected by GAMOS).

Then you have to add a file, that we called src/module.cc where all the plug-in’s are
created. The first line of this file (after the corresponding ’includes’), must be

DEFINE_SEAL_MODULE

For the detector construction it is only needed to add a line (plus the corresponding
include files)

DEFINE_GAMOS_GEOMETRY(ExN02DetectorConstruction);

For the physics, in a similar way, we add

DEFINE_GAMOS_PHYSICS(ExN02PhysicsList);

The primary generator requires some more changes. As you can see
ExN02PrimaryGeneratorAction constructor receives as argument the detector
construction class, so that it can then ask it for the dimensions of the world. This
is not needed in GAMOS because all volumes are available in any class through
the singleton class GmGeometryUtils. Therefore we have deleted the detector
construction argument in the constructor, and then we have substituted the line

G4double position = -0.5*(myDetector->GetWorldFullLength());

by this one

G4Box* worldBox = (G4Box*)(GmGeometryUtils::GetInstance()->
GetLogicalVolumes("World")[0]->GetSolid());
G4double position = -0.5*worldBox->GetXHalfLength();

After this in the src/module.cc a line has to be included

DEFINE_GAMOS_GENERATOR(ExN02PrimaryGeneratorAction);

For the user actions, we have first to transform then into GAMOS user actions, what
requires simply to edit the .hh classes and make them inherit from GmUserXXXAction,
instead of G4UserXXXAction. Then we have to add the following lines in module.cc

DEFINE_GAMOS_USER_ACTION(ExN02RunAction);

DEFINE_GAMOS_USER_ACTION(ExN02EventAction);

DEFINE_GAMOS_USER_ACTION(ExN02SteppingAction);

It is not needed to conver the sensitive detector into a plug-in, that could be called
in the user command file, because it is explicitly called in the detector construction
class. Indeed, if you want to do it, you should delete the lines that instantiate it there
and then you can write

DEFINE_GAMOS_SENSDET(ExN02TrackerSD);
227

Chapter 27. Appendix B: C++ utilities

The main class, exampleN02.cc is not needed any more. We use the GAMOS main and
a user command file, that we may exampleN02_GAMOS.in, with the user commands
that select the example components, like the following one:

/gamos/geometry ExN02DetectorConstruction
/gamos/physicsList ExN02PhysicsList
/gamos/generator ExN02PrimaryGeneratorAction

/gamos/userAction ExN02RunAction
/gamos/userAction ExN02EventAction
/gamos/userAction ExN02SteppingAction

/run/initialize

/run/beamOn 10

You can then run gamos exampleN02_GAMOS.in and you will get the same results as
if you run the original Geant4 example.

Creating your plug-in
There are several “factories” in GAMOS that take care of the different plug-in types.
To transform your class into a plug-in you have to follow the instructions in this
section, using the relevant “factory” and class as indicated in the relevant section
of this guide (e.g. GmPhysicsFactory and G4VUserPhysicsList for a geometry plug-in,
GmVerbosityFactory and GmVerbosityMgr for a verbosity plug-in, etc.

To write a new plug-in of any type follow these steps

1. Create your class or use one of the existing Geant4 classes. This class should
inherit from the corresponding Geant4 or GAMOS class:

• G4VUserDetectorConstruction: geometry

• G4VUserPhysicsList: physics list

• G4VUserPrimaryGeneratorAction: primary generator

• GmVGenerDistPosition: primary particles position distribution

• GmVGenerDistDirection: primary particles direction distribution

• GmVGenerDistEnergy: primary particles energy distribution

• GmVGenerDistTime: primary particles time distribution

• GmVUserXXXAction: user action (XXX can be Run, Event, Tracking, Step-
ping or Stacking)

• G4VSensitiveDetector: sensitive detector

• GmVDigitizer: hits digitizer

• GmVRecHitBuilder: reconstructed hits builder

• GmVPrimitiveScorer: scorer

• GmVPSPrinter: scorer printer

• GmVFilter: filter

• GmVClassifier: classifier

• GmVVerbosityMgr: verbosity

228

Chapter 27. Appendix B: C++ utilities

If you are creating a new class you can use as example one of the classes at
directory examples/PlugInTemplates, that are nearly-empty classes that contain
the necessary methods that you have to implement for each plug-in type.

