jUCMNav Modules Extension User Manual

Introduction

When building large-scale goal-oriented models using the i* framework, the problem of scalability
arises. One of the most important causes for this problem is the lack of modularity constructs in the
language.

JUCMNav is a graphical editor and an analysis and transformation tool for the User Requirements

Notation (URN). This tool supports the Goal-oriented Requirement Language (GRL) and the
Modules Extension adds the notion of modularity to its basis.

Module Definition

The extension supports SDModule and SRModule definition. A UndefinedModule structure has
also been included in order to represent the abstract notion of a generic i*-Module and as a base to
be used for Module Application purposes.

The basic GRL editing and GRL strategies managment and application offered by jUCMNav
remains the same.

Creating and Opening Modules

You will allways be working with Modules (even if it is with its most abstract notion) so the
creation and definition of Modules is transparent to the creation of new GRL graphs.

_lpixi =k
Select a wizard jUCM File i Q’?
\-._;

This wizard creates a new * jucm file that can be opened with the jUCMNay editor,

ilEEreEr Project or Folder; | VEdlipseTest33/Documents Browse... |
Itype filker bext

File name: | new_file. jucm
[é Jawa Run/Dsbug il Create new diagramis): [5 UcM M GRL
i [-l= Junit

[Eb Java Emitter Templates

T -

LI 7 Finish I Cancel
) .
S File = New - Other...
(7) = Back I Mext = I Finish | Cancel

Once created you will be able to edit and change the Module's nature through its reference label. A
click on the Module label will open then its properties view. Through the advanced set of properties
you will be able to change the Module's Type, name, etc.

E modell jucm 52 -
Madulel o Palette [
<<5RModule>> L\, Select
[Comment
== Links &0
#% Decomposition
Pay By Cradit Card “I* Contribution
Authorise Credit B [SRR
Card [= Components o]
And, -s
i, Actor
= Elements]
B Softgeal
" @ Goal
Validate Payment Order Payment £ Taclt >
(= KPI Model &
& Indicator
foi Dimension
| KPI sk
GRLGraph2
%Scenari... 52 | Listof .. | = O || El Properties &2 | [£1 Problems| = Key Performance Indicators| @] Error Log| Bl Console = ¥ =0
gtéh | T~ Parent [unbound] -
Standard Metad
== UCM Scenarios 4 Metadata
(2= ScenarioGroup5 (5) pictarata Metadata [click to edit]
UOC-T] ScenarioDef6 (5) Advanced 4 Miscellaneous
GRL Evaluation Strategies type SRMaodule
== Enumerations 4 Reference =
= Variables definition Modulel (11}
4 m r
UndefinedModules

When creating a Module its default type will be set to UndefinedModule. This type
of Module is the most generic of all and it is specialised by SRModules, SDModules, and
other User-defined Modules. It has no extra integrity constraints.

SRModules

When working with SRModules you will be able to set its root elements throught the
correspondent Intentional Element advanced properties view. Root Intentional Elements are
represented by blue references (see picture above). You can set an Intentional Element as
root throught its advanced properties view.

SDModules
When dealing with this kind of Modules one will be able to work transparently with
actors

Checking Module Integrity

[*-Modules have its own integrity contraints. JUCMNav already offers a set of predefined

OCL-based constraints that are accesible through the preference menu. In this extension you will
also find a set of predefined constraints for each Module type together with jJUCMNav's default
constraint sets. This catalogue can be easily extended by the user. See jJUCMNav's help content for
detailed information.

Module Operations

The extension also offers two Module Operations. One can apply the operations throught Eclipse's
Navigator View.

©T. Mavigator &3 =08
K
4 [test?
|¥] .project

g rmodell. jucm
g rmodel2. jucm

By using the above encircled button any of the defined operations can be executed. Depending on
the selected modules's nature Combination or Application will be applied. Then, no matter what
operation is used, a result Module will be created and saved in the same workspace (notice that you
can only apply operations to Modules in the same workspace and once you execute the operation all
other open modules will be save and closed). The result file will be named after its source Models
(note that file and Module name need not be the same).

Module Combination

The result of this operation will be a default UndefinedModule. Below the default label you will be
able to keep trace of the used Modules (green labels) used to obtain the result and its types.

&3 *modell jucm &3 *modell + model2jucm 3

Modul...
<<Undefined »»

Payment Security P
n

Authorise Credit
Card
X -

Module Application

If one of the input Modules is an UndefinedModule Module Application will be assumed. Before
applying the operation you will be asked for a dependency match list (which you can leave empty).

' | £ Add Dependencies Ir‘_ | : -,

Dependum

:Drder Payment — Order Payment-=Pay Good
Dependee

:Pay Good —

[Add Dependency]

[Delete Dependency]

[Continue]

Once the dependency match list is introduced a resulting UndefinedModule similar to the output of
Module Combination will be obtained with the specified dependencies added. Note that the once
applied, the result module might be inconsistent. In order to guarantee the consistency you can use
the static constraints through the preference's menu. See jUCMNav's help content for detailed
information.

	Introduction
	Module Definition
	Creating and Opening Modules
	Checking Module Integrity

	Module Operations
	Module Combination
	Module Application