2. Include the SEAL module definition:
#include "PluginManager/ModuleDef.h"

DEFINE_SEAL_MODULE ();

Then you have to include the relevant “factory”, and define your plug-in
#include "GmCore/GmFactories/include/GmXxxFactory.hh"

DEFINE_SEAL_PLUGIN(GmXxxFactory,MY_CLASS,"MY_PLUGIN_NAME");

Alternatively, if you do not mind that the plug-in name has the same name as
your class, you can use a short notation, instead of DEFINE_SEAL_PLUGIN

DEFINE_XXX(MY_CLASS);

where XXX is the type of object you are defining (the name of the
factory, without “Factory”, e.g. from GmGenerDistEnergyFactory, the
“Gm” substituted by “GAMOS”, and the separation of words with
“_”. For example GAMOS_GEOMETRY, GAMOS_USER_ACTION,
GAMOS_GENER_DIST_POSITION, ... (beware the capitals).

You can add these lines in your class or create a new file with these lines only
(see as example the files called module.cc in almost all the GAMOS code direc-
tories). Remember in any case that you cannot have two definitions of “DE-
FINE_SEAL_MODULE ()” in the same directory.

3. Once this is done, you can select your geometry with the command:

/gamos/xxx MY_PLUGIN_NAME

For example, if you have written

DEFINE_SEAL_PLUGIN (GmGeometryFactory, MyGeometry, "MyGeom");

you can then use

/gamos/geometry MyGeom

to select your geometry

Or if you have written

DEFINE_GAMOS_GEOMETRY(MyGeometry);

you can tell your job to select your geometry with the command:

/gamos/geometry MyGeometry

NOTE: If you are creating a plug-in in a new directory you have created, you have
to be sure to have the “plugin” option in the GNUmakefile, as explained in the section
Compiling your new code.

Using a parameter in your C++ code
We describe in this section how to create and use a new parameter if you are creating
a new C++ class.

GAMOS provides an utility that allows you to change the value of a parameter in
the input file, together with the line commands, and use it in any of your classes
(even in several of them). There are four classes of parameters: numbers, string, list
of numbers, list of strings.

229

Chapter 27. Appendix B: C++ utilities

To change the value of a parameter (of any of the four types) in your input file, you
have to use the command

/gamos/setParam MY_PARAM_NAME MY_PARAM_VALUE(s)

Then you can use this parameter in your class with a line like this:

G4double value = GmParameterMgr::GetInstance()->
GetNumericValue("MY_PARAM_NAME",DEFAULT_VALUE);

if it is a number, or

G4String value = GmParameterMgr::GetInstance()->
GetStringValue("MY_PARAM_NAME","DEFAULT_VALUE");

if it is a string, or

std::vector < G4double > vdefault;
std::vector < G4double > values = GmParameterMgr::GetInstance()->
GetVNumericValue("MY_PARAM_NAME",vdefault);

if it is a list of numbers, or

std::vector < G4String > vdefault;
std::vector < G4String > values = GmParameterMgr::GetInstance()->
GetVStringValue("MY_PARAM_NAME",vdefault);

if it is a list of strings.

Event classification by interaction types
There is a utility in GAMOS that helps you in counting and classifying the tracks by
the type of interactions they have suffered. You just have to create at each step a new
GmTrajPoint and at the end of track pass this list to a GmVSimuEventClassifier that will
return the classification.

You can see an example at GamosCore/GamosAnalysis/src/GmHistosGammaAtSD.cc,
that we explain here in detail:

This class counts the type of interaction of the photons in the sensitive detectors of
your geometry.

The first thing it does, at the PreUserTrackingAction is checking if the current track is
an ’original’ gamma. To do this it gets the help of the GmCheckOriginalGamma class,
that classifies the gammas as

• 0: not an ’original’ gamma

• 1: it is a primary particle, created at the beginning of the event

• 2: is is created at the annihilation of the positron (it is assumed that the positron is
a primary particle)

At each step, the UserSteppingAction method checks that it is inside a volume declared
as sensitive detector. In this case, it adds a new GmTrajPoint for this track, with all the
information of the track at this moment (plus it adds at the beginning another point
with the vertex information).

At the end of track, if it is an original gamma, it asks the class GmClassifierByInterac-
tion to classify it based on the type and number of interactions. The method Classify()
of this class returns an integer with the meaning: 100*100* Number of LowEnPhotoElec

230

Chapter 27. Appendix B: C++ utilities

interactions + 100 * Number of LowEnCompton interactions + Number of LowEnRayleigh
interactions.

See PET section for more details on the concrete class GmHistosGammaAtSD.

Structure of GAMOS
Although the origin of GAMOS is the medical physics field, the latest additions, spe-
cially the many utilities to extract detail information of many types, make it likely
that you can profit from GAMOS to do your simulation in other field of physics, as
already several people are doing.

Although you will not need to know anything about the C++ code, unless you want
to develop new code for GAMOS, we explain here how the GAMOS source code is
organized in the subsystems, each one subdivided in the packages:

• GamosCore: core software covering main Geant4 functionality

• GamosBase

• Base: parameter manager, analysis manager, CSV histograms and other basic
functionalities

• Filters: filters

• Classifiers: classifiers

• GamosGeometry: geometry-related utilities and support for text detector descrip-
tion

• GamosMovement: support for displacements, rotations or general movements of
volumes during a job

• GamosSD: classes for sensitive detectors, hits and digitization

• GamosGenerator: utilities to support single particle and isotope source generators
as well as different initial particle distributions

• GamosPhysics

• PhysicsList: example of electromagnetic physics list, supporting standard, low-
energy and Penelope classes, and example of hadronic physics list (meant for
hadrontherapy)

• OtherPhysicsLists: other examples of electromagnetic and hadronic physics
lists

• Cuts: management of production cuts and user limits, including tools to auto-
matically optimise them

• VarianceReduction: implementation of several variance reduction techniques

• GamosUserActionMgr: user action management, to allow several user actions of
the same type, selectable by user commands

• GamosScoring: scoring manager and messenger and examples of scoring plug-in
classes (scorers, filters and printers)

• Management: scoring manager and messenger and base class for scorer and
scorer printers

• Scorers: scorers

• Printers: scorer printers

• PointDector: point detector scoring

231

Chapter 27. Appendix B: C++ utilities

• GamosData

• Management: data management and base data classes

• Data: data

• Users: data users

• GamosAnalysis: utilities that can help the advanced user to analyse results

• GamosReadDICOM: code to read in DICOM files containing patient data

• GamosUtilsUA: user action utilities (tracking verbosity control, track counting,
process counting, time study, ...)

• GamosUtils: general C++ utilities

• GamosApplication: GAMOS run manager and the “main” program

• PET: example of PET simulation

• PETGeometry: example to simulate the most common PET devices by defining
its properties in a few-lines text file

• PETAnalysis: PET event classifier and PET histograms

• RadioTherapy: example of radiotherapy simulation, including writing and reading
phase space files

Each package has the following subdirectories:

• src: the source code

• include: the header files

You do not need to follow this file distribution if you want to create a new package,
but we recommend you to do so.

232

Bibliography

[1] http://www.cern.ch/geant4 .

[2] http://geant4.web.cern.ch/geant4/support/userdocuments.shtml .

[3] http://seal.cern.ch .

[4] http://proj-clhep.web.cern.ch/proj-clhep .

[5] http://root.cern.ch/ .

[6] Penelope - A Code System for Monte Carlo Simulation of Electron and Photon Transport
, Workshop Proceedings Issy-les-Moulineaux, France , 5-7 November 2001,
AEN-NEA .

[7] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/ch02s02.html .

[8] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/ch04.html\#sect.Geom.Navig .

[9] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/ch02s06.html .

[10] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
PhysicsReferenceManual/html/ch02s05.html .

[11] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
PhysicsReferenceManual/html/PhysicsReferenceManual.html .

[12] http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/
G4_Physics_Lists.html , http://geant4.web.cern.ch/geant4/physics_lists .

[13] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/apas08.html\#sect.G4MatrDb.NISTCmp .

[14] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/Detector/geomSolids.html .

[15] http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ ForApplication-
Developer/html/ch04s04.html\#sect.Hits.G4Multi .

[16] http://www.irs.inms.nrc.ca/BEAM/beamhome.html .

[17] http://www-nds.iaea.org/phsp/phsp.htmlx .

[18] Kawrakow I., Rogers D. W. O., Walters B. R. B., Large efficiency improvements
in BEAMnrc using directional bremsstrahlung splitting. , Medical physics
31(10):2883-98 , 2004 .

[19] , http://stir.sourceforge.net/main.htm , .

[20] Treatment of axial data in three-dimensional PET , Daube-Witherspoon M E ,
Muehllehner G , J. Nucl. Med., vol. 28, pp. 1717-24 , 1987 .

[21] Fundamentals of Computerized Tomography: Image Reconstruction from Projections
(2nd ed.) , Herman G T , Springer, ISBN 978-1-85233-617-2. , 2009 .

233

Bibliography

[21] The Radon Transform - Theory and Implementation , Toft P , Ph.D. thesis, Depart-
ment of Mathematical Modelling, Technical University of Denmark, 326 pages.
http://petertoft.dk/PhD , 1996 .

[22] AMIDE: Amide’s a Medical Imaging Data Examiner ,
http://amide.sourceforge.net/ .

[23] ImageJ: Processing and Analysis in Java , http://rsbweb.nih.gov/ij .

[24] , http://www.med.harvard.edu/JPNM/ij/plugins/Interfile.html .

[21] Stochastic Image Reconstruction Method for Compton Camera , Andriy Andreyev ,
Arkadiusz Sitek , Anna Celler , IEEE Nuclear Science Symposium Conference
Record, 2009 .

234

	GAMOS 4.0.0 User's Guide
	Table of Contents
	Chapter 1. Introduction
	About this document
	Introduction to GAMOS
	Structure of GAMOS
	The plugin concept

	Chapter 2. Getting started
	Getting the code and installing it
	Tips for installation in Ubuntu
	Tips for installation in Fedora Core

	Running an example
	Compiling GAMOS
	Compiling your new code

	Chapter 3. Geometry
	Building your geometry with a text file
	Description of geometry text file format
	Isotope
	Element made of one unique isotope
	Element composed of several isotopes
	Material made of one element
	Material made of a mixture of elements or materials
	Material properties
	Geant4 internal database of materials and elements
	Solids
	Volumes
	Placement of a volume
	Rotation matrix
	Module
	Visibility
	Colour and transparency
	Check overlaps
	Use of '*' in names
	Use of parameters
	Units
	Arithmetic Expressions
	Including other files
	Combining C++ and ASCII files

	Dumping your Geant4 geometry in text file format
	Adding new tags to your input text file
	Parallel geometries
	Simulating materials and interactions in parallel geometries

	Building simple geometries
	Building a simple geometry with one material
	Building your geometry with C++ code
	Reading DICOM files
	Converting a DICOM file to a simulation file
	DICOM file format
	Reading a DICOM file in a GAMOS job
	Partial phantom geometries
	Simple phantom geometries
	Setting off visualization of phantom geometries

	Movements
	Movement description from a file

	Geometry utilities
	Commands to print geometry objects
	C++ utilities

	Magnetic field
	Local magnetic field

	Chapter 4. Generator
	Using GAMOS generator
	Introduction
	Particle sources
	Single particle source
	Isotope source
	Double back to back particle source

	Distributions
	Time distributions
	Energy distributions
	Position distributions
	Direction distributions
	Position and direction distributions
	Creating your own distribution

	Reading your generator particles from a text file
	Reading your generator particles from a binary file
	Event generator changing energy and material
	Event generator histograms
	Biasing generator distributions
	Building your generator with C++
	Using ions

	Chapter 5. Physics
	GAMOS electromagnetic physics list
	Multiple scattering model
	Bremsstrahlung angular distribution

	GAMOS electromagnetic extended physics list
	GAMOS hadrontherapy physics list
	Other physics lists
	Building your physics list with C++ code
	Replacing process models
	Production cuts
	Production cuts by region
	Energy cuts to range cuts conversion
	Minimum and maximum production cuts
	Apply cuts for all processes

	User limits
	Automatic optimisation of cuts
	Range rejection

	Optical photons
	Using optical photons as primary generator

	Xray refraction
	Atomic deexcitation processes
	Decay process
	Radioactive decay process
	Cerenkov process
	Removing a process from a physics list

	Chapter 6. User Actions
	Adding a filter
	Adding a classifier
	User action name
	Creating your GAMOS user action

	Chapter 7. Sensitive Detector and Hits
	Sensitive detectors
	Attaching a sensitive detector to a volume
	Building your sensitive detector with C++ code

	Hits
	Detector effects
	Energy resolution
	Time resolution
	Detector measuring time
	Detector dead time
	Minimum hit energy

	Hits digitization and reconstruction
	Hits digitization
	Hits and digits reconstruction
	Examples of reconstructed hit builders

	Identifying each sensitive detector copy
	Storing and retrieving hits
	File format

	Hits histograms

	Chapter 8. Scoring
	Creating a scorer
	Scorer classes
	Scoring in voxelised phantoms

	Filter classes
	Scorer printers
	Classifiers
	Multiplying by data
	Multiplying by distribution
	Convergence testing
	Point detector scorer
	Theoretical basis
	GAMOS implementation
	Creating angle deviation probability densities
	Point detector volume
	Energy and dose equivalent bins
	Scoring with filters
	Scoring per category
	Output format
	Control Histograms

	Variance reduction techniques
	Kill contributions of low weight
	Kill contributions too far from detector
	Split particles of big weight

	Chapter 9. Variance reduction techniques
	Introduction
	Importance sampling
	Geometrical biasing
	Production of deexcitation secondary particles
	Particle splitting techniques for radiotherapy

	Chapter 10. Histogramming
	Histogram formats
	Histograms in CSV format
	Changing histogram minimum, maximum and number of bins
	Output files name
	Analysing your histograms with ROOT
	Printing the histograms in graphics files
	Comparing histograms in two files

	Creating your own histogram

	Chapter 11. Analysis (extracting data)
	Introduction: GAMOS data
	Data users
	Behaviour as a function of information object
	Behaviour as a function of output format
	Selection of data list for a data user
	Default data list for each data user

	Saving GAMOS data in a ROOT TTree
	Filter from data
	Classifier by data
	Primitive scorer from data

	List of available data
	Position
	Momentum
	Direction
	Energy
	Geometrical objects
	Material variables
	Particle and process
	Secondary tracks
	Others

	Output file names
	Merging results from different jobs
	Example of Analysing text output files

	Chapter 12. Filters
	Introduction
	Simple filters
	Volume filters
	Filters of filters
	Applying filters to a user action
	Checking filters at a user action
	Filtering steps in the future

	Chapter 13. Classifiers
	Introduction
	Setting indices to classifiers

	Chapter 14. Distributions
	Introduction
	Creating a distribution
	Assigning a GAMOS data
	Reading values from a file
	Numeric distributions
	String distributions
	Geometrical biasing distribution

	Chapter 15. Utility user actions
	Counting the number of tracks and events
	Counting the processes
	Shower shape studies
	Killing all tracks
	Table of tracks and steps
	Material budget studies
	Detailed report of where CPU time is spent
	Changing the weight using a distribution
	Copying the weight to the secondary particles
	Stop run after a certain CPU time

	Chapter 16. Managing the verbosity
	GAMOS verbosity managers
	Controlling GAMOS verbosity by event

	Using a GAMOS verbosity manager in your code
	Creating your own verbosity manager
	Controlling the Geant4 verbosity by event and track
	Dumping the standard output and error in log files

	Chapter 17. Detector applications
	Identifying Compton interactions
	Compton studies histograms
	Histograms of data about the interactions and the reconstructed hits
	Classification of good and bad identification histograms as a function of variable

	Histograms of gammas at sensitive detectors
	Automatic determination of production cuts for a detector
	Automatic determination of user limits for a detector

	Chapter 18. PET application
	PET geometry
	PET event classification
	PET histograms: event classification
	PET output for reconstruction
	Listmode binary file
	Projection data file

	PET histograms: positrons
	PET histograms: distance between two gammas

	Chapter 19. SPECT application
	SPECT event classification
	SPECT histograms: event classification
	SPECT output for reconstruction

	Chapter 20. Compton camera application
	Compton camera geometry
	Compton camera Event Classification
	Compton camera histograms: event classification
	Compton camera output for reconstruction

	Chapter 21. Image reconstruction utilities
	Listmode to projection data: lm2pd
	Summing projection data files: sumProjdata
	Analytic image reconstruction: ssrbfbp
	Visualization tools
	Stochastic Image Ensemble method
	Introduction
	About this Document
	Introduction to SOE

	Getting Started
	Running SOE
	Input files
	Output Files

	Program Parameters and Flags
	PET or Compton camera
	Input Data
	Iterations
	Geometry
	Resolution Recovery
	Special running flags

	Analysis

	Chapter 22. Radiotherapy application
	Geometrical modules
	JAWS module
	MLC module
	Introduction
	Geometrical module definition and variables list
	Module MLC example

	Using phase spaces
	Writing phase spaces
	Phase space text file
	Phase space histograms
	Reading phase spaces
	Adding extra information to a phase space
	Reusing a particle at a phase space without filling the phase space file

	Optimisation of a linac simulation
	Cuts optimisation
	Electromagnetic parameters optimisation
	Particle splitting
	Uniform bremsstrahlung splitting
	Zplane directional bremsstrahlung splitting

	Killing particles at big X/Y

	Scoring dose in phantom
	Saving scores and score errors in text file
	Saving scores and scores squared in binary file
	Saving scores in histograms

	Analysis utilities
	Summing phase space files
	Making histograms out of a phase space file
	Merging 'sqdose' files
	Merging '3ddose' files
	Making histograms out of a 'sqdose' file
	Automatic determination of production cuts for an accelerator simulation
	Automatic determination of production cuts for a dose in a phantom simulation
	Automatic determination of user limits for an accelerator simulation
	Automatic determination for a dose in phantom simulation

	Chapter 23. DICOM utilities
	Chapter 24. Magnetic field manager
	Chapter 25. Optimising the CPU time of your application
	Knowing where the time is spent
	Production cuts
	Killing particles of small energy
	Killing particles
	Optimising the particle generation
	Limiting the number of user actions
	Using variance reduction techniques

	Chapter 26. Appendix A
	Using parameters
	Checking the usage of parameters

	Managing the input data files
	Random number seeds
	Changing the random engine

	Sending several jobs in the same machine
	Identifying touchables
	Using asterisks to get volume, particle and material names
	Using particle names

	Chapter 27. Appendix B: C++ utilities
	Converting a Geant4 example into a GAMOS example
	Creating your plugin
	Using a parameter in your C++ code
	Event classification by interaction types
	Structure of GAMOS

	Bibliography

